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A B S T R A C T

In this paper, we study pseudo-labelling. Pseudo-labelling employs raw inferences on unlabelled data as pseudo-
labels for self-training. We elucidate the empirical successes of pseudo-labelling by establishing a link between
this technique and the Expectation Maximisation algorithm. Through this, we realise that the original pseudo-
labelling serves as an empirical estimation of its more comprehensive underlying formulation. Following this
insight, we present a full generalisation of pseudo-labels under Bayes’ theorem, termed Bayesian Pseudo Labels.
Subsequently, we introduce a variational approach to generate these Bayesian Pseudo Labels, involving the
learning of a threshold to automatically select high-quality pseudo labels. In the remainder of the paper,
we showcase the applications of pseudo-labelling and its generalised form, Bayesian Pseudo-Labelling, in the
semi-supervised segmentation of medical images. Specifically, we focus on: (1) 3D binary segmentation of lung
vessels from CT volumes; (2) 2D multi-class segmentation of brain tumours from MRI volumes; (3) 3D binary
segmentation of whole brain tumours from MRI volumes; and (4) 3D binary segmentation of prostate from MRI
volumes. We further demonstrate that pseudo-labels can enhance the robustness of the learned representations.
The code is released in the following GitHub repository: https://github.com/moucheng2017/EMSSL.
1. Introduction

Recent years have witnessed the rise of deep learning based AI
technologies in a wide range of applications for the betterment of
humanity. The training of a successful deep learning model demands a
large volume of annotated data. Regrettably, the money and time costs
associated with the annotation acquisition is very expensive, causing
a common issue namely label scarcity. The issue of label scarcity is
especially challenging in one of the key applications of AI, healthcare,
where the annotation process requires the expertise of highly skilled
medical professionals, adding extra costs. In the era of AI-enabled
healthcare, medical image segmentation is one of the core tasks, aiming
at accurately labelling all pixels within volumetric medical images. It
serves as a foundational step for other downstream tasks of healthcare,
including computer-aided diagnosis, surgical navigation, and endpoint
decision-making in drug discovery, among others. In this paper, we
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focus on the task of medical image segmentation as an exemplar
application.

To tackle the inevitable issue of label scarcity in deep learning, semi-
supervised learning has emerged as a solution. This approach utilises
both labelled and unlabelled data to enhance model performance. Typ-
ically, unlabelled data are more abundant than their labelled counter-
parts, yet they are often overlooked in supervised learning paradigms.
Semi-supervised learning is advantageous because it leverages existing
unlabelled data, thereby sidestepping the need for additional invest-
ment in label acquisition. While other strategies, such as outsourcing
data labelling combined with federated learning (Li et al., 2021), have
been developed to address label scarcity, they still do not entirely elim-
inate the associated costs. In contrast, semi-supervised learning offers
an attractive trade-off between cost and performance improvement.
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1.1. Semi-supervised learning and entropy regularisation

Most semi-supervised learning methods focus on minimising the
entropy of predictions for unlabelled data. Entropy minimisation has
a long-standing history in the field of representation learning. One of
the earliest forms of this approach originated from the mutual infor-
mation between input and output in unsupervised learning (Bridle and
Anthony Heading, 1991). The concept of entropy regularisation gained
significant traction in the realm of semi-supervised image classification
after it was proposed to minimise the entropy of unlabelled data as a
strong form of regularisation (Grandvalet and Bengio, 2004). This tech-
nique aims to guide the model towards establishing a reliable decision
boundary, focusing on maximising the firmness of the decisions. Since
its introduction, entropy minimisation has evolved from its original
explicit form into various implicit manifestations.

1.2. Consistency regularisation

Among the multifarious implicit forms of entropy minimisation,
consistency regularisation stands as one of the most popular options,
serving as the underpinning for a majority of cutting-edge methods
in semi-supervised classification and segmentation (Sohn et al., 2020;
Berthelot et al., 2020; Li et al., 2018; French et al., 2020; Xu et al.,
2022a). Consistency regularisation utilises distance-based loss functions
directly applied to the raw outputs or associated prediction probabili-
ties. Consistency regularisation aims to engender predictive models that
are resilient to perturbations at either the input or feature levels (Tar-
vainen and Valpola, 2017; Sohn et al., 2020; Berthelot et al., 2020,
2019; Xu et al., 2022a; Ouali et al., 2020; French et al., 2020; Chen
et al., 2021).

For methods relying on input-level consistency, many are derived
from a classic model called Mean-Teacher (Tarvainen and Valpola,
2017). In this model, the student’s weight is an exponential moving
average of the teacher model’s weights. The teacher model processes
a regular input, while the student model processes the same input
with added Gaussian noise. In other words, the student model and the
teacher model intake two different views of the same input. A mean
square error is used for soft consistency regularisation between the
outputs of the two models.

A more advanced teacher–student model, FixMatch, has achieved
state-of-the-art performance in semi-supervised classification (Sohn
et al., 2020). FixMatch employs two forward passes: one with weakly
augmented input (e.g., flipping) and another with strongly augmented
input (e.g., shearing, random intensity). The output of the weakly
augmented input is then used to generate a pseudo-label as the ground
truth for training the output of the strongly augmented input.

Although FixMatch and its variants have excelled in image clas-
sification, it has been observed that they are not directly applicable
to image segmentation tasks, as the cluster assumption does not hold
at the pixel level (French et al., 2020). To adapt consistency regular-
isation for segmentation, the authors in Ouali et al. (2020) found it
feasible to apply perturbations at the feature level rather than the input
level before implementing consistency regularisation. They directly
apply augmentation techniques to the features of different decoders for
semi-supervised image segmentation. Alternatively, perturbations can
also be added through architectural modifications. For instance, one
can train two identical models with different initialisations and apply
consistency regularisation using pseudo-labels on both outputs (Chen
et al., 2021). These methods, along with ours, are further tested and
2

compared in a subsequent Section 5.
1.3. Pseudo labelling

Pseudo labelling is another form of entropy regularisation, requir-
ing less computational resource. The concept of pseudo labelling was
initially introduced in the context of semi-supervised multi-class image
classification (Lee, 2013). In its prototypical form, pseudo labels are
generated through the argmax operation applied to the output logits
(essentially, the inferential outcomes) of the neural network for un-
labelled data. Once generated, these pseudo labels are amalgamated
with their corresponding unlabelled data and utilised to train the
network in a manner akin to traditional supervised learning. One of
the merits of this original approach lies in its computational efficiency;
the generation of pseudo labels is performed ‘‘on-the-fly’’, in real-time.
It is common practice to initially ‘‘warm-up’’ the network through
purely supervised learning, followed by a gradual introduction—or
‘‘ramp-up’’—of the weight attributed to the pseudo labels in the loss
function.

