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Abstract
Some conscious experiences are more vivid than others. Although perceptual vividness is a key component of human consciousness, how 
variation in this magnitude property is registered by the human brain is unknown. A striking feature of neural codes for magnitude in 
other psychological domains, such as number or reward, is that the magnitude property is represented independently of its sensory 
features. To test whether perceptual vividness also covaries with neural codes that are invariant to sensory content, we reanalyzed 
existing magnetoencephalography and functional MRI data from two distinct studies which quantified perceptual vividness via 
subjective ratings of awareness and visibility. Using representational similarity and decoding analyses, we find evidence for content- 
invariant neural signatures of perceptual vividness distributed across visual, parietal, and frontal cortices. Our findings indicate that 
the neural correlates of subjective vividness may share similar properties to magnitude codes in other cognitive domains.
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Significance Statement

The vividness of conscious experience varies across different stimuli and contexts. Despite being a fundamental feature of conscious 
awareness, how perceptual vividness is encoded in the human brain remains unclear. Neural codes underpinning magnitude in other 
domains, such as reward and numerosity, have been shown to be unchanging as stimulus identity varies. In this study, we test 
whether components of neural activity covarying with the magnitude of perceptual vividness are similarly independent of perceptual 
content in analyses of magnetoencephalography and functional MRI data. We find dynamic, content-invariant neural signatures of 
vividness in visual, parietal, and frontal cortices. Our findings introduce the surprising notion that neural signatures of conscious ex
perience might follow similar coding principles to magnitude properties of entirely different cognitive domains.
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Introduction
Some experiences are more vivid than others. For example, seeing 

a bird on a clear day will be more vivid than seeing one on a foggy 

evening. Similarly, a car alarm outside your office can be very viv

id until your attention is consumed by a task at work. The neural 

correlates of experience are therefore likely to involve some re

presentation of the magnitude of perceptual vividness. While 

the neural basis of perceptual vividness is yet to be systematically 

characterized, neural codes for magnitude quantities in other cog

nitive domains, such as reward and numerosity, are better under

stood. Many neural magnitude codes exhibit a content-invariant 

component, where the magnitude property is represented inde

pendently of its sensory features (1–3). For instance, the number 

“9” is represented as larger than the number “5,” regardless of 
whether we are comparing 9 vs. 5 apples, oranges, or saxophones. 
In this study, we ask whether the magnitude properties of percep
tual vividness are also invariant to stimulus content: i.e. is the dif
ference in vividness between seeing a bird on a clear day and a 
foggy evening represented in a similar manner as the difference 
in vividness between hearing a car alarm when we are attending 
to it and when we are distracted? We investigate this question 
by testing the extent to which neural signatures associated with 
reports of perceptual vividness are independent of perceptual 
content.

Content-invariance is a well-established feature of several 
neural magnitude codes. In the orbitofrontal cortex, for example, 
common representations of reward magnitude are shared across 
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vastly different reward identities (1, 2, 4–6). Furthermore, presen
tation of the same numerosity elicits suppression effects across 
symbolic (Arabic numerals) and nonsymbolic (dots) stimuli in 
the intraparietal lobe (3), and multivariate cross-classification 
has revealed common representations of numerosity across sym
bolic and nonsymbolic formats (7). There is also evidence that nu
merical and reward magnitudes (among others) are encoded in a 
domain-general manner, where, for example, higher numbers are 
represented similarly to highly rewarding stimuli and lower num
bers are represented similarly to stimuli with low reward values, 
indicating a shared neural system underpinning representations 
of magnitude in both domains (8–10).

Given the evidence for content-invariant neural magnitude co
des in other domains, it is intriguing to ask whether invariance to 
perceptual content is also a feature of the neural activity covary
ing with the magnitude of perceptual vividness. If perceptual viv
idness is only encoded in a content-specific manner, our 
experience of a stimulus, such as a red circle, may become vivid 
through the increased firing of neural populations representing 
this feature (11) (Fig. 1, left). However, if neural activity covarying 
with perceptual vividness also contains a content-invariant com
ponent, we should be able to find neural signatures of vividness 
that are independent of those covarying with sensory features. 
The drivers of such content-invariant signals may include 
changes in attention, emotion, and other cognitive factors that 
surpass stimulus-specific salience, but nevertheless contribute 
to the vividness of experience (12, 13)—an idea consistent with 
philosophical positions that distinguish the content of percepts 
from their “force” and “vivacity” (14, 15). As such, rather than 
being solely bound to content-specific representations, perceptual 
vividness might also covary with neural activity in a domain- 
general fashion, independently of stimulus content (Fig. 1, right) 
(16–19).

We note that content-specific and content-invariant coding 
schemes should not be viewed as mutually exclusive. For in
stance, it is well-known that stimulus-driven aspects of percep
tual salience, such as stimulus contrast, are reflected in 

modality-specific neural activity (20, 21), and such properties 
in turn influence the subjective experience of vividness. Other 
studies have shown that activity in content-specific brain areas 
is associated with changes in perceptual awareness, even when 
holding the stimulus constant (22–24). Moreover, representa
tions of magnitude in other domains, such as reward or number, 
often exhibit both content-specific and content-invariant com
ponents (2, 4, 7). The present study aimed to investigate 
whether, beyond these content-specific codes, there is also evi
dence for content-invariant neural signatures of perceptual 
vividness.

To test whether the neural code for perceptual vividness exhib
its a content-invariant component, we reanalyzed both magneto
encephalography (MEG; 25) and functional MRI (fMRI; 26) data to 
investigate how perceptual vividness is represented in the human 
brain. The difficulties in isolating pure correlates of vividness and 
awareness from co-varying neural signals (e.g. those related to 
arousal or performance) are well-known, and we did not attempt 
to tackle these issues here (27, 28). Instead, we sought to determine 
the representational structure of awareness and visibility reports 
about different stimulus contents, to ask whether neural signa
tures covarying with vividness did so in a content-specific or 
content-invariant manner. To anticipate our results, we found evi
dence that neural representations of perceptual vividness general
ize over stimulus content, exhibit a graded structure, and can be 
identified across visual, parietal, and frontal brain regions, consist
ent with signatures of magnitude codes in other cognitive domains.

Materials and methods
MEG experiment
To explore the structure and dynamics of abstract representa
tions of awareness ratings, we reanalyzed an MEG dataset previ
ously acquired at Aarhus University (25). The data were 
recorded in a magnetically shielded room using an Elekta 
Neuromag Triux system with 102 magnetometers and 204 

Fig. 1. Hypothesized neural signatures of perceptual vividness. Left: Content-specific neural signatures associated with perceptual vividness. The 
subjective vividness of a red circle is associated with the strength of red circle–representing neurons (neuron A), while the vividness of a blue square is 
associated with the strength of blue square–representing neurons (neuron B). For example, as red circle–representing neurons increase their activity 
(top-left), the subjective percept of a red circle becomes more vivid. The neural signatures correlating with the vividness of red circles and blue squares 
are therefore different. Right: Content-invariant neural signatures associated with perceptual vividness. The subjective vividness of both red circles and 
blue squares is associated with a common neural signature (i.e. the activity of neuron C), which tracks vividness over and above any stimulus-specific 
neural activity (i.e. neurons A and B). Attention, emotion, and other cognitive factors may drive a content-invariant neural signal of vividness. We note 
that the hypothetical coding schemes represented here are not mutually exclusive, and it is possible that a combination of both schemes underpin the 
vividness of perceptual experience.
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orthogonal planar gradiometers. The data were recorded at a fre
quency of 1,000 Hz.

