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Abstract— In this paper, we aim to study safety specifications
for a Markov decision process with stochastic stopping time in
an almost model-free setting. Our approach involves character-
izing a proxy set of the states that are near in a probabilistic
sense to the set of unsafe states - forbidden set. We also provide
results that relate safety function with reinforcement learning.
Consequently, we develop an online algorithm based on the
temporal difference method to compute the safety function.
Finally, we provide simulation results that demonstrate our
work in a simple example.

Index Terms— Markov decision processes, safety, online
learning, temporal difference, proxy set.

I. INTRODUCTION

Design of control policies for safety-critical systems,
such as the electricity grid, power plant, and autonomous
vehicles, must be such that the closed-loop system ensures
optimal operation while being safe. Consequently, safety
assessment is crucial for safety-critical systems. Finding
the mathematical model of a system can be too tedious,
or knowledge about the operating environment may not
be available. In that case, one has to develop a method
based on the observed data to make a safety assessment. To
this end, we propose to use reinforcement learning (RL).
Specifically, RL deals with learning value function and
policy evaluation in a model-free setting.

Related literature: The concept of safety that we consider
in this work is p-safety. It has been studied extensively in
[1]–[4]. A system is called to be p-safe if the system states
do not visit the dangerous states before reaching the control
goal with a probability more than p.

An overview paper [5] discusses safety definitions and
reinforcement learning methods with safe exploration. Three
concepts of safety are examined: safety through cost, safety
through labeling, and safety through ergodicity.

Data-driven safety verification has received considerable
attention recently [6]–[10]. In [6], [7], a data-driven method
based on barrier certificate is proposed to formally verify the
safety of discrete-time continuous systems whose dynamics
are not known. For networks of discrete-time subsystems,
[8] presents a data-driven approach with formal guarantees.
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It involves finding a sub-barrier function for each sub-
system. In [7], [9], [10], data-driven safety verification is
considered. Based on the notion of barrier certificates, the
safety verification problem is formulated as a robust convex
problem. For a robust convex problem, certain constraints
need to be satisfied over the whole state space and this
makes it a semi-infinite linear program. To solve the robust
convex problem efficiently, it is converted to a scenario,
where finitely many data are collected and the robust convex
problem is approximated with the finite data points.

Motivations and Contributions: Existing works on data-
driven safety verification are based on the assumption that
a rich offline data-set is available. However, many a times,
safety verification needs to be performed in an online fashion
so that an online safe learning algorithm can be designed.

In this paper, we present an online data-driven method to
assess the safety of a Markov decision process (MDP) for
a given policy with stochastic stopping time. For defining
safety, we consider two subsets of the state-space: a set
of target states, and a set of forbidden states that need
to be avoided. Specifically, we define safety as the hitting
probability of the forbidden set before the process hits the
target set. Since our method is meant to be online, we do not
allow the process to hit the set of forbidden states. Because,
in practice, once the process hits the forbidden states, the
process or the system might get severely destroyed. Thus,
we define a set of states, and call it proxy set, visiting which,
we find lower and upper bounds for the safety function. The
following are our main contributions:

i) We define a subset of the state-space called proxy set
in order to learn the safety function without visiting the
forbidden states. In short, proxy states are in the vicinity,
in a probabilistic sense, of the forbidden states.

ii) We present a result that gives a bound on the safety
function if the upper and lower bounds of the transition
probabilities from the proxy set to the forbidden set are
known instead of the true transition probability.

iii) We present an online algorithm based on one-step tem-
poral difference, i.e., TD(0), and illustrate the method
on a simple numerical example.

The organization of the rest of the paper is as follows. In
Section II, we recall the definition of an MDP and present
various related notations. In section III, we formally define
the safety function for an MDP. Further, we introduce the
definition of the proxy set, and provide lower and upper
bounds on the safety function. Section IV deals with the
learning of the safety function without knowing the transition



probabilities. An online learning algorithm based on TD(0)
is presented in this section. In section V, by considering
an example, we demonstrate that our proposed algorithm
learns a better estimate of the safety function if the number
of episodes increases. Furthermore, we present computation
results corresponding to the upper and lower bounds of the
safety function for the case when exact transition probabili-
ties from the proxy set to the forbidden set are not known.
Finally, we present the concluding remark and our future
work plan in section VI.

