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Abstract 

 

 

Decision-making is a fundamental practice in engineering organizations that 

significantly influences the value of the products developed. However, despite the 

expectation that highly technical and safety-critical decisions should follow a 

rational process, human behavior often interferes, resulting in outcomes that are 

less than entirely rational. This research aims to model the interplay between 

rational and behavioral components in technical decision-making during product 

development. A Unified Model of Rational and Behavioral Technical Decision-

Making (UMRBTDM) was developed as the conceptual framework for this study. 

A mixed-methods strategy was employed, consisting of in-depth interviews with 15 

participants to explore their behavior and organizational technical decision-making 

process for the qualitative component, and the development of questionnaires to 

assess decision-making tendencies using realistic scenarios, garnering 96 

responses for the quantitative component. 

 

The Synthesized Model of Technical Decision-Making in Product Development, 

which was later developed by refining the UMRBTDM based on the research data, 

models the interaction between rational analysis and biases in the technical 

decision-making process. Data analysis showed that technical decision-making in 

engineering organizations resembles a three-way tug of war where rule-following, 

rational analysis, and personal judgment pull in different directions to reach an 

equilibrium. The decision-makers were also found to be moderately biased and 

more prone to social bias than cognitive bias. Social and cognitive biases have 

also been shown to be embedded in the processes, and removing biases from the 

equation is impractical. These biases do not necessarily lead to bad decision-

making because they are sometimes used to mitigate the limitations of rational 

analysis. Rational analysis is a powerful tool that should be pursued but at the 

same time, behavioral elements should be allowed to co-exist in the decision-

making process, as long as engineering organizations can identify and manage the 

negative side effects of heuristics and biases in the decision-making process. 
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Impact Statement 

 

 

The research presented in this thesis on technical decision-making in safety-

critical, highly complex systems industries offers significant implications both within 

and outside the academic sphere. By modeling the dynamic interplay between 

rational and behavioral components in technical decision-making, this research 

broadens the understanding of the technical decision-making process and offers 

insights that could be instrumental in refining research methods in these fields and 

influencing organizational decision-making strategies. 

 

The thesis proposes a synthesized model of rational and behavioral technical 

decision-making, specifically applicable to product development. This theoretical 

contribution enhances the understanding of how biases may impact decision 

analysis and provides a comprehensive framework for studying the technical 

decision-making process. The thesis also provides valuable insights into the 

decision-making process employed in engineering organizations for technical 

decisions. It lays out the current landscape of the technical decision-making 

process in engineering organizations, especially those in safety-critical industries, 

and analyzes the gaps and deviations between the expectation and reality of the 

decision-making process. This practical contribution aids organizations in 

understanding and evaluating their decision-making strategies and processes, 

enabling them to make informed improvements. Furthermore, this thesis further 

increases the academic community's understanding of biases within the technical 

decision-making process, which is also relevant to industry. This encourages 

decision-makers to critically examine their own organization’s susceptibility to bias 

during technical decision-making and implement strategies to mitigate its impact. 

 

In conclusion, this thesis improves the academic understanding of technical 

decision-making and provides practical applications for refining decision-making 

processes in engineering organizations. It bridges the gap between theoretical 

models and practical realities, this research provides a robust framework for 

enhancing the efficacy of technical decision-making in various industries, 

particularly those that are safety critical. 
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Definition of Terms 

 

Normative model:  

prescribes how people or organizations should behave to achieve optimal 

decisions (Rechtin & Maier, 2000; Simon, 1972). 

 

Descriptive model:  

explains how people actually behave when making decisions (French, Bell, 

Raiffa, & Tversky, 2006; Over, 2008). 

 

Rational model:  

describes the decision-maker as possessing a “well-organized and stable system 

of preferences and a skill in computation that enables him to calculate, for the 

alternative courses of action available to him, which of these will permit him to 

reach the highest attainable point on his preference scale” (Simon, 1955) 

 

Behavioral (or boundedly-rational) model: 

explains that due to inherent limitations in processing information and solving 

complex problems, individuals often seek to satisfy their minimum utility 

requirements instead of maximizing them (Simon, 1956). 

 

Heuristics:  

a mental shortcut, or rule-of-thumb, where people base decisions on their 

intuitions to make decisions quickly or to avoid the taxing information-processing 

requirements of the rational model (Hodgkinson & Starbuck, 2008; Robbins & 

Judge, 2001). 

 

Bias: 

an inclination or predisposition of the mind towards a particular viewpoint or 

outcome, which represents a deviation from the position that would be predicted 

by rational decision-making. 

  

Judgement: 

subjective assessment of probability, physical quantities or qualities (Kahneman 

& Tversky, 1974).  
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1 Introduction 

 

Organizational decision-making processes have been largely supported by 

systematic and rational methods. Studies have shown that human factors in 

organizational settings influence the decision-making process, which can alter the 

intended outcome of the decision made (Carley & Frantz, 2009; Shapira, 2002). 

Thus, it is important to understand the influence of human factors on the systematic 

decision-making process in an organization.  

1.1 Organizational Decision-Making 

 

Decision-making in organizations is somewhat akin to day-to-day personal 

decision-making but with a few key differences. Organizations are structured 

entities, with different layers within the organizations, each responsible for different 

decisions. Senior management is responsible for long-term strategic decisions that 

will steer the direction of the organization. Middle managers interpret the decisions 

and plan tactical decisions, which are then implemented by junior managers into 

day-to-day operational decisions. Although decision theory scholars argue that 

optimum decisions can only be achieved with rational decision-making (Baron, 

2008; March, 1978), they also agree that humans are inefficient information-

processors (March, 1978). In order to increase rationality in organizational 

decision-making, organizations prescribe decision rules and the use of decision 

analysis tools (Dobbin, 1994; Krumm & Rolle, 1992). However, as long as humans 

participate in organizational decision-making processes, there will always be 

human factors that deviate the process from its rational goal. 

 

The decision-maker’s bias – one of the human factors – is a soft element in the 

decision-making process that can be captured by examining organizational 

behaviors. Organizational behaviors, which include group dynamics, play 

important roles in organizational decision-making (Forsyth, 1990). Group 

dynamics, which have elements of social bias such as groupthink, together with 

personality traits, for example, self-efficacy and risk-taking among different status 

and cultural groups, may influence the outcome of a decision (Aldag & Fuller, 1993; 

Harvey & Consalvi, 1960; Mau, 2000; Mullen & Copper, 1994). Different group 
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dynamics can produce different decision outcomes despite having the same 

strategic decision at the outset. Therefore, it is crucial to identify and model these 

human factors into the decision-making process, so that the overall process of 

decision-making at the organizational level, which is mainly driven by rational 

methods, reflects the organic component of the decision-making process. 

1.2 Problem Statement 

 

Product development in engineering-based organizations is a technically-oriented 

process. Quantitative data are fed into the technical decision-making process to 

produce rationally-driven decision outputs. To ensure objectivity, engineering 

organizations, professional bodies, and industry trade associations have outlined 

detailed guidelines on the application of a systematic and rational decision-making 

process. In academia, countless decision support tools have also been proposed 

to ensure the rationality of technical decision-making. In doing so, what these 

scholars may have missed is the soft element in decision-making, human behavior. 

Humans are central to most organizational decision-making processes, including 

technical-related decisions. They are boundedly-rational creatures (Simon, 1957), 

whose preferences are ever-changing and inconsistent (March, 2002). Therefore, 

as long as humans make technical decisions, it begs the question of whether total 

rationality in the decision-making process can be achieved. Moreover, we should 

not assume that complete rationality is desirable in all decision-making cases. 

Human intuition is a highly developed, non-logical form of reasoning, based on 

experience and formal learning (Barnard, 1938). It cannot be dismissed as a non-

optimal form of decision-making. Therefore, an examination of the influence of 

human behavior in decision-making may shed some light on the role of rationality 

in the technical decision-making process. 

 

Based on the widespread practice that decisions should be centered around 

rational deliberation for an optimal outcome, organizational decision-making 

processes can be characterized as a decision based on rational choice or rule-

following (March, 2002). Both decision-making characteristics are present in 

engineering organizations that develop technical products. However, rational 

choice is expected when making technical decisions in product development, 

particularly when the decision-making is supported by rational analysis. 
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Engineering organizations also exhibit rule-following behavior where conformance 

to product development process norms, defined in their respective industry or by 

international standards, is systematically applied. Rules and norms are generally 

created based on formal learning, past experiences, and conscious agreements 

between rule makers (March, 2002; Zhou, 2002). However, this behavioral 

component of rule-following characteristics is interlaced with its rational 

component. The rational component, on the other hand, can be observed in many 

product development standards and guidelines where rationality is required in the 

technical decision-making process (ISO/IEC 15288, 2005; NASA, 2007). 

 

The development of technical products revolves around mathematical objectivity 

and measurable performance. Product design and development are often 

conducted based on rational analysis where calculations, simulations, and 

numerical analysis are institutionalized (Attia, Gratia, De Herde, & Hensen, 2012; 

C.-H. Chen, Donohue, Yücesan, & Lin, 2003; Mavris, Bandte, & DeLaurentis, 

1999). Decision analysis, an example of rational analysis, has been widely used in 

industries involved in the technical decision-making process (Wright & Goodwin, 

2009). Decision analysis tools, such as influence diagrams, Monte Carlo 

techniques, probabilistic forecasting, and decision tree, have been used in the 

industry to increase the effectiveness of engineering organizations’ decision-

making to varying degrees (Hess, 1993; Krumm & Rolle, 1992; Ulvila & Brown, 

1982). Academic researchers have also proposed new decision analysis tools to 

be used during product development such as multiple variations of fuzzy logic 

(Büyüközkan & Feyzıog̃lu, 2004; Lin & Lee, 1991; Yan, Chen, & Shieh, 2006) and 

multi-attribute utility analysis (Büyüközkan & Ateş, 2007; Malak, Aughenbaugh, & 

Paredis, 2009). Thus, the expectation of rationality in technical decision-making is 

a norm in engineering organizations. 

 

On the other hand, human behavior in organizational decision-making cannot be 

defined as rational (Simon, 1947). Heuristics and biases influence organizational 

decision-making processes and deviate decisions from their optimal outcomes. 

Overconfidence, anchoring, confirmation, and availability biases are common 

occurrences in organizational decision-making processes (Robbins & Judge, 

2001). These biases have been proven to cause sub-optimal decisions, especially 

in the product development process in engineering organizations. For example, 
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functional members within organizations, such as service, manufacturing, and 

research and development, can bias decision-making in the product development 

process due to internal conflicts to achieve a dominant position in the 

communication hierarchy (Antioco, Moenaert, & Lindgreen, 2008). In the space 

industry, there is also an inherent bias to downplay external risks, such as the 

political situation and contractual variability, that can impact the viability of space 

missions (Reeves, Eveleigh, Holzer, & Sarkani, 2013). Furthermore, Boulding, 

Morgan, and Staelin  (1997) discovered that, due to escalation of commitment or 

sunk-cost fallacy, managers tend to prolong commitment to a failed new product. 

 

As demonstrated in the discussion above and based on the author’s professional 

experience in the industry, many technical decisions were treated with the 

decision-maker’s subjective judgments, even when they have quantifiable 

information, measurable constraints, and objective requirements. Decision-

makers, time and time again, fell into the trap of heuristics and biases due to 

reasons such as personal issues and political environment. It is an apparent 

problem in engineering organizations when decision-makers are not making 

technical decisions objectively, despite the need for rational analysis.  

 

The expectation for rationality in technical decision-making is even more 

pronounced in safety-critical and highly-complex systems such as in the 

automotive, space, and medical device industries. Organizations in these 

industries are expected to conform to a higher standard of product development 

process due to the technical and specific nature of their products. Their highly 

complex products may consist of multiple interfacing systems which include 

electrical, mechanical, software, chemical, and biological systems. Moreover, the 

fallout of safety and health hazards of the products may have huge impacts not 

only for the direct users but for society in general. The dynamics between 

competitive pricing, high production volumes, and stringent regulations to ensure 

public safety compel automotive industry players to make technical decisions with 

due deliberation. On the other hand, medical device companies may not face the 

same constricting cost target, but high individual health risk requires a rigorous 

decision-making process during product development. Large capital expenditure 

coupled with high technical complexity in the space sector, albeit with low 

production volumes, requires space companies to adhere to tight regulations 
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imposed by their stakeholders. Therefore, the technical decisions taken in these 

organizations must be finely-balanced between cost, safety and health hazards, 

technical complexity, project timing, manpower allocation, and legal requirements. 

 

Due to these factors, these organizations exhibit rule-following behavior which 

contains both rational and behavioral decision-making components. The normative 

technical decision-making process in these industries is largely governed by 

rational analysis (ISO/IEC 15288, 2005). In the real-world, technical decisions are 

made by boundedly rational humans who do not necessarily conform to the 

rationality expected. This particular idiosyncrasy is the subject of this research 

interest. 

1.3 Research Aims 

 

Rational analysis is the governing principle for technical decision-making; however, 

human decision-makers incorporate behavioral elements into the process. With 

this curiosity in mind, this research seeks to understand the dynamic contrast 

between rational and behavioral elements in the technical decision-making 

process in product development in engineering organizations within safety-critical 

complex system industries. Therefore, the aims of this research are: 

 

1. To investigate the behavioral components that influence technical decision-

making. 

2. To model the interaction between rational and behavioral components of 

technical decision-making in product development 

1.4 Research Approach 

 

Although technical decision-making is a subset of the broader field of decision-

making, this research aims to investigate the underexplored aspect of behavioral 

elements within technical decision-making. Therefore, a systematic approach is 

essential to ensure a comprehensive exploration of all possible perspectives. The 

research approach involves exploring the decision-making field by methodically 

building up an understanding of the topic and subsequently narrowing it down to 
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the specific area of interest, in this case, technical decision-making in engineering 

organizations. 

 

Therefore, a sequential exploratory strategy was chosen for this research because 

of its layered approach that allowed for the exploration of the decision-making 

behavior in engineering organizations through qualitative research and was 

supported with quantitative analysis to verify the interpretation of the qualitative 

discoveries.  The layered approach started with the literature review, as the 

preliminary analysis. It provided a groundwork to understand the historical and 

current research in decision-making topics, especially in engineering 

organizations. This was followed by a sequential exploratory mixed-method 

strategy. The exploratory qualitative phase used expert interviews and content 

analysis to explore the organizational decision-making landscape and build a 

model for further quantitative analysis. The exploratory phase used survey 

research and statistical analysis to quantify the issues identified through the 

qualitative phase and to test the model for further refinement. The detailed 

research design can be found in (Figure 25). 

1.5 Scope 

 

The scope of this thesis was confined to the modeling of technical decision-making 

process in product development in engineering organizations, with a focus on 

safety-critical, highly complex systems industries. The study analyzed the 

presence of biases in the decision-making process and incorporated the findings 

into a graphical form of a model. Data were collected via interviews and surveys 

from various employees who were directly involved in the technical decision-

making process within different engineering organizations. The decision-making 

process was analyzed within the context of the design development phase of the 

product development process of these organizations. 

 

Specifically, concept selection as a facet of technical decision-making was chosen 

as the decision context. Concept selection in architectural design represents one 

of many technical decision-making processes that exist within the whole spectrum 

of a product lifecycle. Since architectural design provides the design blueprints for 

product design teams (Haskins et al., 2006), a robust and rational decision-making 
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process in selecting a viable concept is imperative. Hence, concept selection 

represents a critical juncture in the product development process of engineering-

based organizations, as any negative repercussions of a sub-optimal concept 

selection process will resonate throughout the product development process due 

to the longitudinal nature of the process (Shapira, 2002). 

 

1.6 Thesis Outline 

 

The introductory chapter provides a brief explanation of the research in the thesis 

and defines the research aims and its scope. Chapter 2 highlights relevant 

literature by explaining the progress of decision theory research over the years and 

then narrows the focus of the literature review to the product development process 

in engineering organizations. Based on the literature review and guided by the 

research aims, a set of research questions was formulated, and each research 

question was assigned with research actions. Chapter 3 explains and justifies the 

research methodologies used while providing the conceptual framework that 

becomes the foundation of this thesis. The previously defined research actions 

guided the development of research instruments, which are described in this 

chapter. Chapter 4 is split into two distinctive but related areas. Sections 4.1 and 

4.2 present the research results objectively, while Section 4.3 answers the sub-

research questions by weaving evidence and data from the findings with the 

author’s critical analysis and supported by existing literature. Finally, Chapter 5 

concludes the thesis by answering the main research question and presenting the 

limitations of the research. A brief discussion of the possible directions of this topic 

can be found at the end of the chapter. 

 

In order to steer the research toward the fulfillment of its goals and to ensure a 

systematic development of research instruments, research aims, questions, and 

actions were constructed to fulfill their specific roles. Research aims (Section 1.3) 

represent the primary goals of the research project and intended outcomes where 

two research aims were formulated based on the thesis title and problem 

statement. These aims were then decomposed into research questions (Section 

2.7). Whereas research aims are the broad overarching goals of the research, 

research questions refine those aims into more objective and tangible expectations 



18 
 

with each research question was then assigned with measurable research actions 

(Section 2.7). These actions were subsequently allocated to a specific research 

methodology (Section 3.2.2, Section 3.2.3) to guide the development of the 

research instruments. Figure 1 visualizes the decomposition of research aims to 

research actions. 

 

 

Figure 1: Link Between Research Aims, Questions and Actions 
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2 Literature Review 

 

An organization is a system of interacting elements (i.e. employees, processes, 

and infrastructures) that is organized to achieve one or more stated purposes of 

the system (ISO/IEC 15288, 2005). Herbert Simon, in his seminal paper, views 

organization as a system in equilibrium. An organization receives contributions in 

the form of money or effort, as input parameters, and outputs inducements in 

return. A control group of the organization makes decisions and choices among 

alternatives to maintain the organization’s equilibrium (Simon, 1947). The decision-

making process in organizations has gained the attention of management scholars 

in academia since the late 1930s and 1940s (Hodgkinson & Starbuck, 2008). 

However, decision theory has long been the subject of interest among economists 

dating back to the 18th century. Although decision theory as an academic field has 

expanded into a multitude of disciplines over the years, it still revolves around two 

core concepts: normative and descriptive models. (March, 1978). 

 

The normative decision-making model prescribes how people or organizations 

should behave to achieve optimal decisions (Rechtin & Maier, 2000; Simon, 1972). 

Rational behavior is the center of the normative decision model – also known as 

rational analysis – as normative theory is largely revolved around mathematical 

models such as game theory and statistical decision theory (Fox, 2015; March, 

1978; Over, 2008). Most decision scholars agree that normative theory is the 

standard on which all decision-making processes should be based; any systematic 

deviations from the rational model are considered to be anomalies to the norms of 

decision-making  (Fox, 2015; Kahneman, 1991; Rechtin & Maier, 2000).  

 

The descriptive model, on the other hand, explains how people actually behave 

when making decisions (French, Bell, Raiffa, & Tversky, 2006; Over, 2008). This 

behavioral decision-making theory explores the systematic deviations from the 

normative model due to the emergence of heuristics and biases in the decision-

making process (Baron, 2008; Kahneman, 1991; Over, 2008). 

 

Current trends indicate that the technical decision-making process should be 

rational and adhere to mathematical objectivity, with many studies advocating for 
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decision analytical tools of varying complexity, from straightforward procedures to 

complex mathematical models and simulations. Tang et al. (2022) recommended 

systems dynamic modeling and grounded theory to assess risks in technical 

decision-making for large-scale construction projects. For complex technical 

system design, Nemtinov et al. (2019) introduced a generalized model for decision 

support using sequential analysis and discrete optimization based on sophisticated 

mathematical models. Utilizing virtual modeling technology, Nemtinov et al (2021) 

developed information and logical models to enhance the decision-making process 

for equipment layout in virtual environments. Ginting et al. (2017) employed the 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

methodology as a decision support system to identify not only the optimal solution 

but also the solution that maximizes the distance from the least desirable outcome. 

Kranabitl, Faustmann, and Hick (2021) proposed a unique approach to technical 

decision-making by incorporating systems thinking, model-based systems 

engineering, and human factors to achieve sustainable and less biased decisions. 

Nevertheless, mathematical approaches to technical decision-making can be 

traced back to the latter half of the 20th century. Decision analysis tools, such as 

influence diagrams or decision networks (Howard & Matheson, 2005), multi-

attribute utility analysis (Keeney & Raiffa, 1993), Simple Multi-attribute Rating 

Technique or SMART (Edwards, 1971), decision tree analysis (Raiffa & Schlaifer, 

1961), and Thomas Saaty’s analytic hierarchy process (Saaty, 1980), have been 

widely applied in both academia and industry due to their numerous advantages. 

 

However, the study of behavioral aspects of decision-making process within a 

product development context is sparse. Only a few research studies have explored 

the existence of heuristics and biases in the technical decision-making process 

during product development, leaving a gap that needs addressing. For example, 

Siefert and Smith (2011) investigated industry data and identified several biases 

that influence technical risk management in engineering organizations. Other 

studies have confirmed the presence of biases such as confirmation bias and 

overconfidence bias in engineering design practices (Hallihan, Cheong & Shu, 

2012; Zheng, Ritter & Miller, 2018; Nelius et al., 2020; Agyemang, Andreae & 

Mccomb, 2023). Moreover, McDermott, Folds, and Hallos (2020) identified 

cognitive biases specifically impacting systems engineering teams; biases like 

vividness bias, clustering illusion bias, and sample size bias can lead to suboptimal 
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outcomes in systems engineering tasks.  Biased information passing was also 

observed as a negotiation tactic in order to manage risk throughout the design 

process (Austin-Breneman, Yu, & Yang, 2016). 

 

The literature review (Figure 2) aims to understand the evolution of decision theory 

research over the years and narrows its focus to a specific decision context: 

technical decision-making in product development in safety-critical, highly complex 

systems industries. Examining the latest literature on decision-making yielded a 

general explanation of the origin of decision theory. Based on the examination, 

many original papers on established decision theories, dating back to the 18th 

century, were studied to form the earlier decision theory discussed in Section 2.1. 

Jeremy Bentham’s (1781) and Daniel Bernoulli’s (1738) perspectives on the 

maximization of expected utility laid the groundwork for early decision theory 

research, marking the starting point of this literature review. The review continued 

to focus on rational decision-making theories, which were dominant in the first half 

of the 20th century (Section 2.2). However, Section 2.3 demonstrated 

counterarguments for rationality in decision-making, which has been gaining 

momentum in the latter half of the century. In parallel, the literature review on 

organizational decision-making theories, described in Section 2.4, sets the focus 

of this thesis. Finally, Section 2.5 reviewed academic and industry literature to 

explain the role of technical decision-making in product development processes. 

 

 

 

Figure 2: Literature Review Approach 

 

A large part of the literature on decision-making focuses on the development and 

understanding of decision models: normative (or rational) and descriptive (or 

boundedly-rational). Decision theory can also be grouped into decision types, such 

as individual and group decisions, and decision contexts, for instance, personal 

and organizational (Figure 3). In organizations, decision levels – that is strategic, 

tactical, and operational – exist depending on the organizational hierarchical level. 
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Figure 3: Theoretical Framework of Decision-making Research1 

 

 
1 Product development process model is adapted from ISO 24748-1 
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2.1 Economic Man 

 

Early interest in the theory of decision-making can be traced back to Jeremy 

Bentham, a philosopher-economist, in 1789 (Edwards, 1954; Stigler, 1950). 

Bentham postulates that the goal of human action is to pursue pleasure and avoid 

pain, or in other words, to maximize utility (Bentham, 1781). Utility can be defined 

as a measure of preferences or satisfaction over goods and services which may 

include monetary value. Many early scholarships in decision-making were the 

result of the economic study of consumer behavior, in which utility theory played a 

central role. 

 

Daniel Bernoulli in his notable paper, Specimen Theoriae Novae de Mensura Sortis 

(1738), describes that the value of an item is not solely based on its price, but 

rather the utility it yields to the consumers. The price of an item is dependent on 

the object and is the same for everyone, but it is the utility that varies between 

persons. He further suggested that one thousand ducats are far more valuable to 

a poor than a rich man, even though its monetary value is the same. Therefore, 

persons are assumed to maximize their expected utilities, while anticipating risks 

during their pursuit (Bernoulli, 1954). This theory is later called expected utility 

theory and has been in the interest of economists since the turn of the 20th century. 

 

An economic man, or ‘homo economicus’, has always been a significant ‘figure’ in 

the economic field, as he is an ideal but fictional person representing objective 

rationality (Tittenbrun, 2013). In classical economic utility theory, economic man 

portrays humans as rational and self-interested agents who pursue their 

subjectively-defined ends optimally to maximize expected utility (Edwards, 1954). 

The “economic man”, however, has been a subject of debate across academic 

fields – from economics and mathematics to psychology – especially in the topic 

of decision-making (Fox, 2015).  

 

Concerning decision-making, an economic man is postulated to have three 

properties (Edwards, 1954; March, 2002; Simon, 1955): 

1. He has complete information about his environment. An economic man is 

assumed to have all of the knowledge required to make a decision and all 

of the outcomes arising from the decision in terms of probability distribution. 
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2. He has infinite sensitivity. Economic man also has access to continuous 

alternatives due to his infinite computational skills. 

3. He is rational. Economic man can order his preferences of the alternatives 

into a stable system and make his decision to maximize utility. He is 

expected to have consistent values to compare alternatives in terms of their 

subjective values. 

 

The maximization of utilities can be objectively studied if the utility is quantifiable. 

In the cardinal utility approach, utility is measurable, and humans can express their 

satisfaction with goods or services quantitatively – using cardinal numbers. The 

cardinal utility function uses a utility index with an interval scale to preserve 

preference ordering and, ultimately, to quantify subjectively ordered preferences. 

Therefore, classical utility theorists postulated that cardinal utilities are 

interpersonally comparable, and thus, the best economic policy can be derived 

from the maximum total utility of the sum of all members of the economy. (Edwards, 

1954). 

 

John Von Neumann and Oskar Morgenstern use the “Robinson Crusoe” model, an 

economy of a single person, as an example to explain and expand the expected 

utility theory of Bernoulli. Crusoe has certain desires and commodities and is 

expected to utilize them to obtain maximum satisfaction. In the “Crusoe” economy, 

he controls all variables and enables himself to maximize his utilities 

independently; therefore, he does not face the same maximization problem that 

occurs in the real world. In the social exchange economy of the real world, 

participants cannot maximize their utilities because they must depend on other 

participants. Certain commodities, which may be controlled by other participants, 

are needed to maximize certain desires. Thus, two or more people are expected 

to exchange goods or services. As each participant tries to maximize their utilities, 

it becomes a mixture of several utility maximization conflicts. (Von Neumann & 

Morgenstern, 1944).  

 

Numerical measurement of utilities can only be applied in utility theory if an 

individual has completeness of preference, or in other words, can think rationally. 

Based on this premise, von Neumann and Morgenstern defined a set of axioms for 
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expected utility theory that became the basis of von Neumann-Morgenstern utility 

theory: 

1. An individual has a complete system of individual preferences. They must 

have well-defined preferences and can clearly decide between two or more 

alternatives. 

2. An individual has transitive preferences. An individual can consistently 

decide their preferences in any decision-making scenario. 

3. An individual's system of preferences is continuous. An individual's 

preference between two alternatives of any possible combination shall be 

continuous in the system of individual preferences. For example, if A is 

preferred over B, and B is preferred over C; therefore, the system will always 

result in a preference for A over C (Von Neumann & Morgenstern, 1944). 

4. An individual preference has to be independent from irrelevant alternatives. 

An individual shall not yield to external alternatives but maintain the same 

order of preferences (Malinvaud, 1952; Samuelson, 1952). 

 

As von Neumann and Morgenstern’s discussion of expected utility theory became 

central in economic theories in the first half of the 20th century, other scholars had 

already expanded Bernoulli’s discovery in different directions earlier in the 1800s. 

In the context of cardinal utility, marginal utility is defined by Friedrich von Wieser 

as “the smallest utility obtainable in the circumstances, assuming the most 

thorough possible utilization of the goods” (von Wieser, Malloch, & Smart, 1893). 

In other words, the utility of goods or services changes as their consumption 

increases. Heinrich Gossen stated that increasing the consumption of a product 

while keeping the consumption of other products constant, causes the marginal 

utility of the product to diminish, as it is now known as Gossen’s First Law of 

diminishing marginal utility. The second and third laws further stipulate that 

individuals will optimize their expenditures so that the ratio of marginal utility to 

price is in equilibrium in order to attain maximum satisfaction with limited resources 

and that scarcity of a product is a precondition to economic value (Gossen, 1854). 

This particular subset of utility theory later developed into the economic law of 

supply and demand and helps economists study the behavior of consumers' 

decision-making processes (Dittmer, 2005). 
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If one school of utility theory posits that utility can be measured quantitatively in 

cardinal numbers, another school of thought argues otherwise; consumers cannot 

express their satisfaction objectively. The subjectivity of consumer satisfaction can 

be represented by preferences on an ordinal scale. So, instead of assigning 

numerical values to preferences, they are ranked qualitatively, according to ordinal 

utility theory (Edgeworth, 1881; Hicks & Allen, 1934). 

 

Ward Edwards disputed the objective probability of expected utility theory as it 

does not fit any consumer behavioral models of the real world (Edwards, 1961). In 

risky decisions, gambling, for example, people would rather go for a lower 

monetary outcome with a higher probability of winning rather than vice versa 

(Edwards, 1954). Therefore, he suggested that individual preference of 

alternatives is subjectively evaluated. Leonard Savage’s proposal of subjective 

probability measurement has two axioms:  

1. All acts – outcomes of any scenarios – can be ranked 

2. The ranked acts are rooted in sure-thing principle (Savage, 1954) 

 

These axioms became the basis of subjective expected utility theory, in which the 

theory states that the utility of any outcome is subjectively evaluated by the person 

who makes the estimation (Edwards, 1961). Therefore, the probability of an 

alternative being chosen may differ from one decision-maker to another as the 

alternative’s attractiveness is subjective to each individual. 

 

Economic man can tell us a lot about the early beginning of decision-making study. 

The early foundation of decision-making theories is firmly grounded in the field of 

economy, where scholars attempted to formulate the behaviors of consumers as 

agents in an economic model through mathematical reasoning. Thus, 

mathematical formulas governing the maximization of consumer satisfaction in 

goods or services – also known as utilities – were furiously produced and debated 

by economists. However, all of these theories were rooted in one pre-condition; the 

economic agent must be rational. 
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2.2 Rational Model 

 

In the history of decision-making, early theories predominantly focused on 

statistical probabilities and rationality. From Blaise Pascal and Pierre de Fermat's 

analysis of the probabilities in a simple dice game in the 1650s (A. W. F. Edwards, 

1983) to Daniel Bernoulli's development of utility theory in the 18th century 

(Bernoulli, 1954), and Von Neumann and Morgenstern's game theory in 1944, 

these theories commonly viewed decision-makers as consistent and rational. The 

rational model of decision-making is described as a decision-maker possessing a 

“well-organized and stable system of preferences and a skill in computation that 

enables him to calculate, for the alternative courses of action available to him, 

which of these will permit him to reach the highest attainable point on his 

preference scale” (Simon, 1955). Consequently, there are many schools of thought 

on rational decision-making, among which game theory and decision analysis are 

prominent and will be discussed further below. 

2.2.1 Game Theory 

 

Von Neumann and Morgenstern applied their axiomatic treatment of expected 

utility theory –  as explained in Section 2.1 – on a set of examples to study a 

strategic interaction between rational decision-makers, which they called a zero-

sum game or game theory (Von Neumann & Morgenstern, 1944). The example 

became the precursor to many modern game theories that include the notable 

works of John Nash’s equilibrium theory (Nash, 1951), Reinhard Selten’s subgame 

perfect equilibria (Selten, 1965), and Leonid Hurwicz’s mechanism design theory 

(Hurwicz, 1973). 

 

The zero-sum game is a non-cooperative game that is played by at least two 

people and the end goal is purely monetary. In this game, neither goods nor wealth 

are created or destroyed. The sum of all payments received by all players is zero; 

hence, the zero-sum game. Therefore, if one player wins, the other loses. The 

foundation of a zero-sum game is the minimization and maximization of expected 

utilities, and in this context, monetary gains. According to Von Neumann and 

Morgenstern, in a two-player zero-sum game, the two players can either try to 

minimize maximum losses (i.e.: minimax theorem) or maximize minimum gains 
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(i.e.: maximin theorem). If both players use equally dominant strategies, there will 

be an equilibrium point where both players will receive the same outcomes of the 

game, and this is called a saddle point. In order to optimize their overall payoff, it 

is wise for a player to mix strategies with the help of statistical probabilities, to 

conceal their strategies from the opponent. Therefore, game theory defines 

mathematical analysis to optimize strategies to maximize the utility of a player (Von 

Neumann & Morgenstern, 1944). 

 

John Nash founded his equilibrium theory on the saddle point of the minimax 

theorem (Kaneko, 2005; Nash, 1950). He postulated that the set of equilibrium 

points in a two-person zero-sum game is simply a set of good strategies from both 

players. He also pointed out that saddle point does not only exist in a two-person 

zero-sum game, as it can also exist in a non-zero-sum game. His theory simply 

states that there is an equilibrium point in a non-cooperative game where if all 

players know each other’s strategy and their strategies remain unchanged, there 

is no incentive for them to deviate from their initial strategy. However, a player can 

only maximize the pay-off using mixed strategies if and only if other players are 

using pure strategies; in other words, do not change their strategies (Nash, 1950, 

1951). 

 

Selten further refined Nash equilibrium in his subgame perfect equilibria theory. 

Nash equilibrium ignores the sequential nature of games and considers strategies 

as choices made only once at the start of the game (Osborne, 2004). On the 

contrary, the foundation of Selten’s theory is based on the concept of sequential 

rationality: agents calculate and predict their opponents’ strategy, on a move-by-

move basis, based on the sequential structure of the game (Fudenberg & Levine, 

1983). Therefore, Selten theorized that there exist sub-games within a game where 

the perfect equilibrium of each subgame occurs (Selten, 1965). 

 

If conventional game theories propose strategies to forecast outcomes, 

mechanism design strategy takes the reversed approach: particular outcomes are 

first identified, mechanism is then devised to attain the specified goals. Mechanism 

design theory adopts an engineering approach to design economic systems. 

However, a mechanism in this context refers to an institution, procedure, or game 

that shapes the desired outcome (Maskin, 2008). As resource allocation is the 
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center of economic theory, in which all of the economic agents involved are trying 

to maximize their own expected utility based on finite resources, Hurwiczs 

proposed that a mechanism must be designed to guide the economic agents in 

decisions to determine the flow of resources. As each agent contains private 

information for optimization problem, the problem can only be solved if this 

information is revealed truthfully to the principal. Therefore, the principal shall 

design a mechanism to be incentive-compatible for each agent, in which the 

information can be revealed truthfully and an equilibrium in the game of economic 

system can be achieved (Hurwicz, 1973). 

 

Application of game theories in decision-making can also be found outside of the 

economic field, such as management, politics, and biology. Anthony Kelly utilized 

game theories in management science and introduced the concepts to 

organizational decision-makers in order to help them make better decisions in 

complex scenarios (Kelly, 2003).  In politics, Andrew M. Colman likened a 

democratic government to a multi-person game of social choice. So, game theories 

and their strategies can be adopted in voting games, where the voters are the 

players and the outcome is their political representatives of choice (Colman, 1995). 

More interestingly, in 1973 Maynard Smith and Price applied game theory in 

biology to simulate conflicts between animals, whereas the animals were found to 

use limited war strategy in combat to avoid inflicting serious injury to their 

opponents. The strategy resulted in an equilibrium point where the outcomes were 

best for both sides and their species (Smith & Price, 1973). 

 

Game theories have mainly helped economists to model and understand the 

economic systems of a multitude of agents with different needs, constraints of 

resource allocations, and complex flows of information and goods. However, game 

theories are not particularly useful in scenarios where decision-making is not a 

game of strategies, or when vague information and subjective needs are aplenty. 

The player has no opponent and makes decisions only to maximize his or her own 

expected utilities. Thus, such scenarios require a different approach to decision-

making, such as decision analysis. 
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2.2.2 Decision Analysis 

 

While Von Neumann and Morgenstern (1944), Nash (1950), Selten (1965), and 

Hurwicz (1973) explored the objective probabilities of games of strategy, other 

scholars, like Edwards (1961), used statistical analysis to examine the subjective 

probability of decision-making. Similarly, Howard Raiffa rejected the notion of 

mathematical objectivity in decision-making and proposed a methodology for 

incorporating vague and imprecise information into analysis through an iterative 

process; this method is known as decision analysis (Raiffa, 1968). He merged his 

earlier invention of the game tree, an early variant of the decision tree that 

extensively examines game theory, with subjective probability theory, laying the 

foundation for decision analysis for years (Buchanan & O’Connell, 2006; Fienberg, 

2008). 

 

Decision analysis, also known as statistical decision theory, is based on a set of 

axioms that guide decision-makers in systematically and logically approaching 

problems to derive alternatives with the highest expected utility using subjective 

probability (Keeney, 1982). This analysis extensively employs Bayesian statistical 

analysis and expected utility to determine subjective probability, partly due to its 

utilization of non-experimental sources of information (J. O. Berger, 2013; Fox, 

2015).  

 

 

Figure 4: Interdependencies of Decision Analysis Steps (Keeney, 1982) 
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Ralph Keeney summarized the fundamentals of decision analysis in four steps 

(Figure 4): 

1. Structure decision problems by defining objectives and generating 

alternatives. Alternatives can be defined by first creating objectives based 

on the consequences of alternatives. Then, rank the objectives in order of 

ambiguity and finally, identify attributes to measure the objectives. 

2. Assess the possible impacts of the generated alternatives. These impacts 

can be assessed using a formal model that accounts for several 

components. Subsequently, specify the model inputs with deterministic or 

probabilistic information. 

3. Determine the preferences and values of decision-makers. These 

preferences can be ascertained by first introducing terminology and ideas 

to ensure clear communication between analysts and decision-makers. 

Then, determine the general preference structure using single-attribute 

utility functions with a scaling constant. Thirdly, assess the utility functions 

to determine an appropriate risk attitude and scaling constants to ensure 

desirability attributes are appropriately defined. Finally, check for the 

consistency of the analysis using different processes and decision-makers. 

4. Evaluate the generated alternatives against the preferences of decision-

makers. (Keeney, 1982).  

 

Although there are many variants of decision analysis – such as influence diagrams 

or decision network (Howard & Matheson, 2005), multi-attribute utility analysis 

(Keeney & Raiffa, 1993), and Simple Multi-attribute Rating Technique or SMART 

(Edwards, 1971) — this literature review focuses on Howard Raiffa’s decision tree 

analysis (Raiffa & Schlaifer, 1961) and Thomas Saaty’s analytic hierarchy process 

(Saaty, 1980) due to the popularity of their methods in the literature. 
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Figure 5: Decision Tree in Financial Analysis (Magee, 1964) 

 

A decision tree (Figure 5) is a graphical and analytical representation of the 

decision-making process with multi-way branching that denotes decisions and 

chances (Raiffa & Schlaifer, 1961). The decision tree has been revised and 

updated over the years; however, the fundamental building blocks remain 

consistent and contain three types of nodes:  

1. Decision node: Indicates a decision must be made. 

2. Chance node: Indicates probabilities of outcomes. 

3. End node: Indicates final outcome. 

 

The tree begins with a decision node, where decision-makers choose from multiple 

alternatives. Each decision involves probabilities of success, represented by a 

chance node. If further decisions are needed, another decision node follows the 

chance node, and the tree grows through multiple stages of alternating decisions 

and chances. The decision process concludes with an end node, assigned an 

expected utility or pay-off off (Raiffa & Schlaifer, 1961). As illustrated in Figure 5, 

the decision tree enables the visualization of a relatively complex decision, with its 

various chances and pay-offs, in an easily understandable graphical format. 
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Not only does it assist decision-makers graphically, but the expected utility of each 

decision can also be statistically analyzed. The expected utility at a decision point 

is calculated by summing the product of each event's probability and its pay-off 

(Raiffa & Schlaifer, 1961). Any investment related to a decision must be deducted 

from this calculation, if applicable. For example, in the case of Figure 5: 

• Build big plant: ($(1 mil x 10) × .60) + ($(1 mil x 2 + 0.1 mil x 8) × .10) + 

($(0.1 mil x 10) × .30) – $3 mil = $3.6 mil (Magee, 1964) 

 

Decision tree analysis is widely taught in business schools and utilized in various 

industries, particularly for business decision-making (Fox, 2015). However, the 

effectiveness of this analysis in decision-making scenarios varies, as organizations 

often encounter challenges such as highly complex decision trees, a lack of expert 

inputs, and disconnection from top management (Ulvila & Brown, 1982). Users of 

decision trees may attempt to incorporate every conceivable scenario, but it is 

crucial to focus only on the most important elements and add subsidiary trees for 

more detailed analysis if needed. Additionally, decision tree analysis requires 

collaborative effort; thus, expert inputs are essential to ensure the analysis is 

comprehensive and robust, preventing decision-makers from being caught off 

guard by unexpected outcomes. Furthermore, without full backing from top 

management, both the execution of decision tree analysis and the implementation 

of resulting decisions can be challenging. It is also vital to address key 

management concerns to ensure alignment with the company's needs. 