Participants
Written confirmation from the local ethics committee, De 
Videnskabsetiske Komitéer for Region Midtjylland, stated that 
the study was not subject to ethical approval under Danish law, 
with specific reference to Komitéloven §7 and §8.1. Nineteen 
participants took part in the experiment (mean age = 26.6 years; 
SD = 4.4 years). Two participants were excluded from our ana
lyses: one for failing to complete the experiment and the other 
for not using the “almost clear experience” (ACE) rating at all 
(see Experimental Design and Statistical Analyses below).

Experimental design and statistical analyses
In order to obtain a range of awareness ratings from each 
subject, a visual masking paradigm was used (Fig. 2A). First, a 
fixation cross was presented for either 500, 1,000, or 1,500 ms, 
followed by a target stimulus for 33.3 ms. The target stimulus 
was either a square or a diamond presented in white/gray on a 
black (RGB value 0, 0, 0) background (Fig. 2B). A static random 
noise mask followed the target and was presented for 
2,000 ms. Participants were required to identify the target dur
ing these 2,000 ms, before rating their awareness of the stimulus 
on the perceptual awareness scale (PAS). PAS consists of four 
possible responses: no experience (NE), weak glimpse (WG), 
ACE, and clear experience (CE). Following identification of the 
target, participants reported their awareness of the stimulus. 
The response boxes used for target identification and awareness 
reports were swapped between hands every 36 trials to 

minimize lateralized motor responses contributing to MEG ac
tivity patterns. More details regarding the instructions given to 
participants about each PAS response can be found in 
Andersen et al. (25).

The experiment consisted of 1 practice block and 11 experi
mental blocks, each with 72 trials. A contrast staircase was used 
for the target stimuli in order to obtain a sufficient number of re
sponses for each PAS rating. The staircase procedure had 26 con
trast levels ranging from a contrast of 2 to 77%, with a step size of 
3% points. In the practice block and first experimental block, the 
staircase increased by one level if a participant made an incorrect 
judgment on the identification task, and decreased by two levels if 
a participant made two successive correct identification judg
ments. For the remainder of the blocks, the staircase was adjusted 
based on which PAS rating the participant had used least through
out the experiment so far. Specifically, if NE had been used the 
least number of times throughout a block, three levels were sub
tracted after two consecutive correct answers, and one added 
for a wrong answer. If WG was the least used response, two levels 
were subtracted and one added. For ACE, one level was subtracted 
and two added. For CE, one level was subtracted and three added. 
This staircase procedure ensured a sufficient number of re
sponses for each rating.

Preprocessing
MEG data were analyzed using MATLAB 2019a and FieldTrip (29). 
The data were preprocessed with a low pass filter at 100 Hz, as 
well as a Discrete Fourier Transform and bandstop filters at 
50 Hz and its harmonics. The data were split into epochs of −200 
to 2,000 ms around stimulus onset and down-sampled to 

Fig. 2. Experimental paradigms. A) Experimental paradigm for the MEG data collected by Andersen et al. (25). First, a fixation cross was presented for 500, 
1,000, or 1,500 ms. Then, either a square or a diamond was shown for 33.3 ms, followed by a static noise mask for 2,000 ms. While the mask was shown, 
participants reported the identity of the target. Finally, they reported their awareness of the stimulus using the PAS scale. B) Stimuli used in Andersen 
et al. (25). C) Experimental paradigm for the fMRI data collected by Dijkstra et al. (26). A stimulus was presented for 17 ms, followed by a 66-ms ISI and a 
400-ms mask. Participants then indicated whether the stimulus was animate or inanimate, and finally rated the visibility of the stimulus on a 4-point 
scale. D) Stimuli used in Dijkstra et al. (26).
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250 Hz. For baseline correction, for each trial, activity 200 ms prior 
to stimulus presentation was averaged per channel and sub
tracted from the entire epoch. During artifact rejection, trials 
with high variance were visually inspected and removed if they 
were judged to contain excessive artifacts. This procedure was 
performed blind to the experimental condition to avoid experi
menter bias and was completed separately for the magneto
meters and gradiometers in the Elekta Neuromag Triux system. 
Following artifact rejection, the mean numbers of trials per PAS 
rating were as follows (numbers in brackets refer to SDs): NE: 
180.35 (59.64); WG: 168.10 (74.75); ACE: 186.35 (82.74); CE: 115.24 
(77.13). To further remove eye-movement artifacts, an independ
ent components analysis was carried out on the MEG data, and the 
components with the highest correlation with each of the 
electro-oculographic signals were discarded after visual inspec
tion. Components showing topographic and temporal signatures 
typically associated with heart rate artifacts were also removed 
by eye.

Since we reanalyzed previously collected data, we were unable to 
fully control for neural signals that typically covary with awareness 
level. As such, to better characterize the contribution of these sig
nals to ratings of awareness, we created two additional analysis 
pipelines. First, to ensure our results were not entirely driven by 
the contrast level of the stimuli, we regressed stimulus contrast lev
el on each trial out of the preprocessed MEG data. Second, to inves
tigate whether differences in prestimulus activity contributed to 
differences in perceptual visibility (17, 18, 30), we ran our data 
through the same preprocessing pipeline as above except for two 
adjustments: removing the baseline correction stage and lengthen
ing the epochs to −450 to 2,000 ms around stimulus presentation. 
The omission of baseline correction allows the analysis to be sensi
tive to differences in the prestimulus activity (for example, in the 
offset or mean amplitude) of trials associated with different aware
ness ratings which would otherwise be removed by baseline correc
tion (the baseline correction procedure results in each trial’s 
prestimulus window having a mean activity of zero across all time 
points for each channel, such that our representational similarity 
analysis [RSA] and decoding analyses would be unable to detect 
and characterize any prestimulus contribution to visibility codes).

Representational similarity analysis
RSA allows us to directly compare bespoke hypotheses about the 
structure of neural data (31). In RSA, hypotheses are expressed as 
model representational dissimilarity matrices (RDMs), which de
fine the predicted similarity of neural patterns between different 
conditions according to each hypothesis. In our case, we defined 
four model RDMs that make different predictions about whether 
or not awareness ratings generalize over perceptual content, 
and whether or not each rating leads to a graded activation pat
tern partially shared by neighboring ratings (Fig. 3A).