II. PRELIMINARIES

Suppose X is a finite set of states and A is a finite set of
actions. We construct the sample space Ω of all sequences of
the form ω = (x1, a1, x2, a2, . . .) ∈ (X ×A)∞ with xi ∈ X
and ai ∈ A. The sample space Ω is equipped with the σ-
algebra F generated by coordinate mappings: Xt(ω) = xt

and At(ω) = at. With a slight abuse of notation, we shall
use Xt and At to denote random variables, whereas xt and
at are deterministic values, their realizations, at time-step
t. We suppose that µ is the distribution of the initial states
X0. In this work, we consider stationary policies, i.e., maps
π : X → ∆(A), with ∆(A) = {(p1, . . . , p|A|) ∈ [0, 1]A |
p1+ . . .+p|A| = 1}. A sub-policy π′ for a subset of W ⊆ X
is defined as π′ : W → ∆(A). For a fixed initial distribution
µ and a policy π, we define recursively the probability Pµ

π

on F by

Pµ
π[X1 = x] = µ(x)

Pµ
π[At = a | Xt = x] = π(x)(a)

Pµ
π[Xt+1 = y | Xt = x,At = a] = px,a,y.

Specifically, the process (Xt) with stationary policy
is characterized by the transition probability px,y =∑

a∈A px,a,yπ(x)(a). Hence, the process (Xt) is homoge-
neous.

We write Px
π := Pδx

π for the delta distribution concentrated
at x. The expectation with respect to Px

π is denoted Ex
π . For

a set A, τA represents the first hitting time of the set.

III. SAFETY SPECIFICATION FOR MARKOV DECISION
PROCESSES WITH PROXY STATES:

Consider an MDP with the state-action space (X ,A). We
partition the state-space into a target set E ⊂ X , a set of
forbidden states U , and H := X \ (E ∪ U) be the set of
taboo state. The goal is to reach the target set E before
reaching the forbidden set V .

Assumption 1: Following assumptions are followed
throughout the paper.

1) Taboo set H is transient and hence, the hitting time of
the target set E (τE) and the forbidden set U (τU ) is
finite, almost surely.

2) τU∪E ≤ τE , almost surely.
For each state in x ∈ X \ U , the safety function

corresponds to the probability that the realizations hit the
forbidden set U before the target set E is reached. Following

[11], for a given policy π, we define the safety function for
each state as follows:

Sπ(x) := P
x
π[τU < τE ],

We call a state x to be p-safe, for a policy π, if Sπ(x) ≤ p.
An MDP, with a policy π, is called p-safe if max

x∈X
Sπ(x) ≤ p.

The reason for insisting on the probability of hitting the
forbidden state before hitting the target set is that we assume
the following: when the process (Xt) reaches the target set
E, it is terminated as the decision objective is obtained.
Otherwise, τE should be substituted by ∞.
From [11], if τ = τU∪E is almost surely finite, then the
safety function is given by

Sπ(x) = E
x
π

τ−1∑
t=0

κ(Xt, At), (1)

where κ(x, u) =
∑

y∈U px,u,y for all x ∈ X\U . In this work,
the finiteness of τ will also be assumed. We strive to learn
safety for a policy π. Nonetheless, we may not be allowed
to visit the forbidden states. Hence, we estimate safety by
only visiting certain proxy states.

A proxy set is characterized by the following definition.

Definition 1 (Proxy Set): Let π be a policy. Suppose that
the sets U,U ′ ⊂ X are such that U ⊂ U ′. Let q and w are
in [0, 1]U

′\U . The subset U ′ is a (q, w)-proxy set or simply
proxy set if it has the following properties:

P.1 τU ′\U < τU almost surely.
P.2 w(x) ≤ Px

π[τU < τE ] ≤ q(x) for all x ∈ U ′ \ U . ■
Notice that q(x) nor w(x) are not necessarily the probabil-
ities. They serve as a prior information the user have about
Px
π[τU < τE ]. In other words, the user is asked what she

believes are the probability bounds w(x) and q(x) of hitting
the forbidden set from the proxy states.