 

 

Figure 6: Analytic Hierarchy Process 

 

The next decision analysis theory is the Analytic Hierarchy Process (AHP), 

proposed by Thomas L. Saaty (Saaty, 1980). This multicriteria decision-making 
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process is widely used in various scenarios such as forecasting, development 

planning, and resource allocation (Saaty, 1980; Vaidya & Kumar, 2006). The 

process assists decision-makers by decomposing and structuring problems, goals, 

and stakeholders hierarchically to provide an overall view of their complex 

interrelationships (Figure 6). Although decision trees may share similar visual 

language, the hierarchy in AHP represents cut sets of a problem, while a decision 

tree illustrates multiple decision junctions. A set of alternative solutions is defined 

to anchor the selection criteria of a particular decision-making goal. The criteria are 

compared in pairs as scaled ratios, using a pairwise comparison matrix derived 

from the Eigen vector principle, allowing users to focus judgment separately on 

each selection property (Saaty, 1990). The comparison can be based on either 

data or the judgment of decision-makers. 

 

Decision analysis moves away from the mathematical objectivity seen in traditional 

rational theories, introducing subjective evaluations of preferences and alternatives 

to incorporate vague information and individual needs. This approach is 

increasingly valued in organizations for providing objectivity and quantified analysis 

to supplement decision-maker's judgment. Although decision analysis is more 

practical in organizations compared to rational theories, organizations still need to 

be aware of its utility. Decision analysis should aid decision-makers in making 

informed decisions, but it should not be the sole basis for decision-making (Wright 

& Goodwin, 2009). This is due to the pitfalls of decision analysis, such as weak 

theoretical foundations, inadequate consideration of subjective and value 

components of decision problems, and poor analysis by users (Keeney, 1982). 

 

The effectiveness of rationality in any decision-making tool is, however, contingent 

on the subjectivity of its users: humans. Studies have been conducted to assess 

and identify the effects of biases on particular decision analyses (Fischer, 1979; 

Hogarth, 1975; Slovic & Lichtenstein, 1971), revealing that human biases impact 

both formal and informal decision-making procedures (Tversky & Kahneman, 

1974). This is because humans are boundedly rational. 
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2.3 Boundedly-Rational Model 

 

The theory of rational decision-making and its four axioms of expected utility were 

heavily criticized by many scholars. One of the axioms stipulates that preferences 

are transitive; an individual can consistently decide their preferences in any 

decision-making scenario. An experiment conducted concluded that if subjects 

were allowed to judge indifferences among the alternatives, they tended to order 

their preferences differently most of the time (May, 1954). Other experiments have 

also shown the expected utility axiom of preference ordering can be violated due 

to variations in the probability of the alternatives and the risk aversion of decision-

makers (Kahneman & Tversky, 1979). Human preferences are ever-changing, 

ambiguous, and inconsistent. Even though people are aware of the inconsistency, 

they often do little to resolve it (March, 2002). Rational theories further assume that 

decision-making is static; however, it evolves over time. People first specify 

preferences and then choose actions, discovering new preferences through 

experiencing the consequences of those actions (March, 1976). 

 

Rationality in decision-making can be bounded in a variety of ways. Herbert A. 

Simon introduced the concept of bounded rationality, which has since become a 

central point in behavioral economics (Kahneman, 1991). Human rationality is 

bounded due to the nature of human limitations in formulating and computing 

complex problems, and in processing information (Simon, 1957). Moreover, Simon 

added that unknown variables in the system of preferences may add to the risk 

and uncertainty in decision-making. Rational decisions can also be constrained 

due to incomplete information about alternatives or consequences. In some 

rational models, it is assumed that a decision-maker knows the probability 

distribution of utility in a set of possible alternatives. Even if the system of 

preferences is known and information about alternatives is complete, the 

complexity of arriving at the most rational course of action is almost impossible for 

any human to reach (Simon, 1947, 1972). Therefore, in reality, human rationality 

is extremely crude and limited compared to the rationality required by game theory 

models (Simon, 1955). 

 

Limited rationality can be attributed to the conservative information processing of 

the human brain due to limitations in memory organization and information retrieval 
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(March, 1978). Numerous experiments comparing humans and statistical 

probability models have shown that human subjects consistently fail to extract as 

much information as the data may contain. Humans are rather competent at 

analyzing the diagnostic impact of data but fail to aggregate the data properly 

(Edwards, Phillips, Hays, & Goodman, 1968). Due to this limitation of human 

cognition, humans tend to adapt by “satisficing”, a portmanteau of satisfy and 

suffice, where humans pursue a course of action that meets, rather than 

maximizes, their minimum utility requirements (Simon, 1956). 

 

Nonetheless, incomplete knowledge about the world does not necessarily hinder 

individuals from making effective decisions. Simon (1956) introduced the concept 

of partially ordering payoffs, suggesting that satisfactory outcomes can be attained 

by reaching a specific threshold of agreement among available alternatives, known 

as an aspiration level. However, this aspiration level is dynamic, contingent on the 

ease of finding satisfactory alternatives and an organism's level of persistence. 

More persistent organisms tend to exhibit greater rationality, enabling them to 

identify and partially rank the payoffs of various options. However, this level of 

rationality is not a universal trait among organisms. Simon further asserted that 

there is no compelling evidence supporting the notion that humans can consistently 

make choices in situations of any complexity, as prescribed by the classical rational 

choice model (Simon, 1955). Consequently, the study of decision theory should 

not rely solely on the normative theory of the rational model but should also 

acknowledge the inherent inconsistency in human cognition. 

 

Over the course of the 20th century, the theory of choices has evolved from 

deterministic to stochastic models (Edwards, 1954). In the deterministic or rational 

model, choice preferences are absolute, and the order of preference remains 

constant and consistent. However, stochastic models introduce the notion that 

preference sets are probabilistic in nature. The assessment of the importance of 

preferences is subjective, making the probability of utilities inherently subjective as 

well (Edwards, 1954). It is widely recognized that Ward Edwards defined the 

domain of behavioral decision theory by amalgamating concepts from classic 

economic theory and decision theory into the field of psychology (Kahneman, 

1991). Behavioral decision theorists postulate that human behaviors may deviate 

from optimal decision-making; for example, heuristics can reduce the information-
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processing requirement of rational decision-making (Hodgkinson & Starbuck, 

2008). The availability heuristic causes people to make decisions based on 

immediate past events because of their perceived importance, while the 

representativeness heuristic skews people’s probability of preference according to 

the person’s generalizations of similar events. Furthermore, Kahneman and 

Tversky postulated that people tend not to follow the statistical theory of prediction 

in making judgments under uncertainty. Instead, they rely on a number of heuristics 

to reduce the complexity of assessing probabilities and predicting outcomes. This 

may lead to poor outcomes or severe and systematic failures (Kahneman & 

Tversky, 1973; Tversky & Kahneman, 1974). 

 

By comparing the present Merriam-Webster Dictionary’s definition to the definition 

provided in the 1828 version, it can be observed that the definition of bias has 

evolved towards a more negative connotation over the years. In the 1828 version, 

“A leaning of the mind; inclination; prepossession; propensity towards an object, 

not leaving the mind indifferent” had a more neutral tone (Merriam-Webster, 1828). 

Whereas, the definition in the present version, “an inclination of temperament or 

outlook especially: a personal and sometimes unreasoned judgment”, paints bias 

in a negative light (Merriam-Webster, 2023). This shift in perspective is also clearly 

seen in academia. In comparison, academic literature defines cognitive bias as an 

intrinsic systematic error of the human brain that produces distorted 

representations of objective reality (Haselton, Nettle, & Murray, 2015), while social 

bias is a systematic error in how we perceive others (Ross, Amabile, & Steinmetz, 

1977). 

 

Many earlier studies on judgment and decision-making painted an unfavorable 

picture of heuristics and biases. However, heuristics and biases are not necessarily 

detrimental to decision-making. Studies of heuristics-and-biases typically focus on 

errors of judgment. However, they should not be seen as errors but rather as an 

incapability to achieve certain standard yet abstract rules. The errors cannot simply 

be corrected by learning or training (Kahneman, 1991). Some scholars argue that 

gut feelings and snap judgments used by humans are not necessarily inferior to 

probability-based decision theory. Based on their observation of a few 

professionals who develop expertise, the scholars observed that the experts tend 

to rely on heuristics because the process is more organic and less systematic than 
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in decision analysis models (Fox, 2015). It is not only laypeople who are prone to 

base their judgments on intuition. Experienced researchers with deep knowledge 

of statistical analysis have also been observed to make intuitive judgments when 

presented with data with insufficient analysis (Kahneman & Tversky, 1971, 1973). 

 

Heuristics cannot be likened to a situation where people make decisions based on 

luck. It is a highly developed non-logical form of reasoning based on both 

unconscious impressions of the physical and social environment, and formal 

knowledge through learning (Barnard, 1938). Although most organizations value 

decision analysis as a valuable tool in making concrete judgments, too much 

rationality in decision-making results in an insurmountable amount of analysis and 

causes people to feel less committed to action (Hodgkinson & Starbuck, 2008). 

Conversely, while heuristics are considered irrational, Robbins et al. suggest 

supplementing decision analysis with heuristics (Robbins & Judge, 2001). 

Furthermore, in situations where uncertainties cannot be optimized and the data 

fed into the analysis is insufficient, using a rule of thumb would be a better option 

(Hutchinson & Gigerenzer, 2005). Finally, the study of human decision-making 

interests not only economists and psychologists but also researchers investigating 

the decision process from sociological and biological perspectives. 

 

In light of all this, this thesis defines bias as an inclination or predisposition of the 

mind towards a particular viewpoint or outcome, which represents a deviation from 

the position that would be predicted by rational decision-making. 

2.3.1 Psychological Factors in Decision-Making 

 

One of the earliest and most well-developed theories on the effects of human 

psychology in decision-making is prospect theory. Prospect theory provides an 

alternative model to counter the claim of expected utility theory as a descriptive 

model of decision-making under risk (Kahneman & Tversky, 1979). Kahneman and 

Tversky criticize expected utility theory for being insufficient to describe the 

naturalistic behavior of human decision-making. Most field investigations validating 

expected utility theory provide crude tests of qualitative predictions, while 

experiments conducted in laboratories often involve repetitive studies of very 
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similar decision scenarios, such as small-stakes gambling. Both methods of study 

lack the capability to reflect or simulate real-life decision processes. 

 

Kahneman and Tversky hypothesize that people usually make decisions by 

evaluating and omitting alternatives to simplify choice, and "people normally 

perceive outcomes as gains and losses, rather than as final states of wealth or 

welfare" (Kahneman & Tversky, 1979). The reference point for these gains and 

losses is first coded relative to the current assets of the decision-maker. The 

outcomes, or prospects, can be simplified by combining them with identical 

probabilities or segregated if they contain riskless components. Following that, 

people tend to cancel out options that lead to the same outcomes through different 

routes, a phenomenon known as the isolation effect, to further simplify the 

alternatives. 

 

People also tend to be risk-averse when there is a probability of gain but risk-

seeking when facing potential losses (Kahneman & Tversky, 1979; Markowitz, 

1952; Williams Jr, 1966). This is visualized in Figure 5, where the preference 

between negative outcomes is a mirror image of the preference between positive 

outcomes; this pattern is aptly called the reflection effect. Furthermore, the 

certainty effect can also be seen in the human decision-making process; where 

outcomes with a high level of certainty are ranked highly in the system of 

preference, even though the gain may be lower than an outcome with lower 

certainty (Tversky & Kahneman, 1974). The studies conducted by Kahneman, 

Tversky, and others have shown that human psychology plays a huge part in 

decision-making. 

 

Figure 7: Hypothetical value function (Tversky & Kahneman, 1974) 

The examination of decision-making from a psychological perspective is defined 

by its focus on using the normative theory of rational decision-making as a 

foundational framework for behavioral analysis. It prioritizes cognitive processes to 
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elucidate why choices deviate from the rational model, often overlooking emotional 

and social influences (Kahneman, 1991). The normative theory of decision-making 

describes how people should make decisions rationally, while the descriptive 

theory explains how people actually make decisions. If we regard the rational 

model as the ideal strategy, it becomes a fitting reference model for evaluating and 

contrasting the bounded rational approach of a behavioral decision model. 

Additionally, when viewed from a psychological standpoint, Daniel Kahneman 

categorizes cognitive processes into two systems: System 1 and System 2. System 

1 operates automatically and intuitively, overseeing abstract thinking and 

involuntary actions. In contrast, System 2 is responsible for conscious thinking and 

calculation, allocated for tasks or decisions that require more effort and attention 

(Kahneman, 2011). Moreover, risk preference and estimation are subject to human 

biases. The propensity to embrace risk differs not only among individuals but also 

depends on the severity of potential consequences. Furthermore, the assessment 

of risk can be linked to the limited information available about the problem and its 

participants and tends to be influenced by the decision-maker's personal 

experiences and current predicament (March, 2002). 

 

One of the major developments in behavioral decision theory in psychology is the 

relationship between personality and decision-making. Several studies have 

examined personality variables in decision-making in various situations, 

particularly risky decisions. One of the earliest studies on personality variables is 

on the level of aspiration effect on decision-making, conducted by Lewin and his 

team (Lewin, Dembo, Festinger, & Sears, 1944). According to the study, a person's 

aspiration level influences their “goal behavior” or action in decision-making. The 

behavior can be further decomposed into goal striving (the effort a person allocates 

towards achieving a decision), and goal setting (the level of accomplishment a 

person wishes to attain for their decision). The aspiration level is determined by 

assessing goal discrepancy, which represents the variance between the level of 

one's most recent performance and the desired goal behaviors for the current 

event. Lewin et al. discovered that aspiration level can also be linked to three 

factors: success seeking, failure avoidance, and cognitive probability judgment. 

For example, in clinical studies of school children (Sears, 1941), the group with low 

discrepancy level exhibited higher success in academics and higher cognitive 

ability with more “realistic” goal settings. Atkinson (1957) views aspiration or 
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motivation level by stating that there are two kinds of people: those for whom the 

motivation of seeking success is greater than avoiding failure and vice versa. In a 

different study, Block & Petersen (1955) claimed that decision-makers with high 

confidence levels make mature decisions. It is noted that overly confident people 

are more rigid in making decisions, while overly cautious people are more 

introspective. Decision response time can also offer insights into the personality of 

the decision-maker. For example, a fast decision in an easy situation tends to 

revert to an overcontrol mechanism when confronted with a challenging situation 

as a means of coping with stress. Conversely, people with high sensation-seeking 

personality traits have a need for arousal that can only be provided in complex, 

intense, and risky experiences (Lauriola & Levin, 2001). Separate studies reported 

that high sensation seekers tend to take more risk, by betting more and at higher 

odds in gambling tasks (A. Wong & Carducci, 1991; Zuckerman, 1979). In betting 

experiments conducted by Scodel, Ratoosh, and Minas (1959), it was also 

observed that individuals with a greater need for achievement and a strong 

understanding of probability in risk assessment tended to exhibit a conservative 

approach to decision-making, opting for less risky alternatives. 

 

There are also studies related to Jungian psychological types and cognitive styles 

with strategic choice patterns in decision-making (Hough & Ogilvie, 2005; Nutt, 

1993). One of the most popular of Jung’s typologies is the Myers-Briggs Type 

Indicator, which is built on two personality attitudes: extroversion and introversion, 

with four functions or modes of orientation: thinking, sensation, intuition, and 

feeling, yielding 16 personality types (Myers, 1962). Myers et al (1985) expanded 

the theory by combining dichotomies into four decision-making styles: Sensor-

Thinkers, Sensor-Feelers, Intuitive-Thinkers, and Intuitive-Feelers. The 

information-gathering dichotomy (sensation, intuition) explores how decision-

makers search for information, either through the five senses or via intuition. The 

decision-processing dichotomy (thinking, feeling) explains how they evaluate 

alternatives and make decisions, either via logic and basic truth or through analysis 

of personal warmth. 

 

Psychological analysis of decision-making can only describe how decisions are 

made based on the correlation of data gathered through field testing and in 

laboratory settings using statistical analysis. However, it does not explain the cause 
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of the decision process. Hence, exploration of human reasoning at a biological 

level may provide insights into the cognitive process of decision-making. 

 

2.3.2 Biological Contributions in Decision-Making 

 

Psychologists have provided a higher-level understanding of the relationship 

between cognition and decision-making. However, research on decision-making in 

biology is primarily undertaken by neuroscientists, given that the core processes 

of human cognition and decision-making are localized within the brain. Rapid 

advancements in neuroscience allow for deeper analysis of cognitive processes at 

a molecular level. 

 

The prefrontal cortex of the human brain is known to be responsible for cognitive 

functions. Thus, damage to the prefrontal cortex can impair somatic markers – 

feelings in the body associated with emotions – and may compromise decision-

making (Bechara, Damasio, & Damasio, 2000; Naqvi, Shiv, & Bechara, 2006). The 

processing of rewards in the human brain can be attributed to the striatum, a 

dopaminergic neurons-rich area. It plays a critical role in assessing values and 

reward predictions, providing a link between rewards and decision theories 

(Sanfey, 2007). Neuroimaging work on reward processing has supported the 

claims of prospect theory. Studies have shown that neural signatures of reward are 

not fixed on the objective value of the outcomes but by their relative value, gains 

or losses, to the reference point (Breiter, Aharon, Kahneman, Dale, & Shizgal, 

2001; Holroyd, Larsen, & Cohen, 2004). The speed and accuracy of optimal 

decision-making can also be explained in the context of neuroscience. The cortico-

basal ganglia networks of the brain facilitate speed-accuracy adjustment by 

employing distinct yet unknown mechanisms (Herz et al., 2017). 

 

The field of neuroscientific research in decision-making has made significant 

advancements, critical in moving the decision-making field forward. To explore the 

underlying mechanisms of decision-making, investigations into the inner workings 

of the decision-makers themselves will yield a better understanding of human 

decision processes, both qualitatively and quantitatively. Furthermore, there have 

been efforts and progress in replicating and simulating biological neural networks 
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in learning and decision-making, namely artificial neural networks (Jordan & 

Mitchell, 2015; Kontschieder, Fiterau, Criminisi, & Rota Bulo, 2015). However, this 

thesis will not delve into this realm but rather focuses on understanding decision-

making in organizations through a more holistic view of decision-making in a social 

context. 

2.3.3 Sociological Influence on Decision-Making 

 

Behavioral decision-making can be viewed through the lens of individual freedom 

of choice, where a person can freely make decisions and act on them. However, 

as humans form societies, they directly and indirectly influence each other during 

the decision-making process. Along with psychologists, sociologists have also 

rejected the traditional model of rational choice, including their own version of 

sociological rational choice theory (Hechter & Kanazawa, 1997), which assumes 

decision-makers are maximizing utilities. Furthermore, rational models do not 

account for the ever-changing values and preferences of individuals in the context 

of society. Individuals sometimes align with the behaviors and actions of their social 

group to arrive at collective decisions and actions (Heckathorn, 1996). They also 

tend to apply recognition heuristics and adapt their decisions based on perceived 

societal norms; a phenomenon known as ecological rationality (Goldstein & 

Gigerenzer, 2011). Thus, sociologists focus on the role of cultural and contextual 

factors in decision-making, such as the availability of alternatives and people’s 

opinions. 

 

The number of choices available to a cultural or social group can be linked to 

variations in social orientation (Yates & de Oliveira, 2016). In some cultures, self-

expression and freedom of choice are highly valued, while in others, social 

approval in the decision-making process is expected. Individualistic cultures 

promote creativity and divergent thinking, thus producing unique options. These 

variations can increase or decrease the number of choices available to actors 

within a particular cultural group (Goncalo & Staw, 2006). In the information-

searching phase of decision-making, the amount and combination of information 

techniques vary from one culture to another (Choi, Choi, & Norenzayan, 2004). 

Choi et al (2004) state that due to East Asians' holistic assumptions about the 

universe, they prefer to consider a multitude of information before making a 
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decision, in contrast to Westerners’ preferences. Furthermore, in cultures where 

holistic thinking is prevalent, cultural agents will avoid contradictory information. 

For example, when confronted with conflicting information, the Chinese are more 

likely than Westerners to avoid scrutinizing each piece carefully but to make a 

compromise between them. 

 

The behaviors of others, as in societal norms, can also heavily influence decision-

making. People are more likely to adopt certain behaviors or decisions when the 

majority, with whom they share the same social space, behave similarly. An 

experiment conducted to study the effect of providing guidelines on energy 

consumption in a neighborhood yielded a surprising result: households are 

susceptible to the pressure of social norms regardless of the norms' constructive 

or destructive nature (Schultz, Nolan, Cialdini, Goldstein, & Griskevicius, 2007). 

Social norms also have different impacts on decision processes based on cultural 

settings. In cultures with high expectations of social conformity, social groups are 

more likely to compromise in decision-making to conform with others (Briley, 

Morris, & Simonson, 2000). 

 

The study of decision-making in sociology has not advanced considerably 

compared to other domains, mainly due to sociologists’ reservations about the 

validity of rational choice theory in their field (Hechter & Kanazawa, 1997). 

However, it is interesting to note how social context plays a significant role in 

shaping individual decision processes. Management scholars have taken a step 

further to study these phenomena in organizational behavior, which is explored in 

Section 2.4.  

 

2.3.4 Heuristics, Cognitive and Social Biases in Decision-making 

 

Heuristics and biases, as discussed in previous sections, are integral to the 

behavioral model of decision-making. Heuristics is a mental shortcut, or rule-of-

thumb, where people base decisions on their intuitions to make decisions quickly 

or to avoid the taxing information-processing requirements of the rational model 

(Hodgkinson & Starbuck, 2008; Robbins & Judge, 2001). There are two types of 
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biases discussed in this thesis: cognitive and social biases. Cognitive bias is an 

intrinsic systematic error of the human brain that produces distorted 

representations of objective reality (Haselton, Nettle, & Murray, 2015), while social 

bias is a systematic error in how we perceive others (Ross, Amabile, & Steinmetz, 

1977). Heuristics and biases are commonly used together in the literature, as “the 

heuristics of judgment and choice are identified by the biases they tend to produce” 

(Kahneman, 1991). The following are some of the most common biases 

extensively discussed in academic literature. 

The representativeness heuristic is a condition in which a person picks an outcome 

based on the degree of resemblance of the outcome with stereotypes in the 

person’s mind (Hodgkinson & Starbuck, 2008; Tversky & Kahneman, 1974). This 

heuristic is not affected by the decision-maker’s judgments of probability because 

probability is often mistaken for similarity. For example, if a subject fits a stereotype 

of a librarian and people are asked to choose the probability of the subject’s 

occupation from a list (e.g., farmer, salesman, pilot, librarian), those with 

representativeness heuristics tend to predict the subject is a librarian, even though 

there are more farmers than librarians in the population, hence, the probability of 

the subject being a librarian rather than a farmer is higher (Tversky & Kahneman, 

1974). 

The availability heuristic is a mental shortcut where people make decisions based 

on the ease with which instances can be brought to mind (Tversky & Kahneman, 

1974). Instances that are more vivid or recent, evoking emotions in memory, are 

more likely to be readily available. For example, managers often give higher ratings 

to recent employee behaviors and performance during appraisals (Robbins & 

Judge, 2001). Similarly, retail managers might predict a competitor’s failure if there 

is recent news of their business struggles (Hodgkinson & Starbuck, 2008). 

With the anchoring bias, people tend to set an initial point of estimation and adjust 

their final decision or estimation based on new information (Tversky & Kahneman, 

1974). Depending on the initial value setting and the final adjustment range, this 

bias can cause a significant departure from the actual target. For instance, in 

business negotiations characterized by high uncertainty, the initial offer carries 

significant weight as it establishes the starting point and direction for the 

discussions. An experiment examining the influence of the first offer on negotiation 
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outcomes indicated that final agreements tend to be more favorable to the party 

that made the initial offer (Galinsky & Mussweiler, 2001). 

The framing effect bias arises when the same information is presented (or framed) 

differently, without changing its objective facts, causing people to interpret it 

differently. Kahneman and Tversky (1981) discovered this phenomenon while 

studying the framing effect in decision-making, concluding that slight variations in 

framing can cause significant variations in preferences. In technical decisions, 

experienced and objectively-oriented decision-makers tend to succumb to framing 

bias, making inconsistent choices even when faced with the same problem in 

different frames (Duchon, Dunegan, & Barton, 1989). Clustering illusion bias is the 

tendency to see small clusters of data points in random distributions as non-

random (Gilovich, 1991). This bias leads to the perception of meaningful patterns 

that do not actually exist, akin to a false positive error in statistical hypothesis 

testing (Blanco, 2017). 

When people are fixated and committed to a decision, even though all information 

indicates otherwise, they are subject to escalation of commitment bias (Staw, 

1981). Individuals are inclined to escalate their commitment to a decision when 

they are heavily invested in terms of time and money, or they perceive themselves 

as responsible for poor performance (Staw, 1976). They will de-escalate their 

commitment if future gains seem less likely, but double down if failures are 

imminent, hoping to recoup losses (Staw, 1981). However, contrary to conventional 

wisdom, rational thinking increases individuals' inclination toward escalation of 

commitment (K. F. E. Wong, Kwong, & Ng, 2008). 

Default effect bias is a component of nudge theory, where the likelihood of 

choosing an option increases if it is made the default. People tend to base their 

decision on the suggested default option when they believe such an option is an 

implied endorsement due to its merits, or when it frees them from laborious 

calculation (Dinner, Johnson, Goldstein, & Liu, 2011). For example, a case study 

on organ donation shows that decision-makers have a very high tendency to 

choose the default choice, even with high stakes (Johnson & Goldstein, 2013). In 

most cases, the default setting is deliberately chosen to simplify decision-making, 

reduce risk, or, more deviously, increase profitability (Goldstein, Johnson, 

Herrmann, & Heitmann, 2008). 
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Optimism bias can be described as “the difference between a person's expectation 

and the outcome that follows. If expectations are better than reality, the bias is 

optimistic; if reality is better than expected, the bias is pessimistic” (Sharot, 2011). 

Optimism bias leads to inaccurate forecasts and inflated benefit-cost ratios in 

projects, usually due to managers’ tendencies to intentionally overestimate 

benefits and underestimate costs as strategies to gain approval for their projects 

(Flyvbjerg & Flyvbjerg, 2013). 

In confirmation bias, people are biased towards information that reaffirms their 

preexisting hypothesis and past choices, and discount information that undermines 

their decisions (Plous, 1993). Even though decision-makers are supposed to 

gather information objectively, their selective perception leads them to actively look 

for and accept information that confirms their preconceived understanding of 

events (Robbins & Judge, 2001). Confirmation bias is a complex phenomenon with 

high dependency on the context and information of a decision space, where a 

decision space defines the range of alternatives available to the decision-maker 

(Klein, Pfaff, & Drury, 2008). However, some general observations can be made: 

first, people seem to prioritize positive things and relations more than negative 

ones, and second, confirmation bias seems to arise from the relationship between 

cognitive and motivational processes (Klayman, 1995). 

Belief revision or conservatism bias refers to humans’ tendency to be conservative 

in revising their beliefs when presented with new evidence (Edwards, 1968). 

Edwards conducted experiments comparing human decision behavior with the 

outputs of Bayes’s statistical analysis and concluded that, while humans do revise 

their opinions based on new information, the extent of the revision remains 

insufficient as expected in rational analysis. 

Choice-supportive bias involves the creation of inaccurate memories of past 

decisions, which tend to enhance the chosen option and diminish those left 

unchosen (Lind, Visentini, Mäntylä, & Del Missier, 2017). This bias results from 

humans’ tendency to reconstruct their memory upon gratifying emotions to 

minimize regret, thus believing such a choice was the better option (Mather & 

Johnson, 2000; Mather M, Shafir E, & Johnson MK, 2000). 

In a social group, group members are expected to conform to the standards and 

consensus of the group, which can cause social conformity bias (Kiesler & Corbin, 
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1965). The need to conform to society or a social group can be motivated by the 

accuracy of the decision, affiliation with the group, and maintenance of a positive 

self-concept (Cialdini & Goldstein, 2004). Conformity bias can also result from the 

individual need to gain social approval; individuals often engage to build rewarding 

relationships with the social group and thus enhance their self-esteem. 

Additionally, culture influences the intensity of social conformity. In collective 

cultures, people are more likely to comply with a request compared to those from 

individualistic cultures (Cialdini, Wosinska, Barrett, Butner, & Gornik-Durose, 

1999). 

Groupthink bias causes members of the group to pressure other members to 

conform to their views and suppress lone dissenters (Janis, 1971). If conformity 

bias is an individual instinct to conform to the group, groupthink is a rationalized 

conformity of a social group imposed on its team members (Whyte Jr., 1952). 

Symptoms of groupthink include group members’ rationalization of assumptions 

against any resistance even when the assumptions are proven wrong, pressure on 

those who doubt or express dissent about the group’s assumptions, a sole 

dissenter’s tendency to keep silent to avoid deviating from the group’s views, an 

unquestionable belief in the inherent morality of the group without considering the 

ethical consequences of their decisions, and finally, the illusion of unanimity: if no 

objection is made, it is assumed the assumptions are in full accord. (Janis, 1971; 

Robbins & Judge, 2001). 

2.4 Organizational Decision-making 

 

Based on previous discussions, much of the literature on decision theory focused 

on individual decisions, as opposed to group decisions, examining choices and 

decisions made independently of social context. This thesis, however, explores 

decision-making in two different contexts: personal decision-making and 

organizational decision-making. It is crucial to differentiate between personal and 

organizational decisions and investigate the dynamic interaction between 

individual and group decisions in organizations. A deeper analysis of decision-

making processes also reveals the different decision levels – strategic, tactical, and 

operational – and decision types, such as rational choice and rule-following at the 

organizational level. 
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Thus far, economic scholars have been investigating how personal decision 

processes affect the production and consumption of goods and services. Although 

it may seem that these scholars examine decision-making through the lens of 

socio-economic exchange, emphasizing mutual reliance among participants in 

such exchanges, economic decision theories have predominantly been about 

personal decisions aimed at maximizing individual utilities. As discussed in the 

previous section, sociologists have challenged this view, arguing that social context 

plays a significant role in personal decision processes and that humans make 

decisions taking into consideration others’ inputs. To this end, management 

scholars also have studied the effects of human psychology and interactions within 

organized units on decision processes since the 1940s. Herbert Simon (1947), in 

his book "Administrative Behavior," viewed organizations as complex interactive 

systems. Examining human administrative behavior in organizations, he concluded 

that the decision-making process is the core axis of any organization and that this 

process is based on the logic and psychology of human decisions. He was a long-

standing opponent of the rational model of decision-making and proposed the 

concept of "administrative man" as a more realistic version of the "economic man." 

The administrative man (Simon, 1947): 

• Views problem space in a simplified manner, 

• Seeks only a limited number of alternatives and the information about the 

consequences of alternatives, 

• Do not try to maximize utility but merely to find satisfying alternatives, 

• And finally, makes decisions mainly based on heuristics, which can be 

derived from his limited knowledge. 

 

However, an organization may have more than one administrative person at a time; 

thus, the interactions among a group of these individuals trigger an interesting 

dynamic in organizational decision-making processes. 

 

Organizational decision-making can be viewed as an ecology of complex, intra- 

and inter-connected decision processes. It is not a linear process where decisions 

are made sequentially. Instead, it is a systemic property of interactions among 

decision-makers within an organization and between different organizations 

(March, 2002). Due to the interactions among individuals in a system of decision-
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makers, emergent properties – such as friction and cooperation among decision-

makers – may influence how the system makes decisions collectively. Therefore, 

it is important to understand some characteristics that differentiate organizational 

decision-making from personal decision-making, such as ambiguity of information 

and preferences, longitudinal context, importance of incentives, repeatability of 

decisions, conflicts among decision-makers, volatility of the organization, and 

decentralization of decision-making. 

 

First of all, uncertainty of information and ambiguity of preferences are persistent 

in organizations. As organizations generally make complex decisions, the 

information required for these decisions is exponentially larger than that needed in 

personal decision-making. The uncertainty and ambiguity in organizational 

decision-making can be attributed to an inadequate understanding of the decision 

space, lack of information about alternatives and their consequences, and 

indistinguishable alternatives (Lipshitz & Strauss, 1997). 

 

Shapira (2002) argues that organizational decision-making is a longitudinal 

process where the decision-makers are the active participants who influence and 

bear the impacts of the decisions. Moreover, due to the interconnected nature of 

organizational decision-making, other members of the organization may also be 

affected by the consequences, whether or not they contribute to the decision 

process. On this note, although personal decisions may also impact other actors 

in a particular social group, the effects may not be as pronounced and immediate 

as in an organizational setting. 

 

Furthermore, incentives and penalties would have significant ramifications in 

organizational decision-making. Since organizational decision-making is 

embedded in a longitudinal context, the effects are amplified, and thus, the survival 

instincts of organizational actors may come into play (Shapira, 2002). 

 

Repeatability of decision processes is also common in organizations. Executives 

may have to make the same decisions repeatedly, during which heuristics and 

biases may influence their judgment. For example, an intuitive manager may view 

repeated decisions as routines, thus reaching conclusions too quickly, ignoring 
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relevant information, or relying on instinct, even when the decision may be 

inaccurate (Gasser & Agor, 1987). 

 

Conflict between decision-makers also plays a more significant role in 

organizational decision-making as compared to individual decision-making. 

Shapira (2002) states that in an organizational setting, personal agendas and 

conflicts of power rather than rationality among decision-makers may determine 

decisions rather than rationality based on the decisions' parameters. More so, 

conflicts and disagreements may also improve organizational decision-making. 

Dialectical inquiry and devil’s advocacy have been shown to lead to higher-quality 

decisions compared to group consensus (Schweiger, Sandberg, & Ragan, 1986). 

Dialectical inquiry, based on the dialectic method, investigates conflicting and 

competing ideas to produce emergent theories (Berniker, Mcnabb, Berniker, & 

Mcnabb, 2006). Devil’s advocacy uses a similar approach, where the investigator 

purposely adopts an opposing view from the subject to explore the topic further. 

 

Moreover, organizations are volatile in terms of their actors and preferences. 

Cohen, March, and Olsen (1972) equate organizations to organized anarchies, 

where participation in organizational decision-making processes varies in terms of 

time and effort, causing the boundary of the decision space to change and resulting 

in inconsistent decision processes. Although most organizations aspire to achieve 

a methodical and rational approach in their business processes, their set of 

preferences is not continuous and complete, thus violating the axioms of the 

rational model. The set is essentially a loose collection of ideas where the 

preferences are discovered through action rather than active deliberation and 

calculation. 

 

The decision-making process at the personal level differs from that made in 

organizational contexts. While personal decision-making is based on individual 

preferences and values, organizational decision-making involves a more complex 

and structured approach. Therefore, to understand the technical decision-making 

process in industries, it is imperative to study and analyze the decision-making 

process in the organizational context. Unlike individuals as actors in a social group, 

organizations have a rigid hierarchical structure where organizational agents play 
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specific roles in achieving organizational goals.  Each role has specific functions 

and responsibilities contributing towards the organizational goals. 

2.4.1 Strategic, Tactical, and Operational Decisions 

 

 

Figure 8: Visualization of strategic, tactical, and operational decisions in 
organizations (British Broadcasting Company, n.d.) 

 

 

Different hierarchical levels in an organization are responsible for different decision 

objectives. Top management is expected to make decisions that define the 

direction of the organization, while lower-level executives make decisions for the 

daily operation of the organization. Organizational decisions can be classified into 

three levels: strategic, tactical, and operational, with the allocation of decision-

making responsibilities contingent upon the hierarchical structure of the 

organization. 
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Figure 9: A general model of a strategic decision process (Mintzberg, 
Raisinghani, & Théorêt, 1976) 

 

Strategic decisions are high-level decisions made by an organization to define its 

long-term plans. These decisions, made by top management, are infrequent but 

critical in shaping the organization's course. Examples of strategic decisions 

include introducing a new product or service, opening a new manufacturing plant, 

expanding operations into a new market, forming strategic alliances, and becoming 

a publicly listed company (Alexander, 1985; Eisenhardt, 1989). Strategic decision-

making in organizations is akin to political systems, where management executives 

have partially conflicting objectives and the decision processes are heavily 

interwoven between bounded rationality and the political power plays of decision-

makers (Eisenhardt & Zbaracki, 1992). Bounded rationality introduces cognitive 

and social biases into strategic decision-making processes, such as 

overconfidence, representativeness, groupthink, and illusion of control (Busenitz & 

Barney, 1997; Schweiger et al., 1986). At the surface level, the strategic decision-

making process can appear highly unstructured (Mintzberg et al., 1976). However, 

Mintzberg et al (1976) discovered that it is not and tends to follow three basic 

phases: identification of opportunities, problems, and crises; development of 

solutions or elaboration of opportunities; and selection of decisions (Figure 7). 

These phases contain various steps such as recognition, diagnosis, design, and 

bargaining. The steps are not fixed to a particular sequence but can occur in any 

order depending on the context of the strategic decision. Successful 
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implementation of strategic decisions heavily depends on the effectiveness of 

tactical and operational decision-making processes. 

 

Tactical decisions are intermediate-level organizational decisions. This decision 

level describes action plans, policies, and procedures (Harrington & Ottenbacher, 

2009), as compared to operational decisions, which are the lowest-level decision 

stage, that see to the daily operations in functional areas of the organizations, 

where the decisions are mostly routine and repetitive (Hitt, Ireland, & Hoskisson, 

2012). For example, tactical decisions in the logistics industry prescribe material 

flow management policies, while operational decisions set the scheduling 

operations for the delivery of final products to customers (G. Schmidt & Wilhelm, 

2000). In supply chain management, tactical decision-makers deal with location-

inventory-routing planning, while low-level executives focus on operational 

decisions such as operative order planning, supply chain monitoring, and 

reconfiguration of delivery routes in case of operative disruptions (Ivanov, 2010). 

In the field of operations management, a multitude of decision analysis methods, 

such as optimization and simulation, are prescribed to ensure the efficiency and 

effectiveness of decision processes at these levels. In healthcare management, for 

instance, discrete event simulation models, which mimic the dynamic behavior of 

a process evolving over time, can be used to solve tactical decisions such as 

patient flow planning and staff scheduling (Kolker, 2011). 

 

Understanding the different decision levels helps frame the landscape of the 

decision-making process in organizations. Business processes, such as product 

development, manufacturing, logistics, and marketing, have varying degrees of 

decision levels. The decision levels determine the decision-making process actors 

and methods. For example, the manufacturing process involves many tactical and 

operational decisions. The decision-makers are generally low-level executives who 

rely on decision analysis methods to achieve production requirements at the 

strategic level.  

 

Organizational decision-making can generally be viewed in two styles: decision as 

rational choice and decision-making through rule-following. Decisions as rational 

choices typically follow the path set by the rational model, where decision-makers 

pursue logic and rationality to evaluate and attain the best alternatives. Decision-
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making through rule-following, on the other hand, relies on decision-makers 

cognition and social awareness by following rules and fulfilling roles defined by the 

organizations (Luoma, 2016; March, 2002; Zhou, 2002). 

 

2.4.2 Decision as Rational Choice 

 

As discussed previously, decision theory scholars have long agreed that perfect 

knowledge and cognitive computing power are required to process a near-infinite 

number of alternatives and their consequences are impractical and impossible to 

achieve. However, organizations still regard decisions as rational choice as 

imperative and it is in their best interest not to rely on intuitions, which can be 

susceptible to bias. Organizations strive to evaluate their alternatives 

systematically and rationally, by obtaining as much information about the problem 

as possible and employing formal decision-making techniques to evaluate and rank 

the best set of alternatives. 