Pseudo labelling has garnered significant attention within both
semi-supervised and self-supervised learning paradigms, chiefly owing
to its computational frugality coupled with its robust performance met-
rics. Notably, some empirical studies have posited that semi-supervised
learning strategies, leveraging pseudo labelling with vast volumes of
internet-sourced unlabelled data, can outperform their fully supervised
counterparts in tasks such as ImageNet classification (Pham et al.,
2021). Recent research endeavors have sought to curtail the increasing
complexity inherent in consistency regularisation techniques. These
efforts have yielded competitive performance metrics, achieved solely
through the judicious use of pseudo labels (Rizve et al., 2021). Within
the domain of image segmentation, novel methodologies underpinned
by pseudo labelling have also demonstrated commendable results, es-
pecially when the pseudo labels are refined through self-attention
mechanisms (Zou et al., 2021).

However, pseudo labelling is not devoid of limitations; a notable
issue is the phenomenon of confirmation bias (Arazo et al., 2020).
This occurs when erroneously generated pseudo labels are incorporated
into the training process, thereby inducing a form of noisy training.
The negative impact of these incorrect labels is not merely transient
but tends to accumulate and amplify over the course of training. In
the present manuscript, we propose a novel methodological framework
aimed at mitigating this confirmation bias. Specifically, we introduce a
stochastic training paradigm that is designed to learn the threshold of
the pseudo labels, thereby generating high quality pseudo labels in an
automatic manner (see Fig. 1).

1.4. Motivations and contributions

It has come to our attention that the majority of extant litera-
ture on pseudo-labelling primarily adopts an empirical methodology,
conspicuously omitting an investigation into the foundational mecha-
nisms underlying its empirically observed efficacy. Motivated by this
lacuna, we embarked upon a more in-depth examination of pseudo-
labelling and ascertained its significant theoretical relationship with
the classical Expectation–Maximisation (EM) algorithm in machine
learning. Furthermore, our study is catalysed by contemporary research
in the domain of semi-supervised image classification, which posits
that achieving competitive performance metrics is feasible through
judicious selection of high-quality pseudo-labels (Rizve et al., 2021).
In this manuscript, we offer a theoretical exegesis that elucidates the
correlation between pseudo-labelling and the EM algorithm. Concur-
rently, we engage in empirical investigations to assess the applicability
and robustness of pseudo-labelling in the context of semi-supervised
medical image segmentation. We summarise our contributions in the
following bullet points:

• We interpret pseudo labelling as Expectation Maximisation (EM)
algorithm. As EM algorithm is guaranteed to converge to local
minimum. We therefore partially explain the empirical success of

pseudo labelling.
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Fig. 1. Pseudo-labelling process for binary segmentation. Pseudo-label 𝑦′𝑛 is generated using unlabelled data 𝑥𝑢 and model with parameters from last iteration 𝜃. Therefore,
pseudo-labelling can be seen as the E-step in Expectation–Maximisation. The M-step updates 𝜃 using 𝑦′𝑛, 𝑦 and data 𝑋. In our 1st implementation, namely SegPL, the threshold 𝑇 is
fixed for selecting the pseudo labels, which is the original pseudo labelling, as an empirical approximation of its true generalisation. In our 2nd implementation, namely SegPL-VI,
the threshold 𝑇 is dynamic and learnt via variational inference, which is an learnt approximation of its true generalisation.
• We demonstrate the generalised form of pseudo labels.
• We provide a learning method to learn the threshold for pseudo

labelling in order to avoid confirmation bias and automatically
pick up high quality pseudo labels.

• We investigate the use of pseudo labelling in semi-supervised
medical image segmentation and its characteristics such as robust-
ness.

Previously, a shorter version of this paper has been published at
MICCAI 2022 (Xu et al., 2022b). This journal version includes a couple
of extensions based on that MICCAI paper such as:

• We fulfilled the details of the proposed probabilistic model of
pseudo labelling.

• We expanded the results section and included one more data set
of prostate segmentation from MRI volumes.

• We included the results on the whole data set of the BraTS 2018
which was only partially used before in the previous MICCAI
version.

• We extended the related work section by including more recently
proposed works.

2. Related works

The landscape of semi-supervised segmentation is, to a significant
extent, influenced by the advancements in semi-supervised classifi-
cation techniques, as delineated in Section 1.1. Among the various
frameworks adopted, the mean-teacher based consistency regularisa-
tion paradigm is particularly prevalent in the field of semi-supervised
medical image segmentation (Chen et al., 2020; Li et al., 2020a; Xu
et al., 2020; Hang et al., 2020; Xie et al., 2020; Ta et al., 2020; To et al.,
2020; Unnikrishnan et al., 2020; Yang et al., 2020; Fotedar et al., 2020).
One early contribution to this vein of research was made by Yu et al.
who enriched the mean-teacher model by incorporating uncertainty
measures to generate a mask. This mask then modulates the application
of consistency regularisation to only low-uncertainty regions (Yu et al.,
2019).

Beyond perturbations at the data level, feature-level perturbations
for consistency regularisation have also garnered considerable atten-
tion. For example, Luo et al. employed distinct initialisations for dif-
ferent decoders to induce feature perturbations (Luo et al., 2022). Xu
introduced the idea by applying consistency regularisation on features
after different morphological perturbations (Xu et al., 2022a). An-
other intriguing work employed a multi-decoder architecture, utilising
three decoders with divergent up-sampling layers, to enable mutual
consistency regularisation across the decoder outputs (Wu et al., 2022).

Recent studies have also explored the application of consistency
regularisation to align signed distance maps of object boundaries,
derived from different views of a common unlabelled input (You et al.,
3

2022). The method is intended to enforce the models to be more of
awareness of the object boundaries. Similar initiatives have leveraged
uncertainty estimates, acquired via MC dropout, to weight the consis-
tency regularisation (Zhang et al., 2023). While these methods achieved
good performances on some of the tasks, it is pertinent to note that
the necessity for at least two forward passes substantially elevates the
computational overhead. In contrast, our method does not bring extra
computational burden and it requires minimalist changes of the original
backbone segmentation model.

