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and function of γ-secretases
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Abstract

Two phase-III clinical trials with anti-amyloid peptide antibodies
have met their primary goal, i.e. slowing of Alzheimer’s disease
(AD) progression. However, antibody therapy may not be the
optimal therapeutic modality for AD prevention, as we will discuss
in the context of the earlier small molecules described as “γ-
secretase modulators” (GSM). We review here the structure,
function, and pathobiology of γ-secretases, with a focus on how
mutations in presenilin genes result in early-onset AD. Significant
progress has been made in generating compounds that act in a
manner opposite to pathogenic presenilin mutations: they stabilize
the proteinase-substrate complex, thereby increasing the pro-
cessivity of substrate cleavage and altering the size spectrum of Aβ
peptides produced. We propose the term “γ-secretase allosteric
stabilizers” (GSAS) to distinguish these compounds from the
rather heterogenous class of GSM. The GSAS represent, in theory,
a precision medicine approach to the prevention of amyloid
deposition, as they specifically target a discrete aspect in a com-
plex cell biological signalling mechanism that initiates the patho-
logical processes leading to Alzheimer’s disease.
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Introduction

Alzheimer’s disease (AD) arguably represents one of the biggest
unmet medical needs of our time. It is a complex disorder that
evolves from a clinically silent biochemical phase during which
amyloid plaques accumulate, to a cellular phase driven by
neuroinflammation and Tau aggregation, ultimately causing
synaptic dysfunction and cell death (De Strooper and Karran,
2016). The clinical phase of the disease starts decades after the

initial biochemical phase and is characterized by progressive
cognitive deterioration leading to dementia and death. Therapeutic
strategies are likely to produce greater clinical benefit if they are
administered as early as possible in the disease process, as recent
successful trials with anti-amyloid antibodies (Sims et al, 2023; van
Dyck et al, 2023) have demonstrated. Ideally, therapeutic interven-
tion would prevent the first pathognomonic sign of AD—amyloid
aggregation and the early cellular response to it—thus preventing
irreversible damage to the brain.

The discovery that presenilins (PSEN) are responsible for the γ-
secretase-mediated cleavage of the membrane carboxyterminal
fragments (Fig. 1) of the amyloid precursor protein (APP) to the
generation of the amyloid peptide (Aβ) provided a breakthrough in
AD research (De Strooper et al, 1998). This finding unified the two
major causes of inherited familial AD (FAD), i.e. mutations in the
APP or the PSEN genes, in one molecular process: Aβ generation. It
seemed also to provide a clear drug target for the field. At about the
same time, it was demonstrated that presenilins/γ-secretases release
the intracellular domain of Notch, which then travels to the nucleus
and regulates Notch signaling (De Strooper et al, 1999; Struhl and
Greenwald, 1999; Levitan and Greenwald, 1995). It transpired that
Notch signaling was only one of the many signaling functions of
the γ-secretases, contributing to the concept of regulated intra-
membrane proteolysis (Brown et al, 2000).

While these early breakthroughs created enthusiasm for the
development of γ-secretase inhibitors (GSI), a deep understanding
of the fundamental biology of this intriguing class of proteases was
lacking. Ultimately this contributed to their failure in the clinic,
largely due to unexpected adverse drug effects on the skin, the
vascular and immune system, and cognition (Doody et al, 2013;
Coric et al, 2015). A fundamental problem was the lack of
selectivity of γ-secretase inhibitors that target all four γ-secretase
isoforms. This blanket inhibition affected the proteolytic processing
of hundreds of substrates in parallel (Hou et al, 2023), making it
impossible to find an acceptable efficacy/side effect therapeutic
window. Unfortunately, little was learned from the failed trials (De
Strooper, 2014), and γ-secretases were largely deprioritized as drug
targets for the industry in the context of AD. Interestingly, the
capacity of GSIs to block Notch signaling (De Strooper et al, 1999)
remained all this time of interest to companies in the context of
cancer and chronic inflammation (McCaw et al, 2021;
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Christopoulos et al, 2021). Nirogacestat (Ogsiveo) recently became
the first GSI to reach regulatory approval for rare desmoid tumors
that are non-cancerous growths of the connective tissue (Gounder
et al, 2023) (see Box 1).

Recent success with anti-amyloid antibodies (Sims et al, 2023; van
Dyck et al, 2023) in AD have considerably changed the perspective on
the potential of Aβ lowering as a possible therapy for this devastating
disorder (Karran et al, 2011; Karran and De Strooper, 2022). However,
various aspects of anti-amyloid immunotherapy may not make them
the optimal therapeutic choice for primary prevention clinical studies.
A possible approach to primary prevention might be the suppression
of Aβ production so that the key Aβ plaque-seeding peptides are not
produced in sufficient concentrations to initiate plaque formation.
While inhibition of γ-secretase or of BACE1, the other protease that is

needed to release Aβ from APP (Fig. 1), remain formal possibilities,
both approaches suffer from the same dilemma: can a therapeutic
window be established sparing the normal functions of both enzymes?
To administer agents that already carry known adverse events to
normal individuals lacks clinical equipoise. Gamma-secretase allosteric
stabilizers (GSAS), in contrast to γ-secretase inhibitors (GSI),
theoretically allow normal physiological processing of the many
substrates of the γ-secretases, while enhancing the processive cleavage
of the Aβ peptide, favouring the generation of shorter forms as we will
discuss below. The GSASs avoid the mechanism-based side effects that
precluded the clinical development of GSIs and revert the production
of all long Aβ peptides to shorter forms, in contrast to the earlier γ-
secretase modulators (GSM) that were directed to Aβ42 lowering
(Weggen et al, 2001; Luo and Li, 2022).

Figure 1. Processing of amyloid precursor protein to long and short amyloid peptides (Aβ).

Amyloid precursor protein (APP) is a type I transmembrane protein, indicated at the top. The transmembrane domain (inserted in the membrane, blue) and the position
of the β- and γ-secretase cleavage sites are indicated schematically. Beta-secretase is a type I transmembrane aspartyl-protease. We use in the text another name for
β-secretase i.e., BACE1 (β-site amyloid precursor protein cleaving enzyme), because this name is preferred in the clinical trial literature. The β-secretase yields a soluble
APPsβ that is secreted in the medium, and a membrane-bound APP carboxyterminal fragment that is 99 amino acid-long (APP-CTF99) and remains membrane
bound. The primary amino acid sequence of APP-CTF99 is displayed and the precise positions of the β-secretase and the consecutive γ-secretase cleavage sites are
indicated. The combined actions of β- and γ-secretases generate Aβ peptides of different lengths, as indicated by the black lines above and below the primary amino
acid sequence. The γ-secretase complex (Fig. 2), which is also an aspartyl-protease, cleaves APP-CTF99 first close to the intracellular site of the cell membrane to
generate Aβ49 and AICD50-99 (49-production line), or Aβ48 and AICD49-99 (48-production line). The AICD is released in the cytoplasm, while the Aβ48 and Aβ49 remain
associated with the γ-secretase complex. The Aβ peptides are further trimmed by consecutive cleavages by γ-secretase removing tri- or tetrapeptides at each step
(Takami et al, 2009). Alzheimer’s disease-causing mutations in the presenilin subunit of the γ-secretase complex destabilize the interaction with the Aβ peptides
increasing the chance of premature release of incompletely digested Aβ species. This results in relative shifts of long versus short Aβ peptides, as explained in the text.
Under physiological conditions, the most abundant peptide generated in this process is Aβ40, and clinical mutations increase the release of Aβ42 and/or Aβ43. However,
currently, only Aβ37, Aβ38, Aβ40, Aβ42, and Aβ43 can be efficiently measured by ELISA, and the existence of other longer peptides in vivo remains to be proven. Evidence as
discussed in the main text indicates, however, that the ratio of short (Aβ37+Aβ38+Aβ40) over long (Aβ42+Aβ43) correlates linearly (R2 = 0.78, p < 0.0001) with the age
of onset of familial Alzheimer’s disease in presenilin mutation carriers (Petit et al, 2022a).
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In the first part of this review, we will discuss our current
understanding of γ-secretases and the effect of clinical mutations
on their activity, resolving ongoing controversy in the field. We will
stress how novel insights from cryo-EM structures (Yang et al,
2021) and a better understanding of function (Petit et al, 2022a;
Szaruga et al, 2017) and cell biology (Sannerud et al, 2016) of the γ-
secretases have allowed insights into the mode of action of GSASs.
In the second part of the review, we will use these insights to
explain the mode of action of GSASs and to discuss the roadblocks
to further clinical development of GSAS-based precision medicine
approaches for the prevention of AD.