Although, we do not deal with the design of any policy in
this work, we will shortly discuss the concept of a repelling
policy. Suppose for a control goal, we wish to learn an
optimal policy such that the forbidden states are not visited.
In the process of learning this policy, we should visit the
states in the set X \U infinitely many times with probability
1, but repel the process from U ′ \ U such that it does not
hit U . In other words, we use U ′ \U as a safety buffer. We
introduce the concept of repelling sub-policy as follows:

Definition 2 (Repelling Sub-Policy): For a policy π, a
forbidden set U and a proxy set U ′, a repelling sub-policy
πR satisfies:

PπR [Xt+1 ∈ X \ U |xt ∈ U ′] = 1 (2)

■
The concept of the repelling policy can be interpreted in

the following way. Repelling sub-policy πR is able to keep
the realizations of the process (Xt) away from the forbidden
set U almost surely.



The design of a policy consists of learning a sub-policy
πL for the given MDP in X \U ′ and applying repelling sub-
policy πR in U ′ \ U . As a result, we have policy π defined
by

π(x) :=

{
πL(x), for x ∈ X \ U ′

πR(x), for x ∈ U ′ \ U
(3)

We think about U ′ \U as a neighborhood of the forbidden
set in the sense that the probability of hitting U ′ \ U before
hitting the forbidden set is 1.

Fig. 1. Pictorial description of the taboo set, proxy set, forbidden set, and
target set.

Proposition 1: Suppose U ′ is a (q, w)-proxy set. The
functions q and w are extended to the whole state space
by assuming that q(x) = w(x) = 0 for x ∈ X \ U ′. Let
τ ′ = τ(U ′\U)∪E . Then

Ex
π

τ ′∑
t=0

w(Xt) ≤ Sπ(x) ≤ Ex
π

τ ′∑
t=0

q(Xt). (4)

The interpretation of (4) is that safety can be evaluated by
the process of reinforcement learning of two cost functions
W (x) = Ex

π

∑τ ′

t=0 w(Xt) and Q(x) = Ex
π

∑τ ′

t=0 q(Xt).

Proof: From the definition of the safety function, for
each x ∈ X \ U ′, we compute

Sπ(x) = P
x
π[τU < τE ]

=
∑
y∈X

Py
π[τU < τE ]P

x
π[Xτ ′ = y]

=
∑

y∈U ′\U

Py
π[τU < τE ]P

x
π[Xτ ′ = y].

The second equality follows from the observation Px
π[τU <

τE |Xτ ′ = y] = Py
π[τU − τ ′ < τE − τ ′] = Py

π[τU < τE ]. On
the other hand, the safety function is given by

Sπ(x) = E
x
π

τ−1∑
t=0

κ(X,At)

= Ex
π

[
τ−1∑
t=0

κ(Xt, At) | τ ′ < τ

]
Px

π[τ
′ < τ ] (5)

+ Ex
π

[
τ−1∑
t=0

κ(Xt, At) | τ ′ = τ

]
Pi

π[τ
′ = τ ]

= Ex
π

[
τ−1∑
t=0

κ(Xt, At) | τ ′ < τ

]
Px

π[τ
′ < τ ]

= Ex
π

 τ ′∑
t=0

κ(Xt, At) +

τ−1∑
t=τ ′

κ(Xt, At) | τ ′ < τ


· Px

π[τ
′ < τ ] (6)

= Ex
π

[
τ−1∑
t=τ ′

κ(Xt, At)

]
Px

π[τ
′ < τ ]. (7)

with τ = τU∪E , and κ(x, a) =
∑

y∈U px,a,y for all x ∈
U ′ \U , and κ(x, a) = 0 for x ∈ X \U ′ and ∀a ∈ A. In (7),
we have used Property P.2 in the definition of the proxy set,
i.e., either τ ′(ω) = τ(ω) when the realization of the process
hits E before U ′ else τ ′ < τ . We re-write

Sπ(x) = E
x
π

τ−1∑
t=τ ′

κ(Xt, At) P
x
π[τ

′ < τ ]

=
∑

y∈U′\U

Eπ

[
τ−1∑
t=τ ′

κ(Xt, At) | Xτ ′ = y

]
Px
π[Xτ ′ = y]

· Px
π[τ

′ < τ ].

