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THE DIAGONAL BEHAVIOUR OF THE
ONE-PARTICLE COULOMBIC DENSITY MATRIX

PETER HEARNSHAW AND ALEXANDER V. SOBOLEV

We obtain bounds for all derivatives of the nonrelativistic Coulombic one-particle density matrix y (x, y)
near the diagonal x = y.

1. Introduction

Consider on L?(R3V) the Schrédinger operator

N
H=Hy+V, }COZ—A:—ZA]{,

k=1

1

Noq

Vix)=—-Z — 4+ , (1-1)
k; el 1< k<n X=Xl

describing an atom with N particles (e.g., electrons) with coordinates x = (x1, x2, ..., Xy), X; € R3,

k=1,2,..., N, and a nucleus with charge Z > 0. The notation A is used for the Laplacian with respect

to the variable x;. The operator H acts on the Hilbert space L2(R3") and by standard methods one
proves that it is self-adjoint on the domain D(H) = W2’2(R3N ); see, e.g., [25, Theorem X.16]. (Here
and throughout the paper we use the standard notation WP for the Sobolev spaces, where / and p
indicate the smoothness and summability respectively). Our methods allow consideration of the molecular
Schrodinger operator, but we restrict our attention to the atomic case for simplicity. Let ¥ = ¥ (x) be an
eigenfunction of the operator { with an eigenvalue E € R, i.e., ¥ € D(H) and

(H—-E)y =0.
Foreach j=1,..., N, we represent
X = (xj,.f:j), where )2"/' = (xl, ey X1 X1, - .,XN),

with obvious modifications if j = 1 or j = N. The one-particle density matrix is defined as the function

N [
v, y) =Y Rw_gw(x, NV (y, %) dE;, ae.xeR’, ae yeR’. (1-2)
j=1/RE
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This function is one of the key objects in multiparticle quantum mechanics; see [6; 7; 23; 24; 28] for
details and further references. If one assumes that all N particles are spinless fermions (resp. bosons),
i.e., that the function v is antisymmetric (resp. symmetric) under the permutations x; <> xi, then the
definition (1-2) simplifies to

W) =N[ V@BV dE where £ =,

Our results however do not require any symmetry assumptions. We are interested in the smoothness
properties of the function (1-2). It is clear that for this purpose it suffices to study each term in (1-2)
individually. Moreover, using permutations of the variables it is sufficient to focus just on one term on
the right-hand side of (1-2):

Yo = [ DV D AR E= (). (1-3)

Throughout we refer to this function as the one-particle density matrix. In [9] (see also [18]) the
one-particle density

p(x) =y (x, x) =/R W (x, £) d# (1-4)

3N-3

was shown to be a real-analytic function of x # 0. The real analyticity of the function y(x, y) as a
function of two variables on the domain

D={(x,y):|x||y| #0, x #y} CR* x R’, (1-5)

was proved in [16]. The method used in [18] was later extended in [19] to prove analyticity for all
k-particle densities and k-particle density matrices on the appropriate subsets. In particular, the one-
particle density y was proved to be analytic on the same domain (1-5). As was pointed out in [16],
one does not expect analyticity in x and y to hold on the diagonal x = y. In fact, quantum chemistry
calculations in [4] (see also [5]) show that for each x # 0, the function y has the following behaviour:

Rey(x4+v,x—v)—yx,x)= C(x)lvl5 +g(x,v) asv—0, (1-6)

where C(x) is some nonzero function, and the expansion of function g(x, v) does not contain powers
lv], |v]? and |v|>. Motivated in part by (1-6), in the current paper we aim to obtain explicit bounds for all
partial derivatives of y (x, y) near the diagonal x = y or the points x = 0 and y = 0. For the derivatives
of y we use the standard notation 97" 8§y(x, y), where m, 1 € N2, Ny = N'U {0}. For two nonnegative
numbers (or functions) X and Y depending on some parameters, we write X <Y (or Y 2 X)if X <CY
with some positive constant C independent of those parameters. The notation B(x, R) is used for the
open ball of radius R centred at the point x.
For b > 0, t > 0 we define

1 if b <5,
hy(t) = {log(t™ ' +2) ifb=5, (1-7)
1+72  ifb>5.

The next theorem contains the main result.
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Theorem 1.1. Let  be an eigenfunction, and let R > 0 be fixed. Then for all x #0,y #0, x % y, and
alll,m e Ng such that || > 1, |m| > 1, we have

=

1
10507y Ce, IS (T4 P ey P by (e =y D) (10 L s, my) (1011 85, RY) - (1-8)

Furthermore, for all |I| > 1,

1 1
05y G 1185y G IS (T I 1y 2y (x =y D) (1oL s e.ry) > (1011 85 RY) - (1-9)

The implicit constants in (1-8) and (1-9) may depend on |, m and R, but are independent of x, y and the
function .

Remark 1.2. (1) Theorem 1.1 naturally extends to the case of a molecule with several nuclei whose
positions are fixed. The modifications are straightforward.

(2) Observe that ”IOHL'(B(x,R)) < ||1//||52(R3N), R > 0, so that the right-hand sides of (1-8) and (1-9)

are finite.

(3) Comparing the derivatives a;a;"y(x, v), |l =1, |m| > 1, and, for example, 9}y (x, y) of the same
order, i.e., with |m|+ || = |n|, we see from (1-8) and (1-9) that the derivative 9} y (x, y) is “allowed”
to be more singular than 9! 97"y (x, y) at x =0 or y = 0. This can be explained by the following
intuitive argument. Taking one derivative does not make the function ¥ (and hence the function
y(x, y¥)) “more singular”, as the bound (4-6) (or (4-7)) below shows. This property is exploited
twice in (1-8) where the derivatives fall on each of the two variables at least once. This “saves” one
order of singularity compared to (1-9) where all the derivatives fall on one variable.

(4) The bound (1-9) for |/| = 1 implies that y (x, y) is a Lipschitz function on R3 x R3.

(5) The bounds (1-8), (1-9) ensure that y € Wls(;f (‘D) with arbitrary p < oo; see (1-5) for the definition
of D. By Proposition A.1 in the Appendix, this implies that y € Wls(;f(([R3 \ {0}) x (R3\ {O})),

which means that y € Cﬁf ((IR3 \ {0)) x (R3\ {0})) for all & < 1. This result just barely misses the
C*!-smoothness of the factor |x — y| in the formula (1-6). In this sense Theorem 1.1 is sharp, up to

a log-term.

(6) The one-electron density p(x) = y (x, x) is known to be real analytic for x # 0, see [9]. As shown
in [12], the function p(x) satisfies the bound

10Lp S (L+ X"l ery forallleNG, x #0. (1-10)

As in Remark 1.2(3) above, it is immediate from this bound that p is Lipschitz. This fact was first
proved in [17]. For || < 4 the bound (1-10) follows from (1-8) and (1-9).

(7) There is an independent (indirect) argument indicating that y (x, y) should have a |x —y |5—singularity
on the diagonal. More precisely, assume that y(x, y) = y|(x,y) + y2(x, ¥)|x — y|? with some
b > —3, where y1, y» are smooth functions of x and y. Then one can show that necessarily b = 5.
This argument is based on the analysis of spectral asymptotics of the (nonnegative) operator I' with
kernel yo(x, y); see (1-2). It was shown in [26] that the eigenvalues A, (I') have asymptotics of
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order k—%/3

as k — oo. On the other hand, according to the results on spectral asymptotics for
integral operators with homogeneous kernels, see [3] (and also [26] for a summary), the singularity
Ix —y|?, b #0,2,4, ..., would produce the spectral asymptotics of order k~('*2/3)_ The exponent

1+ b/3 coincides with 8/3 exactly for b = 5, which proves the point.

(8) Understanding the behaviour of y (x, y) at the diagonal has implications for the rate of convergence
of approximation schemes for eigenfunctions v; see, e.g., [4]. In particular, the eigenvalues of the
operator I' with kernel yy(x, y) play a vital role in the convergence rates of the configurational
interaction (CI) model, [28, Section 4.4]. See [14] for an example of a CI convergence result for the
ground state of a Helium atom.

Our proofs have two main ingredients. At the heart of our method are regularity properties of the
eigenfunction . By the standard elliptic argument, the function ¥ is real analytic away from the
singularities of the potential (1-1), i.e., away from the particle coalescence points. According to T. Kato’s
seminal paper [20], at the coalescence points the function i is Lipschitz. More recent contributions
to the study of the regularity of i include [1; 2; 9; 10; 11; 17]. A detailed analysis of smoothness
properties of ¢ was conducted in the recent paper [12], to which we also refer for further bibliography.
In particular, this paper provides global pointwise bounds for partial derivatives of i. In the study of the
one-particle density (1-4) conducted in [8; 9; 12] the key point was to obtain bounds for certain directional
derivatives of . Such derivatives are also critical for our analysis in the current paper, and we explain
their importance below.

