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The classical homomorphism preservation theorem, due to Łoś, Lyndon and Tarski, 
states that a first-order sentence ϕ is preserved under homomorphisms between 
structures if, and only if, it is equivalent to an existential positive sentence ψ. Given 
a notion of (syntactic) complexity of sentences, an “equi-resource” homomorphism 
preservation theorem improves on the classical result by ensuring that ψ can be 
chosen so that its complexity does not exceed that of ϕ.
We describe an axiomatic approach to equi-resource homomorphism preservation 
theorems based on the notion of arboreal category. This framework is then employed 
to establish novel homomorphism preservation results, and improve on known ones, 
for various logic fragments, including first-order, guarded and modal logics.
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1. Introduction

1.1. Summary

In this paper, we take steps towards an axiomatic model theory which is resource-sensitive, and well 
adapted for finite and algorithmic model theory and descriptive complexity. This builds on previous work 
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on game comonads [3,8,17,4,19,5,28], which describe model comparison games in terms of resource-indexed 
comonads on the category of relational structures. This allows the syntax-free description of a wide range 
of logics, indexed by resource parameters such as quantifier rank and number of variables. As explained in 
[2], this opens up a landscape in which properties of the comonad are related to the degree of tractability 
of the logic.

Game comonads and the associated (comonadic) adjunctions have been axiomatised at a general cate-
gorical level in terms of arboreal categories [6,7], in which the objects have an intrinsic tree structure. This 
structure can be used to define notions of bisimulation, game, etc. at an abstract level, and to transfer these 
process notions via an adjunction to an extensional category—the main concrete example in applications 
being the category of relational structures.

In this paper, we show that this axiomatic framework can be used to prove a substantial resource-sensitive 
model-theoretic result, Rossman’s equirank homomorphism preservation theorem, as well as a number of 
extensions and variations, e.g. to modal and guarded logics, and relativisations to a wide range of subclasses 
of structures.

Some striking features of this axiomatic approach are its generality, its resource sensitivity, and the fact 
that it does not use compactness. It is interesting to compare this with the use of accessible categories 
as an axiomatic framework for the study of abstract elementary classes [14]. This is aimed at extending 
first-order model theory into the infinite, replacing compactness by λ-accessibility. By contrast, motivated 
by the needs of finite model theory and descriptive complexity, we are interested in capturing fine structure 
“down below”, in fragments of first-order logic.1

1.2. Extended discussion

Homomorphism preservation theorems relate the syntactic shape of a sentence with the semantic property 
of being preserved under homomorphisms between structures. Recall that a first-order sentence ϕ in a 
vocabulary τ is said to be preserved under homomorphisms if, whenever there is a homomorphism of τ -
structures A → B and A � ϕ, then also B � ϕ. Further, an existential positive sentence is a first-order 
sentence that uses only the connectives ∨, ∧ and the quantifier ∃. The following classical result, known 
as the homomorphism preservation theorem, is due to Łoś, Lyndon and Tarski [33,34,42] and applies to 
arbitrary (first-order) vocabularies.

Theorem 1.1. A first-order sentence is preserved under homomorphisms if, and only if, it is equivalent to 
an existential positive sentence.

The homomorphism preservation theorem is a fairly straightforward consequence of the compactness 
theorem, see e.g. [43, Lemma 3.1.2]. However, applying the compactness theorem means that we lose control 
over the syntactic shape of an existential positive sentence ψ that is equivalent to a sentence ϕ preserved 
under homomorphisms. In particular, it is an ineffective approach if we want to determine to which extent 
the passage from ϕ to ψ increases the “complexity”.

One way to measure the complexity of a formula ϕ is in terms of its quantifier rank, i.e. the maximum 
number of nested quantifiers appearing in ϕ. Rossman’s equirank homomorphism preservation theorem [41], 
which applies to relational vocabularies (i.e. vocabularies that contain no constant or function symbols), 
shows that it is possible to find a ψ whose quantifier rank is less than or equal to the quantifier rank of ϕ:

Theorem 1.2. A first-order sentence of quantifier rank at most k is preserved under homomorphisms if, and 
only if, it is equivalent to an existential positive sentence of quantifier rank at most k.

1 Monadic second-order logic is also of interest and within scope, see [28].
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This is a considerable improvement on the classical homomorphism preservation theorem and was proved 
by Rossman on the way to his celebrated finite homomorphism preservation theorem, stating that Theo-
rem 1.1 admits a relativisation to finite structures.2 In the proof of the equirank homomorphism preservation 
theorem, the application of the compactness theorem is replaced with a model construction which is similar 
in spirit to the construction of a saturated elementary extension of a given structure.

The main contribution of this paper consists in laying out a categorical framework in which “equi-
resource” homomorphism preservation theorems can be proved in an axiomatic fashion. In [3,8], game 
comonads were introduced to capture in a structural way a number of logic fragments and corresponding 
combinatorial and game-theoretic notions, both at the level of finite and infinite structures. For a recent 
survey article, see [2]. The template of game comonads was axiomatised in [6], see also [7], by means of the 
notion of arboreal category. Our proof strategy consists in establishing abstract homomorphism preservation 
theorems at the general level of arboreal categories, and then instantiating these results for specific choices 
of game comonads.

We thus obtain novel equi-resource homomorphism preservation theorems for modal and guarded logics 
(Theorems 5.6 and 5.8, respectively), along with relativisations to appropriate subclasses of structures—
e.g. the class of finite structures (Theorems 5.20 and 5.21, respectively). Further, we derive a relativisation 
result (Theorem 6.12) which refines Rossman’s equirank homomorphism preservation theorem.

This paper is organised as follows. In Section 2 we provide a brief introduction to game comonads, and 
in Section 3 we recall the necessary definitions and facts concerning arboreal categories. Homomorphism 
preservation theorems are recast into categorical statements and proved at the level of arboreal categories in 
Sections 4, 5 and 6. Section 7 contains the proof of our main technical result, namely Theorem 6.9. Finally, 
in Section 8 we present a simple class of relativisation results for classes of well-behaved structures; these 
are discussed separately as they are not equi-resource homomorphism preservation theorems.

Throughout this article, we shall assume the reader is familiar with the basic notions of category theory; 
standard references include e.g. [10,35].

Let us conclude this introduction with some observations to guide the reader through the article:

From games to arboreal categories: This paper builds on our prior work [7] on arboreal categories. Famil-
iarity with the latter work would be beneficial, but we do recall the necessary material in Section 3 in 
order to make the article self-contained. Let us briefly overview the different levels of abstractions leading 
from model-comparison games to arboreal categories.

Preservation of many fragments of first-order logic, and variations thereof, can be described in terms of 
the existence of a winning strategy in a game. Game comonads arise from the insight that the construction 
associating to a structure A its collection GA of “explorations” in the game induces a comonad G, which 
is an enrichment of the (finite-)list comonad. The coalgebras for the comonad G capture compatible 
forest covers of structures, which can be thought of as unfoldings of games, and winning strategies in the 
game correspond to various types of morphisms between coalgebras.

Arboreal categories capture the main features of the categories of coalgebras for game comonads, 
and the minimal properties required to fruitfully imitate the notions of back-and-forth equivalence and 
bisimulation, and to show that they coincide, gave rise to the axioms of arboreal categories. The filtering 
of coalgebra covers corresponding to the stratification induced by the resource parameter in the logic 
(e.g. the quantifier rank of formulas) begets resource-indexed arboreal adjunctions.

A dividing line: Analysing homomorphism preservation theorems from a categorical perspective, we identify 
the bisimilar companion property as a key dividing line, and Section 5 is divided accordingly. Suppose 

2 The finite homomorphism preservation theorem is a major result in finite model theory, as well as a surprising one given that 
most preservation theorems fail when restricted to finite structures. Note that the finite homomorphism preservation theorem and 
the classical one are incomparable results.
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that G is a game comonad on a category of structures corresponding to a logic fragment L. Typically, any 
structure A is equivalent to GA in the existential positive fragment of L, but there could be a sentence 
in L that is valid in precisely one of the two structures. The bisimilar companion property asserts that 
this is not the case: A and GA are indistinguishable in the logic fragment L.

The bisimilar companion property is satisfied e.g. by the comonads corresponding to modal and 
guarded logics. For these logics, we obtain simple proofs of equi-resource homomorphism preservation 
theorems.

On the other hand, the bisimilar companion property fails for first-order logic with bounded quantifier 
rank, or with a bounded number of variables (the latter falls outside of the scope of this paper, see 
Remark 6.1), and showing that this property can be “forced” requires a considerable amount of work. 
Our approach is inspired by that of Rossman [41], and shows that the methods and ideas put forward 
in [41] can be lifted to the axiomatic setting. There is a difference though: whereas Rossman uses n-cores, 
approximating the notion of core [24], we use cofree coalgebras. The former are (minimal) retracts of 
structures, while the latter can be thought of as “coverings”.

Equality: The framework of game comonads typically encodes the preservation of equality-free fragments of 
logics. Generally, the difference is invisible when dealing with existential positive fragments, or extensions 
with counting quantifiers, as these often admit equality elimination (cf. [19, §VI] for the case of logics with 
counting quantifiers). The difference is also immaterial for modal logic, because its standard translation 
is contained in the equality-free fragment of first-order logic. Nevertheless, this gap needs to be addressed 
when considering e.g. first-order logic with bounded quantifier rank.

This was handled in [3,9] and subsequent works by considering a fresh binary relation I and assuming 
that (i) I is interpreted as the identity relation on the class of structures we are interested in, and 
(ii) all homomorphisms preserve I. Note however that, if A is a structure in which I coincides with the 
identity relation, the structure GA obtained by applying a game comonad G to A need not have the 
same property.

In the present paper, we adopt the approach outlined in [7], which is better suited for an axiomatic 
treatment. This consists in composing the comonadic adjunction induced by a game comonad with 
an adjunction that “introduces and eliminates I” (see Example 3.18 for more details). This is why, 
throughout, we need to work with possibly non-comonadic adjunctions.

2. Logic fragments and game comonads

We shall mainly deal with two types of vocabularies:

• Relational vocabularies, i.e. first-order vocabularies that contain no function or constant symbols.
• Multi-modal vocabularies, i.e. relational vocabularies in which every relation symbol has arity at most 2.

Multi-modal vocabularies will be referred to simply as modal vocabularies. If σ is a modal vocabulary, 
we can assign to each unary relation symbol P ∈ σ a propositional variable p, and to each binary relation 
symbol R ∈ σ modalities �R and �R. We refer to σ-structures as Kripke structures. For any Kripke structure 
A, the interpretation of P in A, denoted by PA, corresponds to the valuation of the propositional variable 
p, and the binary relation RA to the accessibility relation for the modalities �R and �R.

For our running examples and intended applications, we will be interested in the following resource-
bounded fragments of first-order logic (always including the equality symbol) and modal logic, for a relational 
vocabulary σ and positive integer k:

• FOk and ∃+FOk: these denote, respectively, the set of sentences of quantifier rank ≤ k in the vocabulary 
σ, and its existential positive fragment.
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• MLk and ∃+MLk: if σ is a modal vocabulary, MLk is the set of modal formulas of modal depth ≤ k in the 
vocabulary σ (recall that the modal depth is the maximum number of nested modalities in a formula). 
Moreover, ∃+MLk denotes the existential positive fragment of MLk, i.e. the set of formulas in MLk that 
use only the connectives ∨, ∧ and the diamond modalities.

• MLk(#): this is the extension of MLk with graded modalities. Recall that graded modalities have the 
form �n

R and �n
R, with n ≥ 0, and A, a |= �n

R ϕ if there are at least n R-successors of a satisfying ϕ; 
�n

Rϕ is logically equivalent to ¬�n
R¬ϕ.

Further logics, namely guarded logics, will be considered in Section 5.1.
Any logic fragment3 L, i.e. any set of first-order sentences in a vocabulary τ , induces an equivalence 

relation ≡L on τ -structures defined as follows: for all τ -structures A, B,

A ≡L B ⇐⇒ ∀ϕ ∈ L. (A � ϕ ⇔ B � ϕ).

If L consists of all first-order sentences, ≡L coincides with elementary equivalence.
Syntax-free characterisations of the equivalence relations ≡L play an important role in model theory. For 

example, the Keisler-Shelah theorem states that two τ -structures are elementarily equivalent if, and only 
if, they have isomorphic ultrapowers. A different approach is through model comparison games. These have 
a wide range of applications in model theory, see e.g. [26, §3], and are central to finite model theory where 
tools such as the compactness theorem and ultraproducts are not available. Model comparison games lead 
to a perspective which may be described as “model theory without compactness”.

Game comonads arise from the insight that model comparison games can be seen as semantic construc-
tions in their own right. Although we shall not employ games as a tool, we recall two examples of games to 
motivate the framework of game comonads.

Henceforth we shall work with a relational vocabulary σ. Let A, B be σ-structures. Both types of game 
are two-player games played between Spoiler and Duplicator. Whereas Spoiler aims to show that A and B
are different, Duplicator aims to show that they are similar. Each game is played in a number of rounds:

Ehrenfeucht-Fraïssé game: In the ith round, Spoiler chooses an element in one of the structures and Dupli-
cator responds by choosing an element in the other structure. After k rounds have been played, we have 
sequences [a1, . . . , ak] and [b1, . . . , bk] of elements from A and B respectively. Duplicator wins this play 
if the ensuing relation r := {(ai, bi) | 1 ≤ i ≤ k} is a partial isomorphism. Duplicator wins the k-round 
game if they have a strategy which is winning after i rounds, for all 1 ≤ i ≤ k.