Alternatively, more computationally affordable strategies have been
pursued, notably leveraging pseudo labelling in the realm of medi-
cal image segmentation. Our proposed method also belongs to this
paradigm. For instance, Bai et al. utilised conditional random fields
to filter out false positives in pseudo labels (Bai et al., 2017). Wang
employed uncertainty measures to refine pseudo labels (Wang et al.,
2022). Wu et al. amalgamated pseudo labels with a dual-headed neural
network architecture to instantiate a cross pseudo-supervision frame-
work (Wu et al., 2021). Moreover, a recent study employed a vari-
ational auto-encoder as a student model to learn from pseudo labels
generated by a deterministic teacher model (Wang and Lukasiewicz,
2022).

3. Pseudo labelling as expectation-maximisation

In this section, we reinterpret pseudo labelling in semi-supervised
learning through the lens of the Expectation–Maximisation (EM) algo-
rithm. We specifically focus on binary segmentation, as it is commonly
encountered in medical imaging tasks where the objective is to dif-
ferentiate foreground from background. This framework can be easily
extended to multi-class segmentation by employing a multi-channel
Sigmoid function. Each channel is treated as a binary output and
combined using the argmax operation for the final prediction.

3.1. Problem formulation

Given a set of 𝑁 total available training images as 𝑋 = {𝑥𝑛 ∈ 𝑅𝐻𝑊 ∶
𝑛 ∈ (1, 2,… , 𝐿, 𝐿 + 1,… , 𝑁)}, where 𝑋𝐿 = {𝑥𝑙 ∈ 𝑅𝐻𝑊 ∶ 𝑙 ∈ (1,… , 𝐿)}
are 𝐿 labelled images; 𝑌𝐿 = {𝑦𝑙 ∈ 𝑅𝐻𝑊 ∶ 𝑙 ∈ (1,… , 𝐿)} are 𝐿 labels
for 𝑋𝐿; 𝑋𝑈 = {𝑥𝑢 ∈ 𝑅𝐻𝑊 ∶ 𝑢 ∈ (𝐿 + 1,… , 𝑁)} is the rest of the 𝑈
or (𝑁 − 𝐿) unlabelled images. We have a segmentation network with
parameters as 𝜃 and our final goal is to predict the labels 𝑝(𝑌 |𝑋, 𝜃) of
the whole data 𝑋 with respect to 𝜃.

3.2. Pseudo labels as latent variables

In order to find the optimal parameters of 𝜃, the common approach
is maximum likelihood estimation for maximising the likelihood of

𝑃 (𝑋|𝜃) with respect to 𝜃, which contains two parts, namely supervised
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learning part and unsupervised learning part. The supervised learn-
ing part is to find the following joint data density with known full
information of the labels:

𝑝(𝑋𝐿, 𝑌𝐿|𝜃) (1)

The unsupervised learning part is to find the beneath likelihood with
the same parameters without full information of the data:

𝑝(𝑋𝑈 |𝜃) (2)

Since labels are not observable for 𝑋𝑈 , we can treat this as a missing
data problem and introduce latent variables 𝑌 ′

𝑈 . We therefore transform
the above Eq. (2) to an estimation of the following marginal likelihood:

𝑝(𝑋𝑈 |𝜃) = ∫ 𝑝(𝑋𝑈 , 𝑌
′
𝑈 |𝜃)𝑑𝑌

′
𝑈 (3)

The latent variable in the above Eq. (3) can be implemented as
the pseudo labels. Eq. (3) also shows that it is not an easy task to
train a model in semi-supervised fashion, because it is difficult to
simultaneously estimate the optimal values of 𝜃 and 𝑌 ′

𝑈 . To address
this difficult learning problem, we can decompose this problem by
iteratively estimating the latent variables 𝑌 ′

𝑈 and the model 𝜃. We now
notice that this can be solved by a typical Expectation-Maximisation
(EM) (Bishop, 2006) algorithm. By plugging the Jensen’s inequal-
ity, one can iteratively refine the Evidence Lower Bound of the log
likelihood of the data in Eq. (3) (see details in later Section 3.4).

3.3. E-M pseudo labelling

We now display each component of the pseudo labelling in the sense
of EM algorithm in the following paragraphs.

E-step At the 𝑛th iteration, the E-step estimates the values of the
latent variable with the model (𝜃𝑛−1) from the last iteration (𝑛 − 1).
According to the cluster assumption that similar data points are sup-
posed to have similar labels (Cahpelle et al., 2006), the E-step runs the
inference on unlabelled data and generate pseudo-labels according to
its maximum predicted probability. In practice, in binary segmentation,
the pseudo-labels for the foreground class 1 are picked using a fixed
threshold value (𝑇 ) between 0 and 1. Normally, this threshold is
set up as 0.5. This binarization is actually equivalent to the plug-in
principle (Grandvalet and Bengio, 2004), which is a common approach
for estimating the posterior probability using an empirical estimation
in statistics. Therefore, the pseudo-labelling itself is the E-step:

𝑦ℎ𝑤
′

𝑢 = 1(𝜃𝑛−1(𝑥ℎ𝑤𝑢 ) > 𝑇 = 0.5) (4)

The above Eq. (4) is pseudo-labelling at pixel-wise. Where ℎ and 𝑤
are the index for the height and the index for the width of the pixel
location respectively, for each unlabelled image 𝑥𝑢. 𝑦ℎ𝑤

′
𝑢 is the pixel-

wise pseudo label. More details of the connection between E-step and
pseudo labelling is in the later section Section 3.4 on the convergence
of pseudo labelling.

M-step At the M-step of iteration 𝑛, we will update the model
parameters 𝜃𝑛−1 using the estimated latent variables (pseudo-labels
𝑌 ′
𝑈 ) from the E-step. The images 𝑋 are ignored for simplicity in the

following expression:

𝜃𝑛 ∶= argmax
𝜃

𝑝(𝜃𝑛|𝜃𝑛−1, 𝑌 ′
𝑛 ) (5)

The above Eq. (5) is normally solved by setting the partial deriva-
tives of the sum of the 𝑝(𝑌 ′

𝑛 ) with respect to 𝜃 as zero, which can be
calculated with modern automatic differentiation based deep learning
toolbox such as Pytorch (Paszke et al., 2019). In practice, we optimise
𝜃 in Eq. (5) via stochastic gradient descent. To use the stochastic
gradient descent, we need to define an objective function and we use
the common Dice loss (𝑓𝑑𝑖𝑐𝑒(.)) (Milletari et al., 2016) as this is a
segmentation task:

𝑓 (𝑎, 𝑏) = 2 ∗ 𝑎 ∗ 𝑏 + 𝜖 (6)
4

𝑑𝑖𝑐𝑒 𝑎 + 𝑏 + 𝜖 o
where 𝑎 is the prediction, 𝑏 is the ground truth and 𝜖 is to prevent the
ivision of zero.
Loss function of SegPL We weight Eq. (5) with a hyper-parameter

. For the whole data set including both unlabelled and labelled data,
e can extend the Eqs. (5) and (4) to a combination between the

upervised learning part 𝐿𝐿 and the unsupervised learning part 𝐿𝑈 :

𝑆𝑒𝑔𝑃𝐿 = 𝛼 1
𝑁 − 𝐿

𝑁
∑

𝑢=𝐿+1
𝑓𝑑𝑖𝑐𝑒(𝜃𝑛−1(𝑥𝑢),1(𝜃𝑛−1(𝑥𝑢) > 𝑇 = 0.5))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑈

+ 1
𝐿

𝐿
∑

𝑙=1
𝑓𝑑𝑖𝑐𝑒(𝜃𝑛−1(𝑥𝑙), 𝑦𝑙)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿

(7)

The above loss function (7) is the key component of our first pro-
posed semi-supervised segmentation method, omitting pixels’ locations
for simplicity, which is referred as SegPL (Segmentation with Pseudo
Labels) in the paper. 𝐿 works to prevent the networks falling into
trivial solutions, trivial solutions happen when networks constantly
predict one single class for all of the pixels.

3.4. On the convergence of pseudo labelling from the perspective of EM

In this section, we explain how semi-supervised learning with
pseudo-labelling will always converge. We first define an objective
function, the value of which we aim to increase. In our case, it would
be the log data likelihood 𝑙𝑜𝑔𝑝(𝑋𝑈 ). We also need to introduce a
surrogate function 𝑞(𝑌 ′

𝑈 ) which is any arbitrary distribution over the
latent variable 𝑌 ′

𝑈 . We follow Bishop (2006) and display the lower
bound of the log data likelihood in the form of the Free Energy:

𝑙𝑜𝑔𝑝(𝑋𝑈 ) ∶= 𝑙𝑜𝑔 ∫ 𝑝(𝑋𝑈 , 𝑌
′
𝑈 |𝜃)𝑑𝑌

′
𝑈

≥ ∫ 𝑞(𝑌 ′
𝑈 )𝑙𝑜𝑔

𝑝(𝑋𝑈 , 𝑌 ′
𝑈 |𝜃)

𝑞(𝑌 ′
𝑈 )

𝑑𝑌 ′
𝑈 ∶=  (𝑞(𝑌 ′

𝑈 ), 𝜃)
(8)

The functional free energy can be transformed back to the log data
likelihood (Bishop, 2006):

 (𝑞(𝑌 ′
𝑈 ), 𝜃) = 𝑙𝑜𝑔𝑝(𝑋𝑈 ) −𝐾𝐿[𝑞(𝑌 ′

𝑈 ) ∥ 𝑝(𝑌 ′
𝑈 |𝑋, 𝜃)] (9)

In the E-step of the iteration 𝑛, the free energy is:

 (𝑞(𝑌 ′
𝑈 ), 𝜃

𝑛−1) = 𝑙𝑜𝑔𝑝(𝑋𝑈 ) −𝐾𝐿[𝑞(𝑌 ′
𝑈 ) ∥ 𝑝(𝑌 ′

𝑈 |𝑋, 𝜃𝑛−1)] (10)

As KL can never be negative, the above Eq. (10) has an upper
ound. In order to reach that upper bound of the free energy at the
th iteration, we need to minimise 𝐾𝐿[𝑞(𝑌 ′

𝑈 ) ∥ 𝑝(𝑌 ′
𝑈 |𝑋, 𝜃𝑛−1)]. The

L distance has its minimum value at zero only if 𝑞(𝑌 ′
𝑈 ) is equal to

(𝑌 ′
𝑈 |𝑋, 𝜃𝑛−1). Therefore, we can simply replace the arbitrary function

f latent variable 𝑞(𝑌 ′
𝑈 ) as the current estimated posterior of the latent

ariable:

(𝑌 ′
𝑈 ) = 𝑝(𝑌 ′

𝑈 |𝑋𝑈 , 𝜃
𝑛−1) (11)

The above Eq. (11) can be implemented as pseudo-labelling in
q. (4). In other words, pseudo-labelling essentially maximises the free
nergy of the log data likelihood in the E-step.

Intuitively, the subsequent M-step is applying supervised learning to
ptimise the model parameters with pseudo labels which are produced
rom the precursory E-step. As supervised learning can be seen as
aximum likelihood estimation, thereby, M-step increases the log data

ikelihood. In more details, we know that the log data likelihood in the
-step after updating the model 𝜃 is:

𝑜𝑔𝑝(𝑋𝑈 ) =  (𝑞(𝑌 ′
𝑈 ), 𝜃

𝑛−1) +𝐾𝐿[𝑝(𝑌 ′
𝑈 |𝑋𝑈 , 𝜃

𝑛−1) ∥ 𝑝(𝑌 ′
𝑈 |𝑋𝑈 , 𝜃

𝑛)] (12)

he KL term in the above Eq. (12) becomes positive as the posterior
′
f the latent variable 𝑌𝑈 is different from its previous value. Together,



Medical Image Analysis 94 (2024) 103125M. Xu et al.

h
a
p
p

𝑝

w
e
u
o

5

5

W
v
c
E
r
s
c
l
t
t
5
r

it is easy to tell that the M-step increases the data log likelihood by at
least the increased amount of the lower bound.

Up to this point, it is clear to see that, pseudo labelling (E-step)
combined with supervised optimisation of model parameters (M-step)
can never decrease the log likelihood of the data, leading to guaranteed
convergence towards local optima. Similar conclusion was reported in
the original EM paper (Dempster et al., 1977).

4. Generalisation of pseudo labels via variational inference for
segmentation

In the last Section 3, we use an empirical estimation of the posterior
of the latent variables (pseudo labels) by setting the 𝑇 as 0.5. The fixed
empirical estimation of 𝑇 could be sub-optimal especially in the early
stage of training when the networks do not have good representations
and the predictions are not very confident (Rizve et al., 2021). Poten-
tially, noisy training with some ‘‘bad’’ pseudo labels could accumulate
some errors into the learnt representations. To address this potential
issue, we provide an alternative approach to learn to approximate the
true posterior of the pseudo labels. This alternative approach can be
seen as a generalisation of the empirical estimation approach in SegPL
in Section 3.