The discovery of γ-secretases

A pivotal study linked inherited forms of AD to missense mutations
in S182, a gene of unknown function at that time (Sherrington et al,
1995). Soon thereafter, mutations in a second, homologous gene
were identified (Rogaev et al, 1995). The genes were called PSEN1
(abbreviation for Presenilin 1) and PSEN2 to indicate their
relationship with “presenile” early-onset AD (Rogaev et al, 1995).

The function of PSENs was completely unknown, but similarities
with other genes encoding multi-transmembrane domain proteins
led to speculations about their potential roles in vesicle trafficking,
ion channel activity, and Ca2+ signaling, among other possibilities
(Sherrington et al, 1995). Some of these ideas are still prevalent in
the field, although the first evidence for their function from work in
Caenorhabditis elegans (Levitan and Greenwald, 1995) showed that
the presenilin orthologue SEL-12 is essential for Notch (Lin)
signaling. The authors noted that the remarkable conservation of
SEL-12 and S182 does not provide any immediate indication of the
function of S182 in the Alzheimer’s disease process. Nevertheless,
speculations about the role of Notch signaling in AD still remain. A
more direct clue to their role in AD was the finding that presenilin
missense mutations, when expressed in cell cultures, increased the
generation of long, more aggregation-prone Aβ42(43) peptides
(Scheuner et al, 1996; Duff et al, 1996), but the underlying
mechanism remained elusive. Finally, a simple knock-out experi-
ment of PSEN1 provided clarity showing that PS1 (Presenilin 1) is
involved in γ-secretase-mediated proteolytic cleavage of the
C-terminal transmembrane fragments of APP after their generation
by α- and β-secretase(s) (De Strooper et al, 1998). Further work
(Wolfe et al, 1999; Struhl and Greenwald, 1999; De Strooper et al,
1999) confirmed this conclusion and demonstrated “a more direct
role for PSEN1 as a regulatory or catalytic component of the
protease(s) that cleave(s) Notch-1 and APP” (De Strooper et al,
1999). The unequivocal proof that presenilin was indeed the
catalytic protease cleaving Notch and APP was delivered when the
aspartyl-protease transition state inhibitor L-685,458 was cross-
linked to PSEN1 (Li et al, 2000).

Presenilins only become active proteases when integrated into
the γ-secretase complexes (Takasugi et al, 2003; Edbauer et al,
2003) (Fig. 2). These tetrameric complexes contain three other
proteins, i.e., nicastrin (NCT or NCSTN), presenilin enhancer 2
(Pen-2 or PSENSEN), and anterior pharynx homolog 1 (APH-1)
(reviewed in (De Strooper, 2003)). The assembly occurs stepwise
with dimer formation in the endoplasmic reticulum and full
assembly in the Golgi where the NCT subunit becomes fully
glycosylated (Wouters et al, 2021). The first substrate of γ-secretase

Box 1. Complex-specific γ-secretase inhibitors (GSI) for the
treatment of cancer and other diseases

One of the major aims of the therapeutic development of GSIs in AD
was to separate Notch from APP processing. The putative Notch
sparing inhibitor avagacestat (Coric et al, 2015) made it to a phase-II
clinical trial but was halted because of Notch and other side effects.
Recent cryo-EM structures show that semagacestat and avagacestat
bind close to the critical mixed β-sheath that stabilizes APP and Notch
in the catalytic cleft of γ-secretase (Fig. 3) (Zhou et al, 2019; Yang et al,
2019). While it seems unlikely that GSIs will be reconsidered in the
future for the treatment of AD because of these side effects, (selective)
γ-secretase inhibition might be useful in other therapeutic areas (Jur-
isch-Yaksi et al, 2013), for instance, various cancers (Habets et al, 2019;
Ranganathan et al, 2011) and hearing loss (Tona et al, 2014) among
others, especially when Notch signaling is involved (Christopoulos et al,
2021; McCaw et al, 2021). Actually, nirogacestat (Ogsiveo) is the first
GSI that reached regulatory approval for rare desmoid tumors (Gounder
et al, 2023). While developing such Notch inhibitors, it is important to
take into account that at least four different γ-secretase complexes
exist (see main text: The discovery of γ-secretases) resulting from the
four possible combinations of the constituting subunits PSEN1 or 2,
APH1A or B, NCT, and PSENEN. These complexes have tissue-specific
roles in Notch signaling as demonstrated by experiments with MRK560
(Churcher et al, 2006; Best et al, 2006), a GSI that suppresses T-cell
Acute lymphoblastic leukemia (T-ALL) (Habets et al, 2019) without the
classical Notch-related toxicity seen with broad spectrum GSIs in gut,
skin or thymus. The compound MRK560 is selective for PSEN1 above
PSEN2 γ-secretase, and PSEN2-γ-secretase is able to maintain the
Notch physiological function in the gut and skin. The compound
MRK560 was not further developed as a clinical candidate because of
CYP2C9 inhibition liability (Zhao et al, 2015). Recent structural infor-
mation explains the specificity of MRK560 at the molecular level (Guo
et al, 2022; Serneels et al, 2023). It is thus possible to exploit the
relatively small differences between the different complexes to make
selective and more safe medication. In a recent comparison of 12 GSIs
(Serneels et al, 2023), a few showed slight preference for APH1B over
APH1A. New cryo-EM structures should explore the structural differ-
ences between APH1A or APH1B-containing complexes, which should
help to generate specific drugs against APH1B-containing complexes;
these are involved in amyloid plaque generation in an AD mouse model
(Serneels et al, 2009).

Figure 2. Gamma-secretase complex embedded in the cell membrane.

The four subunits are indicated in green (Nicastrin - NCT), red (Presenilin -
PSEN), blue (Anterior pharynx defective - APH1), and orange (Presenilin
enhancer - PSENEN). The structural coordinates can be found at https://
doi.org/10.2210/pdb7D8X/pdb (Yang et al, 2021). Analysis of the data was
done using the chimera package (v1. 17.3) (Pettersen et al, 2004).
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is the PSEN subunit itself, which becomes activated by auto-
proteolytic cleavage (Thinakaran et al, 1996). As there are two
PSEN genes and two APH1 genes, four different γ-secretase
combinations exist (De Strooper, 2003). Additional complexity
comes from alternative splicing, posttranslational modification, and
transient association with other proteins and lipids, some of which
regulate γ-secretase activity (Wong et al, 2020). The different
complexes have rather divergent biological functions and ther-
apeutic applications (see Box 1), as illustrated by the array of
phenotypes caused by different genetic knockouts of the subunits.
For instance, APH1A knock-out causes lethal Notch phenotypes
during embryogenesis, while APH1B causes a mild behavioral
phenotype in adulthood. PSEN1 and PSEN2 are present in different
subcellular compartments. Complexes of PSEN1 are recycled
between the cell surface and endosomes, while PSEN2 complexes
are directed to late endosomes and lysosomes via binding to
Adapter protein complex 1 (Sannerud et al, 2016). A more
complete understanding of the heterogeneity in the structure,
function, tissue distribution, and cellular compartmentalization of
γ-secretases was not available during the preclinical and clinical
development of the first GSIs (Doody et al, 2013; Coric et al, 2015).

Missense mutations in presenilins cause
Alzheimer’s disease

Presenilins PSEN1 and PSEN2 provide the catalytic cores to the
different γ-secretases (De Strooper et al, 1998; Struhl and Green-
wald, 1999; De Strooper et al, 1999; Wolfe et al, 1999; Li et al, 2000).
Hundreds of different AD-causing mutations have been identified
in the PSENs, but—remarkably enough—not in the other subunits
of the complex (Rogaev et al, 1995; Sherrington et al, 1995). In fact,
haploinsufficiency of PSEN and other subunits of the γ-secretase
complex (Fig. 2) cause a skin disorder called hidradenitis
suppurativa (Wang et al, 2010), a chronic skin disease characterized
by painful, acne-like lesions and abscesses (Vellaichamy et al,
2021). There is no increased incidence of AD associated with this
skin disease (Theut Riis et al, 2017; Garg and Strunk, 2017). In
contrast to AD-causing mutations that affect only PSEN, the
hidradenitis suppurativa—causing mutations occur mostly in
NCTSN or PSENEN, the other subunits of the γ-secretase complex,
and such mutations have never been found in AD patients.
Deficient NOTCH signaling in hair follicles might explain the skin
phenotypes, but this is far from settled (Zhang and Sisodia, 2015;
Shi et al, 2023). It is also unclear why only skin is affected: deficient
NOTCH signaling should affect many organs. The proteolytic
function of γ-secretase certainly plays a role in the disease, as 9 out
of 17 patients treated with the γ-secretase inhibitor niragacestat for
desmoid tumor/aggressive fibromatosis developed hidradenitis
suppurativa-like lesions (O’Sullivan Coyne et al, 2018). The lesions
disappeared after halting the treatment. In summary, while these
classical loss-of-function mutations cause hidradenitis suppurativa,
the FAD mutations, in contrast, alter γ-secretase function without
profoundly affecting its role in multiple signaling processes.