Bisimulation game: Suppose σ is a modal vocabulary. The game is played between pointed Kripke structures 
(A, a) and (B, b), where a ∈ A and b ∈ B. The initial position is (a0, b0) = (a, b). In the ith round, with 
current position (ai−1, bi−1), Spoiler chooses one of the two structures, say A, a binary relation symbol 
R in σ, and an element ai ∈ A such that (ai−1, ai) ∈ RA. Duplicator responds by choosing an element in 
the other structure, say bi ∈ B, such that (bi−1, bi) ∈ RB . If Duplicator has no such response, they lose. 
Duplicator wins the k-round game if, for all unary relation symbols P in σ, we have PA(ai) ⇔ PB(bi)
for all 0 ≤ i ≤ k.

Assume the vocabulary σ is finite. The classical Ehrenfeucht-Fraïssé theorem [21,22] states that Duplicator 
has a winning strategy in the k-round Ehrenfeucht-Fraïssé game played between A and B if, and only if, 
A and B satisfy the same first-order sentences of quantifier rank at most k. Similarly, Duplicator has a 

3 We employ the nomenclature “logic fragment”, rather than the more customary term “theory”, as we are mainly interested in 
the situation where L is defined by constraining the syntactic shape of sentences.
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winning strategy in the k-round bisimulation game played between pointed Kripke structures (A, a) and 
(B, b) if, and only if, (A, a) and (B, b) satisfy the same modal formulas of modal depth at most k [25].

Remark 2.1. In both Ehrenfeucht-Fraïssé and bisimulation games, the resource parameter is the number of 
rounds. This need not be the case in general. For instance, the resource parameter for pebble games [13,27], 
which correspond to finite-variable fragments of first-order logic, is the number of pebbles available to the 
players.

Next, we introduce the comonads corresponding to Ehrenfeucht-Fraïssé and bisimulation games, respec-
tively. For each σ-structure A, denote by Ek(A) the set of all non-empty sequences of length at most k of 
elements from A. In other words, Ek(A) is the set of all plays in A in the k-round Ehrenfeucht-Fraïssé game. 
The interpretations of the relation symbols can be lifted from A to Ek(A) as follows. Let εA : Ek(A) → A

be the function sending a sequence to its last element. For each relation symbol R ∈ σ of arity j, we define 
REk(A) to be the set of all tuples (s1, . . . , sj) ∈ Ek(A)j such that:

(i) The sequences s1, . . . , sj are pairwise comparable in the prefix order.
(ii) (εA(s1), . . . , εA(sj)) ∈ RA.

For every homomorphism f : A → B, let

Ek(f) : Ek(A)→ Ek(B), [a1, . . . , al] �→ [f(a1), . . . , f(al)].

This yields a comonad (in fact, a family of comonads indexed by k > 0) on the category Struct(σ) of 
σ-structures and their homomorphisms, known as Ehrenfeucht-Fraïssé comonad [8]. The underlying functor 
of this comonad is Ek : Struct(σ) → Struct(σ), the counit is ε, and the comultiplication at A is the 
homomorphism

Ek(A)→ EkEk(A), [a1, . . . , al] �→ [[a1], [a1, a2], . . . , [a1, . . . , al]].

A similar construction applies to k-round bisimulation games. Suppose σ is a modal vocabulary and let 
(A, a) be a pointed Kripke structure. We define a Kripke structure Mk(A, a) whose carrier is the set of all 
paths p of length at most k starting from a:

a
R1−−→ a1

R2−−→ a2 → · · · Rn−−→ an

where R1, . . . , Rn are binary relation symbols in σ. If P ∈ σ is unary then PMk(A,a) is the set of paths p whose 
last element an belongs to PA. For a binary relation symbol R in σ, RMk(A,a) is the set of pairs of paths 
(p, p′) such that p′ is obtained by extending p by one step along R. The distinguished element of the Kripke 
structure Mk(A, a) is the trivial path 〈a〉 of length 0, and the function ε(A,a) : (Mk(A, a), 〈a〉) → (A, a)
sending a path to its last element is a morphism of pointed Kripke structures. By similar reasoning to 
the one above, the assignment (A, a) �→ (Mk(A, a), 〈a〉) can be upgraded to a comonad on the category 
Struct•(σ) of pointed Kripke structures and their homomorphisms, the modal comonad [8].

In addition to the examples mentioned above, the framework of game comonads covers a number of model 
comparison games, cf. e.g. [3–5,17,28,38]. In each case, they yield structural (syntax-free) characterisations 
of equivalence in the corresponding logic fragments. This will be illustrated from an axiomatic perspective 
in Section 3.4.
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3. Arboreal categories

In this section, we recall from [7] the basic definitions and facts concerning arboreal categories. All 
categories under consideration are assumed to be locally small and well-powered, i.e. every object has a 
small set of subobjects (as opposed to a proper class).

3.1. Proper factorisation systems

Given arrows e and m in a category C , we say that e has the left lifting property with respect to m, or 
that m has the right lifting property with respect to e, if for every commutative square as on the left-hand 
side below

· ·

· ·
e m

· ·

· ·
e md

there is an arrow d such that the right-hand diagram above commutes. For any class H of morphisms in 
C , let �H (respectively H �) be the class of morphisms having the left (respectively right) lifting property 
with respect to every morphism in H .

Definition 3.1. A pair of classes of morphisms (Q, M ) in a category C is a weak factorisation system provided 
it satisfies the following conditions:

(i) Every morphism f in C can be written as f = m ◦ e with e ∈ Q and m ∈M .
(ii) Q = �M and M = Q�.

A proper factorisation system is a weak factorisation system (Q, M ) such that each arrow in Q is epic and 
each arrow in M is monic. We refer to M -morphisms as embeddings and denote them by �. Q-morphisms 
will be referred to as quotients and denoted by �.

Next, we state some well known properties of proper factorisation systems (cf. e.g. [23] or [40]) which 
will be used throughout the paper without further reference.

Lemma 3.2. Let (Q, M ) be a proper factorisation system in C . The following hold:

(a) Q and M are closed under compositions.
(b) Q contains all retractions, M contains all sections, and Q ∩M = {isomorphisms}.
(c) The pullback of an M -morphism along any morphism, if it exists, is in M .
(d) g ◦ f ∈ Q implies g ∈ Q.
(e) g ◦ f ∈M implies f ∈ M .

Assume C is a category admitting a proper factorisation system (Q, M ). In the same way that one usually 
defines the poset of subobjects of a given object X ∈ C , we can define the poset SX of M -subobjects of 
X. Given embeddings m : S � X and n : T � X, let us say that m � n provided there is a morphism 
i : S → T such that m = n ◦ i (if it exists, i is necessarily an embedding).

S Xm

i
n

T



8 S. Abramsky, L. Reggio / Annals of Pure and Applied Logic 175 (2024) 103423
This yields a preorder on the class of all embeddings with codomain X. The symmetrisation ∼ of � is 
given by m ∼ n if, and only if, there exists an isomorphism i : S → T such that m = n ◦ i. Let SX be the 
class of ∼-equivalence classes of embeddings with codomain X, equipped with the natural partial order ≤
induced by �. We shall systematically represent a ∼-equivalence class by any of its representatives. As C
is well-powered and every embedding is a monomorphism, SX is a set.

For any morphism f : X → Y and embedding m : S � X, consider the (quotient, embedding) factorisa-
tion of f ◦m:

S ∃fS Y.
∃fm

This yields a monotone map ∃f : SX → S Y sending m to ∃fm. Note that the map ∃f is well-defined 
because factorisations are unique up to isomorphism. If f is an embedding (or, more generally, f ◦m is an 
embedding), ∃fm can be identified with f ◦m. For the following observation, cf. e.g. [7, Lemma 2.7(a)].

Lemma 3.3. Let C be a category equipped with a proper factorisation system and let f : X � Y be an 
embedding in C . Then ∃f : SX → S Y is an order-embedding.

3.2. Paths and arboreal categories

Let C be a category endowed with a proper factorisation system (Q, M ).

Definition 3.4. An object X of C is called a path provided the poset SX is a finite linear order. Paths will 
be denoted by P, Q and variations thereof.

The collection of paths is closed under embeddings and quotients. That is, given an arrow f : X → Y , if 
f is an embedding and Y is a path then X is a path, and if f is a quotient and X is a path then Y is a 
path [7, Lemma 3.5].

A path embedding is an embedding P � X whose domain is a path. We let P X denote the sub-poset of 
SX consisting of the path embeddings. Because paths are closed under quotients, for any arrow f : X → Y

the monotone map ∃f : SX → S Y restricts to a monotone map

P f : P X → P Y, (m : P � X) �→ (∃fm : ∃fP � Y ). (1)

Henceforth, we shall assume that C contains, up to isomorphism, only a set of paths. Thus, whenever 
convenient, we shall work with a small skeleton of the full subcategory of paths. For any object X of C , we 
have a diagram with vertex X consisting of all path embeddings with codomain X; the morphisms between 
paths are those which make the obvious triangles commute (note that they are necessarily embeddings):

X

P Q

This yields a cocone over the small diagram P X. We say that X is path-generated provided this is a colimit 
cocone in C .

Suppose for a moment that coproducts of sets of paths exist in C . An object X of C is connected if, for 
all non-empty sets of paths {Pi | i ∈ I} in C , any morphism

X →
∐

Pi
i∈I
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factors through some coproduct injection Pj →
∐

i∈I Pi.
In order to state the definition of arboreal category, let us say that a proper factorisation system is stable

if, for any quotient e and embedding m with common codomain, the pullback of e along m exists and is a 
quotient.

Definition 3.5. An arboreal category is a category C , equipped with a stable proper factorisation system, 
that satisfies the following conditions:

(i) C has all coproducts of sets of paths.
(ii) For any paths P, Q, Q′ in C , if a composite P → Q → Q′ is a quotient then so is P → Q.
(iii) Every object of C is path-generated.
(iv) Every path in C is connected.

Remark 3.6. Item (ii) in the previous definition is equivalent to the following 2-out-of-3 condition: For any 
paths P, Q, Q′ and morphisms

P Q Q′,
f g

if any two of f , g, and g ◦ f are quotients, then so is the third. See [7, Remark 3.9]. Moreover, item (iii)
is equivalent to saying that the inclusion functor C p ↪→ C is dense, where C p is the full subcategory of C
defined by the paths [7, Lemma 5.1].

Finally, note that any arboreal category admits an initial object, obtained as the coproduct of the empty 
set, and any initial object is a path because its poset of M -subobjects has a single element—namely, the 
equivalence class of the identity.

If (P, ≤) is a poset, then C ⊆ P is a chain if it is linearly ordered. (P, ≤) is a forest if, for all x ∈ P , the 
set ↓x := {y ∈ P | y ≤ x} is a finite chain. The height of a forest is the supremum of the cardinalities of its 
chains. The covering relation ≺ associated with a partial order ≤ is defined by u ≺ v if and only if u < v

and there is no w such that u < w < v. The roots of a forest are the minimal elements, and a tree is a forest 
with at most one root. Morphisms of forests are maps that preserve roots and the covering relation. The 
category of forests is denoted by F , and the full subcategory of trees by T .

Example 3.7. Let σ be a relational vocabulary. A forest-ordered σ-structure (A, ≤) is a σ-structure A
equipped with a forest order ≤. A morphism of forest-ordered σ-structures f : (A, ≤) → (B, ≤′) is a σ-
homomorphism f : A → B that is also a forest morphism. This determines a category R(σ). We equip 
R(σ) with the factorisation system given by (surjective morphisms, embeddings), where an embedding is 
a morphism which is an embedding qua σ-homomorphism. Let RE(σ) be the full subcategory of R(σ)
determined by those objects (A, ≤) satisfying the following condition:

(E) If a, b ∈ A are distinct elements that appear in a tuple of related elements (a1, . . . , al) ∈ RA for some 
R ∈ σ, then either a < b or b < a.4

For each k > 0, let RE
k (σ) be the full subcategory of RE(σ) of forest-ordered structures of height ≤ k. In 

[9, Theorem 9.1], it is shown that RE
k (σ) is isomorphic to the category of coalgebras for the Ehrenfeucht-

Fraïssé comonad Ek on Struct(σ). The objects (A, ≤) of RE
k (σ) are forest covers of A witnessing that its 

tree-depth is at most k [36].

4 I.e., if a and b are adjacent in the Gaifman graph of A, then they are comparable in the forest order.
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The category RE(σ) is arboreal when equipped with the restriction of the factorisation system on R(σ). 
The paths in RE(σ) are those objects in which the order is a finite chain. Similarly, RE

k (σ) is an arboreal 
category for all k > 0, when equipped with the restriction of the factorisation system on R(σ). See [7, 
Examples 5.4].

Example 3.8. Assume that σ is a modal vocabulary. Let RM (σ) be the full subcategory of R(σ) consisting 
of the tree-ordered σ-structures (A, ≤) satisfying:

(M) For a, b ∈ A, a ≺ b if and only if (a, b) ∈ RA for some unique binary relation R.

For each k > 0, the full subcategory RM
k (σ) of RM (σ) consisting of the tree-ordered structures of height 

at most k is isomorphic to the category of coalgebras for the modal comonad Mk on Struct•(σ) [9, Theo-
rem 9.5]. When equipped with the restriction of the factorisation system on R(σ), the category RM(σ) is 
arboreal and its paths are those objects in which the order is a finite chain. Likewise for RM

k (σ).

It follows from the definition of path that, for any object X of an arboreal category, the poset P X is 
a tree; in fact, a non-empty tree. Crucially, this assignment extends to a functor into the category of trees 
(for a proof, see [7, Theorem 3.11]):

Theorem 3.9. Let C be an arboreal category. The assignment f �→ P f in equation (1) induces a functor 
P : C → T into the category of trees.

Finally, recall from [7, Lemma 3.15, Proposition 5.6 and Remark 5.7] the following properties of paths 
and posets of embeddings.

