
Together is Better: Heavy HittersQuantile Estimation

Stream monitoring is fundamental in many data stream applications, such as financial data trackers, security,

anomaly detection, and load balancing. In that respect, quantiles are of particular interest, as they often capture

the user’s utility. For example, if a video connection has high tail (e.g., 99’th percentile) latency, the perceived

quality will suffer, even if the average and median latencies are low.

In this work, we consider the problem of approximating the per-item quantiles. Elements in our stream are

(ID, value) tuples, and we wish to track the quantiles for each ID. Existing quantile sketches are designed for a

plain number stream (i.e., containing just a value). While one could allocate a separate sketch instance for

each ID, this may require an infeasible amount of memory. Instead, we consider tracking the quantiles for

the heavy hitters (most frequent items), which are often considered particularly important, without knowing

them beforehand.

We first present a couple of simple and effective algorithms that serve as baselines, a sampling approach

and a sketching approach. Then, we present SQUAD, an algorithm that combines sampling and sketching

while improving the asymptotic space complexity. Intuitively, SQUAD uses a background sampling process

to capture the behaviour of the quantiles of an item before it is allocated with a sketch, thereby allowing us

to use fewer samples and sketches. The algorithms are rigorously analyzed, and we demonstrate SQUAD’s

superiority using extensive simulations on real-world traces.
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1 INTRODUCTION
Quantiles enable to extract useful insights from non-uniformly distributed data. Popular examples

include the wealth required to be recognized among the 1% richest persons in the world or in a given

country, or the salary level required to be in the top 10% earners. Service Level Agreements (SLA)

is another domain whose parameters are often expressed in terms of quantiles [37], most notably

w.r.t. query execution time and overall service latency [15, 22, 42, 49]. Latency quantiles is also a

vital metric in assessing a network’s health and in debugging various networking middle-boxes

and smart data-planes [46].

When handling large and fast incoming data streams, as common in network monitoring and

large data-center and cloud applications, answering precise quantile queries is often prohibitively

expensive. To that end, sketching [32] or sampling [25] are widely used to provide approximate

answers with some bounded error guarantee.

Interestingly, in many real-world streaming applications, such as network monitoring, data-

centers, and clouds, the streams are composed of elements whose header includes some identifier. In

networking, the identifier is typically the source IP+port, destination IP+port and protocol 5-tuple,

while in other applications, this can be a URI, a user’s identifier, product identifier, etc. It is common

to refer to elements with the same identifier as an item or a flow within the stream.

We argue that tracking the overall data stream’s quantiles is not enough, and in many cases

keeping track of the per item quantiles is highly beneficial. For example, it is possible that some

global SLA parameter’s quantile is within a given SLA bound, yet for some items (flows) it is not.

This means that the experience of the respective users is unacceptable, despite the overall parameter

Authors’ addresses: Rana Shahout, Technion, Israel, ranas@cs.technion.ac.il; Roy Friedman, Technion, Israel, roy@cs.

technion.ac.il; Ran Ben Basat, University College London, UK, r.benbasat@cs.ucl.ac.uk.

©



2 Rana Shahout, Roy Friedman, and Ran Ben Basat

distribution “looking OK”. As another example, the reason the overall tail latency of a system is too

high may be mainly due to a few items. Being able to estimate the quantile latency of individual

items can help pinpoint the sources of the problem. Further, “typical” network routing paths for

different items (flows) are often very different, depending on the source and destination and their

topological locations within the Internet. Thus, considering a global path-length quantile is much

less informative for network monitoring and debugging than the per item path-length quantile.

Existing works, however, cannot efficiently track fine-grained per-item quantiles for all traffic.

Network monitoring techniques such as NetFlow [24] and In-band telemetry (INT) [52] suffer from

significant bandwidth costs when performing full-packet monitoring. Accordingly, researchers

proposed probabilistic approaches that reduce the overheads of collecting per-item quantiles [14];

however, these still incur high collection costs [34] and require modifying data packets, which is

undesired. Sampling from the entire stream in order to obtain per-item quantiles also consumes a

significant amount of memory, as we show later.

Several quantile sketching algorithms have been developed [4, 25, 27, 32, 38, 39, 51], with useful

extensions explored such as calculating quantiles across sliding windows [7], over distributed

data [4, 28, 30, 51], continuous monitoring of quantiles [16, 55], quantile computations using

GPUs [26], and biased quantiles [20]. Such sketches return an approximation of a 𝑞-quantile’s value

up to an 𝜀 error guarantee, but they track the quantiles of an entire stream. It may be tempting to

utilize any of these sketching techniques to address the per-item quantile estimation problem, by

simply maintaining one sketch per item. However, in large scale applications, the number of items

can be extremely high, thereby rendering this approach prohibitively costly.

Hence, we may instead focus on tracking the 𝑞-quantile’s value for a subset of significant items

in terms of their frequency in the stream. The motivation for targeting only significant items is

that a quantile’s value is often misrepresented when there are only a few elements associated with

a given item. For example, when considering tail latency for an item that only appears in one or

two transactions, it is enough that a single transaction suffers from a long delay for the tail-latency

of that item to be very large. Such one-time events can be caused by, e.g., caching initialization,

storage warm-up, route discovery overheads, and “bad luck” in terms of temporal overloads on

intermediate components and devices. Therefore, identifying 𝑞-quantile’s values for significant

items is more important and computationally feasible.

A popular way to identify significant items is known as heavy-hitters, i.e., all items whose

associated elements consume more than a threshold 𝜃 of the overall stream [44]. Since a heavy-

hitter item accounts for a significant fraction of the overall system load, it is important to ensure

good quality of service for it, and there is vast knowledge on identifying heavy-hitters in streams,

e.g., [17, 33, 43].

In this work, we focus on reporting the 𝑞-quantile’s value of heavy hitter items. Our goal is to

figure out how to find all 𝜃 -heavy-hitters’ quantiles with a maximum accuracy error of 𝜀, for given

parameters 𝜃 and 𝜀. Let us note that efficiently tracking the quantiles of heavy-hitters is non-trivial,

since we do not know ahead of time which items are heavy-hitters. Hence, we must simultaneously

both detect the heavy-hitters and estimate their quantiles while keeping the memory consumption

low and the processing speed high.

In contrast to heavy hitters, for small items (e.g., that appear 5 times) the notion of tail quantiles

is not defined. In some cases, we may want to capture all flows that arrived enough (e.g., 100) times,

independently of the stream length. To that end, we present an algorithmic variant that captures

this definition as well.

Contributions
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We start by introducing a formal definition of the heavy hitters (HH) quantiles problem, named

(𝜃, 𝜀, 𝛿)-HH-quantiles, which tracks the quantiles of heavy hitters.

For solving the problem, we first examine what it would mean to solve (𝜃, 𝜀, 𝛿)-HH-quantiles
with a pure sampling based solution. Then we formally analyze this solution and show that it takes

𝑂 (𝜃−1𝜀−2 log𝛿−1) space. This algorithm is memory-inefficient, but it serves as a baseline for our

final design.

Next, we inspect a sketching approach to (𝜃, 𝜀, 𝛿)-HH-quantiles, named SSGK, that is based on

a nested application of Space Saving (SS) heavy hitters detection algorithm [43] with a quantile

sketch. Space Saving [43] is an asymptotically optimal HH algorithm that requires 𝑂 (𝜀−1) space
for solving the 𝜀 heavy hitters problem, and is considered highly accurate in practice [17].

In SSGK, we use the SS data structure and add a deterministic quantile sketch (e.g., GK-sketch [27])

to each entry. The GK-sketch requires 𝑂 (𝜀−1 log(𝑁𝜀)) space, which is optimal for comparison-

based quantile approximation. We analyze this solution and show that its memory complexity is

𝑂
(
𝜃−1𝜀−2 · log(𝑁𝜀2𝜃 )

)
. This is a similar space complexity to the sampling approach but with a

deterministic error guarantee rather than a probabilistic one.

Our main contribution is the SQUAD algorithm, which uses a synergistic combination of the

sketching and sampling approaches. Although there are a few works [36, 47] that combine sampling

and sketching in some way, the worlds of sampling and sketching have stayed mostly distinct.

Usually, this combination comes in the form of building the sketch over a sampled substream rather

than the entire data stream in order to improve the time performance. In contrast, SQUAD uses the

sketching approach of SSGK in tandem with sampling while slightly modifying both by adding a

timestamp that allows merging. Intuitively, SQUAD employs an SS sketch with a quantile sketch

per entry, together with background sampling to capture the behavior of a item’s quantiles before

assigning it a sketch. It adjusts the data structure size of each method and suggests how to merge

the results of its components in order to benefit from each approach. At query time, the samples

are incorporated into the sketch, yielding improved accuracy over both the baseline sketching and

sampling approaches. As a result, SQUAD can use fewer samples and sketch entries for the same

error guarantee. We formally analyze this solution and show that it takes 𝑂
(
𝜃−1𝜀−1.5 · log 𝜀−1

)
space. We further present several enhancements that accelerate SQUAD and allow it to work at high

processing rates. Figure 1 illustrates the algorithms presented in this paper, while the asymptotics

are summarized in Table 1.

We perform a performance evaluation study of the above three solutions. To our knowledge,

this is the first research to solve quantiles on a per-flow level. Thus, we compare our algorithms

along with (𝑖) GK-algorithm and Random [38], that serve as a best case reference point since it

solves a more straightforward problem: quantiles over an entire stream (𝑖𝑖) the state-of-the-art

Space Saving (SS) [43], which solves the heavy hitters problem which is a building block in SSGK

and SQUAD. We evaluate our algorithms using large-scale datacenter FatTree topology using

NS3 simulations [3]. The traffic is produced using the item size distribution in web search from

Microsoft [5] and Hadoop from Facebook [48].