Let R={1,2,..., N} be the set of all particle labels. A subset P C R is called a cluster. For each
cluster P we define the following cluster (directional) derivative:

"

r= (v a.) (Y a.) (o) 1-11
P = Z X, Z x;! Z X, . ( )
keP keP keP

Here m = (m', m”, m"") withm’, m” , m"” € Ny :=NU{0} and x = (x/, x”, x”) with x’, x”, x” € R. Such
cluster derivatives were introduced in [8; 9] because they annihilate certain Coulomb terms in (1-1) which
remain singular under usual partial derivatives. To illustrate this observe that for all m # 0,

1
Dp—— =0, ifj,kePorj,k¢P.
lxj — Xk
Therefore the potential (1-1) is infinitely smooth with respect to Dp as long as x; #0, j=1,2,..., N,

and x; # xi, where j € P,k ¢ Por j ¢ P,k € P. As a consequence, the function v is also infinitely
smooth with respect to Dp for the same values of the coordinates; see [8], [9] or [16]. In particular, the
cluster derivatives of vy do not have singularities at the coalescence points x; = xi, if j,k € Por j, k ¢ P.
One of the pivotal points in [12] was the pointwise bound for the cluster derivative Dg v (x) with explicit
dependence on the distance of x € R3" to the coalescence set

N .
Epz{xelR I Il T1 |Xk—x1|=0}-
jeP keP,leP¢



THE DIAGONAL BEHAVIOUR OF THE ONE-PARTICLE COULOMBIC DENSITY MATRIX 939

For our purposes we need bounds of such type for cluster derivatives involving an arbitrary finite
number M of clusters Py, Po, ..., Py, i.e., for D'SI‘ D'g; e D'F’fg ¥r; see Corollary 4.6. This generalization
is not immediate and requires substantial further work, which is done in Sections 3 and 4.

The next step of the proof is to use the bounds obtained for cluster derivatives to estimate partial
derivatives of the function (1-3). To this end we use a partition of unity consisting of smooth functions
®(x, y, x) of 3N + 3 variables that we call extended cut-off functions, and study the integrals

ey @)= [ @y Y HY ) dk. (1-12)

These extended cut-offs were introduced in [16] to establish the real analyticity of y (x, y) outside the
diagonal. They generalize the cut-offs instrumental in the study of the density p(x) in [8; 9].

The support of each extended cut-off divides the particles x;, x3, ..., xy into three disjoint groups:
the first two groups consist of particles that are “close” to the particles x and y respectively, and the
third group contains the particles that are “far” from the first two groups. This partition naturally gives
rise to two clusters, denoted P and S: cluster P labels the particles close to x, and cluster S the particles
close to y. Thus, when differentiating the integral (1-12) with respect to x and y, under the integral
these derivatives convert into the cluster derivatives Dp and Ds respectively. This general method of
differentiating integrals such as (1-12) was developed in [8; 9; 16]. We can illustrate it using the following
simplified example. Let us differentiate with respect to x the integral

F<x>=/f(x,:e)dae,

where the integration is conducted over the space R* =3, and we assume for simplicity that f € Y (R3M).
To this end under the integral we make the change of variables ¥ = w + z, where Z = (22,23, ...,2n) €
R3V=3 is defined by z; = x, j € P, and z; = 0, j ¢ P, for some cluster P such that 1 € P. Thus F(x)
rewrites as

F(x)=/f(x,w+2)dw.
Consequently, for all [ € N3, we have
8L F (x) :/(D’Pf)(x, W+ 2) di =/D{3f(x,£)d:2.

In order to estimate the derivatives of the integral (1-12), we use the bounds for cluster derivatives of
linked to clusters P and S that are obtained in the first stage of the proof. Integrating these bounds in ¥
leads to (1-8) and (1-9) thereby completing the proof; see Section 6.

The paper is organized as follows. In Section 2 we gather information about cut-off functions and
clusters associated with them. Most of the required facts are borrowed from [16]. Section 3 considers the
general elliptic equation of the form (3-1) inaball B(x, £) ={x:|x—x¢| <} C R3N . Here we study cluster
derivatives of solutions of (3-1), and the main focus is on the explicit dependence of these estimates on the
radius ¢, see Theorem 3.2. In Section 4 these estimates are applied to the Schrodinger equation to derive
the bounds for the cluster derivatives of ¥, summarized in Corollary 4.6. Some estimates for integrals
emerging in the proof of Theorem 1.1 are gathered in Section 5. The proof itself is completed in Section 6.
The Appendix contains an elementary extension property for the Sobolev spaces that was proved in [27].
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Notation. We conclude the introduction with some general notational conventions.

Coordinates. As mentioned earlier, we use the following standard notation for the coordinates: x =
(x1,x2,...,xy), where x; € R3, j=1,2,..., N. As arule we represent x in the form x = (x, X) with
£ =(x2,x3,...,xy5) € R3N73,

For N > 3 it is also useful to introduce the notation for x with Xj, j =2, taken out. Let

Xj= (X2, .0, Xj 1, Xjq1, -0 s XN, (1-13)
so that ¥ = (x;, X;) and x = (x1, xj, X;).

Clusters. Let R={1,2,..., N}. A subset P C R is called a cluster. We denote |P| = card P, P° = R\ P,
P*=P\{1}. If P= g, then |P| =0 and P° =R.

For M clusters Py, ..., Py we write P = {Py,P,,...,Py}, and call P a cluster set. Clusters
P1, P2, ..., Py in a cluster set are not assumed to be all disjoint or distinct.

Derivatives. Let Ng=NU{0}. If x = (x’, x”, x”) e R* and m = (m’, m", m"") € N2, then the derivative o
is defined in the standard way:

’ ”
3;" =8)’:} )’:}/ )’Z}// .

This notation extends to x € RY with an arbitrary dimension d > 1 in the obvious way. Denote also

M =0 0r N m=(my,my,....my)€NGN.
Let P ={Py,P,,..., Py} be acluster set, and let m = (m, mo, ..., my), my € Ng,k: 1,2,..., M.

Then we denote

m __ ymipyn my
P_DP1DP2 ”.DPM’

where each individual cluster derivative is defined as in (1-11). It is easy to see that the cluster derivatives

satisfy the Leibniz rule. We use this fact without further comments throughout.

Supports. For any smooth function f = f(x), we define supp, f = {x : f(x) # 0}. It is clear that the
closure supp, f coincides with the support supp f defined in the standard way. With this definition we
immediately get the useful property that

suppy(fg) = suppy f Nsupp, g.

Bounds. As explained earlier, for two nonnegative numbers (or functions) X and Y depending on some
parameters, we write X <Y (or Y 2 X) if X < CY with some positive constant C independent of those
parameters. If X <Y and Y < X, then X < Y. To avoid confusion we often make explicit comments
on the nature of (implicit) constants in the bounds. In particular, all constants (implicit or explicit) may
depend on the eigenvalue E, the number of particles N and the charge Z.
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2. Cut-off functions and clusters
2A. Admissible cut-off functions. Let

o L1 ifl <1, )
EecCrR): 0<&(r) <1, é(t)—{o it 1] > 2. (2-1

Now for ¢ > 0 we define two radially symmetric functions ¢{ € Cg° (R3), 6 € C*°(R?) as follows:

K(X)=§e(X)=S<%|XI>, 0(x) =6:(x) =1-:(x), xeR, (2-2)

so that

t(x)=0 forx¢ B(0,e2N)™"),  0(x)=0 forxe B(0,e4N)"").

The dependence of the cut-offs on the parameter € is important, but it is not always reflected in the notation.

Our next step is to build out of the functions ¢, and 6, cut-off functions of 3N variables. Let { fj},
1 < j,k < N, be a set of functions such that each of them is one of the functions ¢, or 6,, and fjx = fi;.
We call functions of the form

p(x)= [l fixlxj—xp). (2-3)

1<j<k<N

admissible cut-off functions or simply admissible cut-offs. Such cut-offs (or, more precisely, a slightly
more general version thereof) were used in [8; 9; 16]. We need only a subset of their properties established
in [9; 16].

As in [8; 9; 16], we associate with the function ¢ a cluster Q(¢) defined next.