Lemma 3.10. The following statements hold in any arboreal category C :

(a) Between any two paths there is at most one embedding.
(b) For all objects X of C , the poset SX of its M -subobjects is a complete lattice.5
(c) Let X be an object of C and let U ⊆ P X be a non-empty subset. A path embedding m ∈ P X is below ∨

U ∈ SX if, and only if, it is below some element of U .

If it exists, the unique embedding between paths P, Q in an arboreal category is denoted by

!P,Q : P � Q.

If no confusion arises, we simply write ! : P � Q.

3.3. Bisimilarity and back-and-forth systems

Throughout this section, we fix an arbitrary arboreal category C . A morphism f : X → Y in C is said 
to be open if it satisfies the following path-lifting property: Given any commutative square

P X

Q Y

f

5 In fact, SX is a perfect lattice, cf. [39] or [18].
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with P, Q paths, there is an arrow Q → X making the two triangles commute. (If such an arrow exists, it 
is automatically an embedding.) Further, f is a pathwise embedding if, for all path embeddings m : P � X, 
the composite f ◦m : P → Y is a path embedding.

Combining these notions, we can define a bisimilarity relation between objects of C :

Definition 3.11. Two objects X, Y of C are said to be bisimilar if there exist an object Z of C and a span 
of open pathwise embeddings X ← Z → Y .

Remark 3.12. The definition of open morphism given above is a refinement of the one introduced in [30]
(cf. [7, §4.1] for a discussion of the relation between these notions), which is a special case of the (axiomatic) 
concept of open map in toposes [29].

As we shall see next, if C has binary products the bisimilarity relation can be characterised in terms of 
back-and-forth systems. Let X, Y be objects of C . Given m ∈ P X and n ∈ P Y , we write �m, n� to indicate 
that dom(m) ∼= dom(n). Intuitively, the pair �m, n� encodes a partial isomorphisms between X and Y “of 
shape P”, with P a path.

Definition 3.13. A back-and-forth system between objects X and Y of C is a set

B = {�mi, ni� | mi ∈ P X, ni ∈ P Y, i ∈ I}

satisfying the following conditions:

(i) �⊥X , ⊥Y � ∈ B, where ⊥X , ⊥Y are the roots of P X and P Y , respectively.
(ii) If �m, n� ∈ B and m′ ∈ P X are such that m ≺ m′, there exists n′ ∈ P Y satisfying n ≺ n′ and 

�m′, n′� ∈ B.
(iii) If �m, n� ∈ B and n′ ∈ P Y are such that n ≺ n′, there exists m′ ∈ P X satisfying m ≺ m′ and 

�m′, n′� ∈ B.

Two objects X and Y of C are said to be back-and-forth equivalent if there exists a back-and-forth system 
between them.

For a proof of the following result, see [7, Theorem 6.4].

Theorem 3.14. Let X, Y be objects of an arboreal category admitting a product. Then X and Y are bisimilar 
if, and only if, they are back-and-forth equivalent.

The existence of a back-and-forth system between X and Y can be equivalently described in terms of 
the existence of a Duplicator winning strategy in a two-player game played between P X and P Y [7, §6.2]. 
Since winning strategies can be composed to yield again a winning strategy, in any arboreal category with 
binary products the bisimilarity relation is transitive, hence an equivalence relation.

3.4. Resource-indexed arboreal adjunctions

Let C be an arboreal category, with full subcategory of paths C p. We say that C is resource-indexed if 
for all positive integers k there is a full subcategory C k

p of C p closed under embeddings6 with

6 That is, for any embedding P � Q in C with P, Q paths, if Q ∈ Ck
p then also P ∈ Ck

p. We shall further assume that each 
category Ck

p contains the initial object of C .
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C 1
p ↪→ C 2

p ↪→ C 3
p ↪→ · · ·

This induces a corresponding tower of full subcategories C k of C , with the objects of C k those whose 
cocone of path embeddings with domain in C k

p is a colimit cocone in C . It turns out that each category 
C k is arboreal. Furthermore, the paths in C k are precisely the objects of C k

p, i.e. (C k)p = C k
p. Cf. [7, 

Proposition 7.7] and its proof.

Example 3.15. Consider the arboreal category RE(σ) from Example 3.7. This can be regarded as a resource-
indexed arboreal category by taking as C k

p the full subcategory of RE(σ) consisting of the objects in which 
the order is a finite chain of cardinality ≤ k. The generated subcategory C k then coincides with RE

k (σ).
Similar reasoning shows that the arboreal category RM(σ) from Example 3.8 can also be regarded as a 

resource-indexed arboreal category.

Definition 3.16. Let {C k} be a resource-indexed arboreal category and let E be a category. A resource-
indexed arboreal adjunction between E and C is an indexed family of adjunctions

C k E .

Lk

Rk

⊥

A resource-indexed arboreal cover of E by C is a resource-indexed arboreal adjunction between E and C
such that all adjunctions Lk � Rk are comonadic, i.e. for all k > 0 the comparison functor from C k to the 
category of Eilenberg-Moore coalgebras for the comonad Gk := LkRk is an isomorphism.

Example 3.17. Let σ be a relational vocabulary and let E = Struct(σ). Consider the resource-indexed 
arboreal category RE(σ) in Example 3.15. For each k > 0, there is a forgetful functor

LE
k : RE

k (σ) → Struct(σ)

which forgets the forest order. This functor is comonadic. The right adjoint RE
k sends a σ-structure A to 

Ek(A) equipped with the prefix order, and the comonad induced by this adjunction coincides with the 
k-round Ehrenfeucht-Fraïssé comonad Ek. This gives rise to a resource-indexed arboreal cover of Struct(σ)
by RE(σ).

Similarly, if σ is a modal vocabulary, there is a resource-indexed arboreal cover of Struct•(σ) by RM (σ)
such that each adjunction LM

k � RM
k induces the k-round modal comonad Mk.

Example 3.18. To deal with the equality symbol in the logic, we consider resource-indexed arboreal adjunc-
tions constructed as follows. Let

σI := σ ∪ {I}

be the vocabulary obtained by adding a fresh binary relation symbol I to σ. Any σ-structure can be 
expanded to a σI-structure by interpreting I as the identity relation. This yields a fully faithful functor 
J : Struct(σ) → Struct(σI). The functor J has a left adjoint H : Struct(σI) → Struct(σ) which sends 
a σI -structure A to the quotient of the σ-reduct of A by the equivalence relation generated by IA [19, 
Lemma 25]. We can then compose the adjunction H � J with e.g. the Ehrenfeucht-Fraïssé resource-indexed 
arboreal cover of Struct(σI) by RE(σI) from Example 3.17.
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RE
k (σI) Struct(σI) Struct(σ)

LE
k

RE
k

H

J

⊥ ⊥

The composite adjunctions HLE
k � RE

k J , which are not comonadic, yield the Ehrenfeucht-Fraïssé resource-
indexed arboreal adjunction between Struct(σ) and RE(σI).

Crucially, a resource-indexed arboreal adjunction between E and C can be used to define several resource-
indexed relations between objects of E :

Definition 3.19. Consider a resource-indexed arboreal adjunction between E and C , with adjunctions Lk �
Rk, and any two objects a, b of E . For all k > 0, we define:

• a →C
k b if there exists a morphism Rka → Rkb in C k.

• a ↔C
k b if Rka and Rkb are bisimilar in C k.

• a ∼=C
k b if Rka and Rkb are isomorphic in C k.

Further, we write �C
k for the symmetrisation of the preorder →C

k . There are inclusions

∼=C
k ⊆ ↔C

k ⊆ �C
k .

The first inclusion is trivial, the second follows from [7, Lemma 6.20]. For a proof of the following easy 
observation, see [7, Lemma 7.20].

Lemma 3.20. Consider a resource-indexed arboreal adjunction between E and C , with adjunctions Lk � Rk. 
The following hold for all a, b ∈ E and all k > 0:

(a) If there exists a morphism a → b in E then a →C
k b.

(b) a �C
k LkRka.

To conclude, we recall how the relations in Definition 3.19 capture, in our running examples, preservation 
of the logics introduced at the beginning of Section 2. Given a set of sentences (or modal formulas) L, let 
�L be the preorder on (pointed) σ-structures given by

A �L B ⇐⇒ ∀ϕ ∈ L. (A � ϕ ⇒ B � ϕ).

The equivalence relation ≡L is the symmetrisation of �L.

Example 3.21. Let σ be a finite relational vocabulary. Consider the Ehrenfeucht-Fraïssé resource-indexed 
arboreal adjunction between Struct(σ) and RE(σI) in Example 3.18, and write →E

k and ↔E
k for the 

relations on Struct(σ) induced according to Definition 3.19. For all σ-structures A, B and all k > 0, we 
have

A→E
k B ⇐⇒ A �∃+FOk B

and

A↔E
k B ⇐⇒ A ≡FOk B.
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Cf. [9, Theorems 3.2 and 5.1] and [9, Theorem 10.5], respectively. We also mention that ∼=E
k coincides with 

equivalence in the extension of FOk with counting quantifiers [9, Theorem 5.3(2)], although we shall not 
need this fact.

Example 3.22. Suppose σ is a finite modal vocabulary and consider the relations →M
k and ∼=M

k on Struct•(σ)
induced by the modal resource-indexed arboreal cover of Struct•(σ) by RM

k (σ) in Example 3.17. For all 
pointed Kripke structures (A, a), (B, b) and all k > 0, we have

(A, a)→M
k (B, b) ⇐⇒ (A, a) �∃+MLk (B, b),

see [8, Theorem 9]. Furthermore,

(A, a) ∼=M
k (B, b) =⇒ (A, a) ≡MLk(#) (B, b),

cf. [8, Proposition 15] and [20, Proposition 3.6]. We mention in passing that the relation ↔M
k coincides with 

equivalence in MLk [9, Theorem 10.13].

4. Homomorphism preservation theorems

In this section, we recast the statement of a generic equi-resource homomorphism preservation theorem 
into a property (HP)—and its strengthening (HP#)—that a resource-indexed arboreal adjunction may or 
may not satisfy. Sufficient conditions under which properties (HP) and (HP#) hold are provided in Section 5.

4.1. (HP) and (HP#)

Given a first-order sentence ϕ in a relational vocabulary σ, its “model class” Mod(ϕ) is the full sub-
category of Struct(σ) defined by the σ-structures A such that A � ϕ. To motivate the formulation of 
properties (HP) and (HP#), we recall a well-known characterisation of model classes of sentences in FOk, 
i.e. first-order sentences of quantifier rank at most k, and in its existential positive fragment ∃+FOk. Since 
a sentence can only contain finitely many relation symbols, for the purpose of investigating homomorphism 
preservation theorems we can safely assume that σ is finite.

For a full subcategory D of a category A , and a relation ∇ on the class of objects of A , we say that D
is upwards closed (in A ) with respect to ∇ if

∀a, b ∈ A , if a ∈ D and a∇ b then b ∈ D .

If ∇ is an equivalence relation and the latter condition is satisfied, we say that D is saturated under ∇. The 
following lemma follows from the fact that, for all k ≥ 0, there are finitely many sentences in FOk up to 
logical equivalence. Cf. e.g. [32, Lemma 3.13].

Lemma 4.1. The following hold for all k ≥ 0 and all full subcategories D of Struct(σ):

(a) D = Mod(ϕ) for some ϕ ∈ FOk if, and only if, D is saturated under ≡FOk .
(b) D = Mod(ψ) for some ψ ∈ ∃+FOk if, and only if, D is upwards closed with respect to �∃+FOk .

Remark 4.2. The previous lemma remains true if FOk is replaced with any fragment of first-order logic that 
is closed under Boolean connectives and contains, up to logical equivalence, finitely many sentences.
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Now, fix a resource-indexed arboreal adjunction between E and C , with adjunctions

C k E .

Lk

Rk

⊥

Let us say that a full subcategory D of E is closed (in E ) under morphisms if, whenever there is an arrow 
a → b in E with a ∈ D , also b ∈ D . Note that, when E = Struct(σ) and D = Mod(ϕ) is the model 
class of some sentence ϕ, the category D is closed under morphisms precisely when ϕ is preserved under 
homomorphisms.

Consider the following statement, where →C
k and ↔C

k are the relations on the objects of E induced by 
the resource-indexed arboreal adjunction as in Definition 3.19:

(HP) For any full subcategory D of E saturated under ↔C
k , D is closed under morphisms precisely when 

it is upwards closed with respect to →C
k .

Replacing the relation ↔C
k with ∼=C

k , we obtain a strengthening of (HP), namely:

(HP#) For any full subcategory D of E saturated under ∼=C
k , D is closed under morphisms precisely when 

it is upwards closed with respect to →C
k .

Just recall that ∼=C
k ⊆ ↔C

k , and so any full subcategory D saturated under ↔C
k is also saturated under ∼=C

k . 
Thus, (HP#) entails (HP).

Remark 4.3. By Lemma 3.20(a), any full subcategory of E that is upwards closed with respect to →C
k is 

closed under morphisms. Hence, the right-to-left implications in (HP) and (HP#) are always satisfied.

In view of Example 3.21 and Lemma 4.1, for the Ehrenfeucht-Fraïssé resource-indexed arboreal adjunc-
tion between Struct(σ) and RE(σI), Property (HP) coincides with Rossman’s equirank homomorphism 
preservation theorem (Theorem 1.2).

In Section 6 we will prove that (HP) holds for any resource-indexed arboreal adjunction satisfying appro-
priate properties (see Corollary 6.10), which are satisfied in particular by the Ehrenfeucht-Fraïssé resource-
indexed arboreal adjunction.

5. Exploring the landscape: tame and not-so-tame

We shall identify, in Section 5.1, a class of “tame” resource-indexed arboreal adjunctions, namely those 
satisfying the bisimilar companion property, for which (HP) always holds. As an application, we derive 
equi-resource homomorphism preservation theorems for graded modal logic and guarded first-order logics.