Heterozygous carriers of PSEN1 mutations present with dom-
inantly inherited early-onset AD (mean age of onset: 43.6 ± 7.2 years),
and they display all cardinal features of sporadic AD with the full
spectrum of Tau pathology, neuronal loss, and dementia. Some
patients present additional atypical clinical phenotypes, such as

myoclonus, seizures, pyramidal and extrapyramidal signs, and atypical
neuropathology, such as cotton wool amyloid plaques (Ryan et al,
2016; Bergmans and De Strooper, 2010), but not hidradenitis
suppurativa. Alzheimer’s disease caused by PSEN2 mutations is
extremely rare, and the age of onset is rather variable (45–88 years)
(Sherrington et al, 1996). It is possible that less APP is processed via
the PSEN2-γ-secretase complex, and that the production of patholo-
gical Aβ is quantitatively less important than in the PSEN1 mutations.

While both PSEN1 and PSEN2 mutations are very rare causes of
AD (Campion et al, 1999), their study has provided crucial insights
into what constitutes pathological amyloid peptide (Aβ) generation
(Szaruga et al, 2017; Veugelen et al, 2016; Kretner et al, 2016; Duff
et al, 1996; Scheuner et al, 1996; Wagner et al, 2012), which has direct
relevance to the understanding of sporadic AD (SAD), as we will
discuss below. However, in our view, the genetic information was not,
at the time, interpreted correctly by many in the field. The early-onset
forms of AD caused by PSEN mutations were often referred to as
being “aggressive” forms of the disease, and there was a belief that
they led to overproduction of the Aβ42 peptide. In fact, nevertheless,
there is only limited data currently supporting that FAD progresses
more rapidly than SAD (Ryman et al, 2014), and in most cases, FAD
PSEN mutations reduce, in some cases very significantly, the overall
production of Aβ (Veugelen et al, 2016; Szaruga et al, 2015; Chávez-
Gutiérrez et al, 2012; Shen and Kelleher, 2007; Xia et al, 2015).

Therefore, the consensus view is that the mutations cause a partial
loss of PSEN function (Baumeister et al, 1997; De Strooper, 2007;
Wolfe, 2007; Sun et al, 2017; Szaruga et al, 2015; Shen and Kelleher,
2007; Baumeister et al, 1997) and affect APP processing. The question
of how this loss of function leads to AD remains, however, a
contentious issue. The underlying conundrum is whether Aβ peptide
and amyloid plaques are sufficient to trigger AD (“amyloid first”)
(Selkoe and Hardy, 2016; Karran et al, 2011), or whether PSEN
dysfunction itself is the cause of neuronal dyshomeostasis and
neurodegeneration (“presenilin first”) (Shen and Kelleher, 2007).
The latter hypothesis aligns with a school of thought that has criticized
the amyloid hypothesis for AD and the idea that Aβ is the trigger of
the disease. The “presenilin first” hypothesis is, however, largely based
on experiments in conditional knock-out forebrain neurons or
interneurons with total loss of PSEN1. This leads indeed to progressive
neurodegeneration (Zhang et al, 2009; Xia et al, 2015; Watanabe et al,
2014), but in none of these conditions are amyloid plaques or
neuronal tangles observed. Moreover, conditional knockouts of the
other subunits of γ-secretase, i.e., Ncstn (Tabuchi et al, 2009) and
Aph1a and b (Acx et al, 2017), mutations of which have not been
associated with FAD, cause similar neurodegeneration. Membrane-
bound fragments generated from App, Aplp1, Nrg1, Dcc, and other γ-
secretase substrates (Acx et al, 2017) accumulate >10-fold in the
targeted neurons. It is no surprise that this leads to severe disturbances
of neuronal membrane functions, including synaptic transmission.
Clearly, the “presenilin first” hypothesis fails to provide a consistent
explanation for the neuropathology that characterizes FAD patients.

Familial Alzheimer’s disease mutations in
presenilins reveal the importance of long
Aβ-seeds

Importantly, the loss-of-function mutations causing FAD are not
null mutations and they always target the enzymatically active

The EMBO Journal Bart De Strooper & Eric Karran

4 The EMBO Journal © The Author(s)

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on M

arch 6, 2024 from
 IP 193.60.240.99.



PSEN subunit. Gamma-secretases cleave their substrates in two
steps (Quintero-Monzon et al, 2011). The first endoproteolytic
cleavage occurs close to the cytoplasmic side of the transmembrane
domain and is referred to as the ε-cleavage. This is the cleavage that
releases the intracellular domains of APP, Notch, and other
substrates and enables intracellular signaling (Jurisch-Yaksi et al,
2013) (Fig. 1). The remaining Aβ48/49 is further trimmed by
consecutive γ-cleavages that progressively shorten the membrane-
bound part of Aβ until it is released into the extracellular space
(Takami et al, 2009). Every cleavage step requires the progressive
unwinding of the transmembrane helix, the reengagement of the
catalytic site, and the formation of a new enzyme-substrate
complex. Recent structural studies show how APP is anchored in
the complex via an induced mixed β-sheet structure formed
between the carboxyterminal Aβ region of APP and two additional
peptide-strands of PSEN. This positions the cleavage site of the
APP substrate into the catalytic site and makes the first γ-cleavage
of APP possible. A partial unwinding of the resulting Aβ48/49 is
needed to expose the new cleavage site to the catalytic site of the
protease (Zhou et al, 2019; Bhattarai et al, 2022). The carbox-
yterminal amino acids of Aβ48/49 are likely to form a new short β-
strand to anchor itself in a new mixed β-sheet structure allowing
the next cleavage to occur (Yang et al, 2019) (Fig. 1). Computer
modeling shows that minimally three amino acids are required to
stabilize this β-sheet, explaining why tripeptides are generated in
the consecutive cleavage steps (Chen et al, 2023). It is assumed that
the consecutive enzyme-substrate complexes become thermodyna-
mically less and less stable as the Aβ sequence shortens (Szaruga
et al, 2017) to Aβ45/Aβ46, Aβ42/Aβ43, and finally, to Aβ40, Aβ37, and
Aβ38, which can all be detected in the extracellular medium (Fig. 1)
(Funamoto et al, 2004; Takami et al, 2009; Sato et al, 2003;
Quintero-Monzon et al, 2011; Bhattarai et al, 2022).

This model predicts that small alterations destabilizing the
consecutive enzyme-substrate complexes will lead to premature
release of long Aβ peptides: this has been demonstrated
experimentally by increasing the incubation temperature of an
in vitro γ-secretase assay and measuring the shift in the Aβ peptide
length profile (Szaruga et al, 2017). Clinical mutations in PSEN1
also destabilize the enzyme-substrate interactions, as shown by
their increased temperature sensitivity (Szaruga et al, 2017). Thus,
these mutations cause loss of γ-secretase function, which primarily
affects the carboxypeptidase-like processing, and leads to the
production of aggregation-prone long Aβ peptide. It is likely that
the clinical PSEN mutations also affect the carboxypeptidase-
mediated cleavages of transmembrane domains of other substrates
(Weber et al, 2022), but only the Aβ peptide apparently has the
property to form β-sheet fibrillar structures, explaining why PSEN
mutations cause AD.

It should be stressed that most human carriers of PSEN mutations
are heterozygous. Therefore, normal PSEN1 and PSEN2 alleles
provide normal Notch and other signaling to the tissues, but also
normal levels of Aβ peptides. The small amounts of longer Aβ peptide
produced by the mutant PSEN allele, as discussed above, provide
“seeds” that subsequently induce the aggregation of the Aβ generated
from the normal γ-secretases into amyloid plaques (Veugelen et al,
2016). The more unstable the mutant complex, the less it contributes
to the total amount of cellular Aβ produced, but the greater the
proportion and concentration of the longer seeding peptides.