In our abstract-graded RDM, we model awareness ratings as 
being independent of perceptual content (such that ratings of a 
CE of a square have an identical neural profile to those of a CE 
of a diamond), as well as being graded in nature (exhibiting a dis
tance effect such that ratings of NE are more similar to those of 
WG, than of ACE). In the specific-graded RDM, awareness ratings 
are modeled as being graded in the same way, but they are now 
represented differently depending on which specific stimulus 
they are related to. Conversely, the abstract-discrete RDM repre
sents PAS ratings as independent of perceptual content but with 
no graded structure/distance effects (such that the neural code 
underpinning a report of NE is equally (dis)similar to the neural 

code reflecting either a WG or a CE). Finally, the specific-discrete 
RDM reflects our null model, whereby there is no observable rep
resentational similarity structure among conditions, such that 
neural patterns reflecting one specific awareness rating are equal
ly dissimilar to all other awareness ratings.

RSA involves the comparison of the model RDMs with empirical 
RDMs constructed from neural data. To do this, we first ran a linear 
regression on the MEG data with dummy-coded predictors for each 
of our eight conditions (square trials: NE, WG, ACE, CE; diamond tri
als: NE, WG, ACE, CE; trial condition coded with a 1, and alternative 
classes coded with a 0). This resulted in coefficient weights for each 
condition at each time point and sensor, with the weights represent
ing the neural response per condition, averaged over trials. We then 
computed the Pearson distance between each pair of condition 
weights over sensors, resulting in an 8 × 8 neural RDM reflecting 
the similarity of neural patterns across different awareness ratings 
and stimulus types (8). Neural RDMs were subsequently smoothed 
over time via convolution with a 60 ms uniform kernel.

We then compared this neural RDM with our model RDMs. To 
compare model RDMs with the neural RDM, we correlated the 
lower triangle of the model and neural RDMs using Kendall’s 
Tau rank correlation (32). We performed this procedure at every 
time point, resulting in a correlation value at each time point for 
each model. Importantly, we only correlated the lower triangle 
of the RDMs, excluding the diagonal to avoid spurious correlations 
driven by the increased similarity of on-diagonal values compared 
with off-diagonal values (33). This precluded us from directly test
ing our specific-discrete model, since it is represented by a uni
form RDM, and as such would give identical rank correlation 
values regardless of the neural RDM it was compared with. 
However, since this RDM reflects our null model (i.e. that there 
is no observable representational structure among awareness rat
ings), this model is implicitly compared with the other model 
RDMs when we examine whether the correlation of these model 
RDMs with the neural RDM is >0.

One concern with this approach is that the graded hypotheses 
may win due to the neural data itself being noisy. In other words, 
if the neural correlates of ratings are not cleanly dissociable, there 
will be greater overlap between all ratings in the empirical RDM, in
cluding those of close neighbors. To ensure we did not obtain spuri
ously high similarity with the abstract-graded model in virtue of 
this model’s low-frequency content, we performed a shuffling 
and blending procedure. This procedure involved shuffling the 
lower triangle of the abstract-discrete RDM before apportioning 
neighbors of the four (shuffled) high correlation cells with graded 
amounts of correlation. The correlation was blurred most for im
mediate neighbors, and less for diagonal neighbors, matching the 
format of the graded RDMs (Fig. 3D). We ran this procedure 1,000 
times per subject, resulting in 1,000 shuffled-discrete and 1,000 
shuffled-graded RDMs. We compared all shuffled-discrete and 
shuffled-graded RDMs with subjects’ neural data at each time 
point. Finally, we took the average correlation value for each 
time point across all permutations such that we had a Kendall’s 
Tau value for both the shuffled-discrete and shuffled-graded 
RDMs across time per subject. Through this approach, we were 
able to compare neural data with RDMs that shared no representa
tional similarity with our abstract-graded RDM while controlling 
for differences in variance and frequency profile.

Within-subject multivariate decoding analysis
To support and extend conclusions drawn from our RSAs, we ran 
an exploratory analysis using temporal generalization methods 
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(34) to identify content-invariant and graded representations of 
awareness ratings while also investigating the stability of these 
representations over time. In this procedure, a separate classifier 
is trained on each time point (from 200 ms prestimulus to 
2,000 ms poststimulus) and tested on all other time points. This 
method results in a time-by-time decoding accuracy matrix, indi
cating the extent to which neural representations are stable over 
time. The above-chance decoding at a particular point in the 

decoding matrix indicates that neural representations present at 
the training and testing time points are similar, while chance de
coding indicates the representations have changed.

We ran the above temporal generalization analysis using both a 
within-condition and a cross-condition decoding procedure. 
Within-condition decoding involved training and testing the de
coder to classify PAS ratings on trials from one stimulus type (ei
ther squares or diamonds). In cross-condition decoding, we 

Fig. 3. Neural representations of perceptual visibility are abstract and graded. A) From left to right: Abstract-graded model where neural correlates of 
awareness ratings are independent of perceptual content and follow a graded structure; abstract-independent model where awareness ratings are 
independent of perceptual content but do not follow a graded structure; specific-graded model where awareness ratings are specific to the perceptual 
content to which they relate and follow a graded structure; specific-discrete (null hypothesis) model where there is no observable representational 
structure among awareness ratings (PAS ratings, NE, WG, ACE, CE). B) RSA reveals that the abstract-graded model was the best predictor of the 
representational structure of neural patterns in whole-brain sensor-level MEG data. Solid horizontal lines represent time points significantly different 
from 0 for a specific RDM at P < 0.05, corrected for multiple comparisons. Horizontal dots denote statistically significant paired comparisons between the 
different models at P < 0.05, corrected for multiple comparisons. We obtained similar findings across occipital (Fig. S1A) and frontal (Fig. S1B) sensors 
separately, as well as in datasets with stimulus contrast level regressed out (Fig. S2) and without baseline correction (Fig. S5). We also examined the 
pattern of classifier mistakes during cross-stimulus decoding, again revealing distance-like effects in perceptual visibility decoding (Fig. S4). C) 
Multidimensional scaling reveals a principal dimension encoding the magnitude of perceptual vividness across square stimuli (red squares) and diamond 
stimuli (blue diamonds). D) Shuffling and blending procedure. This analysis was performed to control for naturally occurring low-frequency content in 
neural data. E) Results from both shuffled models reflect the average Kendall’s Tau over 1,000 shuffling permutations. Purple, red, and blue lines 
represent similarity of the abstract-graded, shuffled-discrete, and shuffled-graded models, respectively, with neural data. The shuffled-discrete line 
varies only slightly from 0 and is thus hard to see. The abstract-graded model is the only model under consideration that significantly predicted the 
neural data.