In the absence of the bisimilar companion property, one may try to “force” it; this leads us, in Section 5.2, 
to the notion of extendability, inspired by the work of Rossman [41]. Finally, in Section 5.3, we provide simple 
sufficient conditions under which properties (HP) and (HP#) admit a relativisation to a full subcategory.

5.1. Tame: bisimilar companion property and idempotency

For all k > 0, write Gk := LkRk for the comonad on E induced by the adjunction Lk � Rk : E → C k.

Definition 5.1. A resource-indexed arboreal adjunction between E and C , with induced comonads Gk, has 
the bisimilar companion property if a ↔C

k Gka for all a ∈ E and k > 0.
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Proposition 5.2. (HP) holds for any resource-indexed arboreal adjunction between E and C satisfying the 
bisimilar companion property.

Proof. For the left-to-right implication in (HP), let D be a full subcategory of E closed under morphisms 
and saturated under ↔C

k . Suppose that a →C
k b for objects a, b of E . By definition, this means that there 

is an arrow Rka → Rkb and so, as Lk is left adjoint to Rk, there is an arrow Gka → b. Using the bisimilar 
companion property, we get

a ↔C
k Gka → b.

Therefore, if a ∈ D then also b ∈ D . That is, D is upwards closed with respect to →C
k .

The converse direction follows from Remark 4.3. �
In order to establish a similar result for Property (HP#), recall that a comonad G is idempotent if its 

comultiplication G ⇒ GG is a natural isomorphism.

Definition 5.3. A resource-indexed arboreal adjunction between E and C is idempotent if so are the induced 
comonads Gk, for all k > 0.

Proposition 5.4. (HP#) holds for any idempotent resource-indexed arboreal adjunction between E and C .

Proof. Recall that Gk is idempotent if, and only if, ηRk is a natural isomorphism, where η is the unit of 
the adjunction Lk � Rk. In particular, for any a ∈ E , the component of ηRk at a yields an isomorphism 
Rka ∼= RkGka in C . Hence, a ∼=C

k Gka for all a ∈ E . Reasoning as in the proof of Proposition 5.2, it is easy 
to see that (HP#) holds. �
Remark 5.5. Consider an idempotent resource-indexed arboreal adjunction between E and C with induced 
comonads Gk on E . The previous proof shows that, for all a ∈ E and k > 0, we have a ∼=C

k Gka. A 
fortiori, a ↔C

k Gka. Therefore, any idempotent resource-indexed arboreal adjunction satisfies the bisimilar 
companion property.

Next, we show how Propositions 5.2 and 5.4 can be exploited to obtain equi-resource homomorphism 
preservation theorems for (graded) modal logic and guarded first-order logics. Relativisations of these results 
to subclasses of structures, e.g. to the class of all finite structures, are discussed in Section 5.3.

Graded modal logic. Let σ be a finite modal vocabulary. As observed in [9, §9.3], the modal comonads 
Mk on Struct•(σ) are idempotent, hence so is the modal resource-indexed arboreal cover of Struct•(σ)
by RM

k (σ). This corresponds to the fact that a tree-ordered Kripke structure is isomorphic to its tree 
unravelling. Thus, Proposition 5.4 entails the following equidepth homomorphism preservation theorem for 
graded modal formulas (i.e., modal formulas that possibly contain graded modalities):

Theorem 5.6. The following statements are equivalent for any graded modal formula ϕ of modal depth at 
most k in a modal vocabulary:

(1) ϕ is preserved under homomorphisms between pointed Kripke structures.
(2) ϕ is logically equivalent to an existential positive modal formula of modal depth at most k.

Proof. Fix a graded modal formula ϕ ∈MLk(#). Since a single modal formula contains only finitely many 
modalities and propositional variables, we can assume without loss of generality that ϕ is a formula in a 
finite modal vocabulary. By Example 3.22 we have
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→M
k = �∃+MLk and ∼=M

k ⊆ ≡MLk(#).

In particular, the latter inclusion entails that the full subcategory Mod(ϕ) of Struct•(σ) is saturated under 
∼=M

k . As the modal resource-indexed arboreal cover is idempotent, Proposition 5.4 implies that Mod(ϕ) is 
closed under morphisms if, and only if, it is upwards closed with respect to →M

k . Note that Mod(ϕ) is closed 
under morphisms precisely when ϕ is preserved under homomorphisms between pointed Kripke structures. 
On the other hand, the equality →M

k = �∃+MLk implies that Mod(ϕ) is upwards closed with respect to 
→M

k if, and only if, Mod(ϕ) = Mod(ψ) for some ψ ∈ ∃+MLk (this is akin to Lemma 4.1(b) and hinges 
on the fact that ∃+MLk contains finitely many formulas up to logical equivalence). Thus the statement 
follows. �
Remark 5.7. Forgetting about both graded modalities and modal depth, Theorem 5.6 implies that a modal 
formula is preserved under homomorphisms if, and only if, it is equivalent to an existential positive modal 
formula. This improves the well known result that a modal formula is preserved under simulations precisely 
when it is equivalent to an existential positive modal formula (see e.g. [16, Theorem 2.78]).

Guarded fragments of first-order logic. The study of guarded fragments of first-order logic was initiated 
by Andréka, van Benthem and Németi in [12] to analyse, and extend to the first-order setting, the good 
algorithmic and model-theoretic properties of modal logic. Guarded formulas (over a relational vocabulary 
σ) are defined by structural induction, starting from atomic formulas and applying Boolean connectives and 
the following restricted forms of quantification: if ϕ(x, y) is a guarded formula, then so are

∃x.G(x, y) ∧ ϕ(x, y) and ∀x.G(x, y) → ϕ(x, y)

where G is a so-called guard. The (syntactic) conditions imposed on guards determine different guarded 
fragments of first-order logic. We shall consider the following two:

• Atom guarded: G(x, y) is an atomic formula in which all variables in x, y occur.
• Loosely guarded: G(x, y) is a conjunction of atomic formulas such that each pair of variables, one in x

and the other in x, y, occurs in one of the conjuncts.

The atom guarded fragment of first-order logic was introduced in [12] under the name of F2 (“Frag-
ment 2”), whereas the loosely guarded fragment was defined by van Benthem in [15]. The atom guarded 
fragment can be regarded as an extension of modal logic, in the sense that the standard translation of the 
latter is contained in the former. In turn, the loosely guarded fragment extends the atomic one and can 
express e.g. (the translation of) the Until modality in temporal logic, cf. [15, p. 9].

For each notion of guarding g (atomic or loose), denote by

gFOn and ∃+gFOn,

respectively, the n-variable g-guarded fragment of first-order logic and its existential positive fragment. 
In [4], guarded comonads Gg

n on Struct(σ) are defined for all n > 0. The associated categories of Eilenberg-
Moore coalgebras are arboreal and induce the g-guarded resource-indexed arboreal cover of Struct(σ) with 
resource parameter n. For an explicit description of the resource-indexed arboreal category in question, 
cf. [4, §IV].

Assume the vocabulary σ is finite and let →g
n and ↔g

n be the resource-indexed relations on Struct(σ)
induced by the g-guarded resource-indexed arboreal cover. It follows from [4, Theorems III.4 and V.2] that, 
for all σ-structures A, B and all n > 0,
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A→g
n B ⇐⇒ A �∃+

gFOn

B

and

A↔g
n B ⇐⇒ A ≡gFOn

B.

To obtain an analogue of Lemma 4.1, we consider finite fragments of gFOn by stratifying in terms of 
guarded-quantifier rank (cf. Remark 4.2). Note that, as guarded quantifiers bound tuples of variables, rather 
than single variables, the guarded-quantifier rank of a guarded formula is typically lower than its ordinary 
quantifier rank. Nevertheless, for all k ≥ 0, the fragment gFOn

k of gFOn consisting of those sentences with 
guarded-quantifier rank at most k contains finitely many sentences up to logical equivalence.

This stratification can be modelled in terms of comonads Gg

n,k on Struct(σ), for all n, k > 0, as explained 
in [4, §VII]. Fixing n and letting k vary, we obtain an n-variable g-guarded resource-indexed arboreal cover
of Struct(σ), with resource parameter k. The induced relations →g

n,k and ↔g

n,k on Struct(σ) coincide, 
respectively, with preservation of ∃+gFOn

k and equivalence in gFOn
k . Thus, for any full subcategory D of 

Struct(σ):

• D = Mod(ϕ) for some ϕ ∈ gFOn
k if, and only if, D is saturated under ↔g

n,k.
• D = Mod(ψ) for some ψ ∈ ∃+gFOn

k if, and only if, D is upwards closed with respect to →g

n,k.

As observed in [5, §6.1], the g-guarded resource-indexed arboreal cover of Struct(σ) satisfies the bisimilar 
companion property, and so does the n-variable g-guarded resource-indexed arboreal cover for all n > 0. 
Therefore, Proposition 5.2 implies the following equirank-variable homomorphism preservation theorem for 
guarded logics:

Theorem 5.8. Let g be a notion of guarding (either atom or loose). The following statements are equivalent 
for any g-guarded sentence ϕ in n variables of guarded-quantifier rank at most k in a relational vocabulary:

(1) ϕ is preserved under homomorphisms.
(2) ϕ is logically equivalent to an existential positive g-guarded sentence in n variables of guarded-quantifier 

rank at most k.

5.2. Not-so-tame: extendability

A resource-indexed arboreal adjunction may fail to satisfy the bisimilar companion property, in which case 
Proposition 5.2 does not apply. This is the case e.g. for the Ehrenfeucht-Fraïssé resource-indexed arboreal 
adjunction:

Example 5.9. The Ehrenfeucht-Fraïssé resource-indexed arboreal adjunction between Struct(σ) and RE(σI)
does not have the bisimilar companion property. Suppose that σ = {R} consists of a single binary relation 
symbol and let A be the σ-structure with underlying set {a, b} satisfying RA = {(a, b), (b, a)}. In view of 
Examples 3.18 and 3.21, it suffices to find k > 0 and a first-order sentence ϕ of quantifier rank ≤ k such 
that

A � ϕ and HEkJA �� ϕ.

Let ϕ be the sentence ∀x∀y (x �= y ⇒ xRy) of quantifier rank 2 stating that any two distinct elements are 
R-related. Then ϕ is satisfied by A but not by HEkJA, because the sequences [a] and [b] are not R-related 
in HEkJA. This shows that the bisimilar companion property fails for all k ≥ 2.
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When the bisimilar companion property fails, i.e. a �↔C
k Gka for some a ∈ E and k > 0, we may 

attempt to force it by finding appropriate extensions a∗ and (Gka)∗ of a and Gka, respectively, satisfying 
a∗ ↔C

k (Gka)∗. This motivates the notion of k-extendability (see Definition 5.14 below), inspired by the 
work of Rossman [41] and its categorical interpretation in [1].

To start with, we introduce the following notations. Given objects a, b of a category A , we write a → b

to denote the existence of an arrow from a to b. Further, we write a � b to indicate that a → b and b → a, 
i.e. a and b are homomorphically equivalent. This applies in particular to coslice categories. Recall that, for 
any c ∈ A , the coslice category c/A (also known as under category) has as objects the arrows in A with 
domain c. For any two objects m : c → a and n : c → b of c/A , an arrow f : m → n in c/A is a morphism 
f : a → b in A such that f ◦ m = n. Hence, m � n in c/A precisely when there are arrows f : a → b

and g : b → a in A satisfying f ◦m = n and g ◦ n = m. We shall represent this situation by means of the 
following diagram:

c

a b

m n

f

g

Remark 5.10. Note that m � n in c/A whenever there is a section f : a → b in A satisfying f ◦m = n. 
Just observe that the left inverse f−1 of f satisfies

f−1 ◦ n = f−1 ◦ f ◦m = m

and so n → m. Further, f ◦m = n entails m → n. Hence, m � n.

Now, let a be an object of an arboreal category C and let m : P � a be a path embedding. As S a is a 
complete lattice by Lemma 3.10(b), the supremum 

∨
↑m in S a of all path embeddings above m exists and 

we shall denote it by

im : Sm � a.

Clearly, m ≤ im in S a, and so there is a path embedding

m� : P � Sm

satisfying im ◦m� = m. (Note that im is well defined only up to isomorphism in the coslice category C /a, 
but as usual we work with representatives for isomorphism classes.)

Remark 5.11. To provide an intuition for the previous definition, let us say for the sake of this remark 
that a path embedding m : P � a is “dense in a” if all elements of P a are comparable with m. Then 
Lemma 5.12(a) below implies that im : Sm � a is the largest M -subobject of a in which m is dense.

Lemma 5.12. The following statements hold for all path embeddings m : P � a:

(a) P Sm is isomorphic to the subtree of P a consisting of the elements that are comparable with m.
(b) For all path embeddings n : P � b and arrows f : a → b such that f ◦m = n, there is a unique 

g : Sm → Sn making the following diagram commute.
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Sm Sn

a b

im

g

in

f

(c) For all path embeddings n : P � b, if m → n then m� → n�.

Proof. (a) The map im ◦ − : SSm → S a is an order-embedding by Lemma 3.3, and so its restriction 
P Sm → P a is an injective forest morphism. Hence, P Sm is isomorphic to the subtree of P a consisting 
of those elements that factor through im, i.e. that are below 

∨
↑m. By Lemma 3.10(c), an element of P a

is below 
∨
↑m precisely when it is below some element of ↑m. In turn, the latter is equivalent to being 

comparable with m.
(b) Since Sm is path-generated, it is the colimit of the canonical cocone C of path embeddings over the 

small diagram P Sm which, by item (a), can be identified with the subdiagram of P a consisting of those 
elements comparable with m. As P (f ◦ im) is monotone, it sends path embeddings comparable with m to 
path embeddings comparable with n, and so the cocone {f ◦ im ◦ p | p ∈ C} factors through in : Sn � b. 
Hence, there is g : Sm → Sn such that in ◦ g = f ◦ im. Finally, note that if g′ : Sm → Sn satisfies 
in ◦ g′ = f ◦ im then we have in ◦ g = in ◦ g′, and so g = g′ because in is monic.