4.1. Confidence threshold as latent variable

In the last Section 3, we directly treat pseudo labels as latent
variables. However, in segmentation task, the pseudo labels are pixel-
wise, making the generative task a difficult one. To address this, we
now introduce a simplification of the graphical model of the pseudo-
labelling in 3. The key of this simplification is to treat the threshold
value 𝑇 as the latent variable for instead:

𝑝(𝑋𝑈 |𝜃) = ∫ 𝑝(𝑋𝑈 , 𝑇 |𝜃)𝑑𝑇 (13)

This new latent variable 𝑇 makes the computation of the posterior
much easier. We know that 𝑇 is a value between 0 and 1, so that we
ave a clear prior knowledge of the range of this single value 𝑇 . That
ny distribution describing values between 0 and 1 can be used as a
rior distribution to approximate the real distribution of 𝑇 . The true
osterior of the latent variable 𝑇 is:

(𝑇 |𝑋𝑈 , 𝜃) =
𝑝(𝑋𝑈 |𝑇 , 𝜃)𝑝(𝑇 )

𝑝(𝑋𝑈 |𝜃)
(14)

The new E-step at iteration 𝑛 with threshold as the latent variable
now becomes:
𝑝(𝑇𝑛 = 𝑖|𝑋𝑈 , 𝜃

𝑛−1) =
∏𝑁

𝑢=𝐿+1 𝑝(𝑥𝑢|𝜃
𝑛−1, 𝑇𝑛 = 𝑖)𝑝(𝑇𝑛 = 𝑖)

∑

𝑗∈[0,1]
∏𝑁

𝑢=𝐿+1 𝑝(𝑥𝑢|𝜃𝑛−1, 𝑇𝑛 = 𝑗)𝑝(𝑇𝑛 = 𝑗)

(15)

From the above Eq. (15), one can tell that the empirical estimation
of the threshold 𝑇 is actually necessary although not optimal. Because
there are infinite possible values between 0 and 1 in the denominator
in Eq. (15), the posterior of the pseudo-labels is still intractable.

4.2. Variational E-step

To address the aforementioned intractable issue in Eq. (15), we
use variational inference for the approximation of 𝑝(𝑇 ). As mentioned
before, the prior of 𝑇 can be an arbitrary distribution describing values
between 0 and 1. For the implementation simplicity, we adapt an
univariate Normal distribution for the prior distribution and we denote
the prior distribution of 𝑇 as a surrogate distribution 𝑞(𝛽). We use extra
model parameters 𝜙 to parameterise the log variance and the mean
of the approximated posterior distribution of 𝑇 , conditioning on the
image features, see the beneath Eq. (17). 𝜙 is implemented as a average
5

pooling layer followed by a single 3 × 3 convolutional block including N
ReLU and normalisation layer, then two 1 × 1 convolutional layers for 𝜇
and 𝐿𝑜𝑔(𝜎2) respectively. Alternatively, a simple fully connected layer
can also be used as 𝜙, we found no performance differences among
different choices of architectures for 𝜙.

(𝜇,𝐿𝑜𝑔(𝜎2)) = 𝜙(𝜃(𝑋𝑈 )) (16)

𝑝(𝑇 |𝑋𝑈 , 𝜃, 𝜙) ≈  (𝜇, 𝜎) (17)

Differing from the fixed 𝑇 in E-step in Eq. (4), the 𝑇 in variational E-
step is dynamic, we denote the stochastic threshold as T for clarity. We
use the standard reparameterisation trick (Kingma and Welling, 2014)
to generate the threshold in each iteration:

T = 𝜇 + 𝑟𝑎𝑛𝑑 ∗ 𝑒0.5∗𝑙𝑜𝑔(𝜎
2)

𝑟𝑎𝑛𝑑 ∼  (0, 1)
(18)

As demonstrated in previous Eq. (8) that the log data likelihood
term has an Evidence Lower Bound (ELBO) which contains a condi-
tional probability of the data given latent variable and a KL distance
between the posterior and the prior of the latent variable. We therefore
write down variational unsupervised learning objective as:

𝐿𝑜𝑔(𝑃 (𝑋𝑈 ) ≥
𝑁
∑

𝑢=𝐿+1
E𝑇∼𝑃 (T)[𝐿𝑜𝑔(𝑃 (𝑥𝑢|T))] −𝐾𝐿(𝑝(T)||𝑞(𝛽))

(19)

Loss function of BPL The new learning objective 𝑃 (𝑋,T, 𝜃) over
the whole data set has a supervised learning 𝑃 (𝑋𝐿,T, 𝜃) which has not
changed from Eq. (7), and an unsupervised learning part 𝑃 (𝑋𝑈 ,T, 𝜃)
from the above Eq. (19). The final loss function is an ELBO over the
whole data set:

𝑉 𝐼
𝑆𝑒𝑔𝑃𝐿 = 1

𝐿

𝐿
∑

𝑙=1
𝑓𝑑𝑖𝑐𝑒(𝜃𝑛−1(𝑥𝑙), 𝑦𝑙)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿

+

𝛼 1
𝑁 − 𝐿

𝑁
∑

𝑢=𝐿+1
𝑓𝑑𝑖𝑐𝑒(𝜃𝑛−1(𝑥𝑢),1(𝜃𝑛−1(𝑥𝑢) > T))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑈

+

𝐿𝑜𝑔(𝜎𝛽 ) − 𝐿𝑜𝑔(𝜎) +
𝜎2 + (𝜇 − 𝜇𝛽 )2

2 ∗ (𝜎𝛽 )2
− 0.5

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐾𝐿∶𝐾𝐿(𝑝(𝑇 )||𝑞(𝛽)), 𝛽∼ (𝜇𝛽 , 𝜎𝛽 )

(20)

here T can be found in Eq. (18). Different data sets might need differ-
nt priors for the best empirical performances. Although we suggest to
se higher mean such as 0.9 as a starting point. A schematic illustration
f the implementation of Bayesian Pseudo Labels is shown in Fig. 2.