Total short-versus-long Aβ peptide predicts
disease onset in familial Alzheimer’s
disease patients

A recent elegant study analyzing 25 different FAD mutations in
PSEN1 provides strong support for the “amyloid first” hypothesis.
A linear correlation (R2 = 0.78, p < 0.0001) was established between
age at onset of AD in the different carriers and the relative ratio of
short-versus-long Aβ ((Aβ37+ Aβ38+ Aβ40)/(Aβ43+Aβ42) (Petit
et al, 2022a)). The data strongly corroborate the hypothesis that
destabilizing effects of clinical mutations on the enzyme-substrate
complex lead to the release of long (seeding) Aβ peptide (Szaruga
et al, 2017), as illustrated by the increases in Aβ43 in several PSEN
mutants. Importantly, an independent study confirmed a similar
relationship between age at onset and long-versus-short Aβ in 162
PSEN1 FAD-causing variants (Schultz et al, 2023). It should be
noted that robust assays for Aβ>43 (longer than 43 amino acids),
which are likely generated by the most severe mutations, are
currently lacking. A method to measure these longer Aβ peptides
remains a priority for the field.

In conclusion, the study of gain and loss of function of the γ-
secretases have yielded a plethora of insights into the normal and
pathological functions of these intriguing enzymes in embryogen-
esis and in adulthood. These enzymes are essential for the
homeostasis of tissues with the intestine, skin, immune system,
and brain being particularly sensitive to alterations in their
function. Clinical trials have demonstrated that a therapeutic
window for γ-secretase inhibition is absent in AD. The evidence
that PSEN mutations cause the generation of longer Aβ-peptides,
however, suggests that an inverse mechanism, shifting the
production to smaller peptides by stabilizing the APP-γ-secretase
substrate-enzyme interaction could have a profound protective
effect on the pathogenesis of AD. These studies also suggest that the
focus of the field on Aβ42 production alone has been an
oversimplification (see Box 2), as other long Aβ peptides are also
produced and could, even when their total production is very low,
have a catalytic effect on Aβ aggregation and amyloid plaque
formation (Saito et al, 2011).

Elucidation of the structure of γ-secretases
facilitates new drug development

The elucidation of the atomic structures of γ-secretase (Lu et al,
2014) and γ-secretase bound to APP or Notch substrates (Zhou
et al, 2019; Yang et al, 2019) have provided a molecular basis to
understand the mechanism of these enzymes. The transmembrane
domain of tetrameric γ-secretase consists of 20 transmembrane
domain helices. This domain is organized in a horseshoe
conformation (Bai et al, 2015b). The catalytic aspartates (Wolfe
et al, 1999) D257 and D385 reside on the transmembrane domain
(TM)6 and TM7, respectively, of PSEN, and they are located at the
concave site of the horseshoe. The structure is topped by the large
ectodomain of NCSTN that overlays the whole hydrophobic
domain of γ-secretase on the extracellular surface (Fig. 1). To
obtain structures from the in principle unstable enzyme-substrate
complexes, Shi and colleagues (Yang et al, 2019; Zhou et al, 2019)
introduced cross-linking cysteine mutations in both substrate and
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protease, and created a catalytically inactive enzyme by substituting
aspartate D385 with Alanine. This, of course, blocks the
autocatalytic activation of PSEN1. To mimic the effects of the
autocatalytic PSEN activation, the PSEN1-NTF and -CTF were
expressed separately.

The resulting cryo-EM structures (Zhou et al, 2019; Yang et al,
2019) are of remarkable quality, with resolutions of 2.8 and 2.7 Å,
respectively. The novel structures reveal that several transmem-
brane domains of PSEN1 become reorganized and that unstruc-
tured parts of the enzyme become ordered when binding to its
substrates (Yang et al, 2019; Zhou et al, 2019). A very interesting
feature is the induction of a β-sheet structure between PSEN1 and
its substrates that stabilizes the substrates in the catalytic cleft. This
β-sheet consists of a β1 and a β2 strand at the end of
transmembrane domains 6 and in the loop 2 domain of the PSEN
protein, and an induced β3-strand in the Notch or APP substrates.
Numerous other local rearrangements occur, for instance, the two
catalytic aspartate residues, which are remote in the substrate-free
structure become aligned and placed 6–7 Å away from the scissile
peptide bond in Notch (Yang et al, 2019). Both APP-C83 and
Notch-C100 substrates are accommodated in the same cut-through
channel in the transmembrane part of γ-secretase (Zhou et al,
2019). Based on the steric constraints from the structure, it appears
that substrates can only reach the catalytic channel via “lateral
gating” between TM2 and TM6 of PSEN and threading their small

extracellular fragment through the extended loop 1 between TM1
and TM2 (Yang et al, 2019).

In addition, the substrates undergo major conformational
changes. A small N-terminal loop of Notch interacts with residues
at the extracellular surface of PSEN and NCSTN. This loop domain
is followed by a TM helix, which is on its C-terminal part unwound
over one helical turn. This is followed by the already mentioned β3-
strand. The unwinding of the helix exposes the scissile bonds of the
substrate to the catalytic aspartates. The PAL motif in PSEN
transmembrane domain 9 (Tomita et al, 2001), previously shown to
be essential for catalytic activity (Wang et al, 2004), interacts with
this unwounded part of the helix. Upon cleavage and release of the
intracellular domain, the carboxyterminal end of the Aβ peptide is
proposed to unwind over one helix and to reform again a new
carboxyterminal β strand, initiating a new cycle of cleavage (Yang
et al, 2019). This unwinding model, albeit not yet proven, could
provide a mechanism for the consecutive cleavages of Aβ, which
has tantalized the field for twenty years (Sato et al, 2003; Takami
et al, 2009). It is logical to assume that the autocatalytic
“presenilinase” cleavage (Thinakaran et al, 1996) of loop 2 also
involves the induction of a third β-strand, provided by the PSEN-
loop itself during assembly of the complex (Yang et al, 2019).

The different Aβ species are generated from APP by the
progressive cutting of its transmembrane domain, which implies
that it unwinds while in the γ-secretase catalytic cleft. The three
helix-disrupting glycines in its transmembrane domain facilitate
this process. Moreover, 11 out of the 18 amino acids in this domain
are β-branched amino acids (e.g., Val, Ile) that might also
contribute to the unwinding propensity of this domain (Yang
et al, 2019). The consecutive cleavages result in a spectrum of Aβ
peptides ranging from long (initially Aβ49, Aβ48, and then Aβ46,
Aβ45, Aβ43, Aβ42) to short Aβ (Aβ40, Aβ38, and Aβ37) (Takami et al,
2009). At every step of this progressive shortening of the Aβ
substrate a new enzyme-substrate complex is formed that is less
stable, reflected in the stochastic release of the different peptides
from the complex. Destabilization of the complex by clinical
mutations (Szaruga et al, 2017) as explained, but also by alterations
in the lipid composition in the membrane microenvironment of the
enzyme (Winkler et al, 2012), or by external compounds (inverse
modulators (Kukar et al, 2005)), increase the relative amount of
long Aβ over short Aβ. Longer Aβ peptides are more prone to
aggregate and to form oligomers and amyloid plaques, and they are
therefore postulated here as the initial triggers of AD (Veugelen
et al, 2016). The goal of γ-secretase allosteric modulation is to
invert this process by stabilizing the complex so that shorter Aβ
peptides are produced. As such, this should leave the initial ε-
cleavage intact and, as a consequence, the signaling function of γ-
secretase.