Definition 2.1. For an admissible cut-off ¢, let I (¢) C {(j, k) € R x R: j # k} be the index set such that
(j, k) € I(¢), if and only if f;, = ¢. We say that two indices j, k € R, are ¢-linked to each other if either
j=k,or (j, k) el(¢p),or there exists a sequence of pairwise distinct indices ji, j2, ..., js, | <s <N —2,
all distinct from j and k, such that (j, ji1), (js, k) € I(¢) and (jp, jp41) € I(¢) forall p=1,2,...,5s—1.

The cluster Q(¢) associated with the cut-off ¢ is defined as the set of all indices that are ¢-linked to
index 1.

It follows from the above definition that Q(¢) always contains the index 1. Note also that the notion of
being linked defines an equivalence relation on R, and the cluster Q(¢) is nothing but the equivalence
class containing index 1. On the support of the admissible cut-off ¢ the variables x;, indexed by j € Q(¢),
are “close” to each other and are “far” from the remaining variables. In order to quantify these facts
below we define a number of subsets in R* and RV 3.

For any cluster P we introduce the following sets depending on the parameter ¢ > 0:

R3N for |P|=0or N,

Xp(e) =
p(€) :{xe[ﬁaw:|x,-xk|>s,VjeP,kePC} for 0 < [P| < N.



942 PETER HEARNSHAW AND ALEXANDER V. SOBOLEV

The set Xp(e) separates the points x; and x; labeled by the clusters P and P respectively. Note that
Xp(e) = Xpc(e). Define also the sets separating x;’s from the origin:

R3N for |P| =0,
TP(E) - 3N .
{x e R :|x;| >¢, VjeP} for|P|>0.
It is also convenient to introduce corresponding sets in the space R3V~3:
Xp(x,e)={£ e RN 73 (x, %) € Xp(e)} forall x € R, (2-4)
and
~ R3N -3 for |P*| =0,
To@) =1 . v o . (2-5)
{xeR Jxjl>e, VjeP*} for [P*] > 0.

Observe that ?p (&) = fp* (e).
The support of the admissible cut-off ¢ is easily described with the help of the sets introduced above.
The next proposition is adapted from [9, Lemma 4.3(1); 16, Lemmata 4.2, 4.3].

Proposition 2.2. For P = Q(¢) the inclusion

suppy ¢ C Xp(e(4N)™")
holds.
Moreover, if j € Q(¢), then |x; — x| < &/2 forall x € supp, ¢. If |x1| > &, then

suppy ¢ (x1, - ) C Tp(e/2).

We do not use Proposition 2.2 directly in this paper, but present it in order to demonstrate the relevance
of the associated cluster Q(¢).

2B. Extended cut-offs. In our analysis the central role is played by another class of cut-off functions.
These cut-offs are functions of 3N + 3 variables and they are defined as follows: for each x, y € R?,
£ e RN et

O(x,y, )= [[ gix—x) [[ hjy—xp) [ Sfubax—xp), (2-6)

2<j<N 2<j<N 2<k<I<N

where each of the functions g;, h; and fji = fi; is one of the cut-offs 6 or ¢ defined in (2-2). We call
such functions extended cut-offs. Each extended cut-off uniquely defines two admissible cut-offs:

dx,x)= J[ gix—x) T[] Sfubw—x), (2-7)
2<j<N 2<k<I<N

wy, )= [ hjy—x)) [I fulx—x); (2-8)
2<j=<N 2<k<I<N

see definition (2-3). We say that the pair ¢, u and the extended cut-off @ are associated to each other.
We denote by P = Q(¢) and S = Q(w) the clusters associated with ¢ and u respectively.
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We recall that the functions ¢, u and & all depend on the parameter €. Thus whenever necessary we
include ¢ in the notation and write, for example, ® (x, y, X; &). Note however that the clusters P and S
associated with the admissible cut-offs ¢ and u do not depend on &.

Below we list some useful properties of the extended cut-offs ® and associated admissible ¢, n adapted
from [16, Lemmata 4.6, 4.8].

Proposition 2.3. If P* NS is nonempty and |x — y| > ¢, then ®(x, y, X; &) =0 for all £ € R3N 3.

In the estimates further on we assume, as a rule, that |[x — y| > ¢, so due to Proposition 2.3 from now
on we may suppose that P* C S¢ (which is equivalent to S* C P®). Under this condition we obtain the
following information about the support of the extended cut-off &:

Proposition 2.4. If P* C S¢, then for all x, y € R? we have
suppy @ (x, v, -5 &) C Xp(x, e@N) NXs: (x, e@N) )N Xs(y, e @N) )N Xps (v, 4N) 1. (2-9)
If, in addition |x| > €, |y| > ¢, then

suppy @ (x, y, - ;&) C Tp+(e/2) N Ts-(¢/2). (2-10)

To complete this section we need to make a remark on the cluster derivatives of the extended cut-offs.
For any cluster Q C R we denote by DZ”QCD(x, v, X) the cluster derivative of ® as a function of the
variables (x, X), i.e.,

DY q®(x, y, £) =Dgd,(x, £), where ®,(x, £) := ®(x, y, £). (2-11)
Similarly we define the derivative D;’f’ QP (x, y, x). It immediately follows from the definition of ® (x, y, x)
that for any clusters Q;, Q2 and all m = (m, my) € N9, the bound

1 if [m| =0,

_ . (2-12)
e (x, y, %) if |m| > 1,

IDY DY, P(x, v, %5 8)| S {
holds, where

M(x,y, 8)= Y EWNe'lx—x;)+ X ENe'ly—x;)+ X E(Ne'x; —xl); (2-13)
2<j=<N 2<j=<N 2<j<k=<N

see (2-1) for the definition of the function &.

3. Regularity estimates

3A. Cl-regularity for elliptic equations. In what follows we rely on the well-known C'-regularity bounds
for solutions of second order elliptic equations on bounded domains. This type of regularity is discussed,
e.g., in [21, Chapter 3; 13, Chapter 8]. To be precise, therein one can find bounds even in the space C!*?
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with a suitable 6 € (0, 1), but we are not concerned with the Holder properties. Moreover, in this paper we
do not need the most general form of the equation. For our purposes it suffices to consider the equation

(~A+ax)-V+bx))u=g, (3-1)

on an open ball B C R?, where all the coefficients are L°(B)-functions. The proposition below provides
some convenient sup-norm bounds for the weak solution and its first derivatives. Since the proof is quite
short, we provide it for the sake of completeness. It is similar to the argument in [12, Proposition A.2].

Proposition 3.1. Let Bg = B(xg, R) C Rdfor some xo € R? and R > 0. Suppose that u € WI’Z(BR) isa
weak solution of (3-1), where a, b, g € L°(Bg), and

@l ey + 10108y = M,

with some constant M > 0. Then for any r € (0, R) the function u belongs to W>*(B,) N C'(B,) and

”u”Cl(B_,) S ||u||L2(BR) + ||g||L°°(BR)v (3-2)
with an implicit constant that depends only on the constant M, dimension d and the radii r and R.

Proof. The inclusion u € W>2(B,) is a direct consequence of the standard interior regularity result given
in, for example, [13, Theorem 8.8].

In order to prove that the weak solution u € W'?(Bp) has the C!-regularity in B, we repeatedly apply
the following elementary fact.

Assume that u € Wl’p(Bp) with some p € (1, oo) and p < R. Then for any v < p the following is true:

(1) If p <d, then u € W"4(B,) with ¢ = p(1+d~"') and
lullwrag,y S lullres,) + gl s,
Sllullwreg,) + 18l=s,)- (3-3)
(2) If p > d, then u € C'(B,) and
lullcr gy < lulleres,) + gl s,)
S lullwr g,y + 118l s,)- (3-4)

Indeed, under the assumption u € WYAR (B,), by interior L”-estimates (see, e.g., [13, Theorem 9.11])
we have u € W>? (B,) and the standard bound holds:

Nl s, S lullercs,) + gl m,)- (3-5)

If p < d, then we use the bounded embedding W>? c W4, for all ¢ € [p, p*], p* =dp(d — p)~'. In

particular, the value ¢ = p(1 +d~") belongs to the interval [p, p*], which proves (3-3). If p = d, then

W?2P c W' for all ¢ € [p, 00), and hence for ¢ = p(1 +d~") in particular. Hence (3-3) holds again.
If p > d, then we use the embedding W2P c C!, so that (3-5) leads to (3-4).
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Let us proceed with the proof of (3-2). If d = 1, then the solution u € Wl’z(R) satisfies (3-4) with
p =2, which immediately implies (3-2). Suppose that d > 2, and define the sequence

gn=2+dH", n=0,1,....
Let £ > 1 be the index such that gx—; < d and g > d. Pick finitely many numbers r,, > O such that
F<rg<rp-1 <---<rp<ro=R.
Since u € W"2(Bg) we can apply the bound (3-3) with v =r|, p = R and p = go = 2, ¢ = ¢1. Repeating
this step successively for p=r,, v=r,11 and p=q,, g =qn+1 foralln=1, ..., k, we arrive at the bound
”u”le‘Ik(Brk) S, ”u”Wqu_l(Bfk—l) + ||g||L°°(B,k71) S T
< Nl g, ) + 18 NLecs,) S el 2 + 18 lIL>(a0)-

As g > d, we can now use (3-4) which gives

lullcr g,y S leellwra s, ) + 18 llL=cs,,)
Sl 2ep) + 181> (B)-

This completes the proof of (3-2). (I

3B. Cluster derivatives. The next result is tailored for later use with the multiparticle Schrodinger
equation. We assume in (3-1) that d = 3N and the variable x is given by x = (x, x2, ..., xn).