Barnett et al. | 5
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/2/pgae061/7608186 by D
O

 N
O

T U
SE Institute of Education m

erged w
ith 9000272 user on 29 February 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae061#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae061#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae061#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae061#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae061#supplementary-data


trained on trials from one stimulus type and tested on trials from 
the other (e.g. trained on square trials and tested on diamond tri
als, and vice versa). In both cases, we used a 5-fold cross- 
validation scheme, with a balanced number of trials per class 
within each fold. Cross-condition decoding, where a classifier 
trained to decode multivariate neural patterns in one class of 
stimuli is tested on an unseen class of stimuli, offers an empirical 
test of whether the neural patterns associated with each class 
share a similar neural code across conditions (35–37). This ana
lysis, therefore, complements the RDM analysis in being able to 
test for content-invariant perceptual visibility codes, while also 
providing information about their stability over time. We per
formed all multiclass decoding analyses with a multiclass linear 
discriminant analysis (LDA) decoder using the MVPA-light toolbox 
(38) with FieldTrip. Each of the four PAS ratings served as classes 
for the decoder to classify trials into. We used L1-regularization of 
the covariance matrix, with the shrinkage parameter calculated 
automatically using the Ledoit–Wolf formula within each training 
fold (39).

It is important to note that cross-validation is not technically 
necessary during cross-condition decoding because the test data 
are never seen by the classifier during training, so there is no 
risk of overfitting. However, we employed a cross-validation 
scheme for all our decoders so that differences in their perform
ance would not be due to differences in training procedures (e.g. 
number of trials in the training or test set). Data were smoothed 
over 7 samples (28 ms), and classification analysis was run at in
dividual time points throughout the whole trial to characterize 
the temporal dynamics of the representations (−200 to 2,000 ms 
poststimulus).

Stimulus decoding
One difficulty with interpreting a content-invariant representa
tion of perceptual visibility is that it may reflect a lack of power 
to detect content-specific differences between conditions (e.g. 
square vs. diamond). To control for this possibility, we sought to 
ensure that the resolution of our data was sufficiently fine-grained 
to pick up differences in the neural encoding of different stimuli. 
To do this, we applied a binary decoding procedure using a binary 
LDA decoder with the same classification parameters as above. In 
this analysis, the two stimulus types (squares and diamonds) were 
used as classes for the decoder to classify trials into. For this ana
lysis, we grouped trials into low-visibility (NE and WG) and high- 
visibility (ACE and CE) trials to ensure sufficient power, perform
ing the decoding analysis separately in each group. Once again, 
data were smoothed over 7 samples (28 ms) and analyzed on indi
vidual time points throughout the whole trial (−200 to 2,000 ms 
poststimulus).

Statistical inference
To determine whether our RSA and decoding results were statistic
ally significant, we used cluster-based permutation testing (40) 
with 1,000 permutations. For RSA, within each permutation, we 
flipped the sign of each ranked correlation value at each time point 
for each participant and performed a one-sample t test against 
0. Resulting t-values associated with a P-value <0.05 were used to 
form clusters across the single time dimension. For each cluster, 
an associated cluster statistic was computed, the largest of which 
was stored per permutation to build a group-level null distribution. 
The cluster statistic computed from our observed data was then 
compared with this chance distribution to determine statistical 
significance with an alpha level of 0.05. This procedure controls 

for the multiple comparisons problem by only performing one 
comparison at the inference stage and specifically tests the null hy
pothesis that the observed data are exchangeable with data from 
the permuted (null) distribution (40). We used the same cluster- 
based permutation procedure to compare how well different mod
el RDMs predicted the neural data. In this case, we performed 
paired comparisons, where ranked correlation values per RDM 
were randomly swapped within subjects per permutation to build 
up a group-level null distribution.

For decoding results, we used the same cluster-forming param
eters, but this time we randomly flipped the sign of individual sub
jects’ accuracy scores per permutation to build up a group-level 
null distribution. Additionally, we formed clusters over both time 
dimensions of the temporal generalization matrices. We used the 
same cluster-based permutation procedure to compare perform
ance between cross-condition and within-condition decoders.

It is important to note that our cluster-based permutation test
ing procedure does not allow for inference as to the exact time 
points at which neural representations come into existence. 
This is because the algorithm does not consider individual time 
points at the statistical inference stage, since at this point, it 
only relies on cluster statistics, which encompass multiple time 
points (41). Still, as we are not interested in the precise onset of 
content-invariant representations of awareness ratings but rather 
their general temporal profile, this method is sufficient for our 
purposes.

fMRI experiment
To help localize representations of perceptual visibility in the 
brain, we reanalyzed a previously collected fMRI dataset (26). It is 
worth noting that, while source-space decoding in MEG is certainly 
possible (25, 42), fMRI is much better suited to answering this ques
tion at a fine spatial scale, especially as we wish to compare the (po
tentially fine-grained) differences and similarities in regional 
activity covarying with perceptual content and/or visibility.

Participants
Thirty-seven participants took part in the study. The 
study was approved by the local ethics committee (CMO 
Arnhem-Nijmegen), and all participants gave informed written 
consent prior to participating. Eight participants were excluded 
from our analyses. One was excluded because they quit the ex
periment early, and another because they failed to follow task in
structions. The final six subjects were excluded because they did 
not have at least 10 trials in each visibility rating class after our 
grouping procedure (see the Within-subject multivariate search
light decoding analysis section). Twenty-nine subjects were thus 
included in our final analyses (mean age = 25.35; SD = 6.31).

Stimuli
The stimuli used were taken from the POPORO stimulus dataset 
(43). The stimuli selected were a rooster, a fish, a watering can, 
and a football (Fig. 2D), and were selected based on familiarity 
and visual difference to maximize classification performance as 
well as both accuracy and visibility scores calculated in a pilot ex
periment run by Dijkstra et al. (26). The mask was created by ran
domly scrambling the pixel values of all stimuli combined (Fig. 2C).

Experimental design and statistical analyses
The experiment consisted of two tasks: a perception task and an 
imagery task. Each of these tasks was executed in interleaved 
blocks and was counterbalanced across participants. Our 
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reanalysis used data only from the perception task, and, thus, we 
omit details of the imagery component of the study. The percep
tion task ran as follows. A stimulus was presented for 17 ms, fol
lowed by a backward mask for 400 ms. Participants then indicated 
whether the stimulus was animate or inanimate and rated the 
visibility of the stimulus on a scale from 1 (not visible at all) to 4 
(perfectly clear). Button response mappings were counterbal
anced across trials. The task was made up of visible and invisible 
trials. The difference between these trials was the length of the in
terstimulus interval (ISI) between the stimulus and the mask. In 
the visible trials, the ISI was 66 ms, and in the invisible trials, 
the ISI was 0 ms. In the present study, we only analyzed data 
from invisible trials (Fig. 2C) because these were associated with 
the variation in the visibility ratings that we are interested in. 
Choosing to focus on a single ISI also means that differences in visi
bility ratings were not driven by differences in stimulus presentation 
characteristics. There were 184 trials in total, with 46 repetitions per 
stimulus divided over 4 blocks. More detailed information regarding 
the study protocol can be found in Dijkstra et al. (26).

Acquisition
fMRI data were recorded on a Siemens 3T Skyra scanner with a 
Multiband 6 sequence (repetition time [TR]: 1 s; voxel size: 2 × 2 ×  
2 mm; echo time [TE]: 34 ms) and a 32-channel head coil. The tilt 
of each participant’s field of view was controlled using Siemens 
AutoAlign Head software, such that each participant had the 
same tilt relative to their head position. T1-weighted structural im
ages (MPRAGE; voxel size: 1 × 1 × 1 mm; TR: 2.3 s) were also ac
quired for each participant.

