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Abstract

Poorly-Differentiated NeuroEndocrine Carcinomas (PD-NECs) are rare cancers garnering interest
as they become more commonly encountered in clinic. This is due to improved diagnostic
methods and the increasingly observed phenomenon of ‘NE lineage plasticity’, whereby non-
NeuroEndocrine (non-NE) epithelial cancers transition to aggressive NE phenotypes after targeted
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treatment. Effective treatment options for patients with PD-NEC is challenging for several
reasons. This includes a lack of targetable, recurrent molecular drivers, a paucity of patient-
relevant preclinical models to study biology and test novel therapeutics, and the absence of
validated biomarkers to guide clinical management. Whilst advances have been made pertaining
to molecular subtyping of Small Cell Lung Cancer (SCLC), a PD-NEC of lung origin, Extra-
Pulmonary (EP)-PD-NECs remain understudied. This review will address emerging SCLC-like,
same-organ non-NE cancer-like and tumour type-agnostic biological vulnerabilities of EP-PD-
NECs, with the potential for therapeutic exploitation. The hypotheses surrounding the origin

of these cancers and how ‘NE lineage plasticity’ can be leveraged for therapeutic purposes is
discussed. SCLC is herein proposed as a paradigm for supporting progress towards precision
medicine in EP-PD-NECs. The aim of this review is to provide a thorough portrait of the current
knowledge of EP-PD-NEC biology, with a view to informing new avenues for research and future
therapeutic opportunities in these cancers of unmet need.

Keywords
extra-pulmonary neuroendocrine carcinoma; small cell lung cancer; biomarkers; drug discovery

1 Introduction

Neuroendocrine neoplasms are a heterogenous family of malignancies that can originate
from different anatomical sites and share a neuroendocrine (NE) phenotype. This manifests
histologically in a resemblance of the tumour cells to cells of the NE system, including
presence of intra-cytoplasmatic neurosecretory granules and organoid-like cyto-architectural
organisation plus expression of NE immunohistochemical (IHC) markers (synaptophysin
and/or chromogranin A)(1,2). Neuroendocrine neoplasms are broadly divided into two

main categories, based on their degree of morphological differentiation and replicative
potential/biological aggressiveness; well differentiated neuroendocrine tumours (WD-NETS)
and poorly differentiated neuroendocrine carcinomas (PD-NECSs) [Figure 1](3). PD-NECs
represent the most aggressive subgroup; at a morphological level they are characterised

by partial or complete loss of cyto-architectural organisation, a high proliferative rate
(Ki-67 fraction 220%, often =55%), frequent mitoses and presence of necrosis. PD-NECs
can present as a ‘small cell” variant with diffuse sheets of cells having scant cytoplasm,

a high nuclear/cytoplasmatic ratio and fusiform nuclei with inconspicuous nucleoli and
finely granular chromatin, or a ‘large cell’ variant with loosely defined organoid-like
patterns of round/polygonal cells with moderate amounts of cytoplasm and large nuclei with
prominent nucleoli and vesicular chromatin(1,2). While expression of synaptophysin and/or
chromogranin A is required for a neuroendocrine neoplasm diagnosis in clinical practice, it
is acknowledged that occasionally ‘small cell’-PD-NECs lack expression of both markers;
in such cases, a ‘small cell’-PD-NEC diagnosis is made by exclusion and based on highly
suggestive morphological features(4). Unlike WD-NETS, PD-NECs are rapidly growing and
have a prognosis estimated in months rather than years(5). Both WD-NETSs and PD-NECs
can be found in co-existence with a variable proportion of a tumour histology lacking
features of NE differentiation (non-NE). In the gastro-entero-pancreatic (GEP) tract, mixed
NE/non-NE tumours with at least 30% of each component are classified separately from
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their pure counterparts and named mixed neuroendocrine non-neuroendocrine neoplasms
(MINENSs)(1). Progression from a WD-NET to a PD-NEC is an extremely rare observation
in clinic. Most commonly PD-NECs originate de novo, or through NE trans-differentiation
of pre-existing non-NE epithelial cancers under selective pressure within the tumour
microenvironment such as that induced by targeted therapies(6,7); a phenomenon known
as NE lineage plasticity, and which will be discussed in this review.