Now we obtain better regularity properties of the weak solution of (3-1) assuming some additional
smoothness of the coefficients with respect to cluster derivatives. Precisely, consider a weak solution u
of (3-1) in the ball B(xg, R¢) with some xy € R*N, R > 0, £ € (0, 1]. Suppose that for a cluster set
P ={Py, Py, ..., Py} the coefficients @ and b in (3-1) satisfy the bounds

IDBa(x)|+ |DEb(x)| < 7™ x € B(xo, RE), (3-6)

forall m e NSM , with constants potentially depending on m, R and xp, but not on £. In the next theorem
we obtain bounds for the cluster derivatives D u with explicit dependence on the parameter £ € (0, 1].

Theorem 3.2. Assume the conditions (3-6), and let u be a weak solution of (3-1) in B(xg, R{) with
the right-hand side g = 0. Then for all m € N?)M and all r < R the cluster derivatives Dgu belong to
C! (B(xo, rﬁ)). Furthermore, if | m| +k > 1, where k =0, 1, then for all v € (r, R) we have

k 1—|m|—k
IV DB Ul Bxg.ren S €™ (CllullBeowey + I VUllL=Bxo.v0)- (3-7)
If |m| > 2, then also
2— I
IDE ullL (Bxo,reyy S €™ (lf.ll}fgiz IDpullL>(Bxy.ve)) + IVUllL® (Bxvey) + NUllL>Baovey)-  (3-8)

The implicit constants in (3-7) and (3-8) may depend on the constants r, v, R, order m of the derivative,
cluster set P, and the constants in (3-6). In particular, if the constants in (3-6) are independent of xg, then
so are the constants in (3-7) and (3-8).
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In this paper we need the bound (3-7) only. Nevertheless, the bound (3-8) may be of independent interest.
The idea of the proof follows an argument in [12]. Namely, we rescale the problem by introducing the
function

w(y) =u(xo+£y), ye€BOR),
and the coefficients
a(y) =a(xo+Ly), B(y)=>b(xo+Ly).
After the scaling (3-1) takes the form
—Aw+20a-Vw+2Bw =0. (3-9)
Note that by (3-6),
IDpa(y)|+DpB(I <1, yeB(@O,R) (3-10)

forall m € N?)M.
We are interested in the bounds for the function w,, = Dgw for y € B(0, R). For the sake of brevity
throughout the proof we use the notation B, = B(0, r) for r > 0.

Lemma 3.3. Let £ < 1. Suppose that w is a weak solution of (3-9). Then for all m € NgM andallr < R
the cluster derivatives wy, belong to ! (B,). Furthermore, if |m| > 1, then for all v € (r, R) we have

lwmllcr iz S € Twllie, + 1wl (3-11)
If |m| > 2, then also

lwmllcisyy S max, 1Dpwliss, + VW=, +Clwli=m,, (3-12)
Proof. We begin the proof with a formal manipulation assuming that all the cluster derivatives w,, exist
and are as smooth as necessary. Applying the operator Dy to (3-9) and using (3-10) we obtain the
following equation for the function wy,:

— AWy 420 & - Vwy 4+ 2B W = gm, (3-13)
with
gm=-20 3 ()05 ) Vu,— 3 (G)Op ) w,.
0<g=<m 0<g<m
lg1<|m|—1 lg|<|m|—1

It follows from (3-10) that

lgmliios, S X Tyt p), Tyl p) =Ll Vwglii=s, + Clwglli=s,, (3-14)
q:0<|gq|<|m|—-1

for all p < R.
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Now we need to justify the above formal calculations. First note that since w is a weak solu-
tion of (3-9), by Proposition 3.1 it belongs to WZ’Z(B,,) N CI(B_p) for all p < R, so that To(¢, p) =
LVw(lLes,) +£2||w|||_00(3p) is finite, and as a result, for [m| = 1 we have

lgmlliL=s,) < To(, p) = LIIVw(|L>s,) + 02 lwlies,), 0<p<R. (3-15)
By Proposition 3.1, for all m such that |m|=1 and all r < p, we conclude that w,, € WZ’Z(B,)ﬁC1 (B,) and

lwmllct gy S Nwmlles,) + 1 gmllL=s,)

2
SIVwliex,) + 1gmlliies,) S IVwllies,) +€ lwliees,)-

This proves (3-11) for |m| = 1.

Using the above observation as the induction base, we now prove that wy, is indeed well-defined for
allm e NSM and that it is a weak solution of (3-13). To provide the induction step assume that for some
k=1,...,and all m, 1 < |m| <k, the function w,, is a weak solution of (3-13) in B, for all p < R (and
hence belongs to W2’2(B,) nc! (B,),r < p, by Proposition 3.1), and that it satisfies (3-11). Let us prove
that the same is true for the function w,, for all n such that |n| =k + 1.

First note that for all p < v < R the function g, satisfies the bound

Ignlle(s,) S LIVWlep,) + € lwllees,)- (3-16)

Indeed, in the bound (3-14) for Ty (¢, p) we use the estimate (3-15). For T, (¢, p) with 1 < |g| < k we
use (3-11) to obtain the estimate

Ty(6. p) < Clwgllcr iy < € IVwliss, + £ wl=s,)-

In view of (3-14), this gives (3-16) for g,, as required. Furthermore, as w,, € W2’2(Bp) for all |m| <k,
we have w, € Wl’z(Bp). Now, integrating (3-9) against the function (—1)k+1D’|§n, with an arbitrary
n € C3°(B,) we obtain

0= (—1)’<+1wa-v Dindy + (—1)F12¢ /oc-Vw D',;ndy+(—1)’<“z2/ﬂw D&y dy
:/an-Vndy—I—ZE/oz-Vw,,ndy+£2//3w,,ndy—/g,,ndy,

and hence w, is a weak solution of (3-13) in B,. Since the coefficients and the right-hand side of (3-13)
are bounded uniformly in £, by Proposition 3.1, w,, € WZ’Q(B,) nc' (B,) forall r < p and

lwallcr gy < lwallies,) + 18nllL>s,)
S lwallies,) +LIVwliL=s,) + | wllL<s,), (3-17)

where we have also used (3-16). Let m, |m| =k, be such that [n — m| = 1. Therefore, by (3-11),

2
lwallloi,) S IVwmlies,) S IVwliees,) + £ [wliees,)-
o o
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Together with (3-17) this leads to
2
lwallcr gy S IVwllies,) + € Twlii=s,).

as required. It remains to conclude that by induction, the bound (3-11) holds for all m € NSM .
The proof of (3-12) is also conducted by induction. Assume that |m| = 2. From (3-17) we get that

2
lwmllcr gy S lwmlliees,) +EIVwllies,) + L lwllies,)

< max 1Dpwlu=(s, + UVwli=s + Clwleg, (3-18)

for all r < p < v < R, which gives (3-12). The bound (3-18) serves as the induction base. Let us
now provide the induction step. Suppose that (3-12) holds for all m such that 2 < |m| < k with some
k=2,3,.... Let us prove that it holds for all w, where |r| = k+ 1. Let m, |m| = k, be such that
|n —m| = 1. Thus (3-12) for w,, implies that

lwaliies,) S IVwmllies,) < e IDpwllLs,) + €I Vwli=s,) + € wll 2g,)-
Substituting this inequality in (3-17), we obtain (3-12) for w,,.
Consequently, (3-12) holds for all m € N3¥ . |m| > 2. O

We would like to point out one fact which was not needed in the above proof but deserves mentioning.
The bound (3-11) for |m| =1 and bound (3-12) for |m| > 2 imply (3-11) for all |m| > 2. Indeed, by (3-11)
with |g| = 1, we have

