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Abstract
In support of the environmental justice (EJ) movement, researchers, activists, and policymakers
often use environmental data to document evidence of the unequal distribution of environmental
burdens and benefits along lines of race, class, and other socioeconomic characteristics. Numerous
limitations, such as spatial or temporal discontinuities, exist with commonly used data
measurement techniques, which include ground monitoring and federal screening tools. Satellite
data is well poised to address these gaps in EJ measurement and monitoring; however, little is
known about how satellite data has advanced findings in EJ or can help to promote EJ through
interventions. Thus, this scoping review aims to (1) explore trends in study design, topics,
geographic scope, and satellite datasets used to research EJ, (2) synthesize findings from studies
that use satellite data to characterize disparities and inequities across socio-demographic groups
for various environmental categories, and (3) capture how satellite data are relevant to policy and
real-world impact. Following PRISMA extension guidelines for scoping reviews, we retrieved 81
articles that applied satellite data for EJ research in the United States from 2000 to 2022. The
majority of the studies leveraged the technical advantages of satellite data to identify
socio-demographic disparities in exposure to environmental risk factors, such as air pollution, and
access to environmental benefits, such as green space, at wider coverage and with greater precision
than previously possible. These disparities in exposure and access are associated with health
outcomes such as increased cardiovascular and respiratory diseases, mental illness, and mortality.
Research using satellite data to illuminate EJ concerns can contribute to efforts to mitigate
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environmental inequalities and reduce health disparities. Satellite data for EJ research can
therefore support targeted interventions or influence planning and policy changes, but significant
work remains to facilitate the application of satellite data for policy and community impact.

1. Introduction

Numerous scholars have documented the consistency
with which people from racial and ethnic minor-
ity groups, indigenous peoples, communities with
indicators of lower socioeconomic status (SES), and
other marginalized groups in the United States (U.S.)
experience disproportionate exposure to environ-
mental burdens, such as pollution, andunequal access
to environmental benefits, such as green space [1, 2].
This pattern is often referred to as ‘environmental
injustice’ and the movement and scholarship advoc-
ating for equity is called environmental justice (EJ)
[3]. EJ is defined by the U.S. Environmental protec-
tion agency (EPA) as ‘the fair treatment and mean-
ingful involvement of all people regardless of race,
color, national origin, or income, with respect to the
development, implementation, and enforcement of
environmental laws, regulations, and policies’ [4]. In
addition to the EPA, EJ has become an important
social priority and policy goal at multiple levels of
government.

Environmental data (e.g. measures of air pollu-
tion, heat, lead, and contaminants and pathogens
in drinking water) are critical for efforts by the
government and the public to characterize environ-
mental injustice. Historically, these data have largely
come from in-situ monitoring and computer mod-
eling, often embedded within screening tools [5, 6].
For example, both fixed and mobile ground-based
monitoring have been used to estimate the influ-
ence of traffic-related pollution on communities that
are marginalized and minoritized [7, 8]. However,
large gaps between stationarymonitors preclude their
ability to capture exposure hotspots and distinctions
amongst demographic groups [9, 10], and mobile
monitoring is often incomplete in time and space
(e.g. covering weekdays or daytime only, over a lim-
ited number of weeks or years, or in only one neigh-
borhood or city). While modeled datasets offer more
spatial continuity than standalone ground monitor-
ing data, they are often limited in spatial granularity
and require ground-truthing [11, 12]. Screening tools
that combine environmental and socioeconomic or
demographic information in a mapping interface are
also used to visualize communities that are envir-
onmentally burdened. While these tools have made
data publicly available for characterizing environ-
mental injustice, they are only as reliable as the envir-
onmental datasets on which they are based. The
EPA’s online screening tool, EJscreen, the council on

environmental quality’s climate and economic justice
screening tool (CEJST), and other state-specific tools,
such as the Maryland EJSCREEN Mapper, all use
some environmental inputs that are out-of-date and
at coarser spatial resolutions that may miss more cur-
rent and localized environmental hazards [13–15]. In
addition, other variables related to EJ concerns, such
as extreme heat and past flood inundation, are not
currently included in these specific tools. These lim-
itations raise important questions about patterns of
inequities that might be missed or misidentified.

Satellite Earth observations (EO) can help address
some of the gaps in EJ measurement and monitor-
ing, which in turn can enhance the rigor and social
impact of EJ research. As defined by theGroup on EO,
‘EO’ refers to information collected about our planet
to assess the status of, and changes in, the natural
and human-made environment [16]. EO includes
in-situ measurements from field work, aerial photo-
graphy, and space-based or remotely-sensed data. In
this paper, we use the term ‘satellite data’ to refer
to satellite EO, also commonly referred to as satel-
lite remote sensing. Satellites detect measurements
of radiation from different parts of the electromag-
netic spectrum, or gravitational anomalies, to char-
acterize Earth’s physical, chemical, and biological sys-
tems. The increased technical capability of satellite
data can provide spatially complete global coverage
atmedium and high spatial and temporal resolutions.
Whenmergedwith socioeconomic, demographic and
health data, satellite data present an opportunity for
EJ research to be conducted with greater breadth
and depth than ever before. Specifically, satellite data
provide increased capability for multi-temporal stud-
ies at the temporal revisit time of the satellite and
enable study of small-area or neighborhood-level
exposures and vulnerabilities.

Satellite data have been used to identify unequal
access to green space and disparities in exposure
and vulnerability to heat and air pollutants, among
other environmental investigations [17–19]. While
there is a growing body of literature at the inter-
section of satellite data and EJ, only a limited num-
ber of articles synthesize scholarship on this topic.
In one review, Weigand et al [20] considered four
environmental categories examined by existing stud-
ies (green space, air pollutants, noise, and heat), out-
lined how satellite data could be used for the deriv-
ation of each, and discussed nuances of integrating
satellite data with differently-scaled socioeconomic
data in EJ research as well as limitations of satellites
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for EJ analysis [20]. However, the paper did not use
a transparent methodology to identify previous lit-
erature on the scientific findings about EJ enabled
by satellite data and given the rapid pace of research
in this area, is now outdated. Other articles have
reviewed advances and findings on using satellite
data for exploring neighborhood-scale air pollution
inequities and health applications [21, 22], but only
considered air pollution and did not report reprodu-
cible literature searchmethods. Additionally, only one
of these articles [21] explicitly focused on EJ. These
articles do not provide clear summaries of EJ-relevant
satellite datasets and their sources, the provision of
which could make satellite data more accessible for EJ
practitioners. Lastly, they do not reflect on the poten-
tial value of satellite data to support policy devel-
opment and planning initiatives which are aimed at
remedying environmental injustices. There is a need
for structured analysis that synthesizes the findings
from literature using satellite data for a broader set of
environmental hazards in EJ research, identifies relev-
ant satellite datasets, and illustrates the potential value
of satellite data for EJ impact.

The aims of this scoping review are to (1) explore
trends in study types, topics, geographic scope, and
satellite datasets used to research EJ, (2) synthesize
findings from studies that use satellite data to char-
acterize disparities and inequities across socioeco-
nomic groups for various environmental categories,
and (3) capture how satellite data are relevant to
policy and real-world impact. A scoping review is the
most appropriate method because this body of liter-
ature has not been previously reviewed in a compre-
hensive way ormapped into its key characteristics and
emerging evidence [23]. We review articles in which
authors combined satellite data with socioeconomic,
demographic, and/or health data to explore environ-
mental disparities. We synthesize findings regarding
exposure or vulnerability to several environmental
burdens and lack of access to environmental benefits
that disproportionately impact certain groups along
a variety of demographic and socioeconomic char-
acteristics. Additionally, we tabulate relevant satel-
lite data sources and tools used across the included
studies. Finally, we highlight the strengths and limit-
ations of satellite data for EJ as revealed through the
synthesis and discuss implications through a public
health and policy lens.

2. Methods

We conducted a scoping review of the literature using
methodology that closely followed the 5-step frame-
work outlined by Arksey and O’Malley [24] and
the reporting guidelines outlined by the PRISMA
extension for scoping reviews (PRISMA-ScR) [24,
25]. These steps included (1) identifying the research
question (2), identifying relevant studies (3), selecting

studies (4), extracting data from selected studies, and
(5) summarizing, analyzing, and reporting results.

We addressed the following questions for this
review: what are the publication trends in study
design, environmental categories, geographic scope,
and satellite datasets used in EJ studies? What EJ
disparities and inequities13 have been identified in
the peer-reviewed literature using satellite data and
socioeconomic, sociodemographic, or public health
data? How are satellite data applied in policy and
intervention efforts to mitigate EJ inequities?