Targeting γ-secretases for
Alzheimer’s disease

The amyloid hypothesis (Selkoe and Hardy, 2016) is linear,
quantitative, and neurocentric (De Strooper and Karran, 2016),
leading to the assumption that simple lowering of Aβ (or Aβ42) is
necessary and sufficient to reverse the cognitive deficits in patients.
However, the amyloid hypothesis does not consider the complex,
decade-long cellular disease process—involving glia and vascular

Box 2. Criticism of the “amyloid first” hypothesis

The most serious criticism of the “amyloid first” hypothesis came from
a comprehensive surview of the activities of 138 different PSEN1
mutations tested in two cell-free reconstitution assays (Sun et al, 2017).
The authors found that eight of the mutations (V96F, Y154N,
K155_insFI, V261F, G394V, C410Y, L435F, and DeltaT440) abrogated
endoproteolytic maturation of the complex and eliminated Aβ40 and
Aβ42 production. Furthermore, a large majority of 104 out of 138 var-
iants were producing lower levels of Aβ40 and Aβ42 peptides. As there
was no significant correlation between the Aβ42/Aβ40 ratio produced
by the different reconstituted γ-secretases and mean age at the onset
of disease in patients carrying those mutations (Sun et al, 2017), the
authors concluded that PSEN mutations do not cause AD via the pro-
duction of long Aβ and that other mechanisms must play a role.
However, when one extreme outlier (A260V) was removed from the
data set a highly significant correlation between age of onset and Aβ
ratio was restored (Tang and Kepp, 2018). In addition, as only two Aβ
species were measured, Aβ43, which is increased in PSEN1 mutations
L166R, L235P, G266S, R278T, L282R, and A431E (Petit et al, 2022a),
was not accounted for in these experiments. Finally, detergents or
liposomes, used for cell-free assays of γ-secretase, have a destabilizing
effect on the enzyme-substrate interaction needed to process Aβ
peptides. This could explain why the 8 most extreme variants (V96F,
Y154N, K155_insFI, V261F, G394V, C410Y, L435F, and DeltaT440) did
not show enzymatic activity in these assays. In support of this expla-
nation: two of these mutants, when tested in cell culture, i.e., C410Y
and L435F, produce small amounts of Aβ43 peptide and are thus active
(Veugelen et al, 2016; Kretner et al, 2016). It is important to note that
such very severe mutations like R278I (Saito et al, 2011), L435F (Veu-
gelen et al, 2016; Kretner et al, 2016), and C410Y (Veugelen et al, 2016)
affect not only the γ-cleavages but also decrease the ε-cleavage. In
homozygote knock-in mice, this results in deficient Notch signaling and
lethality during embryogenesis (Saito et al, 2011; Xia et al, 2015).
However, they are not catalytically inert as they release small amounts
of long Aβ in cell culture (Veugelen et al, 2016) and animals (Saito et al,
2011).
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cells- that underlies AD (De Strooper and Karran, 2016), and
therefore the possibility that amyloid is necessary, but not
sufficient to cause neurodegeneration. The cellular hypothesis
proposes instead that the reaction of the brain cells to amyloid,
determined by genetics and environment, leads to neurodegenera-
tion and dementia. This hypothesis suggests many targets for
disease modification in the cellular phase of the disease, down-
stream of the amyloid plaques. The cellular hypothesis, however,
also implies that once neurodegeneration has been initiated,
amyloid therapies will have only a limited effect on the clinical
outcome. The recent clinical data from the phase-III trials with
lecanemab (van Dyck et al, 2023) and donanemab (Sims et al,
2023) clearly show a separation of the placebo and treated arms
indicating a genuine disease-modifying effect, but it is very unclear
from the available data (Sims et al, 2023; van Dyck et al, 2023)
whether the divergence is sustained or whether the curves become
parallel, which is predicted by the cellular hypothesis. The cellular
hypothesis also strongly suggests that primary prevention of
oligomer and amyloid plaque generation before the occurrence of
brain inflammation and damage should have a major impact on
the incidence of AD.

An AD prevention therapy could be envisaged with a modest,
and perhaps intermittent, dosing of an amyloid-clearing antibody,
such that amyloid plaques or oligomers are removed early on, or,
even better, prevented from developing. The three available drugs
(aducanumab, lecanemab, and likely soon, donanemab) all cause,
with varying incidence, brain vascular extravasation, microhaemor-
rhages, and rarely severe brain hemorrhages (Solopova et al, 2023;
Castellani et al, 2023). This might be mediated by a vascular
inflammatory response to amyloid angiopathy aggravated by anti-
Aβ antibody. If this holds true, it would seem unlikely that a similar
response would be seen in people who have low or no amyloid in
their brains. Perhaps a more concerning aspect is the anti-amyloid
antibody-mediated increase in brain atrophy, as evidenced by MRI
(Alves et al, 2023). The time course of this atrophy is discordant
with the time course of amyloid removal, which is evident in the
study with bapineuzumab, that barely removed any amyloid from
the brain (Salloway et al, 2014). The atrophy appears to relate to the
presence of a plaque-binding antibody in the brain. In fact, it is not
clear whether this atrophy is even a measure of neurodegeneration
in this particular context. Nevertheless, this might present an
unquantifiable risk in a primary amyloid prevention study with
anti-amyloid antibodies and will require post-treatment
monitoring.

Current agents are administered intravenously (although
subcutaneous administration is being investigated). This somewhat
burdensome feature is not optimal for subjects entering a primary
prevention study for which multiple-year studies will be required,
and does not compare favorably with the potential of a once-a-day
tablet. Using these antibodies for primary prevention of AD seems,
therefore, to be logistically very challenging.

The insights gained by studying the FAD mutations in PSEN are
pivotal in this regard, as they show that the age of disease onset is
determined by the relative ratio of long Aβ≥42 to short Aβ≤40.
Allosteric modulators of γ-secretase shift Aβ peptide production
from long to short peptides, and are, therefore, fundamentally
acting inversely to the causal mutations in FAD. As the mutations
bring the age of onset forward, such treatment should postpone
(indefinitely) the onset of disease.

The evolution of γ-secretase modulators to
γ-secretase allosteric stabilizers

Gamma-secretase modulation was first demonstrated with non-
steroidal anti-inflammatory drugs (NSAID), such as ibuprofen,
indomethacine, and sulindac sulfide (Luo and Li, 2022; Weggen
et al, 2001). At very high concentrations (25–300 µm) and
independently from cyclooxygenase (COX) inhibition, these drugs
lower significantly Aβ42, increase Aβ38, and do not affect Aβ40 in
cell cultures and mice (Weggen et al, 2001). Tarenflurbil (R-
flurbiprofen) was tested in a large phase-III trial, without success
however (Green et al, 2009), likely because brain concentrations of
the agent were insufficient to mediate a pharmacological effect
(Karran and Hardy, 2014). In general, the first GSM generation
lacked potency, and, besides some academic work (Saretz et al,
2021), this chemical space (Santiago et al, 2021; Mekala et al, 2020)
has largely been abandoned.

A second generation of GSMs was developed based on the
carboxyl-acid moiety of the NSAID scaffold. These compounds,
similar to the first-generation GSMs, selectively affect Aβ42/Aβ38,
while sparing Aβ40. Examples of the most potent compounds in
these series are EVP-0015962 (Rogers et al, 2012), GSM2 (Kretner
et al, 2011), and BIIB042 (Scannevin et al, 2016), all with EC50

values for Aβ42 lowering in the double-digit nM range. However,
their drug-like properties were suboptimal and there are no
reports of their effects in human studies (Mekala et al, 2020;
Santiago et al, 2021).

These first and second generations of GSMs were screened
empirically using cell-based assays and focusing on their Aβ42-
lowering properties and their capacity to maintain the ε-cleavage of
γ-secretases that is critical for intracellular signaling pathways.
However, the mechanism of action and the precise target of these
drugs remained unclear (Kounnas et al, 2010; Kukar et al, 2008;
Kretner et al, 2011; Wanngren et al, 2012). The term “GSM” is used
for any compound that decreases the Aβ42/Aβ40 ratio (Golde et al,
2013). This nomenclature, while useful at the outset to distinguish
them from GSIs, fails to encompass our new understanding of γ-
secretase enzymatic function.

The identification of the third generation of GSMs provided a
major step forward and the first examples of GSASs. The prototype,
introduced in 2006 by Eisai (Yu et al, 2014), targets an allosteric site
in the PSEN subunit (Cai et al, 2017; Yang et al, 2021). The GSASs
stabilize the enzyme-substrate complex to increase Aβ peptide
processivity (Fig. 1), lowering the ratio of long Aβ≥42 to short Aβ≤40
peptides (Szaruga et al, 2017; Chávez-Gutiérrez et al, 2012; Petit
et al, 2022b). In essence, they act in the inverse manner of FAD
mutations, as discussed earlier. The properties of GSASs are
summarized in Table 1. We propose to restrict the use of the name
γ-secretase allosteric stabilizer (GSAS) strictly to this class of novel
molecules (Table 1 and Table 2). Several molecules of this class are
confirmed to bind to the same allosteric site on PSEN (Takeo et al,
2014; Ebke et al, 2011; Yang et al, 2021; Petit et al, 2022b).