 

The use of decision analysis, as explained in Section 2.2.2, is pervasive in 

organizations, where the role of decision analysis is not to make the final decisions 

but to assist decision-makers in making better decisions. Decision analysis 

provides the mechanism to dissect a decision problem into a set of smaller 

problems, analyze the information objectively, and propose a set of alternatives 

from which decision-makers may choose (Wright & Goodwin, 2009). It simplifies 

real-world problems, where the optimized models can be used as approximations 

(Simon, 1972). As an example, Du Pont used influence diagrams and Monte Carlo 

techniques to increase the effectiveness of their strategic decision-making. The 

analysis used multiple inputs – such as competitors’ strategies, market share, and 

market size – which helped Du Pont develop a business strategy that enhanced its 

business value by USD 175 million (Krumm & Rolle, 1992). In another example, 

ICI Americas used a decision tree tool to select research and development projects 

from 53 new product ideas. Using a variety of criteria – such as technical risk, time 

to develop, and sales growth potential – they managed to reduce uncertainty in 

information, work with a limited amount of data, and produce satisfying alternatives 

(Hess, 1993). 
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Although a decision made through rational choice may yield better results due to 

its systematic approach, the labor-intensive process would be tedious for simple 

and routine decisions. Therefore, some organizations provide their decision-

makers with rules or guidelines when making decisions. 

2.4.3 Decision as Rule-following 

 

Decisions in organizations are mostly made based on rules defined by the 

organizations themselves or by international regulatory bodies, such as norms, 

operating procedures, guidelines, and standards. Organizations develop these 

rules through formal learning, experiences, repeated exposure to similar events, 

and interactions within the organization and with other organizations (Chaiken & 

Trope, 1999; Luoma, 2016; Zhou, 2002). 

 

In decision situations of rising complexity, organizations tend to adopt simple rules 

and rely on predictable behaviors instead of increasing their efforts on rational 

decision-making. If the rational model follows the logic of optimization, where 

decisions are made based on the optimization and maximization of outcomes, rule-

following decision-making is based on the logic of appropriateness (Zhou, 2002). 

In the logic of appropriateness, decision-makers identify the social role they are 

required to play and match appropriate rules to the decision space (March & Olsen, 

1989).). It has been observed that organizations prioritize the appropriateness of 

procedures over maximizing decision outputs (Carroll, 1994; Dobbin, 1994). March 

(2002) states that three factors define rule-following decision-making: situation, 

identity, and matching. First, decision-makers observe the decision space and 

make sense of the situation. Second, they identify their specific role and identity 

within their organization. And finally, based on the recognition of their identity, they 

match and apply appropriate rules to the decision context. 

 

Rule-following decision-making behavior in organizations exists on both micro and 

macro levels (Zhou, 2002). Zhou states that at the micro and individual level, 

decision-makers and their decision-making tendencies are shaped by social 

categorization, based on their education and social settings. Through professional 

training and practices, employees are taught and imbued with specific roles and 

social perceptions that they are expected to embody. The biases of these 
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individuals are affected by the social constructs of the organization. On the other 

hand, at the macro and institutional level, Zhou (2002) describes that 

organizational decision-making is shaped by external influences, such as 

regulations, laws, and cultures. Organizations tend to adopt successful decision-

making processes from other organizations. The larger the stakes and the higher 

the uncertainty, the more organizations tend to rely on rules rather than to rationally 

analyze the decisions (Zhou, 2002). Organizations apply rule-following behaviors 

in a variety of decision situations, such as operational requirements to increase the 

efficiency of bureaucracy and systematic evaluations of new opportunities. 

 

Conventionally, organizations prescribe rules and guidelines to decision-makers to 

increase organizational efficiency by optimizing the performance of decision-

making, especially in routine situations. Rule-following decision-making reduces 

information processing, eliminates alternative searching, and emphasizes 

interpretation of the decision context instead of consequential calculation (Zhou, 

2002). This leads to more efficient and reliable decision-making in routine 

situations where the rules closely match the decision context. For example, clinical 

prediction rules are used in the medical industry to make a diagnosis or predict an 

outcome using clinical findings such as historical data, physical examinations, and 

test results (Laupacis, Sekar, & Stiell, 1997; Wasson, Sox, Neff, & Goldman, 1985). 

A study by Reilly and Evans (2006) showed that clinical prediction rules are a 

powerful tool to improve clinical decision-making. They also observed that if 

physicians intentionally overrule the decision rules, their decision-making efficiency 

is reduced. Furthermore, decision rules increase organizational performance when 

applied correctly. In complex decision-making environments, decision-makers are 

expected to combine multiple environmental factors, master the correct rules, and 

explore experimental strategies to yield the best composite rules (R. Wood, 

Bandura, & Bailey, 1990). 

 

Modeling organizational decision-making processes increases the efficiency and 

effectiveness of the decision process by enhancing the speed and accuracy of 

decision-making calculations. However, it may limit the emergence of creative 

solutions and force organizational actors into narrow problem framings, thus 

limiting their ability to recognize change (Luoma, 2016). Nevertheless, rule-

following decision-making does not have to be a rigid, automated process. 
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Decision-makers require a high level of critical thinking to select, combine, exploit, 

or neglect rules. Highly analytical decision-makers use decision rules to improve 

their innovation. 

 

Outside of the conventional usage of decision rules, entrepreneurs have been 

using the rules to systematically evaluate opportunities and explore new 

inventions. Routines and rules are used in organizations during the innovation 

process to ensure the appropriate allocation of R&D resources and stabilize 

innovation activities (Zhou, 2002). Wood and Williams (2014) state that 

organizations with an entrepreneurial spirit consistently use decision rules 

regarding opportunity novelty, resource efficiency, and worst-case scenarios to 

evaluate opportunities. Organizations use their deep knowledge regarding 

opportunity technology and opportunity markets to create demand-side rules to 

judge the potential of the opportunity. Using resource efficiency as a supply-side 

rule, organizations can judge the attractiveness of an opportunity by evaluating the 

resources required to pursue it. Organizations often ask themselves what the 

worst-case scenario could be if the opportunity under consideration is pursued. 

Entrepreneurs apply the supply-demand nexus rule to evaluate the relationship 

between opportunity novelty and resource efficiency. The relationship is carefully 

considered to avoid the severe effects of a worst-case scenario (M. S. Wood & 

Williams, 2014). 

 

The decision rules are highly subject to the heuristics and biases of the creators 

and the users of the rules. The creators draw from their formal knowledge and bias-

laden experiences and observations to create the rules. The rational model is not 

respected during the creation of the rules because none of the organizations has 

complete knowledge of the environment, nor do they have enough computational 

power to produce a consistent and rational set of rules. Decision-makers are also 

expected to rely on their cognitions, which are prone to biases, to evaluate the 

decision situations, recall, select, and combine the rules, and derive the 

appropriate decision. This contradicts decision-making as a rational choice. 

 

The decision-making process in organizations is complicated because it is tightly 

intertwined between decision-making as a rational choice and rule-following. 

Organizations pursue the rational model of decision-making, which is highly logical 
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but resource-intensive, but at the same time use decision rules to balance the 

rationality and practicality of the decision process, which is prone to heuristics and 

biases. The organizational decision-making landscape is further complicated by 

the number of participants generally needed in the decision process. It is 

reasonable to assume there are multiple actors in organizational decision-making 

processes, ranging from those who collect information, analyze alternatives and 

their consequences, to those who make decisions. This thus begs the question: 

are decisions in organizations generally made by single or multiple individuals?  

 

2.4.4 Decision through Consensus or Single Agent 

 

The renowned principle of Gestalt psychology, formulated by Kurt Koffka, 

advocates that “the whole is different than the sum of its parts” (Koffka, 1935), 

which is often misinterpreted as “the whole is greater than the sum of its parts” 

(Heider, 1977). Regardless of the interpretation, the principle affirms that a system 

is not merely a sum of its parts but an independent entity of its own. An organization 

is a system comprising its actors, infrastructures, and processes. Thus, 

organizational decision-making cannot be viewed simply as a summation of 

individual decision-making processes, but as a system of decision-making 

processes existing in a complex interrelation that cannot be easily untangled and 

reconstructed. In organizations, decisions are made by both individuals and 

through group consensus. Due to diversity and its complex nature in organizations, 

group decision-making presents its own challenges and benefits to the 

organizational decision-making process as a whole. 

 

Both small and large organizations are experiencing workforce diversification, 

mainly due to globalization and shifting demographics. This is especially apparent 

in organizations with a global operational base and the formation of 

interdepartmental and inter-organizational alliances. Diversity in organizations can 

be grouped into content-related attributes – such as knowledge, skills, 

organizational tenure, and education level – and structure-related attributes – for 

instance, culture, age, social status, and gender – of the employees (Jackson, May, 

& Whitney, 1995). Variations in group composition impact the decision-making 

process in organizations, especially where decisions are made through group 
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consensus. Some of the group properties that influence decision-making are roles, 

norms, status, cohesiveness, and diversity (Robbins & Judge, 2001). 

 

Different members assume various roles – such as information seeker, elaborator, 

coordinator, and procedural technician -- in group decision-making (Benne & 

Sheats, 2010). Benne and Sheats explain that the information seeker searches for 

facts and information and provides clarification of the factual adequacy of the 

information, while the elaborator explains alternatives suggested by group 

members in terms of examples and deduces the consequences of the alternatives. 

Meanwhile, a coordinator clarifies relationships between ideas and 

recommendations and tries to coordinate the activities of the team members, and 

the procedural technician performs routine tasks to expedite the decision process. 

Each team member has a certain perception of the role assigned to them, while 

other team members may have differing expectations of such roles. However, roles 

are generally assigned based on stereotypes, instead of actual underlying 

attributes of each team member (Jackson et al., 1995). This may lead to 

inappropriate assignment of responsibilities and mismanaged performance 

expectations. When role expectations are mutually contradictory, role conflict may 

cause stress in the group and impact its decision-making performance (Robbins & 

Judge, 2001). 

 

Most groups have established norms, or acceptable standards of behavior, agreed 

upon by their members, on what to do and what not to do (Forsyth, 1990; Robbins 

& Judge, 2001). Robbins and Judge further decompose the norm into a 

performance norm (outlining expectations of work output), appearance norm 

(stipulating dress code and behavioral conducts), social arrangement norm 

(specifying requirements of group activities), and resource allocation norm 

(defining the assignment of jobs and distribution of resources). The core concept 

of establishing norms is the requirement of conformity imposed on all group 

members. This may lead to undesirable social biases such as groupthink and herd 

behavior (Banerjee, 1992; Janis, 1971). 

 

Status exists in every society and defines the social rank given to group members. 

According to status characteristics theory, status is derived from a person’s power 

over group resources, their ability to contribute to the group’s success, and their 
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desirable personal characteristics – such as good looks, high intelligence, and 

pleasant personality (Berger, 1977). Status disparity shifts the dynamic of group 

decision-making, particularly toward high-status members. In stressful situations, 

team decisions gravitate around high-status members due to their perceived 

competency (Salas, 1991). The disparity also inhibits diversity of ideas, as high-

status members become more authoritative, and lower-status members tend to 

participate less actively and are generally less likely to share information 

(Chattopadhyay, 2014; Eisenhardt, 1989; Salas, 1991; Silver, Cohen, & 

Crutchfield, 1994). However, high status can insulate a team member from the 

pressure to conform to the group’s norms (Harvey & Consalvi, 1960; Robbins & 

Judge, 2001). High-status individuals are not only given more freedom to deviate 

from norms but are also better able to disregard the conformity of norms than lower-

status members (Hackman, 1992; Harvey & Consalvi, 1960). Furthermore, in 

normal situations, the majority faction can exert influence on the minority group. 

However, a majority faction of low-status members does not yield such influence. 

Dovidio and Gaertner found that high-status team members continue to discount 

the competency of the low-status faction even when outnumbered (Dovidio & 

Gaertner, 1983). 

 

Group cohesion, or bonds between team members, affects group productivity and 

decision quality (Forsyth, 1990; Robbins & Judge, 2001). Group cohesion 

exemplifies the Gestalt principle, stating that a group is a whole independent entity, 

not necessarily greater but certainly different than the sum of its members. Mullen 

and Copper (1994) discovered that cohesiveness is a double-edged sword for 

group performance. It impairs decision-making when motivated by interpersonal 

attraction or group pride but enhances decision-making if operationalized as a 

commitment to the task (Mullen & Copper, 1994). The commitment to achieving 

successful task performance encourages team members to cooperate and 

regulate their actions toward achieving that goal. The group cohesion-productivity 

relationship is also highly dependent on the group's performance norm. If the 

performance norm – such as standards for work quality, work output, and 

cooperation – is low, even with high cohesiveness, productivity will be low. 

However, if the performance norm is high and cohesiveness is low, productivity 

increases (Mullen & Copper, 1994). 
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Diversity in group composition affects group decision-making performance. 

Heterogeneous teams make better decisions because they possess diverse task-

related attributes, such as knowledge, skills, and abilities. However, the diversity 

of relation-oriented attributes — such as social status, attitudes, and values – may 

cause conflict in the team. Personal affiliations, less satisfaction, self-serving 

behavior, and group politics become common occurrences in the team (Jackson 

et al., 1995; Staples & Zhao, 2006). George and Chattopadhyay (2008) compiled 

studies on the effects of group diversity in decision-making and summarized that 

due to a diverse wealth of knowledge and skills, diversity may increase group 

decision-making performance if members can work together. However, they also 

state that diversity can negatively influence group member interactions, cause low 

effectiveness in sharing and processing information within the group, and low 

commitment to group decisions. This is due to the similarity attraction paradigm, 

where members of dissimilar categories have high motivation to avoid social 

interaction with each other and are less likely to share information (Byrne, 1971). 

 

It is challenging to ascertain whether group decision-making is superior or inferior 

to individual decision-making. On one hand, group decision-making is 

advantageous as it encompasses more information due to the diverse composition 

of the group, facilitates a critical analysis of the information, yields more 

alternatives, and fosters commitment to group decisions (Leavitt & Bahrami, 1988; 

Robbins & Judge, 2001). On the other hand, group decision-making can be 

perceived as unattractive since it is time-consuming. Moreover, discussions and 

group decisions can be dominated by high-status members, with the roles and 

responsibilities of team members remaining ambiguous at best (Robbins & Judge, 

2001). 

 

Based on the review of decision-making literature thus far, several conclusions can 

be delineated and encapsulated as follows: 

1. Decision theory is predominantly characterized by two decision models: 

rational and boundedly-rational (or behavioral) models. The rational model 

posits that decision-makers aim to maximize their outputs and can 

consistently delineate their preferences. Conversely, the behavioral model 

suggests that decision-makers are boundedly rational agents and, 

therefore, rely on heuristics and biases to render judgments. 
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2. Decision-making context can be divided into two: personal and 

organizational contexts. Personal decisions are made daily, encompassing 

highly dynamic yet straightforward decision scenarios. Conversely, 

organizations embody a rigid social structure, mandate structured 

processes, and engage in more routine yet highly intricate decision-making. 

3. Two distinct decision types exist, individual and group decisions. Individuals 

make decisions based on their self-interest and are typically less susceptible 

to social influences during the decision process. Group dynamics, 

conversely, play a significant role in group decisions. The status of group 

members, cultural diversity within the group, and member roles can 

profoundly influence the outcomes of the decision-making process. 

4. When a decision model is superimposed onto the decision context of 

organizations, two decision styles emerge: decision as a rational choice and 

decision as rule-following. Decision as a rational choice illustrates how 

organizations are gravitating towards rational models and necessitate the 

employment of decision analysis to augment rationality in decision-making. 

However, as the rational decision-making process demands substantial 

computational and organizational resources, organizations prescribe 

decision rules, which are subjected to the biases of rule makers, for the 

employees to adhere to. 

 

The literature on decision-making is extensive, and the landscape of decision 

theory is vast in scope. It transcends many disciplines and extends over a hundred 

years of research. Even when the focus is on organizational decision-making, the 

available literature is abundant. Decisions in organizations vary from strategic 

decisions. So, no single decision-making model can encompass all decision 

scenarios within organizations. Therefore, limiting the research scope of this thesis 

to a specific decision scenario was important. 
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2.5 Technical Decision-making in Product Development 

 

Technical decision-making in the product development process is the focus of this 

research. Strategic and tactical decisions converge during product development, 

where business decisions transform into inputs for largely systematic technical 

processes. The presence of unknown variables and unverified information during 

the decision-making process in the product development phase is a common 

occurrence. This situation may compel decision-makers to rely on their instincts 

and heuristics when making technical decisions, even though a high degree of 

rationality and objectivity is expected. This chapter will delve deeply into the 

technical decision-making process within the product development process. 

 

2.5.1 Product Development Process 

 

Technical processes in the industry are dominated by rational analysis and rule-

following behaviors, particularly in the engineering product development process, 

where the process is well-defined by international standards, industry-wide norms, 

and organizational best practices. The product development processes are 

meticulously outlined to ensure high product quality while reducing its technical, 

commercial, and liability risks. 

 

Many product development models exist, such as waterfall, iterative, stage-gate, 

spiral, design for Six Sigma, v-model, lean, and agile. Most of these models can 

be grouped into three strategies: once-through, incremental, and evolutionary 

(ISO/IEC/IEEE, 2018). The once-through strategy is a linear process where the 

development process, for example, user requirements, design and development, 

verification, and validation processes, are only performed once and done in 

sequence. The incremental strategy, on the other hand, defines user requirements 

upfront, and then performs the rest of the development process in builds. Each 

build develops the planned requirements in stages until the product is feature-

complete. Finally, the evolutionary strategy also develops the system in builds. In 

the evolutionary strategy, the user requirements are neither frozen nor defined 

upfront. This approach allows for flexibility in product development by monitoring 

user feedback and changes in technology and adapting the product accordingly. 
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From the various product development models, this chapter reviews the waterfall, 

v-model, and Agile Development processes due to their relative importance in the 

industry. 

 

Figure 10: Waterfall Model (Royce, 1970) 

 

The Waterfall model was first introduced to manage large software development 

(Royce, 1970). It is a quintessential once-through strategy in which the phase of 

product development proceeds in sequence, from requirements analysis to the 

deployment phase (Figure 10). The phases must be executed one at a time and 

largely resemble the widely used stage-gate model (Figure 11). The linear nature 

of the model has its advantages, as system requirements must be clarified in the 

initial phase of product development and the resources needed to execute the 

development cycle can be planned ahead, in which each phase is properly 

documented for quality control (Alshamrani & Abdullah, 2015; Balaji & Murugaiyan, 

2012). However, the linearity of the process can also be the root cause of its many 

disadvantages. The integration and validation of the overall system at the end of 

the product development cycle can lead to unexpected quality issues, high 

development cost, and unmanageable project schedule (Jones, 1996; Royce, 

1970). Furthermore, the waterfall model is also ill-suited to cope with the changing 

requirements of customers, leading to failures in adequately addressing 

customers’ current needs (Larman, 2004; Petersen, Wohlin, & Baca, 2009). 
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Figure 11: Stage-Gate Model (Cooper, 1990) 

 

 

Based on the shortcomings of the waterfall model, the V-model was developed to 

introduce a flexible procedural process in the product development of mechatronic 

system (VDI, 2004) (Figure 12). 

 

 

Figure 12: V-Model (VDI, 2004) 

 

The V-model is rooted in the linear approach of the waterfall model but incorporates 

iterative development cycles, where a product is developed and tested within both 

micro and macro cycles. There are two sides to the V-model; the left side describes 

the decomposition of requirements and design solution, while the right side 
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illustrates the incremental steps of design verification (Figure 12). The macro-cycle 

entails design and testing on the system level. The V-model commences with 

system design where customer requirements are analyzed to develop cross-

domain system-level solutions and later broken down into requirements of domain-

specific solution elements. The micro-cycles, at the base of the V, consist of a 

detailed solution development process where the decomposed requirements are 

designed and tested iteratively by each domain in parallel. The V-model closes the 

development loop by ensuring the domain-specific and system-level development 

are tested incrementally according to their integration levels. Due to its systematic 

approach to managing large projects and its reliance on good documentation, the 

V-model has found its place in many industries including medical device, space, 

and automotive industries (Braun et al., 2014; Mc Hugh, Cawley, McCaffcry, 

Richardson, & Wang, 2013; Mccaffery, Mcfall, Donnelly, Wilkie, & Sterritt, 2005; 

Yadav & Goel, 2008). However, as a project enlarges, the assurance of product 

consistency through the V-model approach escalates in complexity (Rausch, 

Bartelt, Ternité, & Kuhrmann, 2005). 

 

The inception of the Agile Development model stemmed from the frustration with 

traditional process-heavy development practices that engendered slow product 

development times and an inability to adapt to changes (Martin, 2002). Agile 

Development was founded on a set of manifesto that values “individuals and 

interactions over processes and tools, working software over comprehensive 

documentation, customer collaboration over contract negotiation and responding 

to change over following a plan” (Agile Alliance, 2001). The manifesto advocates 

iterative and evolutionary development to reduce rigidity and needless complexity 

while augmenting the transparency of the design process (Martin, 2002). Agile 

Development frameworks such as Scrum, Extreme Programming, and Dynamic 

Systems Development Methods were crafted based on this manifesto. An example 

of the Agile Development model is shown in Figure 13 which is named Scrum 

framework. 
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Figure 13: Agile Development: Scrum Framework (Schwaber, 1997) 

 

The Scrum framework depends on the agility and flexibility of engineers and 

developers to review, develop, and test design solutions iteratively, in short burst 

amounts of time; this is also known as a sprint cycle. A sprint cycle normally lasts 

between one to four weeks. Planning and prioritization of deliverables, or user 

stories in Scrum lingo, are conducted using a product backlog list before sprint 

cycles. These processes are delegated between the ScrumMaster, product owner, 

and team members, to ensure that the team members can develop the required 

functionalities within the short sprint cycle while adhering to the high-level design 

of system architecture (Schwaber, 1997). The ScrumMaster is integral to the 

success of implementing the Scrum process. He or she facilitates the team 

members to produce required functionalities based on the backlog and supports 

the product owner in prioritizing the functionalities (Schwaber, 2004).  

 

The benefits of agile methods are numerous. The method provides clarity of 

product development to the developers, project managers, and customers. 

Customers can monitor the real progress of the project and are provided with the 

flexibility to make changes to the requirements during the developmental phase 

(Paasivaara & Lassenius, 2006). However, according to Drury, Conboy, and Power 

(2012), the methods can cause the team members to focus more on tactical 

decisions and lose sight of overall organizational strategies to fulfill customer needs 

and wishes. Since the team members rely heavily on ScrumMaster for decisions, 

they also tend to not take ownership of such decisions. This leads to some 

decisions not being implemented if they are not monitored or followed up by the 

ScrumMaster. 
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Product development processes can differ between organizations as they employ 

development models based on their organizational culture, product types, and 

industry’s norms and best practices. However, a general set of product 

development processes exists and has been outlined by the International 

Organization for Standardization in ISO 15288 (ISO/IEC 15288, 2005). 

International Council on Systems Engineering (INCOSE) further elaborates on the 

implementation in their Systems Engineering Body of Knowledge (Haskins, 

Forsberg, & Krueger, 2006). 

 

Figure 14: Inputs and outputs of a process for engineering a system 
(ISO/IEC/IEEE, 2012) 

A process (Figure 14), as defined by ISO 24748-2, comprises a set of activities 

that transform inputs into a specified output. An activity entails a set of cohesive 

tasks that contribute to the achievement of outcomes of a process. The 

transformation of inputs into outputs can be affected by controls and enabling 

mechanisms. Controls are constraints imposed by organizational management 

directives or governmental regulations while enabling mechanisms are resources, 

tools, or technologies that facilitate the fulfillment of the process (ISO/IEC/IEEE, 

2012).  

 

ISO 15288: Systems and software engineering — System life cycle processes 

outline the system lifecycle of a product from an engineering point of view, starting 

with the conception of ideas to the product retirement. The system lifecycle (Figure 

15) does not only cover technical processes, such as requirements analysis and 

validation, but other commercial as well as managerial processes (ISO/IEC 15288, 

2005). The system lifecycle can be grouped into four major processes: agreement, 

project, technical, and organizational project-enabling processes. 
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ISO 15288 characterizes agreement processes as the establishment of 

agreements within and between organizations on the acquisition and supply of 

products and services. The acquisition process is defined as a means to acquire 

products and services from suppliers that can meet the organizational needs of an 

operational system, elements of a system required in a project, or services to 

support project activities. The supply process, on the other hand, is invoked to set 

up an agreement to supply the required products and services (Haskins et al., 

2006; ISO/IEC 15288, 2005). 

 

Figure 15: System life cycle processes (ISO/IEC 15288, 2005) 
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Organizational project-enabling processes are auxiliary activities to ensure an 

organization is capable of acquiring and supplying products over the entire system 

lifecycle. These encompass six sub-processes: life cycle management, 

infrastructure management, project portfolio management, knowledge 

management, human resource management, and quality management. Life cycle 

management, quality management, and portfolio management are crucial in 

outlining organizational product development procedures, defining business 

strategies, setting budgets and resources, and ensuring product and process 

quality throughout its lifecycle (ISO/IEC 15288, 2005). Lifecycle management is 

further elaborated in ISO 24748-1 and ISO 9001 (ISO/IEC/IEEE, 2018; ISO, 2008). 

 

Technical management processes are integral to the successful implementation of 

a project by establishing and executing project plans, assessing the risks, 

achievements, and progress of the plans, and controlling the execution of the 

project until the end of the product lifecycle. There are two categories identified 

within technical management processes: project management and project support 

sub-processes (ISO). Project support sub-processes encompass many 

procedures that are important in product development. Two of them, decision 

management and risk management processes, are particularly of interest to this 

thesis. Technical management processes, which are normally handled by project 

managers, are further refined in the Project Management Body of Knowledge by 

the Project Management Institute (PMI) (Project Management Institute, 2017). 
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Figure 16: Application of technical management processes in product 
development (ISO/IEC/IEEE, 2018) 

The majority of product development processes from the engineering standpoint 

are outlined in technical processes (Figure 16). The initiation of any product 

development begins with the definition of stakeholder requirements. These high-

level requirements are further refined during the requirements analysis process, 

which sets a baseline for concept development in the architectural design process. 

Once the concept(s) have been selected, the architectural design is implemented 

by the development teams – such as mechanical design, electrical hardware, and 

software development – during the implementation process. Successful 

implementation of requirements and concept definition in product development is 

verified at each level of design abstraction, from the integration process through 

the validation process (ISO/IEC 15288, 2005). After the product has been 

successfully verified and approved for production, the operation, maintenance, and 

disposal processes follow suit, extending until the end of the product life cycle. 

Different industries interpret and adapt this generic product development process 

differently. 
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Depending on the industry, the ISO-proposed product development process may 

be modified to better fit the industry's needs. The process is defined by national 

agencies, interest groups, and trade associations of the industry. The automotive 

and space industries do not have an industry-wide organizational body that 

oversees a unified set of guidelines to be used by the industry players. Instead, 

interest groups and trade associations from the same organizations' country of 

origin publish their own norms. In the space industry, national and regional 

agencies are normally responsible for their own publication of standards and 

guidelines. However, medical device industry players must adhere to ISO 13485 

standards, which set the quality standards for the product development process of 

medical devices (ISO, 2016). 

 

Figure 17: VDA project planning process (VDA, 1998) 

 

Automotive industry interest groups such as Verband der Automobilindustrie (VDA) 

and Automotive Industry Action Group (AIAG) adopted the ISO 15288 product 

development process with slight deviations, possibly based on their internal 

interpretations of the process. As shown in Figure 15 and Figure 16, both VDA and 

AIAG processes have the same framework for the product development process 

but with different naming conventions. The process still begins with understanding 

market demands and customer needs, which are soon followed by product 

development and validation, before concluding the product development cycle with 

the production process (AIAG, 2008; VDA, 1998). 
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Figure 18: AIAG product quality planning (AIAG, 2008) 

 

In the space industry, the European Space Agency (ESA) and the National 

Aeronautics and Space Administration (NASA) articulate their product 

development process in their respective standards and handbooks (ECSS, 2009a; 

NASA, 2007). Their product development processes closely follow the ISO 15288 

process definition but with one critical difference. At the highest system level, unlike 

in the automotive and medical device industries, the space industry is not bound 

by consumer needs or market trends, but by the mission set out by the agencies. 

Therefore, the inputs into the stakeholder analysis process are different, but the 

outputs are largely the same; both industries require the definition of design goals 

and high-level requirements as outputs of the stakeholder analysis process (AIAG, 

2008; NASA, 2007).  
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Figure 19: Architectural Design Process (Haskins et al., 2006) 

During the design development stage, Architectural design (Figure 19), also known 

as system design, is a crucial process that defines a solution space that satisfies 

system requirements and expresses it in a set of consistent views (ISO/IEC 15288, 

2005). It's a delicate balance to conceptualize a design on a system level that 

meets system requirements as tactical decisions, fulfills commercial objectives as 

strategic decisions, and ensures the technical feasibility of product development. 

The designs are to be selected by the product stakeholders at the end of the 

concept stage. ISO 42010 prescribes a unified approach to how system 

architectural designs are organized and expressed (ISO/IEC/IEEE, 2011). The 

core concept resides in the standard's establishment of a convention on the 

definition of architectural views. Architectural views present multiple viewpoints of 

the same system for product stakeholders, catering to their requirements and 

needs. This convention fosters the development of various modeling languages, 

such as SysML, UML, and IDEF, and architectural frameworks, like TOGAF, 

MODAF, and RM-ODP (ISO/IEC/IEEE, 2011). However, the standards do not offer 

guidelines on designing system solutions, nor do they propose methods to analyze 

and evaluate the architectural design, as required by ISO 15288.  

 

Industry and academia provide well-defined guidelines on the architectural design 

process for concept generation. NASA, in its Systems Engineering Handbook, 

suggests a methodical approach to systems design, initially by creating a logical 

decomposition of system requirements and later defining design solutions based 

on this decomposition. Logical decomposition consists of a product breakdown 

structure, which delineates the product into components hierarchically, and 

functional analysis techniques which analyze product functions through its 
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functional flows and interaction matrix. In defining design solutions, NASA 

proposes iterative design loops ensuring the consistency of basic architecture, 

concept of operations, and derived requirements. The concept of operations, or 

ConOps, is a descriptive set about the system's operation throughout its life cycle 

(NASA, 2007). Robert Bosch, a multinational company operating across 

automotive, consumer goods, industrial technology, and infrastructure sectors, 

publishes a product engineering handbook that includes guidelines on deriving 

design solutions. The approach begins by breaking down a system into individual 

elements and functionalities through system structuring. The relationship between 

the elements and their functions is then further analyzed through cause-effect 

relationship modeling. This graphical representation facilitates technical analysis 

of active parameters of the elements and their quantitative relationships, aiming to 

meet target parameters on a higher-level system (Robert Bosch GmbH, n.d.). 

 

Academic researchers have ventured a different route, proposing concept 

generation tools and methodologies for product development. In recent years, the 

tilt has been towards novel approaches generating optimal concepts based on 

computational models and automated processes, over the "traditional" methods in 

the industry that still rely on engineers' creativity and collaboration. Various fuzzy 

set theorem-based (Hong-Zhong, Bo, & Chen, 2006; Xue & Dong, 2002; Yan et 

al., 2006) and computational functional analysis approaches (Bryant, McAdams, 

Stone, Kurtoglu, & Campbell, 2005; Liu, Bligh, & Chakrabarti, 2003), among others, 

have been proposed for use in the development and evaluation of design concepts. 

This computational approach leans towards a rational model, aiming to mitigate 

biases in the process (Bryant et al., 2005). Regardless of how architectural designs 

are generated to fulfill a set of stakeholder requirements, the design development 

process is particularly of interest to this research. 
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2.5.2 Technical Decision-Making 

 

 

Figure 20: Decision Management Process (Haskins et al., 2006) 

The objective of the architectural design process is not only to generate designs 

but also to facilitate decision-making during design development. However, on a 

larger scale, decision-making in organizations entails balancing risks and 

opportunities. ISO 9001, a quality management standard, mandates organizations 

to plan actions addressing these risks and opportunities, integrate and implement 

the actions, and evaluate their effectiveness. Within product development, this 

necessitates systematic decision management. ISO 15288 (2002) stipulates a set 

of requirements for the decision management process (Figure 20), providing a 

baseline for technical decision-making in many organizations, while ISO 24748-2 

(2012) offers additional guidance on the implementation steps of these 

requirements: 

 

1. Definition of decision management strategy: This strategy identifies the 

decision-makers, outlines decision analysis methods, prioritizes decision 

actions, and defines the criteria for evaluating the effectiveness of actions. 

2. Identification of decision context, objectives, and decision-making team:  

The need and context for a decision, along with the entry and exit criteria 

for the decision process, are documented. Key stakeholders and their 

responsibilities must also be delineated to leverage their experience and 

knowledge. 

3. Processing of decision information: Decision management strategy and 

measurable selection criteria must be available. Alternatives should be 
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identified and evaluated against the selection criteria, and their 

consequences to be assessed. 

4. Selection and management of decisions: Preferred alternatives should be 

ranked quantitatively, and the rationales and assumptions behind decisions 

recorded. Implementation of decisions is then monitored, evaluated, and 

reported back to the decision stakeholders (ISO/IEC 15288, 2005). 

 

ISO warrants that the technical decision-making process should be conducted 

rationally, with alternatives evaluated against measurable criteria and ranked 

quantitatively (ISO/IEC 15288, 2005). Depending on the decision contexts, two 

decision management implementations are commonly used in a product 

development life cycle: decision gate and decision analysis tools. 

 

A decision gate, or phase gate, is an approval process set at the end of a project 

phase to ensure phase exit conditions are met and to determine if the project can 

progress to the next phase (Cooper, 1990; Haskins et al., 2006). The decision gate 

process is widely employed in the industry, with one study reporting that slightly 

over 60% of surveyed organizations involved in product development utilize formal 

stages and decision gates in some form (Griffin, 1997). These gates are typically 

overseen by project managers, with a cross-functional group of senior managers 

acting as gatekeepers. Team members are tasked with delivering work products 

as inputs to the decision-making process, while the gatekeepers render a go or no-

go decision based on exit conditions (Grönlund, Sjödin, & Frishammar, 2010). 

 

The exit conditions of a decision gate, akin to decision rules, vary significantly 

depending on the industry and the current project stage. For instance, in the 

concept stage of a space mission, milestone reviews are conducted to assess 

feasibility through the selection of system, OpsCon, and technical solutions against 

cost, schedule, and risk estimation (ECSS, 2009b; NASA, 2007). In the automotive 

sector, American automakers utilize design reviews to monitor project progress 

and summarize findings to management. These reviews may encompass 

discussions on design and functional requirements, reliability and confidence 

goals, and design verification progress (AIAG, 2008). Conducting design reviews 

aligns with the IATF 16949 requirements for management reviews at a specified 
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phase gate. IATF 16949 is an automotive-specific quality management system 

derived from ISO 9001 (IATF, 2016). 

 

Decisions made during the phase gate are generally strategic in nature, as they 

determine the fate of the product depending on its risk, success, and opportunities 

at the time of judgment. Due to the subjectivity of some inputs, decision-makers 

often face great difficulty in making objective judgments. Another study reports that 

a few variables that play important roles in the approval of a project during phase 

gate include the subjective probability of technical and commercial success, 

smoothness of technical development, and commitment of employees 

(Balachandra, 1984). These factors are inherently subjective and may introduce 

biases during the decision-making process. Therefore, while a decision gate is 

more suitable for project management-type decision-making scenarios, decision 

analysis tools are preferred for technical judgments during product engineering for 

their highly analytical approach. 

 

The usage of decision analysis, explained in Section 2.2.2, in decision-making in 

the product development process is well-specified in the industry. International 

professional organizations such as PMI and INCOSE, in their body of knowledge 

handbooks, suggest that many decision analysis tools—for instance, multicriteria 

decision analysis, decision tree, sensitivity analysis, trade study, and voting 

system—to be used in the technical decision-making process (Haskins et al., 2006; 

Project Management Institute, 2017). Industry trade associations and national 

organizations, such as NASA, ESA, VDA, and AIAG, also propose tools like 

influence diagrams, cost-benefit or trade-off analysis, utility analysis, design of 

experiments, and failure mode and effect analysis to evaluate risks and 

opportunities in making technical and commercial decisions (AIAG, 2008; ECSS, 

2009; NASA, 2007; VDA, 1998). 

 

In the literature, many more decision analysis tools were developed to support 

decision-makers in making rational choices during product development. Some of 

these tools are fuzzy logic-based decision tools (Büyüközkan & Feyzıog̃lu, 2004; 

Lin & Lee, 1991; Yan et al., 2006), multi-attribute utility analysis (Büyüközkan & 

Ateş, 2007; Malak et al., 2009), analytical hierarchy process (Saaty, 1990; Vaidya 

& Kumar, 2006), and scoring model (Hough & Ogilvie, 2005; Liberatore & 
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Stylianou, 1995). The decision tree has also been used in product development, 

not only in its original scheme (Hess, 1993), but also combined with modern 

computational methods to provide more robust decision analysis (Argentiero, Chin, 

& Beaudet, 1982; R.-Y. Chen, 2009; Tucker & Kim, 2009). Decision analysis tools 

are not solely rational-driven; there are a few tools that take behavioral aspects 

into account (Souder & Mandakovic, 1986). For example, Delphi methods 

systematically aggregate decision-maker’s views to define consensus through a 

series of questionnaires (Clayton, 1997; Elwyn, 2006; Spinelli, 1983). However, 

academic papers on the implementation of Delphi methods and other behavioral 

decision analysis tools in the context of product development are scarce. 

 

Risk management, another subset of the technical management process, 

oversees the architectural design process to identify, reduce, and monitor project 

risks (ISO/IEC 15288, 2005). The planning of risk management precedes this 

process; this plan must encompass risk management policies, identification of 

responsibilities and authorities, and resource allocation. The risk profile is 

managed via the Risk Management Process, in which the agreed-upon risk 

thresholds and conditions are utilized to monitor the risks. Risk analysis, treatment, 

and monitoring are conducted throughout the project lifecycle (ISO/IEC 15288, 

2005). Risks with a high probability of occurrence and consequences are checked 

against the threshold. If a risk exceeds the threshold, alternatives for risk treatment 

must be investigated and implemented to manage the risk. The effectiveness of 

risk treatments is monitored to ensure that risks remain under control.  

 

Based on the findings from the literature, a general model for the product 

development process has been developed incorporating international standards 

(ISO 15288) and industry-specific applications; such as the ones in automotive 

(AIAG, 2008; IATF, 2016; VDA, 1998), space (ECSS, 2009; NASA, 2007) and 

medical device (ISO, 2016; US FDA, 2018) industries. Figure 21 summarizes the 

technical decision-making process during the design development stage, which 

served as the framework for this study. 
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Figure 21: General model of design development phase in product development 
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2.5.3 Categorization of Biases in the Technical Decision-making 

Process  

 

Numerous biases have been extensively studied and discussed in academia; 

however, identifying and analyzing relevant biases in the product development 

process is essential. The biases in the technical decision-making process may 

revolve around decision analysis, owing to the expectation of engineering 

organizations for technical decisions to be made rationally. Consequently, the 

objective of the study is to understand the manners in which biases impact decision 

analysis. Upon reviewing the literature, it is apparent that biases affect decision-

making at three stages in the decision-making process: information processing, 

alternative selection, and decision revision. 

 

Information processing biases occur when decision information is subjectively 

processed by the decision-maker or the group’s information seeker (Kazmi, 2016). 

The information may be prematurely discounted, its significance downgraded or 

overstated, or the content of such information may be altered before it can be 

objectively analyzed via decision analysis. Arguably, the information might have 

already been tainted by previous biases even before entering the decision-making 

process. For instance, this might occur at its source, although it will be challenging 

to ascertain the extent of such bias on the integrity of the incoming information. 

Therefore, this thesis only considers information-processing biases that occur 

during the active decision-making process node, for example, anchoring, framing, 

confirmation, and clustering illusion. 