2.1. Search strategy
This review was a joint effort between scholars
from the University of Maryland Baltimore County
(UMBC) school of public policy and the national
aeronautics and space administration’s (NASA)
health and air quality applied science team’s satellite
data for environmental justice (SD4EJ) tiger team.
The literature search process consisted of two phases.
In Phase 114, conducted between September 2021
and December 2021, the UMBC team used keyword
searches to identify literature related to the follow-
ing broad environmental categories around which
the scoping review was initially organized: (1) urban
green space (UGS) (later changed to ‘green space’),
(2) urban heat (later changed to ‘temperature’), and
(3) air pollution. In this process, we used combina-
tions related to the following search terms: environ-
mental (in)justice, environmental (in)equality, satel-
lite, satellite data, remote sensing, EO, race/racial,
ethnic/ethnicity, inequality, inequity, green space,
temperature, air pollution, pollution, flood, and
health disparities. This initial search was conduc-
ted by manually exploring electronic databases via
the Albin O. Kuhn Library at UMBC using keyword
combinations summarized in table 1. Databases
explored in the literature search included: EBSCO
(such as academic search ultimate, science direct, and
MEDLINE), clarivate web of science, google scholar,
and JSTOR. PLOS one and researchgate were used to
find two articles that were listed in other databases
but were not available as full text. Reference lists
from studies identified through the searches were
hand-vetted by two UMBC reviewers to incorporate
studies that may have been missed in the keyword
searches. Articles returned via the keyword searches
that were relevant to the guiding questions of this

13 A health disparity refers to a plausibly avoidable, systematic
health difference adversely affecting a socially, economically, or
environmentally disadvantaged group. This definition does not
require establishing that the health difference was caused by social,
economic, or environmental disadvantage. A health inequity is
a particular kind of health disparity that is reasonably believed
to reflect injustice. More information available at www.cdc.gov/
healthcommunication/Health_Equity_Lens.html.
14 Annotations and initial drafts of the review paper were
developed after Phase 1 by Author Sayyed.
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Table 1.Main and expanded terms in literature search.

Main terms Expanded terms

Satellite data Satellite, earth observation, remote sensing, satellite remote sensing
Environmental justice Environmental injustice, environmental equality, environmental inequality, environmental

equity, environmental inequity
Environmental health Health disparities, public health, environmental epidemiology
Demographic Race, racial, ethnic, ethnicity, minorities, nationality, income, socioeconomic, socioeconomic

status
Heat Temperature, extreme heat, extreme temperature, heat risk, urban heat, thermal equity,

thermal inequity, urban heat index
Green space Urban green space, green space, parks, trees, vegetation
Pollution Air pollution, air quality, light pollution, noise pollution, water pollution, water quality
Floods Flood, flooding, flood inundation
Disparities Health disparities, inequality, inequity

review but did not fit the initial environmental cat-
egories (i.e. green space, temperature, and air pol-
lution) were retained, creating a fourth category of
‘other environmental hazards’.

In Phase 2 of the literature search, conducted
between August 2022 and February 2023, the expan-
ded SD4EJ Tiger Team identified additional studies by
searching for literature from specific scholars known
to our team and applying a second round of hand
searches in google scholar using the keyword search
strings.

2.2. Relevance screening and eligibility criteria
Relevance screening was applied to all studies identi-
fied in both Phase 1 and 2 searches. Initial relevance
screening began with a review of titles and abstracts
by a minimum of two reviewers. To guide our lit-
erature search and inclusion criteria, we used the
EPA’s definition of ‘EJ’, which reflects how patterns of
environmental injustice are often found along lines
of race, ethnicity, and SES in the U.S [2, 13, 26]. To
include only a body of literature consistent with the
EPA’s definition, we only considered studies based in
the U.S.Multi-city international studies that included
U.S. cities in their analysis were similarly excluded.
Other criteria applied at this stage were that the article
be peer-reviewed15 and published in english between
2000–2022.

Articles that were not excluded based on these cri-
teria at the title and abstract screening stage were con-
sidered in the full-text review stage. A minimum of
two authors applied inclusion criteria to manuscripts
at this step and agreed on a decision and reasons for

15 Three studies that were not subject to peer-review were available
as working papers or reports within our date range of 2000–2022.
These were conducted by the Resources for the Future nonprofit
research institution, the National Bureau of Economic Research,
and the US Census Bureau Center for Administrative Records
Research and Applications. These three studies were included as
an exception to our inclusion criteria due to their unique contri-
butions and relevance to addressing the research question of how
satellite data can advance policy impact.

inclusion or exclusion. When a consensus for an art-
icle could not be reached by a subset of authors, all
authors met to deliberate on a decision.

During the full-text review stage, inclusion was
further evaluated based on the source of the envir-
onmental datasets used in the article. We carefully
assessed these environmental datasets, which in some
cases required reading additional articles ormetadata.
Studies were classified into two broad categories of
inclusion based on their treatment of satellite data:
‘direct satellite measurements’ and ‘indirect satellite
measurements’. When only quality assurance meas-
ures, data cleaning, or basic statistical techniqueswere
applied to remotely sensed imagery from satellites, we
considered these measurements to be ‘direct’ satellite
measurements. When research requires estimates of
surface-level quantities (rather than columnar dens-
ities), or when interference from atmospheric diffu-
sion and absorption complicates direct use of satellite
retrievals, satellite data can be combined with other
datasets and tools (e.g. models) to increase usability.
In such cases, we considered these hybrid datasets to
be ‘indirect’ satellite measurements. To be included
in this review, the articles’ authors must have made
an explicit connection to socioeconomic or demo-
graphic disparities, outcomes, or inequities in a way
that used direct or indirect satellite-derived data as
an independent variable. Studies that solely used geo-
graphic information systems or mapping tools in
theirmethodologywithout the use of satellite-derived
data as an independent variable were excluded.

2.3. Data analysis and synthesis
Included articles were grouped into primary and sec-
ondary environmental categories (i.e. green space,
temperature, air pollution, and other environmental
hazards). Primary and secondary environmental cat-
egories were determined based on the independent
variable that the satellite instrument measured in
relation to EJ. For example, a study that examined
urban heat islands (UHIs) and the modifying effect

4



Environ. Res. Lett. 19 (2024) 033001 T Kreutzer Sayyed et al

of air pollution but only used satellite instruments to
measure temperature would be primarily categorized
as a ‘temperature’ study and secondarily as an ‘air pol-
lution’ study.

The following 14 attributes were extracted and
recorded in a spreadsheet for the remaining studies:
author(s), year, satellite instrument(s) or product(s)
used, spatial resolution of instrument or data
product(s), primary and secondary environmental
category, environmental variable(s) measured, study
location, geographic scope (e.g. city, county, state,
region, multi-city, or national), study observation
design (e.g. cross-sectional, multi-temporal16, or
both), study type (e.g. differential exposure, dif-
ferential vulnerability, etc), spatial scale of analysis
(e.g. census tract, city, block group), social categories
of analysis (e.g. race, ethnicity, income), key find-
ings, and other non-environmental datasets used
(e.g. American community survey census data). The
extracted attributes and their explanations can be
found in table 1 of the supplementary file. Extracted
data are further summarized and tabulated into three
tables, which include (1) the total number of articles
categorized across all extracted attributes (see table 2
of the supplementary file), (2) summaries of the satel-
lite and satellite-derived datasets used, their availabil-
ity, and their sources (see table 3 of the supplementary
file), and (3) summaries of the socioeconomic data-
sets (e.g. U.S. Census data) used in the included liter-
ature (see table 4 of the supplementary file). Although
not extracted into the spreadsheet, we also noted and
synthesized insights from studies which discussed
the potential for satellite data to be used to advance
EJ through government regulations, programs, and
guidance, or city and community planning.

We provide narrative accounts of the studies
arranged thematically by environmental category
into four subsections: green space, temperature, air
pollution, and other environmental hazards. We do
not assess the quality or risk of bias in the included
studies.

2.4. Study limitations
Our retrieved literature may have been limited due
to unintentional omission of terminology used in EJ-
relevant literature across different fields. In addition,
as our inclusion criteria required studies be peer-
reviewed, exclusively U.S. based, and published by 31
December 2022, our synthesis, discussion, and con-
clusions may miss other important trends or insights
on satellite data for EJ, such as those published in

16 For the purposes of this review, ‘cross-sectional’ articles use
satellite remote sensing data from a single point in time, or aggreg-
ate remote sensing data into a single time period for analysis.
‘Multi-temporal’ articles include analyses that incorporate repeated
measures of remote sensing data and/or follow a unit of analysis
over time. Example study designs that would be categorized as
multi-temporal include cohort studies, time-series analyses, time-
stratified case-crossover studies, or other longitudinal analyses.

the gray literature, internationally, or outside our spe-
cified date range.

3. Results

We present the descriptive results from our scoping
review and then the results of our synthesis in four
subsections corresponding to the environmental cat-
egories of green space, temperature, air pollution, and
other environmental hazards. We also present a res-
ults subsection that describes how authors used satel-
lite data to suggest or endorse policy changes and
other interventions.

3.1. Characteristics of the included studies
The literature search, which included database
searches and literature retrieved via personal com-
munication and hand searches, returned 7075 articles
of which 7072 unique articles underwent title and
abstract screening. Among these, 173 studies under-
went full-text screening (see figure 1). After screening,
81 articles met all inclusion criteria and underwent
full data extraction and analyses (see tables 2(A)–(D)
for the complete list of included articles with select
attributes shown).