Conforming with the theory, the results show that given the same (𝜀, 𝜃 ) error guarantees, SQUAD
is the most space-efficient algorithm. SQUAD is faster than SSGK and while the sampling approach

is faster, it also requires the most memory for solving the (𝜃, 𝜀, 𝛿)-HH-quantiles. Further, this
advantage diminishes when we enable our runtime optimizations that enable SQUAD to process

more than 100 million elements per second. Last, we generalize our method to support quantiles

for traffic volume (weighted streams) as well as to items that appear at least Γ times (independently

of the steam length) in the stream. All our code is open sourced [2].
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Table 1. A comparison of the algorithms presented in this work in terms of their space complexity. The 𝑂
notation hides polylogarithmic factors.

Algorithm Space Deterministic Reference
Sampling 𝑂 (𝜃−1𝜀−2) ✗ Section 4

SSGK 𝑂 (𝜃−1𝜀−2) ✓ Section 5

SQUAD 𝑂 (𝜃−1𝜀−1.5) ✗ Section 6

!, #! $, #" %, ## &, #$ %, #% ', #& &, #' (, #( &, #)Input:

!, #!
$, #"
!, ##

%, #$
&, #%

(a)
Sampling

ID Count Quantile Sketch
𝑥 4 𝑣!, 𝑣"
𝑐 3 {𝑣#}
𝑎 2 {𝑣$, 𝑣%}

(b) SSGK

ID Count Incr. Timestamp Quantile Sketch

𝑥 5 2 7 𝑣!, 𝑣"
𝑐 4 1 8 {𝑣#}

𝑎, 𝑣!, 3 𝑥, 𝑣", 4 𝑥, 𝑣#, 9
(c) SQUAD

Fig. 1. An illustration of our algorithms. Sampling simply selects a uniform random element subset from the
input stream and uses the sample to infer frequencies and quantiles. SSGK uses a heavy hitters algorithm that
has a quantile sketch embedded in each counter. SQUAD combines the two approaches to asymptotically
reduce the space complexity. Crucially, SQUAD adds timestamps to both samples and sketches so that it can
combine an item’s sketch only with the samples that were not inserted into it. It also adds an increments
counter, which is the increase in count since the item became monitored, thus reducing the frequency
estimation error. SQUAD continues to sample elements of monitored items ((𝑥, 𝑣9, 9) in this example) as the
item may stop being monitored, i.e., the sampling process is independent of the sketching.

Paper roadmap: We survey related work in Section 2 and state the formal model and problem

statement in Section 3. The sampling approach is described in Section 4 while SSGK is described

and analyzed in Section 5. Our SQUAD algorithm is then described in Section 6, and its runtime

optimizations in Section 7. The performance evaluation of our algorithms and their comparison to

the GK, Random, and SS sketches is detailed in Section 8. Section 9 presents extensions of SQUAD

and we conclude with a discussion in Section 10.

2 RELATEDWORK
To the best of our knowledge, this is the first work that deals with the problem of per-element

quantile estimation. Several earlier studies on streaming quantiles consider rank-queries, where

the algorithm must associate an item 𝑦 in the stream with a rank close to its true rank, defined as

the number of stream elements smaller than or equal to 𝑦. In contrast, in our study, we focus on

the quantile of individual elements in streams composed of identifiers and values, as described in

Section 3. Below, we discuss prior work that has been done on solving streaming quantiles that

guarantee an additive error 𝜀 with a constant failure probability 𝛿 .

Munro and Paterson included a p-pass algorithm for obtaining accurate quantiles in their

classic study [45]. Although not explicitly studied, the method’s initial run results in a streaming

approach for producing approximate quantiles using 𝑂 (𝜀−1 log2 (𝑁𝜀)) space. Manku, Rajagopalan,

and Lindsay [39] extended this work with a deterministic solution that stores no more than

𝑂 (𝜀−1 log𝑁𝜀) objects, assuming previous knowledge of 𝑁 . Though [40] has the same worst-case

space bound, the algorithm is empirically better. In 2001, Greenwald and Khanna [27] developed

a complex deterministic streaming algorithm, referred to as the GK-algorithm below, that stores

𝑂 (𝜀−1 log(𝑁𝜀)) objects in the worst case. However, their experimental work used a simplified

approach for which it is not clear if the 𝑂 (𝜀−1 log(𝑁𝜀)) space limit still holds. Nonetheless, they
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demonstrated that their method beatsManku et al. [39]’s approach in practice. Each of thesemethods

is deterministic and relies on comparisons. The GK-algorithm is often considered the best in this

area, both theoretically and experimentally. Indeed, Cormode and Veselỳ [21] recently showed that

every deterministic comparison-based technique has a space constraint of Ω(𝜀−1 log(𝑁𝜀)) items.

We describe the GK algorithm in detail in Section 3.2.

Shrivastava et al [51] created q-digest in 2004, a deterministic, fixed universe method that

consumes 𝑂 (𝜀−1 logU) space, whereU is the universe. This approach was developed to compute

quantiles in sensor networks and is a mergeable summary [4], a more flexible model than streaming.

However, no further efficient fixed-universe method exists in the streaming model. Note that

the logU and log𝑁 terms are not theoretically equivalent, and [51] omitted an experimental

comparison with the GK-algorithm. The above works suggest a deterministic solution that tracks

the quantiles of the entire stream, while our deterministic solution, SSGK, solves the quantiles
problem for each significant item in the stream.

Randomized methods have also been considered in the past. The seminal results of [53] show that

a random sample of size 𝑂 (𝜀−2 log 𝜀−1) contains all quantiles with at least a constant probability

within the 𝜀 error. This fact was shown in [39] and was used to compute quantiles using a random

sample fed to a deterministic algorithm. However, since this method needs knowledge of 𝑁 in

advance, it is not a true streaming algorithm.

Manku et al. [40] developed a randomized approach that does not require knowledge of 𝑁 and

demonstrated that the space required is 𝑂 (𝜀−1 log2 𝜀−1) factor, which may be greater or smaller

than GK’s log(𝑁𝜀) factor, although neither of these algorithms has been empirically tested.

Agarwal, Cormode, Huang, Phillips, Wei, and Yi [4] proposed a mergeable sketch whose size

requirement is𝑂 (𝜀−1 log1.5 𝜀−1). For this new, simpler approach, called Random, Luo et al [38] were

able to provide an improved 𝑂 (𝜀−1 log1.5 𝜀−1) bound. We refer to this algorithm as "Random" and

overview it in detail below. Felber and Ostrovsky [25] reduced the space complexity by using a

combination of sampling and the GK-algorithm to 𝑂 (𝜀−1 log 𝜀−1).
Finally, Karnin, Lang, and Liberty [32] solved the problem by developing the KLL sketch, giving an

optimal𝑂 (𝜀−1)-space solution. The KLL sketch achieves optimal accuracy in space. The algorithm’s

fundamental building component is a buffer called a compactor, which accepts an input stream of

𝑁 items and generates a stream of no more than
𝑁
2
items that "approximates" the input stream. The

overall KLL sketch is constructed as a series of at most log𝑁 compactors, with each compactor’s

output stream acting as the input stream for the next compactor. We note that our results are

orthogonal to the above algorithms, which compute the quantiles of the entire input, in the sense

that improved algorithms can replace the building blocks of our solution, further improving its

speed and accuracy. All of the above papers provide a randomized solution that monitors the

quantiles of the entire stream. In this paper, our compact algorithm, SQUAD, is a randomized

algorithm that handles the fine-grained problem of approximating the quantiles for each significant

item in the stream.

Several studies have attempted to provide more accurate quantile estimates for low and high

rankings. Only a few provide answers to the relative error quantiles problem (also known as the

biased quantiles problem). Gupta and Zane [29] presented an approach for computing relative error

quantiles that saves 𝑂 (𝜀−3 log2 (𝑁𝜀)) items and uses this to estimate the number of inversions in a

list; their technique needs knowledge of the stream length, 𝑁 . Zhang et al. [57] previously described

an approach for storing 𝑂 (𝜀−2 log(𝑁𝜀2)) items. Cormode et al. [19] devised a deterministic sketch

that stores 𝑂 (𝜀−1 log(𝑁𝜀 log( |U|)) elements and necessitates previous knowledge of the data

universeU. Shrivastava et al. [51]’s work on additive error has influenced their approach. Zhang

and Wang [56] proposed a deterministic merge-and-prune method that stores 𝑂 (𝜀−1 log3 (𝑁𝜀))
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items and is capable of performing arbitrary merges with an upper constraint on n as well as

streaming updates for unknown 𝑁 . However, it does not address the most general case of merging

without prior knowledge of 𝑁 . Cormode et al. [18] presented a relative error variation of the KLL

sketch. They achieve relative error 𝜀 in the randomized environment using 𝑂 (𝜀−1 log1.5 (𝑁𝜀)) with
constant failure probability by varying the sampling technique throughout the distribution and

employing a hierarchy modeled after [32]. Yet, these works address the problem of quantiles over

the entire stream and not per (significant) item.

3 PRELIMINARIES
3.1 Model
We consider a stream (sequence) of tuples S = ⟨(𝑥1, 𝑣1), (𝑥2, 𝑣2) . . .⟩ ∈ (U×R)+. Here, each element

(𝑥𝑖 , 𝑣𝑖 ) has an identifier 𝑥𝑖 from a universeU, and a value 𝑣𝑖 ∈ R.
We denote by 𝑓𝑥 = | {(𝑥𝑖 , 𝑣𝑖 ) ∈ S : 𝑥𝑖 = 𝑥} | the frequency (size) of 𝑥 and by 𝐿𝑥 = {𝑣𝑖 : (𝑥, 𝑣𝑖 ) ∈ S}

its (multi-) set of values.