(c) Suppose there exists f : a → b such that f ◦m = n. By item (b), there is g : Sm → Sn such that 
in ◦ g = f ◦ im. Therefore,

in ◦ g ◦m� = f ◦ im ◦m� = f ◦m = n = in ◦ n�

and so g ◦m� = n� because in is a monomorphism. �
Remark 5.13. Lemma 5.12(c) entails that m� → n� whenever m� → n. Just observe that (m�)� can be 
identified with m�.

Definition 5.14. Consider a resource-indexed arboreal adjunction between E and C , with adjunctions Lk �
Rk. An object a of E is k-extendable if it satisfies the following property for all e ∈ E : For all path embeddings 
m : P � Rka and n : P � Rke such that m� � n� in the coslice category P/C k (see the leftmost diagram 
below),

P

Sm Sn

m� n�

Q

Sm′ Sn′

m′
� n′

�

if n′ : Q � Rke is a path embedding satisfying n ≤ n′ in P (Rke), there is a path embedding m′ : Q � Rka

such that m ≤ m′ in P (Rka) and m′
� � n′

� in Q/C k (as displayed in the rightmost diagram above).

We shall see in Proposition 5.16 below that, under appropriate assumptions, the k-extendability property 
allows us to upgrade the relation �C

k to the finer relation ↔C
k . For the next lemma, recall that a category 

is locally finite if there are finitely many arrows between any two of its objects.

Lemma 5.15. Let C be an arboreal category whose full subcategory C p consisting of the paths is locally finite. 
If f : P � Q and g : Q � P are quotients between paths, then f and g are inverse to each other.

Proof. The set M of quotients P � P is a finite monoid with respect to composition, and it satisfies the 
right-cancellation law because every quotient is an epimorphism. Hence M is a group, and so g ◦ f ∈M has 
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an inverse. It follows that g ◦ f is an embedding. Because there is at most one embedding between any two 
paths by Lemma 3.10(a), g ◦ f = idP . By symmetry, also f ◦ g = idQ. �
Proposition 5.16. Consider a resource-indexed arboreal adjunction between E and C such that C k

p is locally 
finite for all k > 0. For all k-extendable objects a, b of E admitting a product, we have a �C

k b if and only 
if a ↔C

k b.

Proof. Fix an arbitrary k > 0 and recall that C k is an arboreal category. The “if” part of the statement 
follows from the inclusion ↔C

k ⊆�C
k .

For the “only if” part suppose that a �C
k b, i.e. Rka and Rkb are homomorphically equivalent in C k. To 

improve readability, let X := Rka and Y := Rkb. We must prove that X and Y are bisimilar. As X and 
Y admit a product in C k, namely the image under Rk of the product of a and b in E , by Theorem 3.14 it 
suffices to show that X and Y are back-and-forth equivalent.

Fix arbitrary morphisms f : X → Y and g : Y → X, and let m and n denote generic elements of P X

and P Y , respectively. We claim that

B := {�m,n� | ∃ s : Sm → Sn, t : Sn → Sm s.t. P s(m�) = n� and P t(n�) = m�}

is a back-and-forth system between X and Y , i.e. it satisfies items (i)–(iii) in Definition 3.13. For item (i), let 
⊥X , ⊥Y be the roots of P X and P Y , respectively. Note that S⊥X

and S⊥Y
can be identified, respectively, 

with X and Y . As P f and P g are forest morphisms, P f(⊥X) = ⊥Y and P g(⊥Y ) = ⊥X . So, �⊥X , ⊥Y � ∈ B.
For item (ii), suppose �m, n� ∈ B and let m′ ∈ P X satisfy m ≺ m′. We seek n′ ∈ P Y such that n ≺ n′

and �m′, n′� ∈ B. By assumption, there are arrows s : Sm → Sn and t : Sn → Sm such that P s(m�) = n�

and P t(n�) = m�. Writing P := dom(m) and P ′ := dom(n), we have the following diagrams

P · P ′

Sm Sn

e

m� P s(m�)

ϕ

n�

s

P ′ · P

Sn Sm

e′

n� P t(n�)

ψ

m�

t

where ϕ and ψ are isomorphisms. By Lemma 5.15, ϕ ◦ e and ψ ◦ e′ are inverse to each other, thus the 
left-hand diagram below commutes.

P

Sm Sn

m� n�◦ϕ◦e

s

t

Q

Sm′ Sn′

m′
� n′

�

s′

t′

Let Q := dom(m′). Since b is k-extendable, there exist a path embedding n′ : Q � Y such that n ≤ n′ in 
P Y , and arrows s′ : Sm′ → Sn′ and t′ : Sn′ → Sm′ making the right-hand diagram above commute. It 
follows that �m′, n′� ∈ B; just observe that P s′(m′

�) = n′
� because the composite s′ ◦m′

� is an embedding, 
and similarly P t′(n′

�) = m′
�.

It remains to show that n ≺ n′. For any element x of a tree, denote by ht(x) its height. As n ≤ n′ in 
P Y , it is enough to show that ht(n′) = ht(n) + 1. Using the fact that forest morphisms preserve the height 
of points and P s′(m′

�) = n′
�, we get

ht(n′) = ht(n′
�) = ht(m′

�) = ht(m′) = ht(m) + 1.

Item (iii) is proved in a similar way using the fact that a is k-extendable. �
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Definition 5.17. Consider a resource-indexed arboreal adjunction between E and C , and an object a ∈ E . 
For all k > 0, a k-extendable cover of a is a section a → a∗ in E such that a∗ is k-extendable.

Proposition 5.18. (HP) holds for any resource-indexed arboreal adjunction between E and C satisfying the 
following properties for all k > 0:

(i) C k
p is locally finite.

(ii) E has binary products and each of its objects admits a k-extendable cover.

Proof. Fix a full subcategory D of E saturated under ↔C
k . For the non-trivial implication in (HP), assume 

D is closed under morphisms and let a, b ∈ E satisfy a →C
k b and a ∈ D .

If Gk := LkRk, then a →C
k b implies Gka → b. Let s : a → a∗ and t : Gka → (Gka)∗ be sections with a∗

and (Gka)∗ k-extendable objects. It follows from Lemma 3.20(a) that a �C
k a∗ and Gka �C

k (Gka)∗. By 
Lemma 3.20(b) we have a �C

k Gka and so, by transitivity, a∗ �C
k (Gka)∗. An application of Proposition 5.16

yields a∗ ↔C
k (Gka)∗. We thus have the following diagram, where t−1 denotes the left inverse of t.

a∗ ↔C
k (Gka)∗

a �C
k Gka b

s t−1

Since a ∈ D , and D is saturated under ↔C
k and closed under morphisms, all the objects in the diagram 

above sit in D . In particular, b ∈ D and thus (HP) holds. �
5.3. Relativising to full subcategories

Let E ′ be a full subcategory of E . We say that (HP) holds relative to E ′ if the following condition is 
satisfied: For any full subcategory D of E saturated under ↔C

k , D ∩ E ′ is closed under morphisms in E ′

precisely when it is upwards closed in E ′ with respect to →C
k . Likewise for (HP#).

For the next proposition, observe that in order for a comonad G on E to restrict to a full subcategory 
E ′ of E it is necessary and sufficient that Ga ∈ E ′ for all a ∈ E ′.

Proposition 5.19. Consider a resource-indexed arboreal adjunction between E and C , and let E ′ be a full 
subcategory of E such that the induced comonads Gk := LkRk restrict to E ′. If the resource-indexed arboreal 
adjunction has the bisimilar companion property then (HP) holds relative to E ′. If it is idempotent then 
(HP#) holds relative to E ′.

Proof. The same, mutatis mutandis, as for Propositions 5.2 and 5.4, respectively. �
Since the modal comonads Mk restrict to finite pointed Kripke structures, the previous result yields a 

variant of Theorem 5.6 for finite structures:

Theorem 5.20. The following statements are equivalent for any graded modal formula ϕ of modal depth at 
most k in a modal vocabulary:

(1) ϕ is preserved under homomorphisms between finite pointed Kripke structures.
(2) ϕ is logically equivalent over finite pointed Kripke structures to an existential positive modal formula of 

modal depth at most k.
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Similarly, since the guarded comonads Gg

n,k restrict to finite structures, we obtain the following variant 
of Theorem 5.8 for finite structures:

Theorem 5.21. Let g be a notion of guarding (either atom or loose). The following statements are equivalent 
for any g-guarded sentence ϕ in n variables of guarded-quantifier rank at most k in a relational vocabulary:

(1) ϕ is preserved under homomorphisms between finite structures.
(2) ϕ is logically equivalent over finite structures to an existential positive g-guarded sentence in n variables 

of guarded-quantifier rank at most k.

When the counits of the induced comonads Gk := LkRk are componentwise surjective, the next ob-
servation, combined with Proposition 5.19, gives a criterion to relativise equi-resource homomorphism 
preservation theorems to subclasses of structures. Recall that a negative formula is one obtained from 
negated atomic formulas and ∨, ∧, ∃, ∀.

Lemma 5.22. Let G be a comonad on Struct(σ) whose counit is componentwise surjective and let T be a 
set of negative sentences. Then G restricts to Mod(T ).

Proof. If ψ ∈ T , its negation is logically equivalent to a positive sentence χ. Positive sentences are preserved 
under surjective homomorphisms and so, for all A ∈ Struct(σ), considering the component of the counit 
GA � A we obtain

GA |= χ =⇒ A |= χ.

I.e., G restricts to Mod(ψ). As Mod(T ) =
⋂

ψ∈T Mod(ψ), the statement follows. �
The counits of the guarded comonads Gg

n,k are componentwise surjective, thus the equirank-variable 
homomorphism preservation theorem for guarded logics and its finite variant (Theorems 5.8 and 5.21, 
respectively) admit a relativisation to any full subcategory of the form Mod(T ) where T is a set of negative 
g-guarded sentences.

Relativisations to subclasses of structures can be obtained even in the absence of the bisimilar companion 
property; in that case, we need to ensure that k-extendable covers can be constructed within the subclass. 
We defer the statement of this result to Section 6.2 (see Corollary 6.11).

6. An axiomatic approach

In this section, we consider resource-indexed arboreal adjunctions between E and C that need not satisfy 
the bisimilar companion property. Using the notion of k-extendable cover introduced in Section 5.2, we 
identify sufficient conditions ensuring that Property (HP) is satisfied (see Corollary 6.10). We introduce first 
conditions (E1)–(E2) on E in Section 6.1 and then, in Section 6.2, conditions (A1)–(A4) on the adjunctions. 
In Section 6.3, we derive a slight generalisation of the equirank homomorphism preservation theorem by 
showing that these conditions are satisfied by the Ehrenfeucht-Fraïssé resource-indexed arboreal adjunction.

Remark 6.1. Let us point out that we cannot derive from this axiomatic approach an equivariable homo-
morphism preservation theorem, whereby the number of variables in a sentence is preserved, let alone an 
equirank-variable one. In fact, the corresponding (k-round) n-pebble comonads do not satisfy Property (A3)
below. On the other hand, under the additional assumption that k ≤ n + 2, where k is the quantifier rank 
and n is the number of variables in a sentence, an equirank-variable homomorphism preservation theorem 
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was proved by Paine in [38]. Also, our approach does not readily apply to hybrid logic because the hybrid 
comonads Hk in [5] do not satisfy the path restriction Property (A4) (cf. Definition 6.8).

6.1. Axioms for the extensional category

We require that the category E have the following properties:

(E1) E has all finite limits and small colimits.
(E2) E is equipped with a proper factorisation system such that:

• Embeddings are stable under pushouts along embeddings.
• Pushout squares of embeddings are also pullbacks.
• Pushout squares of embeddings are stable under pullbacks along embeddings.

Remark 6.2. Note that Property (E2) only involves one half of the factorisation system, namely the embed-
dings. In fact, it could be weakened to the requirement that E admit a class of monomorphisms N satisfying 
appropriate properties. When N is the class of all monomorphisms, these are akin to the conditions for an 
adhesive category, cf. [31].

Example 6.3. If σ is a relational vocabulary, Struct(σ) satisfies (E1)–(E2). In fact, it is well known that 
Struct(σ) is complete and cocomplete, hence it satisfies (E1). For (E2), consider the proper factorisation 
system given by surjective homomorphisms and embeddings. Up to isomorphism, embeddings can be iden-
tified with inclusions of induced substructures. The pushout of a span of embeddings in Struct(σ) can be 
identified with a union of structures, and so embeddings are stable under pushouts along embeddings. The 
remaining two conditions in (E2) hold because they are satisfied in Set by the class of monomorphisms, and 
the forgetful functor Struct(σ) → Set preserves and reflects pullback and pushout diagrams consisting of 
embeddings.

We note in passing that Properties (E1)–(E2) are stable under taking coslices:

Lemma 6.4. If a category E satisfies (E1)–(E2), then so does e/E for all e ∈ E .

Proof. Fix an arbitrary object e ∈ E . It is well known that limits and colimits in e/E are inherited from E , 
so e/E satisfies (E1) because E does.