. Experimental results

.1. Data sets

The classification of pulmonary arteries and veins (CARVE)
e use CARVE for demonstration of 3D binary segmentation of lung

essel of CT images. The CARVE data set (Charbonnier et al., 2016)
omprises 10 fully annotated non-contrast low-dose thoracic CT scans.
ach case has between 399 and 498 images, acquired at various spatial
esolutions ranging from (282 × 426) to (302 × 474). We randomly
elect 1 case for labelled training, 2 cases for unlabelled training, 1
ase for validation and the remaining 5 cases for testing. All image and
abel volumes were cropped to 176 × 176 × 3. To test the influence of
he number of labelled training data, we prepared four sets of labelled
raining volumes with differing numbers of labelled volumes at: 2,
, 10, 20. Normalisation was performed at case wise. Data curation
esulted in 479 volumes for testing, which is equivalent to 1437 images.

o data augmentation is used.
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Fig. 2. The implementation of the proposed Bayesian Pseudo Labels. Only unsupervised learning part is illustrated.
Fig. 3. SegPL statistically outperforms the best performing baseline CPS when trained
on 2 labelled volumes from the CARVE data set. Each data point represents a single
testing image.

BRATS 2018 We use BRATS 2018 (Menze et al., 2015; Bakas
et al., 2018) for demonstration of 2D multi-class segmentation of brain
tumour of MRI images. The BRATS 2018 comprises 210 high-grade
glioma and 76 low-grade glioma MRI cases. Each case contains 155
slices. We focus on multi-class segmentation of sub-regions of tumours
in high grade gliomas (HGG). All slices were centre-cropped to 176 ×
176. We prepared three different sets of 2D slices for labelled training
data: 50 slices from one case, 150 slices from one case and 300 slices
from two cases. We use another 2 cases for unlabelled training data
and 1 case for validation. 50 HGG cases were randomly sampled for
testing. Case-wise normalisation was performed and all modalities were
concatenated. A total of 3433 images were included for testing. No data
augmentation is used.

Task01 Brain Tumour We use Task01 Brain Tumour from Med-
ical Segmentation Decathlon consortium (Antonelli et al., 2022) as
a demonstration of 3D binary segmentation of brain tumour of MRI
images. The Task01 Brain Tumour is based on BRATS 2017 with
different naming format from BRATS 2018. This data set was not in our
previous MICCAI version but we included this data set here because it
is easy to download and use for the readers for the future follow-up
works. Each case in The Task01 Brain Tumour has 155 slices with 240
× 240 spatial dimension. We merge all of the tumour classes into one
tumour class for simplicity. We do not apply centre cropping in the
pre-processing here. In the training, we randomly crop volumes on the
fly with size of 64 × 64 × 64. We separate the original training cases as
labelled training data and testing data. We use the original testing cases
as unlabelled data. For the labelled training data, we use 8 cases with
index number from 1 to 8. We have 476 cases for testing and 266 cases
for unlabelled training data. We apply normalisation with statistics of
intensities across the whole training data set. We keep all of the MRI
modalities as 4 channel input.

Task05 Prostate We also use Task05 Prostate from Medical Seg-
mentation Decathlon consortium (Antonelli et al., 2022) as another
demonstration of 3D binary segmentation of prostate of MRI images.
Each case in the Task05 Prostate is a 4D volume: 2 modalities, 15
slices with 320 × 320 spatial dimension. We divide the original training
cases into three parts, 1 case as labelled training data, 16 cases as
unlabelled training data and the rest 14 cases as unseen testing data.
During training, we randomly crop volumes on the fly with a target size
of 192 × 192 × 8.
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Table 1
Hyper-parameters used across experiments. Different data might need different 𝛼. LR:
learning rate. Ratio: Unlabelled/labelled in each batch.

Data Batch size L.R. Steps 𝛼 Ratio.

BRATS(2D) 2 0.03 200 0.05 5
CARVE(3D) 2 0.01 800 1.0 4
Task01(3D) 1 0.0004 25 000 0.1 2
Task05(3D) 1 0.001 2000 0.002 4

Table 2
Different prior values of 𝑇 used across experiments.

Data Mean Std.

BRATS(2D) 0.5 0.1
CARVE(3D) 0.4 0.1
Task01(3D) 0.9 0.1
Task05(3D) 0.9 0.1

5.2. Baselines

Our baselines include both supervised and semi-supervised learning
methods. We use U-net (Ronneberger et al., 2015) in SegPL as an exam-
ple of segmentation network. Partly due to computational constraints,
for 3D experiments we used a 3D U-net with 8 channels in the first
encoder such that unlabelled data can be included in the same batch.
For 2D experiments, we used a 2D U-net with 16 channels in the first
encoder. The first baseline utilises supervised training on the backbone
and is trained with labelled data denoted as ‘‘Sup’’. We compared SegPL
with state-of-the-art consistency based methods: (1) ‘‘cross pseudo su-
pervision’’ or CPS (Chen et al., 2021), which is considered the current
state-of-the-art for semi-supervised segmentation; (2) another recent
state-of-the-art model ‘‘cross consistency training’’ (Ouali et al., 2020),
denoted as ‘‘CCT’’, due to hardware restriction, our implementation
shares most of the decoders apart from the last convolutional block;
(3) a classic model called ‘‘FixMatch’’ (FM) (Sohn et al., 2020). To
adapt FixMatch for a segmentation task, we added Gaussian noise
as weak augmentation and ‘‘RandomAug’’ (Cubuk et al., 2020) for
strong augmentation; (4) ‘‘self-loop (Li et al., 2020b)’’, which solves
a self-supervised jigsaw problem as pre-training and combines with
pseudo-labelling.

5.3. Training

We use Adam optimiser (Kingma and Ba, 2015) with default set-
tings. Our code is implemented using Pytorch 1.0 (Paszke et al., 2019)
and released in https://github.com/moucheng2017/EMSSL. We trained
all of the experiments with a TITAN V GPU with 12 GB memory. The
training hyperparameters are included in Table 1. The prior values used
are presented in Table 2.

5.4. Segmentation performances

The segmentation performances of CARVE 2014, BRATS 2018, Task
01 can be found in Tables 3–5, respectively. As reflected in the quan-
titative results in tables, pseudo labelling based SegPL consistently
achieves better results than the baselines of semi-supervised and super-
vised methods. Especially, as shown in Fig. 3 of the Bland–Altman plot
between the best performing baseline CPS and our SegPL on CARVE
when only 2 labelled volumes are used for training, SegPL statistically

https://github.com/moucheng2017/EMSSL
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Table 3
Our model vs. Baselines on a binary vessel segmentation task on 3D CT images of the CARVE data set. Metric is Intersection over Union (IoU (↑) in %). Avg performance of 5
training. blue: 2nd best. red: best.