The 81 unique articles were published between
2005 and 2022 with more than half (n = 46) pub-
lished between 2020 and 2022 (see figure 2). In terms
of study design, there was a near-even distribution of
multi-temporal (n= 42) and cross-sectional (n= 39)
studies (see figure 3). Studies ranged in geographic
scope: 29 were national; 24 were at the regional, state,
or county level; and 28 were at the city or multi-city
level (see figures 4 and 5). Race (n = 66) and ethni-
city (n= 46) were themost common social constructs
over which injustice was examined.

The included studies leveraged satellite data
products to explore inequities in air pollution
(n= 38), green space (n= 17), temperature (n= 22),
or other environmental hazards (n= 4) such as flood-
ing, light pollution, land-use, and gas flaring (see
figure 2). Eleven out of the 81 studies concurrently
investigated more than one environmental hazard,
such as temperature and green space (n = 9), tem-
perature and air pollution (n = 1) and green space
and air pollution (n = 1). Table 3 describes the most
commonly used satellite instruments (used by three
or more studies), grouped by environmental cat-
egory. The full list of satellite instruments used as
well as their technical specifications are in table 3 of
supplementary materials.

3.2. Green space
Disparate distribution of green space is, and con-
tinues to be, shaped by historical and contempor-
ary systemic racial and ethnic discrimination and
segregation [27, 28]. The EPA defines green space as
land that is partly or completely covered with grass,
trees, shrubs, or other vegetation, including parks
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Figure 1. Summary of study identification and selection following the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines.

and community gardens [29]. Previous studies have
linked green space to improved physical, social, and
mental health outcomes, a heightened sense of over-
all well-being [30–36], reductions in morbidity and
mortality risks [37], mitigation of urban heat [38],
and reduced air and noise pollution [39]. Lack of
access to green space is widely recognized as a form of
environmental injustice. Racial and ethnic minority
residents in communities with lower income and

limited access to green space may experience worse
overall health outcomes and a lower quality of life
than non-minority, wealthier residents in areas with
higher access to green space [35].

Satellite data can reveal information about veget-
ation density, leaf area index, vitality and health,
and ecosystem type. Commonly used indicators
include normalized differential vegetation index
(NDVI) and the enhanced vegetation index (EVI)
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Table 2. Studies included in our review that explored green space (A), temperature (B), air pollution (C), and other environmental
hazards (D) as the primary environmental category of interest. For each study, the geographic scope, study location, and social variables
analyzed are briefly summarized.

A

No. Reference Geographic scope Location Social variable(s)

1 Landry and
Chakraborty [40]

City Tampa, Florida Race, ethnicity, income, housing tenure

2 Jesdale et al [17] National U.S. Race, ethnicity, residential segregation
3 Zhou and Kim [41] Multi-city Illinois Race, ethnicity
4 Gronlund et al [42] Multi-city Michigan Age, race, sex, educational level, marital

status
5 Saporito and Casey

[43]
National U.S. Race, poverty

6 Schwarz et al [44] Multi-city U.S. Race, ethnicity, income, education,
housing age

7 Casey et al [45] Country U.S. Race, ethnicity
8 Brown et al [46] County Miami-dade county,

Florida
Income

9 Lara–Valencia and
Garcia–Perez [47]

City Phoenix, Arizona Ethnicity

10 Schwarz et al [48] City Toledo, Ohio Housing vacancy, race, wealth, education
11 Saporito and Casey

[43]
County U.S. Age, sex

12 Son et al [49] State North Carolina Race, ethnicity, age, gender, education,
marital status

13 Kondo et al [50] City Philadelphia,
Pennsylvania

Race, education, age, employment,
poverty, income, housing vacancy

14 Fong et al [51] Country U.S. Immigrant status, region of origin
15 Namin et al [52] Multi-city U.S. Redlining
16 Lu et al [53] Multi-city U.S. Race
17 Nardone et al [54] Multi-city U.S. Redlining, race, median home value,

employment, high school diploma,
homes with a radio, number of homes
needing major repairs, number of people
per housing unit

B

No. Reference Geographic scope Location Social variable(s)

1 Harlon et al [55] City Phoenix, Arizona Ethnicity, income
2 Buyantuyev and Wu

[56]
City Phoenix, Arizona Income, housing (number of households,

number of housing units, housing age)
3 Jenerette et al [57] City Phoenix, Arizona Income
4 Huang et al [58] City Baltimore, Maryland Race, ethnicity, age, education, income,

poverty, crime
5 Chow et al [59] City Phoenix, Arizona Income, ethnicity, age, mobility, nativity
6 Harlan et al [60] County Maricopa county,

Arizona
Race, ethnicity, age, poverty, education

7 Mitchell and
Chakraborty [61]

County Pinellas county,
Florida

Race, ethnicity, SES (poverty,
homeownership)

8 Lee et al [62] Region Southeastern U.S. Age, sex, race, education, urbanicity
9 Shi et al [63] Region Southeastern U.S. Age
10 Pearsall [64] City Philadelphia,

Pennsylvania
Poverty, income, race, employment

11 Mitchell and
Chakraborty [61]

Multi-city U.S. Race, ethnicity, SES (income,
homeownership, education), segregation

12 Sanchez and Reames
[65]

City Detroit, Michigan Income, race, ethnicity

13 Chakraborty et al [66] National U.S. Income, race
14 Hoffman et al [67] Multi-city U.S. Redlining
15 Wilson [68] Multi-city Baltimore, MD;

Dallas, TX; Kansas
city, MO

Redlining

16 Dialesandro et al [69] Multi-city Southwestern U.S. Income, race, ethnicity

(Continued.)
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Table 2. (Continued.)

17 Carrión et al [70] Region Northeastern U.S. Social vulnerability index (SVI; based on
15 census variables within the domains of
socioeconomic status, household
composition and disability, minority
status and language, and housing and
transportation)

18 Hsu et al [71] National U.S. Income, race, ethnicity
19 Benz and Burney [72] Country U.S. Income, race, ethnicity, elderly,

citizenship, single parenthood, education
20 Rivera et al [73] County Santa Clara,

California
Income, race, ethnicity, education,
employment, housing (housing value,
rent value), homeownership, households
with vehicle

21 Muse et al [74] County Fulton county,
Georgia

Income, race, age, education

22 Manware et al [75] Country U.S. Redlining, race, ethnicity, age,
employment, poverty, disability,
language, housing (occupied houses built
before 1980), nativity

C

No. Reference Geographic scope Location Social variable(s)

1 Kloog et al [76] State Massachusetts Education
2 Clark et al [77] Country U.S. Race, ethnicity, income, age, education,

urbanicity
3 Voorheis [78] Country U.S. Income
4 Clark et al [19] Country U.S. Race, ethnicity, income, age, education,

urbanicity
5 Di et al [79] Country U.S. Race, ethnicity, Medicaid eligibility, sex
6 Rosofsky et al [80] State Massachusetts Race, ethnicity, income, education,

urbanicity
7 Sullivan and Krupnick

[9]
Country U.S. Race, ethnicity, education, income

8 Awad et al [81] Country U.S. Race
9 Chang et al [82] City Jackson, MS Race, sex
10 Lee [83] State California Race, ethnicity, education, poverty
11 Colmer et al [84] Country U.S. Race, ethnicity, unemployment, poverty,

education, occupation
12 Currie et al [85] Country U.S. Race, ethnicity
13 Demetillo et al [86] City Houston, Texas Race, ethnicity, income
14 Qiu et al [87] State Massachusetts Neonatal sex, maternal age, race,

education
15 Bevan et al [88] Country U.S. Social deprivation index (SDI; based on

poverty, employment, renter status,
housing conditions, education, car
ownership)

16 Castillo et al [89] City Washington, DC Education, employment, income, race,
ethnicity, life expectancy at birth

17 Demetillo et al [90] Multi-city U.S. Race, ethnicity, income
18 deSouza et al [10] Country U.S. Medicaid eligibility, age, sex, race,

ethnicity
19 Fong and Bell [91] Country U.S. Immigrant status, region of origin, time

since immigration
20 Khanum et al [92] County San Diego, CA Environmental justice communities

defined by CalEnviroScreen
21 Kerr et al [93] Country U.S. Race, ethnicity, income, education,

vehicle ownership
22 Liu et al [94] Country U.S. Race, ethnicity, income, urbanicity

(Continued.)
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Table 2. (Continued.)