The prototypes E2012 and E2212 have been tested in human
phase-I trials demonstrating target engagement (Table 1). Trialing of
E2012 was halted because of non-mechanism-based toxicity (cataracts
in rats). Although E2122 was initially proposed as a safer alternative
(Yu et al, 2014), undisclosed reasons have also halted the clinical
development of E2122. A large variety of similar heterocyclic
phenylimidazole compounds have been generated, but clinical
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progress was limited mostly because of non-mechanism-based liver
toxicity (Mekala et al, 2020). Nevertheless, as indicated in Table 2,
these are potent compounds (low single-digit nanomolar range in cell
culture experiments), which decrease plaque formation and improve
behavior in preclinical models of AD (for example (Kounnas et al,
2010; Rynearson et al, 2021)), while some show little preclinical
toxicity as well. The compound NGP555 (Kounnas et al, 2019)
demonstrated moderate pharmacodynamic effects in phase-I studies
with a significant increase in Aβ38 but only a tendency to lower Aβ42.
The compound BMS-932,481 (Soares et al, 2016) had the desired
effects on Aβ: decreased Aβ42 and Aβ40, and increased Aβ37 and Aβ38
without effecting total Aβ in humans. However, liver toxicity limited
the dose, and further clinical development has stopped. From the
published work, compound PF-06648671 (Ahn et al, 2020) appears
promising. Three phase-I clinical trials involving in total of 120
patients exposed to single and multiple-ascending doses have been
reported (Ahn et al, 2020). Overall, an acceptable safety profile and a
reduction in Aβ42 and Aβ40, with concomitant increases in Aβ37 and
Aβ38 in the cerebrospinal fluid (CSF), without any effects on overall
Aβ production were observed. This compound, at face value, has an

appropriate GSAS profile (Table 1). In 2018, the company that had
generated this compound announced that it was terminating its
internal research efforts in AD (https://www.reuters.com/article/us-
pfizer-alzheimers-idUSKBN1EW0TNf), and the fate of this com-
pound series is unclear. Recently, phase-I data on RG6289, a novel
GSAS, were presented (CTAD 2023), demonstrating robust reduc-
tions in CSF Aβ42 and Aβ40 levels with elevations in Aβ38 and Aβ37
(Table 2).

In conclusion, the available chemical, preclinical, and patient
data suggest that it is possible to generate effective GSASs that have
the desired effects in the human brain with likely a reasonable
safety profile, although currently data on chronic dosing are
missing. For many of these compounds, information on the criteria
outlined in Table 1 remains only partially available, most crucially
regarding the maintenance of the signaling function of the ʏ-
secretases (Hou et al, 2023).

The mechanism of action of γ-secretase
allosteric stabilizers

In addition to having good drug-like properties, a critical feature of
a GSAS is to leave the initial ε-cleavage by γ-secretases intact
(Lessard et al, 2015, 2020; Page et al, 2008; Golde et al, 2013). This
maintains the signaling function of γ-secretases and avoids the
unwanted accumulation of unprocessed APP-CTF fragments (Im
et al, 2023) in the membrane (Table 1). The GSASs should not alter
the total Aβ generated, a potential advantage given the possible
physiological roles of Aβ in synaptic function (Abramov et al, 2009;
Fogel et al, 2014). As GSASs affect the processivity of the γ-
secretase, strong lowering of Aβ42 and Aβ43, moderate or no
lowering of Aβ40, and increases in Aβ38 and Aβ37 should be
demonstrated.

The imidazole-based allosteric GSMIII increases Aβ cleavage
processivity, but at high concentrations (3 µM) it increases also the
initial ε-cleavage. While this—as the authors noted (Petit et al,
2022b)—might be an additional advantage considering the
potential pathogenicity of APP-CTF (Im et al, 2023), it is unclear
whether and how this would increase other signaling pathways in
which γ-secretase is involved. It is likely better to optimize GSASs
along the criteria set out in Table 1. As already mentioned above,
GSMIII and probably other GSMs can cause shifting of the
production line of Aβ peptides. The GSMIII favors Aβ42 and Aβ38
as end products (Petit et al, 2022b). The acidic GSMI also increases
mainly Aβ42 to Aβ38 turnover. Its binding mode (and allosteric
pocket) is different from the imidazole GSMIII binding pocket
(Petit et al, 2022b). Clearly, a variety of agents produce a range of
pharmacological profiles of γ-secretase function.

The discovery of GSMs and GSASs was challenging from the
compound screening and medicinal chemistry perspectives. The
target does not lend itself to a facile biochemical screen, such as the
one that was used successfully with BACE1 inhibitors. The
measurement of compound activity was also complex: a range of
Aβ proteoforms has to be measured to ensure the correct profile of
activity is achieved. However, while challenging, by the time this
research area was being deprioritized in many pharmaceutical
companies, sufficient progress had been made to give confidence
that clinically developable compounds might be found. The
availability of highly resolved γ-secretase structures (Fig. 3) (Yang

Table 1. Characteristics of a gamma-secretase allosteric
modulator (GAM).

Pharmacological properties

Does not affect the epsilon cleavage of substrates

Binds an allosteric site in gamma-secretase

No effect on total Abeta

Lowering effect on Abeta42 and 43

No or moderate effects on Abeta 40

Increasing effect on Abeta37/38

No accumulation of APP-CTF

Maintenance of Notch and other signaling pathways

Drug properties

Property Good Acceptable Poor

TPSA 40–90 90–120 <20

20–40 >120

H-Bond <1 1–2 >2

Donor

H-Bond <4 4–8 >8

Acceptor

MW <360 360–500 >500

ClogP <3 3–5 >5

ClogD <2 2–4 >4

pKa <8 8–10 >10

Kp,uu (brain) >0.3

The essential pharmacological properties are summarized and defined as
whether a compound can be considered an allosteric modulator of γ-
secretase. All criteria should be checked and fulfilled. The drug properties
are important for any drug targeted to the central nervous system.
TPSA, topical polar surface area in Å2; H-Bond, hydrogen-bond; MW,
molecular weight; ClogP, calculated logarithm of partition coefficient
between n-octanol and water; ClogD, calculated logarithm of distribution
coefficient between n-octanol and water at pH7.4; pKa, -logarithm acid
dissociation constant; Kp,uu, ratio of unbound drug in brain versus plasma.
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et al, 2021) opens the path to computer modeling, in silico
screening, and rational drug design approaches (Ioppolo et al,
2021). The binding site of the prototype imidazole-based GSAS
E2012 (Yang et al, 2021; Cai et al, 2017) is at the interface between
PSEN1 and NCSTN on the extracellular side of the complex and
partially covers the substrate-binding tunnel (Fig. 3). This overlaps

with the binding mode of the amino-terminal portion of the APP
substrate (Petit et al, 2022b; Yang et al, 2021). The compound
NGP555 was computationally docked into the same site (Kounnas
et al, 2017) based on an earlier, less well-resolved structure. Further
exciting work (Petit et al, 2022b) using site-directed mutagenesis
and in silico modeling demonstrated that another imidazole-based
GSAS also potentially binds to the same site. Based on further
functional work, the authors proposed a dual mode of action for
this GSMIII: allosteric facilitation of the transition state and
stabilization of the E-S complex by increased hydrophobic
interactions of the shorter Aβ substrates with the complex (Petit
et al, 2022b). The narrow structural and functional link between the
substrate-binding site and the allosteric modulation site (Yang et al,
2021; Petit et al, 2022b) suggests that substrates and GSASs
influence each other’s binding, stressing the importance of studying
the molecular dynamics of the complex.

Challenges to γ-secretase allosteric
stabilizers as a precision medicine approach
to Alzheimer’s disease prevention

Demonstrating AD prevention, defined in this context as the
prevention of amyloid deposition, is a time-consuming and
expensive clinical endeavor, no matter the therapeutic modality
employed. Normally, one would expect to demonstrate clinical
efficacy in AD before moving to secondary (treating amyloid-
positive subjects) and primary prevention. For GSASs, however, it
seems unlikely that they would show efficacy in those patients
where significant levels of amyloid are already deposited. From the
verubecestat phase-III studies, it is known that profound

Table 2. Examples of ʏ-secretase allosteric modulators.