On the other hand,

Eπ

[
τ−1∑
t=τ ′

κ(Xt, At) | Xτ ′ = y

]
= Ey

π

τ−τ ′−1∑
t=0

κ(Xt, At).

The above equation relates the prior information Py[τU <
τE ] with the information we strive to characterize -
κ(Xt, At). We observe that

Ey
π

τ−τ ′−1∑
t=0

κ(Xt, At) = P
y
π[τU < τE ] ≤ q(y).

Hence

Sπ(x) =
∑

y∈U ′\U

Py
π[τU < τE ]P

x
π[Xτ ′ = y]Px

π[τ
′ < τ ]

≤
∑

y∈U ′\U

q(y)Px
π[Xτ ′ = y]Px

π[τ
′ < τ ]

=
∑
y∈X

q(y)Px
π[Xτ ′ = y]Px

π[τ
′ < τ ]

= Ex
πq(Xτ ′)Px

π[τ
′ < τ ]

= Ex
πq(Xτ ′)

= Ex
π

τ ′∑
t=0

q(Xt).



The last line follows from the fact that that Xt up to the
stopping time τ ′ − 1 belong to X \ U ′ and q(Xt) is zero.

Similarly, for the lower bound

Sπ(x) ≥
∑

y∈U ′\U

w(y)Px
π[Xτ ′ = y] = Ex

π

τ ′∑
t=0

w(Xt).

Remark 1: Since we examine safety learning with un-
known transition probabilities, once the process is in the set
U ′ \ U the probability of hitting U is unknown and can not
be learned without going into U . Therefore, our approach is
to assume a priori knowledge about this probability. ■

We do not consider the necessity of knowing the
functions w and q to be too demanding as without any prior
information w(x) and q(x) can be assumed to be 0 and 1.

IV. LEARNING SAFETY FUNCTION

Learning of safety involves two ingredients: the reward
κ(x, a) =

∑
y∈U px,a,y , and learning with a stopping

time. Since the transition probabilities are unknown, we
estimate upper and lower bounds for the safety function
Sπ(x) by using the prior knowledge q and w in the
definition of the proxy state as the reward. Learning with
a stopping time is discussed next. Suppose that K is the
set of episodes, and each episode k ∈ K is a sequence
(x1, a1, r1, x2, a2, r2, x3, . . . , xkf−1

, akf−1
, rkf−1

, xkf
) of

states, action and rewards, where kf is the terminal iteration
for episode k. Here, the reward function is defined as,
either rt := κ(at, at) if one knows the transition probability
from the set U ′ \ U to the forbidden set U , or rt := q(xt)
(rt := w(xt)) if only upper bound (lower bound) of the
transition probabilities to the forbidden set is known. We
concatenate the episodes and generate a sequence of the
form (x′

t, a
′
t, r

′
t, x

′
t+1), where x′

t = xt′ , x′
t+1 = xt′+1,

r′t = 0, for all t′, if xt′ /∈ U ′ \ U and xt′+1 ∈ U ′ \ U . If
xt′ ∈ U ′ \ U , then x′

t = xt′ and x′
t+1 = x1 due to the

repelling action a′t = at′ at iteration t′, where x1 will be
the initial state of the next episode. Further, if x ∈ U ′ \ U ,
rt = q(x) for computing the upper bound and rt = w(x)
for computing the upper bound of the safety function. Then,
with a given policy π, the learning with TD(0) follows the
computation [12]

Vt+1 (x
′
t) = (1− αt (x

′
t))Vt (x

′
t)

+ αt (x
′
t)
[
rt + Vt

(
x′
t+1

)]
,

By Lemma 1 and Theorem 1 in [13], for each x ∈ X \ U ′,
Vt(x) converges to Ex

π

∑τ ′

t=0 q (Xt) (τ ′ = τ (U ′ \ U) ∪ E),
if the reward is assumed to be rt = q(Xt), with probability
1 if the following two conditions are satisfied:

i) Each state is visited infinitely often
ii) The learning rate αt(x), for each x ∈ X \ U ′, satisfies

0 ≤ αt(x) ≤ 1,
∑

t αt(x) = ∞ and
∑

t α
2
t (x) < ∞.