Given a quantile 𝑞 ∈ [0, 1], let L𝑥,𝑞 represent the 𝑞𝑡ℎ quantile (i.e., the ⌈𝑞 · 𝑓𝑥 ⌉𝑡ℎ largest value) of

𝐿𝑥 . The inverse operation is normalized rank, denoted by rank𝑥 (𝑣), which returns the quantile of 𝑣

in 𝐿𝑥 (that is, rank𝑥 (L𝑥,𝑞) = 𝑞). Any item 𝑥 with frequency 𝑓𝑥 ≥ 𝑁𝜃 is called a heavy hitter, where

𝑁 = |S| is the overall number of elements, and 𝜃 ∈ [0, 1] is a given threshold.
We use 𝜀, 𝛿 ∈ [0, 1) to denote the error parameters; given the parameters 𝜃, 𝜀, 𝛿 , we consider the

(𝜃, 𝜀, 𝛿)-HH-quantiles that tracks the quantiles of heavy hitters. Specifically, we seek algorithms

that support the following operations:

• Insert(𝑥, 𝑣) — given an element 𝑥 ∈ U and 𝑣 ∈ R, append (𝑥, 𝑣) to S.
• Query(𝑥, 𝑞) — given 𝑥 ∈ U and 𝑞 ∈ [0, 1], return a tuple (𝑓𝑥 , L̂𝑥,𝑞) where 𝑓𝑥 is the frequency
estimation of 𝑥 and L̂𝑥,𝑞 is an estimation of L𝑥,𝑞 .

We now formalize the required guarantees.

Definition 1. An algorithm solves (𝜃, 𝜀, 𝛿)-HH-quantiles if given any Query(𝑥, 𝑞), the returned
tuple (𝑓𝑥 , L̂𝑥,𝑞) satisfies:
(1) Pr[|𝑓𝑥 − 𝑓𝑥 | > 𝑁𝜀] ≤ 𝛿 . As standard in heavy hitter algorithms, we return an estimate of the

item’s frequency.
(2) If 𝑓𝑥 ≥ 𝜃𝑁 , Pr[|rank(L̂𝑥,𝑞) − 𝑞 |) > 𝜀] ≤ 𝛿 . That is, if 𝑥 is a heavy hitter the algorithm returns

an estimate whose quantile is likely (with probability 1 − 𝛿) to be off by no more than 𝜀.

We note that part (1) of our query response is designed to help the user understand whether

the quantile estimate is reliable and a similar guarantee can be obtained by running a separate

heavy hitters algorithm. Specifically, if 𝑓𝑥 > 𝑁 (𝜃 + 𝜀), then 𝑥 is likely to be a heavy hitter and

therefore L̂𝑥,𝑞 is a credible approximation of L𝑥,𝑞 . Table 2 has a summary of basic notations used

in this work.

3.2 Useful Streaming Algorithms

In this work, we utilize the Reservoir Sampling (RS) algorithm [54] in Section 4 as well as the

Space Saving (SS) algorithm [43] and the GK-algorithm [27] in Section 5. We overview them here.

Reservoir sampling (RS) [54]: is a randomized algorithm for selecting a uniform random

sample of a given size from an input stream of an unknown size without replacement in a single pass

through the objects. The algorithm keeps a 𝑘-sized reservoir, which initially holds the first 𝑘 items

of the input. On the arrival of the 𝑛’th item, RS selects a uniform random integer 𝑖 ∈ {0, . . . , 𝑛 − 1};
the item overrides slot 𝑖 of the reservoir if 𝑖 < 𝑘 and otherwise discarded.
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Table 2. List of Symbols
Symbol Meaning

S The data stream

U The universe of elements

R The universe of values

𝑁 The number of elements in the stream

𝑞 The quantile q i.e. the 𝑞𝑡ℎ largest value

𝐿𝑥 The set of values of S with identifier 𝑥

L𝑥,𝑞 The 𝑞𝑡ℎ quantile of 𝐿𝑥�L𝑥,𝑞 an estimation of L𝑥,𝑞
rank𝑥 (𝑣) The quantile of 𝑣 in S𝑥

𝑓𝑥 The frequency of an element 𝑥 in S
𝑓𝑥 An estimate of 𝑓𝑥

𝜀 An estimate accuracy parameter

𝛿 A bound on the failure probability

𝜃 The heavy hitters threshold

Space Saving (SS) [43]: is a counter-base algorithm for (approximately) finding themost frequent

items in a data stream, a.k.a. the heavy hitters. SS processes a stream of identifiers with the goal of

estimating the size (frequency) of each. SS maintains a set of 1/𝜀 integer counters, each with an

associated ID. When an item arrives, SS increments its counter if one exists. Otherwise, SS allocates

the item with a minimal-valued counter before incrementing it (disassociating the previous ID).

For example, assume that the smallest counter was associated with ID 𝑥 and had a value of 4; if

𝑦 arrives and has no counter, it will take over 𝑥 ’s counter and increment its value to 5 (leaving 𝑥

without a counter). When queried for the frequency of an item, we return the value of its counter if

it has one, or the minimal counter’s value otherwise.

If we denote the overall number of insertions processed by the algorithm by 𝑍 , then we have

that the sum of counters equals 𝑍 , and thus the minimal counter is at most 𝑍𝜀. This ensures that

the error in the SS estimate is at most 𝑍𝜀.

The GK-algorithm (GK) [27]: is a deterministic algorithm for supporting single-pass quantile

summaries of a number stream. A quantile summary is a subset of the input data sequence that

uses quantile estimations to provide approximate answers to any arbitrary quantile query.

The GK technique is based on the idea that if a sorted subset of the input stream of size 𝑁 can

be kept so that the ranks of 𝑣𝑖 and 𝑣𝑖+1 are within 2𝑁𝜀 of each other, then any quantile query can

be answered with an error no larger than 𝑁𝜀. That is, given a quantile 𝑞, GK returns an element

whose quantile falls within [𝑞 − 𝜀, 𝑞 + 𝜀].
GK allows maintaining such a subset using 𝑂 ( 1

𝜀
log𝑁𝜀) elements, which has recently been

shown to be optimal for comparison-based deterministic algorithms [21].

The Random algorithm [38]: a randomized algorithm that reports all quantiles within the

specified error with constant success probability, e.g., 2/3, that can be amplified with repetition.

Random separates the stream into fixed-size buffers, each of which is assigned a level. Whenever

there are two buffers at the same level, Random merges them into a buffer at one level higher, such

that at any time, there is at most one buffer at any level. Random aggregates the ranks of 𝑥 in all

buffers to report the rank of an element 𝑥 . Overall, it requires keeping 𝑂 ( 1
𝜀
log

1.5 1

𝜀
) elements to

guarantee that for any 𝑞, it returns an element whose quantile falls within [𝑞−𝜀, 𝑞+𝜀] with constant
probability. If we aim for a specific quantile, then the space reduces to 𝑂 ( 1

𝜀
log

1

𝜀
) per repetition.
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4 SAMPLING APPROACH
Sampling was introduced by Vapnik and Chervonenkis [53]. It is a popular method that is useful

for many applications, including quantile estimation, and will serve as a baseline for our more

complex algorithms. An online sampling method, such as Reservoir Sampling (RS) of Vitter [54],

can yield a random sample of the data stream almost linearly in time and space with respect to the

sample size. We analyze the number of samples needed for our problem.

Theorem 1. Sampling solves the (𝜃, 𝜀, 𝛿)-HH-quantiles while requiring Θ(𝜃−1𝜀−2 log𝛿−1) space.
Proof sketch. For anyQuery(𝑥, 𝑞), a random sample of size Θ

(
𝜀−2 log𝛿−1

)
elements from a

stream is an 𝜀-approximation of frequencies and quantiles with probability at least 1 − 𝛿 [40].
As a result, any heavy hitter𝑥 (an ID that appears at least𝑁𝜃 times)must be sampledΩ(𝜀−2 log𝛿−1)

times to solve the (𝜃, 𝜀, 𝛿)-HH-quantiles using sampling.

Notice that there can be Θ(𝜃−1) heavy hitters. As a result, one can use RS to sample 𝑀 =

Θ(𝜃−1𝜀−2 log𝛿−1) elements from S. This way, a given heavy hitter is sampled Ω(𝜀−2 log𝛿−1) times

with probability 1 − 𝛿/2, and its samples produce an appropriate quantile estimate with probability

1 − 𝛿/2; using the union bound, we get that the overall estimate is accurate with probability 1 − 𝛿 .
Further, by selecting 𝑓𝑥 to be 𝑁 /𝑀 times its frequency in the sample (e.g., see the analysis of [8]),

we can estimate the frequency of an item to within an 𝑁 · 𝜀
√
𝜃 factor with probability 1 − 𝛿 . □

For example, in Figure 1,𝑀 = 5, 𝑁 = 9, and for a Query(𝑥, 𝑞), we estimate 𝑥 frequency estimation

using the samples (𝑥, 𝑣4), (𝑥, 𝑣9) (i.e., 𝑓𝑥 = 2 · 9/5), and we estimate the 𝑞 quantile on 𝑣4, 𝑣9.

5 SKETCHING APPROACH: SSGK ALGORITHM
Next, we offer a sketching algorithm called Nested Space-Saving GK algorithm (SSGK). It is a

deterministic algorithm, which is based on a nested application of Space-Saving and GK algorithms.

Intuitively, SSGK allocates a separate GK sketch [27] to track the quantiles of each potential heavy

hitter. Because we do not know the IDs of the heavy hitters ahead of time, SSGK uses a space-saving

instance with 𝑘 = 2𝜀−1𝜃−1 entries, where each entry has a GK sketch instance configured for error

𝜀𝐺𝐾 = 𝜀/2 in addition to its counter and ID fields. This way, SSGK can use the SS counter value to

estimate the frequency and use the GK sketch to approximate the quantile.

Whenever an item (𝑥, 𝑣) arrives, if 𝑥 has an allocated counter, SSGK increments 𝑥 ’s counter and

inserts 𝑣 to the associated GK instance. Otherwise, we replace the item with the minimal counter

value with 𝑥 and reset its corresponding GK instance. Then, we insert 𝑣 to this GK instance. In

Figure 1’s example, we keep the first three elements exactly as we have space for them in the SS.

When (𝑥, 𝑣4) arrives, we replace 𝑦 with 𝑥 , increasing its counter to 2, and inserting 𝑣4 into the

(reset) quantile sketch. Later, the arrivals of (𝑥, 𝑣7) and (𝑥, 𝑣9) increase 𝑥 ’s counter and add 𝑣7 and 𝑣9
to the sketch. Only {𝑣4, 𝑣9} are stored in the quantile sketch because it keeps only a (𝑂 (𝜀−1)-sized)
subset of the input values.