Preprocessing
The data were preprocessed using SPM12 (RRID: SCR_007037). 
Motion correction (realignment) was performed on all functional 
imaging data before coregistration with the T1 structural scan. 
The scans were then normalized to MNI space using DARTEL nor
malization and smoothed with a 6-mm Gaussian kernel, which 
has been shown to improve group-level decoding accuracy (44– 
46). Slow signal drift was removed using a high pass filter of 128 s.

General linear model
Coefficient weights were estimated per trial with a general linear 
model that contained a separate regressor for each trial at the on
set of the stimulus convolved with the canonical HRF. Alongside 
nuisance regressors (average WM and CFG signals and motion pa
rameters), the screen onset and button press of both the animacy 
and visibility responses were included as regressors, as well as a 
constant value per run to control for changes in mean signal amp
litude across runs.

Within-subject multivariate searchlight decoding analysis
For decoding our fMRI data, we binarized the visibility ratings into 
low- and high-visibility classes. This is because, in contrast to the 
MEG experiment, visibility was not staircased per participant, 
leading to a large number of participants failing to have enough 
trials at each of the four visibility ratings in both animate and in
animate trials. Because training a decoder on such a small num
ber of trials would yield unreliable and noisy results, trials were, 
therefore, sorted into low- and high-visibility classes on a 
subject-by-subject basis prior to analysis. This was performed as 
follows: The median visibility rating (from 1 to 4) was extracted 
from each subject, and trials with a lower visibility rating than 
the median were classed as low-visibility trials, and those with 

visibility ratings equal to or greater than the median were classed 
as high-visibility trials. This procedure allowed us to control for 
the fact that different subjects had different distributions of visi
bility ratings, such that the lower 1 and 2 ratings did not always 
correspond to low-visibility trials, and likewise the higher 3 and 
4 ratings did not always correspond to high-visibility trials. For in
stance, 1 subject may have used visibility ratings 2 and 3 in around 
50% of trials, rating 4 on the other 50%, and not used rating 1 at all. 
In this case, we would label ratings 2 and 3 as low visibility, and 
rating 4 as high visibility.

Trials were next grouped according to whether they contained 
an animate or inanimate stimulus. For each participant, if there 
were <10 trials in either the low- or high-visibility class for either 
the animate or inanimate trial, the participant was removed. This 
was the case for six participants. The mean number of trials per 
condition following this procedure was as follows (numbers in 
brackets denote the SD): animate-high visibility: 63.48 (11.34); 
animate-low visibility: 25.31 (10.38); inanimate-high visibility: 
61.10 (12.24); inanimate-low visibility: 28.86 (11.48).

We used an LDA classifier on the beta estimates per trial to de
code low- and high-visibility ratings within and across animate/ 
inanimate stimulus conditions. Cross-condition decoding was 
performed by training the LDA classifier on low- vs. high-visibility 
ratings in animate trials and then testing it on low- vs. high- 
visibility ratings in inanimate trials, and vice versa. 
Cross-condition decoding was performed with the same logic as 
in our MEG analysis: if we train a classifier to decode visibility rat
ings in animate trials and use this classifier to successfully decode 
visibility ratings in inanimate trials, we can conclude the repre
sentations of visibility ratings are similar across different percep
tual content. Once again, we also performed within-condition 
decoding, where the classifier was trained on low vs. high ratings 
in one condition (e.g. animate trials), and tested on trials in the 
same condition to allow a direct comparison of within- and 
across-condition decoding performance. This comparison al
lowed us to determine where content-specific representations of 
perceptual visibility may exist in the brain. Decoding was per
formed with a 5-fold cross-validation scheme using L1 regulariza
tion with a shrinkage parameter of 0.2, and, similar to the MEG 
analysis, cross-validation was used for both within-condition 
and cross-condition decoding. Trials were down-sampled prior 
to decoding, such that there were an equal number of low- and 
high-visibility trials in each fold. To ensure that our data were sen
sitive enough to show content-specific codes, we additionally ran 
a similar analysis that sought to decode stimulus content (ani
mate or inanimate) rather than visibility. This analysis was simi
lar in structure except the classifier was trained to decode 
animate vs. inanimate trials rather than visibility level.

Decoding was performed using a searchlight method. 
Searchlights had a radius of 4 voxels (257 voxels per searchlight). 
As such, at every searchlight, the classifier was trained on 257 fea
tures (1 beta estimate for each voxel in the searchlight) for each 
trial in every fold. The searchlights moved through the brain ac
cording to the center voxel, meaning that each voxel was entered 
into multiple searchlights. After decoding in each searchlight, the 
accuracy of the classifier was averaged across folds, and this value 
was stored at the center of the searchlight to produce a brain map 
of decoding accuracy.

Stimulus decoding in fMRI regions of interest
As in the MEG analysis, we again wished to establish that findings 
of content-invariant awareness representations were not due to 
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an inability to decode content itself. We tested our ability to de
code perceptual content within two regions of interests (ROIs) 
with successful visibility decoding from our searchlight results. 
To do this, we created two masks, one visual and one frontal, 
and then selected the 200 voxels within this mask that had the 
highest mean visibility decoding accuracy averaged across all 
four decoding directions (within animate; within inanimate; train 
animate-test inanimate; train inanimate-test animate). For the 
frontal mask, we used a connectivity-based parcellation of the or
bitofrontal cingulate cortex that spanned frontal regions with suc
cessful visibility decoding. These were regions 8m (x, y, z peak 
voxel coordinates per hemisphere—LH: −14.6, 33.8, 43.3; RH: 
13.5, 32.3, 44) and 32d (LH: −8.7, 37.5, 23.4; RH: 12.7, 40.4, 17.5) 
(47). Our visual mask spanned an area with successful visibility 
decoding in occipital regions VO1 (LH: −27.1, −70.9, −11.3; RH: 
27.5, −69.5, −10.6), VO2 (LH: −25.6, −64.3, −10.6; RH: 26.7, −59.9, 
−9.1), PHC1 (LH: −27.1, −54, −8.3; RH: 28.3, −53.2, −8.3), and 
PHC2 (LH: −28.6, −45.9, −8.3; RH: 29, −43.7, −9.8) (48). The coordi
nates for the clusters obtained within each ROI are summarized in 
Table S1. Using the 200 ROI voxels as features, we decoded ani
mate (rooster and fish) vs. inanimate (watering can and football) 
stimuli in low- and high-visibility trials separately using the 
same 5-fold cross-validation procedure and LDA parameters as 
above, down-sampling trials prior to decoding to ensure an equal 
number of animate and inanimate trials in each fold.