23 Qian et al [95] Region Southeastern U.S. Sex, race, age, Medicaid eligibility,
urbanicity, area-level SES indicator

24 Son et al [96] State North Carolina,
Michigan

Urbanicity, income

25 Yazdi et al [97] Country U.S. Age, sex, race, Medicaid eligibility,
household income, population density

26 Zhang et al [30] State New York Race
27 Bluhm et al [98] State California Race, ethnicity
28 Boing et al [99] Country U.S. Income, poverty, population density,

race, education
29 Chakraborty et al

[100]
Country U.S. Race, ethnicity, age, sex, disability status,

income, urbanicity
30 Dressel et al [101] Census Tract New York

city–Newark
Race, ethnicity, poverty

31 Heft–Neal et al [102] State California Race, ethnicity, income
32 Hrycyna et al [103] Multi-city U.S. Redlining
33 Jbaily et al [104] Country U.S. Race, ethnicity, income
34 Lane et al [105] Multi-city U.S. Redlining, race, ethnicity
35 Lee and Lee [106] Country U.S. Income, race, age
36 Nowell et al [107] Region South Florida Race, income
37 Terrell and James

[108]
State Louisiana Race, age, employment, poverty

38 Wei et al [109] Country U.S. Area deprivation index (ADI; based on
education, employment, housing quality,
poverty)

D

No. Reference Geographic scope Location Social variables

1 Guidry and Margolis
[110]

State North Carolina Race, income

12 Hendryx [111] Region Appalachia Poverty, education, race, metropolitan
area

3 Johnston et al [112] Region South Texas Race, ethnicity
4 Nadybal et al [113] Country U.S. Race, ethnicity, renter status, income

Figure 2. Number of studies included in our review (n= 81) by publication year and primary environmental category of interest.
In the pre-2010 bin, there was one study each in 2005 (other environmental hazards) [110], 2007 (temperature) [55] and 2009
(green space) [40].

[114, 115]. Vegetation indices, including NDVI and
EVI, indicate the relative greenness or health of veget-
ation based on the contrast between the maximum

reflection in the near infrared band caused by leaf cel-
lular structure, and the maximum absorption in the
red band due to chlorophyll pigments. Satellite data
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Figure 3. Breakdown of total studies included in our review (n= 81) by study design.

Figure 4. Number of studies included in our review (n= 81) by publication year and geographic scope. In the pre-2010 bin, a
2005 study [110] had a state-wide geographic scope, and a 2007 [55] and 2009 [40] study had a city-wide geographic scope. The
category ‘multi-city’ is taken to describe generally urbanized areas as some authors compare counties alongside cities in multi-city
studies [52, 54, 67, 103, 105].

can also be used in true color red-green-blue (RGB)
to visually assess vegetative features. The vegetation
indices and other direct and derived satellite products
aid in characterizing green space through variables
such as UGS, urban tree canopy cover (UTC), and
tree canopy cover (TCC).

We identified 17 articles that used direct or indir-
ect satellite data to analyze differential exposure,
and in some cases differential vulnerability, to UGS,
UTC, and TCC.While most studies use RGB imagery
or NDVI as a direct satellite product [43, 45, 46,
48–51, 53, 54, 116] several studies used indirect
satellite-derived products, such as the national land
cover datasets (NLCD) and the national agricultural

imagery program, to explore population disparities in
green space exposure [17, 41, 42, 44, 52].

3.2.1. Distribution and accessibility of green space
Five studies used direct and indirect measurements of
urban greenness from satellite data (NDVI and TCC)
to show that nationally, communities with larger pro-
portions of people who are racial and ethnic minor-
ities and with increased degrees of racial segregation,
had less presence of urban greenness [17, 43, 45, 52,

54]. Onemulti-temporal study leveraged satellite data
to show that these disparities persisted in census tracts
nationally over a 10 year period from 2001 to 2011
[45]. The same finding of inequitable distribution of

10
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Figure 5.Map of studies included in our review by study location. The shaded value ‘study count (by state)’ is the number of
studies that include that entire state or a county in that state in their analysis (n= 24/81). The bubble size ‘study count (by city)’
corresponds to the number of studies conducted at the city or multi-city level, where ‘city’ is taken to also include generally
urbanized areas (n= 27/81). One multi-city study [53] could not be mapped due to data unavailability. 29 studies with a
‘national’ geographic scope conducted at various geographic scales (i.e. census tract, census block group, zip code etc.) are not
mapped in this figure.

greenness among racial/ethnic minority groups was
also found in two studies that considered smaller geo-
graphic areas on the scale of individual cities and
states [40, 41]. The only study to consider distribution
of green space for immigrant communities, as meas-
ured by the designation of ‘foreign-born’ from the
U.S. Census Bureau, found that these communities
also had less greenness [51]. Other studies considered
economic indicators in communities; for example,
Schwarz et al [44] and Saporito and Casey [43] found
that urban greenness correlates with higher incomes
and lower degrees of economic segregation.

Two studies used satellite data and indicators
of proximity to evaluate accessibility to parks and
the quality or features of parks available to differ-
ent racial/ethnic groups. The studies did not find sig-
nificant evidence of a disparity in park accessibility
in Illinois or Phoenix, AZ, metro area census block
groups [41, 47]. However, one found evidence that
there were variations in the quality and features of
parks for different ethnic groups [47]. Specifically,
they found that Latinx residents living in Phoenix
had more access to trees whereas non-Latinx resid-
ents had more access to diverse natural features and
open space.

In one study, authors leveraged the multitem-
poral advantage of satellite data to evaluate the suit-
ability and potential biases of urban greening indic-
ators for EJ research over time. Schwarz et al [48]
compared Landsat NDVI data from three different
years (1980, 2000, 2014) to census tract information
on housing vacancy. In their study, they showed
that high vacancy rates were strongly correlated with
indicators of populations that are minoritized or

are experiencing poverty. Due to this association,
they said, ‘under prevailing EJ theories regarding
urban greening, we would expect that NDVI val-

ues would be lower in high-vacancy tracts where
populations that are underserved are concentrated’.
They found that low vacancy was associated with

higher NDVI values in 1980 and 2000, but by 2014
there was no association between NDVI and hous-

ing vacancy. The authors speculated that spontaneous
and non-amenity vegetation, such as overgrowth, in
neighborhoods with high-vacancy may be biasing
the results towards the null. This study showcases

the ability for satellite data to identify limitations in

current accepted methodologies and theories in EJ
research.
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Table 3. Satellite instruments and satellite-derived data products used in⩾ 3 of the included studies.

Environmental
justice topic

Environmental
variable

Tools
• Spatial coverage
• Spatial resolution
• Temporal coverage
• Temporal resolution Data access

Literature using
datasets included
in review

Air pollution Nitrogen
dioxide (NO2)

TROPOMI www.tropomi.eu/
data-products/
nitrogen-dioxide

Demetillo et al [86];
Demetillo et al [90];
Kerr et al [93]; Bluhm
et al [98]; Hrycyna
et al [103]; Dressel et al
[101]

• Global
• 3.5 km× 5.2 km
• 2018-present
• Daily

Di et al [117] NO2 https://sedac.ciesin.
columbia.edu/data/
set/aqdh-no2-
concentrations-
contiguous-us-1-km-
2000-2016

Yazdi et al [97], Qian
et al [95]; Wei et al
[109]

• Continental United
States
• 1 km× 1 km
• 2000–2016
• Daily

Particulate
matter 2.5 µms
or less in
diameter
(PM2.5)

Van Donkelaar et al [118]
surface PM2.5

https://sites.wustl.
edu/acag/datasets/
surface-pm2-5/

Castillo et al [89];
Sullivan and Krupnick
[9]; Terrell and James
[108]; Bevan et al
[88]; Fong et al [91];
Nowell et al [107];
Boing et al [99]

• Global
• 0.01◦ × 0.01◦

(∼ 1 km x 1 km)
• 1998–2021
•Monthly, annual
Di et al [119] PM2.5 https://sedac.ciesin.

columbia.edu/data/
set/aqdh-pm2-5-
concentrations-
contiguous-us-1-km-
2000-2016

Currie et al [85]; Di
et al [79]; Awad et al
[81]; Yazdi et al [97];
deSouza et al [10], Qiu
et al [87]; Wei et al
[109]; Son et al [96]

• Contiguous U.S.
• 1 km× 1 km
• 2000–2016
• Daily, annual

Ozone (O3) Requia et al [120] https://sedac.ciesin.
columbia.edu/
data/set/aqdh-o3-
concentrations-
contiguous-us-1-km-
2000-2016

Di et al [79]∗; Yazdi
et al [97]†; Wei et al
[109]† ∗ Using Di et al
(2016) † Using Requia
et al (2021)

• Contiguous U.S.
• 1 km× 1 km
• 2000–2016
• Daily Note that this
dataset is an update of Di
et al (2016), which
estimated O3 from
2000–2012 for the same
domain and spatial
resolution.

Multiple
pollutants

CACES LURmodel for
carbonmonoxide (CO),
sulfur dioxide (SO2),
particulate matter
10µms or less in
diameter (PM10), O3,
NO2, and PM2.5

www.caces.us/data Liu et al [94]; Lane et al
[105], Chakraborty
et al [100]

• Contiguous U.S.
• National, state, county,
census tract, census block
group
• 1979–2015
• Annual

Climate Temperature AquaMODIS land
surface temperature and
emissivity (MYD11a1)

https://lpdaac.
usgs.gov/products/
myd11a1v006/

Benz & Burney
[72], Hsu et al [71],
Chakraborty et al [66]

• Global
• 1 km
• 2002—Present
• Daily (daytime and
nighttime)

(Continued.)
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Table 3. (Continued.)