Using the SS variant mentioned above, we can compute any Query(𝑥, 𝑞) as follows. If 𝑥 has an

allocated SS entry, we estimate its frequency using its counter value. Its GK instance then estimates

the 𝑞𝑡ℎ quantile of 𝐿𝑥 . Otherwise, if 𝑥 has no allocated entry, we estimate the minimal SS counter

value as (an upper bound on) its frequency and do not report the quantile. Since SS deterministically

guarantees that every element with a frequency larger than 𝑁 /𝑘 ≤ 𝑁𝜃 (i.e., in particular, every

heavy hitter) will have an entry, we can satisfy the accuracy guarantees.

Algorithm 1 provides a high-level pseudo code of SSGK using the pseudocode of Space Saving

as shown in [43] without the implementation details. The additions to manipulate the GK sketch

instances are highlighted in blue. Table 3 contains a list of the used variables. We summarize the

analysis in the following theorem.
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Algorithm 1 SSGK

1: function Insert(𝑥, 𝑣)

2: if 𝑥 is monitored then
3: Increment 𝑐𝑜𝑢𝑛𝑡𝑥 , the counter of 𝑥

4: Insert 𝑣 to 𝐺𝐾𝑥 , the GK sketch of 𝑥

5: else
6: if Less than 𝑘 items are monitored then
7: 𝑐𝑜𝑢𝑛𝑡𝑥 ← 1

8: Initialize a GK sketch for 𝑥

9: else
10: Let 𝑥 ′ be the element with smallest 𝑐𝑜𝑢𝑛𝑡𝑥 ′

11: Start monitoring 𝑥 instead of 𝑥 ′;
12: 𝑐𝑜𝑢𝑛𝑡𝑥 ← 𝑐𝑜𝑢𝑛𝑡𝑥 ′ + 1
13: Reset the GK sketch for 𝑥

14: Insert 𝑣 to the GK sketch of 𝑥

15: functionqery(𝑥, 𝑞)

16: if 𝑥 is monitored then
17: return (𝑐𝑜𝑢𝑛𝑡𝑥 ,𝐺𝐾𝑥 .𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑞))
18: else
19: return (𝑐𝑜𝑢𝑛𝑡min, 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑)

Table 3. Variables used by SSGK (Algorithm 1)

𝑘 number of entries in the SS

𝑐𝑜𝑢𝑛𝑡𝑥 counter of 𝑥 in the SS

𝑐𝑜𝑢𝑛𝑡min minimal counter value in the SS

𝐺𝐾𝑥 the GK sketch instance of 𝑥

Theorem 2. SSGK solves (𝜃, 𝜀, 0)-HH-quantiles (i.e., deterministically) while requiring
𝑂

(
𝜃−1𝜀−2 ·

(
1 + log(𝑁𝜀2𝜃 )

) )
space.

Proof sketch. Using the standard analysis for an SS instance with 𝑘 entries, we have every

heavy hitter receive a space-saving instance no later than its 𝑁 /𝑘 arrival (because the counters’

sum is at most 𝑁 , the minimal one cannot be greater than 𝑁 /𝑘).
Therefore, if the queried element has no counter, it cannot be a heavy hitter. Otherwise, the

GK sketch of the queried heavy hitter 𝑥 processes all but at most 𝑁 /𝑘 = 𝑁𝜃𝜀/2 values from 𝐿𝑥 .

Let 𝐿′𝑥 ⊆ 𝐿𝑥 denote the subset of values processed by 𝐺𝐾𝑥 . Due to𝐺𝐾𝑥 ’s guarantees, our output

𝑞 = 𝐺𝐾𝑥 .𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑞) is within 𝜀𝐺𝐾 from the true quantile of 𝐿′𝑥 . That is, 𝑞 deviates from the true

quantile by at most |𝐿′𝑥 | · 𝜀𝐺𝐾 = |𝐿′𝑥 | · 𝜀/2 values. Together with the missing values of 𝐿𝑥 \ 𝐿′𝑥 , we
have that 𝑞 deviates by at most |𝐿′𝑥 | · 𝜀/2 +𝑁𝜃𝜀/2. In terms of quantiles, this means that our error is

|𝐿′𝑥 | · 𝜀/2 + 𝑁𝜃𝜀/2
|𝐿𝑥 |

≤ 𝜀/2 ·
(
1 + 𝑁𝜃

|𝐿𝑥 |

)
≤ 𝜀.

Let us analyze the space next. Let 𝑎𝑖 be the number of times the 𝑖’th𝐺𝐾 instance was incremented;

therefore,

∑𝑘
𝑖=1 𝑎𝑖 ≤ 𝑁 . By the space complexity of the GK algorithm we have that SSGK’s overall

space requirement is

𝑘∑︁
𝑖=1

𝑂 (𝜀−1 (1 + log(𝑎𝑖𝜀))) = 𝑂
(
𝑘 · 𝜀−1 ·

(
1 + log 𝑁 · 𝜀

𝑘

))
= 𝑂

(
𝜃−1𝜀−2 ·

(
1 + log(𝑁𝜀2𝜃 )

))
.
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Here, we used Jansen’s inequality and the concaveness of the logarithm function. □

6 THE SQUAD ALGORITHM
The quadratic dependency on 1/𝜀 of the previous algorithms is sometimes prohibitively costly.

Interestingly, while both the sampling (Sampling) and sketching (SSGK) approaches require Ω̃(1/𝜀2)
space

1
, applying them in tandem we can significantly improve the space complexity. Specifically,

we present Sketching-Sampling QUAntiles Duo (SQUAD), a hybrid algorithm that requires only

𝑂 (𝜀−1.5) space1 and combines sampling and sketching approaches. Intuitively, sampling helps us

capture the behavior of the values of an item before it was allocated with an SS entry and a

quantile sketch.

SQUAD keeps 𝑧 = 𝑂 (𝜀−1.5𝜃−1 log𝛿−1) samples chosen by RS (see section 3.2). Each sample is

now a triplet (𝐼𝐷, 𝑣𝑎𝑙𝑢𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝). That is, when sampling an element (𝑥𝑖 , 𝑣𝑖 ) we store the triplet
(𝑥𝑖 , 𝑣𝑖 , 𝑖). We will later use the timestamp for merging the sample with the sketch. Additionally,

SQUAD employs a nested Space Saving [43] (SS) as described in SSGK (Section 5), but instead of

using instances of the GK algorithm, it employs instances of the Random algorithm (configured for

𝜀/2 error similarly to SSGK).
2

In contrast to SSGK, which requires 𝑘 = Θ(𝜀−1𝜃−1) entries, SQUAD only uses𝑚 = 4𝜀−0.5𝜃−1.
Intuitively, we can avoid sketching additional values from 𝐿𝑥 because the ones processed before 𝑥

is allocated to a sketch, are well approximated by the sample.

In addition to the counter and the Random instance, an entry for ID 𝑥 in the SS structure has a

timestamp (𝑡𝑥 ) that indicates when 𝑥 was (last) allocated with an entry and an additional value (𝐼𝑥 )

that represents the number of times 𝑥 arrived since it received the entry.

If RS decides to consider the 𝑖’th element (𝑥𝑖 , 𝑣𝑖 ), we store (𝑥𝑖 , 𝑣𝑖 , 𝑖) in the samples array. After

that, we update the augmented SS as follows: If 𝑥𝑖 has an allocated counter, SQUAD increments

it and inserts 𝑣𝑖 into the associated random instance. Otherwise, we reallocate the counter with

the lowest value for 𝑥 , flush its Random instance, and set its 𝑡𝑥𝑖 to 𝑖 . After that, we add 𝑣 to this

Random instance. Notice that 𝑥 continues to participate in the RS process regardless of whether
it has a counter in SS or not. Intuitively, 𝑥 ’s entry could become minimal and it could be evicted

from the SS, so we keep tracking it by sampling. In Figure 1, SQUAD employs two entries in the

SS and a sample size of three. (𝑎, 𝑣3) and (𝑥, 𝑣4) arrive at 𝑡 = 3 and 𝑡 = 4, respectively, replace the

entries of 𝑦 and 𝑧, update their entries, and are (by chance) selected for the sample as the triples

(𝑎, 𝑣3, 3), (𝑥, 𝑣4, 4). Since 𝑎 already has an entry at 𝑡 = 5, (𝑎, 𝑣5) simply updates its entry. The arrival

of (𝑏, 𝑣6) replaces 𝑥 entry because it has the smallest counter (2), then (𝑥, 𝑣7) replaces 𝑏 entry and

increases its counter to 4, indicates that 𝑥 has an allocated entry at 𝑡 = 7, and inserts 𝑣9 into the

sketch. (𝑐, 𝑣8) replaces 𝑎 entry at 𝑡 = 8, and at 𝑡 = 9, (𝑥, 𝑣9) updates 𝑥 entry in the SS, and SQUAD

includes it in the sample as (𝑥, 𝑣9, 9).
For answeringQuery(𝑥, 𝑞), we search for 𝑥 in the augmented SS. If 𝑥 does not have an entry,

our algorithms cannot promise anything about its 𝑞𝑡ℎ quantile (similarly to SSGK, this means that

𝑥 is not a heavy hitter). To estimate the frequency of an item 𝑥 , we use both the sample and the SS
counter. Specifically, let 𝑡𝑥 denote the timestamp of 𝑥 in the SS, and let 𝑆𝑥 represent the number of

samples that belong to 𝑥 with a timestamp smaller than 𝑡𝑥 . We estimate the number of times that 𝑥

arrived before 𝑡𝑥 as 𝑁 /𝑧 · 𝑆𝑥 because the probability that RS samples a specific element is 𝑧/𝑁 . As a

result, we estimate the frequency as 𝑓𝑥 = 𝑁 /𝑧 · 𝑆𝑥 + 𝐼𝑥 .