By assumption, E admits a proper factorisation system satisfying (E2). Let Q and M be the classes of 
arrows in e/E whose underlying morphisms in E are quotients and embeddings, respectively. It is folklore 
that (Q, M ) is a weak factorisation system in e/E . Moreover, this factorisation system is proper because the 
codomain functor cod: e/E → E is faithful. Recall that cod: e/E → E preserves pushouts, so embeddings in 
e/E are stable under pushouts along embeddings because the corresponding property is satisfied in E . The 
remaining two properties in (E2) follow by similar reasoning, using the fact that cod: e/E → E preserves 
and reflects limits and pushouts. �

Example 6.5. It follows from Example 6.3 and Lemma 6.4 that, for all relational vocabularies σ, the category 
Struct•(σ) of pointed σ-structures satisfies (E1)–(E2).
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6.2. Axioms for the resource-indexed adjunctions

We now assume that the extensional category E satisfies (E1)–(E2), and proceed to introduce condi-
tions on the resource-indexed arboreal adjunction between E and C . To start with, consider an arbitrary 
adjunction L � R : E → C . As with any adjunction, there are hom-set bijections

E (Lc, e) −→ C (c,Ra), f �→ f �

natural in c ∈ C and e ∈ E . Explicitly, f � is defined as the composite

c RLc Re
ηc Rf

where η is the unit of the adjunction L �R. The inverse of the function f �→ f � sends g ∈ C (c, Re) to the 
morphism g# given by the composition

Lc LRe e,
Lg εe

where ε is the counit of the adjunction. Naturality of these bijections means that

(f1 ◦ f2)� = Rf1 ◦ f �
2

for all morphisms f1 : e → e′ and f2 : Lc → e in E , and

(g1 ◦ g2)# = g#
1 ◦ Lg2

for all morphisms g1 : c → Re and g2 : c′ → c in C .
Next, we introduce the path restriction property for resource-indexed arboreal adjunctions. In a nutshell, 

this states that whenever a ∈ E embeds into the image under Lk of a path, a itself can be equipped with a 
path structure. Furthermore, these path structures can be chosen in a coherent fashion. We start with an 
auxiliary definition:

Definition 6.6. Consider a resource-indexed arboreal adjunction between E and C . A path P ∈ C k
p is smooth

if there exist e ∈ E and an embedding P � Rke.

Remark 6.7. The motivation for considering smooth paths arises from the fact that, when considering a 
fresh binary relation symbol I modelling equality in the logic (cf. Example 3.18), the interpretation of I in 
these paths is always an equivalence relation.

Definition 6.8. A resource-indexed arboreal adjunction between E and C has the path restriction property
if, for all smooth paths Q ∈ C k

p and embeddings j : a � LkQ, there is a path Qa ∈ C k
p such that LkQa

∼= a

and the following conditions are satisfied:

(i) For all path embeddings !P,Q : P � Q in C k and all commutative diagrams

LkP a LkQ

Lk(!P,Q)

f j

there is an arrow � : P → Qa such that Lk� = f .
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(ii) For all path embeddings !P,Q : P � Q such that Lk(!P,Q) is an embedding, the pullback of Lk(!P,Q)
along j is of the form Lk� for some � : Qb → Qa.

b LkP

a LkQ

�
Lk� Lk(!P,Q)

j

Finally, recall that an object a of a category A is finitely presentable if the associated hom-functor 
A (a, −) : A → Set preserves directed colimits.

With regards to the resource-indexed arboreal adjunction, we assume that the following properties are 
satisfied for all k > 0 and all paths P ∈ C k

p:

(A1) The category C k
p is locally finite and has finitely many objects up to isomorphism.

(A2) LkP is finitely presentable in E .
(A3) For all arrows m : P → Rka in C k, if m is an embedding then so is m# : LkP → a. The converse holds 

whenever P is smooth.
(A4) The path restriction property is satisfied.

Theorem 6.9. Consider a resource-indexed arboreal adjunction between E and C satisfying (E1)–(E2) and 
(A1)–(A4). For all a ∈ E and all k > 0, there exists a k-extendable cover of a.

The proof of the previous key fact is deferred to Section 7. Let us point out the following immediate 
consequence:

Corollary 6.10. (HP) holds for all resource-indexed arboreal adjunctions satisfying (E1)–(E2) and (A1)–(A4).

Proof. By Proposition 5.18 and Theorem 6.9. �
We can also deduce the following relativisation result. Let us say that a full subcategory D of a category 

A is closed (in A ) under co-retracts provided that, whenever A ∈ D and there is a section A → B in A , 
also B ∈ D .

Corollary 6.11. Let σ be a relational vocabulary and consider a resource-indexed arboreal adjunction between 
Struct(σ) and C satisfying (A1)–(A4). The following hold:

(1) If D is a full subcategory of Struct(σ) closed under co-retracts such that each induced comonad Gk :=
LkRk restricts to D, then (HP) holds relative to D.

(2) If the counits of the comonads Gk are componentwise surjective and T is a set of negative sentences in 
the vocabulary σ, then (HP) holds relative to Mod(T ).

Proof. The proof of item 1 is the same, mutatis mutandis, as for Proposition 5.18, using Theorem 6.9 and 
the fact that if D is closed under co-retracts then k-extendable covers can be constructed within D .

Item 2 is an immediate consequence of item 1. Just observe that the comonads Gk restrict to Mod(T )
by Lemma 5.22, and Mod(T ) is closed under co-retracts (cf. the proof of the aforementioned lemma). �
6.3. The equirank homomorphism preservation theorem

As observed in Section 4.1, Rossman’s equirank homomorphism preservation theorem is equivalent to 
Property (HP) for the Ehrenfeucht-Fraïssé resource-indexed arboreal adjunction between Struct(σ) and 
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RE(σI). In turn, by Corollary 6.10, to establish (HP) it suffices to show that the latter resource-indexed 
arboreal adjunction satisfies (E1)–(E2) and (A1)–(A4). By Example 6.3, the category Struct(σ) satisfies 
(E1)–(E2) when equipped with the (surjective homomorphisms, embeddings) factorisation system, so it 
remains to show that (A1)–(A4) hold. Before doing so, note that Corollary 6.11 yields the following slight 
generalisation of the equirank homomorphism preservation theorem (just observe that the counits of the 
induced comonads on Struct(σ) are componentwise surjective).

Theorem 6.12. Let σ be a relational vocabulary and let D be a full subcategory of Struct(σ) closed under co-
retracts such that the comonads on Struct(σ) induced by the Ehrenfeucht-Fraïssé resource-indexed arboreal 
adjunction restrict to D. Then the equirank homomorphism preservation theorem holds relative to D.

In particular, the equirank homomorphism preservation theorem holds relative to Mod(T ) whenever T
is a set of negative sentences in the vocabulary σ.

Remark 6.13. A consequence of the first part of Theorem 6.12 is that the equirank homomorphism preser-
vation theorem admits a relativisation to any class of structures that is co-homomorphism closed, i.e. down-
wards closed with respect to the homomorphism preorder on Struct(σ), a fact already pointed out by 
Rossman in [41, §7.1.2].

We proceed to verify conditions (A1)–(A4) for the adjunctions Lk � Rk, where

Lk := HLE
k and Rk := RE

k J

with the notation of Example 3.18. Note that, since a first-order sentence contains only finitely many relation 
symbols, in order to deduce the equirank homomorphism preservation theorem, as well as Theorem 6.12
above, we can assume without loss of generality that the relational vocabulary σ is finite.

(A1) Recall from Example 3.7 that, for all k > 0, the paths in RE
k (σI) are those forest-ordered σI -

structures (A, ≤) such that the order is a chain of cardinality at most k. Thus, A has cardinality at most k. 
It follows at once that there are finitely many paths in RE

k (σI) up to isomorphism, and at most one arrow 
between any two paths.

(A2) For any path P = (A, ≤) in RE
k (σI), LkP is the quotient of the σ-reduct of A with respect to the 

equivalence relation generated by IA. As A is finite, so is LkP . The finitely presentable objects in Struct(σ)
are precisely the finite σ-structures (see e.g. [11, §5.1]), hence LkP is finitely presentable.

(A3) Consider an arrow m : P → RkB in RE
k (σI), with P = (A, ≤) a path and B a σ-structure. Let 

B′ := J(B) be the σI -structure obtained from B by interpreting I as the identity relation. Then RkB is 
obtained by equipping Ek(B′) with the prefix order. Consider the σ-homomorphism

Lkm = Hm : H(A)→ HEk(B′).

For convenience of notation, given an element x ∈ A we write [x] for the corresponding element of H(A), 
and likewise for elements of Ek(B′). Then m# : LkP → B is the composite of Hm with the homomorphism 
HEk(B′) → B sending the equivalence class of an element of Ek(B′) to the last element of any of its 
representatives. This map is well defined because, for any pair of sequences in IEk(B′), their last elements 
coincide.

Suppose m is an embedding. If m#([x]) = m#([y]) then (m(x), m(y)) belongs to the equivalence relation 
generated by IEk(B′), and so (x, y) belongs to the equivalence relation generated by IA. It follows that 
[x] = [y] in H(A), and so m# is injective. The same argument, mutatis mutandis, shows that m# reflects 
the interpretation of the relation symbols, hence is an embedding.

Conversely, suppose that m# is an embedding and P is smooth. Consider an embedding n : P � RkC

with C ∈ Struct(σ). Note that the restriction of IEk(C′) to the image of n is an equivalence relation, hence 
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IA is an equivalence relation. As any forest morphism whose domain is linearly ordered is injective, m is 
injective. So, it remains to show that m reflects the interpretation of the relation symbols. For all x, y ∈ A, 
if

(m(x),m(y)) ∈ IEk(B′)

then m#([x]) = m#([y]) and so [x] = [y] because m# is injective. That is, (x, y) ∈ IA, showing that m
reflects the interpretation of the relation I. Suppose now that S is a relation symbol different from I. For 
convenience of notation we shall assume that S has arity 2; the general case is a straightforward adaptation. 
For all x, y ∈ A, if

(m(x),m(y)) ∈ SEk(B′)

then (m#([x]), m#([y])) ∈ SB and so ([x], [y]) ∈ SH(A) because m# is an embedding. That is, there are 
x′, y′ ∈ A such that (x, x′), (y, y′) ∈ IA and (x′, y′) ∈ SA. We claim that the following property holds, from 
which it follows that m is an embedding:

(x, x′), (y, y′) ∈ IA and (x′, y′) ∈ SA =⇒ (x, y) ∈ SA. (∗)

In turn, this is a consequence of the fact that n is an embedding and, in Ek(C ′),

(n(x), n(x′)), (n(y), n(y′)) ∈ IEk(C′) and (n(x′), n(y′)) ∈ SEk(C′)

imply (n(x), n(y)) ∈ SEk(C′).
(A4) Finally, we show that the path restriction property is satisfied. Let Q = (B, ≤) be a smooth path in 

RE
k (σI), and let j : A � H(B) be an embedding in Struct(σ). Without loss of generality, we can identify A

with a substructure of H(B), and j with the inclusion map. As observed above, since Q is smooth, IB is an 
equivalence relation and property (∗) is satisfied (with B in place of A). If qB : B � H(B) is the canonical 
quotient map, let QA denote the substructure of B whose underlying set is

{x ∈ B | qB(x) ∈ A}.

Then QA is a path in RE
k (σI) when equipped with the restriction of the order on B and, using (∗), we get 

H(QA) ∼= A.
It follows from the definition of QA that item (i) in Definition 6.8 is satisfied. Just observe that any 

substructure of QA that is downwards closed in Q is also downwards closed in QA. With regards to item (ii), 
consider a path embedding !P,Q : P � Q with P = (C, ≤) and form the following pullback square in 
Struct(σ).

D H(C)

A H(B)

�
Lk(!P,Q)

j

Identifying H(C) with a substructure of H(B), we can assume D is the intersection of A and H(C). Because 
C is a substructure of B, it follows that QD is a substructure of QA. Moreover, because C is downwards 
closed in B, QD is downwards closed in QA. That is, there is an inclusion QD � QA whose image under 
Lk coincides with the pullback of Lk(!P,Q) along j. Hence the path restriction property holds.
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7. Proof of Theorem 6.9

For the remainder of this section, we fix an arbitrary resource-indexed arboreal adjunction between E
and C , with adjunctions Lk � Rk : E → C k, satisfying (E1)–(E2) and (A1)–(A4).

7.1. Relative extendability

For all k > 0, we denote by C k the full subcategory of C k whose objects are colimits of finite diagrams 
of embeddings in C k

p. Further, we write Lk[C k] for the full subcategory of E defined by the objects of the 
form Lkc for c ∈ C k.

Remark 7.1. It follows from (A1) that C k is equivalent to a finite category. Therefore Lk[C k] contains, up 
to isomorphism, only finitely many objects.

As we shall see in the following lemma, every path embedding P � Rka is homomorphically equivalent 
to one of the form P � Rkã with ã ∈ Lk[C k]. Consequently, in the definition of k-extendable object (see 
Definition 5.14) we can assume without loss of generality that e ∈ Lk[C k]. This observation, combined with 
Remark 7.1, will allow us to control the size of the diagrams featuring in the proof of Theorem 6.9.

Lemma 7.2. For all path embeddings m : P � Rka, there are ã ∈ Lk[C k] and a path embedding m̃ : P � Rkã

such that m � m̃ in P/C k.

Proof. Fix an arbitrary path embedding m : P � Rka. By (A1), there is a finite set of paths P =
{P1, . . . , Pj} ⊆ C k

p such that each path in C k is isomorphic to exactly one member of P. We can as-
sume without loss of generality that P ∈ P.

For each path embedding p ∈ P (Rka), denote by Tp the tree obtained by first considering the tree 
↑p ⊆ P (Rka) and then replacing each node q (which is an isomorphism class of a path embedding) with 
the unique path Pi ∈ P such that Pi

∼= dom(q). We assume that Tp is reduced, i.e. given any two nodes x
and y of Tp that cover the same node, if the trees ↑x and ↑y are equal then x = y. (If Tp is not reduced, we 
can remove branches in the obvious manner to obtain a maximal reduced subtree T ′

p.) We refer to Tp as the 
type of p; note that this is a finite tree. In particular, if ⊥ is the root of P (Rka), we get a finite tree T⊥.