Environmental
justice topic

Environmental
variable

Tools
• Spatial coverage
• Spatial resolution
• Temporal coverage
• Temporal resolution Data access

Literature using
datasets included
in review

Landsat 5 thematic
mapper

https://earthexplorer.
usgs.gov

Mitchell and
Chakraborty [61];
Mitchell and
Chakraborty [18];
Jenerette et al [57]

• Global
• 120 m
• 1984–2013
• 16 d
Landsat 7 https://earthexplorer.

usgs.gov
Jenerette et al [57];
Harlan [55]; Huang
et al [58]; Chow,
Chuang, & Gober
[59]; Harlan et al [60]

• Global
• 30 m
• 1999–2022
• 16 d
Landsat 8 thermal
infrared sensor

https://earthexplorer.
usgs.gov

Pearsall [64]; Muse
et al [74]; Dialesandro
et al [69]; Rivera
et al [73]; Sanchez
& Reames [65];
Hoffman et al [67];
Wilson [68]

• Global
• 100 m
• 2013—Present
• 16 d

Built environment Green space Landsat 7 https://earthexplorer.
usgs.gov

Saporito & Casey [43];
Jenerette et al [57];
Harlan [60]

• Global
• 30 m
• 1999–2022
• 16 d
Landsat 8 operational
land imager (OLI) and
thermal infrared sensor
(TIRS)

www.arcgis.com/
home/item.

html?id = a1c3
73b16db34ef687
ddae7c482e0b27
https://earthexplorer.
usgs.gov/

Fong et al [51]; Kondo
et al [50]; Lu et al [53];
Schwarz et al [48]

• Global
• 30 m (OLI); 100 m
(TIRS)
• 2013- present
• 16 d
Terra modis [link not given in

paper but specific
product (MOD13Q1)
given] https://lpdaac.
usgs.gov/products/
mod13q1v006/

https://lpdaac.
usgs.gov/products/
mod13q1v061/

Casey et al [45]; Fong
et al [51]; Heo &
Bell [116]; Son et al
[49]; Mitchell and
Chakraborty [18];
Nardone et al [54];
Son et al [96]

• Global
• 250 m
• 1999—present
• 1–2 d (composite
images every 16 d)

National land cover
datasets (NLCD)

www.mrlc.gov/data Gronlund et al [42];
Jesdale et al [17]; Lu
et al [53]; Namin et al
[52];

• Continental United
States
• 30 m
• 1992-present
• 10 year repeat cycle
prior to 2006; 5 year
repeat cycle 2006-present

Satellite

Satellite-derived or –incorporating
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In combination with other data, satellite data
may be useful for aligning EJ efforts with redis-
tributive policy measures. Multiple studies reflec-
ted on how satellite data could inform evidence-
based planning and interventions targeted at equit-
able distribution to improve access to environ-
mental benefits in areas with populations that are
vulnerable. For example, authors of several art-
icles described how their findings could be used to
improve availability and accessibility to green space
[40, 45, 49, 52, 53], and increase UTC and UGS
[50, 57]. One study used satellite data to estimate
a reduction in premature deaths based on projections
from Philadelphia’s Greenworks Philadelphia plan to
increase UTC in neighborhoods that are low-income
and neighborhoods with higher proportions of
residents of color [50]. The authors estimated that
the expansion of UTC by 30% was associated with an
estimated reduction of 403 premature deaths annu-
ally overall, including 244 premature deaths in areas
of lower SES. Another study assessed the adequacy of
Detroit’s future city plan which includes heat mitig-
ation efforts through greening [65]. They found that
the populations most vulnerable to heat in Detroit,
namely Black populations, would have the highest
percent access to green space within the area of the
proposed plan.

3.2.2. Health as a function of green space
Six articles evaluated satellite measurements of green
space as a factor of differential vulnerability or as an
inclusive factor in a health impact analysis [42, 46, 49,
50, 53, 116].

A national study showed that a higher ratio or
presence of green space was associated with lower
racial disparities in COVID infection rates [53].
Another study estimated that increasing UTC in the
city of Philadelphia would prevent a higher pro-
portion of premature deaths in areas of lower SES
[50]. Other studies have found that the presence of
more green space was associated with reduced odds
of Alzheimer’s disease and depression in neighbor-
hoods with lower SES, reduced risk for hospitaliza-
tions associated with particulate matter of 10 µms or
less (PM10), and a reduced odds of heat-related car-
diovascular mortality in elderly populations [42, 46,
116]. In contrast, a study conducted by Son et al [49]
concluded that residential greenness did not lead to
significant differences in health disparities attribut-
able to air pollution.

3.3. Temperature
In many parts of the United States, extreme temper-
atures -both heat and cold- pose substantial health
risks, such as asthma exacerbation and heat-related
illness, which disproportionately burden populations
that are marginalized [121, 122]. People who live in
cities are especially at risk of extreme heat due to the

UHI effect, which is the ability of built infrastructure,
such as buildings and roads, to absorb the sun’s heat
more readily than natural landscapes [71]. Exposure
to extreme heat fromUHI and anthropogenic climate
change is responsible for rising heat-related morbid-
ity and mortality rates in urban settlements globally
and is the leading weather-related cause of death in
the U.S [123, 124].

While satellites cannot directly measure air
temperature, which is more closely related to health
effects [125], satellites can directly detect land surface
temperature (LST) by measuring reflected light from
the infrared portion of the electromagnetic spectrum.
There are various ways to compute LST, including
combining satellite data with additional meteoro-
logical and land-use parameters. For example, the
method endorsed by the United States geological sur-
vey (USGS) uses NDVI, the proportion of vegetation,
and emissivity as input variables [126]. The surface
UHI effect is then computed as the difference in LST
between urban and non-urban areas. LST is often
measured alongside other satellite image indices such
as the normalized difference built up index or used
to calculate cumulative risk indices. Satellites, such
as those from the NASA and USGS landsat program,
provide 30-meter spatial resolution enabling ana-
lysis of heat inequities with more continuity than
possible with ground monitors. Of the 22 articles
in this review with a focus on heat, 18 articles use
LST or other indices to assess urban heat, heat risk
or vulnerability [18, 55–61, 64–69, 71–74] and four
articles use modeled air temperature derived from
satellite measurements of surface temperature [62,
63, 70, 75].

3.3.1. Heat exposure
Using satellite data to characterize heat exposure is
challenging due to the aforementioned limitation that
satellites do not directly measure air temperature,
which is more relevant to human health than is LST
[125]. However, satellite data still provide insight on
the contiguous spatial patterns and differences in
heat exposure within populated areas, which ground-
based temperature measurements cannot provide.
Nineteen articles used satellite data to characterize
urban heat exposure for different population groups
across geographies in the United States. Sixteen art-
icles found that communities with lower SES and
other measures of social vulnerability experienced
greater urban heat vulnerability [59] and exposure
[18, 55–58, 61, 64, 66–72, 75].

The 19 articles had various findings on expos-
ures for minority racial/ethnic groups in different
geographies. In thirteen studies, Black, Hispanic and
Asian populations had greater exposures to heat in
the majority of investigated areas [18, 55, 58, 61, 65,
66, 68, 69, 72, 73, 75]. One national study showed
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that statistically significant racial heat disparities per-
sisted when adjusting for income and when restrict-
ing the analysis to smaller rural areas, which are
often excluded from heat studies [72]. Five studies
found that measures of segregation partially explain
these thermal inequities for different racial and eth-
nic groups [18, 61, 67, 68, 75]. In contrast, one study
in Atlanta found that populations that are historic-
ally marginalized (predominantly Black persons with
less access to education and wealth) had less expos-
ure to high temperatures, potentially driven by more
extensive UTC and less impervious surfaces [74]. Two
articles used satellite data and other data sources to
observe built environment features and how they
contributed to urban heat disparities. A national
study found that systematically, the disproportion-
ate heat exposure faced by racial and ethnic minor-
ity communities was due to more built-up neigh-
borhoods, less vegetation, and—to a lesser extent—
higher population density [72]. A Philadelphia study
found that presence of vacant land and impervious
surfaces has a stronger relationship with high temper-
atures than does NDVI [64], the latter having been
previously connected with temperature variations via
vegetation’s cooling effect [127, 128].

Authors of several articles described how their
findings could be used to improve access to cool-
ing resources for heat mitigation [58, 60, 64, 66].
For example, a study in Atlanta found that by using
satellite data they could confirm that the majority of
the city’s climate resilience planning is appropriately
focused on the areas with the highest heat exposure
[74]. In some studies, satellite data were useful for
identifying locationswhich could benefit fromexpan-
ded monitoring stations [62, 63].

3.3.2. Temperature and mortality
Three multi-temporal studies leveraged the high
spatial resolution of satellite data to estimate
temperature-related mortality for different popu-
lation groups. Harlan et al [60] identified that neigh-
borhood scores on surface temperature, socioeco-
nomic vulnerability and elderly/isolation were best
fit at predicting odds of deaths from heat exposure
in Arizona. One study found that Black populations
had significantly higher associations ofmortality with
increases in temperature [62], while another found
smaller relationships between heat and mortality
for different racial groups, with Black populations
more vulnerable to changes in mean temperature
than White populations [63]. Both studies found
that people in less urban areas were more sensitive
to increases in temperature. They also observed that
satellite data improved temperature estimates in rural
areas that have more sparse weather monitoring sta-
tions, and enabled Shi et al [63] to conduct a study
that controlled for fine particulate matter of 2.5 µms
or less in diameter (PM2.5), which can bias results on
health effects of temperature [129].