1
The Ω̃, Θ̃ and𝑂 notations assume that the heavy hitters parameter 𝜃 is constant and hide polylogarithmic factors.

2
We chose Random as it is the fastest algorithm we are aware of, and our guarantee is probabilistic anyhow due to the

sampling. One can replace it with a state-of-the-art sketch such as KLL [32], slightly improving the accuracy at a potential

loss of speed, or with GK. In any case, the complexity remains Θ̃(𝜀−1.5 ) .
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Algorithm 2 SQUAD

1: function Insert(𝑥, 𝑣)

2: 𝑛 ← 𝑛 + 1 ⊲ The current timestamp

3: RS.𝐴𝑑𝑑 (𝑥, 𝑣, 𝑛)
4: if 𝑥 is monitored then
5: Increment 𝑐𝑜𝑢𝑛𝑡𝑥 , the counter of 𝑥

6: Increment 𝐼𝑥 , the count since 𝑥 became monitored

7: Insert 𝑣 to 𝑅𝑛𝑑𝑥 , the Random sketch of 𝑥

8: else
9: if Less than𝑚 items are monitored then
10: Initialize a Random sketch for 𝑥

11: 𝑐𝑜𝑢𝑛𝑡𝑥 ← 1

12: else
13: Let 𝑥 ′ be the element with smallest 𝑐𝑜𝑢𝑛𝑡𝑥 ′

14: Start monitoring 𝑥 instead of 𝑥 ′;
15: 𝑐𝑜𝑢𝑛𝑡𝑥 ← 𝑐𝑜𝑢𝑛𝑡𝑥 ′ + 1
16: Reset the Random sketch for 𝑥

17: 𝐼𝑥 ← 1

18: 𝑡𝑥 ← 𝑛

19: Insert 𝑣 to the Random sketch of 𝑥

20: functionqery(𝑥, 𝑞)

21: 𝑆𝑥 ← 0

22: SListx ← empty list
23: for 𝑗 ∈ 0, 1, . . . , 𝑧 do
24: if RS[ 𝑗] .𝐼𝐷 = 𝑥 and RS[ 𝑗] .𝑡𝑠 < 𝑡𝑥 then
25: 𝑆𝑥 ← 𝑆𝑥 + 1
26: Insert RS[ 𝑗] .𝑣 to SListx
27: sfx = 𝑛

𝑧 · 𝑆𝑥
28: if 𝑥 is monitored then
29: RndNew𝑥 = 𝑅𝑛𝑑𝑥
30: Insert samples from SList𝑥 with weight

𝑛
𝑧 to RndNew𝑥

31: return (sfx + 𝐼𝑥 , RndNew𝑥 .Quantile(𝑞))
32: else
33: return (sfx , undefined)

Quantiles are estimated similarly: we take the samples collected before 𝑡𝑥 as representing the

values before 𝑡𝑥 and merge them with the in 𝑅𝑎𝑛𝑑𝑜𝑚𝑥 (that represent entries between 𝑡𝑥 and 𝑁 ).

To merge the samples and sketch, we duplicate 𝑅𝑎𝑛𝑑𝑜𝑚𝑥 and then insert the 𝑆𝑥 samples, each

with a weight of 𝑁 /𝑧. Our 𝑞’th quantile approximation is then the quantile of the combined array.

An alternative approach is to merge the samples of 𝑥 , 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑥 , with the buffers of the Random

algorithm inside buffers in the functionQuery(𝑥, 𝑞), and then report the rank of 𝑥 using the merged

buffers. This approach requires an additional modification in the implementation of the Random’s

Quantile(𝑞) function.
The variables of the SQUAD algorithm are described in Table 4 and its pseudocode appears in

Algorithm 2. We summarize the analysis in the following theorem.

Theorem 3. SQUAD solves (𝜃, 𝜀, 𝛿)-HH-quantiles while requiring 𝑂
(
𝜃−1𝜀−1.5 · log 𝜀−1

)
space.

Proof. Our analysis relies on the observation that if the sample approximates 𝑥 ’s frequency

before 𝑡𝑥 to within an 𝛼 additive error, and the space saving approximates its frequency since 𝑡𝑥 to
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Table 4. Variables used by SQUAD (Algorithm 2)

𝑛 number of arrived elements

𝑧 samples size used by RS

𝑅𝑆 a Reservoir Sampling instance with amost 𝑧 samples.

𝑚 number of entries in the SS

𝑐𝑜𝑢𝑛𝑡𝑥 counter of 𝑥 in the SS

𝐼𝑥 the count since 𝑥 became monitored

𝑡𝑥 timestamp of 𝑥 in the SS

𝑆𝑥 number of samples that belongs to 𝑥

sfx estimation of 𝑥 ’s frequency before 𝑡𝑥

𝑅𝑎𝑛𝑑𝑥 the Random instance of 𝑥

within 𝛽 elements, then the error of the merging process cannot exceed 𝛼 + 𝛽 ; a similar logic also

applies to the quantiles (e.g., see [28]).

Let us start by analyzing the sample. Let 𝑓𝑥,1 denote 𝑥 ’s frequency before (not including) 𝑡𝑥 and

let 𝑓𝑥,2 denote its frequency starting with 𝑡𝑥 (i.e., 𝑓𝑥 = 𝑓𝑥,1 + 𝑓𝑥,2). As before, we denote by 𝑆𝑥 the
number of 𝑥 ’s samples collected before 𝑡𝑥 (observe that 𝑆𝑥 ∼ Hypergeometric(𝑁, 𝑓𝑥,1, 𝑧)). Thus, we
use the approximation 𝑓𝑥,1 = 𝑆𝑥 · 𝑁 /𝑧. Denoting 𝑝 = 𝑓𝑥,1/𝑁 , we can use standard concentration

bounds (e.g., [50]) on the hypergeometric distribution to bound the sampling error as, for any

Δ ∈ (0, 𝑧 · 𝑝]

Pr [|𝑆𝑥 − E[𝑆𝑥 ] | ≥ Δ] < 2𝑒
− Δ2

3𝑧 ·𝑝 . (1)

Notice that once an item that reaches a frequency of 𝑁 /𝑚 it cannot have the minimum SS entry.

Therefore, we have that 𝑓𝑥,1 ≤ 𝑁 /𝑚. As the sampling error is monotonically increasing in 𝑓𝑥,1 (for

𝑓𝑥,1 < 𝑁 /2), we bound the error by analyzing the error of an item with 𝑓𝑥,1 = 𝑁 /𝑚. In our context,

we sample 𝑧 = 𝑂 (𝜀−1.5𝜃−1 log𝛿−1) elements from the stream; that is, the probability for each of the

𝑧 samples to belong to the first 𝑓𝑥,1 insertions of 𝑥 is 𝑝 =
𝑓𝑥,1
𝑁

= 1/𝑚.

Next, let Δ =

√︃
3𝑧 log(2/𝛿 )

𝑚
= Θ

(√︃
𝑧 log𝛿−1

𝑚

)
.
3
Our goal in what follows is to show that the error in

estimating 𝑓𝑥,1 is likely to be lower than 𝑁 ·
√︃

3 log(2/𝛿 )
𝑧 ·𝑚 = Θ(𝑁 · 𝜀 · 𝜃 ). Using (1), we have that:

Pr

[
|𝑓𝑥,1 − 𝑓𝑥,1 | ≥ 𝑁 ·

√︂
3 log(2/𝛿)
𝑧 ·𝑚

]
= Pr

[
|𝑆𝑥 · 𝑁 /𝑧 − E[𝑆𝑥 ] · 𝑁 /𝑧 | ≥

𝑁

𝑧
· Δ

]
= Pr [|𝑆𝑥 − E[𝑆𝑥 ] | ≥ Δ] ≤ 2𝑒

− Δ2

3𝑧 ·𝑝 = 𝛿.

Next, recall that 𝑓2,𝑥 is calculated accurately using 𝐼𝑥 , and thereby

���𝑓𝑥 − 𝑓𝑥 ��� = ���𝑓𝑥,1 − 𝑓𝑥,1���. Therefore,
we established that the frequency estimation error is bounded by 𝑁 · 𝜀 · 𝜃 , with probability 1 − 𝛿 ,
using 𝑧 = 𝑐 · 𝜀−1.5𝜃−1 log𝛿−1 samples, for an appropriate constant 𝑐 > 0.

To analyze the quantile estimation error, we consider the error of the sampling phase (before 𝑡𝑥 )

separately from the error once 𝑥 is allocated with a sketch (starting with 𝑡𝑥 ). An analysis similar to

3
Observe that 𝑧 · 𝑝 = 𝑧/𝑚 = Θ(𝜀−1 log𝛿−1 ) , and therefore:

Δ = Θ

(√︂
𝑧 log𝛿−1

𝑚

)
= Θ

(√︁
𝜀−1 · log𝛿−1

)
= 𝑜 (𝑧 · 𝑝 ) .
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the above (with different constants) yields that the error in the sampling phase is bounded by 𝜀/2
except with probability 𝛿/2. Specifically, we can get 𝑆𝑥 = Ω(𝑧 · 𝑓𝑥,1/𝑁 ) = Ω(𝜀−1 log𝛿−1) samples

except with probability 𝛿/4, and have these approximate the quantile within an additive Θ(
√
𝜀)

error except with further 𝛿/4 error probability. This means that the rank of the value is off by

at most Θ(
√
𝜀 · 𝑓𝑥,1) = Θ(

√
𝜀 · 𝑁 /𝑚) = Θ(𝑁𝜀𝜃 ) from the true quantile. Therefore, by configuring

the quantile sketch to have an 𝜀/2 error with probability 1 − 𝛿/2, we can get that the overall

estimate error, which results from the combination of the sample and the sketch, is bounded by

𝑓𝑥 · 𝜀 + Θ(𝑁𝜀𝜃 ) = 𝑂 (𝑓𝑥𝜀), as 𝑓𝑥 ≥ 𝑁𝜃 per our problem definition. □

7 OPTIMIZING THE PROCESSING SPEED
We now detail several optimizations that enable our algorithms to process elements faster. First, we

use the Algorithm L [35], which provides a fast simulation of RS. Intuitively, instead of drawing a

random integer per item, it generates geometric random variables that represent how many items

to skip before the next one is admitted into the reservoir. Once an item is chosen, it replaces a

uniform slot in {0, . . . , 𝑘 − 1}. As a result, the total number of updates falls to 𝑂 (𝑘 (1 + log(𝑁 /𝑘)),
implying that it takes 𝑜 (1) computation per element because the majority are skipped.