Data Supervised Semi-supervised

Labelled 3D U-net FixMatch CCT CPS SegPL SegPL+VI
Volumes Ronneberger et al. (2015) Sohn et al. (2020) Ouali et al. (2020) Chen et al. (2021) (Ours, 2022) (Ours, 2022)

2 56.79 ± 6.44 62.35 ± 7.87 51.71 ± 7.31 66.67 ± 8.16 69.44 ± 6.38 70.65 ± 6.33
5 58.28 ± 8.85 60.80 ± 5.74 55.32 ± 9.05 70.61 ± 7.09 76.52 ± 9.20 73.33 ± 8.61
10 67.93 ± 6.19 72.10 ± 8.45 66.94 ± 12.22 75.19 ± 7.72 79.51 ± 8.14 79.73 ± 7.24
20 81.40 ± 7.45 80.68 ± 7.36 80.58 ± 7.31 81.65 ± 7.51 83.08 ± 7.57 83.41 ± 7.14

Computational need

Train (s) 1014 2674 4129 2730 1601 1715
Flops 6.22 12.44 8.3 12.44 6.22 6.23
Para (K) 626.74 626.74 646.74 1253.48 626.74 630.0
Table 4
Our model vs. Baselines on multi-class tumour segmentation on 2D MRI images of BRATS 2018. Metric is Intersection over Union (IoU (↑) in %). Avg performance of 5 runs. blue:
2nd best. red: best.

Data Supervised Semi-supervised

Labelled 2D U-net Self-Loop FixMatch CPS SegPL SegPL+VI
Slices Ronneberger et al. (2015) Li et al. (2020b) Sohn et al. (2020) Chen et al. (2021) (Ours, 2022) (Ours, 2022)

50 54.08 ± 10.65 65.91 ± 10.17 67.35 ± 9.68 63.89 ± 11.54 70.60 ± 12.57 71.20 ± 12.77
150 64.24 ± 8.31 68.45 ± 11.82 69.54 ± 12.89 69.69 ± 6.22 71.35 ± 9.38 72.93 ± 12.97
300 67.49 ± 11.40 70.80 ± 11.97 70.84 ± 9.37 71.24 ± 10.80 72.60 ± 10.78 75.12 ± 13.31
Table 5
Our model vs. Supervised baseline on 3D binary tumour segmentation of Task 01
Brain Tumour (BRATS 2017). Metric is Intersection over Union (IoU (↑) in %). Avg
performance of models between iteration 20 000 and 25 000 with 1000 as the interval.
The shape of each training sample is 963. red: best.

Testing size 32 × 32 × 32 64 × 64 × 64 96 × 96 × 96
Supervised 61.07 ± 7.93 66.94 ± 12.4 70.13 ± 13.22
SegPL-VI 64.44 ± 8.3 71.43 ± 11.91 73.07 ± 11.71

Table 6
Our model vs. Supervised baseline on 3D binary segmentation of prostate Task 05 from
Medical Decathlon. Metric is Intersection over Union (IoU (↑) in %). Performance of
the models which achieved the highest training accuracy. The shape of each training
sample is 192 × 192 × 8. red: best.

Testing size 192 × 192 × 8 160 × 160 × 8 128 × 128 × 8
Supervised 67.68 ± 10.06 61.39 ± 11.86 60.53 ± 9.94
SegPL-VI 70.15 ± 10.59 63.15 ± 11.62 61.06 ± 10.39

Fig. 4. Y-axis: Learnt threshold in the experiment of Task01 Brain Tumour. X-axis:
training iterations. The mean of the prior is 0.9 and the std of the prior is 0.1. The
learnt threshold converged around 0.82 after 2000 iterations.

outperforms the best baseline. We further confirm the statistical dif-
ference by performing Mann Whitney test on the same results on 2
labelled volumes and we found the p-vale less than 1e–4. By extending
the SegPL with variational inference to SegPL-VI, we found further im-
provements on segmentation on most of the experiments. Interestingly,
the improvements brought by SegPL-VI is more obvious on multi-class
7

Fig. 5. Y-axis: Learnt threshold in the experiment of Task05 Prostate. X-axis: training
iterations. The mean of the prior is 0.9 and the std of the prior is 0.1. The learnt
threshold converged around 0.785 after 2000 iterations.

experiments on BRATS 2018. As the outputs on BRATS are multi-
channel but SegPL-VI learns one threshold across all of the channel, we
suspect that might bring in strong regularisation effect which results in
noticeable improvements. We also noticed that SegPL-VI could fail to
learn optimal threshold sometimes as the result of SegPL-VI on CARVE
with 5 labelled volumes are inferior to the corresponding result of
SegPL. We expect that more hyper-parameter searching could improve
the performance of SegPL.

As shown in the qualitative results in Fig. 6 of CARVE, SegPL
successfully learnt better decision boundary than other baselines that
SegPL can partially separate the foreground lung vessels from the
background whereas most of the other methods classifies everything as
background. However, SegPL seemed to have overconfident predictions
on the edges of the foreground that it has a lot of false positive results.
Similarly in BRATS, SegPL detected one more class of brain tumour
(blue) than the other baselines in Fig. 7. However, none of the methods
including SegPL can detect the most rare green class of tumour.

One phenomenon worthy mentioning is shown in Table 5 on 3D
binary segmentation of whole tumour and Table 6 on 3D binary seg-
mentation of prostate. During training on whole brain tumour segmen-
tation, we use random cropping with fixed size at 64 × 64 × 64 to
compensate with the memory of GPU. On testing data, we examined
the models with different sizes of cropped volumes at 323, 643, 963 and
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Fig. 6. Visual results. CARVE trained with 5 labelled volumes. Red: false positive.
Green: true positive. Blue: false negative. Yellow: ground truth. GT: Ground truth. CPS:
cross pseudo labels (CVPR 2021). CCT: cross consistency training (CVPR 2020). Sup:
supervised training.

1283. The models actually generalise well on the scales that they have
not seen during the training. In fact, larger cropped volumes result in
better results. The results in Table 6 on segmentation of prostate also
confirms this phenomenon.

Although SegPL achieves higher segmentation accuracy, SegPL en-
joys a low computational burden. As illustrated in the computational
need section in Table 3, SegPL has the least computational burden
among all of the tested semi-supervised learning baselines. Especially
in terms of FLOPs, SegPL is very close to supervised learning methods.
This shows that our model has the scaling potential for large models
and large data sets.