3.4. Air pollution
Air pollution exposure is associated with a broad
range of health outcomes, including asthma, respir-
atory infections, cardiopulmonary disease, lung can-
cer, adverse birth outcomes, and cognitive disorders
[1, 89, 130]. Some air pollutants including nitro-
gen dioxide (NO2), ozone (O3), sulfur dioxide (SO2),
and carbon monoxide (CO) are observable by satel-
lite instruments through retrieval algorithms (‘direct
satellite measurements’; see methods). Models incor-
porating satellite measurements can also be used to
estimate ground level concentrations of these pollut-
ants (‘indirect satellite measurements’). Other spe-
cies, such as PM2.5, can be inferred by combining dir-
ect measurements of aerosol optical depth (AOD),
which is a measure of light attenuation by atmo-
spheric aerosols [131], with physical or statistical
models.

Of the 38 studies in this review with a focus on air
pollution and EJ, seven incorporated direct measure-
ments of NO2 and AOD, while 31 studies used indir-
ect satellite measurements of PM2.5, PM10, O3, NO2,
SO2, CO, and NOX. Among the studies that used
indirect satellite measurements, the most common
focus was surface-level PM2.5 derived from a chem-
ical transportmodel that related directmeasurements
of AOD from multiple satellite instruments to near-
surface PM2.5 concentrations [118, 132]. Other stud-
ies that used indirect satellite measurements relied
on statistical models, chemical transport models, or
machine-learning models that incorporated satellite
measurements of air pollution, land cover and land
use data,meteorological data, and surface-levelmeas-
urements of pollutants [94, 106, 119]. Despite the
incorporation of geophysical or statistical models to
generate these indirect satellite measurements, ana-
lyses of their performance against in-situ monitors
found good agreement [133–136]. Among the 38
studies included in this review, 21 focused on PM2.5 as
the primary pollutant of interest, while 8 focused on
NO2, 8 examined multiple pollutants, and 1 focused
on NOx.

3.4.1. Air pollution exposure
Several multi-temporal studies used indirect satel-
lite measurements to quantify inequities over mul-
tiple decades in pollutant concentrations across the
U.S [19, 84, 94, 104] and within individual states [80,
108], while others focused on a single point in time
[83, 92, 100, 106]. Across geographies, these studies
reported substantial disparities in air pollution con-
centrations across racial/ethnic groups and economic
strata [19, 80, 84, 92, 94, 104, 108], with racial/ethnic
disparities typically larger and more consistent than
disparities by income levels [19, 80, 94]. The observed
degree of disparity also varied across pollutants, with
NO2 generally displaying larger disparities than PM2.5

or other pollutants [80, 94]. Longitudinal studies con-
sistently reported that while absolute disparities in
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pollution exposure have generally decreased over time
as pollution concentrations have declined, relative
disparities decreased to a lesser degree [19, 84, 94], or
even increased [80, 104].

Recent research has also leveraged direct satel-
lite measurements to characterize relative disparities
in NO2 and PM2.5 exposures. Studies utilizing the
TROPOspheric monitoring instrument (TROPOMI)
to examine NO2 disparities in major urban centers in
the U.S. reported lower NO2 concentrations in census
tracts with greater proportions of White and higher
income residents [86, 93, 101]. Several of these stud-
ies identified heavy-duty diesel traffic as a major con-
tributor to intra-urban NO2 disparities. For example,
across 52 urban centers evaluated by Demetillo et al
[86], an estimated 60% drop in heavy-duty truck
traffic on weekends was associated with a 40% reduc-
tion in the degree of exposure inequality, while Kerr
et al [93] presented evidence that NO2 disparities that
persisted throughout the 2020 COVID-19 lockdowns
were in part due to continued heavy-duty diesel activ-
ity throughout that period. Other researchers used
direct satellite measurements to examine the impact
of COVID-19 shutdowns on racial/ethnic disparities
in PM2.5 (using AOD as a proxy) in New York state
[137] and NO2 in California [98].

Hrycyna et al explored the influence of historical
discriminatory redlining on current pollution levels
using direct satellite measurements from TROPOMI
[103]. They reported that residents living in histor-
ically redlined neighborhoods were exposed to sub-
stantially higher NO2, which is consistent with res-
ults reported by researchers examining associations
between redlining and NO2 and PM2.5 pollution
concentrations using indirect satellite measurements
[105]. Other research leveraging indirect satellite
measurements examined the influence of income
inequality [78] and public housing development
siting [100] on observed racial/ethnic and socioeco-
nomic disparities in air pollution exposure.

3.4.2. Air pollution health outcomes
Multiple national studies integrating administrative
health data and satellite air pollution data found that
vulnerability to the health effects of air pollutants
is most pronounced among individuals and com-
munities with lower SES [76, 79, 88, 97, 99, 109].
Several studies also found that Black and male indi-
vidualsmight experience themost pronounced health
effects due to air pollutant exposure [79, 82, 87],
though findings were not universal [10, 81, 95, 102]
and might vary by pollutant [97]. Studies examined
in this review incorporated a range of data sources,
such as products from the U.S. Census Bureau (e.g.
American community survey, decennial census) for
population demographic and economic characterist-
ics, and sometimes integrated fine-scale meteorolo-
gical data [87, 96] and satellite-derived measures of
greenness [96]. Several studies examined how health

effects of air pollutants differed according to compos-
ite indices of area-level vulnerability, including the
social deprivation index [88] or the area deprivation
index [109]. For example, Wei et al [109] integrated
spatially granular (1 km x 1 km) data on multiple air
pollutants (PM2.5, NO2, O3) with national inpatient
fee-for-service Medicaid claims data and ZIP code-
level information on the area deprivation index. For
all pollutants, associations with asthma hospitaliza-
tions were most pronounced among individuals liv-
ing in areas with higher deprivation.

Using highly spatially resolved satellite data has
also facilitated comparisons by urbanicity or across
areas with varying levels of distance to the closest
ground-based air quality monitor. For example,
Kloog et al found that associations between long-term
PM2.5 exposure and mortality were higher among
individuals living closest to ground monitors (within
20 km) in Massachusetts, compared to individuals
living farther away [76]. Other analyses found that
associations between PM2.5 exposure and mortality
among Medicare beneficiaries in North Carolina and
Michigan were higher in rural areas compared to
urban areas [96], whereas associations between NO2

exposure and mortality among Medicare beneficiar-
ies in the Southeast U.S. were more pronounced in
urban areas than in rural areas [95].

3.4.3. Air pollution burden assessment and policy
evaluation
In addition to exposure assessment and epidemiolo-
gical studies on the health effects of air pollutants,
satellite data have also been used to quantify differen-
tial burdens of air pollution in particular regions [89,
107] and inform evaluations of the impacts of air pol-
lution policies on exposure disparities [77, 85, 138].
For example, Clark et al used indirect satellite meas-
urements to estimate the potential health benefits
of eliminating national racial/ethnic and socioeco-
nomic disparities in NO2 exposure and proposed an
environmental inequality ranking system by urban
area, county, and state [77]. Several studies used
satellite data to evaluate existing air pollution con-
trol policy or described how it could help inform
future policy development or evidence-based plan-
ning towards alleviation of environmental hazards in
areas with populations that are vulnerable. Currie
et al used multitemporal satellite data to show the
efficacy of the clean air act in reducing racial inequit-
ies in air pollution exposure through spatially tar-
geted air quality regulations [85, 138]. Problems with
widespread use of sparsely and unevenly sited reg-
ulatory monitors to measure compliance with the
clean air act have been brought to light with satel-
lite data. Sullivan and Krupnick [9] and Fowlie et al
[139] showed how monitors cannot fully character-
ize nationwide PM2.5 exposure disparities or cap-
ture attainment versus non-attainment designations
under the national ambient air quality standards of
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the clean air act, which could have enormous public
health, welfare, and economic consequences if areas
are inadvertently considered to be in attainment of
these standards due to the use of monitors. Authors
of other studies suggested that exposure to traffic-
related air pollution could be partially mitigated by
reducing emissions from the heavy-duty trucking sec-
tor through, for example, truck electrification and
vehicle bans [86, 90, 93] and other city planning
decisions. Satellite data also helped identify locations
that could benefit from expanded in-situmonitoring
of air pollution [140].

3.5. Other environmental hazards
We categorized four articles as examining other EJ
hazards: artificial nighttime light, flaring fromuncon-
ventional oil and gas development, mountaintop
removal coal mining, and flooding.

While artificial nighttime light can have many
benefits such as enabling nighttime economic and
social activity, a growing body of research is link-
ing artificial nighttime light to potential negative
public health impacts, such as metabolic disorders
and cancer [141]. Satellite sensors, such as NASA’s
visible infrared imaging radiometer suite (VIIRS),
can detect nighttime light in the visible part of
the electromagnetic spectrum. This information is
used in fusion datasets such as the Atlas of artificial
night sky brightness. Using the atlas, Nadybal et al
found that Black, Asian, and Hispanic people and
Native Hawaiian/Pacific Islanders experienced con-
siderably higher population-weighted mean expos-
ures to nighttime artificial light than non-Hispanic
White persons [113].