 

Alternative selection biases influence the outputs of decision analysis tools. The 

tools analyze decision information in light of the constraints and selection criteria 

to objectively rank the alternatives. However, there is a tendency for decision-

makers to base decisions not on the ranked alternatives, but on their instincts 

instead. These biases are evident in the default effect, groupthink, loss aversion, 

and optimism bias. 

 

Decision-revision biases are triggered when decision-makers are prompted to 

reconsider their decisions upon the presentation of new information. In typical 

organizational decision-making processes, executives make decisions based on 
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the limited information available to them at the time. However, the flow of 

information in organizations is continuous, and new information may be 

discovered. In cases where decision-makers have already invested money, time, 

and effort in making decisions, new information compels them to revise their 

decisions. This may allow biases to creep in during the decision revision phase. 

Such biases include escalation of commitment, belief revision, and choice-

supportive bias. 

 

These bias clusters discussed above are integrated with the normative technical 

decision-making process to generate a unified model (Figure 23) that elucidates 

the relationship between rational and behavioral models in the technical decision-

making process.  

2.6 Gap 

 

Decision theory is a well-researched interdisciplinary topic studied by economists, 

sociologists, psychologists, neuroscientists, engineers, social scientists, and many 

others. The topic does not only span disciplines but also dates back to the 19th 

century. Even though the literature on the decision-making process is extensive, it 

is not exhaustive. So far, much of the decision-making research focuses on rational 

and behavioral decision models in separate studies; research on the dynamic 

relationship between the two in technical decision-making is sparse.  

 

This is especially noticeable in the context of product development in engineering 

organizations. Most of the research in this area acknowledged the importance of 

rational analysis and thus proposed many more new decision analysis methods in 

an already crowded space (see Section 2.2.2 and 2.5.2). However not much has 

been done to analyze the existence and the effects of heuristics and biases that 

occur in this predominantly rational process. In other words, the behavioral aspects 

that influence technical decision-making are still understudied. As such, the current 

research aims to address this research gap with the following research questions. 
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2.7 Research Questions 

 

Based on the literature review and discussion above, the thesis aims to address 

one over-arching research question, which is then broken down into four sub-

research questions: 

 

RQ 1. How do engineering organizations make technical decisions during 

product development? 

Research Actions: 

1. Examine product development processes in aerospace, automotive, 

and medical device companies. 

2. Analyze the deviation between rational and behavioral technical 

decision-making. 

 

RQ 1.1. What decision-making methodologies do engineering organizations 

expect for technical decisions? 

Research Actions: 

1. Review industry norms and standards and company guidelines to 

obtain an overview of the industry- and organization-specific product 

development processes. 

2. Gather information on participants’ understanding of their organization- 

and industry-prescribed product development processes. 

 

RQ 1.2. What decision-making methodologies are actually employed by 

engineering teams for technical decisions?  

Research Actions: 

1. Understand the participants’ approaches to making technical decisions 

in their daily work. 

2. Observe differences between the participants’ decision-making process 

and their organization’s prescribed process. 

 

RQ 1.3. What biases exist in the technical decision-making process? 

Research Actions: 

1. Review literature on human biases in the decision-making process. 
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2. Identify patterns or categories of human biases specific to the technical 

decision-making process. 

3. Solicit participants’ biases in making technical decisions. 

 

RQ 1.4. To what extent do decision-makers exhibit rationality in technical 

decision-making? 

Research Actions: 

1. Examine relationships between the identified biases and decision 

analysis in the technical decision-making process. 

2. Test the significance level of the identified biases in the technical 

decision-making process  
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3 Research Methodology 

 

The multi-disciplinary nature of organizational decision-making, ranging from the 

fields of psychology and sociology to operational management and engineering, 

requires a suitable research methodology to ensure systematic analysis of such a 

complex topic. In this research, both qualitative and quantitative approaches are 

used for different purposes and in varying degrees. This chapter outlines its 

conceptual framework and explains the research design used in the study. 

3.1 Conceptual Framework  

 

Scholars have researched biases in various forms and perspectives, and similarly, 

this thesis looks at the biases from yet another viewpoint: the biases’ relationship 

with decision analysis in the technical decision-making process. A unified model of 

rational and behavioral technical decision-making has been developed as the 

conceptual framework of this thesis based on literature and industry norms and 

standards in decision-making. 

 

 

Figure 22: Normative Technical Decision-Making Process 

 

As shown in Figure 22 above, the normative technical decision-making process 

was developed based on the definition of process found in ISO 24748-2 (Figure 

14) and the decision management process outlined by ISO 15288 (Section 2.5.1). 

In normative technical decision-making, various inputs are fed into the process to  

the most optimum decision. This is done by first inputting relevant information 

regarding the decision context into the procedure. The potential alternatives, 
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developed in adherence to an organization's business procedures, are then 

introduced into the process, where they will be evaluated and ranked. Here, 

decision objectives or selection criteria, defined by management, regulate the 

decision-making process. Also, constraints from technical, commercial, and 

managerial aspects would be imposed on the decision-making process. Finally, 

after all inputs are considered in the decision analysis the most optimum decision 

should be produced. 

 

 

 

Figure 23: Unified Model of Rational and Behavioral Technical Decision-making 

 

This model is the conceptual framework of this thesis upon which the research is 

based. The unified model of technical decision-making hypothesizes that biases 

affect the decision analysis at a specific node along the decision-making process: 

biases can affect the information before they are fed into the analysis, and 

consequently, biases can also influence the analysis and thereafter the outputs of 

the decision. Furthermore, if there is new information after the decisions have been 

made and a decision revision is required, the revision process can also be biased.  

 

Decision-making is not only based on rationality but can also be influenced by 

human behavior. Since decision analysis characterizes the rational model of the 
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technical decision-making process, human factors such as emotions and 

preferences represent the behavioral elements accordingly. These behavioral 

elements may affect the dynamics of the decision-making process and change the 

outcome of the decision. were then integrated with the rational model to develop 

the Unified Model of Technical Decision-making (Figure 23), which outlines the 

dynamics between rational and behavioral in the technical decision-making 

process.  

 

 

Figure 24: Development of Conceptual Framework 
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In Section 4.1.2 of this thesis, the Synthesized Model of Technical Decision-making 

in Product Development (Figure 37 & Figure 49) is introduced, developed through 

the integration of the unified model with the decision context and the outputs of the 

qualitative research. The development of the conceptual framework throughout the 

research is visualized in Figure 24. 

3.2 Research Design: Mixed Method Strategy 

 

Research design “refers to the way in which a research idea is transformed into a 

research project or plan that can then be carried out in practice by a researcher or 

research team” (Given, 2008, p.761). A researcher must design a set of plans that 

specify the strategies for how data can be gathered and analyzed based on the 

research questions or objectives. The selection of research design must also be 

done carefully, as it is dependent on the nature of the problems, the intended 

audiences, and the issues that are being addressed (Creswell, 2009). 

 

The mixed method strategy combines quantitative and qualitative analyses in 

tandem in order to achieve a greater sum of both approaches (Creswell & Plano 

Clark, 2007), and it is well fitting to the direction of this research. Through the 

combination of both approaches, this research gains an expanded understanding 

of the research problems and addresses the complexity of the interdisciplinary 

topic at hand (Creswell, 2009). Between 2005 and 2009, at least 2524 dissertations 

employed mixed methods in the research design, up from only 3 between 1980 

and 1984 (Haines, 2011). This is an indication that the mixed method is gaining 

momentum as a research method. There are six mixed-method strategies, which 

can be categorized into sequential and concurrent designs  

Table 1). 

 

Table 1: Mixed Method Strategies (Creswell, 2009) 

Concurrent Designs Sequential Designs 

Concurrent Triangulation Strategy Sequential Explanatory Strategy 

Concurrent Embedded Strategy Sequential Exploratory Strategy 

Concurrent Transformative Strategy Sequential Transformative Strategy 

 



90 
 

The sequential exploratory strategy is chosen for this research because of its 

layered approach that allows for the exploration of the decision-making behavior in 

engineering organizations through qualitative research and is supported with 

quantitative analysis to verify the interpretation of the qualitative discoveries. The 

approach taken “involves a first phase of qualitative data collection and analysis, 

followed by a second phase of quantitative data collection and analysis that builds 

on the results of the first qualitative phase” (Creswell, 2009, p. 211). 

 

The literature review, as the preliminary analysis, provides a groundwork to 

understand historical and current research in decision-making topics. This is 

followed by a sequential exploratory mixed-method strategy. Qualitative 

approaches, through expert interviews and content analysis, are used to initially 

explore the organizational decision-making landscape and build a model for further 

quantitative analysis. Quantitative approaches, through survey research and 

statistical analysis, provide a supporting role to test the model for further 

refinement. The detailed research design can be found in (Figure 25) and 

explained in the following paragraphs. 

 

The literature review in this thesis is used for two objectives. Firstly, to understand 

the developments in the field of organizational decision-making while making 

arguments for the needs of the research agenda (O’Leary, 2004). Secondly, to 

gather data to be used to develop a conceptual framework and decision context 

model.  

 

In a thesis, a conceptual framework is crucial as it builds the foundation to chart 

the qualitative and quantitative research processes. The framework in this thesis, 

which is called the Unified Model of Rational and Behavioral Technical Decision-

making (Figure 23), hypothesizes the interrelationships between biases and 

rational analysis in the technical decision-making process. International standards, 

industry norms, and guidelines were analyzed to understand the patterns of 

rational analysis in technical decisions in engineering organizations. Furthermore, 

academic journals were reviewed to explore biases in organizational decision-

making and showed various clusters of biases that exist in the context of technical 

decision-making. The discussion of the bias clusters and their relationships with 
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rational analysis can be found in Chapter 3.1. This information lays the foundation 

for the model of the conceptual framework. 

 

 

Figure 25: Research design 
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Decision-making cannot be studied out of context. The context has to be defined 

upfront so that the research directions are clear for data gathering and analysis. In 

this thesis, the product development process in engineering organizations is 

chosen as the decision context. Product development in the industry is a well-

defined process in which guidelines and norms are prescribed by international 

bodies, trade associations, and organizations. These documents were used as the 

central literature for this activity, with academic journals supplementing the 

analysis. The findings from this activity were used to develop the decision context 

model also referred to as the general model of the design development phase in 

product development (Figure 21). The qualitative research then followed based on 

the critical literature review. 

 

The qualitative research actions are to investigate the descriptive and normative 

decision-making in the industry and to verify the unified model (Figure 23). The 

data were gathered through qualitative interviews with industry experts and 

analyzed using content analysis. The findings from the interviews were used to 

verify and improve the unified model and identify specific biases that exist during 

the technical decision-making process. A Synthesized Model of Technical 

Decision-making in Product Development (Figure 37) was developed by integrating 

the unified model with the decision context and the outputs of the qualitative 

research. The synthesized model is the basis for the subsequent quantitative 

research. 

 

The quantitative research builds on the results of qualitative analysis by expanding 

the synthesized model with numerical analysis. The biases discovered during the 

qualitative research were part of the synthesized model analysis. Survey research 

was done on a population sample to test the existence of the biases in technical 

decision-making process. Based on the results of the survey, statistical analysis 

was used to evaluate the significance of the biases in the model. 
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3.2.1 Population 

 

The population of the study was project team members and stakeholders who take 

part in the decision-making process in product development (Table 2). The 

responsibilities of the commercial stakeholders, represented by project and 

product managers, are to ensure the fulfillment of business needs and adherence 

to financial constraints. Technical team members, such as system engineers and 

subject matter experts, would propose solutions that fulfill the project requirements. 

Each stage in the product development process must go through decision gates or 

milestones to ensure the project meets the business and technical requirements 

and that the risk of proceeding to the next stage is under control (Haskins et al., 

2006). The gate approval is based on the agreement of the decision-makers, i.e., 

suitably qualified experts and involved stakeholders.  

 

Table 2: Research population 

Personnel Management Project Management Technical 

Director Project manager System engineer 

Department manager Program manager Development engineer 

Group leader Product manager Research engineer 

  Subject matter expert 

 

Since it was beyond the means and time frame of this study to gather data from 

the whole population, sampling was required. There are two types of sampling 

methods: nonprobability and probability sampling, which can be further divided into 

sampling sub-types (Babbie, 2010). Probability sampling is done through random 

selection of participants, while participants in non-probability sampling are 

subjectively selected. Since qualitative and quantitative analysis require different 

sampling strategies, the sampling strategies will be discussed in their respective 

sections. 

3.2.2 Qualitative Research 

 

Qualitative research is a scientific method that explores individual and group 

behaviors to understand social and human problems by gathering non-numerical 

data through inquisition and observation (Babbie, 2010; Creswell, 2009). 

Qualitative methods are central to many fields, especially social science, due to 
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their orientation towards behavioral reactions. Behavioral reaction maintains that 

human actions and body language are the result of their interpretation of the social 

world (Given, 2008). Capturing this symbolic interaction is crucial in understanding 

the human decision-making process. Therefore, approaching decision-making 

topics through qualitative research is imperative to grasp the nuances of human 

behavior. 

 

The author’s personal experience in organizational decision-making topics, 

especially within engineering organizations, can be both advantageous and 

disadvantageous to the thesis analysis. On one hand, the experience provides the 

author with the contextual knowledge to explore decision-making in depth, which 

will increase the probability of meaningful analysis. On the other hand, it causes 

the author to analyze the problems through a biased lens which then narrows the 

scope of the research and may mislead the research direction based on the 

author’s predisposed understanding of the topic. Thus, in order to be an impartial 

researcher, it is important to begin the research by exploring the landscape of 

organizational decision-making. Therefore, the objectives of this qualitative 

research, which were derived from the research questions [RQ], are to: 

• Gather information on participants’ understanding of their organization- 

and industry-prescribed product development processes. [RQ1.1] 

• Understand the participants’ approaches to making technical decisions in 

their daily work. [RQ1.2] 

• Observe differences between the participants’ decision-making process 

and their organization’s prescribed process. [RQ1.2] 

• Solicit participants’ biases in making technical decisions. [RQ1.3] 

• Verify the unified model of rational and behavioral technical decision-making 

(Figure 23) in the product development process. 

3.2.2.1 Sampling Method: Non-Probability Purposive Sampling 

 

Small sample sizes are typical in qualitative research since it frequently examines 

a small number of subjects in great detail (Marshall, 1996). To enable a thorough 

examination of the landscape of decision-making processes in engineering firms, 

a small number of participants must be carefully chosen size to reflect the 

population. In light of this, non-probability purposive sampling is used to acquire 
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qualitative data. Non-probability purposive sampling is a sampling method that 

requires a strategic sample selection based on the population that is aligned with 

the objectives of the research (Babbie, 2010; Given, 2008). The sample was 

selected based on the participant demographics: years of experience, type of 

industry, and job position. 

 

Based on the literature, there is no consensus on the minimum required size or the 

method to calculate sample size for qualitative research (Sandelowski, 1995). Data 

saturation and pragmatic considerations have been used as the guiding principles 

in determining the sample size (Francis et al., 2009; Morse, 1995; Vasileiou, 

Barnett, Thorpe, & Young, 2018). Data saturation in purposive sampling can be 

achieved by “selecting only individuals who meet a specific criterion defined on the 

basis of their role in the implementation process” and expanding and narrowing the 

field of view during data collection (Palinkas et al., 2015, p.7).  Data was collected 

until no new information emerged, or, to put it another way, until the data had 

reached its saturation point. For this research, a saturation point was reached with 

15 participants. 

 

3.2.2.2 Research Instrument: Interview 

 

This thesis employed interviews as the main research instrument to collect 

qualitative data. The literature review of data lacks the analytical feedback loop of 

an interview. Since an interview is a dynamic process, an iterative in-depth inquiry 

into specific topics is possible. The data collected can also be interpreted 

objectively because the data source can provide immediate clarification of 

meanings. Therefore, the exploration of organizational decision-making processes 

through the lens of the decision-makers is particularly effective via interviews. 

 

Qualitative interviews are generally conducted using semi-structured and open-

ended questions with the intention of eliciting participants’ views on a particular 

issue or phenomenon (Creswell & Plano Clark, 2007). The interviewer would have 

a plan of inquiry on the specific topics to be covered, but not a rigid set of 

mandatory questions to be asked (Babbie, 2010). The important aspect of a 

qualitative interview is to ensure openness and flexibility of the discussion. The 
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questions asked at the outset of the interview should prompt responses that shape 

the direction of subsequent questions, which allows the interviewer to probe deeper 

into the earlier responses (Babbie, 2010). However, it is important during the 

interview to steer the discussion from going off-tangent from its intended path. This 

can be done by limiting the number of main topics to ensure a smooth and logical 

transition from one topic to another (Rubin & Rubin, 2011). This research adhered 

to the above protocols to ensure quality responses from participants. 

  

Data collection through interviews, surveys, or observations is considered intrusive 

research (Duignan, 2016). Since the subjects are aware that their responses are 

being recorded, the interview process may influence participant behavior and may 

cause a discrepancy between their verbal responses and their actual sentiments. 

The intrusive effects can be reduced by employing audio recording to gather data, 

rather than writing notes, which allows the interviewer to make more eye contact 

with participants (Given, 2008). So, the interviews were audio recorded and then 

transcribed before the data could be used for analysis. However, there was also a 

possibility that interviewees were less open in their responses if they knew their 

exact words were being recorded using audio or video. 

 

3.2.2.2.1 Research Ethics 

 

The interviews were also conducted to ensure the anonymity of the participants 

and the confidentiality of the collected data. Anonymity in qualitative research is 

not only a standard practice but also an ethical issue to be considered (Given, 

2008). Protecting participant identity in any ensuing reports or publications helps 

participants to freely discuss their views on subject matters without any fear of 

repercussion. Participant personal information was not recorded before, during, or 

after the interview. Data collected from participants were treated with the utmost 

confidentiality. Audio recordings and interview transcriptions could not be traced to 

any specific participant and the data will be expunged 6 months after the 

submission of this thesis. The above data collection protocols were strictly adhered 

to demonstrate the confidentiality of participant responses. According to UCL 

Research Ethics Committee (REC), the qualitative research did not require ethical 

approval through the UCL REC as it fell under exemption 4: “Research involving 



97 
 

the use of non-sensitive, completely anonymous educational tests, survey and 

interview procedures when the participants are not defined as "vulnerable”, and 

participation will not induce undue psychological stress or anxiety.” 

3.2.2.2.2 Instrument Development 

 

Qualitative interviews were used to gather data from predefined population 

samples to fulfill the qualitative research actions. Interview questions were devised 

to better understand the decision-making processes of the participants' 

organizations as well as their personal decision-making process, and to verify the 

unified model of technical decision-making (Figure 23) as the conceptual 

framework.  

 

Eight questions were prepared for the interview. The interview structure was 

flexible to adapt to the flow of the questioning, which depended on the dynamics 

of the interview. Therefore, the specific order of questioning was not emphasized, 

and related questions were asked depending on the responses of the participants. 

Additional questions were asked to clarify participants’ responses. Further probing 

was also conducted to uncover new or more in-depth information. The questions 

were open-ended in nature to allow participants the liberty to elaborate and dwell 

on their responses. It is important to supplement the questions with sufficient 

context to provide clarity to the participants (Given, 2008). So, the researcher 

furnished participants with adequate information to set the scenario. 

  

The questions were divided into two sections: preliminary and in-depth. Preliminary 

questions aimed at understanding participant’s roles in their organization and their 

organizational decision-making processes. In-depth questions probed deeper into 

participants’ thoughts by inquiring about their approaches to technical decision-

making and identifying any cognitive biases that occur during the decision-making 

process. 

 

Preliminary questions: 

 

• What kind of technical decisions do you make on a daily basis? 
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The first question sets the tone for the rest of the interview. Participants were asked 

to provide a few examples of technical decisions they made on a daily basis. 

Depending on their answer, the interview structure was adapted accordingly, and 

the ensuing questions would be paraphrased to provide context based on their job 

functions. 

• Does your organization prescribe technical decision-making 

methodologies or guidelines?  

• How do you, personally, make technical decisions? 

 

The next questions delve into the specifics of decision-making processes 

according to the participants’ perspectives. The participants were questioned about 

whether their organization mandated or recommended a structured approach to 

technical decision-making, and whether they provided supporting processes on the 

matter. Additionally, participants’ views on the value and efficacy of these 

processes were elicited. 

 

The participants were also asked to describe their decision-making preferences. 

Since technical processes in industry are dominated by rational analysis and rule-

following behaviors, as discussed in Chapter 2.5.1, deviations between the 

participant’s decision-making process and the one specified by their organization 

were documented. Signs of the propensity of cognitive and social biases were 

investigated further during the in-depth questioning. 

 

In-depth Questions: 

 

• How do you decide if a decision has to be made using an analytical 

process or personal judgment? 

 

In-depth questions were asked next to probe the participants’ bias tendencies in 

decision-making. The first in-depth question examined the participants’ reasoning 

for choosing between an analytical approach or trusting their instincts to make 

technical decisions. The selection criteria and the decision scenarios were 

recorded. The next questions were, 
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• If an analytical process is applied to help decision-making, how do 

you choose between the alternatives?  

• How do you evaluate the information that is provided to make specific 

technical decisions?   

• If a decision has been made and new information is provided 

afterward, what do you do?   

 

These questions attempted to verify the existence of information processing, 

alternative selection, and decision revision group biases in the technical decision-

making process as proposed in the unified model. These open-ended questions 

were structured in a way that participants could freely express themselves without 

feeling compelled to conform to socially acceptable answers. This is especially 

important to ensure that they were not aware of their own biases and thus would 

respond to the questions differently. The nuances in their responses were 

scrutinized to detect hints of biases in their decision-making processes. When 

biases were detected, additional questions would be asked to understand the 

reasoning behind their responses. 

 

3.2.2.2.3 Data Gathering Methods 

 

The interviews, as a data gathering method, were conducted in two ways: through 

personal and online interviews. In place of the personal interview, a 1-hour 

appointment was agreed upon with the participant at a predetermined time, date, 

and platform. A Skype or Microsoft Teams meeting invitation was sent to 

participants to set up the online interview appointment.  

 

During the interview, participants were given a participant information sheet that 

explained the purpose of the study, the procedures of the interview, and 

participants’ right to data privacy and anonymity of their participation (Appendix A). 

The interviewer had a set of interview guides (Appendix B), which contained 

interview objectives, protocols, and questions. Audio recording was used during 

the interviews to record the conversation with the consent of the participants. At no 

point during the interview were notes taken to maintain eye contact with the 

participants and to ensure that their responses were carefully listened to identify 

any underlying messages and follow-up questions that may be appropriate. 
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Following the interview, the audio recordings were transcribed using an automated 

transcription service. The transcriptions were then checked for grammatical errors 

and reviewed for sentence fluency. Both audio recordings and transcripts 

contained no personal information to ensure participant anonymity and data 

privacy. The final transcripts were then ready to be analyzed. 

 

Following the interview, the audio recordings were transcribed using an automated 

transcription service. The transcriptions were then checked for grammatical errors 

and reviewed for sentence fluency. Both audio recordings and transcripts contain 

no personal information to ensure participant anonymity and data privacy. The final 

transcripts were then ready to be analyzed. 

 

3.2.2.3  Data Analysis: Content Analysis 

 

Content analysis is a qualitative research method that systematically analyzes the 

message characteristics of the intended content (Neuendorf, 2011). The analysis 

is widely used to analyze data from records, documents, interview responses, 

open-ended questionnaires, and other media (Babbie, 2010; Brough, 2018; Given, 

2008). Data from the interview were analyzed using content analysis. There are 

three main steps of content analysis: definition of condensed meaning unit, 

classification process through coding, and identification of themes and patterns 

(Elo & Kyngäs, 2008; Hsieh & Shannon, 2005). 
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Figure 26: Content analysis process steps (Bengtsson, 2016) 

Condensed meaning unit is the basic unit of text, where the content can be 

coded, categorized, and analyzed. The unit can be as broad as a whole book or 

as narrow as a paragraph or even a word in the documents (Babbie, 2010). 

Therefore, it is important to carefully choose the meaning unit, as it could render 

the analysis unmanageable or fragmented due to its inappropriate size (Elo et al., 

2014). The interview is divided into 8 sections based on the prepared questions. 

The participants’ responses were analyzed in each section and broken down into 

multiple chunks of manageable units that became the foundation of subsequent 

analysis. 

 

Coding is the central theme in content analysis. It transforms raw data into a 

standardized form using a classification technique, to be quantified and analyzed 

(Babbie, 2010; Given, 2008). There are two types of content specified in content 

analysis: manifest and latent content. Manifest content is the surface content that 

is directly interpretable by the readers; latent content, on the other hand, is the 

underlying meaning of a text (Babbie, 2010). Different content types require 

different data analysis strategies, as shown in Figure 26. In manifest analysis, the 

codes are analyzed by utilizing the words found in the documents or by staying as 
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near to the words as possible. Qualitative interviews yield latent content. Therefore, 

the author has to interpret the underlying meaning of the interview transcripts 

(Bengtsson, 2016) and derive codes with reference to the objectives of this 

analysis. 

 

Developing themes is the process of summarizing the codes and placing them 

into categories or themes (Erlingsson & Brysiewicz, 2017). Themes of latent 

content are higher-level abstractions of coded data, whereas in manifest content, 

the themes express the data at an interpretative level. 

 

Example 1: Condensed Meaning Unit 

 

Condensed meaning units (Example 1) derived from all interviews were collected in 

one location to be coded and classified (Example 2). The meaning units were 

separated based on their related questions to provide context for the responses. 

Then, for each condensed meaning unit, a code or set of keywords was assigned. 

After all interviews had been transcribed, analyzed, and coded, the codes were 

reviewed for consistency, and codes with similar meanings were combined to 

reduce overall code variation.  
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Example 2: Coding 

 

Finally, the codes were analyzed to find the overarching themes. They were 

compiled, combined, and generalized to create higher-level forms of abstraction 

(Example 3). The full content analysis can be found in Appendix C. 

 

1 Technical decision-making is an overwhelmingly group effort. Group is involved 
to gather information, make decision and reevaluate previously made decision 

2 Not all organizations prescribe decision-making guidelines; when they do, the 
guidelines are normally not properly documented, and the level of detail is 
inconsistent 

Example 3: Themes 

  

Questions Part. Condensed Meaning Unit Codes Theme

A
Try to understand factors to make decisions, through gathering 

feedback from many people

Data gathering from 

experts
6

B Full DMP method is not followed
analytical process is not 

used fully
4

C
Personal preference is using rational analysis, by systematically

understanding the problem and use DRBFM

analytical process is 

preferred
4

C Engage the team to make decision group decision making 1

D
Any changes must go through impact analysis to check if the decision 

will impact technically or commercially

analytical process is 

preferred
4

E Group decision-making. Teams give inputs, he makes decision group decision making 1

F Personal DMP is using analytical approach, decision matrix.
analytical process is 

preferred
4

G
Checklist is the main source of DMP, but personal experience, based 

on intuition, is also used.

DM procedures are not 

always followed
11

H

Systematically ruling out options based on personal judgement. If the 

leftover options are unclear to choose, cognitive trade-off table is 

being used.

Analytical + personal 

judgement: cognitive 

trade-off

4

H
Trade-off criterias are based on technical, financial and time aspects: 

If no best solution can be found, the next best one is chosen

cognitive trade-off is 

based on weighted 

criterias

10

I
Technical decisions, with suppliers, are normally made without 

involvement of management if agreement can be reached

management 

involvement for critical 

decision

13

I
Technical decisions are evidence-based, .e.g: analysis, test, expert 

judgement, in the organization 

technical decision is 

based on evidence
6
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3.2.3 Quantitative Research 

 

Quantitative research is a numerical approach to empirical analysis, that is in 

contrast to qualitative type of research (Given, 2008). It focuses on systematic 

measurement of variables, understanding the causal and correlational relationship 

between the variables, and testing or generating hypotheses. It is a valuable tool 

to answer some of the research questions posed in this thesis.  

 

As discussed earlier, this thesis employed a mixed-method strategy, specifically 

the sequential exploratory strategy (see Section 3.1). The layered approach of the 

strategy has the quantitative research built on the results of qualitative analysis by 

expanding the synthesized model (Figure 37) with numerical analysis, where the 

data were gathered through a survey and analyzed using statistical analysis tools. 

The qualitative analysis earlier yielded key points that were used in the quantitative 

research. 

 

Based on the sequential exploratory strategy, the quantitative research component 

of this thesis builds on qualitative research by analyzing the impact of biases on 

the objectivity of technical decision-making through an empirical study. The study 

employed a survey to gather data that was then analyzed using Exploratory Data 

Analysis. The objectives of this quantitative research, which were based on the 

research questions [RQ], are: 

• To test the significance level of the identified biases in the technical 

decision-making process [RQ1.4] 

• To examine relationships between the identified biases and decision 

analysis in the technical decision-making process [RQ1.4] 

3.2.3.1 Sampling Method: Probability Stratification Sampling 

 

In quantitative research, samples are selected from the population to provide its 

statistical characteristics. Some of the statistical outputs are the mean, variance, 

and correlation of variables of the population (Singh, 2007). In some cases, a 

probability sampling error can be introduced into the analysis due to an ineffective 

population sampling strategy and this causes the sample to be unrepresentative of 

its population. Probability sampling error depends on three factors: sample size, 
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population diversity, and confidence level (Babbie, 2010).  One of the techniques 

to reduce the sampling error is stratifying or dividing the population into groups that 

are relevant to the objective of the overall research. This is to reduce the probability 

of any one of the groups being left out and becoming underrepresented in the 

sample (Given, 2008). This technique is called probability stratified sampling. 

 

In this study, the population was stratified into two levels, industry and organization 

roles and positions. The industries chosen were all focused on safety-critical 

systems, such as space, automotive, and medical devices, while the organizational 

roles and positions were project management, personnel management, and 

engineering. This selection ensures that various roles and industries are 

represented in the technical decision-making process. 

 

3.2.3.2 Definition of Variables 

 

In quantitative research, a variable is a vital concept. A variable is a measurable 

attribute of an individual that varies among the samples under study (Creswell & 

Poth, 2007). There are two main types of variables, independent and dependent, 

in which “an experiment examines the effect of an independent variable on a 

dependent variable” (Babbie, 2010, p. 232). Demographic characteristics of the 

population can have varying effects on the biases and risk appetite level during the 

technical decision-making process. The research variables were as follows: 

 

Independent variables: years of experience, position, industry 

 

Dependent variables: information processing bias cluster [individual bias: 

confirmation bias, ingroup bias], alternative selection bias cluster [subset: illusion 

of validity bias], decision revision bias cluster [subset: escalation of commitment, 

groupthink], risk appetite 

 

Each bias cluster comprises one or two individual biases where the quantitative 

research examined both the bias cluster and the individual biases. Since this thesis 

hypothesizes the existence of multiple bias clusters in relation to decision analysis, 

the focus was on bias cluster analysis. Based on qualitative research analysis, risk 

plays a huge role in the technical decision-making process. Therefore, the 
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quantitative research also looks into the effect of risk appetite of decision-makers 

in the technical decision-making process. 

 

3.2.3.3 Research Instrument: Survey 

 

A survey is a systematic research method to gather data from individuals, 

organizations, or other entities through questionnaires, focus groups, or 

observations (Given, 2008). Data analyzed from the survey can be used to test the 

significance of the identified biases and examine the relationships between 

variables. Survey design can be generally described using four aspects: the 

population and sample, method of survey, instrument design, and method of 

delivery (Creswell, 2009; Gorard, 2003).  

 

In asking survey questions, open-ended and closed-ended options are available 

depending on the research actions. Close-ended questions can be further grouped 

into two types of questions: dichotomous and multiple-response. Dichotomous 

questions have two possible answers, such as true/false or agree/disagree, while 

multiple-response questions have three or more (Gorard, 2003). In many cases, 

participants generally respond more thoughtfully to open-ended questions, but 

ones that are closed-ended have higher consistency of replies and are easier to 

comprehend and analyze (Babbie, 2010). In this thesis, open-ended questions 

were already used in the interviews to explore the landscape of technical decision-

making. Closed-ended multiple-response questions were utilized where 

respondents were asked to select an answer from a predetermined list. 

 

3.2.3.3.1 Research Ethics 

 

The survey, employed as a data gathering method, was conducted using two 

approaches: an online questionnaire (web-based survey tool) and an offline 

questionnaire (electronic copy of the questionnaire). Participants' personal 

information was not recorded at any stage—before, during, or after the survey. 

Data collected from participants were treated with the utmost confidentiality. 

Survey responses could not be traced back to any specific participant, and the data 

will be expunged six months after the submission of this thesis. These data 
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collection protocols were strictly followed to ensure the confidentiality of participant 

responses. According to UCL Research Ethics Committee (REC), the quantitative 

research also did not require ethical approval through the UCL REC as it fell under 

exemption 4: “Research involving the use of non-sensitive, completely anonymous 

educational tests, survey and interview procedures when the participants are not 

defined as "vulnerable”, and participation will not induce undue psychological 

stress or anxiety.”  

3.2.3.3.2 Instrument Development 

 

 

Figure 27: Questionnaire Flow 

 

The questionnaires were developed to measure the bias inclination of participants 

during the technical decision-making process. In the scenario-based multiple-

response questionnaire, participants were presented with a scenario that simulates 

a product development process in the industry. The scenario depicts a set of real-

life decision-making situations that test the biases and risk appetites of the 

participants subtly. The questions were created in such a way that participants 

would not be aware of their own biases, while the scenarios were developed with 
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examples and processes that were familiar to the participants. The questionnaire 

had four questions on demography: years of experience, role, industry, and 

organization, followed by the main questions related to biases and risk appetite. 

Figure 27 shows the flow of the questions. The full questionnaire can be found in 

Appendix E. 

 

The questionnaire structure is mostly linear except for two branching questions 

(S1 and S2) after Q5 and Q9 respectively. The questionnaire is split into three 

parts: design development, concept selection, and design verification. In total, 15 

main questions were linked to each other to form an overarching scenario of a 

product development process. 

 

The first part of the questionnaire, Q1 to Q5, is about the design development 

phase where the participants were required to make technical decisions involving 

audit reports, supplier discussions, and design proposals. The first four questions 

test information processing biases, focusing on ingroup bias and confirmation bias, 

while the fifth question evaluates the participant’s risk appetite. 

  

The second part was on concept selection. The participants were presented with 

two scenarios on the results of two decision analyses (S1 and S2). In Q6 and Q10, 

participants were given the choice to make the final decision for the two scenarios. 

At this point, the questionnaire would branch into different questions depending on 

their decisions during the concept selections. They would either be directed to Q7 

(for S1) and Q11 (for S2) to test their cognitive bias inclination (i.e.: illusion of 

validity), or to Q9 (for S1) and Q13 (for S2) to assess their social bias tendency 

(i.e.: groupthink). 

 

The last part of the questionnaire sets the scenarios for the final stage of product 

development: design verification. The participants were provided with another set 

of information that is critical to the success of a project, which made them 

reconsider their previously made decisions. Their escalation of commitment bias 

was tested, at Q14 and Q15, to understand if rationality would prevail or collapse 

under these stressful situations. In summary, each of the 15 scenario-based 

questions gauges the participants' bias tendencies and their risk appetite. 
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In each scenario-based question, participants were presented with a situation that 

simulated a product development process in their industry and were asked to 

determine the next course of action. As each scenario is designed to test a specific 

bias, there is no right or wrong answer. The participants would have to rely on their 

knowledge, experience, and decision-making inclination. For example, question 4, 

see the example below, tests the participant’s ingroup bias. The participants were 

presented with a dilemma of whether or not to accept a supplier’s proposal as is or 

to trust the team’s feedback to challenge the proposal. In some questions, the 

participants would also have access to additional information when needed. 

Rational decision-makers strive for completeness of information; their response to 

the additional information sheds some insights into their decision-making process. 

Supplier B proposes a design that uses highly reliable components to improve 

system fault tolerance and implements a fail-operational mechanism when failure 

occurs. This combination of safety mechanisms ensures lower risk probability 

and hazard consequences are under control. Supplier B promises that the 

control system development can be completed within 5 months. Upon discussion 

with your team, they believe that the timeline is ambitious and thus do not agree 

with the supplier's assessment. They argue that the design proposed by the 

supplier requires a great deal of development effort due to its complexity. 

Furthermore, many suppliers in previous projects had overpromised but under-

delivered in terms of development time. Your team proposes to add a 2-week 

buffer to the supplier's development time.  

Do you accept your team's analysis regarding the feasibility of Supplier B’s 

timeline? 

Example 4: Question 4’s Scenario 

 

All questions have responses, and each answer corresponds to varying degrees 

of bias inclination. The participants would not rate their answer by selecting a 

response using an attitudinal rating scale, for example: strongly agree to strongly 

disagree or -2 to +2. The attitudinal rating scale measures attitudes and opinions, 

it can be affected by participants’ moods which can vary depending on many 

factors. Therefore, the participant’s answer to the same question may change over 

time (Noh, 2011). Furthermore, the attitudinal rating scale is arbitrary because “it 

is not known where a given score locates an individual on the underlying 

psychological dimension”  (Blanton & Jaccard, 2006, pg. 28). It cannot be 
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objectively inferred that Participant A’s rating of +2 is equivalent to Participant B’s 

rating of +2 because both participants may have different scale of psychological 

dimensions.  

 

As explained in the literature review, boundedly-rational humans lack a stable 

system of preference and thus their preferences can be volatile. To address this 

limitation, participants did not select an option using the conventional rating scale. 

Instead, they chose a response that had been assigned a specific, yet undisclosed, 

bias strength. Each response provided a potential solution to the decision scenario, 

with the bias strength of each response being predetermined by the author. 

Although the participants' biases were subjectively assessed, using the 

researcher's bias evaluation as a common reference point allowed for a more 

objective-oriented analysis.  

 

A strong bias indicates that the participant clearly exhibits the bias under 

examination. In contrast, a weak bias suggests a minimal presence of bias, albeit 

not its complete absence. A somewhat strong bias signifies that the participant 

displays the bias in a noticeable yet moderated manner, suggesting that some level 

of objectivity is considered in their otherwise bias-influenced decision-making 

process. Conversely, when a participant is assessed as showing somewhat weak 

bias, it suggests a tendency towards impartiality, though bias is still present. In 

such cases, the participant is predominantly objective, yet their bias may still 

impact their cognitive reasoning. The explanation of the score of bias strength is 

as follows: 

 

Bias strength Definition 

Strong Participant clearly demonstrates bias 

Somewhat strong Participant demonstrates noticeable bias with mitigating factors 

Somewhat weak Participant demonstrates subtle bias, with a lean toward impartiality. 

Weak Participant minimally demonstrates bias 

 

Table 3: Bias strength definitions 

 

In the case of Question 4 (Example 5), if participants chose option A, this indicates 

a strong ingroup bias, reflecting a preference for team decision. Conversely, 

selecting option D suggests a weak ingroup bias, as it demonstrates openness to 
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a supplier’s proposal over team consensus. Option B reveals a somewhat strong 

ingroup bias, demonstrated by a cautious acceptance of their group’s proposal by 

which participants reviewed the supplier’s proposal with the group. Lastly, opting 

for Answer C implies a somewhat weak ingroup bias, as it indicates neither 

rejection of the group’s proposal nor full endorsement, but a preference for 

impartiality by requiring justification from the supplier. 

 

However, in some cases, participants may be compelled to make a choice that 

they would not have made otherwise due to a lack of available options. This non-

exhaustive response set may introduce bias of its own (Gorard, 2003). Therefore, 

to address this, participants were given an option where they could write their own 

responses as shown in Example 5. Since each question only tests a specific bias, 

the responses only reflect the participants’ susceptibility to that particular bias. 

Other biases might also be at work when the participants chose a specific answer, 

and this situation cannot be neglected. 

 

Answer Bias strength 

A.  Request Supplier B to add 2 weeks buffer to their timeline  Strong Ingroup Bias 

B.  Review the supplier's work breakdown structure and 

development schedule with your team 

Somewhat strong Ingroup 

Bias 

C. Require Supplier B to justify their proposal Somewhat weak Ingroup Bias 

D.  Accept the supplier’s proposed development time Weak Ingroup Bias 

E. Other (please comment):   
Example 5: Question 4's Answers 

 

Scales of measurement need to be clearly defined during research instrument 

development in order to ensure the gathered data can be analyzed to achieve the 

research actions. The questionnaire employs nominal, ordinal, and interval scales 

for different sets of questions, depending on the type of analysis required. 