I 2
lg}ﬁxz IDpwllL>s,) S 2o IVwgliies,) S IVwlites,) + € lwllies,)
= lgl=1

for all p < v < R. After substitution in (3-12) this gives (3-11) for all |m| > 2, as claimed.
Proof of Theorem 3.2. Since
VEwm (y) = €™ (VDR u) (xo + Ly), k=0,1, meNM,
the bound (3-11) for |m| > 1 rewrites as (3-7). If m = 0 and |k| = 1, then (3-7) is trivial.
The bound (3-8) is obtained from (3-12) in the same way. O
4. The Schrodinger equation

4A. Reduction of the Schriodinger equation. Here we apply the bounds obtained in the previous section
to the Schrodinger equation

—AY+(V-E)W =0, 4-1)

where the potential V is defined in (1-1). Throughout this section we do not impose the condition
Y€ L2(R3N ), but consider local solutions of (4-1). In order to reduce (4-1) to the equation of the
form (3-1) we use the representation ¥ = e’ ¢ with a function F such that F, VF € L (R3M).

loc
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In the mathematical physics literature the function e’

is often called a Jastrow factor; see, e.g., [15].
As pointed out by a referee, it appears that the first use of such Jastrow factors in the mathematical study
of Coulombic wavefunctions was in [22]. The purpose of having a Jastrow factor (such as, e.g., in (4-3))
is to isolate the main singularity of the solution i, i.e., to ensure that ¢ is more regular than . For
example, it was shown in [17] that ¢ € Cll(;‘c)‘(lRm ) for all @ € (0, 1). In [10], extracting yet another Jastrow

factor that we do not specify here, allowed one to get ¢ € Cllo’é (R3M),

After the substitution (4-1) rewrites as
—Ap—2VF -Vop+(V—AF —|VF?—E)$ =0. (4-2)

More precisely, if ¥ € WI’Z(RW ) is a weak solution of (4-1), then we also have ¢ € WII(;CZ([R{3N ) and ¢ is

loc

a weak solution of (4-2). We choose to define F asin [17; 8; 9; 12]:
N z 1 Nz [, 1 / 5
F(x):Z<—E|Xj|+Z > Ixj—xkl)—i-Z(E |x ] —i—l—Z ) |xj — Xkl —I—l), (4-3)
i=1 j<k<N k=1 j<k<N

which has the property that
F,VF e L®(R*"). (4-4)

In fact, the original choice of F as used in [17, Proposition 1.5] is given by the first sum on the right-hand
side, which has a bounded gradient. We follow [17, Proof of Theorem 1.2] and [8; 9; 12] to include the
second term which is added to ensure that F itself is bounded on R*N. Thus both conditions (4-4) are
satisfied. Due to the straightforward identities

2
Alxj — x| = ——, Alxj|=—,
| j k| |Xj—xk| | ]| |Xj|
we have
N/ z 1
A (-Zmil+y X x—ud)|= v,
j=1 j<k<N
Therefore
VE—AF+V)eL®@R*™) forallk=0,1,.... (4-5)

Using the factorization v = ef ¢ it was shown in [17, Theorem 1.2] that, for any positive r, R such that
r < R, the bound

IVl Baor) S 1YL B0, R))- (4-6)

holds. The next lemma was proved in [12, Proposition A.2], but we provide a somewhat different (shorter)
argument that uses only Proposition 3.1.

Lemma 4.1. Let ¢ € WI’Z(IR3N) be a weak solution of (4-1). Then ¥ € WI’OO(IR3N) and for all numbers

loc loc
r > 0and R > 0 such that r < R we have

1 e B + IV 3o S 1 a0, 7 4-7)

where the implicit constant does not depend on W and xo € R3N, but depends on r and R.
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Proof. The function ¢ = e~ ¥4 is a weak solution of (4-2) in B(xo, R) with arbitrary xo € R*" and R > 0.
As established above, the coefficients in this equation are uniformly bounded on R*V. According to
Proposition 3.1, ¢ € C' (R3V) and for any pair of radii r, R, r < R, we have the bound

I@llL>s,) + 1VlL=B,) S 19128, (4-8)

where Bg = B(xg, R), and the implicit constant is independent of x(. Since F and V F satisfy (4-4), we
can write for v that

Il S I@lies,)  Nol2m,y S 1V Il2g, and IVYlles) S IVAlLxs,) + I1@llxs,)-

Therefore (4-8) implies (4-7), as required. U

4B. Cluster derivatives of ¥ : application of Theorem 3.2. For a cluster P C {1, 2, ..., N} introduce
the set

3N .
Ep:{xe[R ST e T1 Ix;c—lezo},
jeP keP,leP¢

and the distance
R
V2

The paper [12] contains bounds for cluster derivatives DF ¥ (see, e.g., [12, Proposition 1.10]) outside the

dp(x) :min{lle, lx; —xkl:j€P, ke PC}, Ap(x) = min{l, dp(x)}. 4-9)

set Xp, depending explicitly on the distance dp. We need a generalization of this result to cluster sets
P ={P;, Py, ..., Py}. Define

and
dp(x) =mindp,(x), Ap(x)=min{l,dp(x)}. (4-10)
i .

The presence of the factor 1/ V2 in the definition (4-9) is convenient since it ensures that the function dp
is Lipschitz with Lipschitz constant = 1:

Lemma 4.2. Forall x, y € R* we have
ldp(x) —dp(¥)| =< [x — yI. (4-11)
The same inequality holds for the function Lp(x).
Proof. It suffices to prove the inequality just for one cluster P. Let j € P, k € P°, and estimate:
il < Iyl +1xj =yl < lyjl+1x =yl
e =2l < 1y = il 1y =1 e = xil < 1y =yl + V2 1x = yl.

For the last inequality we used the elementary fact that if a> 4+ b> < ¢ for some positive a, b and ¢, then
a+b<2c. Taking the minimum (4-9), we get dp(x) < dp(y) + |x — y|, which gives (4-11). The
function Ap trivially satisfies the same inequality. ([
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Our objective is to find L>-bounds for the cluster derivatives Dj ¢ outside the set Xp. Let us fix
xo € R3V \ Xp, and denote

A = Ap(xp).
Observe that for any R € (0, 1) the inclusion B(xg, RA) C R3N \ =p holds. Indeed, by Lemma 4.2,
[Ap(x) — Al <|x —x9| < RA, x € B(xg, RA),
which implies that
O<(1—RA<ip(x)<(1+4+R)A forall x € B(xy, RA), (4-12)
and hence proves the claim. In the next theorem we estimate the derivatives Dg ¥ in the ball B(x, R1).

Theorem 4.3. Let xo € R3V \ Xp and let A = Ap(xg). Then for any r, R such that0 <r < R < 1, and
forallm e NSM, the cluster derivatives D'y belong to c! (B(xo, Rk)). Moreover, if |m|+ k > 1 with
k=0,1, then

1D VAU e @iy S A ™IV I oo, k1) + VY I Bexo, R2) ) (4-13)
with an implicit constant depending on r, R, but independent of xo € R*V \ Zp.

For a single cluster P the bound (4-13), even for arbitrary L”-norms with p € (1, co], was proved
in [12, Proposition 1.10]. The proof in [12] does not immediately generalize to arbitrary cluster sets. As
in [12] we use the reduction to (4-2). In [12] the choice of the Jastrow factor depended on the cluster P,
whereas we use the standard function (4-3) independent of the cluster set P. To check that the coefficients
in (4-2) satisfy the conditions of Theorem 3.2, we start with the following elementary observation.

Lemma 4.4. Let g € C*°(R>\ {0}) be such that
18" g(x)| < x| for allm e N3,
Then for any cluster set P and any j, k=1,2,..., N, we have
IDEg (x| + Dpg(x; —xi)| S dplx) ™
forall x € R*N \ Zp.

Proof. For simplicity we prove the lemma for one cluster, which is denoted P. Assume that m € N2,
|m| > 1. It is clear that Dg'g(x; —xx) =01if j,kePor j,keP. If jeP,keP ork eP, jeP° then

D g(x; — xi)| = 190 (X [xmx, = S |xj — 2l S dp ()™,

as claimed. In the same way we get the required estimate for Dy g(x;). ([
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Corollary 4.5. Let F be the function (4-3). Then for any cluster set P we have for all x ¢ ¥p and all m
that
IDEVE )|+ |DRIVF ()] S dp(x) . (4-14)

If |m| > 1, then
[Dpef ™| < apx)! i, (4-15)

Proof. For the first sum in (4-3) the required bound for V F immediately follows from Lemma 4.4. The
second sum in (4-3) is a smooth function whose derivatives have the same decay far from Xp as those of
the first sum. For |V F|?> we use the Leibniz rule, which leads again to (4-14).