Group-level statistical inference
Distributions of accuracy values from the classification of fMRI 
data are often non-Gaussian and asymmetric around the chance 
level. This means that parametric statistical comparisons, such as 
t tests against chance decoding (50%), are unable to provide valid 
tests of whether group-level accuracy values are significant (49). 
Therefore, to determine where classifiers had performed signifi
cantly above chance, we compared mean performance across 
all participants with a null distribution created by first permuting 
the class labels 25 times prior to decoding per participant and then 
using bootstrapping to form a group-level null distribution of 
10,000 bootstrapping samples (49). We did this separately for 
each decoding direction (within: train and test on animate; train 
and test on inanimate; cross: train on animate, test on inanimate; 
train on inanimate, test on animate). To perform statistical infer
ence on an average cross-decoding map created by averaging the 
two cross-condition decoding directions, this average map was 
compared with a group-level null distribution formed by aver
aging the two null distributions created for the two separate 
maps. To compare within-condition and cross-condition classifi
cation performances, a group-level null distribution was formed 
by taking the difference between cross and within decoding scores 
throughout the bootstrapping procedure. To control for multiple 
comparisons in the searchlight analysis, the resulting P-values 
were subsequently corrected for multiple comparisons with a 
false discovery rate of 0.01.

Results
Representational structure of perceptual visibility 
in whole-brain MEG data
We used RSA to test whether perceptual visibility levels (PAS rat
ings) correlated with MEG activity patterns independently of per
ceptual content (abstract RDMs) or together with perceptual 
content (specific RDMs). We additionally tested whether neural 
activity patterns covaried with visibility levels in a graded or 

discrete manner (Fig. 3A). A model instantiating graded and ab
stract representations of awareness ratings significantly pre
dicted the neural data throughout most of the poststimulus 
period (purple line; Fig. 3B). In contrast, a model with an abstract 
but discrete representational structure was able to predict the 
neural data only in an early phase of the trial between ∼100 and 
500 ms after stimulus onset (green line). Paired comparisons be
tween these two models showed that the abstract-graded model 
was significantly better at predicting the neural data than the 
abstract-discrete model throughout the majority of the trial (pur
ple and green dots). The specific-graded model did not significant
ly predict the neural data at any point during the trial (gold line), 
and likewise the abstract-graded model was found to be signifi
cantly better at predicting the neural data than the specific- 
graded model in a direct comparison (purple and yellow dots), 
indicating that an abstract model of awareness ratings better de
scribed their neural representation. In line with this, multidimen
sional scaling of awareness ratings revealed a principal dimension 
encoding vividness that was shared by both square and triangle 
stimuli (Fig. 3C). To assess the spatial distribution of abstract- 
graded signals across sensors, we repeated the analysis for frontal 
and occipital sensors separately (following Ref. (50)), finding simi
lar results in each case (Fig. S1). These results indicate that neural 
correlates of perceptual visibility generalize over perceptual con
tent and exhibit distance effects, indicative of neural populations 
tuned to specific degrees of visibility with overlapping tuning 
curves.

To ensure that the neural data did not exhibit spuriously high 
similarity with the abstract-graded model in virtue of its increased 
variance and reduced frequency when compared with the 
abstract-discrete and specific models, we performed a shuffling 
and blending control analysis (Fig. 3D). This procedure revealed 
no significant prediction of the neural data for either the shuffled- 
discrete or shuffled-graded RDMs (Fig. 3E). As such, RDMs with 
frequency and variance profiles matching those of the abstract- 
graded RDM, but without any relationship with awareness rat
ings, were not able to significantly predict neural data, in contrast 
to the abstract-graded model that captures the graded and 
content-invariant structure of awareness ratings. To additionally 
control for the possible influence of stimulus contrast on our RDM 
results, we confirmed that similar results were obtained when re
gressing out the linear component of contrast (Fig. S2). It is pos
sible that nonlinear or multivariate effects of contrast may have 
still driven some of our findings. Indeed, while we see a clear linear 
trend from NE to CE across the first dimension in the original data, 
this dimension is somewhat compressed following the removal of 
the linear component of stimulus contrast. Along this compressed 
dimension, higher ends of the scale are represented more similar
ly than those at the lower end. This is potentially in line with a 
Weber scaling law in the neural representation of perceptual 
vividness, as also found for other magnitude codes (e.g. the “size 
effect” in numerical cognition), and also hints at a role for stimu
lus contrast in driving some of the difference between CE and ACE 
in the original analysis. However, even after removing the poten
tially confounding effects of stimulus contrast, the difference in 
perceptual vividness among NE, WG, and ACE/CE is clearly distin
guished in Fig. S3.

To further characterize the graded representational structure 
of perceptual visibility, we computed confusion matrices between 
each rating and its neighbors. By plotting the proportion of predic
tions for each awareness rating made by the multiclass classifier 
separately for trials of each rating, we can visualize when our de
coder makes mistakes, and which PAS ratings it most often 
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confuses (Fig. S4). These confusion plots confirm the distance ef
fects identified with the RSA model comparison, in which neigh
boring PAS ratings are most often confused with each other by 
the classifier, and more distant ratings less so, suggesting that 
visibility is represented in a graded, ordinal manner.

Finally, we asked whether our model RDMs could also predict 
prestimulus neural activity. If a graded, abstract structure for per
ceptual visibility is already evident prior to stimulus presentation, 
this would be indicative of trial-to-trial fluctuations in attention or 
arousal contributing to our ability to decode content-invariant visi
bility signals. Interpreting (a lack of) prestimulus decoding from our 
previous RSAs is confounded by the baseline correction procedure 
applied during preprocessing. To address this issue, we reran our 
analysis on data that had not been baseline corrected. We found 
that prestimulus activity was not captured by any of the candidate 
RDMs and that stimulus-triggered responses continued to show the 
same graded/abstract pattern of results as in our initial analysis 
(Fig. S5). Together, these results indicate that pretrial fluctuations 
in attention and/or arousal are unlikely to drive our results.

Temporal profile of perceptual visibility codes
Next, we performed a temporal generalization analysis to further 
unpack the content-invariant nature of neural signatures of percep
tual visibility and to characterize how and whether their patterns 
change from time point to time point. Off-diagonal panels in Fig. 4
(top right and bottom left) depict temporal generalization matrices 

for both directions of cross-condition decoding (top right: train on 
squares test on diamonds; bottom left: train on diamonds test on 
squares). Within these panels, above-chance decoding on the major 
diagonal indicates that representations of visibility begin to show 
content-invariance from just after stimulus onset up until the mo
ment of report. Contrasting cross-condition decoding with within- 
condition decoding resulted in no significant differences in decoding 
accuracy for either comparison (train on squares, test on diamonds 
vs. within squares: all P > 0.89; train on diamonds, test on squares 
vs. within diamonds: all P > 0.4). In other words, we did not find 
any evidence that there was content-specific visibility information 
available over and above content-invariant information. 
Furthermore, the lack of off-diagonal decoding in each temporal 
generalization matrix indicates that the format of content-invariant 
neural signatures of visibility changes rapidly over time.