Now, for each node x of T⊥, we shall define a path embedding mx into Rka whose domain belongs to 
P. The definition of mx is by induction on the height of x. Suppose x has height 0, i.e. x is the root of 
T⊥. Then x = Pi for a unique i ∈ {1, . . . , j}. Define mx as the restriction of m to Pi, i.e. the composition 
of m : P � Rka with the unique embedding Pi � P . Next, suppose mz has been defined for all nodes z of 
height at most l, and let x be a node of height l + 1 labelled by some Pj . We distinguish two cases:

• If there is a node y ≥ x such that Tm coincides with the tree ↑y ⊆ T⊥, then we let mx be the restriction 
of m to Pj . Note that, in this case, the type of mx coincides with the tree ↑x ⊆ T⊥. Moreover, if z is the 
predecessor of x then mz will also be an appropriate restriction of m, and thus mx extends mz.

• Otherwise, we let mx : Pj � Rka be any path embedding such that:

(i) The type of mx coincides with the tree ↑x ⊆ T⊥.
(ii) mx extends mz, where z is the predecessor of x.

Note that such an embedding mx exists because x ∈ ↑z ⊆ T⊥ and, by inductive hypothesis, ↑z coincides 
with the type of mz.
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The set

V := {mx | x ∈ T⊥}

is finite and contains m. We regard V as a cocone over a finite diagram D of paths and embeddings between 
them. Let ã := Lk(colimD) and note that ã ∈ Lk[C k]. The functor Lk preserves colimits because it is left 
adjoint, hence ã is the colimit in E of the diagram LkD. The cocone {n# | n ∈ V } with vertex a over LkD

then factors through a unique morphism f : ã → a. By construction, m : P � Rka factors through Rkf , 
and so there is m̃ : P � ã such that m = Rkf ◦ m̃. Hence, m̃→ m.

Next, with the aim of showing that m → m̃, we shall define a morphism Rka→ Rkã. As Rka is path 
generated, it suffices to define a cocone

W = {ϕp | p ∈ P (Rka)}

with vertex Rkã over the diagram of path embeddings into Rka. Suppose p ∈ P (Rka). We define the 
corresponding arrow ϕp by induction on the height of p:

(i) If p is the root of P (Rka), then it factors through Rkf : Rkã � Rka, and so it yields an embedding 
ϕp : dom(p) � Rkã.

(ii) Suppose that p has height l+1 and ϕq has been defined whenever q has height at most l. We distinguish 
two cases: if p factors through Rkf : Rkã � Rka, i.e. p = Rkf ◦ sp for some embedding sp, then we 
set ϕp := sp. This is the case, in particular, when p ≤ m in P (Rka). Clearly, if p extends q then ϕp

extends ϕq.
Otherwise, let q be such that p  q. By inductive hypothesis, we can suppose that Rkf ◦ϕq coincides 

with an embedding mx : Pj � Rka in V (up to an isomorphism dom(q) ∼= Pj) whose type coincides 
with the tree ↑x ⊆ T⊥. As q corresponds to a node y covering x labelled by some Ph

∼= dom(p), by 
definition of V there is an embedding my : Ph � Rka in V such that my extends mx, and the type my

coincides with ↑y. Since my factors through Rkf , precomposing with the isomorphism dom(p) ∼= Ph

we get an embedding ϕp : dom(p) � Rkã. Observe that ϕp extends ϕq.

The compatibility condition for the cocone W states that ϕp extends ϕq whenever p extends q, which 
is ensured by the definition above. Thus, W induces a morphism g : Rka → Rkã and, by construction, 
g ◦m = m̃. Hence, m → m̃. �

The construction of k-extendable covers is akin to that of ω-saturated elementary extensions in model 
theory, where one starts with a first-order structure M and constructs an elementary extension M1 of M in 
which all types over (finite subsets of) M are realised, then an elementary extension M2 of M1 in which all 
types over M1 are realised, and so forth. The union of the induced elementary chain of models yields the 
desired ω-saturated elementary extension of M .

In the same spirit, we introduce a notion of k-extendability relative to a homomorphism, which models 
the one-step construction just outlined.

Definition 7.3. Let h : a → b be an arrow in E . We say that b is k-extendable relative to h if the following 
property is satisfied for all e ∈ Lk[C k]: For all path embeddings m : P � Rka and n : P � Rke such that 
m� � n�,

P

S S

m� n�
m n
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if n′ : Q � Rke is a path embedding such that n ≤ n′ in P (Rke), there is a path embedding m′ : Q � Rkb

such that the leftmost diagram below commutes and m′
� � n′

�.

P Q

Rka Rkb

!

m m′

Rkh

Q

Sm′ Sn′

m′
� n′

�

Suppose that, given an object a ∈ E , we are able to construct a section s : a → b such that b is k-extendable 
relative to s. Iterating this process countably many times, we obtain a k-extendable cover a → a∗, thus 
settling Theorem 6.9. The main hurdle consists in establishing the following proposition; a proof is offered 
in Section 7.2.

Proposition 7.4. For all a ∈ E and all k > 0 there is a section s : a → b such that b is k-extendable relative 
to s.

We can finally prove Theorem 6.9:

Proof of Theorem 6.9. Let a ∈ E . By applying Proposition 7.4 repeatedly, we obtain a chain of sections

a b1 b2 b3 · · ·s1 s2 s3 s4

such that bi is k-extendable relative to si, for all i ≥ 1. Denote the previous diagram by D and let a∗ be the 
colimit of D in E , which exists by (E1). Let hi : bi → a∗ be the colimit map with domain bi, and s : a → a∗

the one with domain a. As all the arrows in D are sections, so are the colimit maps; in particular, s is a 
section.

We claim that a∗ is k-extendable. Suppose m : P � Rk(a∗) and n : P � Rke are path embeddings such 
that m� � n�. By Lemma 7.2, we can assume without loss of generality that e ∈ Lk[C k].

By (A2), LkP is finitely presentable in E and so m# : LkP → a∗ factors through one of the colimit maps. 
Assume without loss of generality that m# factors through hj : bj → a for some j≥ 1, so there is an arrow 
r : LkP → bj satisfying m# = hj ◦ r. If mj := r�, it follows that m = Rkhj ◦mj . In particular, mj is an 
embedding because so is m. Since Rkhj is a section, Remark 5.10 entails mj � m, and so (mj)� � m� by 
Lemma 5.12(c). Because m� � n�, also (mj)� � n�.

Now, let n′ : Q � Rke be any path embedding such that n ≤ n′ in P (Rke). Since bj+1 is k-extendable 
relative to sj+1, there is a path embedding m′ : Q � Rkbj+1 such that m′

� � n′
� and the following diagram 

commutes.

P Q

Rkbj Rkbj+1

!

mj m′

Rksj+1

It follows that

m = Rkhj ◦mj = Rkhj+1 ◦Rksj+1 ◦mj = Rkhj+1 ◦m′ ◦ !

and so m′′ := Rkhj+1 ◦ m′ : Q � Rk(a∗) satisfies m ≤ m′′ in P (Rk(a∗)). Again by Remark 5.10 and 
Lemma 5.12(c) we get m′′

� � m′
�, and thus m′′

� � n′
�. This shows that a∗ is k-extendable. �
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7.2. Proof of Proposition 7.4

Fix an object a of E and a positive integer k. To improve readability, we drop the subscript from Lk

and Rk, and simply write L and R (but continue to denote by C k the arboreal category). We must find a 
section s : a → b such that b is k-extendable relative to s. Consider all pairs of path embeddings

(u : P � Ra, v : P � Re)

in C k such that e ∈ L[C k] and Lv� → u# in LP/E .

Remark 7.5. Note that Lv� → u# entails that Lv� is an embedding. Just observe that u# is an embedding 
by the first part of (A3).

Each such pair (u, v) induces a pushout square in E as follows.

LP LSv

a a +LP LSv

u#

Lv�

λ(u,v)

ι(u,v)
	

This pushout square exists by (E1) and consists entirely of embeddings by virtue of (E2).

Lemma 7.6. ι(u,v) is a section.

Proof. Just observe that, since Lv� → u#, there is g : LSv → a such that g ◦ Lv� = u#. By the universal 
property of the pushout, there is an arrow h : a +LP LSv → a such that h ◦ ι(u,v) is the identity of a. �

We let D be the diagram in E consisting of all the morphisms

ι(u,v) : a→ a +LP LSv

as above. Because C k is locally finite and e varies among the objects of L[C k], choosing representatives for 
isomorphism classes in an appropriate way we can assume by Remark 7.1 that D is a small diagram.

By (E1), D admits a colimit b := colimD. In other words, b is obtained as a wide pushout in E . Denote 
by s : a → b the colimit map with domain a, and by

t(u,v) : a +LP LSv → b

the colimit map corresponding to the arrow ι(u,v). As all arrows in D are sections by Lemma 7.6, so are the 
colimit maps. In particular, s : a → b is a section.

We claim that b is k-extendable relative to s, thus settling Proposition 7.4. Assume we are given path 
embeddings m : P � Ra and n : P � Re, with e ∈ L[C k], such that m� � n� as displayed in the leftmost 
diagram below.

P

Sm Sn

m� n�

f

g

LP

a LSn

m# Ln�

i
#
m◦Lg

If im : Sm � Ra is the canonical embedding, we get a commutative triangle as on the right-hand side 
above. Just observe that
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i#m ◦ Lg ◦ Ln� = i#m ◦ Lm� = (im ◦m�)# = m#.

Hence Ln� → m#. Let

ι(m,n) : a→ a +LP LSn

be the corresponding arrow in the diagram D. To improve readability we shall write, respectively, ι, λ and 
t instead of ι(m,n), λ(m,n) and t(m,n).

Let n′ : Q � Re be a path embedding with n ≤ n′ in P (Re). We must exhibit a path embedding 
m′ : Q � Rb such that the leftmost square below commutes and m′

� � n′
�.

P Q

Ra Rb

!

m m′

Rs

Q

Sm′ Sn′

m′
� n′

� (2)

Note that, because n ≤ n′, we get Sn′ ≤ Sn in SRe. Thus, n′
� can be identified with a path embedding 

into Sn. Consider the arrow

ξ := (λ ◦ Ln′
�)� : Q→ R(a +LP LSn).

Lemma 7.7. ξ is an embedding.

Proof. By the first part of (A3), (n′)# is an embedding. Then Ln′ is an embedding since (n′)# = εe ◦ Ln′, 
and so is Ln′

�. It follows that λ ◦ Ln′
� is an embedding because it is a composition of embeddings, and ξ is 

an embedding by the second part of (A3). �
Lemma 7.7, combined with the fact that Rt is a section (hence an embedding), entails that the composite 

m′ := Rt ◦ ξ : Q � Rb is an embedding. Moreover

m′ ◦ ! = ((m′ ◦ !)#)� = ((m′)# ◦ L!)� = (t ◦ λ ◦ Ln′
� ◦ L!)�

= (t ◦ λ ◦ Ln�)� = (t ◦ ι ◦m#)� = (s ◦m#)� = Rs ◦m,

showing that the leftmost diagram in equation (2) commutes. Since Rt is a section, we have ξ � m′ by 
Remark 5.10, and so ξ� � m′

� by Lemma 5.12(c). Therefore, in order to show that m′
� � n′

� it suffices to 
prove that ξ� � n′

�. We have

λ� ◦ n′
� = ((λ� ◦ n′

�)#)� = (λ ◦ Ln′
�)� = ξ

and thus n′
� → ξ. It follows from Remark 5.13 that n′

� → ξ�.
It remains to show that ξ� → n′

�; the proof of this fact will occupy us for the rest of this section. As 
C k is an arboreal category, Sξ is the colimit of its path embeddings. Thus, in order to define a morphism 
Sξ → Sn′ it suffices to define a compatible cocone with vertex Sn′ over the diagram of path embeddings 
into Sξ. By Lemma 5.12(a), the path embeddings into Sξ can be identified with the path embeddings into 
R(a +LP LSn) that are comparable with ξ. For each such path embedding q : Q′ � R(a +LP LSn), we 
shall define an arrow ζq : Q′ → Re and prove that these form a compatible cocone. We will then deduce, 
using the induced mediating morphism Sξ → Re, that ξ� → n′

�.
Fix an arbitrary path embedding q : Q′ � R(a +LP LSn) above ξ and consider the following diagram in 

E , where the four vertical faces are pullbacks.
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LP LSn

a LQ′

LP LSn

a a +LP LSn

ν

μ1
μ2

τ2

τ1

σ1

Ln�

m#

λ

ι

σ2

q#

(3)

Note that the previous diagram consists entirely of embeddings because q# is an embedding by the first 
part of (A3), and the pullback in E of an embedding exists by (E1) and is again an embedding.

Because q is above ξ, there is an embedding Q � Q′, and thus also an embedding P � Q′. By the 
universal property of pullbacks, there are unique arrows

ϑ : LP � a and Δ: LP � LP

making the following diagrams commute.

LP a LQ′

a a +LP LSn

L!

m#

ϑ

�
σ1

σ2 q#

ι

LP LP a

LP a

ϑ

idLP

Δ

�
μ1

μ2 σ2

m#

Note in particular that μ2 is a retraction whose right inverse is Δ. As μ2 is also an embedding, it must be 
an isomorphism with (two-sided) inverse Δ.

By (A4) (more precisely, by item (i) in Definition 6.8) there is an arrow w : P → Qa between paths such 
that Lw = ϑ. Hence, we can consider σ�

2 : Qa → Ra. Note that

(σ�
2 ◦ w)# = σ2 ◦ Lw = σ2 ◦ ϑ = m#,

and so σ�
2 ◦w = m. In particular, w is an embedding. As Qa is a path, iw : Sw � Qa can be identified with 

the identity Qa → Qa. By Lemma 5.12(b), there is a unique arrow ψq : Qa → Sm making the following 
diagram commute.