To prove the bound (4-15) observe that the derivative Dife” can be written as a sum of finitely many
terms of the form

(Dllgl F)m (D"gz F)nz . (D";r F)ns eF,

where 1 < |ki| < |ky| <--- < |ks| <|m|,n; > 1, and |k{|ny + |ka| ny + - - - + |kg| ngy = |m|. Each such
term can be estimated by

dp(x)nl(l—\kl|)+'l2(1—|k2|)+-"ns(1—\kl|) — dp(x)'ll+n2+-"+ﬂs—\m| < )Lp(x)l—lml

as required. (I

Proof of Theorem 4.3. In view of (4-2), the function ¢ = e~y satisfies (3-1) where
a=-2VF, b=V —AF—|VF?—E.

Let us fix a number R; € (R, 1). By virtue of (4-5) and (4-14), thus defined coefficients @ and b satisfy
the bound

IDEa(x)|+ [Dpb(x)| S 1+dp(x)™™ Sap) ™™ <A™ x € Bxo, RiM),

where A = Ap(xg). For the last inequality we have used (4-12). Thus the condition (3-6) is fulfilled with
£ =X < 1. Consequently, by Theorem 3.2, Df¢ € CY(B(xg, r1)) for all r < Ry. Moreover, if |m|+k > 1,
where k = 0, 1, then for r < R we have

IVEDE Bl By iy S A ™I (ANl (Bxo. k1) F IVOIL=(Bxo. RAY))- (4-16)
Now we need to replace ¢ with the function ¥ = ef ¢. Let us prove (4-13) with k =0, |m| > 1. By the
Leibniz rule,

DE("9)= X (§)Dp "(")Dpo
<q<m
= Y (q)0p "(")Dpop+Dp (e )¢ +e Do,
0<g=<m

0<|gl<|m|

By (4-15) and (4-16), for x € B(xg, rA) the first sum is bounded by

W (ANl B, r) + I VO IL=(Bxo, R ) -
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The second term is estimated with the help of (4-15) by

AL (xR -
Using (4-16) the third term is estimated by

M (NI o, R + VD IL* (B0, RA)-

Consequently,

1_
IDEW > Beroriy S A ™ (@1 (Boxo, k1) + | VOIL®(Bxo, R )- 4-17)

It remains to note that in view of (4-4),

Pl SVl VOIS I+ IV,

so that the right-hand side of (4-17) is estimated by the right-hand side of (4-13) with £k = 0.
The case k = 1 is done in the same way. U

Later on we use Theorem 4.3 in a slightly different form:

Corollary 4.6. For all m € NSM the cluster derivatives D belong to C'(R3N \ =p), and under the
condition |m|+k > 1 withk =0, 1, forall x € R3N \ Xp and all R > 0, we have

IDEVA Y (0] S 2p(0)' "1 foo (s R), (4-18)
Joo(x; R) = ¥ llL=Bx,r) T VY IIL* B, R))- 4-19)
The implicit constant in (4-18) is independent of W and x, but may depend on R.
Proof. Let Ry = min{1/2, R}. Then it follows from (4-13) that
IDE VA ()] S 20" T oo (e RiA() < AT £ (e B,

Here we have used the fact that A(x) < 1. This completes the proof. ]

5. Auxiliary integral bounds

Here we derive several integral bounds that are instrumental in the proof of the main result in Section 6.
Let ¢ € L2(R3") be an eigenfunction. Along with the notation (4-19) it is convenient to introduce for
arbitrary R > 0 also
folx) = fr(x; R) = HWHLZ(B(x,R))'

According to (4-7), for any R > 0 we have

Joo(x: R) S f2(x: 2R), (5-D

with an implicit constant depending on R.

The next lemma provides bounds for integrals involving the functions f-(x) and f>(x), and is an
adaptation of inequalities given in [12, Proposition A.3], with similar proofs. Recall that the function
Me(x, y, x) is defined in (2-13), and the density p(x) —in (1-4)
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Lemma 5.1. Let x, y € R3. Then

B

1
/foo(x7 x; R) fo(y, X; R)dx SJ (HIOHLI(B(X’ZR)))Z(”p”L‘(B(y,ZR))) . (5-2)

For any G € L'(R?) we have
/[lG(xj — x|+ G — x| + |G (x| foo (x, £ R) foo(y, X; R) d%
1 1
5 “G”LI(RB)(HPHLI(B(X,ZR)))2 (||'0||L'(B(y,2R)))2 (5-3)

forall j,k=2,3,...,N,j#k,andt € R3. In particular,
1 1
[V 3.8 foo o £ R foo (0 £ R A S (1111 30 2my) (1Pl 2my) T (54

The implicit constants in the bounds (5-2), (5-3) and (5-4) depend on R, but are independent of x, y, t € R3.

Proof. Due to the Schwarz inequality, it suffices to estimate the integrals for x = y. For u € R¢ and R > 0
denote by ]l;t,l}e (x), x € R?, the indicator function of the ball B(u, R) C R?.
Using (5-1) we get

[ st £ R) a2 5 [ (o, %:2R)) di
= [[1v@Paf) p@ dzds
=f|x/f(z)|2fﬂfz{v,§(x,£)dﬁdz.

Observe that

3N 3 3N-3 3) 3N-3
100, #) <10, 0100 V@) =10, @1l (@),

so the integral does not exceed

/ W @18 )( / 1309 (%) d:%) dz < R3V3 /\Hkm p(2)dz.

This proves (5-2).

Proof of (5-3). Again it suffices to estimate the integral for x = y:
[16G; =00l (foolr. £: B) 2 S [ 1G () =30 I(fo(x. #:2R))" df
= [W@P [16G; — x5, #) ds dz.
Represent X = (x;, X;) with X; € R3N—6 as defined in (1-13), and estimate:

3N 3 3N—6 3 3N—-6
IR0 8) <10, () 1007 (F) =100, (2 1957 &)
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Consequently, the integral can be estimated by
[ 1 @P10 G0 [ s, 20| [ 166 —x0ldx; | d%; dz
=G [ WP [155:° @) ak; dz

SIGIe K[ p@dz,

as claimed. The bounds with G (¢ — x;) and G(xi) are proved in the same way.
The bound (5-4) follows from (5-3) with G(s) = £E(Ne~!|s|); see (2-1) for the definition of the
function &. (I

Let us now apply the obtained bounds to integrals involving the distance function Aq(x) with an
arbitrary cluster Q. We use Lemma 5.1 with this choice of function G:

G(s) =Teaqy<y(®)s| ™, seR’, a=0, £€(0,1], (5-5)
so that ||G||L1(R3) < hat2(ge), where the function 4y is defined in (1-7). Recall that Aq(x), ff\Q(t; €)
and ?Q (8) are defined in (4-9), (2-4) and (2-5), respectively.

Lemma 5.2. Leta > 0 and ¢ > 0. Let Q be an arbitrary cluster. Then for any R > 0,

/A oty B) foo (X, B3 R) foo (v, £5 R) d
Xq(t;e)NTq(e)

1 1
5 (1 + 117+ ha+2(8)) (||IO||L1(B(x,2R)))2 (”p”L‘(B(y,ZR)))Z’ (5-6)

uniformly inx, y,t € R3. If 1 ¢ Q, then the term |t|~% is absent. The implicit constant in (5-6) may depend
on R, but is independent of ¢.

Proof. By the definition of Aq we have
AU, X)) <14 3 Il ™ X lt—xl ™+ X lxj—xl™ if1eQ, (5-7)
keQ keQ JEQ.ke(Q%)*

and

AUB) TS T4+ 0 Il ™+ X lt—xd™+ X xj—xl™ ifleQ. (5-8)

keQ* keQc JEQ* keQ©

Let us estimate the contributions from each of the summands. Assume first that 1 ¢ Q (i.e., Aq satisfies (5-7))
and estimate the integral

Fi(t,x,y) =fA

ol =2 T feo (x, X5 R) foo (3, X5 R) dX (5-9)
Xq(t;e)NTq(e)

for an arbitrary fixed pair j € Q, k € (Q°)*. Since j, k > 2, in view of the definition (2-4) of X, Q(t, e),
we have

Xq(t; ) C{# e RN 73 |xj —xi| > g},
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Therefore,
Fi(t, x, y) 5/ %) — 36 foo(x, £1 R) foo(y, #: R) di.