Demographic questions are independent variables using a nominal scale, for 

position and industry, and an ordinal scale for work experience. Participant 

demographics will be used to analyze the dependent variables by providing 

multiple viewpoints of the same data set. The scenario-based questions will require 

A different approach to measurement scales. 
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The scenario-based questions use an attitudinal scale in order to bring objectivity 

into subjective concepts, as it quantifies abstract behavior and attitudes (Singh, 

2007). The majority of the questions use unipolar 4-point Likert scales. The Likert 

scale was developed to measure the attitudinal scale by allowing mathematical 

operation on the summated responses (Likert, 1932). The unipolar 4-point scale is 

an asymmetrical scale with four interval points as follows: strong, somewhat strong, 

somewhat weak, and weak, with no neutral point. The asymmetricity allows for the 

measurement of the presence of a particular bias. Meanwhile, a neutral scale is 

not used because the total absence of a specific bias cannot be objectively 

guaranteed. Likert scale data can be analyzed using an interval measurement 

scale by calculating composite (summated or mean) scores of similar Likert-type 

questions (Clason & Dormody, 1994; Likert, 1932). There is no consensus on the 

minimum number of questions required; it can be as few as two or three, but four 

or more is generally recommended to reduce measurement error (Albaum, 1997; 

Diamantopoulos et al., 2012; Hinkin, 1995). On the other hand, analyzing 

individual, not composite, Likert-type questions shall be done using an ordinal 

measurement scale (Clason & Dormody, 1994). Therefore, the measurement of 

scales to be used in the quantitative research can be summarized as follows: 

 

• Nominal: Demographics  

• Ordinal: Demographics, Risk appetite, Individual bias 

• Interval: Overall bias, Bias cluster, Bias type, Bias in risky situation 

 

Reliability and validity of the questionnaire need to be established in order to 

ensure consistency of measurement and that it truly measures what it was 

designed to measure (Given, 2008). This research uses the multiple forms 

technique to increase its reliability by testing the same bias twice in different forms 

(Singh, 2007). Each bias would be tested in two separate questions, using different 

sets of mini-scenarios, at different points along the questionnaire. The 

questionnaire was also subjected to content validity. Content validity ensures that 

the measure accurately reflects the content of the concept under consideration. 

This was accomplished by asking two subject matter experts whether the survey 

questionnaire accurately measured the idea intended to be measured (Singh, 

2007). The two domain experts in systems engineering and social science 

possessed in-depth knowledge of organizational decision-making and engineering 



113 
 

management. They reviewed the structure of the questionnaire and provided 

critical feedback on how the decision scenarios could be utilized to measure 

participants' biases. This includes the formulation of Table 3 and Table 4 and its 

subsequent transformation into Table 9. In addition, the questionnaire was pre-

tested in a pilot study with a sample of two persons who fulfilled the target group 

demographics. Their responses to each question and feedback regarding the 

clarity, flow, and structure of the questionnaire were taken into consideration and 

the questionnaire was duly updated. 

 

3.2.3.3.3 Data Gathering Method 

 

A survey can be administered through face-to-face delivery, telephone calls, mail-

based or online-based self-administration (Babbie, 2010; Gorard, 2003). For the 

study, the questionnaires were administered using the web-based survey tool, 

qpointsurvey.com, and survey invitations were distributed through emails and 

professional social networks (i.e.: LinkedIn). In cases where there were technical 

problems with the web-based survey tool, the respondents were sent a soft copy 

of the questionnaire. Both soft-copy and web-based survey outputs were compiled 

into one dataset to be analyzed together. 

 

Respondents were selected based on the previously defined population 

demographics (see Section 3.2.1). Responses from respondents who did not fit 

into the demographics were discarded during data cleaning. Since the 

demographics of respondents were specific to a particular group, purpose 

sampling was done. To achieve a target of 90 respondents, the author requested 

contacts from his current and previous employments, particularly those in the 

medical device and automotive industries, to be the respondents. Other 

respondents with the same background were also approached directly via LinkedIn 

or through UCLse connections with the Mullard Space Science Laboratory and 

European Space Agency.  

3.2.3.4 Data Preparation 

 

Data preparation is an important step in statistical analysis to filter out noisy or 

incomplete data, improve the efficiency of data selection, and increase the quality 
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of the final data (Zhang, Zhang, & Yang, 2003). This research utilized a two-stage 

approach in data preparation: data cleaning and data transformation as follows: 

 

 

Figure 28: Data preparation process 

 

The purpose of data cleaning is to eliminate obvious errors, such as missing 

values, skips, or inconsistent entries using cleaning techniques such as range 

checks, missing values, and data checks (Singh, 2007). Range checks are 

applicable for continuous data such as height and weight, and the gathered data 

should be within a specified range. In the case of this research questionnaire, the 

respondents were given discrete options, so the range check was not necessary. 

For example, in the questionnaire, respondents were given 4 numerical discrete 

options (Figure 29) on work experience and they were required to pick one option.  

 

 

Figure 29: Non-continuous categorical variable 

 

Missing values in questionnaire datasets are common, and these can be attributed 

to many factors such as systemic error in administrating questions or respondents 

declining to respond to questions (Singh, 2007). Checking the missing values is 

important because incomplete data may skew the results of the analysis. 
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Therefore, the missing data needs to be dealt with by either deleting or suggesting 

a new value in lieu of the data.  

 

Data can be deleted systematically using list-wise deletion or pair-wise deletion 

techniques (Singh, 2007). In list-wise deletion, a case that has missing data will be 

deleted completely. This not only reduces the sample size available for statistical 

analysis but also may systematically remove a certain group of correspondents. 

(Hair, Sarstedt, Ringle, & Mena, 2012; Treiman, 2009). Therefore, instead of 

dropping the whole case, pair-wise deletion preserves the available data by 

evaluating all cases in which the variables of interest are present and thus keeps 

the sample size constant. In this deletion method, the statistical analysis uses all 

available cases even when some of them may contain missing data. However, the 

analysis cannot include a case when it has a missing value of a particular variable, 

but it can still use the case when analyzing other variables with non-missing values. 

The disadvantages of this method is that the different variables may yield different 

sample sizes and thus, can bias the results (Hair, Hult, Ringle, & Sarstedt, 2016; 

Singh, 2007). 

 

Missing data can also be imputed with new values. Imputation is the process of 

replacing missing values with estimated values using mathematical and statistical 

models (Marsh, 1998). There are multiple imputation techniques available, such as 

mean substitution, regression analysis, Maximum Likelihood Estimation (MLE), 

Multiple Imputation (MI), and Hotdeck method. MLE is the chosen technique in this 

research because of its superior method due to its accuracy over MI especially for 

small sample size and non-normal data, and its performance over regression 

analysis (Shin, Davison, & Long, 2016; Singh, 2007).  

 

Out of 131 questionnaires sent out to potential respondents, 89 respondents fully 

completed the questionnaire, 7 partially completed it and 35 of the responses were 

considered incomplete. The main reasons for the incompleteness were lack of time 

and failure of internet connection. Therefore, different missing data treatment 

strategies were used for the different levels of questionnaire completion, as follows: 

• Complete: No missing data, no further action 

• Partially complete: Data imputation using Maximum Likelihood Estimation 

• Incomplete: Data deletion using List-wise Deletion 
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Figure 30: Questionnaire completion rate 

 

 

Missing data can be classified as Missing Completely At Random (MCAR) when 

the missing variables are independent of the values of any other variables in the 

dataset (Treiman, 2009), which is the case for the collected data. So list-wise 

deletion, as the selected method for data deletion, is suitable for the missing data 

(van Buuren, 2012). Deleting 35 cases reduces the sample size significantly. 

However, the decision not to impute the data for the incomplete cases was to avoid 

conflating the data with artificial values that would reduce the value of the analysis. 

The next step in data cleaning was to impute the remaining partially completed 

data with new values. 

 

Maximum Likelihood Estimation is a method that estimates unknown parameters 

of an observed statistical model, by finding parameter values that maximize 

likelihood to fit into the observed data (Treiman, 2009). Each case with missing 

data was grouped according to its relevant demographic group (i.e.: work 

experience and position) before the MLE process was executed. This was to 

ensure the estimated new value fitted the demographic distribution curve. Using 

one of the SPSS “missing variable analysis” features, Expectation Maximization, 7 

cases with missing data were populated with statistically estimated new values. 

Once data cleaning was complete, the total usable cases were 96 and the data 

was transformed to fit the selected statistical tools requirements. 

 

Data transformation establishes functional forms between variables and converts 

the data from the original format into the required format of the target application 
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(Fink, 2009; Miller, 2017), which was Python-based EDA. Since the target 

application accepts numerical values, raw data from the questionnaire must first 

be converted from textual data to a quantifiable form. As each response 

corresponds to a specific bias strength, the response is replaced with a numerical 

value as per the Likert scale (Table 4). If respondents provided their opinions by 

opting for Option E, the author would assess the answer, determine the bias 

strengths individually, and assign its corresponding numerical value. 

 

Table 4: Data conversion 

Responses Bias strength Numerical value 

A.  Predefined  Strong 4 

B.  Predefined  Somewhat strong 3 

C.  Predefined  Somewhat weak 2 

D.  Predefined  Weak 1 

E.  User input  To be determined  

 

The next step of data transformation is to establish functional forms between 

variables based on the selected statistical methods. With this in mind, a data 

structure (Figure 31) was created to establish the relationship between latent 

variables and measured variables from the questionnaire. Latent variables such as 

individual bias, bias cluster, bias type, and overall bias variables are direct and 

indirect composite scores of the measured variables from the questionnaire, as per 

Figure 31. On the other hand, demographic and risk averseness variables use the 

values directly from their corresponding measured variables. 
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Figure 31: Questionnaire Variable Data Structure 

 

3.2.3.5 Data Analysis: Exploratory Data Analysis 

 

Exploratory Data Analysis (EDA),  established by John Tukey in his seminal work 

in 1977, explores data for distribution and anomalies by visualizing the data 

through graphical representation and numerical means (Tukey, 1977). The goals 

of the analysis are not to confirm hypotheses but to understand the dataset, 

recognize patterns and potential relationships between variables, or formulate 

hypotheses (Fuentes, 2018). In research, graphical EDA uses various plots to 

explore the data in order to identify relationships or patterns between the variables. 

Understanding types of variables is crucial in selecting the best graphical EDA 

techniques and corresponding statistical tests.  
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Nominal, ordinal, and interval data require different statistical analyses. Participant 

demographics are independent variables and made up of nominal and ordinal data, 

while dependent variables are composite data of four or more similar Likert-type 

questions that can be treated as interval data (Figure 31). These data can be 

analyzed with univariate analysis using central tendency and dispersion analysis 

or multivariate analysis using regression analysis or factor analysis (Fornell, 1985; 

O’Leary, 2004). Four plot types were used to explore the data using graphical EDA: 

histogram, count plot, box plot, and scatter plot.  

 

A histogram (Figure 32) consists of multiple bars that represent the frequency (or 

count) of a range of values. Histogram plots visualize the distribution type of the 

dataset, identifying whether it is normal, beta, exponential, or multi-modal. 

Understanding the distribution type of a dataset is important when selecting an 

appropriate statistical test. This plot is typically employed in univariate analysis; 

using it to compare two or more variables in a multivariate analysis can be 

problematic because overlapping multiple plots in the same graph can make 

interpreting the data challenging. 

 

 

  

 

Figure 32: Histogram 

 

A count plot (Figure 33) is similar to the histogram as it shows the frequency of 

observations in each bin. However, the count plot focuses on categorical variables, 

whereas the histogram with numerical variables. This plot can be used in univariate 

and multivariate analysis to compare different clusters across different variables.  
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Figure 33: Count plot 

 

A box plot (Figure 34) provides different perspectives of the same dataset. The box 

plot denotes the distribution of the data by specifying the maximum and minimum 

value and interquartile range at the 25th and 75th percentile. It also shows median 

information and potential unusual observations, or outliers, in the dataset. 

However, box plots can only show the skewness of a data distribution, but not the 

type of the distribution. In a multivariate data analysis, categorical and numerical 

variables can be easily compared using a box plot as the plots are shown side by 

side in the graph as opposed to the overlapping bars in a histogram. 

 

 

Figure 34: Box plot 

 

A violin plot (Figure 35) is largely similar to the box plot in terms of data presentation. 

However, it better represents the data distribution by visualizing the probability 

density, which is calculated using kernel density estimation. Kernel Density 

Estimation (KDE) estimates data point distribution without making any 

assumptions about the underlying distribution. 

 



121 
 

 

Figure 35: Violin plot 

 

A scatter plot (Figure 36) uses dots to represent the values of two numerical 

variables. It is made up of two axes: a horizontal axis with the measured value of 

one variable and a vertical axis with the measurement value of the other. The 

purpose of a scatter plot is to show the relationship between two or more variables. 

Therefore, in multivariate data analysis, the plot can visually suggest various types 

of correlations between numerical variables. However, it cannot show the 

frequency of a specific value in the dataset.  

 

 

 

 

Figure 36: Scatter plot 

 

 

So, graphical EDA can visually demonstrate relationships or patterns between the 

variables, but the interpretation of the graphs is subjected to human biases and 

errors. Therefore, to address this shortcoming, statistical analysis was used to 

determine objectively the significance of the results. 
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Statistical analysis can be divided into two types: association (correlation and 

regression) and comparison (Singh, 2007). The purpose of a correlation analysis 

is to understand the strength of the relationship between variables, while a 

regression analysis identifies cause and effect, or the strength of the relationship 

(Treiman, 2009). Comparison analysis, on the other hand, measures the difference 

of means or medians between variables (Singh, 2007). A hypothesis can be proven 

through the significance of the statistical analysis. The null hypothesis is rejected 

if the calculated p-value is less than the alpha value, which is conventionally 

accepted as 0.05 (Di Leo & Sardanelli, 2020). A value of α = 0.05, also known as 

the significance level, “implies that the null hypothesis is rejected 5 % of the time 

when it is in fact true” (National Institute of Standards and Technology, n.d.), where 

a result is deemed statistically significant based on the collected samples if the p-

value < 0.05.  

 

In order to select the appropriate statistical tests for variables under investigation, 

the sample parameters, such as normality, variable type (continuous or 

categorical), number of samples, and dependency between the groups, should first 

be identified (Singh, 2007). Table 5 guides the selection of comparison statistical 

methods. Based on quantitative research actions and dataset characteristics, One-

way ANOVA, Unpaired T-test, Wilcoxon Signed Rank, and Pearson Correlation 

tests were used to test the statistical significance of the dataset.  

 

 

Table 5: Types of statistical tests (Singh, 2007) 

 

The normality of the sample data distribution must first be determined as different 

distributions require a different set of tests. The Shapiro-Wilk Test for Normality 

determines the normality of a variable distribution, with the null hypothesis being 
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that a dataset is normally distributed (Shapiro & Wilk, 1965). The test demonstrates 

normality either from the sample skewness, kurtosis, or both (Althouse, Ware, & 

Ferron, 1998). A sample is deemed to be not normally distributed if the null 

hypothesis is rejected, and thus requires non-parametric tests; Otherwise, 

parametric tests are required.  

 

The Two-tailed Unpaired T-test is used to compare two normally distributed 

categorical variables that are independent of each other (Herzog, Francis, & 

Clarke, 2019). The null hypothesis for this test is that “means for the two 

observations are equal”. One-way ANOVA is largely similar to the Unpaired T-test 

but is used when there are three or more variables (Herzog et al., 2019). Similarly, 

the null hypothesis is that “means for the three and more observations are equal”. 

The Unpaired T-test is suitable for normally distributed data, while the Mann-

Whitney test is used for non-normally distributed data. The main difference 

between the Unpaired T-test and the Mann-Whitney test is that the latter doesn’t 

make any assumptions about the type of the distributions of the two variables 

(Singh, 2007). The Wilcoxon Signed Rank test is also used in this thesis. It is used 

to compare two non-parametric categorical variables of the same subjects. The 

null hypothesis for these three tests is that “the difference score between the two 

population means is zero”. For all of these tests, if the p-value is less than alpha, 

then the null hypothesis can be rejected.  

 

In correlation testing, Pearson’s correlation is used to analyze variables that are 

normally distributed, whereas Spearman’s rho is for variables that are non-normally 

distributed (Singh, 2007). A correlation coefficient value determines the strength of 

the relationship, while the sign of the value indicates the direction of the variable 

change, either positively or negatively correlated. The null hypothesis is that the 

correlation between two variables is not statistically significant, and if the p-value 

is less than alpha, then the null hypothesis can be rejected.  
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4 Results and Data Analysis 

 

This chapter presents and discusses the data analyses from various stages of the 

research. The data were summarized based on the research actions and 

supported with pieces of evidence drawn from the analyses and were then 

discussed to answer the research questions posed at the beginning of this thesis. 

This chapter is divided into 3 sections: qualitative analysis, quantitative analysis, 

and discussion. 

4.1 Qualitative Research: Content Analysis 

 

The qualitative interviews were conducted over a period of 1.5 years via face-to-

face meetings at agreed locations in Malaysia, Germany, and the Netherlands and 

online interviews using Microsoft Teams. The content analysis was carried out 

iteratively in conjunction with the interviews to determine the lower limit of the 

sample size. The sample includes participants with varying demographics, such as 

job positions, industries, companies, and continent of origin (Table 6). 

 

Table 6: Interviewee Demographics 

Continent of Origin Job Position Industry 

European (8) 
African (1) 

South American (1) 
Asian (5) 

Department manager (4) 
Project manager (3) 

Lead engineer (2) 
System engineer (4) 
Design engineer (2) 

Automotive (7) 
Aerospace (5) 

Medical Device 
(3) 

 

The sample size of the qualitative research is 15. The content analysis began after 

the completion of the first 7 interviews; the sample size gradually increased until 

the analysis hit data saturation when new themes no longer emerged (Francis et 

al., 2009; Morse, 1995; Vasileiou et al., 2018). Given the time constraints of the 

research, it was deemed practical to limit the interviews to 15 samples. The 

interviews were conducted in accordance with the interview guide (Appendix B). 

With a minimum of eight questions asked, the interviews yielded 304 condensed 

meaning units (Table 7) which summarize and highlight the participants’ relevant 

responses to the questions. Some participants tended to deviate from the topic at 

hand, however, their responses could also be summarized into condensed 
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meaning units when they provided additional insights into their decision-making 

processes.  

 

Table 7: Content Analysis Summary 

 

 

The condensed meaning units (see Section 3.2.2.3) were classified into 73 codes. 

The codes were not specific to each participant because the underlying messages 

of their responses shared many similarities, and therefore could be group coded. 

The 73 codes were categorized into 14 overarching themes (Appendix D), but few 

of the codes did not belong to any of the themes because they were either the 

opinion of a single participant or were not relevant to the research topic. Some of 

the themes addressed a few of the research questions, while others shed light on 

unexplored tendencies in decision-making, such as risk appetite, and laid the 

groundwork for quantitative research, which can be found in Chapter 4.2. The 

findings from the qualitative data analysis were used to set up the structure of the 

quantitative research and to provide key points to be investigated. 

 

Table 8 shows an overview of the nine themes to be discussed in this chapter. Only 

nine were selected because they accounted for the majority of the participant's 

responses and fulfilled the objectives of the qualitative research. Interviews were 

conducted in English with mostly non-native speakers and hence, in this thesis, 

responses were paraphrased based on the context from the surrounding 

statements wherever necessary to ensure clarity of meaning.  

 

  

Participant A B C D E F G H I J K L M N O Total

Condensed meaning unit 22 36 17 16 12 12 11 27 24 25 14 21 21 29 17 304

Code 16 23 15 14 9 11 10 22 18 20 14 14 16 22 13 68

Theme 9 11 8 7 6 7 8 12 10 10 9 8 8 9 7 14
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Table 8: Themes from Content Analysis 

1 
Technical decision-making is overwhelmingly a group effort. The group is involved to 
gather information, negotiate decisions and reevaluate previously-made decisions. 

2 
Not all organizations prescribe decision-making guidelines; when they do, the guidelines 
are normally not properly documented, and the level of detail is inconsistent 

3 
Analytical processes and personal judgments are both utilized during technical-decision 
making, although analytical processes are preferred 

4 
Decisions are rationalized with expert inputs, technical analysis, evidence, and feasibility 
studies 

5 
Personal judgment is used if the decision is simple, information is sparse, time is a 
constraint, or decision risk is low. Analytical processes are used if the decision is risky or 
critical if the analysis is complex 

6 
Inputs to decision-making processes are judged based on the completeness of information, 
quality, and relevance of information, and reliability of the information source and the 
information seeker 

7 
Personal judgment is used to choose an alternative from analytical process outputs, to test 
whether results fit with personal knowledge, and to judge whether the analytical process 
used may be unreliable due to incomplete information and objectiveness of the analysis 

8 
Alternatives are re-evaluated based on the technical risk of the decision, the driving 
requirements, the project's timeline and budget, and the organization's vision and 
resources 

9 
If new information deviates from current data, the impact analysis will be performed 
based on the cost and criticality of the decision context.  Decision shall be adjusted if there 
is a severe impact on the project and team resource is available to execute the decision 
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4.1.1 Results & Analysis 

. 

 

The content analysis showed that technical decisions in engineering organizations 

were normally made within a team, which comprised of information seekers, a 

coordinator, and decision stakeholders. The team was cross functional in nature to 

ensure that the decision made was robust and took into consideration multiple 

viewpoints. 

 

Information seekers were subject matter experts in the decision context; they 

gathered and analyzed information from various sources. Any incoming 

information, regardless of the source, was reviewed by the team (Example 6). The 

team would ensure that the information fed into the decision-making process was 

correct and relevant to the decision context. 

Participant C: […] we make the design reviews, sheets and work (using) this 

method. Basically this method has three steps and by each step we made 

special reviews sections that the experts show us what he has thought, what was 

evaluated and so on. 

Example 6: Expert inputs 

 

The team coordinator was generally the decision owner, responsible for the 

decision made and supported by subject matter experts to gather and analyze the 

information to make technical judgments. Even though the coordinator held 

responsibility for the team’s decision, it was observed in a majority of the responses 

that a decision based on group consensus was preferred (Example 7 and Example 

8). When stakeholders of the decision were external to the decision-making team, 

their opinions and consensus were also sought.  

Theme 1: Technical decision-making is overwhelmingly a group effort. The 

group is involved to gather information, negotiate decisions and reevaluate 

previously-made decisions. 
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Participant E: Decisions are typically based on either an analytical process or a 

collective agreement within the team. The team provides ideas, and our 

decisions are made based on them.  

Example 7: Agreement of the team 
 

Participant B: [...] First of all, anyone can weigh in if the decision does not align 

with his or her personal judgment on the topic, and also to generate consensus 

on that topic. 

Example 8: Consensus on a decision 

 

Technical decisions in the industry affect various stakeholders and impact many 

other decisions. Therefore, it was noted in the analysis that technical decisions 

were generally negotiated and not unilaterally decided (see Example 9). The 

balancing of stakeholder needs during the decision-making process required more 

than technical justification. The stakeholders had their priorities and needs, from 

commercial and organizational to technical points of view, and would pull the 

direction of the decision their way. It was then the task of the team to balance the 

needs of the stakeholders in order to reach a compromise (Example 10).  

Participant M: Hopefully, the two approaches work together; otherwise, there's a 

lot of renegotiations. A large part of this job involves negotiating requirements. In 

fact, engineering decisions are often easier than dealing with the requirements 

and politics involved. 

Example 9: Decision-making is a negotiation 
 

Participant N: I would say the challenge always lies in balancing the various 

needs within the organization. For instance, choosing between the most reliable 

solution and the most desirable technical solution within a specific timeline. 

Example 10: Decision-making is about balancing needs 
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The interviews showed that many organizations had decision-making guidelines, 

albeit with varying levels of detail and availability. The guidelines laid out methods 

and tools to be used in the product development process. The prescribed 

guidelines covered both technical and commercial decisions. Some of the technical 

decision-making guidelines focused on identifying the criticality of a decision and 

the selection of conceptual design. They were in place to ensure the decision-

making process was consistent across organizations and the robustness of the 

decision met the organization’s quality standards and industry norms. The 

availability and quality of the guidelines might vary between organizations. 

 

All participants’ organizations prescribed at least a basic level of product 

development guidelines to be followed. However, guidelines specific to technical 

decision-making were often not made available in every organization (Example 

11). Even though decision-making tools were not necessarily prescribed by the 

organization, design reviews were mandated by many organizations to ensure 

technical decisions were deliberated and documented systematically. 

Q: Does your organization prescribe technical decision-making methodologies or 

guidelines? 

Participant F: No. Essentially, we don't have a fixed methodology. Everyone is 

encouraged to contribute ideas regarding which methodology could be used, 

based on the situations we encounter. Any relevant methodology is accepted; we 

do not adhere to one specific approach.  

Example 11: No decision-making guidelines available 
 

 

Decision-making guidelines were not always specified in detail (Example 12), and 

the levels of detail would also vary depending on the decision context. The few 

guidelines that were made available would propose concept selection tools to be 

used; but in many cases, it was left to the team to decide the decision-making 

methodology to be used based on the situation at hand (Example 11).  

Theme 2: Not all organizations prescribe decision-making guidelines; when they 

do, the guidelines are normally not properly documented, and the level of detail 

is inconsistent 



130 
 

Participant M: The [decision making guidelines] document initially started very 

broadly. However, it becomes evident that starting with a broad approach 

inevitably means that you have to narrow your focus in certain areas as you 

proceed. 

Example 12: Decision-making guidelines are broad 

 

In many high-risk but routine decision-making situations, such as product 

manufacturing and procurement, specific guidelines and problem-solving tools 

were prescribed (Example 13). However, this might not be the case with technical 

design decisions, despite the fact that many of the decisions were risky in nature. 

Furthermore, the design process required a high level of creativity. Therefore, 

detailed design guidelines would stifle innovation and are counterproductive to the 

product development process (Example 14). 

 

Participant I: For procurements, there are very specific guidelines. [...] Everything 

related to procurement, I believe, adheres to strict guidelines regarding how to 

select different suppliers and how to assign contracts, etc. 

Example 13: Procurement decision-making 
 

Participant M: When we actually initiated it, we had to delve quite deeply into 

certain areas. However, it's not mandated to be detailed in all areas because 

design inherently involves innovation, and innovation is somewhat of an art form. 

You don’t want to inhibit that, as doing so might prevent achieving the best 

designs. 

Example 14: Decision-making guidelines stifle innovation 

 

 

 

While the product development process was regulated by standards and 

guidelines, the interviews showed that decision-makers also used personal 

judgment to make technical decisions. Rule-following was the normative decision-

making process in engineering organizations, and in reality, the decision-makers 

adhered to the rules and guidelines as required. However, rational analysis, via the 

Theme 3: Analytical processes and personal judgments are both utilized during 

technical-decision making, although analytical processes are preferred 
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use of analytical tools, was the preferred method by a majority of the participants 

to drive the decision-making process (Example 15). In some instances, decision-

makers would also rely on their personal judgments to make the final decision. 

Analytical methods and human judgments both played roles in decision-making 

based on their respective strengths and shortcomings. 

 

Participant E: Personal judgment often leans more towards emotional decision-

making and can sometimes be difficult to justify, while an analytical approach is 

generally the more appropriate course of action. 

Participant F: In my past experiences, I’ve consistently adhered to one 

methodology that I’ve found to be quite relevant and efficient: the decision matrix. 

Example 15: Analytical approach is preferred 

 

Analytical tools were mainly used during the product development process, 

especially during problem-solving, risk analysis, and decision-making (Example 

16). In high risk decision contexts, impact analysis was used to systematically 

establish and analyze the risks (Example 17). Analytical processes were perceived 

to be efficient in narrowing down problems or identifying effective solutions. Some 

participants felt that, where feasible, it was the most reliable method to approach 

technical decisions (Example 15). 

Participant L: [...] What I need to do is initiate a problem-solving methodology, 

where I adhere to a six-step process, such as defining the problems and then 

taking interim actions to ensure that our current issues do not become more 

damaging. Subsequently, we try to identify the potential root cause.  

Example 16: Root Cause Analysis as an analytical tool 

 

Participant D: The first thing that comes to my mind is that typically, when dealing 

with changes—something that will cause an impact—we definitely need to 

consider the impact analysis, whether technically, commercially, etc. 

Example 17: Impact Analysis as an analytical tool 
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A few participants preferred to make decisions based on their knowledge and 

experience. They relied on their intuition, which is a sub-conscious decision-

making process, and knowledge of the subject matter (Example 18). This behavior 

was most commonly noted among experienced decision-makers. However, in 

many cases, decision analysis would assist in systematically organizing, analyzing, 

and ranking the solutions based on the weighted criteria, and decision-makers then 

relied on their personal judgments to make the final decision (Example 19). The 

ranked solutions were subjected to a trade-off discussion between the 

stakeholders and subject matter experts (Example 20). Consequently, the decision 

analysis might not be as objective as intended since decision-makers would alter 

the objectively-driven process according to their subjectively influenced personal 

preferences and agendas. 

Participant M: [...] All of those decisions, whether through innate ability or 

experience (and I can't specify which), are made subconsciously without my 

active deliberation. 

Example 18: Technical decision-making based on experience 
 

Participant C: I believe it's always a combination; no decision is based solely on 

an analytical process or methods. The decision should incorporate the insights 

and intuitions of the experts. 

Example 19: Concurrent technical decision-making 
 

Participant N: [...] Let's say there are top three options that are closely ranked; 

you might still employ some personal judgment within a smaller team. But in 

principle, you would simply select the number one solution as it’s the most logical 

choice. 

Example 20: Decision-making as a trade-off 
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Even though rationality in the actual technical decision-making process was not 

fully optimized (see Section 5.2, Theme 3), it was apparent from the interviews that 

all engineering decisions must be technically justified. Industry standards for 

product development processes, such as in the automotive, medical device, and 

space sectors, require design reviews to be conducted at predetermined 

checkpoints during product development. Technical justifications, which can be in 

the form of technical analysis, expert opinions, or feasibility studies, as evidence 

of thorough technical due diligence, form a major part of the design review. In cases 

where technical justifications were not necessary, decision-makers strived to 

ensure their decisions were justified. 

 

Technical analysis, especially during the conceptual and design stages, is the 

backbone of any product development decision-making (NASA, 2007; Robert 

Bosch GmbH, n.d.).Technical decisions in product development – such as 

component or circuit design, material selection, and software algorithms – are 

rationalized using technical analysis (Example 21). The analysis includes tolerance 

or strength calculations, hardware-in-the-loop simulations, statistical analysis, 

design of experiments, and many more. Technical analysis not only supported 

technical decisions during the design review but also helped boost the confidence 

level of decision-makers in the design output phase (Example 22). 

Participant O: In our technical decision-making, we evaluate whether we 

genuinely wish to verify aspects such as fit and function based on their 

functionality. We ponder whether we can do so using a virtual simulation platform 

or an analytical method. 

Example 21: Technical analysis examples 
 

Participant J: [...] Confidence in whether your design will work can be gained 

through analysis. Deciding which direction to take and which options to focus on 

involves professional experience, drawing upon technological heritage 

knowledge, and considering the risks associated with any gaps. 

Example 22: Technical analysis increases design confidence 

Theme 4: Technical decisions are rationalized with expert inputs, technical 

analysis, evidence, and feasibility studies 
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Expert opinions were also used to support technical decisions (Example 23). In 

contrast to quantitatively-oriented technical analysis, expert inputs were derived 

from their subjective evaluation of the decision context based on their knowledge 

of the subject matter. Expert opinions were highly valued as they were the main 

source of information, and their judgments were deemed reliable.  

Participant C: I will select the best options from this analytical process, perhaps 

two or three, and invite the most knowledgeable experts I have on the subject, 

seeking a second opinion. Then we make a decision; I will decide based on this 

analytical process and feedback from other experts, attempting to reach a 

conclusion. 

Example 23: Expert inputs to support technical decisions 

 

 

The content analysis showed that although organizations prescribed analytical 

tools to help the decision-making process, using such tools did not come 

automatically for many of the participants. The participants tended to apply 

personal judgment instead of an analytical approach when the decision to be made 

was simple, the risk of the outcomes low, the information incomplete, the decision 

time limited, or available human resources scarce. 

 

The complexity of the decision played an important role when deciding whether to 

base a technical decision on personal judgment or to use a systematic analytical 

process (Example 24). However, as the decision got more complicated, decision-

makers tended to rely on analytical processes to gather relevant information and 

evaluate potential options. But when the decision was simple and straightforward, 

the decision was based on the knowledge and experience of the decision-maker.  

Participant N: In cases of complex decisions, such as our examination into DCI 

connectors which presented various options, an evaluation was undertaken in 

Theme 5: Personal judgment is used if the decision is simple, information is 

sparse, time is a constraint or decision risk is low. Analytical processes are used 

if the decision is risky or critical if the analysis is complex 
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2020 using a ranking process. This involved an eight-person team making the 

decision, necessitating the use of ranking tools.  

Example 24: Analytical tools help to make complex decision 

 

Moreover, if the information to make decisions was scarce, then the decision-

makers would rely on heuristics to make the decision (Example 25). This reliance 

also occurs when there were insufficient resources, such as time and manpower, 

to make deliberative decisions. In cases where allocated resources were limited, 

decision-makers might be forced to make decisions based on their experience 

(Example 26). Since rational analysis is a resource-intensive process, a lack of 

human resources to gather information or carry out planned measures could be an 

obstacle. Time constraints could also compel decision-makers to make quick 

decisions that are prone to biases. Furthermore, they also had to rely on their 

instincts and knowledge if there was insufficient information to make an informed 

decision. 

 

Participant B: It's also crucial to note that in the early phases of such decisions, the 

foundation may not be solid enough, as I pointed out using the ED&T costs 

example. In the initial stages, estimates can only be based on experiences or rule-

of-thumb evaluations. 

 

Example 25: Personal judgment for incomplete information 

 

Participant H: I would assert that analysis is absolutely the foundation for all 

sound decision-making. Often, however, either time constraints or limited 

available manpower prevent us from performing it. Subsequently, decisions 

hinge on the expertise of individuals involved. 

Example 26: Personal judgment for limited resources 

. 

An analytical approach was also preferred if the stake of the decision outcomes 

and risk were high (Example 27). For example, decisions that may influence the 

organization’s strategic objectives that can cause a change of direction of the 

product development or that can severely impact the safety or functionality of the 

product are considered high risk. If the impact of the risk was relatively low, 

decision-makers might use either an analytical process or personal judgment. 
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Participant A: I would then employ an analytical approach, especially if the matter 

is also of a strategic nature. For instance, if there's a technical decision to be 

made that could alter the team's direction for the upcoming six months, I will 

ensure confidence in my decision before finalizing it. 

Example 27: Analytical tools help to make critical decisions 

 

 

 

Based on the interviews, it could be summarized that the decision-makers would 

evaluate all information before any decision could be deliberated. Any input data 

should first be verified and then filtered in accordance with the decision-maker's 

knowledge (Example 28). If the input information conflicts with the decision-maker’s 

experience, the information would be questioned and cross-checked against other 

different sources. 

Participant H: It's imperative to rely on your experience to determine 

whether the input you've received is credible and suitable for your use in 

the process. 

Participant B: [...] We typically have six-month contracts; if we alter them 

to one-year contracts, I expect the monthly rate to decrease. If it doesn’t, 

then it's something I need to investigate. This is sort of a rule of thumb, I'd 

say. If my experience indicates a consistent increase in prices, that's 

something I won't definitely accept [...] 

Example 28: Input information is evaluated based on experience 

 

Completeness of information is one of the criteria for achieving objective rationality. 

Even though decision-makers are subjected to bounded rationality in making 

decisions (Simon, 1955), they strive to gather as much information as possible to 

ensure the robustness of the decision. Each decision-maker would have a different 

threshold for the minimum amount of information required to make a judgment 

(Example 29). They would gather more information from historical databases, 

Theme 6: Inputs to decision-making processes are judged based on the 

completeness of information, quality and relevance of information and reliability of 

the information source and the information seeker 
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personal knowledge, and other sources if they thought the information provided 

was insufficient based on their knowledge. 

Participant A: I’d identify two aspects: first, do I feel I have all the presently 

available information, which doesn't mean all possible information... there will 

always be, let’s say, an element that you can't estimate because every decision 

involves some unknowns. But, if all the information that can be obtained without 

unreasonable effort is before me and I feel that is the case, then I proceed with 

the decision. 

Example 29: Incompleteness of information judged based on experience 

 

The participants might also challenge the reliability of input data if the information 

is of poor quality. In general, the decision-makers would carefully gather the 

information according to their experience and knowledge of the subject matter. The 

input data would be accepted if it was aligned with their knowledge or if the 

information derivation process was judged to be reliable (Example 30). However, 

information from trusted subject matter experts was accepted ‘as is’, without further 

deliberation of its quality. 

 

Participant A: There's also a significant trust component that should not be 

underestimated. So, depending on the messenger - if it's an engineer with whom 

I've had very positive experiences and whose competence I trust - I'll be more 

inclined to believe them. 

Participant B: And the manner in which they present how they arrived at that 

result is something I need to be able to accept. So, in this specific example, if, 

from my viewpoint, all necessary experts are involved and if I see that the work 

quality is commensurate with the topic's criticality, it’s acceptable. 

Example 30: Quality information from a reliable source 

 

Another factor in determining the acceptance of the input data is the credibility of 

the information source and the information seeker. The validity of the information 

would be confirmed if the decision-makers have any concerns regarding the 

reliability of the data source. Where the decision-makers had limited knowledge of 

a particular topic, they would often consult subject matter experts to ensure the 

data sources were providing high-quality information (Example 31). Furthermore, 
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the credibility of the information seeker would also be called into question before 

the provided information can be accepted. The majority of the participants 

expressed confidence in the data presented by trusted subject matter experts, 

especially when the experts were from the same organization (Example 30). 

 

Participant O: Certainly, the source of information plays a vital role. For instance, 

if a document originates from a trusted source like ASTM [American Society for 

Testing and Materials], UL [Underwriters Laboratories], any ISO [International 

Organization for Standardization] procedures, or EC [European Commission] 

guidelines, I'll prioritize those because they have been thoroughly evaluated and 

are generally reliable. 

Example 31: Trusted source of information 

 

 

 

Based on the analysis, it was rare that decision-makers accepted the output of 

decision analysis as it stood. They would ascertain the validity of the process, 

deliberate the outcomes of the analysis, and make their own decision guided by 

the analytical outputs. Decision-makers would only accept the analysis if the 

computed outputs aligned with their knowledge, or if they believed the analytical 

process was robust and the analysis had sufficient inputs to make a well-informed 

decision. 

 

In general, the decision-makers valued their own knowledge and experience over 

analytical tools, such as decision analysis. Even when a decision analysis was 

used to objectively evaluate information and calculate the best possible outcomes 

based on the requirements and constraints, decision-makers would, in parallel, 

process the same information and make judgments of their own. They would use 

the decision analysis results when the ranked outputs were aligned with their own. 

Theme 7: Personal judgment is used to choose an alternative from analytical 

process outputs, to test whether results fit with personal knowledge and to judge 

whether the analytical process used may be unreliable due to incomplete 

information and objectiveness of the analysis 
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Decision-makers generally already had their own preferences, and decision 

analysis was mostly used to justify their decisions. 

 

Participant C: If you possess sufficient experience [...] and the options from an 

analytical process don't align with what you have learned or encountered previously, 

I believe that a person will never accept the decision from any analytical process. 

Example 32:Preference of personal knowledge over analytical tools 

 

Participant H: Those involved in decision-making often suggest having a trade table 

or matrix. They recommend applying weighting factors and attempting to compare 

various solutions against each other. However, this has never been executed in real 

life. It's a purely theoretical example because one can always immediately find a 

reason why one solution is superior to another. 

Example 33: Decision already made up 

 

Decision-makers would not only selectively choose input data based on the 

completeness of information (see: Theme 4) but they also doubted the reliability of 

conclusions drawn via decision analysis that was made based on insufficient 

information. Technical decision-making is an information-loaded process as it 

requires large quantities and high quality data to make robust judgments. The 

analytical process produces logical analysis and objective evaluation, but the 

quality of the process is dependent on its inputs (Example 34).  

Participant D: To me, it essentially boils down to the data set that has been input 

into the tools. I believe if the data set is substantial and covers enough areas, 

then I would say the tools will likely produce a strong recommendation. 