Qa Sm

Ra

ψq

σ�
2

im

Lemma 7.8. The following diagram commutes.

LP

a LSn

μ1 Ln�◦μ2

L(f◦ψq)

Proof. Note that

im ◦ ψq ◦ w = σ�
2 ◦ w = m = im ◦m�
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and so ψq ◦w = m� since im is a monomorphism. Applying the functor L to the outer commutative diagram 
on the left-hand side below, we obtain the commutative diagram on the right-hand side.

P

Qa Sm Sn

w m�
n�

ψq f

LP

a LSn

ϑ Ln�

L(f◦ψq)

Hence, precomposing with μ2 we get

Ln� ◦ μ2 = L(f ◦ ψq) ◦ ϑ ◦ μ2 = L(f ◦ ψq) ◦ μ1. �
For convenience of notation, let us write

γ̃q := L(f ◦ ψq) : a→ LSn and γq := εe ◦ Lin ◦ γ̃q : a→ e.

With this notation we have

γq ◦ μ1 = εe ◦ Lin ◦ γ̃q ◦ μ1

= εe ◦ Lin ◦ Ln� ◦ μ2 Lemma 7.8

= εe ◦ Lin ◦ τ2 ◦ ν

and so the leftmost diagram below commutes.

LP LSn

a e

ν

μ1 εe◦Lin◦τ2
γq

LP LSn

a LQ′

ν

μ1 τ1

σ1
	

Now, note that by (E2) the top face of diagram (3), displayed in the rightmost diagram above, is a pushout 
in E . By the universal property of pushouts, there is a unique δq : LQ′ → e satisfying

δq ◦ σ1 = γq and δq ◦ τ1 = εe ◦ Lin ◦ τ2.

Define ζq := (δq)� : Q′ → Re for all path embeddings q : Q′ � R(a +LP LSn) above ξ. Further, if q is 
below ξ, we let ζq be the obvious restriction of ζξ.

Lemma 7.9. The following family of arrows forms a compatible cocone over the diagram of path embeddings 
into Sξ:

{ζq | q : Q′ � R(a +LP LSn) is a path embedding comparable with ξ}.

Proof. Fix arbitrary path embeddings

q : Q′ � R(a +LP LSn) and q′ : Q′′ � R(a +LP LSn)

comparable with ξ. The compatibility condition for the cocone states that ζq extends ζq′ whenever q ≥ q′. 
It suffices to settle the case where ξ ≤ q ≤ q′. Also, it is enough to show that δq extends δq′ , i.e. δq ◦L! = δq′

where ! : Q′′ � Q′ is the unique embedding. Just observe that δq ◦ L! = δq′ entails

ζq ◦ ! = δ�q ◦ ! = ((δ�q ◦ !)#)� = (δq ◦ L!)� = δ�q′ = ζq′ .
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Consider the following diagram all whose vertical faces are pullbacks and note that by (A4), and more 
precisely by item (ii) in Definition 6.8, the pullback of L! along σ1 is of the form L� for some arrow 
� : Qa → Qa.

LP LSn

a LQ′′

LP LSn

a LQ′

LP LSn e

a a +LP LSn

τ2

τ1

σ1

L! δq′
ν

μ1
μ2

τ2

τ1

σ1

L�

δq

Ln�

m#

λ

ι

σ2

q#

In view of the definition of δq′ in terms of the universal property of pushouts, it suffices to show that δq ◦L!
satisfies

(δq ◦ L!) ◦ σ1 = γq′ and (δq ◦ L!) ◦ τ1 = εe ◦ Lin ◦ τ2 ◦ τ2.

The latter equation follows at once from the identity δq ◦ τ1 = εe ◦Lin ◦ τ2. With regards to the former, we 
have

(δq ◦ L!) ◦ σ1 = δq ◦ σ1 ◦ L� = γq ◦ L�.

Thus it suffices to show that γq ◦ L� = γq′ , and this clearly follows if we prove that γ̃q ◦ L� = γ̃q′ . Recall 
that ψq′ is the unique morphism such that the composite

Qa Sm Ra
ψq′ im

coincides with (σ2 ◦ L�)�. But

(σ2 ◦ L�)� = ((σ�
2 ◦ �)#)� = σ�

2 ◦ �,

so im ◦ ψq ◦ � = σ�
2 ◦ � entails ψq′ = ψq ◦ �. Therefore,

γ̃q′ = L(f ◦ ψq′) = L(f ◦ ψq ◦ �) = γ̃q ◦ L�. �
The previous lemma entails the existence of a unique morphism h : Sξ → Re satisfying h ◦ q = ζq for all 

path embeddings q into R(a +LP LSn) that are comparable with ξ. In order to conclude that ξ� → n′
� as 

desired, we prove the following useful property of the cocone consisting of the morphisms ζq.

Lemma 7.10. Let G := LR and consider the composite morphism

RLSn RGe Re.
RLin Rεe

If q = Rλ ◦ α for some arrow α : Q′ � RLSn, then ζq = Rεe ◦RLin ◦ α.
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Proof. Suppose that q = Rλ ◦ α for some α : Q′ � RLSn. We have

(Rεe ◦RLin ◦ α)# = ((εe ◦ Lin ◦ α#)�)# = εe ◦ Lin ◦ α#.

By the universal property of δq = ζ#
q , ζq = Rεe ◦RLin ◦ α if, and only if,

(εe ◦ Lin ◦ α#) ◦ τ1 = εe ◦ Lin ◦ τ2 (4)

and

(εe ◦ Lin ◦ α#) ◦ σ1 = εe ◦ Lin ◦ γ̃q. (5)

Observe that α# ◦ τ1 = τ2 because

λ ◦ α# ◦ τ1 = q# ◦ τ1 = λ ◦ τ2

and λ is a monomorphism. Thus, equation (4) holds. Further, note that

q# = (Rλ ◦ α)# = ((λ ◦ α#)�)# = λ ◦ α#

and so τ1 in diagram (3) is an isomorphism. As pushout squares of embeddings in E are also pullbacks 
by (E2), μ1 in diagram (3) is also an isomorphism. Therefore,

λ ◦ α# ◦ σ1 = q# ◦ σ1 = q# ◦ σ1 ◦ μ1 ◦ μ−1
1 = λ ◦ Ln� ◦ μ2 ◦ μ−1

1

= λ ◦ γ̃q ◦ μ1 ◦ μ−1
1 = λ ◦ γ̃q

and so α# ◦ σ1 = γ̃q. Equation (5) then follows at once. �
Since ξ = Rλ ◦ (Ln′

�)�, recalling that we identify n′
� with a path embedding into Sn, an application of 

the previous lemma with α := (Ln′
�)� yields

ζξ = Rεe ◦RLin ◦ (Ln′
�)� = (εe ◦ Lin ◦ Ln′

�)� = (εe ◦ Ln′)� = ((n′)#)� = n′.

In other words, h ◦ ξ� = n′ and so ξ� → n′. It follows from Remark 5.13 that ξ� → n′
�, thus concluding the 

proof of Proposition 7.4.

8. Relativisations to classes of well-behaved structures

In this section, we discuss a family of simple relativisation results which are, in a sense, oblivious to the 
“tame” versus “not-so-tame” divide of the landscape. Recall from Section 5 that, typically, the essence of a 
homomorphism preservation theorem is captured by the following configuration:

a �C
k Gka b.

The aim consists in proving that, if a belongs to a full subcategory D of the extensional category E , then 
so does b. The category D is assumed to be closed in E under morphisms, and saturated under the relation 
↔C

k .
The results presented in this paper are based on upgrading arguments (see [37] for an overview of this 

method): the relation �C
k between a and Gka is upgraded to the finer relation ↔C

k , possibly between 
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appropriate extensions a∗ and (Gka)∗. However, if a admits an arrow to Gka, and thus also to b, then 
no upgrading is needed; in this case, the assumption that D be saturated under ↔C

k is superfluous. The 
existence of a morphism a → Gka is a strong requirement but, as we shall see below, it is satisfied in several 
cases of interest.

Fix a finite relational vocabulary σ and recall that every finite structure in Struct(σ) admits a core, de-
noted by core(A), which is unique up to isomorphism. This can be characterised as the minimal substructure 
of A (with respect to set-theoretic inclusion) onto which A retracts, and any two homomorphically equiv-
alent finite σ-structures have isomorphic cores; see e.g. [24]. For the next lemma, consider any comonadic 
adjunction

L � R : Struct(σ) → C .

We let G := LR be the induced comonad, and denote by L[C ] the full subcategory of Struct(σ) on those 
objects that are in the image of the functor L.

Lemma 8.1. If L[C ] is closed in Struct(σ) under induced substructures, then the following statements are 
equivalent for all A ∈ Struct(σ):

(1) There exists a homomorphism A → GA.
(2) A is homomorphically equivalent to a structure A′ ∈ L[C ].

Moreover, if A is finite, the previous conditions are equivalent to the following:

(3) core(A) ∈ L[C ].

Proof. 1 ⇒ 2. Suppose there is a homomorphism A → GA, and decompose it as

A � A′ ↪→ GA

where A′ is an induced substructure of GA. Composing the inclusion A′ ↪→ GA with the counit ε : GA → A, 
we get a homomorphism A′ → A. It follows that A and A′ are homomorphically equivalent. Note that A′

belongs to L[C ] because it is an induced substructure of GA, which belongs to L[C ].
2 ⇒ 1. If A is homomorphically equivalent to some A′ ∈ L[C ] then, by functoriality, GA is homomorphi-

cally equivalent to GA′. Since the adjunction L � R is comonadic and A′ ∈ L[C ], there is a coalgebra map 
A′ → GA′. We thus obtain a diagram

A A′

GA GA′

and so A → GA.
2 ⇒ 3. Suppose that A is homomorphically equivalent to some A′ ∈ L[C ]. Let B be the image of A under 

any homomorphism A → A′ and note that B is finite, because so is A, and it is homomorphically equivalent 
to A. Further, B belongs to L[C ] because the latter contains A′ and is closed under induced substructures. 
Thus,

core(A) ∼= core(B) ↪→ B ∈ L[C ]

entails core(A) ∈ L[C ].
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3 ⇒ 2. Take A′ := core(A). �
Note that the equivalence between items 1 and 2 in Lemma 8.1 holds, more generally, if we replace the 

category of σ-structures with any category E equipped with a class M of embeddings, assuming that L[C ]
is closed under taking M -subobjects. For simplicity, we opted to state this lemma, as well as the following 
proposition, in the particular case where E = Struct(σ).

Consider any resource-indexed arboreal cover of Struct(σ) by C , with adjunctions Lk � Rk, such that 
each category Lk[C k] is closed in Struct(σ) under induced substructures. We obtain the following abstract 
homomorphism preservation theorem relative to a class of structures E ′:

Proposition 8.2. Let E ′ be a full subcategory of Struct(σ), and suppose there is k such that every object of 
E ′ is homomorphically equivalent to an object of Lk[C k]. For any full subcategory D of Struct(σ), D ∩ E ′

is closed under morphisms in E ′ precisely when it is upwards closed in E ′ with respect to →C
k .

Proof. For the non-trivial direction, assume D ∩ E ′ is closed under morphisms in E ′. We must show that, 
for all A, B ∈ E ′ such that A →C

k B, if A ∈ D then also B ∈ D . By Lemma 8.1, there is a homomorphism 
A → GkA, where Gk := LkRk. Further, there is a homomorphism GkA → B because A →C

k B. The 
composite yields a homomorphism A → B, and so B ∈ D . �

Let us say that a class of σ-structures has tree-depth at most k if each of its members has tree-depth 
at most k. Consider the Ehrenfeucht-Fraïssé resource-indexed arboreal cover of Struct(σ) by RE(σ) from 
Example 3.17. In view of [9, Theorem 6.2], the category Lk[RE

k (σ)] can be identified with the class of 
σ-structures having tree-depth at most k. If A is a σ-structure of tree-depth at most k, then any induced 
substructure of A has also tree-depth at most k; hence, Lk[RE

k (σ)] is closed in Struct(σ) under induced 
substructures. Proposition 8.2 then implies that, on any class of σ-structures with tree-depth at most k, any 
first-order sentence that is preserved under homomorphisms is equivalent to an existential positive sentence 
of quantifier rank at most k.

Remark 8.3. It is enough to consider the Ehrenfeucht-Fraïssé resource-indexed arboreal cover of Struct(σ)
by RE(σ), rather than the resource-indexed arboreal adjunction between Struct(σ) and RE(σI) in Exam-
ple 3.21, because every existential positive sentence (with quantifier rank at most k) is equivalent to one 
(with quantifier rank at most k) that does not use the equality symbol.

In a similar fashion, we deduce the following result for classes of finite σ-structures:

Corollary 8.4. On any class of finite σ-structures whose cores have tree-depth at most k, every first-order 
sentence that is preserved under homomorphisms is also definable by an existential positive sentence of 
quantifier rank at most k.

Note that these are not equi-resource homomorphism preservation theorems, as the quantifier rank of the 
ensuing existential positive sentence is bounded by the tree-depth of the class of (cores of) structures under 
consideration, which may be larger than the quantifier rank of the first-order sentence we started with.

On the other hand, since we did not assume in Proposition 8.2 that D is saturated under ↔C
k , Corollary 8.4

holds, more generally, for all (not necessarily first-order definable) Boolean queries; see e.g. [32, §2.1] for 
the latter notion. Generalisations to non-Boolean queries are also available, by considering extensions of the 
Ehrenfeucht-Fraïssé resource-indexed arboreal cover to categories of n-pointed σ-structures.
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