Similarly, under the above sufficient conditions on the learn-
ing rate, the learned safety function Vt(x) converges to
Ex
π

∑τ ′

t=0 w (Xt).

We now present an online algorithm based on one-step
temporal difference (TD-(0)) to learn the safety function
where one only needs to know the transition probability to
the forbidden set U . It is not necessary to know about the
transition probabilities in the taboo set H or to the target set
E. Then, we use the algorithm to find bounds for the safety
function without the need of knowing about the transition
probabilities. To this end, we use the proxy set U ′ and the
prior belief about the transition probabilities from the set
U ′ \ U to the forbidden set U .

Details of the Algorithm: Since stopping time is
finite, the algorithm works in an episodic manner. Each
episode starts with a random initial state and ends whenever
the process hits any state x ∈ U ′ \ U . Thus the states
x ∈ U ′ \ U are the terminal states. If one knows the exact
transition probabilities from the proxy set to the forbidden
set then the true safety function can be estimated by using
rt = κ(Xt, At) where Xt ∈ U ′ \ U and rt = 0 where
Xt ∈ X \ U ′. For any state x ∈ X \ U ′, we denote the
estimated safety function at any episode k by Ŝk(x) and
will demonstrate that, as k → ∞, Ŝk(x) converges to
Sπ(x), almost surely.

Algorithm 1 : TD(0) algorithm for estimating the safety
function:

1: Input: The policy π for which safety to be evaluated,
algorithm parameter αt(x) for each x ∈ H .

2: Initialize: V1(x) for each x ∈ H arbitrarily, V1(x) = 0
for each x ∈ U ∪ E, initial state x1.

3: for Episodes (k = 1, 2, ...,K) do
4: if k ≥ 2 then
5: Initial state x1 due to the repelling action
6: Initialize V1(x) to Vt′+1(x) for each x ∈ H .
7: Initialize αt(x) to αt′(x) for each x ∈ H .
8: end if
9: for Iterations (t = 1, 2, ..., T ) do

10: Choose action At according to the policy π
11: Observe reward rt and Xt+1
12: Compute the following

Vt+1(xt)← Vt(xt) + αt(xt)[rt + Vt(Xt+1)− Vt(xt)] (8)

13: if xt is a terminal state, i.e., xt ∈ U ′ \ U then
14: Terminate the loop.
15: end if
16: end for
17: Set t′ as the terminal iteration.
18: Update safety function estimation Ŝk(x) as Ŝk(x) =

Vt′+1(x) for each x ∈ H .
19: Apply the repelling action for xt′

20: end for

V. ILLUSTRATING EXAMPLE

We consider a Markov decision process as shown in Fig. 2.
The MDP has 11 states and 2 actions. The taboo set H =



Fig. 2. An MDP for estimating the safety function

{1, 2, 3, 4, 5, 6, 7}, target set is E = {8, 10}, the forbidden
set is U = {9, 11} and the proxy set U ′ = {4, 5, 6, 7, 9, 11}
and U ′ \ U = {4, 5, 6, 7}. The MDP has the following
parameters: p1,1,2 = 1, p1,2,3 = 1, p2,1,4 = 1, p2,2,5 = 1,
p3,1,6 = 1, p3,2,7 = 1, p4,1,8 = 1, p4,2,9 = 1, p5,1,4 = h1,
p5,1,8 = 1 − h1, p5,2,8 = h2, p5,2,9 = 1 − h2, p6,1,7 = h3,
p6,1,10 = 1− h3, p6,2,11 = 1, p7,1,10 = 1, p7,2,11 = 1.

For evaluating the safety function, we consider a uniform
random policy, i.e., π(x)(a) = 0.5, ∀x ∈ X and ∀a ∈ {1, 2}.
Thus the transition probabilities are given by p1,2 = p1,3 =
0.5, p2,4 = p2,5 = 0.5, p3,6 = p3,7 = 0.5, p4,8 = 0.5,
p4,9 = 0.5, p5,4 = 0.5h1, p5,8 = 0.5(1−h1)+0.5h2, p5,9 =
0.5(1− h2), p6,7 = 0.5h3, p6,10 = 0.5(1− h3), p6,11 = 0.5,
p7,10 = 0.5, p7,11 = 0.5. Other transition probabilities are 0.