Gas flaring releases hazardous air pollution in
the form of particulate matter and volatile organic
compounds and contributes to light, noise, water
and noxious odor pollution [112]. The VIIRS night-
fire (VNF) satellite product can detect combustion
sources such as flaring [142, 143]. Using the VNF
product in a longitudinal study, Johnston et al [112]
found that Latinx populations were exposed to twice
as many nightly flare events within proximity to their
homes than non-Hispanic Whites.

Mountaintop removal coal mining (MTM) is a
form of surface coal mining associated with a variety
of detrimental environmental effects, such as water
pollution, flooding, and forest loss, and adverse health
effects, such as heart disease, cancer, and birth defects
[144, 145]. Satellite data can be used to identify
MTM through visual indicators [146]. Evaluating
Appalachian and non-Appalachian counties across
four southern states, Hendryx used satellite-derived
MTM location data and found that Appalachian com-
munities with higher rates of poverty were dispropor-
tionately exposed to environmental health risks asso-
ciated with MTM [111].

Flooding can cause immediate health impacts
such as drowning, injuries, hypothermia, respiratory

and lung diseases, and diseases from animals breed-
ing in stagnant water [147]. Flooding can also have a
long-term economic and social impact on livelihoods
[148, 149]. Flooding can be identified from satellite
imagery through both optical and synthetic-aperture
radar (SAR) based methods [150, 151]. Focused on
eastern North Carolina, Guidry and Margolis used
floodmaps derived from SAR satellite data and found
that schools that were attended by majority African-
American students and students with lower income
are at a greater risk of being flooded [110].

4. Discussion

In alignment with other EJ literature [2], the major-
ity of the reviewed 81 articles applying satellite data
for EJ found evidence of unequal exposure to envir-
onmental burdens, including air pollution, heat, and
other impacts, and unequal access to environmental
benefits such as green space, along lines of income,
race, ethnicity, and other socioeconomic and demo-
graphic markers. In general, people residing in lower-
income neighborhoods or households and people
who belong to racial and ethnic minority groups
routinely had the largest inequities. That satellite-
derived data reinforce conclusions established using
other data sources underscores the persistence of
environmental injustice in the U.S. The review also
offers more novel synthesis on trends in the applica-
tion space of satellite data for EJ, the technical advant-
ages of satellite data for describing disparities and
health impacts at spatial and temporal scales not pre-
viously possible, and the relevance of satellite data
for use in policy contexts and other efforts to rem-
edy injustice. We expand on each of these more novel
contributions in the following subsections.

4.1. Trends in the application of satellite data for EJ
Looking across the studies, we found some key trends
that can help guide future research. As shown in
figure 2, most of the literature employed satellite data
for air pollution research, with the environmental cat-
egories of green space and temperature represented at
approximately half of the proportion of air pollution
studies. Over time, the literature veered away from
study sites at the level of the city and leveraged the
spatial coverage of satellite data to domore multi-city
and national research (see figure 4). Yet, we see that at
the sub-national level, parts of the Pacific Northwest,
Southwest, and Midwest may be underrepresented
(figure 5). Existing studies are also mostly focused
on urban spaces, and EJ concerns relating primarily
to rural or agricultural contexts, such as land con-
servation and mining, are understudied using satel-
lite data. Study design (figure 3) is nearly evenly split
between cross-sectional and multi-temporal. Some
of this trend may owe to data availability given that
studies conducted at earlier time periods within the
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scope of our review would not have had a long tem-
poral archive to work with for satellites such as Aqua,
Terra or Sentinel 1 and 2. Still, the most recent 5 years
within the scope of our review had near-even pro-
portions of cross-sectional and multi-temporal study
design each year and on average (see table 5 of the
supplementary file). Further multi-temporal analysis
in EJ is important to consider as it can support char-
acterization of cumulative impacts, which refers to
the multiple environmental and social stressors com-
munities face over time that can additively increase
vulnerability and harm health [152, 153].

There were many instruments and datasets being
used for EJ analyses (see table 3), but interestingly,
little variation in type of satellite instrument (pass-
ive or active). Passive sensors, the most common type
of satellite sensors, measure the reflected naturally
emitted energy from the sun, whereas active sensors,
which include SAR and light detection and ran-
ging, emit their own source of light and measure the
scattered light reflected to the sensor. Only one study
used an active sensor, specifically SAR, in the meas-
urement of a primary independent variable [110].
Active sensors offer expansive capabilities, including
being able to see through clouds, and applications
such as monitoring forests, floods, oil spills, land-
slides, and subsidence, that have intersections with
EJ [154, 155]. The upcoming joint mission between
NASA and the indian space research organization to
launch a satellite carrying SAR instruments is well-
poised to advance the use of SAR for EJ.We also found
only two examples of commercial satellite imagery
used [40, 44]. Commercial satellites can offer much
higher spatial and temporal resolution than publicly
available satellites, which could improve the granular-
ity of EJ analyses. However, the financial cost of com-
mercial satellite imagery may present barriers to EJ
practitioners. These trends show there is an oppor-
tunity for more literature that broadens the use of
satellite data for EJ topically, geographically, and tem-
porally and in terms of imaging technique and source.

4.2. Strengths and limitations of satellite data for
EJ and public health
This review demonstrates the value and potential of
satellite data to advance the scientific understanding
of inequitable exposures and impacts from environ-
mental hazards. This paves the way for both research-
ers and community stakeholders to interrogate the
root causes of inequities and assess policy interven-
tions that may ameliorate those disparities. A key
advantage frequently noted by the studies included
in this review is the quasi-complete spatial coverage
enabled by satellite data, which stands in contrast to
the incomplete and uneven coverage of ground-based
monitors. Ground-based monitors can be particu-
larly sparse in rural areas, neighborhoods with more
low-income households, and some areas occupied by
certain minority populations. In such circumstances,

satellite-derived data can improve accuracy in quan-
tifying disparities in exposure and impact for those
aforementioned populations [49, 62, 63, 76, 79, 82,
83, 95, 96, 137]. This spatial coverage also facilitates
increased sample size for health effects studies and
can reduce measurement error [76]. Studies using
wide-coverage satellite data on air pollutants have also
revealed important differences in health outcomes
associated with PM2.5 exposure in urban versus rural
areas [49, 76, 96]. Similarly, satellite-derived temper-
ature data aid in understanding heat-related health
burdens and mortality in rural communities with a
dearth of ground temperature monitors [62, 63]. In
the context of green space, wide-coverage satellite
data have exposed the persistence of disparities in
access to availability and accessibility of green space
in census tracts nationally [17, 43–45, 51, 52, 54].
Remotely-sensed data are available at increasingly
high spatial resolution, which supports estimates of
access to environmental benefits (e.g. green space) or
exposure to environmental hazards (e.g. air pollution,
heat) at the census block group to census tract levels,
and enables linkages to other small-area data on eco-
nomic, environmental, and/or demographic charac-
teristics (e.g. [40, 43, 46, 49, 90, 93, 137]).

Epidemiological studies especially benefit from
increases in spatial resolution of exposure data, which
can be more closely linked to high-resolution local
health data [22, 42, 46, 116, 156]. For example, PM2.5

disparities have been found to be more pronounced
[157] andPM2.5-attributablemortality estimates have
been found to be higher [158] when using air pol-
lutant data at finer spatial scales. Similarly, Huang
et al [58], use census block group boundaries in
Baltimore, Maryland to evaluate communities that
are socially vulnerable in small-area geographies that
are disproportionately vulnerable to high LST and
may be at increased risk for heat-related mortality.
The ability to link satellite data with health data could
also improve public health monitoring and screening
tools, such as the centers for disease control and pre-
vention’s (CDC) EJ index [159] and national envir-
onmental health tracking network (tracking network)
[160], which could benefit from increased timeli-
ness of environmental quality data (e.g. green space,
artificial light at night) that may lag when relying
solely onmodeled data. However, challenges can arise
when aligning satellite data to be compatible with
public health data, such as processing gridded data
to match administrative units used in public health,
like counties and census tracts. The tracking network
addresses this gap by processing and hosting publicly
available satellite data that alignwith geographic units
that can be leveraged by public health researchers and
practitioner [161].

Finally, the relatively rapid availability of dir-
ect satellite measurements has allowed researchers to
quickly examine the EJ implications of policies or nat-
ural events, including the COVID-19 pandemic (e.g.
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[50, 53, 93, 98, 137]). In addition, the multitemporal
advantage of satellite data has been leveraged to eval-
uate and track changes in the suitability of environ-
mental indicators that are associated with environ-
mental injustices over time [48] and evaluate persist-
ence of disparities [19, 57, 59, 72, 80, 84, 94, 104].