GAM or GSM Chemical structure Clinical trials IC50* Effects on Abeta Notes and ref

E2012 aryl-imidazole phase-I stop ↓ Aβ40, Aβ42↑Aβ37,
Aβ38

lenticular opacities and cholesterol
metabolism problem in rat (EISAI)1

E2212 phenylimidazole phase-I 9.0 nm ↓ Aβ40, Aβ42 EISAI2

NGP555, (compound
4)

thiazole phase Ia + Ib 9 nm lowers Aβ42 and plaques
in rodents

Docked in ʏ-secretase complex
(NeuroGenetic Pharmaceuticals)3

PF-06648671 pyridopyrazine-1,6-dione Three phase-I 120
persons

↓ Aβ40, Aβ42,
↑Aβ37,Aβ38
→total Aβ
(human csf)

Discontinued (Pfizer) 4

BMS-932481
(compound 12)

pyrimidine based phase-I acute and
chronic dosing/

6 nm ↓ Aβ40, Aβ42, ↑Aβ37,
Aβ38
→total Aβ (human csf)

liver problems, discontinued (BMS)5

RO7101556 triazolo-azepine no clinical data
reported

10–20mg/kg
(mouse)

↓ Aβ40, Aβ42, ↑ Aβ38 Hoffmann-Laroche6

RG6289 n.a. Phase I
180 persons

n.a. ↓ Aβ42 Hoffmann-Laroche9

FRM-024
(compound 41)

phenyl-oxadiazine no clinical data
reported

9 nm ↓ Aβ42
↑Aβ37

Forum Pharmaceuticals7

UCSD-776,890
(compound 1)

heterocyclic, imidazole.
pyridazine

no clinical data
reported

5 nM ↓ Aβ40, Aβ42, ↑Aβ37,
Aβ38

University of California and
Massachusetts General Hospital8

The GSASs that have been tested in patients are indicated. The information was derived from the following references: 1(Nakano-Ito et al, 2014); 2(Yu et al,
2014); 3(Kounnas et al, 2017); 4(Ahn et al, 2020); 5(Soares et al, 2016); 6(Ratni et al, 2020); 7(Bursavich et al, 2021); 8(Rynearson et al, 2021) and 9https://
www.alzforum.org/news/conference-coverage/second-generation-g-secretase-modulator-heads-phase-2.

Figure 3. Binding sites of allosteric and orthosteric γ-secretase modulators
and inhibitors.

The ribbon structure of the γ-secretase complex is displayed and turned to
show the binding sites of the allosteric modulator E2012 (red) and the inhibitors
L625,458 (red), Semagacestat (yellow), and Avagacestat (magenta). The three
inhibitors bind closely to each other at the catalytic site of the protease, while
the modulator occupies the allosteric site in the complex. The structural
coordinates can be found at https://doi.org/10.2210/pdbxxxx/pdb using
PDB6LR4, 7D8X, and 6LGQ as pdb coordinates (Yang et al, 2021). Analysis of
the data was done using the chimera package (v1. 17.3) (Pettersen et al, 2004).
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suppression of all Aβ species did not result in a robust reduction in
plaques over 18 months (Egan et al, 2019). Most GSMs tested in
preclinical studies in transgenic mice harboring FAD mutations
that cause amyloid deposition have demonstrated prevention of
amyloid deposition, i.e., tested compounds were administered prior
to plaque deposition (Rogers et al, 2012; Van Broeck et al, 2011;
Imbimbo et al, 2009; Scannevin et al, 2016; Brendel et al, 2015)
rather than in mice with pre-existing amyloid pathology (Mur-
akami et al, 2016) (Egan et al, 2019). Therefore, clinical
development would have to focus on primary prevention: how
could this be envisioned?

For the purposes of this discussion, let us assume a GSAS has
demonstrated the appropriate effect on Aβ peptide production in
preclinical cell and human APP transgenic mouse models; further,
that there is a sufficient efficacy:safety margin based on toxicolo-
gical findings.

Firstly, there is the critical importance of sustaining clinical
equipoise. For whom would this approach be appropriate, and who
would be motivated to participate in clinical studies? Clearly,
PSEN mutation carriers would likely be enthusiastic participants,
in theory. But with the advent of anti-amyloid antibodies
(lecanemab and donanemab), such patients have alternative
options. Indeed, lecanemab is currently undergoing clinical testing
under the aegis of the DIAN-TU consortium (ClinicalTrials.gov
Identifier: NCT05269394) in mutation carriers with separate
symptomatic and non-symptomatic cohorts and in combination
with an anti-tau antibody. Another concern is that some PSEN
mutations confer resistance to GSMs and possibly GSASs, likely
because they affect the binding pocket (Lessard et al, 2015; Page
et al, 2008).

Another appropriate cohort may be amyloid-negative, ApoE4
carriers who are at higher risk of developing AD, but for whom
disease symptomatology is not an inevitable consequence. The
burden of receiving biweekly or monthly intravenous infusions (or,
in the future, subcutaneous injections) of an anti-amyloid antibody
for several years in a preventative study might lead to a significant
drop-out rate, as compared, say, to a daily tablet. In a primary
prevention study, however, it seems likely that a low antibody
dose, perhaps administered on a much longer time interval, would
be sufficient to keep amyloid levels very low, thereby diminishing
the participant burden. For example, this is the approach being
taken in the AHEAD 3-45 studies with lecanemab (Rafii et al,
2023). Besides some of the reservations discussed above regarding
potential issues when using the existing antibodies in prevention
trials, being able to take a daily tablet would likely be significantly
preferred to a regular subcutaneous injection over a duration of
many years.

A third potential path to the clinic is a secondary intervention
trial where patients, after treatment with one of the amyloid
plaque-clearing antibodies and after becoming amyloid PET-
negative, are transferred to a trial with GSASs to prevent re-
accumulation of the amyloid plaques. The Donanemab phase-III
trial shows a path forward to such a trial, as the antibody treatment
was stopped once the patients became amyloid PET scan-negative
(Sims et al, 2023). While BACE1 inhibitors could be considered for
such a combination therapy as well, there are serious mechanism-
based side effects that might limit the dose used for chronic BACE1
inhibition, as discussed above. Furthermore, GSASs have the

distinct advantages of not changing the level of the Aβ species in
contrast to BACE1 inhibition, to avoid the mechanistic side effects
associated with pure inhibition of proteases, and finally, to do
precisely what is crucial: lowering all long Aβ species.

A GSAS clinical study would first proceed via a traditional single
ascending dose (SAD) and multiple-ascending dose (MAD)
approach to assess safety, pharmacokinetics, and pharmacody-
namic effects in small numbers of healthy controls. Cerebrospinal
fluid sampling would be taken to establish that GSAS therapy alters
the ratio of Aβ proteoforms appropriately. Cells transfected with
PSEN mutants secrete Aβ proteoforms and the short/long Aβ ratios
changes from the wild type correlate well with the age of disease
onset in patients harboring each mutation (Petit et al, 2022a). From
this analysis, it was demonstrated that a 25% change in the Aβ
(Aβ37+ Aβ38+ Aβ40)/Aβ42+ Aβ43) ratio in favor of the longer
proteoforms compared to the wild type correlated with a 13-year
lowering in the average age of disease onset. It is not unreasonable,
therefore, to expect that a similar change in Aβ proteoform ratio in
favor of the shorter forms would result in a 13-year delay in disease
onset of sporadic AD—a 20-year delay would effectively prevent
AD. This 25% change could be set as the minimum pharmacody-
namic effect evidenced in a MAD study that would provide
confidence to embark on a phase-II dose-ranging study. However,
if no adverse side effects were experienced, the phase-I MAD study
could increase the drug exposure levels until the pharmacodynamic
effect of increasing the ratio of shorter/longer Aβ proteoforms
reached an asymptote.

A phase-II study should seek to demonstrate the safety of the
therapeutic approach, evidence of efficacy or target engagement,
and provide sufficient data to be able to either accept the null
hypothesis or power a phase-III study in terms of therapeutic dose,
group size, clinical trial duration, and primary outcome measure. A
critical aspect of a GSAS phase-II study is the participant brain
amyloid status at baseline. The GSAS therapeutic hypothesis posits
that the initial amyloid seeding events will be prevented or
significantly delayed. What is not known is whether GSAS therapy
will, by suppressing the synthesis of the most amyloidogenic
species, prevent further deposition in a brain with a low level of
brain amyloid or even facilitate plaque resolution over time. In this
context, “amyloid negativity” needs to be carefully defined (see
Box 3).