Example 34: Insufficient information results in poor analysis 

 

The robustness of an analytical process depends on the quality of the tool and the 

method in which the process is applied. Not all analytical processes or tools are 

made equal; they differ in objectivity and depth of analysis. The outcome of the 

analytical process should be objective; however, some users would strategically 

manipulate the tools to produce outcomes that they desire (Example 36). Moreover, 
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some analytical tools are more suited to a specific decision context than others. 

Complex decision contexts require more holistic and robust analytical tools 

(Example 35). Therefore, decision-makers are inclined to be wary of the reliability 

of analytical tools outputs. 

Participant B: It’s contingent upon the quality of the outputs. [...] If the process 

provides reasoning behind the ranking and also demonstrates alignment with my 

engineering expertise, I could see myself trusting the results, especially for 

technical changes. [...] How comprehensive is the process? When discussing an 

analytical process, which aspects do they actually consider during the analysis? 

Is it solely technical? Purely commercial? Exclusively about customer 

compatibility? Strictly strategic? If so, I'm skeptical.   

Example 35: Analytical tools should have a holistic view of the problem space 

 

Participant N: By the way, what I observe in those ranking processes is that they 

seem very objective, but they never are. If you're in a joint ranking process, you 

will always observe behaviors like, if after the initial rankings, preferred solutions 

of some participants rank too low on the list, people then begin to strategically 

rank based on other factors. 

Example 36: Analytical tools are not truly objective 

 

 

 

It was found from the interviews that decision-makers tended to make the final 

decisions even when decision analysis was used to generate a ranking of 

alternatives. Even though they believed decision analysis was the superior method, 

their biases would steer them to choose the alternative that fitted their knowledge. 

When presented with the alternatives, decision-makers based their final judgment 

on the decision risk, key requirements, project constraints, and organizational 

strategies. 

 

Theme 8: Alternatives are re-evaluated based on the technical risk of the 

decision, the driving requirements, the project's timeline and budget, and the 

organization's vision and resources 
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Participants’ technical decisions were largely driven by the decision risk and key 

requirements. Striking a balance between fulfilling key requirements and managing 

technical and commercial risks was the practice in the technical decision-making 

process (Example 37). A majority of the participants preferred alternatives that 

prioritized project risks and key requirements even though decision-making 

selection criteria would specify otherwise. 

Participant O: Utilizing professional judgment is imperative to determine the 

optimal design or technology selection. At a fundamental level, it’s essential to 

revisit the requirements. The primary aim is to choose the most affordable and 

familiar technology, but if that doesn’t adhere to your constraints, exploring more 

advanced technologies that do fit within your limits may be necessary.  

Example 37: Requirements drive the decision-making process 

 

Limitations on technical decisions were often imposed in the form of project 

constraints and organizational strategies. Not only did organizations put 

constraints on project delivery timelines, but availability and capability of manpower 

could also constrain the project execution (Example 38). Therefore, complex 

solutions may have been deemed undesirable even when they were technically 

sound. Organizational strategic decisions could limit potential technical solutions.  

Participant L: We also strive to consider the team's capacity, because most of the 

time, there are numerous tasks to accomplish in a limited timeframe. 

Consequently, we certainly will not examine all of the items listed under the 

Pareto. 

Example 38: Project constraints on the decision-making process 

 

 

The content analysis indicated that a majority of technical decision-makers were 

risk averse and they would always re-evaluate current decisions when presented 

with new information. As discussed previously, organizational decision-making 

Theme 9: If new information deviates from current data, the impact analysis will 

be performed based on the cost and criticality of the decision context.  Decision 

shall be adjusted if there is a severe impact to the project and team resource is 

available to execute the decision 
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was a longitudinal process. Due to the interconnected nature of organizational 

decision-making, decisions made in other parts of the organization resulting in new 

information may have altered the direction of other decisions. This qualitative 

analysis earlier showed that decision-makers would analyze current decisions 

based on the impact criticality of the new information. If the impact was deemed to 

be severe and resource was still available, a new decision would be deliberated. 

 

Participants in the interviews unanimously agreed that all new information should 

be treated seriously, and an impact analysis should be done to evaluate its effect 

on the current decision. This was particularly true if the information contradicted 

currently available data. The relevance of the new information and its impact on 

the success of the project were analyzed with the support of subject matter experts 

and stakeholders. When the impact was deemed to be critical to the success of the 

project, a new decision-making process would be executed (Example 39). 

Participant F: If new information contradicts existing data, we certainly need to 

conduct another analysis. However, if the new input aligns with previous 

decisions, a new analysis may not be necessary. 

Participant D: Once a decision has been made and a change arises, the initial 

step involves evaluating the changes in aspects like cost, timing, and 

specifications. In my situation, the subsequent action is to decide how we should 

approach these changes, guided by the impact analysis 

Example 39: Impact of new information 

 

When the decision-making team had concluded the severity of the impact of the 

new information, a new decision would be deliberated and implemented depending 

on the level of severity and if there was sufficient time and workforce available to 

execute the new decision. While a majority of the participants agreed that new 

information should be thoroughly evaluated, not all decisions were followed up. 

Most of the participants would only act if the outcome negatively impacted the 

project in terms of functionality, performance, or safety (Example 40). The 

availability of time and resources could hinder the implementation of the new 

decision. If there was insufficient time to act on the critical information, for example, 

if the project was nearing its end, then updating a decision may not have been 

possible (Example 41). 
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Participant M: Consider a scenario where it's discovered that the aluminum, 

perhaps due to the foundry or minerals used, is not suitable for space 

applications. A switch to stainless steel is necessary. This change will 

significantly impact as the weight implications will permeate throughout the 

project. 

Example 40: Severity of the impact is a critical factor 

 Participant N: If you are nearing the end of a program and the change only 

affects a minor part of the program, you may opt not to modify it further. 

However, you could decide to either withdraw the solution or proceed with its 

release, even if some inferior parts fail. 

Example 41: Not every important decision can be changed 

 

4.1.2 Summary Findings 

 

Based on the nine themes above, key findings in the qualitative research can be 

summarized as follows: 

• Cognitive and social biases exist in the technical decision-making process 

(All themes, except for Theme 1) 

• Information processing biases occur as decision-makers rely on their 

experience to filter information (Theme 6). 

• Alternative selection biases affect decision outcomes because decision-

makers rely on their intuitions for final decisions (Theme 7 and Theme 8). 

• Alternative selection biases cause decision-makers to objectively re-

evaluate decisions in light of new information (Theme 9). 

• Risk appetite affects the decision-making process (Theme 5). 

 

The Synthesized Model of Technical Decision-making in Product Development 

(Figure 37) was formulated by integrating the decision context (Figure 21) into the 

unified model of technical decision-making (Figure 23). In accordance with the 

general model of the design development phase in product development (Figure 

21), the technical decision-making process in product development incorporates 

product requirements, available solutions, and other pertinent information as inputs 

into the process. Project personnel and budgets are also taken into account as 

constraints, while decision management and risk management govern the entire 
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process. The synthesized model is a descriptive model describing the dynamics 

between rational and behavioral elements in the technical decision-making 

process within product development. The key findings contributed to the behavioral 

elements in the synthesized model. Cognitive biases, social biases, and risk 

appetites represent the human factors, or behavioral elements, that impact the 

technical decision-making process. Since organizational decision-making is 

embedded in a longitudinal context (Shapira, 2002), decisions previously made 

during product portfolio management or stakeholder requirement definition, as 

illustrated in Figure 21, might have already been biased. This biased information 

could inadvertently influence the technical decision-making process. The model 

and summary of findings from qualitative research laid the foundation for 

developing the quantitative research instrument, as discussed in Section 3.2.3.3. 

 

 

Figure 37: Synthesized Model of Technical Decision-making in Product 
Development 
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4.2 Quantitative Research: Exploratory Data Analysis 

 

The survey was conducted over a period of two years via an online questionnaire 

(www.qpointsurvey.com) and an offline questionnaire (electronic copy of the 

questionnaire). In total, 132 responses were received with varying degrees of 

completion. After preparing the data (see Section 3.2.3.4), 96 responses were 

deemed suitable for use in statistical data analysis. 

 

   

Figure 38: Quantitative research participant demographics 

 

The demographics of the participants were divided into 3 categories: department, 

work experience, and industry (Figure 38). However, only department and work 

experience were used in the statistical analysis as independent variables. Industry 

variable was used to filter out participants who were not within the target 

demographics, which is safety-critical complex system industries.   

 

Fifty percent (50%) of the participants worked in the engineering department as a 

development engineer, subject matter expert, system engineer, or other positions. 

Meanwhile, more than 20 participants worked in either project or personnel 

management departments. Furthermore, the respondents were split into two 
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roughly equal-sized sets based on experience. ‘Early career’ respondents were 

respondents with 13 years or less job experience, whereas ‘late career’ 

respondents had more than 13 years of experience. Finally, the bulk of 

respondents worked in the automotive and medical device industries, with these 

industries together accounting for more than 70% of all responses. Space, 

railways, and other industries made up the rest of the responses. 

 

The data was analyzed using Exploratory Data Analysis which presents data 

patterns between the variables. Full data with numbers and figures can be found 

in Appendix F. As quantitative research is a numerical approach to empirical 

analysis, bias strength in this section was quantified in Table 9. Table 9 is a 

synthesis of Table 3: Bias strength definitions) and Table 4: Data conversion). 

 

Table 9: Bias strength score 

Bias strength Definition Score 

Strong Participant clearly demonstrates bias 4 

Somewhat 

strong 

Participant demonstrates noticeable bias with 

mitigating factors 

3 

Somewhat 

weak 

Participant demonstrates subtle bias, with a 

lean toward impartiality. 

2 

Weak Participant minimally demonstrates bias 1 
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4.2.1 Results & Analysis 

 

Result 1: Decision-makers were overall moderately biased during technical 

decision-making 

 

  

Figure 39: Overall bias strength analysis in the technical decision-making process 

 

The mean value of overall bias strength in technical decision-making among the 

participants was 2.52 (Figure 39, Appendix F). The result can be inferred to as 

moderately biased, as the score lies between bias strength 2, which corresponds 

to “participant demonstrates noticeable bias but somewhat restrained” and bias 

strength 3, “participant demonstrates subtle bias, with a lean towards impartiality” 

(Table 9), which will be discussed in Section 4.3. The small dispersion of the data, 

with a standard deviation of 0.248 and interquartile 25th and 75th percentile values 

of 2.39 and 2.65 respectively (Appendix F), indicates that there was a slight 

variation in participants' bias strength. Furthermore, with a minimum score of 1.85 

and a maximum of 3.2, one may conclude that no participant was strongly or 

weakly biased in the technical decision-making process. Decomposing the overall 

bias strength score into its components provides a better understanding of the 

phenomenon, as discussed in Result 2. 
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Result 2: The bias strength of decision-makers varied during the stage of the 

technical decision-making process 

 

 

 

  
 

Figure 40: Bias strength per bias clusters 

 

The overall bias strength score was composed of three components: information 

processing, alternative selection, and decision revision (see data variable structure 

in Figure 31). As discussed in Section 4.1, these biases influence different stages 

of the technical decision-making process. Results of the bias strength during 

information processing and alternative selection stages of decision-making were 

close, with mean values of 2.63 and 2.58 respectively (Figure 40, Appendix F). 

During decision revision, participants seemed to be slightly less biased compared 

to the other two stages based on their calculated mean value of 2.39 (Appendix F). 

Furthermore, participants with overall low bias inclination also consistently scored 
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a lower bias rating per each bias than the participants with high bias inclination 

(Figure 40). Skewness or asymmetricity of alternative selection bias strength data, 

with a skewness value of -0.33 (Appendix F), toward strong bias is a point of 

interest. This can be explained with an in-depth analysis of the alternative selection 

process, as discussed in Result 3 below.  

 

Result 3: Decision-makers most often make technical decisions as a team 

 

 

 

Figure 41: Decision-making preference 

  

From the data analysis (Figure 44), a vast majority of participants did not make 

final decisions based on analytical tool recommendations; they either depended on 

team consensus (62.2%) or relied on their personal judgments (21.8%) to make 

the decision. Participants who worked in project management and engineering 

departments relied more on team decisions, with 72.7% and 70.8% respectively, 

than those in personnel management department, with 53.1%. However, 

participants in the leadership roles or those who worked in the personnel 

management department, tended to make more final decisions personally, 

accounting for 29.2% of the subgroup population, when compared to participants 

in other departments. Even though participants on average were hesitant to base 

the final decisions on analytical tool recommendations, participating engineers still 

slightly favored using the recommendations (16.7%) over making personal 

decisions (12.5%). In this thesis, the reasons behind participants' hesitation were 

also analyzed in Result 4. 
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Result 4: Decision-makers were skeptical of the robustness of decision analysis 

 

 

 

Figure 42: Rationale for not choosing analytical tool recommendation 

 

In the questionnaire, the participants who opted not to accept decision analysis tool 

recommendations were asked for the rationale behind their decisions. They could 

either choose one or more responses from the predetermined choices or provide 

their own opinion (Figure 42). 20 participants did not think that all parameters were 

considered during analysis or felt that the information fed into the analytical tools 

was incomplete. Furthermore, 11 participants did not believe that the tool could 

make balanced decisions based on the project priorities. Additionally, four 

participants considered the analytical tool as an unreliable decision-making 

method, while another three participants preferred relying on their own judgment 

to make the final decision. While many participants argued that the analytical tool 

did not have sufficient information to make a rational decision, their tendency to not 

gather as much information as possible during decision-making, which is 

demonstrated in Result 5 below, contradicted their argument. 
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Result 5: Decision-makers did not require completeness of information to make 

technical decisions 

 

 

 

Figure 43: Tendency to request for information 

 

In the questionnaire, specifically within sub-questions Q1, Q2, Q5, and Q10, 

participants had the option to request up to 12 additional pieces of information 

related to the questions before making decisions. Responses were systematically 

tracked and tabulated. On average, participants requested merely 56.8% of the 

available information (Figure 43, Appendix F). A deeper analysis of the data 

revealed that early career participants were more likely to request additional 

information (63.9%) compared to their late career counterparts (49.5%) (Figure 43, 

Appendix F). Utilizing the Mann-Whiteney test to examine the mean difference 

between two unpaired non-parametric variables, a statistically significant mean 

difference was identified between the early and late career participants’ 

tendencies, evidenced by a p-value of 0.03. Furthermore, the participants who 

answered “Information input to the analysis may be incomplete” in Result 4 

requested 56% of the available information on average, the same amount as the 

full set of respondents. 
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Result 6: There were no statistically significant differences in bias strength between 

participant demographics  

 

 

 

Figure 44: Bias strength per demographic subgroups 

 

 

Figure 44 compares bias strength between subgroup demographics, i.e.: 

department and work experience. The mean bias score for participants from the 

engineering department was 2.546 while those from personnel and project 

management scores were 2.492 and 2.508 respectively (Appendix F). Testing with 

One-way ANOVA, which is a test for the mean difference between three or more 

independent normally distributed variables, the mean difference between the three 

departments was not statistically significant with a p-value of 0.75. As for work 

experience, late-career participants had a mean bias score of 2.48, while early-

career participants' mean bias score was 2.57 (Appendix F). Two-tailed Unpaired 

T-test result, which tests for the mean difference of two unpaired normally 

distributed variables, with a p-value of 0.07 demonstrates that the difference was 

also not statistically significant with a 95% confidence level. Based on these data, 

one can conclude that the demographics of the participants have little effect on the 

strength of their biases during technical decision-making. 

 

  



153 
 

Result 7: Technical decision-makers were more prone to social bias than 

cognitive bias 

 

 

  

Figure 45: Comparison between the strength of social bias and cognitive bias 

 

It was concluded previously that the majority of the participants relied on team 

consensus to make final decisions. The survey further probed into the social and 

cognitive biases of the participants to understand if these biases played a role in 

the decision-making process. The result (Figure 45) demonstrated that the 

participants had a stronger social bias, such as in-group bias and groupthink, with 

a mean score of 2.74 as compared to cognitive biases, such as confirmation and 

escalation of commitment biases, which had a mean score of 2.28 (Appendix F). 

According to the Wilcoxon Signed Ranked test result, which tests for the mean 

difference between two non-parametric categorical variables of the same subjects, 

the mean difference was statistically significant with a p-value less than 0.05. This 

result showed that the participants tended to be more biased during group 

decision-making but were less biased when making decisions alone. However, the 

data analysis (Result 8) showed that team setting was not the only factor that 

affected the decision-maker’s bias tendency. 
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Result 8: Technical decision-makers were risk-averse 

 

 

   

Figure 46: Participant's risk tolerance level according to department and work 
experience 

 

Qualitative research found that risk appetite may affect decision-maker’s bias 

tendency. So, the questionnaire was constructed to test and verify this finding. A 

sizeable majority (73.4%) of the participants demonstrated low-risk tolerance 

(Figure 46). Early-career participants tended to have a much lower risk tolerance 

level (18.8% vs 34.8%) than late-career participants, while participants who worked 

in project management had a considerably higher (31.8% vs 25%) risk tolerance 

than their counterparts.  
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Result 9: Risk tolerance of technical decision-makers correlated with their bias 

strength 

 

  

Figure 47: Participants' risk tolerance effects on bias strength 

 

The relationship between risk tolerance and bias strength was also assessed. 

Analysis of the data (Figure 47) showed that high-risk tolerance participants 

appeared to be less biased, with a mean score of 2.47 than their low-risk tolerance 

counterparts, with a mean score of 2.56 (Appendix F). This was supported by the 

result of the Two-tailed Unpaired T-test, which demonstrated a statistically 

significant mean difference with a p-value of 0.03. The effects of the technical 

situation’s risk level on the participant’s bias strength were also tested (Result 10). 
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Result 10: The technical risk level of a decision context doesn’t affect decision-

makers bias tendency 

 

  

Figure 48: Technical situation's risk level effects on bias strength 

 

The technical situation’s risk level did not seem to have much effect on the 

decision-maker’s bias propensity (Figure 48). The mean bias strength of the 

participants who were subjected to low technical risk situations was 2.56 which 

was slightly higher when subjected to high risk situations, which was 2.49. 

However, the Two-tailed Paired T-test result of the data showed that the mean 

difference was not statistically significant, with a p-value of 0.18. 
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4.2.2 Summary Findings 

 

Based on the ten results above, key findings in the qualitative research can be 

summarized as follows: 

• Participants were moderately biased in technical decision-making (Result 

1). 

• Participants seem to be slightly less biased during decision revision 

compared to the information processing and alternative selection stages 

(Result 2 & Result 3) 

• Participants tend to be more biased during group decision-making but were 

less biased when making decisions alone (Result 7) 

• High-risk tolerance participants appeared to be less biased than their low-

risk tolerance counterparts (Result 9) 
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4.3 Discussion 

 

Despite the availability of objective-driven procedures for making technical 

decisions, the interviewees still exhibited biases in their decision-making 

processes. The qualitative research results suggested social and cognitive biases 

can be found in technical decision-making. Biases distort information processing, 

affect alternative selection, and influence decision revision. The data analysis also 

concluded that behavioral components, such as heuristics and biases, were deeply 

embedded in the rationally oriented technical decision-making process. 

Quantitative research was built on the results of qualitative research by quantifying 

the deviation between rational and behavioral components in technical decision-

making and identifying the root causes of the deviation. Therefore, this section 

addresses sub-research questions (RQ1.1, RQ1.2, RQ1.3, and RQ1.4) by 

combining the research data to provide full insight into the technical decision-

making process.  

  

 

RQ 1.1: What decision-making methodologies do engineering organizations 

expect for technical decisions? 

 

Normative decision-making explains how people or organizations should behave 

to achieve optimal decisions (Rechtin & Maier, 2000; Simon, 1972). In the 

literature, rational behavior is the center of normative decision-making as 

normative decision theory revolves around mathematical models such as game 

theory and decision analysis (Fox, 2015; March, 1978; Over, 2008). However, this 

thesis has discovered that normative decision-making in engineering 

organizations, especially those within safety-critical complex system industries, 

emphasizes rule following instead. 

 

Decision analysis has been studied over the years, dating back to as early as 1968 

through a publication by Howard Raiffa (Raiffa, 1968). Since then, scholars have 

proposed numerous decision analysis methodologies, such as influence diagrams 

or decision networks (Howard & Matheson, 2005), multi-attribute utility analysis 

(Keeney & Raiffa, 1993), Simple Multi-Attribute Rating Technique (SMART) 

(Edwards, 1971), decision tree analysis (Raiffa & Schlaifer, 1961), and the analytic 
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hierarchy process (Saaty, 1980). According to various studies, decision analysis 

has been employed in the industry to enhance the efficiency of engineering 

organizations’ decision-making to varying extents (Hess, 1993; Krumm & Rolle, 

1992; Ulvila & Brown, 1982). While the industry has been incorporating decision 

analysis as part of its decision-making tools, the results of this thesis concluded 

that the rational model is not necessarily the center point of normative decision-

making in engineering organizations. Moreover, when deliberating between 

alternative solutions, the Systems Engineering Book of Knowledge (SEBoK) 

advocates for the inclusion of system analysis, effective analysis, or trade-off 

studies within the decision-making framework. Nonetheless, SEBoK 

acknowledges that "a decision-making process is not an accurate science," and 

therefore recommends that decision-makers exercise caution when applying 

subjective criteria and uncertain data to the decision analysis in their decision-

making process (INCOSE, 2015). 

 

Analysis of industry documents on how decisions should be made revealed that 

engineering organizations establish rules and guidelines for decision-making 

(Section 2.5). While rational decision-making is based on optimization and 

maximization of outcomes, rule-following decision-making is based on logic of 

appropriateness (Zhou, 2002). In rule-following, organizations prioritize the 

appropriateness of procedures over maximizing decision outputs (Carroll, 1994; 

Dobbin, 1994). This is in line with the thesis findings where technical decisions in 

the product development process are governed by a set of procedures and 

processes (Section 2.5.2). Then, depending on the product development phase 

and stakeholders involved, different types of technical decisions are to be 

deliberated and thus, different decision management strategies are required. 

Technical decisions in these organizations are determined by two processes: 

decision management and risk management (Section 2.5.2). 

 

The document analysis shows that, at the industry level, decision management and 

risk management processes are described with a considerable level of detail as 

guidelines and procedures. Most of the guidelines specify analytical tools for 

decision-making and problem-solving, such as decision analysis or root cause 

analysis (Section 2.5.2). However, at the organizational level, the content analysis 

finds that the decision management process is often not provided with sufficient 
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depth (Theme 2). The analysis further showed that in many organizations, the level 

of detail in the guidelines is inconsistent and highly reliant on the decision context. 

While for other organizations, decision-making guidelines are not even explicitly 

stipulated. This is especially noticeable given that some of the organizational 

guidelines lack explicit details in requiring the use of analytical tools, such as 

decision analysis. For example, Theme 2 noted that specific tools are provided in 

the guidelines, but these are merely treated as suggestions instead of 

requirements. This is because the decision-making process is provided as 

guidelines, not standards. Standards specify organization-specific measurable 

requirements for processes, whereas guidelines offer recommended but non-

mandatory supplementary guidance. Organizations may adopt decision-making 

guidelines suggested by their respective industries as appropriate (AIAG, 2008; 

VDA, 1998). However, adherence to industry safety standards is mandatory. These 

safety standards, though, do not explicitly compel the decision-making 

methodologies or tools to be used (ECSS, 2017; IEC, 2020; ISO, 2011).  

 

The guidelines on process steps and actions are ambiguous and dependent on the 

interpretation of the decision-makers. Section 2.4.3 explains that decisions made 

through rule-following are subjected to the heuristics and biases of the developers 

and the users of the rules. When the users, or decision-makers in this case, are 

responsible for interpreting the guidelines based on their knowledge and 

understanding of the subject matter, the rationality of the decision-making process 

is their prerogative. This phenomenon can be explained in two ways: (1) 

organizations value efficiency over rationality (Zhou, 2002) and (2) loosely defined 

guidelines serve to facilitate a broad coverage of decision contexts (see Section 

5.2 & Theme 2). 

 

Guidelines systematize the way of working while a systematic approach increases 

project efficiency. Despite the fact that rational decision-making is desired in 

technical decisions (AIAG, 2008; ECSS, 2009; NASA, 2007; VDA, 1998), rational 

analysis is resource-laden and time consuming (Simon, 1957; March, 1978). 

Therefore, organizations define decision-making process guidelines that allow for 

flexibility to the decision-makers (AIAG, 2008; VDA, 1998). Document analysis 

findings show that decision-making guidelines do not necessitate the use of 

analytical tools, so decision-makers are free to define their own decision 
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management strategy and prioritize the strategy according to the project needs 

and risks involved. 

 

Based on the document analysis of industry norms and guidelines, different 

decision contexts require different decision management strategies (ISO 15288, 

2015). Decision-making guidelines are developed to ensure that they are flexible 

enough to adapt to a wide range of decision contexts. This is supported by the 

findings of this thesis. Theme 2 postulates that if technical decision-making 

guidelines are too rigid by detailing every step of the process, it restricts decision-

maker's capability to select the optimum decision-making strategy which in turn 

depends on the decision objectives, contexts, and boundary conditions. Rigidity in 

technical decision-making stifles innovation, especially during concept creation in 

the product development process. Flexible decision-making guidelines allow 

decision-makers space to think outside the box and thus rely on their intuitions and 

personal judgments to achieve the decision objectives. 

 

In conclusion, this thesis suggests that normative technical decision-making 

process employed in organizations are not completely rational in nature. This 

research finds that rational analysis is not the de facto decision-making approach; 

but is highly recommended by decision-making guidelines, dependent on the 

decision contexts and agreement between the decision-makers. Decision-making 

through rule-following, as the dominant method in engineering organizations, 

strikes a balance between the desired rationality and the required efficiency of an 

organization. While the method strives for rationality in the decision-making 

process, allowing flexibility makes way for heuristics and biases to influence the 

process. Therefore, organizations should be aware of and carefully manage these 

unintended and possible side effects.  

 

RQ 1.2: What decision-making methodologies are actually employed by 

engineering teams for technical decisions? 

 

Descriptive decision-making explains how people or organizations actually behave 

to make decisions (French et al., 2006; Over, 2008). Literature dictates that the 

descriptive decision-making process predominantly operates under Herbert 

Simon’s bounded rationality (Dillon, 1998). Rightfully so, this thesis finds similar 
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results where employees in engineering organizations actually employ personal 

judgments in conjunction with rational analysis when making technical decisions. 

 

The bounded rationality concept posits that human rationality is bounded due to 

the fact that human nature has limitations in processing information and thereafter 

formulating and computing complex problems (Simon, 1956). Due to the limitations 

in human cognitive capability, individuals tend to pursue courses of action that 

meet their minimum utility requirements, rather than maximize them (Simon, 1956). 

In order to overcome the bounded rationality limitation, Kahneman and Tversky 

(1979) hypothesize, in their seminal descriptive theory for decision-making under 

risk, that people usually make decisions by editing and evaluating alternatives to 

simplify choice and “people normally perceive outcomes as gains and losses, 

rather than as final states of wealth or welfare”. By relying on heuristics, people 

utilize minimal time and computation to make decisions (Gigerenzer & Todd, 1999). 

While technical decision-makers in engineering organizations have been shown to 

exhibit a tendency to rely on heuristics and the prevalence of biases, they are also 

making use of rational analysis in their decision-making process. 

 

The results of the content analysis demonstrate that rational analysis and personal 

judgment operate simultaneously alongside rule-following behavior as the guiding 

mechanism. As discussed in RQ1.1, the normative decision-making process in 

engineering organizations allows for flexibility for the decision-makers to balance 

the required efficiency and desired rationality. Decision-making guidelines only 

provide the basic foundation and structural support to guide them to make objective 

decisions; so, the decision-makers are expected to provide the details themselves. 

Theme 3 of content analysis indicates that the usage of decision analysis and other 

analytical tools was prevalent among the decision-makers, especially in high-risk 

decisions. However, decision analysis would only assist in systematically 

organizing, analyzing, and ranking the solutions, in part because the decision-

makers tend to rely on their personal judgments to make the final decision (Theme 

7, Section 4.2). This is consistent with the literature where decision analysis should 

be used as a tool to assist decision-makers in making informed decisions; rather 

than making decisions itself (Wright & Goodwin, 2009). 
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Theme 5 suggests that decision-makers employ decision analysis and personal 

judgments interchangeably, contingent upon decision contexts, project constraints, 

and information availability. According to the literature, in highly complex decision 

scenarios, decision analysis is favored due to human limitations in formulating and 

computing complex problems involving numerous interdependent variables 

(Simon, 1957). Conversely, Theme 5 further alludes that the participants believed 

they could make more informed decisions using their intuition when the information 

provided was incomplete. In turn, they would gather more information if they 

thought the information provided was insufficient. This finding is in line with the 

study by Hutchinson and Gigerenzer (2005) which concluded that in situations with 

insufficient input data, making decisions based on heuristics proved advantageous. 

Thus, Theme 3 explains that, in a majority of the cases, rational analysis and 

personal judgment were exercised in conjunction with each other.  

 

Despite the fact that many participants agree that decision analysis leads to 

effective decision-making, they would still scrutinize the input data based on their 

knowledge and experience (Theme 6). The result shows the decision-makers 

evaluate all information introduced into the decision-making process, assessing 

the completeness, quality, relevance, and reliability of the source. As they process 

the information through the lens of their own experience and knowledge, their 

biases may potentially compromise the objectivity of the decision-making process. 

Wilson (2014) similarly observed this information-processing behavior in a study 

where people often ignore all but pronounced information or events, perceive 

information in line with their expectations, and are influenced by the order in which 

information is presented. 

 

Concurrently, this thesis found that the majority of decision-makers did not make 

final decisions based solely on recommendations from decision analysis tools 

(Result 3, Section 5.2), but rather re-evaluated the tool-ranked alternatives based 

on the project’s risk, requirements, and constraints (Theme 8, Section 5.1). They 

questioned the robustness of the tool (Result 4, Section 5.2), and therefore, 

preferred to render the final decision themselves. This skepticism supports existing 

research; given that numerous studies have underscored various challenges and 

limitations of decision analysis, including weak theoretical foundations, inadequate 

analysis by tool users, analyses often conducted from a specific perspective, and 
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probability estimates being susceptible to bias (Dowding & Thompson, 2009; Goel 

et al., 1992; Keeney, 1982). 

 

This thesis has further discovered that the decision-making process in an 

engineering organization was largely a group effort (Result 3). Information was 

gathered and processed, alternatives were generated and deliberated, and 

decisions were taken with the participation and agreement of project members 

(Theme 1). The complexity of technical aspects in product development 

necessitates decision-makers to engage in cross-functional teams to deliberate 

decisions. Decision-makers supplemented decision analysis by deliberating its 

outputs collectively within the team (Result 3), as they highly valued the opinion of 

subject matter experts (Theme 4). Theme 1 explains that a cross-functional team 

consists of information seekers, a coordinator, and decision stakeholders of 

varying knowledge and expertise, which supports the findings on the organizational 

decision-making team setup by Benne and Sheats (2010). The group’s diverse 

knowledge and experience bring a wealth of ideas and critical viewpoints, which 

contribute to the team making robust decisions (George & Chattopadhyay, 2008). 

However, this may also inadvertently introduce undesirable social biases, such as 

groupthink and herd behavior, or create friction between team members (Janis, 

1971; Robbins & Judge, 2001). 

 

Based on the findings and arguments above, this thesis concludes that the 

technical decision-making process used in engineering organizations is both subtle 

and complex. It is akin to a three-way tug of war where rule-following, rational 

analysis, and personal judgment are pulling in different directions to reach an 

equilibrium point. None of the three decision-making methods can be deemed 

dominant, as the equilibrium point changes based on the decision context and 

organizational factors. Social and cognitive biases thrive in the kind of environment 

where personal judgments exist.  

 

RQ 1.3: What biases exist in the technical decision-making process? 

 

A total of 111 biases from the literature were identified and summarized (Section 

2.5.3). The biases were analyzed and then integrated into the conceptual 

framework. This integrated framework proposed a unified model of rational and 
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behavioral technical decision-making, where three bias clusters influence decision 

analysis: information processing, alternative selection, and decision revision 

(Figure 23). This unified model was validated by the findings in the qualitative 

analysis, where each bias cluster was shown to influence the technical decision-

making process. Additionally, the qualitative analysis revealed that both cognitive 

and social biases are present in each bias cluster. 

 

The academic community has shown increased interest in exploring biases in 

engineering decision-making. For example, Siefert and Smith (2011) investigated 

industry data, identifying several biases, including probability centering and 

consequence bias, which influence technical risk management in engineering 

organizations. Furthermore, Hallihan, Cheong, and Shu (2012), discovered the 

presence of confirmation bias during the stages of concept generation and 

evaluation. Also, Agyemang, Andreae, and Mccomb (2023) confirmed the 

existence of biases such as confirmation bias and overconfidence bias within 

engineering design practices, while also suggesting the potential presence of other 

biases like anchoring, hindsight, availability, and information. Having found similar 

results, this study delves deeper into the manifestation of biases within the product 

development process. 

 

Decision analysis is an objective analytical tool that accepts input information fed 

by the decision-makers. Since the organizational decision-making process is 

longitudinal (Shapira, 2002), one cannot exclude the probability that the input 

information has already been biased in preceding decisions. In the literature, 

biased information passing was observed as a negotiation tactic by reporting 

conservative estimates to secure design margins in order to manage risk 

throughout the design process (Austin-Breneman, Yu, & Yang, 2016). In the 

content analysis, it was discovered that decision-makers exhibited some degree of 

information processing biases, where two biases were prominent: confirmation 

bias and ingroup bias (Theme 6). The analysis showed that decision-makers were 

skeptical of the information fed into the decision-making process. They would 

process the information, disregard those that are not aligned with their knowledge, 

and only accept information from sources they deem reliable. This behavior is 

aligned with definition of confirmation bias, where people are biased towards 

information that reaffirms their preexisting hypothesis and past choices, and 
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discount information that undermines them (Klayman, 1995; Plous, 1993). Zheng 

et al., (2018) also verified the presence of confirmation bias in the concept selection 

process, with participants primarily seeking evidence that aligned with their existing 

beliefs. fg 

 

Furthermore, Theme 6 also showed that the decision-makers favored and readily 

trusted information from in-group sources, such as subject matter experts within 

their organization. They were skeptical of out-of-group sources of information 

unless it was from a credible source such as international regulatory bodies or 

industry associations. This inclination to prioritize one's own group over the others 

can be attributed to ingroup bias as defined in the literature where ingroup bias is 

an individual’s inclination to favor inputs from members of their own group over 

those of other groups (Mullen, Brown, & Smith, 1992). 

 

Additionally, decision analysis is an analytical tool that processes information and 

empirically ranks alternatives based on decision objectives and constraints. As 

discussed in RQ1.2, the decision-makers did not completely depend on decision 

analysis to make decisions as they would prefer to make the final decision 

themselves. This can be seen in Theme 8 where the participants subjectively re-

evaluated the ranked solutions from decision analysis based on different factors 

such as project risk and constraints. Theme 7 further shows that the decision-

makers doubted decision analysis due to its robustness to make an informed 

judgment. In turn, they rely on their heuristics and biases. The findings indicated 

that participants often had pre-existing preferences and used decision analysis to 

validate their decisions. They were confident in their judgments, particularly when 

the data matched their expected outcomes. This is an indication of an illusion of 

validity bias,  where decision-makers tend to choose an outcome based on its 

proximity and alignment with their expectations (Tversky & Kahneman, 1974).  

 

As discussed in RQ1.2, technical decision-making in engineering organizations is 

a group effort.  Theme 1, Theme 3, Theme 4, and Theme 6 of content analysis 

demonstrated that participants relied on their team to evaluate options and make 

final decisions. Result 3 of the exploratory data analysis verified the findings that 

decision-makers tend to conform to team consensus, a tendency that can be 

subjected to social bias. Another phenomenon that could have emerged and 
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influenced the team’s decision is groupthink where team consensus is required 

from the majority of the team members to agree on a decision. Groupthink, as per 

the literature definition, is the conformity of a social group imposed on its team 

members (Whyte Jr., 1952). In engineering teams with diverse hierarchical 

statuses, status disparity influences group decision-making, often favoring high-

status members. In a situation under stress, team decisions congregate around 

high-status members due to their perceived competency (Salas, 1991). Such 

tendencies can have negative implications for technical decision-making, with 

high-status members disproportionately influencing the decision process. 

 

Decision analysis is an objective analytical tool that can also be used to re-assess 

existing decisions based on new information or updated objectives and constraints. 

The result of content analysis (Theme 9) shows that the technical decision-makers 

would reconsider prior decisions in light of new information. However, if a project 

was nearing completion and ample resources had already been invested, they tend 

to escalate their commitment towards prior decisions, instead of looking for an 

optimal solution. The literature suggests that individuals with an escalation of 

commitment bias tend to reinforce their commitment to a decision when 

significantly invested in time or money, or will be perceived as responsible for 

potential failure (Staw, 1976). Schmidt and Calantone (2002) suggested that the 

bias may increase the likelihood of product development failures due to decision-

maker’s hesitancy to discontinue unsuccessful projects. Another possibility, risk 

aversion might also be at work in these situations. Theme 9 further noted that the 

possibility of project failures due to their inaction towards risks would compel them 

to re-consider their decision, even when they had heavily invested in the decision. 

This behavior aligns with prospect theory, which posits that risk-averse individuals 

tend to place more value on losses than equivalent gains (Kahneman & Tversky, 

1979). Consequently, a decision-maker's risk tolerance and bias can significantly 

influence the success of engineering projects. 

 

Based on the discussion above, this study found that technical decision-making in 

engineering organizations appears to be rife with social and cognitive biases; 

where the biases distort information processing, affect alternative selection, and 

influence decision revision. Heuristics and biases are deeply embedded in the 

human decision-making process. These biases can be favorable because rational 
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analysis has limitations and knowledge of experienced decision-makers can 

augment the decision-making process to yield an optimum decision. Conversely, 

biases can negatively impact the technical decision-making process. Over-reliance 

on human intuitions may result in less effective decision-making because humans 

may bring in other factors such as emotions and personal background when 

making a decision.  

 

RQ 1.4: To what extent do decision-makers exhibit rationality in technical 

decision-making? 

 

The rational model of decision-making can be described as “a model where 

individuals use facts and information, analysis, and a step-by-step procedure to 

come to a decision” (Uzonwanne, 2016, pg.1) The rationality can be theoretically 

achieved assuming humans can express their preferences consistently (Von 

Neumann & Morgenstern, 1944). When human behavioral elements are factored 

into the decision-making equation, their biases interfere with the rationality of the 

process. However, It is important to emphasize that biases should not be seen as 

errors, but incapability to achieve certain abstract rules (Kahneman, 1991).  

  

Exploratory data analysis (Section 5.2) indicates that decision-makers consistently 

relied on their biases to some extent when making technical decisions. Overall, 

with a mean of 2.56 on a scale of 1 to 4, decision-makers appeared moderately 

biased when making technical decisions (see Result 1). There exists a high 

expectation of rationality in technical decision-making (Theme 4, Section 5.2.1), 

especially in high-stake situations such as in safety-critical industries where 

objective-driven procedures were established for technical decisions (Theme 2). 

The mean score of 2.56 in this study highlights the discrepancy between expected 

rationality and the reality of the decision-making process, where decision-makers 

understood the importance of rationality yet remained moderately biased. The 

degree of biases also differed at different stages of the decision-making process. 

 

Decision-makers displayed a moderate bias when processing information and 

making decisions but were slightly less biased when revising decisions (see Result 

2). They often did not accept information at face value but used their social and 

cognitive biases to process information. This is probably because, in the age of 
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pervasive fake news and misleading information, relying on intuitions to filter out 

erroneous information may seem to be more reliable. This was shown in the results 

of the qualitative analysis (Theme 6) where decision-makers questioned the 

accuracy of the information and source reliability. However, decision-makers tend 

to be more ‘rational’ when revising decisions at a later stage in the product 

development process. This was due to the availability of new information during 

decision revision and the need to assess project impacts objectively (Theme 9). 