[xj—xk|>e

If ¢ > 1, then by (5-2) we have

Bl—=

1
ij(t» x,y) ,S (”'OHLI(B(X,ZR)))Z (||10”L'(B(y,2R))) . (5-10)

If ¢ < 1, then

Fix(t,x,y) s]

o j —xp|>

ool £ R) fooly. B R>d£+/G<xj —x0) foolx, £ R) foo(y, %1 R) dE,

where G is as in (5-5). For the first integral use (5-2) again. As mentioned before the lemma,
|G ||L1(R3) < hay2(8), so the second integral is bounded by

(S1C

1
ha+2(8)(||,0|| Ll(B(x,ZR))) 8 (”p”LI(B(y,ZR))) )

in view of (5-3). Thus the integral (5-9), and hence the contribution from the last term in (5-7) as well,
satisfies the bound (5-6).

In the same way, using (5-3) we derive the bound (5-6) for the integrals containing the remaining terms
in (5-7). Let us estimate, for example, the integral

Fk<z,x,y>=/A T foo(x, £ R) foo(y, #: R) di
Xq(t;6)NTQ(e)

for an arbitrary fixed k € Q. By the definition (2-5),

R3N_3 .

Tale) C (% € x| > €},

so that
Fk(z,x,ws/l XK1 foo (X, 1 R) fooly, #: R) d.

|xx|>¢€

As in the case of the integral (5-9), if € > 1, then Fj satisfies the bound (5-10). If ¢ < 1, then

Fi(t, x,y) 5/

[xk|>1

foo(x, %5 R) foo(y, X3 R) df+/G(Xk) foo(x, X5 R) foo(y, %3 R) dX,

where G is again given by (5-5). Arguing as for Fj; above, we conclude that Fj satisfies (5-6) as well.
This proves (5-6) for the case 1 ¢ Q.

Suppose now that 1 € Q so that Lq satisfies (5-8). The sums on the right-hand side of (5-8) are similar
to those in (5-7) and are treated as in the first part of the proof, and hence they lead to the estimate (5-6).
The only term which is new compared to (5-7) is |¢|~“. Using (5-2) we estimate its contribution by

(S1E

1
17 [ fooe. 82 R) foo(y £ RY AR S 117 (120 a0v,2m0) * (1211300 2)

This completes the proof of (5-6). ([
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Lemma 5.2 has a useful corollary that will be crucial in the proof of Theorem 1.1. Let ® = ®(x, y, X; &)
be an extended cut-off as defined in (2-6), and let P = P(¢) and S = S(¢) be the clusters for the admissible
cut-offs associated with ®. For all a > 0 define

IV (x,y; e, R) =/ (hse,py (0, £)) ™ foolx, £ R) foo (v, £; R) dX,
suppy P (x,y, - ;&)

ID(x,yie, R) = [ (hspr (7 £) 7 fao (X, £5 R) foo (v, £; R) d, (5-11)
suppy ®(x,y, - ;€)

39 (x.y; 6, R) = 8’“/ Me(x, y; #) foo(x, £; R) foo (y, £ R) d£.
Lemma 5.3. For any ¢, R > 0, we have
I 0x, ys e, R+ (x, yi8, B +30(x, yi 6, R)
ST+ 1xI7 + Y7 + hara(e)) (IIPIILI(B(X,ZR)))%(IIPIILI(B(y,ZR)))% (5-12)

for all |x| > ¢, |y| > € and |x — y| > €. The implicit constant in (5-12) may depend on R, but is
independent of ¢.

Proof. Since |x — y| > &, by Proposition 2.3 we may assume that P* C S°.
We first estimate 35,1)(x, v; €, R). By the definition (4-10), we have

Mis+py(r, £) 71 = max{As (x, )71 Ap(r, £) 71 < Ase(x, £) T+ Ap(x, £) 7L
Furthermore, since P* C S° and |x| > ¢, |y| > &, we can use (2-9) and (2-10):
suppy @ (x, y; - ;&) C Xp(x; €(@N)") N Tpe(e/2),
suppy ®(x, y, - 1 £) C Xs+(x; (AN) ") N Tou(2/2).
These lead to the bound
1V e RS [ 2o (X, £) 7 foo (x, £ R) foo(y, £; R) d

Xp(x;e(4N)"HNTp(e/2)
—~ TS )\S*(xs-’z)_afoo(xn’z,R)foo(ys-st)d-’?
Xg«(x;6(4N)""NTsx(¢/2)

By (5-6) with ¢ = x, each of these integrals is bounded by

8=

1
(1 + x|+ hu+2(8)) (||p||L1(B(x,2R)))2 (”p”Ll(B(y,zR))) s

which implies (5-12). The integral 322) (x, y; &, R) is estimated in the same way.
The integral 323)(x, v; &, R) is estimated with the help of (5-4):

1 1
3 . 3— 3 3
34(1 )(X, y; &, R) 5 e (”'OHLI(B()C,ZR)))Z (”P“Ll(g(y,zR)))z

=

1
5 hai2(8) (”p”L'(B(x,ZR))) ? (”p”|_1(3(y,2R))) .
Combining the obtained bounds we complete the proof of (5-12). U

Now we are in a position to prove Theorem 1.1.
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6. Estimates for the density matrix: proof of Theorem 1.1

Denote for convenience of notation
Vrp(X,¥) 1= 0,07y (x, y) Z/aiw(x,f)aflﬁ(y,f)df, (6-1)

where r, p € Ng. If |[r| <1, |p| <1, then by Corollary 4.6 the integrand in (6-1) does not exceed
foo(x, X5 R) foo(y, X; R), see (4-19) for the definition of fs,(x; R). Therefore, the estimate (5-2) entails
the bound

1 1
rp DTS (1000 s2r) (0L 86 2m0) e 1Pl <1, [Pl < 1. (6-2)

For further derivatives, the direct differentiation under the integral is not effective because of the singular-
ities of ¢ at the coalescence points. Instead, we study local quantities inserting under the integral the
extended cut-off functions as follows. For a fixed ¢ > 0, let ® = ®(x, y, X; £) be an extended cut-off as
defined in (2-6). Define

Vrop (X, y: @, €) =/<1><x, v, % )0y (x, £)L Y (v, £) d#. (6-3)

To estimate this integral we can use the cluster derivatives associated with the cut-off @, as described in
the introduction.
The first step towards Theorem 1.1 is the following lemma.

Lemma 6.1. Lete >0, R > 0,and |r| <1, |p| < 1. Then forall o, B € N3, the bound

10230 vy p(x, y, @; )
1 1
S (U 7Py 7 e g 1142(0)) (Lol aer ry) (1011 8 GR0y) E (674

holds for all |x| > ¢, |y| > € and |x — y| > e. The implicit constant is independent of ¥, &, but
dependent on R.

Proof. Throughout the proof for the brevity of notation we often omit the dependence on ¢. Let P and S
be the clusters for the admissible cut-offs ¢ and p associated with ®. In particular, 1 € PNS. By
Proposition 2.3 we may assume that S* C P¢, which is equivalent to P* C S°.

If « = B =0, then (6-4) holds because of (6-2). Thus we may assume that ||+ 8| > 1. Let us make the
following change of variables under the integral y, ,(x, y; ®). Define Z = (22, z3,...,2n) € R3V=3 by

x, JeP*,
zj=1y, JeS,
0, jeP°nse.

Change the variable in (6-3): X = w + Z, so that (6-3) rewrites as

Yrp(x, y; @) = / ®(x, y, b +2) Y (x, b +2)0 Y (v, +2) di.
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For any function g = g(x, x) and all [, m{, m; € Ng, we have
(g, W+2)) = Dpg)(x, d+2), d(g(y,®+2))=(Dpg)(y, w+2)

and
a;nla;nz(qy(x’ y, _|_2)) = (D;"’})D';?SCD)(X, v, w+2),

where we have used the notation (2-11) for the cluster derivatives of the function ®. Denote
Z(-x’ )’) = SuppO CD(X, Y, )

Thus we conclude that 07 85 Vrp(x,y; @), a, B € N3, is a linear combination of terms of the form

Imnk(x, y;€) = /Z( (DYpDY @ (x, y, %)) (Dfp 5y 31 ¥ (x, £)) (Dfpe 505 ¥ (v, %)) dE  (6-5)

'X’.)j)
with
m=(mi,mm), n=(ni,ny), k=ki, k),

where
[mi|+ |y + ki = ||, |m2| + |n2] + k2| = |B].

The cluster derivatives of ® are defined in (2-11). For these derivatives we use the bound (2-12):

R 1 if [m| =0,
D"LD"2d(x, y, X)| < 6-6
For the derivatives of ¢ we use Corollary 4.6:
D% 09 (v, ) S (Msepy (v, ) ™ oo, £5 R/2), .