5.5. Sensitivity studies of hyper-parameters

We performed brief sensitivity studies on hyper-parameters on
BRATS with 150 labelled slices. As shown in Fig. 8,(a) shows that SegPL
is very sensitive to learning rate that it should be at least 0.01. We
found that other baselines also needed large learning rate. Fig. 8.(b)
shows the impact of warm-up schedule of 𝛼 from 0 to final 𝛼 value. 𝑥
axis is the length of linear warming-up of 𝛼 in terms of whole steps. It
appears that SegPL is not sensitive to warm-up schedule of 𝛼. Fig. 8.(c)
illustrates the effect of the ratio between unlabelled images to labelled
images in each batch. The suitable range of unlabelled/labelled ratio
is quite wide and between 1 to 10. Fig. 8.(d) shows that the pseudo
supervision cannot be too strong. This confirms the suggestions from
the original pseudo labelling paper that pseudo supervision should not
dominate the training.
8

Fig. 7. Visual results. BRATS 2018 trained with 300 labelled slices. Red: whole tumour.
Green: tumour core. Blue: enhancing tumour core. GT: Ground truth. CPS: cross pseudo
labels (CVPR 2021). CCT: cross consistency training (CVPR 2020). Sup: supervised
training.

5.6. Robustness

In medical imaging, models often face challenges due to out-of-
distribution (OOD) noise such as variations in scan acquisition param-
eters or differing patient populations. These factors can significantly
degrade model performance in real-world applications. To evaluate the
robustness of our proposed SegPL model against OOD noise, we conduct
experiments using models trained on the CARVE data set.

We simulate OOD noises with unseen random contrast and Gaussian
noise, we then apply mix-up (Zhang et al., 2018) to create new testing
samples by adding the OOD noises on original images. Specifically,
for a given original testing image 𝑥𝑡, we applied random contrast and
noise augmentation on 𝑥𝑡 to derive OOD samples 𝑥′𝑡. We arrived at
the testing sample (𝑥𝑡) via 𝛾𝑥′𝑡 + (1 − 𝛾)𝑥𝑡. As shown in Fig. 9, as
testing difficulty increases, the performances across all baselines drop
exponentially. SegPL outperformed all of the baselines across all of the
tested experimental settings. The findings suggest that SegPL is more
robust when testing on OOD samples and achieves better generalisation
performance against that from the baselines.

In the context of privacy and security, especially as federated learn-
ing across hospitals gains popularity, the robustness against adversarial
attacks becomes crucial. We assess SegPL’s resilience to such attacks
using the fast gradient sign method (FGSM) (Kurakin et al., 2017).
FGSM perturbs an image by computing the gradient of the loss function
with respect to the input image and adding a noise term proportional
to the sign of the gradient.

Our experiments show that the performance of all models, includ-
ing SegPL, declines as the strength of the adversarial attack (mea-
sured by Epsilon) increases. However, SegPL exhibits a smaller drop
in performance compared to baseline models, as illustrated in Fig. 10.
These results further substantiate the robustness of SegPL under various
challenging conditions.
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Fig. 8. Sensitivity studies of hyper-parameters on BRATS with 150 labelled slices.
Fig. 9. Robustness against out-of-distribution noise. Gamma is the strength of the
out-of-distribution noises. Using 2 labelled volumes from CARVE.

Fig. 10. Robustness against adversarial attack. Epsilon is the strength of the
FGSM (Kurakin et al., 2017) attack. Using 2 labelled volumes from CARVE.

5.7. Uncertainty

Since SegPL-VI is trained with stochastic threshold for unlabelled
data therefore not suffering from posterior collapse. Consequently,
SegPL can generate plausible segmentation during inference using
stochastic thresholds. To test the performance of SegPL-VI on uncer-
tainty quantification, we use random latent variable values (threshold)
with 5 Monte Carlo samples. We focus experimenting on models trained
with 5 labelled volumes of CARVE data set. For comparison, we adopt
Deep Ensemble, as it is the gold-standard baseline for uncertainty
estimation (Lakshminarayanan et al., 2017; Snoek et al., 2019). Both
the tested methods Deep Ensemble and SegPL-VI achieved the same
Brier score at 0.97. This result shows that SegPL-VI has the potential to
become a benchmark method for uncertainty quantification. The Brier
score is calculated using beneath equation, where, 𝑦𝑖𝑗 is the ground
truth label at pixel at location i, j, 𝑦𝑖𝑗 is 1 for foreground pixel and 𝑦𝑖𝑗
is 0 for background pixel. 𝑝𝑖𝑗 is the predicted probability of the pixel
being the foreground pixel.

𝐵𝑟𝑖𝑒𝑟 = 1
𝐻𝑊

𝐻
∑

𝑊
∑

(𝑝𝑖𝑗 − 𝑦𝑖𝑗 )2 (21)
9

𝑖=1 𝑗=1
6. Limitations and future works

There are two main limitations of the proposed Bayesian pseudo
labels. The first limitation is that once the model starts to over-fit,
the model becomes overconfident that it predicts with very high con-
fidence, while the learnt threshold also converges to a value such as
shown in Figs. 4 and 5. In this situation, if the prior of the mean is too
low, then the learnt threshold will not be able to mask out the bad over
confident pseudo labels. Thus calibration becomes very important here.
In future work, one could extend the formulation of pseudo labels to
take into account of calibration.

The second limitation is the use of the prior in the current paper.
We use Gaussian due to its simplicity and easy to implement. However,
Gaussian prior might not be the most optimal one here. Future work can
explore the impact of other priors of learnt threshold. Candidate prior
distributions include categorical and Beta distributions.

In terms of implementation, the current Bayesian Pseudo Labels
only learns a single threshold for all of the images in the same batch
size. However, more adaptive implementations could potentially boost
the performance of Bayesian Pseudo Labels, such as learning one
threshold for each image or even each pixel. If the thresholds are learnt
per pixel of an image, one might also need to consider the spatial
correlations among the thresholds.

Theoretically, another interesting future work can be studying the
impact of labelled data in terms of preventing collapsed representa-
tions. Other future work can also look into the convergence property
of SegPL-VI.

The feasibility of the applications of the proposed methods on other
tasks such as uncertainty quantification, classification and registration
also remain unexplored.

In the future pipeline for learning with limited annotations, we also
expect to exploit SegPL-VI’s full potential by combining with large-scale
pre-training techniques.

7. Conclusions

In this paper, we revisit pseudo-labelling and provide an interpreta-
tion of its empirical success by formulating the pseudo-labelling process
as the EM algorithm. We as well unravel its full formulation along with
a learning based approach to approximate it. Empirically, we examined
that the original pseudo-labelling (Lee, 2013) and its Bayesian general-
isation on semi-supervised medical image segmentation and we report
that pseudo-labelling as a competitive and robust baseline.
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