 

The majority of decision-makers did not make their final decisions based on 

recommendations from decision analysis tools (Result 3). This hesitation is rooted 

in concerns over the tools' reliability and the comprehensiveness of the information 

provided (Result 4). Decision analysis tools rely on users to collect and feed 

information into the tools, and thus, the quality and completeness of information 

are dependent on the user’s input. Since decision-makers processed information 

according to their personal judgments (Theme 6), the information fed into the 

analytical tool might have been disregarded or biased by the decision-makers. This 

calls into question the objectivity and robustness of the tool. Even though decision-

makers value information completeness, their behaviors often contradict this belief, 

where Result 5 showed that the participants only requested 57% of the available 

information. Interestingly, participants who doubted the information completeness 

of the decision analysis in Result 4 also requested, on average, merely 56% of the 

available information. Hence, it can be argued that participants relied on their own 

knowledge and experience, and therefore, would not have to depend on external 

information to make decisions. This is supported by the finding (Result 5) where 

the experienced decision-makers requested only 49% of the available information, 

in comparison to 63.9%. with the less experienced participants.  

 

Result 3 demonstrates a preference for team-based decision-making (62.8%) over 

individual decision-making (21.8%). This correlates with the qualitative finding 

(Theme 1) that validates the collaborative nature of technical decision-making. 

Decision-makers pursued inputs from team experts and prioritized consensus 

decision-making (Themes 3 & 4). This resonates with existing research suggesting 

the need for specialized, multifunctional teams in highly complex engineering 

projects (Chen & Lin, 2004).  
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Furthermore, this study also identified a correlation between decision-makers' risk 

tolerance and bias tendencies. Result 8 indicates 73.4% of participants had low 

risk tolerance and Result 9 shows those with low tolerance relied heavily on biases. 

This result is not particularly surprising as a study by Mufti, Bakht, Tadros, Horosko, 

& Sparks (2005) showed that civil engineers are more conservative in their 

engineering judgments. Another study that systematically assessed risk attitudes 

among engineers suggests an inclination toward risk aversion over risk-seeking 

behavior (Van Bossuyt, Dong, Tumer, & Carvalho, 2013).  

 

Hence, it can be summarized that technical decision-makers appear to be 

moderately biased when making technical decisions (Result 1), as they exhibited 

noticeable bias but were leaning towards impartiality. This can be attributed to their 

strong social bias (Result 7), reliance on team consensus (Result 3), and cautious 

approach to using decision analysis (Result 4). This can be due to the fact that 

decision analysis, as a tool for rational decision-making, possesses several 

shortcomings, such as it is highly dependent on the users, information that is fed 

into the tool might already be biased, and have a weak theoretical foundation 

(Austin-Breneman et al., 2016; Dowding & Thompson, 2009; Goel et al., 1992; 

Keeney, 1982). Furthermore, the knowledge and experience of subject matter 

experts within the decision-making groups were highly valuable to the team and 

were used to support making robust technical decisions (Theme 1, Theme 3 & 

Theme 4). However, the study shows that that decision-makers did not completely 

dismiss decision analysis tools but used the tools as a guide to make decisions. 

This is in line with the objective of decision analysis where the tool should assist 

decision-makers to make better decisions, and not make the decision itself (Wright 

& Goodwin, 2009). Therefore, the observation in this study that decision-makers 

utilized rational analysis and personal judgments in tandem (Theme 3) might prove 

to be a good synergy to achieve better technical decisions. 
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5 Conclusion 

 

In everyday practice, rational analysis is expected to be used as the governing 

principle for decision-making, where data are fed into the process to obtain 

rationally driven technical decisions. However, the outcome of the process may 

deviate from the outcome of the rational process due to the behavioral factors of 

human decision-makers. This research attempts to explain the dynamic interplay 

between rational and behavioral components in the technical decision-making 

process in product development.  This chapter will address the main research 

question by weaving together the research findings from both qualitative and 

quantitative data to form an understanding of the technical decision-making 

process in engineering organizations. This chapter also outlines the contributions 

of the research and provides a roadmap for future research directions, suggesting 

areas that can be explored to further deepen the understanding of the subject 

matter. 

 

RQ 1: How do engineering organizations make technical decisions during 

product development? 

 

Technical decision-making in engineering organizations can be viewed from two 

perspectives: normative decision-making, where organizations prescribe 

guidelines for optimal decision-making, and descriptive decision-making, which 

describes how people within the organization behave when actually making 

decisions. Based on research findings and data analyses, normative decision-

making centers around rational analysis and rule following while descriptive 

technical decision-making is a group effort where decision-makers do not strictly 

follow the decision-making guidelines prescribed by their organizations but instead 

rely on their heuristics which can be subjected to bias. In achieving effective 

decision-making, rational analysis is often intertwined with the biases of the 

decision-makers, such as confirmation bias and escalation of commitment. 

 

Engineering organizations, especially in the safety-critical complex-system 

industries such as space, medical devices, and automotive, require the need for 

robust technical decision-making due to the inherent risk and complex nature of 

their products. This is reflected in the relevant international standards and industry-
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wide norms and guidelines where the importance of rationality and objectivity in 

decision-making is heavily emphasized (refer Section 2.5). At the same time, 

organizations also balance the risks and opportunities of rational decision-making 

with organizational constraints, such as cost, manpower, and time. However, it was 

observed that the decision-making in these organizations is governed by the rule-

following method because it has to balance desired rationality and the required 

efficiency of the organizations (refer Section 2.4.3). In the rule-following method, 

organizations loosely prescribe a set of rationally-driven rules and guidelines to be 

followed, allowing some degree of flexibility for the decision-makers to navigate the 

complexity of the decision contexts (AIAG, 2008; VDA, 1998). This flexibility 

enables heuristics and biases to creep in and is reflected in the decision-maker’s 

behavior in making technical decisions. 

 

Decision-makers in engineering organizations employ all three methods of 

decision-making – rule-following, rational analysis, and personal judgment – to 

make technical decisions. The flexibility of the prescribed decision-making 

guidelines allows them to align decision management strategy with the project 

needs and risks involved. The decision-makers may use decision analysis tools to 

guide them during the decision-making process, but the results of the study reveal 

that they do not necessarily rely on the tools to make final decisions (Result 3). The 

decision-makers highly favor team consensus in decision-making, as they value 

the experience of the subject matter experts and readily trust information from 

ingroup sources (Result 3, Theme 3, Theme 4 & Theme 6). Social and cognitive 

biases thrive in the kind of environment where personal judgments exist. This is in 

line with the research findings where technical decision-makers have stronger 

social bias compared to cognitive bias resulting in a higher likelihood of bias to 

prevail in the technical decision-making process, especially in group settings 

(Result 7). Group decision-making is undoubtedly beneficial to achieve well-

rounded decisions, but the effect of social biases may compromise optimal 

decision-making.  
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Figure 49: Synthesized Model of Technical Decision-Making in Product 
Development 

 

Figure 49 summarizes a descriptive model of the technical decision-making process 

in product development as found and analyzed in this study (Section 4.1). Biases 

in the technical decision-making process can alter the input information and thus 

affect decision outcomes. Information is processed through the biased lens of 

decision-makers, where information that is not aligned with their knowledge may 

be filtered or discarded, and those they only deem reliable are accepted. If the 

information fed into the decision analysis tools is biased to begin with, then the 

outcome of the analytical process will also be inadvertently biased. For example, 

machine learning, as a decision analysis tool, has been found to be biased towards 

specific groups of people. This is mainly caused by the biased data with which the 

machine learning algorithms were trained (Mehrabi, Morstatter, Saxena, Lerman, 

& Galstyan, 2021). Concurrently, as found in the current study, participants have 

been observed to rely on their heuristics to challenge and to some extent discount 

the information that differs from their knowledge or their consensus (Theme 6). 

This is an indication that confirmation and in-group biases exist in the information-

processing stage of the decision-making process (Figure 37). 
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The technical decision-making process is based on the rational model but can be 

influenced by the biases of the decision-makers. Even though decision-makers use 

decision analysis tools to guide their decision-making process, they do not rely on 

the decision analysis tool recommendation to make a decision (Result 3). In fact, 

alternative selection bias was observed in the study that may affect the outcome 

of the decision-making process (Result 2). Decision-makers also tend to trust their 

judgments and rely on the opinions of their group (Result 3). When under pressure, 

particularly during the final stage of a project, their decision revision bias would 

affect their decision where they would reaffirm their prior resolution to meet a 

pressing deadline (Result 2).  

 

Decision-makers in engineering organizations seem to be moderately biased and 

risk-averse when making technical decisions. Participants’ demographics, such as 

work experience and position, show no significant bias deviation between the 

decision-makers (Result 6). The mean difference between the bias tendency of 

engineers, project managers, and department managers, and early-career and 

late-career executives was not statistically significant. However, the study showed 

that their risk averseness had a significant effect on their bias tendency. 73.4% of 

the decision-makers had low-risk tolerance and participants with low-risk tolerance 

were found to have a stronger bias tendency than those with high-risk tolerance 

(Result 9). In an era increasingly affected by the proliferation of misinformation, it 

is crucial to meticulously scrutinize all information prior to making decisions, 

particularly when it pertains to safety-critical systems. 

 

Therefore, this study can conclude that technical decision-making methods 

employed by engineering organizations, especially those in safety-critical 

industries with highly complex systems, do not completely embrace rationality in 

their decision-making process. The organizational need to strive for rationality and 

efficiency compels decision-makers to adopt rule-following approaches. However, 

at the same time, the flexibility of the prescribed decision-making guidelines allows 

decision-makers to maneuver the complexity of the technical decisions and make 

decisions as they see fit. This is because even though organizations must adhere 

to stringent safety standards, these standards do not explicitly define the decision-

making methodologies or tools to be used (ECSS, 2017; IEC, 2020; ISO, 2011). 

This flexibility makes way for heuristics and biases to creep in. This is duly reflected 
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in the way decision-makers actually behave to make decisions; they employ rule-

following, rational analysis, and personal judgment concurrently. Simultaneously, 

social and cognitive biases influence the decision-making process where group 

decision-making is highly valued and plays a role in the process. This tendency for 

social biases causes decision-makers to rely on human intuitions instead of rational 

analysis. Human intuitions are highly subjective, and their reliability and 

effectiveness are dependent on the experience, knowledge, and emotional 

intelligence of the group members. 

 

Finally, heuristics, which can be subjected to bias, do not necessarily lead to less 

effective decision-making. While decision analysis is widely regarded by many 

organizations as a valuable tool for making robust decisions, over-reliance on pure 

rationality in decision-making can lead to an overwhelming amount of analysis, 

diminishing the inclination to act  (Hodgkinson & Starbuck, 2008). Human intuitions, 

on the other hand, can offset the dependence on rationality as the knowledge of 

experienced decision-makers can add value to the decision-making process. 

Although heuristics are often viewed as irrational, Robbins and Judge (2001) opine 

that heuristics do not always contradict but rather can complement rational analysis 

and they advocate for integration between rational analysis and heuristics to 

enhance decision-making processes. Furthermore, Kahneman (1974) posits that 

while some heuristics are "highly economical and usually effective," they can result 

in systematic errors; he, therefore recommends a deeper understanding of 

heuristics and biases to enhance decision-making under uncertainty.  

 

In conclusion, the technical decision-making process in industries involving safety-

critical, highly complex systems is a rational act influenced by behavioral elements. 

Despite stringent safety standards and regulations, the technical decision-making 

process in these engineering organizations is not rigidly controlled. This can be 

attributed to the inherent limitations of decision analysis. While numerous scholars 

recommend the cautious integration of heuristics into the technical decision-

making process, INCOSE advises a careful approach when using decision analysis 

due to its various limitations. Therefore, the researcher believes that rational 

analysis is a powerful tool that should be pursued but at the same time, behavioral 

elements be allowed to co-exist in the decision-making process. As long as 
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engineering organizations can identify and manage the negative side effects of 

heuristics and biases in the decision-making process.   

5.1 Contributions 

 

This research provided readers with valuable insights into the expected and actual 

technical decision-making process in engineering organizations in the study. The 

study analyzes the technical decision-making process in product development of 

engineering organizations across multiple industries. Four key contributions of the 

thesis are outlined as follows: 

 

Contribution #1: Synthesized Model of Rational and Behavioral Technical 

Decision-Making in Product Development 

 

The thesis proposes a synthesized model of rational and behavioral technical 

decision-making, specifically applicable to product development. The model was 

developed by integrating the conceptual framework with a decision context (i.e.: 

product development). Qualitative research facilitated the identification of human 

factors, namely social bias, cognitive bias, and risk appetite, affecting technical 

decision-making, which were then incorporated into the model. The model outlines 

three decision-making stages that can be influenced by human factors – 

information processing, alternative selection, and decision revision. The human 

factors identified through the research are cognitive and social biases and risk 

tolerance. This theoretical contribution enhances the understanding of how biases 

may impact decision analysis and provides a comprehensive framework for 

studying the technical decision-making process.  

 

The study of bias influence on the decision-making process within a product 

development context is sparse. Most studies that explored the existence of 

heuristics and biases in the technical decision-making process, focus on the 

influence of a specific bias only on the outcome of the process (Hallihan, Cheong 

& Shu, 2012; Zheng, Ritter & Miller, 2018; Nelius et al., 2020; Agyemang, Andreae 

& Mccomb, 2023). This thesis, on the other hand, holistically modeled the dynamic 

interplay between rational and behavioral elements of human factors in the 

technical decision-making process. 
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Contribution #2: Insight into technical decision-making methods employed in 

engineering organizations 

 

The thesis provides valuable insights into the decision-making process employed 

in engineering organizations for technical decisions. It lays out the current 

landscape of the technical decision-making process in engineering organizations, 

especially those in safety-critical industries, and analyzes the gaps and deviations 

between the expectation and reality of the decision-making process. It further 

highlights the importance of understanding the impact of human behaviors and 

their role in governing technical decision-making. This practical contribution aids 

organizations in understanding and evaluating their decision-making strategies 

and processes, enabling them to make informed improvements. For example, the 

negative effects of information bias can be mitigated by establishing multiple 

redundant paths for processing information, which serve as checks and balances. 

 

Current research on the decision-making process in product development often 

appears to overlook the current practices prevalent in industry. Many of these 

studies opted for secondary sources from academic papers instead of literature 

derived directly from industry sources (Tang et al, 2022; Nemtinov et al, 2019, 

Kranabitl et al, 2021). Moreover, some research relied on engineering students to 

examine the impact of bias on the technical decision-making process in product 

development (Hallihan & Shu, 2013; Gweon et al., 2015), raising concerns about 

the students' lack of real-world product development experience and expertise. In 

contrast, this thesis exclusively involves participants from various industries and 

directly references engineering organizations and industry documents as primary 

sources. Thus, it serves to bridge the theoretical insights of academia with the 

practical experiences of industry. 

 

5.2 Limitations 

 

As discussed in Chapter 2, a decision-making process is highly contextual. So, this 

thesis focused on the technical decision-making aspect of product development 

process in engineering organizations within safety-critical highly complex system 
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industries. For that, a general model of the design development phase in product 

development, based on industry-wide applications, was formulated. Therefore, the 

model produced in this thesis may only be applied in the context of product 

development of safety-critical highly complex systems in engineering 

organizations. Its application in other decision contexts may need to be adapted 

accordingly. 

 

Secondly, the Synthesized Model of Rational and Behavioral Technical Decision-

Making in Product Development (Figure 49), may not account for all variables and 

factors influencing technical decision-making in safety-critical, highly-complex 

systems. The dynamic nature of decision-making processes coupled with 

unpredictable external elements, such as organizational, social, and political 

issues, contribute to unforeseeable factors that can affect the decision-making 

processes in ways not covered in this study. 

 

Lastly, relying on qualitative methodology, such as interviews, may introduce 

subjective biases into the study. Data gathering via interviews enables exploration 

of the decision-making behavior in engineering organizations, however, the 

interpretations of the data were subjected to the researcher’s knowledge of the 

subject matter, which might not capture the full spectrum of decision-making 

complexities in these environments. Additionally, the qualitative research sample 

size was limited to 15 participants, as data saturation was achieved at this point. 

However, it's important to note that if more interviews had been conducted, 

additional information might have emerged but would have been infrequent. 
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5.3 Future Direction 

 

This research has shed light on the intricate interplay between rational and 

behavioral elements in technical decision-making within engineering organizations. 

There are several promising avenues for future exploration of this topic. These 

potential directions can further enhance our understanding of decision-making 

dynamics, contribute to more effective decision processes in engineering 

organizations, and ultimately the body of knowledge on decision-making:  

  

 

Academia, Future Direction #1: Advanced modeling technique 

 

Employing advanced computational modeling techniques, such as Partial Least 

Squares Structural Equation Modelling (PLS-SEM), could provide a more 

comprehensive understanding of how behavioral elements manifest in decision-

making processes and possibly forecast decision outcomes using a trained model. 

 

 

Figure 50: PLS-SEM causal model 

 

PLS-SEM enables researchers to model and test causal relationships between 

variables, as it estimates model relationships through an iterative sequence of 

ordinary least squares regressions (Hair et al., 2016). The first-generation 

multivariate data analysis techniques (e.g.: regression and analysis of variance) 

are limited in capabilities, such as analysis of basic model structures and 

observable variables (Haenlein & Kaplan, 2010). PLS-SEM, on the other hand, 

could be used to delve deeper into understanding the intricate mechanisms in 
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technical decision-making, especially to discover if latent variables, such as 

behavioral elements, may cause deviations to rational decision-making. To 

illustrate this, a structural model depicting hypothesized relationships between 

latent variables could be constructed to understand causality between bias clusters 

(Figure 50). Structural model path coefficient, which is a value between -1 and +1, 

denotes the strength of relationship or causality between the variables. For 

example, in Figure 50, the path coefficient of 0.257 shows fairly strong causality 

between Information Processing and Decision Revision latent variable. The 

significance of the relationship could then be measured using the p-value.  

 

 

Figure 51: PLS-SEM predictive model 

 

The predictive power of PLS-SEM could also be harnessed by developing a 

predictive model that could forecast decision outcomes. In order to do this, the 

models would have to be trained using a large number of datasets to ensure high 

predictive power and predictive relevance. These predictive models could guide 

decision-makers by offering insights into potential outcomes under different 

decision scenarios and demographics. For example, a structural model with 

hypothesized relationships between latent (e.g.: social and cognitive biases) and 

measured (e.g.: demographic parameters) variables could be constructed to 

predict the social and cognitive bias tendency of decision-makers based on their 

demographic parameters (Figure 51). 

 

Academia, Future Direction #2: Application to different decision contexts 
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A natural progression for extending the findings of this research would be to apply 

the conceptual framework to various decision contexts within engineering 

organizations, outside of safety-critical highly complex systems industries. By 

examining the interplay between rational and behavioral elements manifesting 

themselves in different scenarios, a better understanding of decision-making 

dynamics can be accomplished. 

 

In the thesis, the conceptual framework was applied to the product development 

decision context. This same framework could be applied to manufacturing, supply 

chain, and technical customer acquisition decision scenarios too. The findings of 

each application could show the nuances of human behavior in different technical 

decision-making contexts.  

 

Industry, Future Direction #3: Human-oriented technical decision-making 

 

Building upon the understanding that behavioral factors have an influence on the 

technical decision-making process, future research could look into improving the 

process in engineering organizations by integrating human factors into the process 

and ensuring optimal decision-making team composition.  

 

The effectiveness of engineering organizations’ technical decision-making should 

be evaluated in relation to the decision-making processes. As illustrated in Figure 

49, it is important to safeguard the information input into the decision-making 

process from information-processing biases. This can be achieved by having 

subject matter experts objectively evaluate all information and critically assess the 

information sources. The objectives and constraints of technical decision-making 

processes must be also considered objectively in the process, without the influence 

of the decision-maker's judgment. While the use of decision analysis tools is highly 

recommended, it is important for engineering organizations to recognize that these 

tools are not infallible; thus, the outputs of these tools must be pragmatically yet 

objectively considered. To minimize alternative selection bias, any deviations from 

the tool's recommendations should undergo review by the stakeholders and be 

based on technical analysis. 
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As explained in Section 4.3, technical decision-making is a group effort, 

underscoring the importance of the composition of the technical decision-making 

team in yielding optimal decisions. At a minimum, the team should be composed 

of relevant stakeholders, subject matter experts, and support members. In a team 

setting, social biases can affect the technical decision-making process. Factors 

such as group cohesion, diversity, status, culture, and established norms can have 

impacts on group productivity and the quality of decisions made (Forsyth, 1990; 

Robbins & Judge, 2001; Berger, 1977; Janis, 1971). Therefore, engineering 

organizations must give careful consideration to these variables when assembling 

a technical decision-making team.  
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7 Appendix 

Appendix A: Participant Information Sheet 

 

Participant Information Sheet - Modeling of Organizational decision-making 
processes With Consideration of Human Factors 
 
This interview is conducted as a part of a PhD project. Through the interview, we aim to 
develop a better understanding of organizational decision-making processes used in the 
industries specifically for product development technical decisions.  
 
This project looks to gather qualitative data from semi-structured depth interviews and 
quantitative from questionnaires. From these we aim to develop an in-depth understanding 
of the decision-making processes used in product development lifecycle in the industries, 
exploring in particular: i) Industry-specific decision-making processes, guidelines and best 
practices, ii) the descriptive decision-making process in the industry and iii) the influence 
of human factors in normative organizational decision-making processes. 
 
You have been chosen to participate in your positive response to the interview. You can 
withdraw at any time without giving a reason. Interviews will take around 1 hour at a pre-
decided location. Your contribution to the research will form part of the final report of the 
PhD thesis. Subject to your consent, there will be an audio recording of your responses 
during this research for analysis purposes. These recordings will not be utilized for any 
other purpose without your express written consent and access to the original recordings 
will be restricted. You will not be able to be identified in any ensuing reports or publications 
and we confirm that the interview will be on the condition of anonymity for the interviewee. 
 
 
  
Contact information: 
Supervisor        Student 
Dr Michael Emes        Muhammad Fahmi Ibrahim 
Director, Centre for Systems Engineering      PhD Systems Engineering  
University College London      UCL, Space & Climate Physics, 
Mullard Space Science Laboratory     3 Taviton St, 
Holmbury St Mary, RH5 6NT, UK     Bloomsbury, London, WC1H 0BT 
Tel : + 44 (0)1483 204100      Tel: +49 152 02856622 
Email: m.emes@ucl.ac.uk      Email: fahmi.ibrahim@gmail.com 
 
 
 
Signature   Date    Print Name 
 
___________________ _______________       ___________________ 
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Appendix B: Interview Guide 

Objectives 

 

The objectives of this qualitative research are: 

• to verify the unified model of rational and behavioral technical decision-

making 

• to understand actual decision-making process in engineering organizations 

• to uncover new information that can be used to improve the model 

• to detect biases that exist during the technical decision-making process 

 

Protocols 

 

• Provide respondent with participant information sheet 

• Inform respondent that they can withdraw from the interview at any time 

• Inform respondent that they do not have to close any confidential 

organizational information or personal information 

• Inform respondent that they are being recorded but their names and 

personal details will not be stored or disclosed 

• The questioning does not to follow the specific ordering, but adapted 

according to the flow of the conversation 
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Initial Questions 

 

1. What kind of technical decisions do you make on a daily basis? 

Note: Ask for examples of the technical decisions 

 

2. Does your organization prescribe technical decision-making 

methodologies or guidelines?  

Objective: to understand the organization's decision-making procedures 

Note: Follow up by asking about specific tools or methodologies used in 

the organization 

 

3. How do you, personally, make technical decisions?  

Objective: to understand personal tendencies in making decisions 

Main Questions 

 

4. How do you decide if a decision has to be made using an analytical 

process or personal judgment?  

Objective: to probe if decision analysis is being used in all decision 

scenarios 

Note: Probe the scenarios where this strategy is applicable 

 

5. If an analytical process is applied to help decision-making, how do 

you choose between the alternatives?  

Objective: to investigate alternative-selection bias 

 

6. How do you evaluate the information that is provided to make 

specific technical decisions?   

Objective: to investigate information-processing bias 

 

7. If a decision has been made and new information is provided 

afterward, what do you do?   

Objective: to investigate decision-revision bias 

 

8. What is your approach to routine decision-making with slightly 

different information?  

Objective: to probe if there are any other bias categories 
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Appendix C: Content Analysis: Full 

 

Questions Part. Condensed Meaning Unit Codes Theme 
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A Decides mostly on organizational matters in project meetings 
engineering 
management decision 

  

A Defines and decides measures to facilitate project work 
engineering 
management decision 

  

B 
Selection of designs and solutions exist in the organization, 
decision-maker chooses the most suitable ones for the situation 

product design 
decision 

  

B Decisions are normally made or facilitated by the team group decision-making 1 

B Decision is made from personal judgment based on expert inputs 
personal judgment 
based on expert 
inputs 

6 

B 
designs and solutions available from the organization may not 
totally fit with customer requirements 

product design 
decision 

  

C 
Decisions on system design for platform and production 
locations 

product design 
decision 

  

D 
High level guidelines are provided on how to make decisions, but 
they are open to interpretation 

DM procedures are 
not always detailed 

3 

E Manufacturing decisions in production machine maintenance 
manufacturing 
decision 

  

F Technical project management. Cost, timing, technical decisions. 
technical project 
management 

  

F Information is gathered within the team. 
group information 
processing 

1 

F Decision is made in consensus through brainstorming. team consensus 1 

G 
Technical decisions to release supplier components. 
Requirement-based technical decision 

supplier-based design 
decision 

6 

H Integrating systems between various directorates systems integration   

H 
Early phase of development, making high level, key technical 
decisions 

high level design 
decision: early phase 

  

H 
Later stage, making technical decisions that are more geared 
towards technical problem solving and if deviations can be 
accepted 

low level design 
decision: later stage 

  

H 
Development is an iterative process. Concepts are checked with 
in-depth design to check their feasibility already in the 
conceptual stage. 

requirement-design 
iterative decisions 

  

I Software engineer oversees sub-contractors 
supplier-based design 
decision 

  

I Decisions are made in progress meetings and design reviews group decision-making 1 

I 
IF the decision is simple and has not much impact on the project, 
the discussion will be short and straightforward 

PJ = Simple and easy 
decision 

7 

J 
Early phase studies, looking at new topics and problems, their 
solutions and the pros and cons 

high level design 
decision: early phase 

  

J 
Study requirements and concepts from various directorates, and 
help them make decisions and assess feasibility 

system analysis 6 
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K 
Project management is a kind of decision-making, only on high 
level non/technical decision. Sometimes, make the final decision 

Project management   

L Handle production targets and issues 
manufacturing 
decision 

  

M 
Most of technical decisions are about requirement negotiations, 
and the politics involved. Technical part is the easy bit. 

technical decision is 
negotiation 

1 

M Decision-making in space sector tends to be more conservative     

M Technical decisions are political. You don’t make optimal 
decision it first time around, so it can be optimized at later stage. 

technical decision is 
political 

1 

N Technical decision is about balancing needs of stakeholders 
technical decision is 
negotiation 

1 

O 
Technical decision has to be backed by rationale. In term of 
assessment and documentation. 

technical decision 
must be documented 
and rationalized 

6 

O 
The decision taken also has to be verified through analytical 
methods or tests. 

Technical analysis is 
needed 

6 
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A 
BES, process-driven problem management tool for technical 
issues 

DM procedures are 
available 

3 

B Organization prescribes DM guidelines 
DM procedures are 
available 

3 

B 
Technical change, either production or development issues, is 
made within a team through change control board 

DM procedures are 
available 

3 

B 
DRBFM and focus matrix to identify criticality of decision and its 
impact on other processes 

analytical process 
tools 

3 

B Decision rules are available for making change decisions 
DM procedures are 
available 

3 

B Decisions are made by a team group decision-making 1 

B 
Decision rules also prescribe the methods to evaluate the 
criticality of decision 

DM procedures are 
available 

3 

C There is process on structuring and documenting decisions 
DM procedures are 
available 

3 

C 
Basic guidelines on joint working between organizations on 
product development 

DM procedures are 
available 

3 

C 
Bosch Engineering System procedures describes methods to 
develop and evaluate concepts. E.g.: using cause & effect 
relationship method, focus analysis and decision matrix  

analytical process 
tools 

3 

D 
There are standardized routes to approve business or technical 
decisions 

DM procedures are 
available 

3 

D 
On smaller or less important decisions, no guidelines are 
specified. Big and important decisions will rely on official DM 
guidelines 

DM procedures are 
available 

3 

E There is no decision-making guidelines by company No guidelines or tools 3 

F 
No company guidelines on DMP. Team comes up with relevant 
DM methodologies. 

No guidelines or tools 3 

G DM guidelines, i.e.: checklist, is prescribed by company. 
DM procedures are 
available 

3 

G 
Checklist is very important. But not all points are top priority. 
Prioritization is based on experience. 

DM procedures are 
not always followed 

11 
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H Yes, based on organization’s systems engineering handbook 
DM procedures are 
available 

3 

H Guidelines are rarely used because it’s far away from reality 
DM procedures are 
not always followed 

11 

I Specific guidelines to procure software is not available. 
DM procedures not 
detailed 

3 

I 
But steps to general procurement is available and strictly 
defined, based around review process (critical design review) at 
milestones 

DM procedures are 
available 

3 

I Design review is based on objectives, defined in ESA standards 
DM procedures are 
available 

3 

I 
Design review process is not detailed in the guidelines. Different 
departments do it differently based around the guidelines 

DM procedures not 
detailed 

3 

I 
Department’s review process is not documented but more on 
the way of working set upon by the higher management. 

DM procedures not 
detailed 

3 

J 
Established steps are provided to forward the projects, and this 
must be followed to reduce project risk 

DM procedures are 
available 

3 

J 
Yes, organization has guidelines and use international standards: 
Concept selection guidelines is provided. 

DM procedures are 
available 

3 

K 
Organization prescribes strategic methodology to make technical 
decisions. Normally in terms of development reviews 

DM procedures are 
available 

3 

K 
Reviews and decisions are done in groups. Even failure analysis 
and its sequent decision is done through review 

group decision-making 1 

K 
Processes are dictated by the industry group standards. 
Organizations can tailor it. 

International standard 
procedures are 
followed 

3 

L 
No specific DM methodologies are prescribed. However, general 
methodologies and tools are provided 

DM procedures not 
detailed 

3 

M 
 No detailed guidelines are prescribed by the organization. Each 
department has to create their own. 

DM procedures not 
always available 

3 

M 
DM guidelines are not properly documented but passed down 
verbally. 

DM procedures not 
always available 

3 

M The guidelines are broad in general, but can be very specific in 
some critical areas 

DM procedures level 
of detail is 
inconsistent 

3 

M Certain guidelines drill down to minute details of work 
DM procedures level 
of detail is 
inconsistent 

3 

M 
Some guidelines became requirement as in, it has to be done in 
the exact way 

Guidelines can 
become requirements 

  

M 
In general, the guidelines have to stay as broad as possible, 
because design process requires as less constraint as possible to 
stay innovative 

DM procedures not 
always available or 
detailed 

3 

N 
In medical device industry, what important is the documentation 
of design process. 

technical decision 
must be documented 
and rationalized 

6 

N 
No prescribed methodology. Usage of specific tools are not 
mandatory. 

No guidelines or tools 3 
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N 
In the industry, high level guidelines are provided instead of 
specific tools 

DM procedures not 
detailed 

3 

O No specific guidelines are prescribed.  No guidelines 3 

O 
Certain tools, such as traceability matrix, FMEA, simulations etc., 
are used to backed technical decision. 

analytical process 
tools 

3 

3
. H

o
w

 d
o

 y
o

u
, p

er
so

n
al

ly
, m

ak
e 

te
ch

n
ic

al
 d

ec
is

io
n

s?
  

A 
Try to understand factors to make decisions, through gathering 
feedback from many people 

Data gathering from 
experts 

6 

A Asks technical judgment from several trusted competent people 
Reliability of 
information seeker 

2 

B 
DMP is hard to fulfill. Limitation of resources and slow decision 
process are caused by considerable preparation work. 

analytical process is 
resource-heavy 

12 

B 
DMP method is chosen, through expert judgments, based on its 
cost-benefit ratio 

analytical process is 
based on weighted 
criteria 

4 

B 
Pre-judgment is made based on heuristics to hasten decision 
process and get a buy-in 

PJ = quick 7 

B Full DMP method is not followed 
analytical process is 
not used fully 

4 

C 
Personal preference is using rational analysis, by systematically 
understanding the problem and use DRBFM 

analytical process is 
preferred 

4 

C Engage the team to make decision group decision-making 1 

D 
Any changes must go through impact analysis to check if the 
decision will impact technically or commercially 

analytical process is 
preferred 

4 

E Group decision-making. Teams give inputs, he makes decision group decision-making 1 

E 
Analytical process is used throughout the decision-making 
process 

analytical process is 
preferred 

4 

E It is important to use analytical process, to justify decision 
analytical process is 
preferred 

4 

F Personal DMP is using analytical approach, decision matrix. 
analytical process is 
preferred 

4 

G 
Checklist is the main source of DMP, but personal experience, 
based on intuition, is also used. 

DM procedures are 
not always followed 

11 

H 
Systematically ruling out options based on personal judgment. If 
the leftover options are unclear to choose, cognitive trade-off 
table is being used. 

Analytical + personal 
judgment: cognitive 
trade-off 

4 

H 
Trade-off criteria are based on technical, financial and time 
aspects: If no best solution can be found, the next best one is 
chosen 

cognitive trade-off is 
based on weighted 
criteria 

10 

I 
Technical decisions, with suppliers, are normally made without 
involvement of management if agreement can be reached 

management 
involvement for 
critical decision 

13 

I 
Technical decisions are evidence-based, e.g.: analysis, test, 
expert judgment, in the organization  

technical decision is 
based on evidence 

6 

I 
DMP process is multi-layered and horizontal, involving many 
people and a lot of time. One decision affect another. 

group information 
processing 

1 
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J 
Concept is selected based on weighted criteria within the same 
boundary. Weightage has to be decided within the project.  
conditions 

analytical process is 
based on weighted 
criteria 

10 

J Trade-offs are sometime conducted qualitatively 
Analytical process can 
be subjective 

4 

J 
Analytical approach is sometimes not done, because not enough 
information or not necessary 

analytical process is 
information-heavy 

12 

J 
Board decides within project cycle to proceed with the next 
phase based on the information provided to them 

Decision checkpoints 
are managed by 
management 

13 

J 
In daily technical decisions, decision is taken based on expert 
judgment from specialists 

expert opinions are 
needed during 
decision making 

6 

K 
Personally, based on experience. But experienced engineers 
normally make decision based on experience. 

Personal judgment is 
preferred 

4 

L 
Personally, DM is based on analytical process through root cause 
analysis and problem solving 

analytical process is 
preferred 

4 

L Root cause analysis is done as a team group decision-making 1 

M 
Most decisions came unconsciously through innate knowledge 
and experience 

Personal judgment is 
the natural way of DM 

4 

M 
The decisions later must be justified through conscious decision-
making. 

technical decision 
must be documented 
and rationalized 

6 

M 
If previous decisions do not fit with current set of requirements, 
analytical DMP needs to be done 

Previous decision is 
revalidated 

8 

M Decision-making is a longitudinal process. It is a series of DMP 
that accumulates over time.  

Decision affects one 
another 

  

M DM is a team effort, that also involves external teams group decision-making 1 

N 
Based on personal judgment and experience, after considering 
all of the inputs. 

personal judgment 
based on expert 
inputs 

4 

N DMP is intuitive and to be rationalized to the audience. 
technical decision 
must be documented 
and rationalized 

6 

O 
Personal preference is to back technical decision with sufficient 
rationale. 

technical decision 
must be documented 
and rationalized 

6 

O 
Prototyping, simulation calculation, statistical and analytical 
approaches are used to rationalize the decision 

Technical analysis is 
needed 

6 
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A 
Decides to choose between analytical process and personal 
judgment based on complexity of the topic but mostly using gut 
feeling. 

PJ = Simple decision 7 

A 
Also depends on the completeness of information, the stake of 
the decision and time constraint 

PJ = time constraint, 
Incomplete 
information 

7 

A  Views strategic nature of the decision as a very important factor PJ = low risk 7 

A 
 Evaluates the completeness of information, as humanely 
feasible, to be sure of decision 

Completeness of 
information 

2 

B 
Decision to use DMP or heuristics from experience, based on the 
risk of the situation. If the risk is high, use DMP; if low, use 
heuristics 

PJ = low risk 7 

C 
Technical decisions are always combination of analytical and 
personal judgment 

both analytical and 
personal judgment is 
used 

4 

C 
The expert views are highly valued even though analytical process 
shows otherwise 

expert opinions are 
needed during 
decision-making 

6 

D 
The decision-maker has to evaluate personal judgment vs 
analytical process on case-to-case basis. 

both analytical and 
personal judgment is 
used 

4 

D 
Personal judgment, depending on the decision-maker 
experience, can help to understand the bigger picture for better 
DM 

PJ = bigger picture 7 

D 
Long term planning is better reserved for personal judgment 
because there are too many variables and expert’s knowledge 
and experience help 

PJ = long term 
planning 

7 

E 
Analytical process is preferred over personal judgment; it is the 
right thing to do and can be used as justification 

analytical process is 
preferred 

4 

E Analytical process is used concurrent with team discussion team consensus 1 

F Risky decision will be made using analytical approach. AP = risky decision 7 

F 
Low risk normally requires fast decisions. Decision shall be made 
via experience. 

PJ = time constraint, 
low risk 

7 

G 
Analytical vs Personal approaches depends on the topic. 
Straightforward and easy decisions can be made personally. 

PJ = low risk 7 

G For critical decisions, guidelines are method of preferences. AP = critical 7 

H 
Personal judgment is subjective. Analytical approach, i.e.: 
performance analysis, has to be performed for good decision-
making. 

Analytical approach is 
preferred 

4 

H 
Limited time, manpower; expertise and information hinder 
analytical approaches 

PJ = time constraint, 
Incomplete 
information 

7 

H 
Relying on proper analytical approach is difficult, personal 
judgment can be done, but has to be careful 

Analytical approach is 
preferred 

4 

H 
Personal judgment based on expert opinions are critical when 
limited information is available 

expert opinions are 
needed during 
decision making 

6 
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I 
Information is collected as much as possible, e.g.: technical 
analysis 

Collect a lot of 
information 

12 

I 

Decision is made consensually with experts, based on personal 
judgment and data collected 

group decision-making 1 

I 
expert opinions are 
needed during 
decision making 

6 

I 
If a test fails, evidence must be collected and the DMP process is 
very long, based on technical discussions and justifications and 
costs 

technical decision is 
based on evidence 

6 

J 
Criteria prioritization is done based on requirements, e.g.: cost, 
risk and schedule 

weighted criteria are 
cost, risk and schedule 

10 

J 
Balance is based on project requirements. Technology is chosen 
if it fits with requirements, cost and risk associated with it 

weighted criteria are 
cost, risk and schedule 

10 

J The risks are technical, schedule and technology 
weighted criteria risk: 
technical, schedule 
and technology 

10 

J 
If the selected option risk is high, after all consideration, 
management has to make selection decision or which objectives 
are more important 

management is 
needed if risk is too 
high 

13 

J More information is needed, and unknowns are to be reduced to 
increase DM confidence 

Collect a lot of 
information 

12 

J 
All decisions must be based on technical feasibility: Personal 
judgment is also used 

technical decision is 
based on technical 
feasibility 

6 

J The DMP is to systematically establish risks 
Analytical approach is 
preferred 

4 

J 
It must be based on standards and feasibility study, using design 
analysis and peer review 

technical decision is 
based on technical 
feasibility 

6 

J 
Confidence in DM can only be met with analysis based on 
professional experience 

Technical analysis is 
needed 

6 

K 
Personally, follow the defined process, if the process doesn’t 
specify relevant decision-making method, then use personal 
judgment 

Analytical approach is 
preferred 

4 

K 
Personal judgment and process outputs must align in order to 
justify decision 

Personal judgment 
must be justified 

6 

L 
Personal judgment is discouraged. Data and facts are needed 
especially with technical decisions 

Analytical approach is 
preferred 

4 

M All decisions need to be reviewed and justified in a team. group decision-making 1 

M Analytical process may be used to justify a decision. 
technical decision 
must be rationalized 

6 

N The decision-making process is a team effort.  group decision-making 1 

N 
Some inputs into DMP are not properly documented or have 
direct sources, they are based on knowledge of the organization 
and its preferences. 