We again replicated this analysis in a dataset that had not 
undergone baseline correction to test whether activity contribut
ing to participants’ awareness ratings could be decoded prior to 
stimulus presentation. In line with our RSA on this dataset, we 
could not decode awareness ratings prior to stimulus presenta
tion when the data had not been baseline corrected (Fig. S6).

Content-invariant representations of visibility are 
found across visual, parietal, and frontal cortex
To localize brain regions supporting content-invariant representa
tions of perceptual visibility, we reanalyzed an existing fMRI dataset 

Fig. 4. Abstract representations of perceptual visibility evolve rapidly over time. Main figure: Temporal generalization results for the classification of PAS 
ratings from MEG data (4 PAS responses; chance = 0.25). For each row, statistical comparisons between the two columns showed no significant 
differences in decoding accuracy between within- and cross-condition decoding. Nontranslucent regions within solid lines highlight above-chance 
decoding, as revealed by cluster-based permutation tests. We replicated these findings in nonbaseline-corrected data (Fig. S6).
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(26). We used a searchlight approach to identify brain regions that re
present perceptual visibility in an abstract manner. Both cross- 
condition and within-condition decoding resulted in above-chance 
accuracy in a number of regions across the visual, parietal, and 
frontal cortex (Fig. 5). To assess whether these representations of 
perceptual visibility were stimulus dependent, we compared cross- 
condition decoding to within-condition decoding in both animate 
and inanimate trials (training on animate trials vs. within animate 
trials; training on inanimate trials vs. within inanimate trials), and 
found no significant differences. In other words, we could find no evi
dence that stimulus-specific visibility information was present over 
and above stimulus-invariant visibility information. See Table S2 for 
details of the clusters found to be significantly above chance in both 
cross-condition and within-condition decoding analyses.

Stimulus content can be decoded from both MEG 
and fMRI data
We next considered the possibility that a content-invariant neur
al signature of visibility may be obtained because of the insuffi
cient sensitivity to perceptual content in our dataset. To 
address this, we sought to decode stimulus identity, rather 
than visibility level. Stimulus decoding was above chance in 
both datasets for high-visibility trials. In the MEG data, we were 
able to decode stimulus identity (square vs. diamond) in trials 
in which participants used the upper two PAS ratings (ACE/CE), 
but not when participants used the lower two PAS ratings (NE/ 
WG; Fig. 6A). Similarly, in the fMRI data, the decoding of animate 
vs. inanimate stimuli was significantly above chance in a visual 
cortical ROI during trials reported as high visibility (mean accur
acy = 0.52; P = 0.007) but not in trials reported as low visibility 
(mean accuracy = 0.496; P = 0.655; Fig. 6B). It was not possible to 
decode stimulus content from a frontal cortical ROI in either low- 
visibility (mean accuracy = 0.5; P = 0.406) or high-visibility trials 

(mean accuracy = 0.507; P = 0.159). Together, these analyses indi
cate that stimulus content could be reliably decoded in posterior 
visual regions.

Stimulus content and visibility are encoded  
in dissociable brain regions
To further probe the relationship between neural signatures of 
content and visibility, we ran a searchlight decoding procedure 
to decode animate vs. inanimate stimuli in our fMRI data. 
Since content could only be decoded in high-visibility trials in 
our ROI analysis (Fig. 6B), we restricted the analysis to these tri
als. We then compared the overlap between the content- 
decoding searchlight and the content-invariant visibility 
searchlight maps. To do this, we computed mean content cross- 
decoding accuracy averaged over the two cross-decoding direc
tions (train on animate, test on inanimate; train on inanimate, 
test on animate) prior to group-level inference (see Materials 
and methods).

Overall, there was a minimal overlap between representations 
of content and visibility (Fig. 6C). Despite overlapping clusters 
being obtained in the superior and inferior lateral occipital cortex 
(see Table S3 for a full list of individual and overlapping clusters), 
clear anatomical distinctions in occipital regions can be seen be
tween representations of stimulus content and visibility, with 
the former being decoded from more lateral regions of the occipi
tal cortex, while the latter was decoded closer to the medial sur
face (Fig. 6C and Table S3). Fewer clusters of above-chance 
stimulus content decoding were found in frontal regions, whereas 
content-invariant representations of visibility were more abun
dant in these areas (51). Distinct decoding patterns for content 
and visibility representations further strengthen the notion that 
content-invariant representations of visibility exist partly inde
pendently of perceptual content, even in regions typically 

Fig. 5. Abstract representations of perceptual visibility are found across visual, parietal, and frontal cortex. Searchlight decoding in fMRI data revealed 
significantly above-chance accuracy in both cross-condition (off-diagonal cells of matrix) and within-condition (on-diagonal cells) in decoding of visibility 
ratings. Clusters of successful cross-condition decoding were found across the frontal, parietal, and visual cortex. Our statistical comparison of cross and 
within-condition decoding accuracy (comparing the on- and off-diagonal statistical maps) revealed no significant differences anywhere in the brain. 
Significance was assessed at P < 0.05, corrected for multiple comparisons with a false discovery rate of 0.01. Clusters are reported in Table S2.
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associated with the encoding of stimulus content such as the vis
ual cortex (52, 53).

Discussion
In this study, we asked whether perceptual vividness covaries 
with neural activity patterns in a content-specific and/or 
content-invariant manner. By applying multivariate analyses to 
MEG and fMRI datasets in which participants rated their aware
ness of visual stimuli, we found that the vividness of experience 
is represented in a similar way across different stimulus contents 
and exhibits signatures of an ordered and graded magnitude code. 
Furthermore, neural representations of perceptual vividness were 
found to change rapidly over time and were localized to the visual, 
parietal, and frontal cortices.

The identification of content-invariant representations of per
ceptual vividness (Fig. 3) is in line with recent work highlighting 
a dissociation between neural correlates of awareness and per
ceptual content. For example, Sanchez et al. (19) found neural pat
terns that indicated whether an individual was aware of a 
stimulus or not, irrespective of which sensory modality it was pre
sented in. Likewise, Mazor et al. (54) reported that, while stimulus 
identity was best decoded from occipital regions, perceptual visi
bility (stimulus presence vs. absence) could be effectively decoded 
from a wider range of areas, including the parietal and frontal 

cortex. Notably, a recent study also found that graded changes 
in perceptual vividness could be reliably decoded from the 
prefrontal cortex, even in the absence of a report, consistent 
with a contribution to the vividness of experience (51). While we 
do not claim that representations of vividness are solely 
content-invariant, we build on these findings by showing that 
neural signals underlying graded awareness ratings—ranging 
from the absence of an experience of particular content, to a 
clear and vivid experience—exhibit a content-invariant neural 
signature.