While we can use the above to optimize the RS process, SSGK and SQUAD are bottlenecked

as arrivals of elements not tracked by the SS require initializing a new sketch. To speed up the

processing of both, we propose using an initial probabilistic filtering stage. Intuitively, as both

quantiles and frequencies can be accurately estimated from sampled streams for heavy hitters, we

can process a small (e.g., 10%) of the input and obtain rather precise results. Namely, consider a

wrapper that with probability 𝔭 calls the Insert function of SQUAD (or SSGK, although this makes

the algorithm randomized.) and otherwise ignores the packet. This means that the algorithms look

at a sampled stream S′ ⊂ S such that each element in S i.i.d. appears with probability 𝔭 in S′.
Intuitively, the sampling error would be of size Θ(

√︁
𝑁𝜃/𝔭); if this is comparable or smaller than

the Θ(𝑁𝜀𝜃 ) error of SQUAD, we can compensate for the error resulting from analyzing S′ (rather
than S) without asymptotically increasing the space requirements.

There are several approaches to selecting 𝔭. One option is to dynamically change 𝔭 as 𝑁 grows,

inserting elements with a weight of 1/𝔭, e.g., as suggested by [10, 36]. For simplicity, here we

consider using a fixed probability, which means that the accuracy guarantees of the algorithms only

hold after a short convergence time (as common in some sampling algorithms [9, 13, 41]). Namely,

consider setting SQUAD to solve the (𝜃, 𝛼 · 𝜀, 𝛼 · 𝛿)-HH-quantiles for some 𝛼 ∈ (0, 1) (e.g., 𝛼 = 0.9).

Then, if the frequencies and the quantiles are maintained in S′ (the frequency, after scaling by

1/𝔭) to within error (1 − 𝛼)𝜀, except with probability (1 − 𝛼)𝛿 , then the overall scheme solves

(𝜃, 𝜀, 𝛿)-HH-quantiles. Here, 𝛼 is a tradeoff parameter: the larger 𝛼 is, the less space the algorithm

requires, but also the higher the sampling probability needs to be.

As analyzed above, a sample of size |S′ | = Ω(𝜃−1𝜀−2𝑠 log𝛿−1𝑠 ) is enough for S′ to be an 𝜀𝑠
approximation of the quantiles and frequency (the 𝑠 subscript represents sampling) of an element

except with probability 𝛿𝑠 . In our case, we have |S′ | = 𝑁𝔭, i.e., 𝑁𝔭 = Ω(𝜃−1𝜀−2𝑠 log𝛿−1𝑠 ), and thus

we need a convergence time of at least 𝑁 = Ω(𝜃−1 ((1−𝛼)𝜀)−2𝔭−1 log((1−𝛼)𝛿)−1) elements before

the algorithm solves the (𝜃, 𝜀, 𝛿)-HH-quantiles.
Intuitively, since in practical applications we often have 𝑁 ≫ 𝜃−1𝜀−2 log𝛿−1 [1, 36], we can set

a large 𝛼 value (e.g., 𝛼 = 0.9). We can then use an intermediate value for 𝔭 (e.g., 𝔭 ∈ [0.01, 0.1]) as
this gives a large speed boost and lowering the sampling probability further is not as beneficial.

This way, we do not require significantly more space (e.g., about 20% increase for 𝛼 = 0.9) nor

compromise the accuracy guarantees (following the short convergence time) while significantly

accelerating the solution.
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8 EVALUATION
8.1 Setup
We developed a C++ prototype for each of the algorithms mentioned in this paper: Sampling, SSGK

and SQUAD. The SSGK and SQUAD are implemented here using the Random sketch [38] as a

building block. Additionally, we compared our results to the GK [27] and Random [38] algorithms

as a general baseline, since these are the state of the art for the more basic problem of quantiles

across whole data streams, rather than per-item quantiles. To to the best of our knowledge, this is

the first study that solves quantiles on a per-item level. Furthermore, we compared to Space Saving

(SS) [43], since this is a building block in SSGK and SQUAD.

8.1.1 Dataset: We evaluate our algorithms using NS3 simulations [3] for a FatTree topology

comprised of 16 Core switches, 20 Agg switches, 20 ToRs, and 320 servers (16 in each rack). Each

server has a single 100Gbps NIC and the default load is 60%. Each connection between Core and

Agg switches, as well as between Agg switches and ToRs, has a capacity of 400Gbps. The switch

buffer size is 32MB. The traffic follows the flow size distribution in web search from Microsoft [5]

or Hadoop from Facebook [48].

The evaluation was performed on an Intel 3.20GHz Xeon(R) CPU E5-2667 v4 with Linux kernel

4.4.0-71. Each data point in all runtime measurements is shown as a 95% confidence interval of

10 runs.

8.2 Accuracy Comparison
We measure accuracy in this experiment as a function of used memory. Specifically, given quantile

𝑞, we measure |rank(L̂𝑥,𝑞) −𝑞 |), a.k.a percentage error, as a function of consumed memory for each

𝑥 that satisfies 𝑓𝑥 ≥ 𝑁𝜃 . Additionally, we present the theoretical error (𝜀) which demonstrates that

the empirical error is constrained by the theoretical error.

Figure 2 illustrates the percentage error in terms of quantiles: 𝑞 = 0.5, 0.9, 0.99 for each algorithm:

Sampling, SSGK, and SQUAD as a function of memory use with a constant value of 𝜃 = 0.01 using

NS3-simulated online search trace. Each point in the graphs represents the percentage error for

a heavy-hitter. Note that all graphs have the same amount of points, but some of them overlap

in several graphs. Additionally, Figure 3 illustrates the percentage error for SQUAD in terms of

quantiles: 𝑞 = 0.5, 0.9, 0.99 using an NS3-simulated trace following the Hadoop flow size distribution.

As shown in Table 1, the memory consumption of the three algorithms relies on 𝜀 and 𝜃 . Since

we chose a fixed 𝜃 = 0.01, higher memory consumption results in a lower 𝜀, which leads to lower

empirical error in all algorithms. Thus, as memory use increases, our algorithms get more precise,

resulting in a decrease in empirical error that is lower than the theoretical value. As can be seen,

SQUAD is the most compact algorithm among Sampling and SSGK, whereas Sampling is the most

resource-intensive. As previously stated, Sampling stores Θ(𝜃−1𝜀−2 log𝛿−1) elements from the

stream. To ensure a small error of 𝜀, Sampling should keep a high number of samples, which results

in saving the whole stream size in small values of 𝜀 and 𝜃 , as seen in Figure 2c.

For the SSGK algorithms, keeping the heavy hitters in the SS instance together with their GK-

algorithm sketch results in a smaller footprint than Sampling. SQUAD, on the other hand, is the

most efficient algorithm for solving the (𝜃, 𝜀, 𝛿)-HH-quantiles due to its compact data structure,

as seen in Table 1. In general, a lower space consumption required for a specific 𝜀 and 𝜃 values

translates into better empirical error. For example, SSGK consumes more memory than SQUAD for

the same 𝜀 and 𝜃 . Thus, for a given memory budget, SSGK is more accurate than Sampling and

SQUAD is more accurate than both, resulting in smaller error percentiles.
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Fig. 2. Accuracy as a function of used memory using NS3-simulated online search trace. Each marker
corresponds with one heavy hitter; i.e., we show the error (|rank(�L𝑥,𝑞) −𝑞 |)) for each 𝑥 that satisfies 𝑓𝑥 ≥ 𝑁𝜃
for a fixed value of 𝜃 = 0.01, as a function of memory consumed. We examine the quantiles 𝑞 = 0.5, 0.9, 0.99

of each algorithm: Sampling, SSGK, and SQUAD. Notice the different x/y-axis ranges.

Figure 4a illustrates SQUAD percentage error in correlation with 𝜃 using a Hadoop dataset with

fixed 𝜀 = 0.025 and 𝑞 = 0.9. Higher 𝜃 values, as expected, reduce the number of tracked heavy

hitters because there are fewer items with frequencies greater than 𝜃𝑁 . SQUAD requires a smaller

sample size and fewer entries in its Space Saving component in this case, which decreases the space

consumption. Yet, the observed errors are lower than the user-selected value (𝜀) for all 𝜃 values.

8.3 Performance Comparison
Figures 4b, 4c and 5 compare the update speed via an NS3-simulated online search trace. The

Hadoop trace evaluation yields very similar results. We explore the trade-off of 𝜀 with a fixed

𝜃 = 0.01.

8.3.1 SSGK Update Time: Figure 4b illustrates the performance of SSGK in terms of update time

when compared to its building blocks: Space Saving (SS) [43] and the GK-algorithm [27]. Recall

that although SS is the quickest, neither it nor the GK-algorithm solve the (𝜃, 𝜀, 𝛿)-HH-quantiles
and rather serve as a best-case reference point. As can be observed, SSGK’s update performance is
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(c) SQUAD, 𝑞 = 0.99

Fig. 3. Accuracy as a function of memory using NS3-simulated trace following the flow size distribution
in the Hadoop dataset. Each marker corresponds with one heavy hitter; we show the percentage error
(|rank(�L𝑥,𝑞) − 𝑞 |)) for each 𝑥 that satisfies 𝑓𝑥 ≥ 𝑁𝜃 with a fixed value of 𝜃 = 0.01, as a function of
memory consumed. We examine the quantiles 𝑞 ∈ {0.5, 0.9, 0.99} of SQUAD.
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Fig. 4. (a) SQUAD Percentage error as a function of 𝜃 with fixed 𝜀 = 0.025 and 𝑞 = 𝑞 = 0.9 using NS3-
simulated trace following the flow size distribution in the Hadoop dataset. Each marker represents one heavy
hitter (b) SSGK update runtime as a function of 𝜀 with fixed 𝜃 == 0.01 compared to its building blocks: SS
and GK using NS3-simulated online search trace (c) SQUAD update runtime as a function of 𝜀 with fixed
𝜃 = 0.01 compared to its building blocks: SS and Random (RND in the graph) using NS3-simulated online
search trace. 𝑆𝑄𝑈𝐴𝐷_𝔭 = 1 indicates that the implementation excludes the optimizations of Section 7.