Some DMP inputs are 
based on 
organization's 
knowledge 
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N Technical decision is also based on fulfilment of requirements. 
Technical analysis is 
needed 

6 

N 
If it is a simple decision that can be taken by a single person, 
analytical tool is not needed. 

PJ = Simple decision 7 

N 
Simple design alternatives may not need elaborate criteria and 
scoring sheet. 

PJ = Simple decision 7 

N 
It is a complex decision, ranking process and elaborate analytical 
tool is needed. It also requires big team to decide on it. 

AP = Complex 
decision, team effort 

7 

O 
Personal judgment should be limited to low impact decision 
scenarios.  

PJ = low risk 7 

O 
Analytical approach is optional for low impact decision scenario 

AP = optional for low 
risk 

7 

O 
Any decision that can cause safety or functional issues must be 
backed by analytical approach 

AP = high risk 7 
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 A 
Applies expert judgment, with the team, when evaluating 
alternatives 

alternatives are 
discussed within team 

1 

A  Evaluates if the alternatives fit with gut feeling 
outputs fit with 
personal experience 

9 

A 
Questions the correctness of analytical process application if the 
outcome is not tallied with personal judgment 

reliability of AP 9 

B 
DMP method outputs may not be chosen because of the quality 
of the method itself.  

reliability of AP 9 

B 
Good DMP method quality: 
1. rationale behind ranking 

reliability of AP 9 

B 2. Holisticity of analysis reliability of AP 9 

B 3. A lot of inputs 
based on 
completeness of 
information 

9 

B 
Method outputs are only followed if rationale behind decisions is 
given, and the outputs are aligned with engineering experience 

outputs fit with 
personal experience 

9 

B 
The DMP outputs are further “judged” based on: 
1.the risk of the situation 

risk of situation 10 

B 
2. importance of the decision on organization’s strategies  
3. the organization’s outlook 

organization 
strategies 

10 

B 4. Capability of the organization to execute the decision organization resources 10 

C 
Analytical process suggestions are taken into consideration, but 
final say is based on discussion with experts 

expert opinions are 
needed during 
decision making 

6 

C 
If analytical process output doesn’t tally with experience, it is hard 
to accept its judgment 

outputs fit with 
personal experience 

9 

D 
Proposed solutions from analytical tool will be used if the 
information fed is sufficient quantity and quality wise. 

based on 
completeness of 
information 

9 

E 
The analytical process outcomes are not necessarily being 
followed. It depends on the decision context and environment 

output fits with 
decision context and 
environment 

10 

F 
Ranked alternatives are first discussed within the team to get 
feedback from the analytical process. 

alternatives are 
discussed within team 

1 
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F 
The analytical process outputs are chosen, based on consensus 
of the team, because the process is trusted 

alternatives are 
discussed within team 

1 

G 
The final decision is made using personal judgment, even though 
guidelines say otherwise. Afterwards, make proposal to change 
the guidelines 

outputs fit with 
personal experience 

9 

H 
Driving performance parameters dictate the solution from 
analytical DMP, it is considered in the ranking 

based on driving 
performance 
parameters 

10 

H 
The ranked alternatives are normally obvious from personal 
point of view 

outputs fit with 
personal experience 

9 

H 
Analytical process outputs are not being considered because 
people already have their preferences 

outputs fit with 
personal experience 

9 

H 
Proper trade-off table has never to be made when there’s no 
clear option, because there’s always, in the end, clear winner. 

ranked alternatives is 
obvious from personal 
point of view 

9 

I 
DMP is mostly on finding the balance between cost and 
requirements based on a lot of evidence; supplier has to 
convince ESA using arguments  

outputs are checked 
against cost and 
requirements 

10 

J 
Options are chosen based on constraints from higher 
management 

outputs are checked 
against constraints by 
management 

10 

J 
The options are reconsidered again based on requirements, 
mostly the cheapest option that fits requirements 

outputs are checked 
against cost and 
requirements 

10 

J It’s also based on the feasibility of such option, especially timing 
outputs are checked 
against timing 

10 

K 
Choose the proposed solution by analytical process. Risk analysis 
is part of the process. 

analytical process is 
preferred 

4 

K 
Although the proposed solution is generally logical and 
technically better, it may cover all basis. Other factors, such as 
logistics and resources, must also be taken into account 

based on 
completeness of 
information 

9 

L Follow analytical process proposed solutions. 
analytical process is 
preferred 

4 

L 
Inputs to a DMP are gathered by a cross functional team. 
Solutions are also done together as a team 

group information 
processing 

1 

L 
Proposed solutions by analytical process may not be followed 
fully, it also depends on the capability of the team to execute the 
solutions 

based on team's 
capability to execute 
the alternatives 

10 

L Methodology is to guide, not to make final decisions 
analytical process is 
just a guide 

9 

M 
The analytical process output is re-evaluated again based on 
other factors, including availability, and regulation. Technical 
consideration is not the only factor. 

based on regulatory 
requirements, and 
availability of 
solutions 

10 

N 
DM, which has several alternatives, must be evaluated based on 
agreed criteria, with the team. The scoring is also done within 
the team. 

group decision-making 1 
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N 
In principle, the first ranked proposal is used. However, personal 
judgment can also be used to re-evaluate the outcomes. 

analytical process is 
preferred 

4 

N 
Analytical process is not truly objective. Based on participant 
preferences, they would strategically alter the weightage to 
influence the outcomes. 

analytical process is 
not objective 

9 

N 
Analytical process shouldn’t be the ultimate tool. Human must 
still be able to make the final decision 

analytical process is 
just a guide 

9 

N 
Decision-makers in a DM group are not equal. Some members 
have greater power, which can override the team decision. 

Team members have 
different decision-
making power 

  

O 
The selection criteria of an analytical approach are important to 
decide if proposed solutions are valid. The selection criteria have 
to be based on certain guidelines. 

selection criteria have 
to be standardized 

  

O 
The proposed solutions are also discussed with stakeholders and 
subject matter experts before being decided. 

group decision-making 1 

O 
The proposed solutions are also reviewed based on product 
requirements and cost factors. 

outputs are checked 
again requirements 
and cost 

10 
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A 
 Prefers to make decision in a team, where everybody can voice 
out their opinions 

group decision-making 1 

A Generates consensus decision 
group decision-
making 

1 

A  Checks the plausibility of information using experience quality of information 2 

A  Accepts information if it fits with personal knowledge quality of information 2 

A 
Gathers more information if the information is not tallied to 
personal knowledge 

Completeness of 
information 

2 

A 
 Accepts the information more easily from trusted information 
sources 

Reliability of 
information seeker 

2 

B 
The quality of information is not questioned. But the 
completeness of information is 

Completeness of 
information 

2 

B The quality of how the information is being derived is checked. quality of information 2 

B The DMP tool data input process is not being used properly 
analytical process is 
not used fully 

4 

B 
So, how the information is being presented and who are 
presenting the information is being personally judged 

Reliability of 
information seeker 

2 

B 
If the correct experts are bringing the information, then the 
information details are trusted. 

Reliability of 
information seeker 

2 

B 
So, how the information is being presented and who are 
presenting the information is being personally judged 

Reliability of 
information seeker 

2 

C Information is filtered every time Information is filtered 2 

C The incoming information is reviewed with experts 
group information 
processing 

1 

C 
The review is done in a group, and discussed individually before 
hand 

group information 
processing 

1 

D 
All information will be evaluated based on the completeness of 
the information. Information is multi-layered. 

Completeness of 
information 

2 
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D 
Analytical tool requires as much information as possible to 
provide valuable outputs 

Completeness of 
information 

2 

D 
Inputs should not be manipulated. All hard data information will 
not be filtered 

All information is 
deemed correct 

2 

D 
All soft data, expert inputs, are evaluated based on the 
experience of the information compiler 

Reliability of 
information seeker 

2 

D 
The inputs, hard and soft data, will be used to rationalize 
proposed solution from the analytical process 

Information is filtered 2 

E 
Historical data is used as is. But people’s experience is also 
considered as inputs 

Completeness of 
information 

2 

F 
The inputs from domain experts and within the team are trusted 
because they are the experts. 

Reliability of 
information source 

2 

G 
DMP inputs are evaluated personally based on the benefit of the 
project, technically, and company, financially. 

based on project 
requirements and 
company's needs 

2 

G 
The inputs are evaluated based on their sources and compared 
against personal experience 

Reliability of 
information source 

2 

H 
Input information has to be validated and evaluated before DMP  

All information has to 
be validated 

2 

H 
The information is validated based on personal experience, 
regardless of the sources 

All information has to 
be validated 

2 

H 
If all of the information cannot be validated due to time, only the 
odd ones are validated based on experience 

AP requires time 
constraint, incomplete 
information, lack 
manpower 

12 

I 
Information is not validated because the sources are trusted if it 
comes from in-house specialist. 

Reliability of 
information source 

2 

I 
If the information comes externally, they are being validated by 
the specialists 

Reliability of 
information source 

2 

I 
Not all external sources being validated by the experts, if the 
decision is not critical or decision-maker has personal knowledge 
of such topic 

Based on personal 
judgment 

2 

J 
Input from the specialists is accepted. But it can be challenged 
based on personal judgment or another expert opinion 

Reliability of 
information source 

2 

K 
Inputs to decision-making process is generally accepted as is. 

All information is 
deemed correct 

2 

K 
New information is always evaluated, and new decision will be 
discussed, in term of technical and commercial aspects 

All information has to 
be validated 

2 

K People are scared to make decision if it reflected badly on them 
escalation of 
commitment 

5 

L 
Many DM tools are used, such as Pareto, histogram, decision 
matrix, run chart etc. 

Information is 
gathered 
systematically 

  

L 
The solution is decided based in the weightage of the criteria, 
with team consensus 

group decision-making 1 

L 
If decision is outside of the team scope, escalation to 
management is needed 

management 
involvement for 
critical decision 

13 
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L 
The root causes to be deep dived is based on the scope of 
problem definition 

Information is 
gathered 
systematically 

  

L 
Problem is deep dived using cause and effect diagram, and 
checked against problem statement 

Information is 
gathered 
systematically 

  

L 
Inputs are gathered carefully. Only relevant or critical inputs will 
be considered and investigated during DMP. 

Only relevant 
information will be 
used 

2 

L 
Possible root causes are validated against available to data, if 
they are not tallied, the problem solving is restarted 

Information is 
gathered 
systematically 

  

M 
All information is evaluated based on trustworthiness of the 
source 

Reliability of 
information source 

2 

N 
Intuitive decision-making must have lots of knowledge and can 
process the information to arrive at optimal solution. 

PJ requires vast 
knowledge 

  

N 
High level management normally base their decision on their 
intuition. Guidelines, checklist or analytical process are not used. 

PJ requires vast 
knowledge 

  

N 
If there is distrust in the organization, guidelines or checklist will 
be needed. 

Reliability of 
information source 

2 

N 
The input information will always be checked based on intuition 
and data. 

All information has to 
be validated 

2 

N 
Decisions must always be verified at later stage to confirm the 
assumption made in the beginning. 

previous decision 
must be revalidated 

8 

N 
New information is always analyzed and checked if current 
decision is still valid. 

previous decision 
must be revalidated 

8 

O All information inputs will be evaluated based on their validity.  
All information has to 
be validated 

2 

O Information validity is based on trustworthiness of the source 
Reliability of 
information source 

2 

O 
If information inputs contradict with own knowledge, the 
information will be checked against different sources 

All information has to 
be validated 

2 
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A  Applies the same decision-making ethos with routine topics 
DMP routine / non-
routine the same 

14 

A 
 Unless, with past bad experience of certain decision topics due 
to emotional or subconscious influence 

    

B 
Routine decision-making is normally revolving around money, 
buying equipment, parts etc. 

    

B 
For routine technical decision, if the information and knowledge 
of the change is available, decision is made based on heuristics 

routine uses heuristics 
if no more 
information is needed 

14 

B 
More information will be required if the decision situation 
conflicts with personal experience. 

quality of information 2 

C 
Routine decisions are mostly delegated to team members by 
empowering them 

Outsource decision to 
group members 

14 

C Routine decision is also standardized using templates 
routine decision uses 
standardized 
templates 

14 

D 
Decision-makers become complacent when it comes to routine 
decision-making. 

Previous decision is 
rarely question 

14 

F Routine decision that has impact on timing and cost, shall be 
looked again using analytical process 

Impact on time and 
cost, uses analytical 
process 

14 

H 
In aerospace, routine decisions are rare. Because the 
development varies wildly between projects 

not many routine 
decisions in aerospace 

14 

H 
New technical decisions have to be made often without prior 
experience 

    

H If previous design decision was made, the decision is rarely 
questioned because it was one-off 

Previous decision is 
rarely question 

14 

H 
Previous design decisions are always revalidated analytically 
based on new requirements 

Previous decision is 
revalidated 

14 

I Not many technical routine decisions 
not many routine 
decisions in aerospace 

  

I 
Routine DMP is prepared as much as possible, as early as 
possible 

routine decision is 
prepared early 

14 

J 
Trade-off analysis is also done, but if there’s conflict, it triggers 
detailed study 

routine decision uses 
analytical approach 

14 

K 
Tendency to stick with previous decisions, in routine DMP, unless 
improvement is needed 

Previous decision is 
rarely question 

14 

M 
Some decisions are based on previously-made decisions, they 
may not need to be reanalyzed. 

Previous decision is 
rarely question 

14 
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A 
Adapts decision if the analysis of new information contradicts 
current decision 

new analysis 
contradicts current 
decision 

8 

A 
Does not change decision if the analysis reflects poorly to the 
interviewee 

escalation of 
commitment 

5 

B If there are new information, the decision will be revisited reevaluate decision 8 

B 
In early phase, when there is lack of information, decision is made 
based on rule-of-thumb 

PJ = Incomplete 
information 

7 

B Decisions have to be adjusted regularly reevaluate decision 8 

B 
If new information come in, earlier analysis can no longer be 
trusted, and decisions have to be revisited 

new analysis 
contradicts current 
decision 

8 

C If new information comes in, decision may be revisited reevaluate decision 8 

C 
If the decision context is critical, the decision has to be revisited. 
If otherwise, it doesn’t have to 

reevaluate if decision 
context is critical 

8 

D Impact analysis will be used to evaluate the new information reevaluate decision 8 

D 
If the consequence of the new information is big, then the 
decision has to be updated 

change decision if 
impact is critical 

8 

E 
If a decision cannot be revised, it will not be revisited. But if it can, 
it will 

don’t evaluate if 
decision cannot be 
changed 

8 

E 
The decision to change judgment is made with consideration of 
other parties. 

team consensus 1 

E 
If new information comes in, and the decision context is critical, 
the decision will not be changed.  

reevaluate if decision 
context is critical 

8 

F 
If new information contradicts from previous one, new analysis is 
to be made. 

decision contradicts, 
reevaluate 

8 

G 
If new information comes in, it has to be analyzed and compare 
with previous decision. 

reevaluate decision 8 

G 
If the analysis has a positive impact, go with the new decision. If 
it has negative impact, stay with old decision. 

if analysis is positive, 
go. If not, no go 

5 

H 
Normally, decisions are not normally revisited. Even if it comes 
with better performance, because the development time is very 
long in aerospace. 

Normally not, unless 
the impact is obvious 

5 

H 
If the new information improves performance and has low lead 
time, yes. 

Reconsider based on 
performance and time 

8 

H 
If the new information improves performance greatly but has 
high lead-time, it can be reconsidered. 

Reconsider based on 
performance and time 

8 

H Reconsideration is based on key technical performances and cost 
Reconsider based on 
performance and cost 

8 

I The information is looked at from its technical, cost and time 
impacts 

Reconsider based on 
performance, cost and 
time 

8 

I 
The discussions have to be done internally and externally; high 
risk internally does not mean high risk externally 

reevaluate decision 8 

I The impact analysis is based on internal guidelines 
Impact analysis based 
on DM procedures 

8 
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J If new information comes in, it will be evaluated based on its 
impact and DMP must be re-open if there’s impact 

reevaluate if decision 
context is critical 

8 

J 
The impact analysis is a professional decision, based on 
experience 

Based on personal 
judgment 

1 

K 
Even when the new information may cause for new decision to 
be made, it’ll be made as long as it is the best for the project. 

reevaluate decision 8 

L 
New information is always considered and try to understand why 
this information wasn’t available in the beginning. 

reevaluate previous 
DMP 

8 

L Consider if the information is relevant to the problem space. 
Reconsider based on 
relevance of new 
information 

8 

L 
Team will first evaluate why the first DMP didn’t consider the 
new information in the first place 

group decision-making 1 

L Only relevant new information that is critical to the project 
would be included in the revision of current decision. 

reevaluate if decision 
context is critical 

8 

L 
Critical new information that will be considered are the ones 
that can change the direction of the project 

reevaluate if decision 
context is critical 

8 

M 
All new information will be evaluated based on the impact on 
the decision that has already been made, as a team 

reevaluate decision 8 

M 
A new decision will be made especially if it critically impacts 
(e.g.: weight, safety) the project. If it doesn’t (e.g.: cost), 
previous decision will stay. 

change decision if 
impact is critical 

8 

N 
New information will always be evaluated, and if a design change 
is required, then it’ll be changed. 

change decision if 
impact is critical 

8 

N The change also depends on the severity of the problem.  
reevaluate if decision 
context is critical 

8 

N 
If it is critical to function, it’ll be changed. If it is not, and the end 
of the project is near, it won’t be changed. 

don’t change decision 
if impact is low 

8 

N 
Information is also evaluated based on the trustworthiness of 
the source. 

Reliability of 
information source 

2 

N 
Management pressure may cause the current decision to stay if 
there’s time pressure.  

management 
involvement for 
critical decision 

13 

N 
From technical point of view, the change is purely based on the 
severity of the new information and its subsequent impact. 

change decision if 
impact is critical 

8 

O 
New information will be presented and discussed with the 
stakeholders.  

group decision-making 1 

O 
If changes are required, the changes will be implemented if 
possible. 

change decision if 
impact is critical 

8 
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Appendix D: Content Analysis: Themes 

 

  Themes   

1 
Technical decision-making is overwhelmingly a group effort. The group is involved to 
gather information, negotiate decision and reevaluate previously-made decisions. 

80% 

2 
Inputs to decision-making processes are judged based on the completeness of 
information, quality and relevance of information and reliability of the information 
source and the information seeker 

100% 

3 
Not all organizations prescribe decision-making guidelines; when they do, the guidelines 
are normally not properly documented, and the level of detail is inconsistent 

100% 

4 
Analytical processes and personal judgments are both utilized during technical-decision 
making, although analytical processes are preferred 

73% 

5 
Sometimes, if the output of decision reevaluation has negative impact to the decision-
maker or the project, new decision will not be made 

27% 

6 
Decisions are rationalized with expert inputs, technical analysis, evidence, and feasibility 
studies 

73% 

7 
Personal judgment is used if the decision is simple, information is sparse, time is a 
constraint or decision risk is low. Analytical processes are used if the decision is risky or 
critical if the analysis is complex 

60% 

8 

If new information deviates from current data, the impact analysis will be performed 
based on the cost and criticality of the decision context.  Decision shall be adjusted if 
there is a severe impact to the project and team resource is available to execute the 
decision 

100% 

9 

Personal judgment is used to choose an alternative from analytical process outputs, to 
test whether results fit with personal knowledge and to judge whether the analytical 
process used may be unreliable due to incomplete information and objectiveness of the 
analysis 

60% 

10 
Alternatives are re-evaluated based on the technical risk of the decision, the driving 
requirements, the project's timeline and budget, and the organization's vision and 
resources 

53% 

11 
Organization's guidelines are not strictly followed, but as guidance to decision-making 
process 

13% 

12 Analytical process requires a lot of input information, time, and expertise  27% 

13 
Management may be involved in decision-making process for risky or critical decisions 
and if the decision falls outside of the project scope 

27% 

14 
A routine decision approach differs greatly between decision-makers. Many decision-
makers would re-use previously made decisions, while some of them will do an impact 
assessment based on new or updated information 

67% 
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Appendix E: Questionnaire: Safety-critical Decision 

 

 

 
Demographics 

Position: 
Department manager 
Team leader 
Project manager 
Product manager 
System engineer 
Development engineer 
Other 

Work experience: 
0-3 years 
4-7 years 
8-12 years 
13+ years  

Industry: 
Automotive 
Medical device 
Space 
Others:  
  
Setting the scene 
Your organization is developing an air filtration system that filters out dangerous particles and 
circulates clean air within an enclosed environment. It is a safety-critical system that ensures 
the users are not exposed to hazardous particles and substances. The engineering group is 
responsible for designing the air filtration system and integrating its sub-systems such as 
electrical drive, mechanical pump, chemical filtration and control systems. You are the project 
leader of the engineering group.  
 
Development of the air filtration control system is not within the responsibility of your 
organization. As outlined in your organization's product development guidelines, the control 
system development shall be outsourced to an internal or external supplier. It's your 
responsibility to evaluate the concepts provided by the suppliers. 
 
Your organization provides a set of safety standards to be adhered to during the product 
development process. One of the required work products is Hazard Risk Analysis.  Your 
suppliers have been provided with the Hazard Risk Analysis and your organization's safety 
standards to adhere to. The constraints set by your organization in the project charter is as 
follows: 
 
Constraints: 
 
Development time: 5 months (buffer: +1.5 month) 
Development cost: EUR 525,000 (max) 
Unit cost: EUR400 (buffer: +EUR100) 
Production volume: 1,000 units 
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Optional:  
Selection Criteria: 
Safety requirements: Very high priority 
Time: Low priority 
Cost: Medium priority 

Optional: 
Supplier Information  
 
Supplier A is an external company that your organization has worked together in previous 
projects.     
 
Supplier B is a newly setup control group within your organization. However, they are located 
in different location.    
 
Supplier C is an external company that has been recently added into your organization's 
approved supplier database. 

Q1: Hazard Analysis (Ingroup bias / high technical risk) 
 
Hazard = Temporary loss of system operation  
Effect = Temporary illness to the users (e.g.: shortness of breath)  
Severity = Minor  
Failure likelihood = Quite low (2 on the scale of 5).  
 
Above is an excerpt from the Hazard Risk Analysis, prepared by your team of safety experts, 
of the air filtration system. An internationally-certified external auditor has been authorized 
to conduct a safety audit on your project. Upon completion of the audit, the auditor 
recommends that the failure likelihood of this hazard risk to be revised to "moderate" 
instead. 
 
You have to decide on a supplier. Before you can proceed, you have to determine whether or 
not to accept the analysis of your safety experts (failure likelihood = quite low) or revise the 
hazard risk to reflect the auditor's recommendations (failure likelihood = moderate)?  

A.  Agree with the expert team's analysis and proceed accordingly 

B.  Proceed with expert team's analysis and justify team findings with the auditor 

C.  Accept auditor's recommendation but with the team consensus 

D.  Implement external body's recommendation 

E. Other (please comment):  
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Optional: Audit report 
 
Severity: Minor.   
Justification: In an enclosed environment, the only path for air circulation is through the 
filtration system. When the system is temporarily disabled, for less than 1 minute, users may 
experience temporary non-fatal breathing problem  
 
Likelihood: Moderate.  
Justification: Based on industry-wide data, the probability of air filtration system temporary 
failure is 17 PPM (part per million). Therefore, the industry best practice is to assign moderate 
likelihood for this kind of hazard to all suppliers. 
 
--------------------------------------Rating Legend--------------------------------------- 
 
Severity  
Negligible = No or negligible injury    
Minor = Marginal or light injury, or temporary disability  
Critical = Severe or permanent impairment injury  
Catastrophic = Fatal or life-threatening injury  
 
Likelihood-Probability  
Low -- Quite low -- Moderate -- Slight high -- High  

Optional: Safety's expert technical justification 
 
The organization has 30 years of experience in developing air filtration system with a total of 
11 products in the market. Design and production guidelines are continuously updated based 
on lessons learned from previous and existing products. Quality control on development and 
manufacturing processes are conducted frequently to ensure adherence to the guidelines.  
 
Furthermore, warranty issues arising from air filtration failure in the last 5 years have been 
minimal, 5 PPM (part per million). Based on these considerations, safety experts believe that 
setting the likelihood of this hazard to "quite low" is reasonable. 

Q2: Failure control strategy 
 
In order to meet the safety requirements, supplier A has proposed to mitigate failure 
consequences using fail-operational mechanism. This safety mechanism transitions the 
system from normal mode to safe-state mode, with the use of redundant control systems. By 
doing so, the effects of system failures can be mitigated from temporary loss of operation to 
reduced-functionality operation.  
 
Based on their internal safety analysis, Supplier A implements the fail-operational mechanism 
using dual redundant systems. However, based on your years of experience designing 
redundant system, the fail-operational mechanism with triple redundancy provides higher 
reliability, but comes with a higher unit cost.  
 
Do you require Supplier A to revise their design to triple redundancy or trust their technical 
judgment with dual redundancy? 

A.  Require supplier A to update their design to triple redundancy 

B.  Propose to supplier A to revise their design to triple redundancy and review its financial 
impact 

C.  Ask supplier A to justify their technical decisions 
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D.  Proceed with supplier A's proposal  

E. Other (please comment):  

 Safety analysis 
 
Dual redundancy used in this project is another approach to achieve the required reliability 
level. This method is where dual layers of dual redundancy are built into the system, instead 
of single layer triple redundancy.  

Q3: Cost 
 
Supplier A's design proposal is to re-use hardware components from previous projects and 
update the software-based fail-operational mechanism design according to the new 
redundancy requirements. Based on these considerations, their quotation of the control 
module is as following: 
1. EUR525,000 for development cost 
2. EUR380 for unit cost 
 
Project managers of previous projects informed you that the unit cost was EUR300, and the 
development cost was capped at EUR490,000 with a maximum overbudget of EUR10,000. 
Furthermore, based on your past experience working on redundant system, development of 
software redundancy only adds to the development cost, not unit cost, as long as the 
additional redundancy computing power is within the existing hardware performance limit. 
Therefore, the unit cost should be the same as before. 
 
Do you request the supplier to review the cost breakdown, or you accept their quotation at 
face value? 

A.  Set a limit to Supplier A's unit cost of EUR300 and development cost to EUR500,000 

B.  Review together supplier A's cost breakdown structures with your suggested cost 
breakdown 

C.  Request supplier A to justify their cost  

D.  Accept the quotation 

E. Other (please comment):  

Q4: Time 
 
Suppliers B proposes a design that uses highly reliable components to improve system fault 
tolerance and implements fail-operational mechanism when failure actual occurs. These 
combination of safety mechanisms ensure lower risk probability and hazard consequences to 
be under control. 
 
Supplier B promises that the control system development can be completed within 5 months. 
Upon discussion with your team, they believe that the timeline is ambitious and thus do not 
agree with the supplier's assessment. They argue that the design proposed by the supplier 
requires a great deal of development effort due to its complexity. Furthermore, many 
suppliers in previous projects had overpromised but under-delivered in terms of development 
time. Your team proposes to add 2 weeks buffer to the supplier's development time.  
 
Do you accept your team analysis regarding the feasibility of Supplier B timeline? 

A.  Request Supplier B to add 2 weeks buffer to their timeline  

B.  Review supplier's work breakdown structure and development schedule with your team 

C. Require Supplier B to justify their proposal 

D.  Accept supplier’s proposed development time 

E. Other (please comment):  



227 
 

Q5: Design proposals 
 
Supplier C proposes two different designs that have different approaches on fail-operational 
mechanism:  
 
1) First design makes use of mass-produced components carried over from different industry. 
Because of this, the reliability of those components is not validated using field data of similar 
system application. Therefore, the technical risk of such implementation is considered quite 
high. Since the components are already several years in production, the component unit cost 
and total development time can be reduced significantly.   
 
Technical risk: Moderate 
Unit cost: EUR 300 
Development time: 3 months  
 
2) Second design uses highly reliable hardware components from previous projects. The fail-
operational mechanism is based on industry-standard hardware and software redundancy. 
Although this approach has lower technical risk, it also comes with a high unit cost and long 
development time.    
 
Technical risk: Low 
Unit cost: EUR 500 
Development time: 6.5 months  
 
Which design would you accept? 

A. First design 

B. Second design 

Constraints:  
 
Development time: 5 months (buffer: +1.5 month) 
Development cost: EUR 525,000 (max) 
Unit cost: EUR400 (buffer: +EUR100) 
Production volume: 1,000 units 

Objective Analysis  

Q6: Decision Point 
Based on the selection criteria and results of supplier negotiation, Multi-Criterion Decision 
Analysis ranks the suppliers as follows: 
 
1st choice: Supplier A 
2nd choice: Supplier C 
3rd choice: Supplier B 
 
Which of the following would you do? 

A. Choose according to the ranked options 

B. Re-evaluate the options based on the provided information 

C. Discuss the ranked options with the team before making decision 

Q7: Alternative Selection 
Please select your preferred supplier.  

B 

C 
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Q8: Why do you select option that differs from the Multi-Criterion Decision Analysis output? 
- Analytical tool is not reliable 
- Not all parameters are considered 
- Personal judgment is preferred 
- Input information may be incomplete 
- (Please state) Other reasons: 
 
 And, why do you choose that particular supplier? 
Answer:  

Q9: Alternative Selection 
After rounds of discussions, one of your team members has successfully argued that supplier 
B is the best option and managed to rally a majority of the team consensus around his 
decision. The team has unanimously agreed to select supplier B. Do you go with the team 
decision to select Supplier B? 

A. Go along with team preference and choose Supplier B 

B. Request the team for more justification to choose Supplier B 

C.  Review pros and cons of all suppliers with the team and choose supplier based on majority 
vote 

D. Choose the supplier according to your own preference 

E. Other (please comment):   

Setting the scene 
 
You have previously selected a supplier to develop a control system for the air filtration 
system. Concurrently, your team has designed a power module that requires a power control 
unit. Based on the hardware architecture, your team has identified three potential control 
units that can fulfill the hardware requirements, as following: 

Component A  
 
Component reliability: Very high 
Development cost: EUR 40,000 
Unit cost : EUR150 
Development time: 2 month 
 
Component B    
 
Component reliability: High 
Development cost: EUR 40,000 
Unit cost : EUR150  
Development time: 1 month  
 
Component C  
 
Component reliability: High 
Development cost: EUR 50,000 
Unit cost : EUR200 
Development time: 0.7 month 
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Project Constraint:  
 
Development time: 1.5 months 
Development cost: EUR 50,000 
Unit cost: EUR 200 
Production volume: 1000 

Component A 
Re-use of control unit proven in previous design 
 
Component B 
New control unit from certified sub-suppliers 
 
Component C 
New control unit from other industry, can be certified for project use 

Selection Criteria 
 
Component reliability: Very high priority 
Time: Medium priority 
Cost: Low priority 

Objective Analysis  

Q10: Decision Point 
Based on the selection criteria and results of selected component specifications, Multi-
Criterion Decision Analysis ranks the components as following: 
 
1st choice: Component C  
2nd choice: Component B  
3rd choice: Component A 
 
Which of the following would you do? 

A. Choose according to the ranked options 

B. Re-evaluate the options based on the provided information 

C. Discuss the ranked options with the team before making decision 

Q11: Alternative Selection 
Please select your preferred component.  

A 

B 

Q12: 
Why do you select option that differs from the Multi-Criterion Decision Analysis output? 
- Analytical tool is not reliable 
- Not all parameters are considered 
- Personal judgment is preferred 
- Information input may be incomplete 
- (Please state) Other reasons: 
 
 Why do you choose that particular component? 
Answer:  
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Q13: Team Input 
 
Your team has split preferences over Component A or B. Based on your team discussion, they 
prefer Component A because the component has slightly higher robustness against safety-
critical failures compared to Component B. However, integrating Component A into the 
overall system design will significantly increase product development time.  
 
Do you agree with the team assessment? 

A.  Go along with team preference and choose Component A 

B.  Request more justification to choose component A 

C.  Try to convince the team to choose Component B 

D. Choose the supplier according to your own preference 

E. Other (please comment):  

Q14: Decision Revision 
 
After spending 75% of the development budget and 90% of the development time, your 
supplier came back to you and report that their design has failed the component testing and 
will not be able to fulfill the serviceability requirements.  The deadline is in 2 weeks. They 
require an additional 2 months and EUR70,000 to fix the issues.   
 
Based on multiple technical reviews with the supplier, there are strong evidences that the 
issues require major design modification and may incur more delays and cost run-offs in the 
future. Another option is to change to another supplier that has a good track record in 
delivering on time and within budget, despite the limited time left. How would you like to 
proceed? 

A.  Approve supplier's request 

B.  Partially approve supplier's request and warn them from any further delay and cost run-off 

C.  Request supplier to create an improvement plan and provide cost and deadline extension 
based on the agreed plan 

D.  Change to another supplier 

E. Other (please comment):  

Q15: Decision Revision 
 
One week before the end of the control unit component development, your supplier test 
report shows that the component does not meet its overall safety reliability target. Your 
customer has requested 7 prototype samples to be ready in 1 month. The supplier reported 
that only 6 out of 10 samples passed the reliability test. Failure to reach the target by the start 
of production may result in financial penalty by the customer.  
 
Based on statistical analysis, reaching the reliability target by improving the component 
design is almost impossible. Therefore, changing to a different component is the better 
technical solution, but may result in higher unit cost. How would you proceed? 

A.  Send 7 prototype samples to customer anyway and set lower reliability target for the 
component 

B.  Send 7 prototype samples to customer anyway, but require supplier to improve the design 
for future production 

C.  Request to delay sample delivery until supplier has improved the current design 

D.  Ask supplier to change the component 

E. Other (please comment):  
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Debriefing 
 
This questionnaire is set up to gauge the influence of human factors in technical decision 
making process. The collected data will be used to model the interaction between rational 
and behavioral components of technical decision-making in product development. 
 
Thank you very much for your participation in this questionnaire. Your time and support are 
greatly appreciated. If you would like to know more about the outcomes of this research, 
please enter your email address below: 
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Appendix F: Exploratory Data Analysis: Full 

 

 

Result 1: Decision-makers were overall moderately biased during technical 

decision-making 

 

 

Overall bias strength in the technical decision-making process 

 

count    96.000000 

mean      2.523438 

std       0.247615 

min       1.850000 

25%       2.387500 

50%       2.500000 

75%       2.650000 

max       3.200000 

 

ShapiroResult 

(statistic=0.9872356653213501, pvalue=0.483707070350647) 
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Result 2: Bias strength of decision-makers varied during the stage of the technical 

decision-making process 

 

 

 

Bias strength per bias clusters 

 

       Information  Alternative  Decision 

Processing  Selection  Revision 

   

count  96.000000        96.000000  96.000000    

mean  2.627604         2.585938    2.388021    

std  0.383877         0.584704   0.355168     

min  1.500000         1.000000     1.250000   

25%  2.500000         2.500000   2.250000     

50%  2.625000         2.500000   2.500000     

75%  2.750000         3.250000     2.500000 

Max  3.750000         4.000000     3.250000   

 

Info_Process:  ShapiroResult 

(statistic=0.9265804886817932, pvalue=4.5525604946305975e-05) 

 

Alt_Select:  ShapiroResult 

(statistic=0.8489455580711365, pvalue=1.7927085593782977e-08) 

 

Decision_Rev:  ShapiroResult 

statistic=0.9506410956382751, pvalue=0.0012050856603309512) 

 

Decision_Rev: Skewness 

-0.33480847265236907 
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Result 3: Decision-makers most often make technical decisions as a team 

 

 

 

Decision-making preference 

 

 

Decision-making preference according to department 
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Result 4: Decision-makers were skeptical of the robustness of decision analysis 

 

 

 

Rationale for not choosing analytical tool recommendation 

 

  



236 
 

Result 5: Decision-makers did not require completeness of information to make 

technical decisions 

 

 

Tendency to request for information 

Complete info:  

count     94.000000 

mean      56.826241 

std       32.699228 

min        0.000000 

25%       33.333333 

50%       50.000000 

75%       91.666667 

max      100.000000 

 

Early career  : ShapiroResult 

statistic=0.8938958048820496, pvalue=0.0004017820756416768) 

 

count     48.000000 

mean      63.888889 

std       32.404311 

min        0.000000 

25%       33.333333 

50%       66.666667 

75%      100.000000 

max      100.000000 

 

Late career : ShapiroResult 

(statistic=0.9317346811294556, pvalue=0.009731961414217949) 

 

count     46.000000 

mean      49.456522 

std       31.691130 

min        0.000000 

25%       25.000000 

50%       45.833333 

75%       72.916667 

max      100.000000 

 

MannwhitneyuResult 

(statistic=825.0, pvalue=0.03376987619267503) 
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Result 6: There were no statistically significant differences of bias strength 

between participant demographics  

 

 

Bias strength per demographic subgroups 

     Count  mean   std    min   25%   50%   75%  max   

 

Engineering  48.0  2.546  0.216  2.00  2.45  2.55  2.66   3.05   

 

Personnel   25.0  2.492  0.291  1.85  2.30  2.50  2.65   3.15   

management    

Project   23.0  2.508  0.264  1.95  2.40  2.45  2.62   3.20    

management      

 

Shapiro-Wilk: Department 

Engineering   (0.9846542477607727, 0.777005136013031) 

Personnel management (0.9696564674377441, 0.6363688707351685) 

Project management (0.9576796889305115, 0.41815298795700073) 

 

F_onewayResult 

(statistic=0.29513773338754024, pvalue=0.7451388956999967) 

 
     Count  mean   std    min   25%   50%   75%  max   

 

Early career 48.0  2.569   0.223  2.15  2.40  2.60  2.7  3.05 

Late career      48.0  2.477   0.264  1.85  2.34  2.47  2.6  3.20 

 

Late career : ShapiroResult 

statistic=0.9687601923942566, pvalue=0.22656138241291046) 

 

Early career : ShapiroResult 

statistic=0.9701920747756958, pvalue=0.25771790742874146) 

 

ttest  

p-value=  0.06634024793220421   
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Result 7: Technical decision-makers were more prone to social bias than 

cognitive bias 

 

 

 

Comparison between strength of social bias and cognitive bias 

 

Social_bias  Cognitive_bias 

 

Count  94.000000       94.000000 

Mean  2.739362        2.281915 

Std  0.377305        0.379647 

Min  1.500000        1.500000 

25%  2.500000        2.000000 

50%  2.750000        2.250000 

75%  3.000000        2.500000 

Max  3.500000        3.500000 

 

Cognitive bias:  ShapiroResult 

(statistic=0.9415438175201416, pvalue=0.0003811079077422619) 

 

Social bias:  ShapiroResult 

(statistic=0.9488059878349304, pvalue=0.0010600041132420301) 

 

WilcoxonResult 

(statistic=281.0, pvalue=3.737760969388574e-11) 
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Result 8: Technical decision-makers were risk averse 

 

 

Participant's risk tolerance level 

 

   

Participant's risk tolerance level according to department and work experience 
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Result 9: Risk tolerance of technical decision-makers affected their bias strength 

 

 

Participants' risk tolerance effects on bias strength 

 

Low Risk:  

count    69.000000 

mean      2.558696 

std       0.227835 

min       2.200000 

25%       2.400000 

50%       2.550000 

75%       2.650000 

max       3.200000 

 

High Risk:  

count    25.000000 

mean      2.436000 

std       0.286327 

min       1.850000 

25%       2.250000 

50%       2.450000 

75%       2.700000 

max       2.800000 

 

High risk:  ShapiroResult 

(statistic=0.9400309324264526, pvalue=0.14827437698841095) 

 

Low risk:  ShapiroResult 

(statistic=0.9533570408821106, pvalue=0.011718904599547386) 

 

unpaired t-test:  

p-value=  0.034162991561085786 

 

  



241 
 

Result 10: Technical risk level of a decision context doesn’t affect decision-makers 

bias tendency 

 

 

Technical situation's risk level effects on bias strength 

 

Low Risk:  

count    94.000000 

mean      2.559574 

std       0.263279 

min       2.000000 

25%       2.325000 

50%       2.500000 

75%       2.700000 

max       3.200000 

 

High Risk:  

count    94.000000 

mean      2.492553 

std       0.411198 

min       1.600000 

25%       2.225000 

50%       2.500000 

75%       2.775000 

max       3.400000 

 

 

High risk:  ShapiroResult 

(statistic=0.9786838293075562, pvalue=0.12801137566566467) 

 

Low risk:  ShapiroResult 

(statistic=0.9716218709945679, pvalue=0.03849051147699356) 

 

paired t-test:  

p-value=  0.17729298252872489 