We first calculate the safety function just knowing the
transition probabilities from the set U ′ to the forbidden
set U and assume that we do not have access to the
transition probabilities of the set X \ U ′. We assume that
we know the transition probabilities from the set U ′ \ U
to the forbidden set U in order to verify our learning
algorithm as these transition probabilities are the rewards.
Thus, our problem resembles that of standard reinforcement
learning-based value function evaluation methods. However,
in practice, one might only have bounds on these transition
probabilities instead of the true value. The number of
iterations within each episode is T = 3 (T has to be
≥ 3 for the example given in Fig. 2). For all x ∈ X ,
we use a learning rate αt(x) = 0.001 for t < 10000 and
αt(x) = 1

t for ≥ 10000. We set h1 = 0.4, h2 = 0.6 and
h3 = 0.5. Thus Sπ(4) = 0.5, Sπ(6) = 0.3, Sπ(7) = 0.625
and Sπ(8) = 0.5. We learn Sπ(1), Sπ(2) and Sπ(3) using
TD(0). Moreover, we calculate the safety function using the
model-based approach given in [11] and compare that with
the ones learned using Algorithm 1. Table I below presents
the results. From the table, it is evident that as the number
of episodes increased, the estimated value of the safety
function for each state moved closer to the true value of the
safety function.

Fig. 3. Convergence of the safety functions with T = 30000 number of
episodes

State
(x)

Sπ(x)
using
[11]

ŜK(x) using
Algorithm
1 (K =
15000)

ŜK(x) using
Algorithm
1 (K =
30000)

ŜK(x) using
Algorithm
1 (K =
50000)

1 0.4813 0.4809 0.4816 0.4816
2 0.4 0.3992 0.4003 0.4000
3 0.5625 0.5585 0.5593 0.5609

TABLE I
SAFETY FUNCTION WITH DIFFERENT NUMBER OF EPISODES.

Then we consider the case when we do not have any exact
knowledge about the transition probabilities instead we have
a belief about the bounds on the transition probabilities from
the proxy set to the forbidden set. For that, we assume the
reward as rt = w(Xt) for the lower bound and rt = q(Xt)
for the upper bound of the safety function. In this case,
unlike the previous case, we assume that we do not have any
knowledge about the true transition probabilities even from
the proxy set to the forbidden set. Instead, we have bounds
for Px

π[τU < τE ] for all x ∈ U ′\U . With h1 = 0.4, h2 = 0.6,
h3 = 0.5, true Px

π[τU < τE ]s are: P4
π[τU < τE ] = 0.5,

P5
π[τU < τE ] = 0.3, P6

π[τU < τE ] = 0.625 and P7
π[τU <

τE ] = 0.5. Upper bound for Px
π[τU < τE ] is considered to

be 0.7, 0.5, 0.8 and 0.7 for state 4, 5, 6 and 7, respectively.
Similarly the lower bound for Px

π[τU < τE ] is assumed to be
0.3, 0.15, 0.5 and 0.35 for state 4, 5, 6 and 7, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of estimating
the safety function for an MDP only knowing the bounds
on the transition probabilities to the forbidden states. We
characterized a proxy set visiting which we learn bounds
on safety function. Our algorithm is based on the one-step
temporal difference method TD(0).

In this work, we focused on estimating the safety function
of an MDP with a given policy. In our future work, we shall



State
(x)

Sπ(x)
using
[11]

ŜK(x) using
Algorithm
1 (K =
50000)

Estimated
Upper
bound of
Sπ(x) with
K = 50000

Estimated
lower
bound of
Sπ(x) with
K = 50000

1 0.4813 0.4816 0.6740 0.3253
2 0.4 0.4 0.5967 0.2242
3 0.5625 0.5609 0.7475 0.4248

TABLE II
ESTIMATED BOUNDS OF THE SAFETY FUNCTION.

consider calculating the safety function and designing safe
optimal policies side by side.
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