0.002 0.004 0.006 0.008
Accuracy Guarantee ( )

0

20

40

60

80

100

Up
da

te
/s

ec
on

d 
[M

illi
on

s] SQUAD_p=1
SSGK
Sampling

(a) All algorithms

0.002 0.004 0.006 0.008
Accuracy Guarantee ( )

0

20

40

60

80

100

Up
da

te
/s

ec
on

d 
[M

illi
on

s] SQUAD_p=1
SQUAD_p=0.1
SQUAD_p=0.01

(b) Filtering

Fig. 5. Update runtime as function of the accuracy guarantee (𝜀) with fixed 𝜃 = 0.01 using NS3-simulated
online search trace (a) Comparing all three of our algorithms: Sampling, SSGK and SQUAD (b) The effect of
the optimization on the performance of SQUAD update.

insensitive to changing 𝜀 values since its building blocks are insensitive to 𝜀, and it is comparable to

that of the GK algorithm. Recall that the SSGK update operation is equivalent to an update operation

in SS and an update operation on the corresponding GK instance. Due to the high effectiveness of SS

updates, the run time of SSGK updates is limited by the run time of GK. That is, while GK-algorithm
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Fig. 6. Query runtime vs. accuracy guarantee (𝜀) with fixed 𝜃 = 0.01 when asked for the 𝑞 = 0.9 quantile
using NS3-simulated online search trace (a) SSGK query performance compared to GK (b) SQUAD query
performance compared to Random (RND).
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Fig. 7. (a) Memory consumption as function of 𝛼 with 𝜀 = 0.025 and 𝜃 = 0.01 (b) Accuracy as a function
of the measurement length till the stream’s end when sampling with 𝔭 = 0.01 in SQUAD with 𝑞 = 0.9,
𝜃 = 0.01, and 𝜀 = 0.025 using an NS3-simulated Hadoop trace. (c) Zoomed Mean Accuracy as a function of
the measurement length size (𝑁 ) using an NS3-simulated trace that follows the Hadoop flow size distribution.
Each marker represents the mean of the heavy hitters’ percentage error, with fixed values of 𝑞 = 0.9, 𝜃 = 0.01

and 𝜀 = 0.025. We examine the sampling probability 𝔭 = 0.01, 0.001 in SQUAD.

solves the quantile problem for the full stream, the SSGK algorithm solves per-element quantiles

without adding any extra update time cost.

Specifically, we may replace the GK instances in SSGK with any sketch that solves quantiles,

such as Random [38], which has a higher update speed, as seen in Figure 4c. However, SSGK will no

longer be a deterministic solution in this case. As a result, there is a trade-off between update speed

and determinism. Additionally, it was shown that the GK-algorithm is an optimal deterministic
comparison based algorithm.

8.3.2 SQUAD Update Time: Figure 4c compares SQUAD’s update speed to that of its building

blocks: Space Saving (SS) [43] and the Random algorithms [38].

Recall that the Random algorithm reports quantiles over the entire stream, thus it does not solve

the (𝜃, 𝜀, 𝛿)-HH-quantiles and only serves as a best case reference point. SQUAD update operation

is translated to sampling operation, SS update and Random update. As a result, the run time of its

update is impacted by the run time of all of them. 𝑆𝑄𝑈𝐴𝐷_𝔭 = 1 in the graph indicates that the

implementation excludes the optimizations detailed in Section 7.

8.3.3 Comparing Sampling, SSGK and SQUAD Update Time: As seen in Figure 5a, Sampling is

the fastest algorithm since each update is converted to a sampling update. Recall that every

update operation in SSGK means SS and GK updates, while every update operation in SQUAD

means sampling, SS and Random updates. Thus, SQUAD is better than SSGK in terms of update
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performance since it is based on the Random algorithm, which has a faster update time than the

GK-algorithm, the building block of SSGK, and the sampling update is extremely efficient. While

Sampling is the quickest, it solves the (𝜃, 𝜀, 𝛿)-HH-quantiles with a high memory cost, as seen

in Figure 2 and Table 1. When 𝜀 is small, Sampling keeps a significant number of samples more

than the stream size. In this scenario, Sampling just saves all streams, which results in superior

performance than larger values of 𝜀, which allows items to override earlier samples.

Figure 5b shows how the filtering optimization discussed in Section 7 improves the update

performance of SQUAD. As 𝔭 decreases, more arrivals from the stream are disregarded in an

update operation, thus the update operations get faster. In this scenario, when the filter sampling

probability 𝔭 is 0.1, its performance comparable or better than Sampling, and with 𝔭 = 0.01, SQUAD

becomes the clear winner. We explore these optimizations further below.

8.3.4 Query Speed Comparison: We used the quantiles 𝑞 = 0.5, 0.9, 0.99 for comparing the query

speed. We investigated the effect of the 𝜀 parameter using a fixed 𝜃 of 0.01 using NS3-simulated

online search trace, and the experiment includes quantile queries for items 𝑥 that satisfy the

condition 𝑓𝑥 ≥ 𝑁𝜃 . For decreasing 𝜀 values, more values access the quantile sketches. Consequently,

we got slower query operations in all algorithm. As seen in Figure 6, SSGK performs better than

SQUAD because SQUAD relies on Random queries, which perform worse than the GK. Additionally,

SQUAD checks its samples part to figure out the samples that were taken before the time the given

identifier enters the SS. This becomes extremely expensive when the sample size is large, i.e. with

small 𝜀.

Particularly, as seen in Figure 4c, we may replace the Random instances in SQUAD with a GK

sketch that has a faster query performance. However, as seen in Figure 4b, GK is slower in update

performance. Indeed, there is a trade-off between update and query performance. However, since

in most streaming applications updates occur more often than query operations, Random would

usually be the preferred choice.

8.4 Optimizations Comparison
In this section we evaluate the optimizations described in Section 7. We examine the influence of

the optimizations on the update runtime, memory usage, and empirical error.

8.4.1 Effect of Optimization on SQUAD Update Time: We implement the optimizations in SQUAD

since it is the most space-efficient algorithm. The update runtime is shown in Figure 5b as a function

of 𝜀 with a fixed 𝜃 = 0.01. The three SQUAD implementations differ in the probability of the wrapper

calling the Insert function of SQUAD. We consider three probabilities: 𝔭 = 1 (indicating that the

implementation does not include optimizations), 𝔭 = 0.1, and 𝔭 = 0.01. That is, each element in S
occurs with probability 𝔭 in the sampled stream i.i.d. As expected, decreasing the value of 𝔭 results

in improved update speed, as the algorithm invokes the SQUAD Insert function infrequently. As

can be observed, the optimizations considerably improve the speed of the update.

8.4.2 Effect of 𝛼 on Memory Consumption: Figure 7a shows the space consumed by our algorithms

as function of 𝛼 with fixed values 𝜀 = 0.025 and 𝜃 = 0.01. As seen in Figure 7a, the greater 𝛼 is,

the less space is required for the algorithm, but the sampling probability must be increased. With

𝛼 = 0.9, 𝜀 = 0.025, and 𝜃 = 0.01, the space needed for SQUAD increases by 18% compared to 𝛼 = 1.

Since a greater 𝛼 value necessitates a higher sampling probability (𝔭), there is a trade-off between

update speed and required space. That is, when the value of 𝛼 decreases, so does the sampling

probability, resulting in faster update operations but higher space consumption. The parameter 𝛼

has a smaller effect on the memory of SQUAD than it does on Sampling and SSGK, since SQUAD

has a better space complexity than the others for the same values of 𝜀 and 𝜃 .
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8.4.3 The Effect of the Length of the Measurement on the Error: We study the trade-off between

geo-sampling rate 𝔭 and the convergence time (in terms of the number of packets) and report the

results in Figures 7b and 7c. We use an NS3-simulated trace that follows the Hadoop flow size

distribution with fixed values of 𝑞 = 0.9, 𝜃 = 0.01, and 𝜀 = 0.025. Each marker represents the

mean of the heavy hitters’ percentage error. Since SQUAD with optimizations uses sampling to

select packets, it requires a convergence time to produce a guaranteed accurate result (analyzed

in Section 7). We examine the mean error of SQUAD during the whole trace and show it in

Figure 7b. As the trace gets longer, the mean error drops and converges to an error less than the

theoretical error. In Figure 7c, we examine the effect of two sampling probabilities 𝔭 = 0.01, 0.001

on convergence time. As expected, larger 𝔭 value leads to faster convergence time as we sample

elements in higher probability.

9 EXTENSIONS
9.1 SupportingQuantiles for Traffic Volume Heavy-Hitters
It is often desirable to find the quantiles for heavy hitters in terms of traffic volume. That is,

consider a stream in which each element has a size and our goal is to find the quantile for

items that use the majority of the bandwidth. Formally, we look at a weighted stream S =

⟨(𝑤1, 𝑥1, 𝑣1), (𝑤2, 𝑥2, 𝑣2) . . .⟩ ∈ ({1, 2, . . . , 𝑍 } ×U ×R)+ and define item’s volume as the sum of sizes

for elements that belong to it. The total weight of all elements is denoted W =
Δ ∑

(𝑥𝑖 ,𝑣𝑖 ,𝑤𝑖 ) ∈S𝑤𝑖 .
We say that an algorithm A solves (𝜃, 𝜀, 𝛿)-Weighted-HH-quantiles if every Query(𝑥, 𝑞) returns

a tuple (𝑓𝑥 , L̂𝑥,𝑞) such that Pr[|𝑓𝑥 − 𝑓𝑥 | > W · 𝜀] ≤ 𝛿 and if 𝑓𝑥 ≥ W · 𝜃 , then Pr[|rank(L̂𝑥,𝑞) −𝑞 |) >
𝜀] ≤ 𝛿 . Notice that for an unweighted stream (all weights are set to 1), the problem degenerates to

the (𝜃, 𝜀, 𝛿)-HH-quantiles problem. Here, the weight 𝑤𝑖 refers to the heavy-hitter definition but

quantiles are unweighted (below we also consider a variant with weighted quantiles).