A A\ — K N
1D py 320 (0, )1 S (his.pry (0, ) T foo(, £: R/2).
In order to avoid cumbersome expressions, in the following calculations we use the notation
w(x, £) = Ais« py(x, X),  fi(y, X) = As pry (3, X).
Assume first that m = 0. In this case, by virtue of (6-6) and (6-7), the integral (6-5) satisfies the estimate

Joni(x, v ) S [Z . y)(mx,f))"”‘ ((y, )™ foo(x, £ R/2) foo(y, £; R/2) dR.

By Young’s inequality, for all n, k such that |r| + |k| = |a| + |B| > 1, we have

R - |n| k|
e D) TR0 D) = g @l + 1B

Consequently, using the notation (5-11) we can estimate,

('u(x’ f))—lal—lﬂl + ([L(y,.f))_lal_‘ﬂl.

1 2
B0k, y: O S Byl 5 (o vi e R/2)+300), 5 (x, yi 6, R/2),

with a constant independent of €. By (5-12), the right-hand side satisfies (6-4), as required.
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Now assume that |[m| > 1. Using again (6-6) and (6-7) we get the estimate
Imnir i)l Se [ (xﬁy)ﬂvta(x,y,)e)(u(x,:e))""' (20, 2) ™ foo(x, £5 R/2) foo(y, %; R/2) d.
By Young’s inequality again, for all m, n, k such that |m| + |n| + |k| = ||+ |B| > 1, we have

e (u(x, £) " (a(y, )"

_mlaiip | Ay —lal— I8l |k o —lal—IBl
et g W + (a0, :
< ST |a|+|’3|(ﬂ(x %)) |0l|+|ﬂ|(M(y )

Therefore,
Tk (x, y; 8)] < e lel=1Bl /Z(x’y)Mg(X,y,f)foo(x,_f;; R/2) fooly, &: R/2) df
+/Z(x’y)(u(x,f))"“‘_lﬁ‘Ma(x,y,f) foo(x, %5 R/2) foo(y, %; R/2)d%
+/Z(x,y)(ﬁ(y, £) I, 3, B) frolx, £ R/2) fooly, £5 R/2) d.
In the second and in the third integral estimate | M, (x, y, )| < 1 and use the notation (5-11):

1 2 3
Bk ys 1 ST 15 (e vi e R/ + 00 5 (v 8, R/ + 300 5 (X, v 8, R/2),

with a constant independent of €. By (5-12), the right-hand side satisfies (6-4).
Putting the estimates for |[m| = 0 and |m| > 1 together, and summing over m, n, k, we arrive at (6-4),
thereby completing the proof. U

Corollary 6.2. Lete >0, R > 0,and |p| <1, |r| < 1. Then forall o, B € Ng the bound

1 1
10200 v, p Ce, IS (14 x| 7P 1y 7B By 1142(©)) (1011 (e, ) 2 (1011 By ) > (6-8)

holds for all |x| > ¢, |y| > € and |x — y| > €. The implicit constant is independent of x, y and & but may
depend on R.

Proof. In order to use Lemma 6.1 we build a partition of unity consisting of extended cut-offs. Recall
the notation R={1,2, ..., N}. Let E ={(j, k) € Rx R: j < k}. For each subset T C & introduce the
admissible cut-off (see (2-3) for the definition of admissible cut-offs)

or(x;e)= ] &Gj—x) [ 0O:(xj—xi).

(j,k)eY (j.k)ere
It is clear that

Yoorxse)= ] (Le(xj—x0) +6:(x; —xp)) = 1.

YCE (j.k)eE

Furthermore, for every cluster S C R* define

s(y, %;8) =[] ¢(y—x;) [] 6:(y—x)).

Jjes JeS9*
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It is clear that

> sy X e) = [T (Le(x1 —x)) +6:(x1 —x;)) = L.

SCR* jER*
Define

Dys(x,y, £;8) =pr(x, %;8)ts(y, X3 8),  (x,y) eR* xR, £ e RN 3,
so that

Y, Prs(x,y, x;e)=1.
YCE, SCR*

Each function & s is an extended cut-off function, as defined in Section 2B. Using the definition (6-3),
the function (6-1) can be represented as

Vrp(o )= 2. Vrp(x,y; Py, 6).
TCE, SCR*
Applying Lemma 6.1 to each summand we arrive at (6-8). O

Proof of the bound (1-8). Assume that x #0, y #0, x # y and that |/| > 1, |m| > 1. Represent [ = o +r,
m = B+ p with |[r| = |p| =1, so that |/| = || + 1, [m| = | 8| + 1. Furthermore, denote

1 .
&= 5m1n{|x|, Iyl 1x =y},

so that |[x — y| > ¢ and |x| > &, |y| > ¢. Thus it follows from (6-8) that

0107y (x, )| = (9808 i p (x, V)]

S (U e Py 2 @) (00 ry) (101 a6 ) - (6°9)
Since for all a > 0 we have
ha(€) S ha(lx = y) + ha(|x]) 4+ ha(|y])
ST+ 4 [y + ha(lx — y)),
the bound (6-9) implies (1-8). [l

Proof of (1-9). We prove this estimate for the derivative 8fcy(x, y) only, as the proof for the derivative
with respect to y is the same up to obvious modifications. For convenience denote

1 1
A(x,y; R, Ry) = (”,0|||_1(B(x,R1)))2 (”P”Ll(B(y,Rz)))z-

Assume that |/| > 1. Representing [ = « + r, with some r : |r| = 1, and taking 8§ = p = 0, we obtain
from (6-8) that

188y Ce, W1 = 10%y0(x, ¥)]
S (U4 9 By (x = yD)) AGx, y; R/2, R/2). (6-10)
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To “upgrade” this bound to (1-9) we use the fundamental theorem of calculus. Let z € R?, z # x, be such
that the segment
s =y+s@—y), s €l0, 11},

does not contain the point x. Then
! ! ! l
dyy (X, y) =3y, 2) = —/O (z=y)-Vy(@y)(x, ys5) ds. (6-11)

A similar formula holds for the derivative 8; ¥ (x, y), but we omit this part of the argument and complete the
proof for the derivative 3y (x, y) only. Since the integrand in (6-11) contains derivatives both with respect
to x and y, we can use the bound (1-8) proved previously. First we make a convenient choice of z. Denote

x—yl=d, §=Lmin{x|,y]}, & =min{l,s, R/2}, e=2=Y,
4 lx—yl
)
x=y+|x—yle=y+de.
Take z =y — 41 e, so that
3
ly —ysl =561, |z =yl =81, lz—x| =61 +d, |Z|Z|y|—5121|)7|,

and 3
lys| = |y| —sd1 > Zlyl, |x —ys| =d +s81, se€l0,1].

Now apply (1-8) with the radius R/2 to estimate the integrand in (6-11):

12— ) V@) G, vl Sz =1L+ s 1 Ay (1 — 3D A, yys R/2, R/2)
S (U + Iy x|y (d+581)) ACx, y; R/2, R). (6-12)

An elementary calculation shows that for all @ > 0 the bound
81/01ha+1(d +581) ds < ha(d).

holds. Consequently, integrating the bound (6-12) in s € [0, 1] we obtain from (6-11) that

194y Ce IS 185y G D1+ (T4 I el ™1 gy (1 = yD) A, v; R, R). (6-13)
To estimate |8fcy(x, z)| we use (6-10):

8y (e, D1 S (1 x4 2 g (1 = 2D) Ax, 23 R/2, R/2).
As |z —x| =d + 8; = 8; we can estimate:
A (x = 2D) < hyea 80 S T x4y =1
Furthermore, as |y — z| =81 < R/2, we have A(x, z; R/2, R/2) < A(x, y; R/2, R). Consequently,
By (e DL S (L 1 1) A, v R/2,R).

Together with (6-13) this bound entails (1-9). O

This completes the proof of Theorem 1.1.
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Appendix

Here we provide an elementary fact concerning extensions of Sobolev spaces. The proof can be found in
the appendix to [27].

Consider spaces of functions that depend either on one variable x € R¢ or on two variables (z, x) € R/ xR¢.
Denote K ={reR':|t] <1}, B={x e R?:|x| <1} and By = B\ {0}.

Proposition A.1. Let the dimension | be arbitrary, letd > 2, m > 1, and p € [d(d — )~!, 00). Then
WP (By) = W™P(B) and WP (K x By) =W"P(K x B).

We use this fact in Remark 1.2 to describe smoothness properties of the one-particle density matrix
y(x, y).
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