Content-invariant representations of vividness may also provide 
a new understanding of the mechanisms supporting intensity- 
matching in psychophysical tasks. For example, studies of cross- 
modal intensity matching have demonstrated that subjects can 
reliably match intensities across sensory domains (55–57), and 
even provide some evidence for absolute equivalences between in
tensities in different modalities (55). Success in such tasks could be 
mediated by some form of common currency for intensity that is 
modality-invariant, and our findings offer a potential neural frame
work within which to explain this capacity. Specifically, if the inten
sity of an experience is mapped onto a low-dimensional and 
content-invariant neural code for vividness, it should be possible 
to leverage this representation to reliably match the intensity of 
stimuli across sensory modalities. This is the essence of “mapping 
theory” (58) and could be directly tested by combining intensity- 

Fig. 6. Perceptual content can be decoded in high-visibility trials and shows distinct representations to visibility. A) Decoding of perceptual content on 
each trial (squares or diamonds) from participants’ whole-brain sensor-level MEG data for low-visibility (NE and WG) and high-visibility (ACE and CE) 
trials separately. Successful decoding was possible in high-visibility trials up to ∼700 ms poststimulus onset. Lines are smoothed using a 
Gaussian-weighted moving average with a window of 20 ms. Shaded area denotes 95% CIs. The solid horizontal line reflects above-chance decoding, as 
revealed by cluster-based permutation tests. B) Decoding of perceptual content on each trial (animate or inanimate) from participants’ fMRI data for low- 
and high-visibility trials separately. Decoding was successful in a visual ROI in high but not low-visibility trials, and unsuccessful in a frontal ROI. 
Asterisks denote significance at P < 0.01. Error bars illustrate 95% CIs. C) Searchlight decoding accuracy for content decoding in high visibility trials (blue) 
and for content-invariant visibility decoding (red). Clusters illustrate areas where content or content-invariant visibility could be decoded significantly 
above chance. Content-invariant representations of visibility were more widespread than content representations and extended into the prefrontal 
cortex, whereas both content and visibility could be decoded in distinct locations of the visual cortex. Significance was assessed at P < 0.05, corrected for 
multiple comparisons with an FDR of 0.01. Clusters are reported in Table S3.
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matching psychophysical methods with neuroimaging to examine 
the degree to which psychophysical estimates of cross-modal mag
nitudes rely on the same low-dimensional neural manifolds associ
ated with vividness observed here.

Although we find evidence for content-invariant signals under
lying perceptual vividness, the mechanism by which these signals 
influence vividness remains to be determined. One candidate 
mechanism may be the top-down modulation of content-specific 
representations, driven by content-invariant attention signals. 
For example, fluctuations in the (content-invariant) degree of at
tention may increase the perceived contrast of stimuli (59, 60), 
perhaps through the modulation of content-specific neuronal re
sponses. In line with this model, there may be multiple compo
nents to a neural representation of perceptual vividness: 
content-invariant signals that are associated with the degree of 
attention or other domain-general factors, and content-specific 
representations modulated by such attentional signals. Such a 
model neatly exemplifies how content-invariant and content- 
specific neural signatures may together contribute to the subject
ive experience of perceptual vividness. Indeed, on this view, 
content-specific modulations may be subtle compared with 
changes in abstract representations determining the degree of at
tention, which could in turn explain why our content-specific viv
idness model did not provide a good fit to the neural data.

Our finding that neural representations of awareness ratings 
display a distance effect (Figs. 3 and S4) is suggestive of perceptual 
vividness relying on similar schemes to those encoding magnitude 
in other domains such as number. Specifically, our results are 
consistent with the possibility that distributed populations of 
neurons are tuned to specific phenomenal magnitudes, in the 
same way that specific populations of neurons are sensitive to cer
tain numerical magnitudes (61–63). Such a prediction could be 
tested through repetition suppression experiments (63), and/or 
by collecting single-unit recordings from human patients while 
they provide subjective awareness ratings (64). A variety of analog 
magnitudes have been shown to rely on common magnitude 
representations (8, 65, 66), prompting a hypothesis that domain- 
general representations are responsible for encoding low- 
dimensional quantities in the brain (9, 10). Therefore, an 
intriguing possibility is that perceptual vividness is supported by 
similar domain-general magnitude codes. Future work could ex
plore this hypothesis by assessing whether representations of viv
idness share neural resources with other analog magnitude codes, 
such as those for reward or number (8).

The existence of stimulus-independent representations of per
ceptual vividness in the visual cortical areas (Fig. 5) was unexpect
ed, since these areas have been shown to distinguish stimulus 
features rather than subjective vividness in previous studies (52, 
53). One concern is that neural representations of vividness rat
ings as revealed by decoding analyses may look similar across 
stimuli if content-specific information encoded in separate neural 
populations is treated as belonging to the same population (i.e. 
within the same voxel). Successful cross-stimulus decoding of viv
idness ratings could then occur by way of decoding the amplitude 
of (content-specific) neural responses in these voxels (23, 24). 
As a step toward addressing this concern, we show that 
stimulus-specific decoding remains possible specifically in visual 
areas on high (but not low)-visibility trials (Fig. 5A and B), suggest
ing that the content-invariant nature of perceptual vividness sig
nals in this region is not due to a lack of power to detect 
stimulus-specific effects. Moreover, we show anatomical distinc
tions between content and visibility encoding (Fig. 6C), again indi
cating that the unexpected above-chance decoding of visibility in 

the visual cortex is unlikely to be an artifact of a failure to detect 
content-specific representations.

Another possibility is that content-invariant signals of percep
tual vividness in visual cortex reflect prestimulus activations that 
have been shown to contribute to participants’ awareness level in 
previous studies (17). Here, we could not identify prestimulus con
tributions to visibility codes in our MEG data (Fig. S6), supporting 
the hypothesis that the content-invariant and graded representa
tions we report here are largely stimulus-triggered. As such, our 
results suggest that the content-invariant signals related to 
awareness level in the current data are partly distinct from those 
reported by Podvalny et al. in temporal profile. In any case, it is 
worth noting that fluctuations in (pre- or poststimulus) attention 
and arousal affecting the intensity of experience (as well as other 
psychological factors such as emotional state or motivation) may 
provide domain-general sources of perceptual vividness signals.

By applying temporal generalization analysis to our MEG data, 
we were able to reveal the dynamics of vividness representations 
over time. This analysis indicated that neural patterns covarying 
with perceptual vividness are unstable, changing during the 
course of a trial (Fig. 4), consistent with a sequence of different 
neural populations correlating with awareness level over time 
(34). Given that we find that vividness is tracked across a variety 
of cortical regions, such a rapidly changing temporal profile may 
reflect dynamic message passing between distinct neural popula
tions, consistent with the reverberation of predictions and predic
tion errors in hierarchical generative models. Future work to 
directly test this hypothesis could leverage informational 
connectivity analyses (67) to determine the direction of 
information flow across interacting brain regions, or use RSA to 
combine MEG/EEG and fMRI data collected using the same task 
and stimuli (68).

In summary, we show that perceptual vividness covaries with 
content-invariant neural representations that exhibit graded dis
tance effects similar to those observed for analog magnitude co
des in other cognitive domains. These representations are 
spatially distributed and rapidly evolve over time, consistent 
with the flow of awareness-related information across the visual, 
parietal, and frontal cortices. This pattern of results adds to grow
ing evidence for a content-invariant neural component contribut
ing to the strength of conscious experience.
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