We augment SSGK and SQUAD to solve the (𝜃, 𝜀, 𝛿)-Weighted-HH-quantiles. These algorithms

are termed w-SSGK and w-SQUAD.

To address (𝜃, 𝜀, 𝛿)-Weighted-HH-quantiles, we must estimate each element’s total traffic volume,

identify the weighted heavy hitters, and track the quantiles for those items. For SSGK, we simply

replace the Space Saving of SSGK with a Space Saving for weighted elements (that updates in

𝑂 (log 𝜀−1) time), or one of its constant-time variants [6, 11, 12]. This ensures that a weighted heavy

hitter has an entry and a quantile sketch that tracks its values.

Augmenting SQUAD is more complex. As sampling is indifferent to elements’ weights, large-

weight elements may be missed, resulting in a large error. Further, the weight applies to the item

frequencies, so the sample, which is used to capture the behavior of an item’s values before it was

assigned an SS entry, should be kept as in SQUAD. Thus, we need to modify SQUAD frequency

estimation since it is based on both the sample and the Space Saving. To that end, we propose

two solutions. The first is to allocate additional weighted Space Saving (without quantile sketches)

whose space complexity is𝑂 ( 1
𝜀
), in order to estimate the frequency of weighted elements, while the

original Space Saving remains unchanged. In this scenario, a w-SQUAD Insert(𝑥, 𝑣,𝑤) operation is

executed as SQUAD Insert(𝑥, 𝑣) with an additional update of the weighted Space Saving by𝑤 . The

second option is to use the existing Space Saving in SQUAD and extend it to max

{
𝜀−1, 4𝜀−0.5𝜃−1

}
entries, but we only maintain the quantile sketch for the top𝑚 = 4𝜀−0.5𝜃−1 entries. In this case,

w-SQUAD Insert(𝑥, 𝑣,𝑤) updates the extended weighted Space Saving with weight𝑤 : if 𝑥 has an

entry from the first𝑚 entries, we update the quantile sketch similarly to SQUAD; otherwise, if 𝑥

has an entry 𝑗 from the added entries ( 𝑗 > 𝑚), we only update the weighted Space Saving counter

because this type of entry is only allocated with counters (with no quantile sketch).
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Theorem 4. w-SSGK and w-SQUAD solve (𝜃, 𝜀, 𝛿)-Weighted-HH-quantiles for weighted streams
while requiring same space complexity as SSGK and SQUAD respectively.

Proof Sketch. The correctness follows from the fact that Space Saving (and its faster variants)

for weighted items guarantee an error of𝑊𝜀 with the same space complexity as the unweighted

version of Space Saving where𝑊 is the total weights of all elements in the stream. For w-SQUAD,

the additional space complexity is bounded by SQUAD space complexity in both cases of additional

weighted Space Saving or extension of the existing Space Saving. Thus, our algorithms are capable

of solving the (𝜃, 𝜀, 𝛿)-Weighted-HH-quantiles problem with the same space complexity as the

unweighted version, since their promised error is at most𝑊𝜀. □

Another interesting variant is when the weight applies to both the identifier and the value

quantiles. We call this problem (𝜃, 𝜀, 𝛿)-Weighted2-HH-quantiles. Such a scenario may arise if the

observed values of an identifier have different importance. The correctness definition is similar to

(𝜃, 𝜀, 𝛿)-Weighted-HH-quantiles, but now the rank is weighted (i.e., between 𝑞 − 𝜀 and 𝑞 + 𝜀 of the
weight should be smaller than the output value, except with probability 𝛿).

We now expand w-SSGK and w-SQUAD to handle weighted values and denote them by𝑤2
-SSGK

and𝑤2
-SQUAD respectively. In w-SSGK, we replace the quantile sketches of the weighted Space

Saving with quantile sketches that support weighted items. KLL sketch [32] is a sketching algorithm

that returns an approximation of a q-quantile over the entire stream. KLL can also handle weighted

items due to its design, which includes a hierarchy of compactors and weighted items. Its size

remains 𝑂 (𝜀−1
√︁
log 𝜀−1), but the update time becomes 𝑂 (log 𝜀−1), as demonstrated by [31]. That

is, each GK sketch in w-SSGK is substituted with the weighted version of KLL sketch [31]. Note

that this makes𝑤2
-SSGK randomized.

The building blocks of w-SQUAD are sampling, weighted Space Saving, and the quantile sketch.

Since the weight now applies to quantiles as well, we need to modify both the sampling and the

quantile sketch. As in the case of 𝑤2
-SSGK, the quantile sketch is substituted by the weighted

version of KLL. We also replace the reservoir sampling with a weighted sampling procedure with

replacement (e.g., see [23]). Intuitively, one can view this as breaking down each update (𝑥, 𝑣𝑖 ,𝑤𝑖 )
into𝑤𝑖 updates of (𝑥𝑖 , 𝑣𝑖 ) and feeding them into the reservoir sampling, but optimized for runtime.

Theorem 5. 𝑤2-SSGK and𝑤2-SQUAD solve (𝜃, 𝜀, 𝛿)-Weighted2-HH-quantiles for weighted streams
while requiring the same space complexity as SSGK and SQUAD respectively.

Proof Sketch. The correctness comes from Theorem 4 and the fact that the proposed weighted

version of KLL (Algorithm 5 and Theorem 4.3 in [31]) ensures 𝜀-approximate quantiles using

𝑂 (𝜀−1
√︁
log 𝜀−1) space, which is constrained by GK and Random space complexity. Furthermore,

the reduction we employ in the sampling procedure preserves the error guarantee and the space

complexity. It is worth mentioning that both the weighted KLL and the sampling impact the

update performance. □

9.2 Tracking all Γ-sized items
In this section, we present a variant of SQUAD that allows it to provide reliable estimates to all

items that appear at least Γ (e.g., for Γ = 1000). Intuitively, if the stream length 𝑁 is not known in

advance (otherwise, we could simply set 𝜃 = Γ/𝑁 ), we need to change the algorithm to support

this new definition. For heavy hitters, as an example, while one could use SS with 𝑁 /Γ counters if

𝑁 is known apriori, to the best to our knowledge no standard solution is applicable for the case

that 𝑁 unknown beforehand (thus the proposed method may be of independent interest).
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Instead, we modify the algorithm as follows: First, the Reservoir Sampling component is replaced

with a simple sampling procedure that adds each incoming packet with probability Θ
(
𝜀−1.5 log𝛿−1

Γ

)
.

Next, every item that is sampled at least Θ
(
𝜀−1 log𝛿−1

)
times is allocated (independently of other

items) with an exact counter and a quantile sketch (e.g., Random) configured for error 𝜀/2 except
with probability 𝛿/2. We now summarize the theoretical guarantees:

Theorem 6. The above provides an 𝜀-approximation for each ID whose frequency is at least Γ while
requiring 𝑂

(
𝑁
Γ · 𝜀

−1.5) space.
Proof sketch. Intuitively, we ensure that any item of size Γ

√
𝜀 is sampled at least Ω(𝜀−1 log𝛿−1)

times except with probability 𝛿/4. A similar analysis to the previous sections show that the samples

yield Θ(
√
𝜀)-error quantile and frequency estimates except with further probability 𝛿/4 and thus

the rank estimate is off by at most (Γ
√
𝜀) · Θ(

√
𝜀) = Θ(Γ𝜀). This ensures that the quantile error for

items larger than Γ is at most 𝜀. For the memory analysis, notice that with high probability at most

𝑂 ( 𝑁
Γ
√
𝜀
) items will be allocated with sketches, and thus the overall space is at most𝑂

(
𝑁
Γ · 𝜀

−1.5) . □
We further note that our filtering optimization (Section 7) is applicable to this variant as well

and that any algorithm for this problem variant must use at least Ω̃( 𝑁Γ · 𝜀
−1) space as there can be

𝑁
Γ items of size Γ and any quantile sketch must use Ω̃(𝜀−1) space.

10 DISCUSSION
In this paper, we studied the problem of reporting the quantiles of heavy hitter items. To our

knowledge, this is the first research to solve quantiles on a per-item level rather than reporting

quantiles of an entire stream. Such capabilities can be useful when one wishes to assess a network’s

health and to debug various networking middle-boxes and smart data-planes as well as multi-

tenant clouds.

We presented a formal definition of the generalized problem and explored different solutions: a

sampling approach, a sketching approach (SSGK), and a sampling-sketching combined approach

(called SQUAD). SSGK is a deterministic solution that assigns a unique quantile-sketch (GK) to each

potential heavy hitter that is obtained from a Space Saving instance. SQUAD combines sampling

with SSGK, resulting in superior memory reduction.

SQUAD is the most memory-efficient algorithm. Both SQUAD and the sampling algorithm use

about the same amount of memory. On the other hand, SSGK is deterministic, but the sampling has

an error probability. This is true both asymptotically and empirically in a large-scale NS3 simulation,

wherewe observed orders ofmagnitudememory reductions for similar estimation errors in SQUAD.

While the sampling algorithm’s update rate is higher than SSGK and SQUAD, it consumes a lot of

memory. To reach high speeds with SQUAD, we suggested several efficiency enhancements for our

algorithms’ update operation in Section 7. In fact, the update performance of SSGK is comparable

to that of the state-of-the-art method that can only handle quantiles throughout the whole stream,

not per-item quantiles. Our approach can be applied to both volume traffic, where each element in

the stream has a size, and items that appear at least Γ times in the stream.

Code Availability: All code is available online [2].
Acknowledgements: We thank Sivaram Ramanathan for his advice on designing the NS3

simulations. This research was partially funded by ISF grant #3119/21 and Technion HPI.
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