By the time a phase-III study could be run, the regulatory
environment may have changed such that prevention of amyloid
accrual would be a surrogate endpoint. If cognitive and functional
endpoints are required by regulatory bodies, an expensive trial will
be needed. From longitudinal data on amyloid accrual (Sperling
et al, 2023; LaPoint et al, 2022; Villemagne et al, 2013; van der Kall
et al, 2021), an amyloid primary prevention study would have to be
of many years’ duration with large group sizes even using the
sensitive Preclinical Alzheimer Cognitive Composite (PACC) 5
assessment scale. An issue yet to be resolved is whether the
magnitude of deflection of cognitive decline in very early disease
will be deemed as being clinically meaningful by regulators and
healthcare providers more generally (Insel et al, 2019).

Nevertheless, we should take lessons from other areas of
medicine development. Large-scale clinical trials have been
cornerstones for trialing in cardiovascular medicine and have
delivered the evidence base for treatments currently saving many

The EMBO Journal Bart De Strooper & Eric Karran

10 The EMBO Journal © The Author(s)

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on M

arch 6, 2024 from
 IP 193.60.240.99.

https://clinicaltrials.gov/ct2/show/NCT05269394


years of life throughout the population. A large-scale cardiovascular
study enrolls typically 5000–20,000 patients and might take 7–10
years to complete (Packer and Pitt, 2018). Of note, approval for the
first statin for human use in 1987 was based on studies showing
that it lowers plasma LDL and is well-tolerated. There was no
evidence that it could prevent heart attacks. This evidence was
delivered only in 1994 with a second-generation statin in a large
follow-up study (Goldstein and Brown, 2015).

The precision medicine approach that GSASs represent is
theoretically very attractive, while the clinical trial execution would
be very challenging. A therapeutic that will be administered to “at
risk” individuals has to be very safe, especially as the risk, in this
case, amyloid deposition, might lead to clinical symptoms only many
years later. Longer-term clinical trials have not taken place with
GSASs, and thus their adverse event profile and efficacy remain
unknown. It is mandatory that further preclinical and clinical
research is performed to explore this highly interesting avenue
toward preventive therapy (see Box 4).

Conclusion

In many ways, the history of γ-secretases seems a repetition of
other histories in medicine. By substituting long Aβ for LDL, we
could just repeat what Noble laureates Brown and Goldstein wrote
8 years ago reviewing a century of cholesterol and coronaries: from
plaques to genes to statins (Goldstein and Brown, 2015):

Few, if any, chronic diseases have been subjected to such intensive
scrutiny, and rarely has the cause and the approach to prevention been
documented so convincingly. It does not seem an exaggeration to state
that targeted application of an LDL-lowering regimen may eventually
curtail one of the major killers of the last century. The key questions for
the 21st century are who to target and when. Ideally, LDL-lowering

Box 3. Assessing amyloid negativity in a γ-secretase allosteric
stabilizer (GSAS) trial

Various cut-offs for amyloid negativity have been assigned for different
amyloid PET ligands using various methodologies (La Joie et al, 2019;
Landau et al, 2014; Jack et al, 2017a,b). However, brains below that cut-
off will be a mixture of genuinely amyloid-negative brains and brains
with low levels of amyloid. The Centiloid project has provided guidance
on how to convert the amyloid plaques signals obtained with different
amyloid PET ligands into a common, 100-point scale (Klunk et al, 2015).
Two studies that examined the issue (Salvadó et al, 2019; Farrell et al,
2021) determined that an appropriate Centiloid (CL) cut-off below
which brains could be confidently assigned as being without amyloid
deposits was 12 CL or <15–18 CL, respectively. Trial participant inclusion
could be initiated by genotyping cognitively normal subjects between
the ages of 60–67 years and selecting ApoE4 positives (Burnham et al,
2020; Bilgel et al, 2016; Jansen et al, 2022). Currently, a range of
plasma biomarkers are being explored that correlate well with brain
amyloid status (Jack et al, 2023). Recently, also an elevation in plasma
pTau231 has shown utility in identifying amyloid-positive subjects, and
plasma pTau231 levels with Z-scores= 2 correlated with an amyloid
level of 26 CLs (Milà-Alomà et al, 2022). Thus, including participants
with pTau231 Z- scores >1 < 2 could be employed as a secondary filter.
The amyloid PET ligand with the best sensitivity and signal-to-noise
characteristics is 18F-NAV4694 (Krishnadas et al, 2022; Rowe et al,
2016), which can detect very early amyloid deposition. Trial partici-
pants would have their amyloid PET status confirmed using 18F-
NAV4694, with patients with >30 Centiloids being excluded. Based on
the ApoE4-positive control subjects with baseline amyloid levels <12
CL, a group size of 143 subjects would be required to demonstrate a
75% reduction of amyloid accrual in a study of 2 years’ duration1.

Box 4. Questions and future directions

Gamma-secretase research peaked in 2012 with 765 publications, but
has drastically slowed down over the last years. It seems crucial that
this work gets again the attention needed as understanding the role of
these complexes in Alzheimer’s disease and Cancer could provide
therapeutics in two major areas of medical need. Important areas of
research are:
1. The (patho-)biological function of the small peptides generated by γ-

secretases from its many substrates. Accurate measurement
methods are available only for Aβ, with the exception of Aβ≥43
forms. Sensitive assays of the whole spectrum of Aβ peptides and an
understanding of their physiological roles are needed. Additionally,
more work on the hundreds of γ-secretase substrates and their
metabolites are required (Hou et al, 2023).

2. A major question is how γ-secretase processivity is affected by
endogenous or exogenous stimuli. The membrane localization of γ-
secretase determines its activity (Thathiah et al, 2013). In neurons,
electrophysiological activity can modulate long versus short Aβ ratio
(Dolev et al, 2013). The innate immunity protein IFITM3 regulates its
activity (Hur et al, 2020). The potential relevance of all these effects
remains, however, largely unknown.

3. While an understanding of the heterogeneity of the γ-secretases
exists (Box 1), there is a lack of insight into the biological relevance
of different γ-secretase complexes in health and disease.

4. Patients with familial Alzheimer’s disease have the classical signs of
Alzheimer’s disease, but many present with additional phenotypes.
Understanding whether other substrates are affected by the
presenilin mutations will help us to understand better the normal
functions of γ-secretases and will help to develop better medication
for these patients.

5. Dynamic studies of the γ-secretase complexes and how allosteric
modulation affects the enzymatic activity of those enzymes are
needed. The cryo-EM structures have provided deep insight into the
previously elusive intramembrane proteolysis of APP and Notch.
Nevertheless, these structures provide only snapshots of a complex
multi-step process. Intermediary structures must exist, for instance,
when the substrate docks to the complex. Cryo-EM approaches
might elucidate such intermediary structures (Bai et al, 2015a), but
kinetic modeling combined with informative site-directed mutagen-
esis will be important to fully unravel the function of these
remarkable structures (Bhattarai et al, 2022; Chen et al, 2023; Petit
et al, 2022b).

6. Alzheimer’s disease prevention would have a profound effect on
global societal well-being. Therapeutic agents are now becoming
available that have the potential to realize this ambition. In the
history of medicine, it is rare that the first available agents are the
best. With this in mind, it is important that the field continues to
treat existing agents as a benchmark from which to improve, rather
than as being a final answer.

1The estimated sample size required for a primary prevention trial in
Alzheimer’s Disease (AD) was determined by selecting healthy control,
APOE4-positive carrier subjects with baseline centiloid values below 12
from the ADNI database. These subjects had baseline centiloid values of
0.77 ± 6.76 (mean ± std) and exhibited a 2.85 ± 6.45 (mean ± std)
increase in centiloid over a 2-year period. A power analysis of this data
suggests that a primary prevention trial to detect a 75% slowing of
amyloid accrual would require 143 subjects per group for a 2-year trial
using a two-group t-test with 80% power and a 0.05 two-sided
significance level, calculated using the nQuery 8.1.2.0 software.
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therapy should be initiated before atherosclerotic plaques develop or at
least before they develop their most threatening features.

We know that AD presents an increasingly important healthcare
problem, and the advent of the first disease-modifying drugs
represents a towering breakthrough: the combined effort of
thousands of basic and clinical scientists in academia and industry,
and most importantly, the willingness of patients to enter clinical
studies. However, the major growth in AD patients worldwide is
going to be in low and middle-income countries (Martin Prince
et al, 2015). The healthcare infrastructure of these nations is not yet
sufficiently mature for large-scale deployment of antibody ther-
apeutics. In summary, it seems sensible to have more, rather than
fewer, therapeutic options available.
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