There are important limitations associated with
the use of satellite-derived data. A commonly cited
limitation is the spatiotemporal gaps in coverage
due to, for example, cloud cover, surface reflectance,
height or presence of specific types of vegetation, and
daytime light. Transforming direct satellite measure-
ments to indirect measurements within physical or
statistical modeling frameworks may address some
of these spatiotemporal coverage gaps. In addition,
SAR satellite data provides a robust alternative for
some applications as the data can capture images at
night and during cloudy and smoky scenes. Regarding
greenspace usage, metrics such as the NDVI are
not able to fully distinguish between the quality of
vegetation and may fail to capture vegetation that
might detract from community wellbeing [48]. For
example, conducting ground-level site visits to evalu-
ate the quality and accessibility of green spaces identi-
fied using satellite imagery can provide a more com-
prehensive understanding of potential EJ disparities
and health impact [162]. As for temperature usage,
remotely-sensed measurements of surface skin tem-
perature are limited in their usability at scales rel-
evant to human health [163]. For example, they are
not fully representative of exposure experienced at
1–2 meters in height [124], and measurements are
oftentimes biased toward horizontal surfaces and are
unable to illustrate canopy layer air temperature [125]
factors that are important in characterizing environ-
mental health. In the urban environment in particu-
lar, satellite-derived LST can be highly uncertain and
is oftentimes overestimated [125, 164]. With air pol-
lution usage, many relevant pollutants cannot be dir-
ectly measured by satellite instruments due to inter-
ference fromother constituents in Earth’s atmosphere
[165, 166]. Since health impact assessments require
near-surface concentrations of pollutants as inputs,
the direct measurements, or atmospheric columnar
levels, made by satellites cannot be input to these
assessments. Additionally, satellite-measured air pol-
lutants might not be highly correlated with surface-
level pollutant concentrations, which makes direct
measurements of these quantities less applicable to EJ
research. These limitations suggest that direct satel-
lite measurements alone may not be sufficient to
draw EJ conclusions, but coupled with other monit-
oring or modeling methods to form indirect meas-
urements can achieve estimated surface-level concen-
trations with a suitable resolution and coverage for
health-focused EJ research.

Future research should explore satellite data lim-
itations when designing and evaluating policies and

programs targeting EJ. Existing studies, while not
focused onEJ outcomes, suggest that biases and errors
in satellite data are significant when quantified in
socioeconomically meaningful terms. For example,
Fowlie et al [139] argue that the error structure for
satellite-based PM2.5 data products is poorly under-
stood and highlight the importance of further explor-
ing the limitations of these data. Other studies have
examined the consequences of bias and error in satel-
lite data for impact evaluation and causal inference in
policy analysis [167, 168].

4.3. Implications for U.S. government agencies
The strengths and limitations of satellite data for EJ
applications identified in our review also have dir-
ect implications for agencies that launch and oper-
ate EO satellites, regulate environmental quality, and
address EJ. In the U.S., the most relevant agencies
are NASA, national oceanic and atmospheric asso-
ciation, U.S. geological survey (USGS), CDC, and
EPA, all of which have prioritized environmental and
climate justice in response to a series of executive
orders. Most recently, executive order 14 008 (tack-
ling the climate crisis at home and abroad) requires
agencies to develop ‘programs, policies, and activit-
ies to address the disproportionately high and adverse
human health, environmental, climate-related and
other cumulative impacts on communities. that are
disadvantaged’ [169]. For example, NASA’s Earth sci-
ence division has established specific goals for its
equity and EJ strategy, held community listening
sessions, and issued two solicitations for propos-
als to advance progress on equity and EJ through
uses of Earth science, geospatial, and socioeco-
nomic information [170]. As NASA is launching new
application-driven Earth-observing satellite missions
(e.g. TEMPO, PACE, MAIA), the utility of satellite
data for environmental health and EJ applications is
expected to expand dramatically in the coming years.
These efforts can build upon themethodologies sum-
marized in our review and may be able to address
some existing gaps, such as greater leveraging of the
temporal dimension of satellite data. We also note
that the EPA’s online screening tool, EJScreen, and
the CEJST developed by the Biden administration
could further leverage satellite-derived data, similar to
other screening tools such as CalEnviroScreen and the
CDC tracking program’s EJ dashboard. For example,
the CDC tracking program’s EJ dashboard currently
incorporates satellite data products (e.g. forecasted
air quality data from GEOS-composition forecast-
ing system [171] concurrently with health and other
sociodemographic data (https://ephtracking.cdc.gov/
Applications/ejdashboard/).

In addition to initiatives in U.S. federal agen-
cies, methodologies summarized in our review may
inform EJ applications in state and local govern-
ment agencies. Many of these agencies across the
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country have developed EJ offices and agendas that
may benefit from the use of satellite data, particularly
when local data collection and analysis capabilities
are limited. As additional motivation, the Justice40
initiative within executive Order 14 008—which has
a goal of directing 40% of overall benefits of cer-
tain federal investments to communities that are
marginalized, underserved, and overburdened by
pollution—involves transfer of funds from federal
agencies to state and local agencies that have some
degree of discretion over eventual investment in dis-
advantaged communities [172]. With our reviews’
findings that higher spatial resolution data can
yield more refined understandings of the distribu-
tion of environmental burdens, we suggest more
agency-level adoption of satellite data as an input
into screening tools for more accurate and timely
detection of communities affected by environmental
hazards.

4.4. Implications for policymakers, planners, and
communities
Our findings also have implications for the use of
satellite data to inform public policies, land-use plan-
ning, and other interventions that seek to influence
EJ outcomes. While many of the studies we reviewed
conclude with recommendations that satellite data
be incorporated into the design and implementa-
tion of social, health, and environmental policies,
only a handful of these studies identify specific policy
contexts in which such adoption might take place.
Several studies [45, 64] show that analysis using
satellite data yields policy recommendations that are
different from what would result from analysis of
ground-based data alone, but the authors do not
examine whether such use of satellite data in policy
is administratively, politically, or socially feasible. A
closer alignment between development of satellite-
based decision support tools and actual policy impact
is likely to require progress along two dimensions.
First, greater policy and community engagement
on the part of Earth scientists and remote sensing
experts will help ensure that satellite data products
can influence decisions that affect EJ outcomes [173].
Second, policymakers and urban planners can pro-
actively seek opportunities to adopt satellite data to
improve decisions and EJ outcomes. Such adoption
may require costly modifications in agency proto-
cols or guidance, and possibly legislative action. For
example, while several of the studies we reviewed on
air pollution measurement advocate for the increased
use of satellite-derived data to inform EJ policy and
planning, inmany cases, legislation explicitly requires
monitoring at ground level, which excludes satellite
data as a source of information to drive decisions
such as the determination of attainmentwith national
ambient air quality standards [9]. One example of
successful adoption in policy is that EPA guidance

nowallows states to use satellite data to identify excep-
tional events (e.g. fireworks, prescribed fires) that
have a one-time impact on air quality, and requests
that those measurements be excluded from national
ambient air quality standards attainment and design
value calculations [174, 175].

Beyond the policy realm, the literature over-
whelmingly showed a gap in research conducted in
partnership with community organizations, such as
social justice, environmental, or urban planning non-
profits and coalitions, that could use satellite data
to inform decision-making for local interventions to
mitigate EJ inequities. This may be due to authors
simply not reporting on their community engage-
ment in scientific articles. Several NASA programs
facilitate researcher engagement with community
groups to address environmental, public health, and
public policy issues (e.g. urban heat, disasters, air
quality) through interdisciplinary research projects
that apply NASA EO (e.g. DEVELOP, health and air
quality applied sciences team, SERVIR). These pro-
grams have enabled several studies and collabora-
tions with organizations to apply satellite data for EJ
[176]. Advancing participatory research approaches
can not only yield more rigorous and accurate sci-
ence, but also ensure appropriately designed, targeted
and executed interventions that serve a community’s
best interests [177]. Remote sensing scientists and
epidemiological researchers employing satellite data
for EJ should look to best practices from scholarship
in community based participatory action research
(CBPAR/CBPR) [178] on how to conduct collabor-
ative research for greater impact towards EJ.

5. Conclusion

In this scoping review, we synthesized evidence that
used satellite data, in combinationwith other inform-
ation, to evaluate environmental injustice in the
U.S. The review showed that the use of satellite-
derived data further cements findings that com-
munities that are racially and ethnically marginal-
ized, people with lower SES, and other populations
that have been minoritized are disproportionately
exposed to environmental risk factors and have less
access to environmental benefits. These disparities
in exposure and access were often associated with
adverse health outcomes, such as increased cardiovas-
cular and respiratory diseases, mental illness, hospit-
alizations, and mortality. The review also identified
trends in the application of satellite data and high-
lighted how certain qualities of satellite-derived data
enables assessment of disparities at scales and pre-
cision not previously possible. Research using satel-
lite data for EJ can also contribute to efforts to mit-
igate inequities such as through supporting targeted
interventions or planning and policy changes, but
significant work remains to facilitate the application
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of satellite data for policy impact. Future research
efforts should apply satellite data to address under-
studied EJ-relevant environmental categories, pop-
ulations, and geographies, leverage the spatiotem-
poral resolution of satellite data for multitemporal
studies, and design studies in collaboration with
affected communities to conduct the most relevant
science and identify effective, community-centered
interventions.
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