While the majority of PD-NECs (~90%) originate from the lung, namely small cell lung
cancer (SCLC) (~86%) and large cell pulmonary neuroendocrine carcinoma (LCPNEC)
(~4%), a minority (~10%) arise from other anatomical sites and are generally termed
extra-pulmonary (EP)-PD-NECs(5). Around a third (~37%) of EP-PD-NECs develop in

the GEP tract, whereas approximately a quarter (~28%) remain of unknown origin (UNK)
(5). In addition to GEP- and UNK-PD-NECs, this review will also address less common
EP-PD-NEC subgroups per site of origin, each accounting for <10% of all EP-PD-NECs(5),
namely prostate-, bladder-, uterine cervix-, and head and neck (H&N)-PD-NECs, in which
some degree of molecular characterisation has been achieved. Merkel cell carcinoma has
been excluded from this review, as this cutaneous NEC is etiologically related to clonal
integration of a polyomavirus or chronic ultra-violet light exposure, and clinically managed
as a separate entity from other EP-PD-NECs(8,9). Extra-pulmonary-PD-NECs are rare (age
adjusted annual incidence of ~1/100,000 individuals according to the US Surveillance,
Epidemiology, and End Results-18 registry 2000-2012 (5)), yet lethal diseases; patients
predominantly have metastatic disease at diagnosis and a median life expectancy of less than
1 year(5,10). Their low incidence limits the ability to conduct clinical trials, dramatically
narrowing the spectrum of therapeutic opportunities. Platinum/etoposide chemotherapy
remains the only standard-of-care first-line treatment for patients with EP-PD-NEC not
amenable to curative surgery(10,11). Although the majority of those patients show initial
sensitivity to platinum/etoposide, tumour control is short-lived and overall survival benefit is
limited. In addition, there is no consensus on second-line options(10,11).

Development of effective treatments for EP-PD-NECs has also been hampered by the
paucity of knowledge of their biology and molecular drivers. Recent progress in the
molecular subtyping of their NEC pulmonary counterpart SCLC may inform biological
understanding and therapeutic development for EP-PD-NECs. Transcriptomic profiling of
SCLC has revealed distinct molecular subtypes according to the expression of lineage-
defining transcriptions factors; achaete-scute family bHLH transcription factor 1 (ASCL1),
neuronal differentiation 1 (NEUROD1), atonal bHLH transcription factor 1 (ATOH1), POU
class 2 homeobox 3 (POU2F3) and yes1 associated transcriptional regulator (YAP1)(12,13).
These emerging transcription factor-based SCLC molecular subtypes are differentially
enriched in NE and non-NE phenotypes and upregulation of MYC family oncogenes,

and have unique biological vulnerabilities(12,14); they therefore represent a potential step
forward in the direction of precision medicine.

Although EP-PD-NECs and SCLC share morphological and phenotypic similarities, there
are differences in etiopathogenesis, clinical presentation and treatment outcomes, including
weaker association with tobacco smoking, lower incidence of brain metastases and response
rates to platinum-based chemotherapy in EP-PD-NECs(10), suggestive of some degree of
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biological divergence between these entities. Studies aimed at elucidating the genomic
landscape of EP-PD-NECs, although mostly small, depict a complex scenario characterised
by coexistence of pathognomonic alterations of SCLC (e.g. 7P53and RB1 loss), which are
consistent across PD-NECs of different sites of origin (SCLC-like), and typical alterations
of non-NE epithelial cancers from the same sites of origin (non-NE cancer-like)(6,15). This
raises the question as to whether patients with EP-PD-NEC should be treated according

to the phenotype (similar to SCLC) or site of origin of their cancer. In addition, there

is wide inter-patient variability in treatment and survival outcomes within the EP-PD-

NEC family(5,10), indicating underlying biological heterogeneity, and underscoring the
critical need for biomarkers for patient stratification and treatment prediction. Other major
challenges are the difficulty of accessing good quality tumour tissue for molecular analysis,
and the paucity of patient-relevant preclinical models to assist biological studies and drug
development.

This review will highlight emerging SCLC-like, same-organ non-NE cancer-like and
tumour-type agnostic molecular vulnerabilities of EP-PD-NECs and will discuss
opportunities for their therapeutic exploitation by leveraging knowledge of therapeutics in
use, or under evaluation, in either SCLC or non-NE cancers from the same sites of origin.

2 SCLC-like vulnerabilities of EP-PD-NECs

2.1 Cell-cycle and DNA damage repair dysregulations

Genomic inactivation of 7P53and RBI owing to either gene or chromosome aberration

is nearly ubiquitous in SCLC (co-occurring at a frequency of ~98% in a large dataset of
surgical human samples)(16), and is frequent in LCPNEC (7P53, 92%, RBI; 42%)(17).
Genomic aberrations in 7P53and RB1 are also common in EP-PD-NECs(18-44)[Figure 2,
Table 1], whereas they are rare in WD-NETs(19,20,22,23,44). Evidence from 7rp53/Rb1
knockout mouse models of SCLC and prostate-PD-NEC indicates that combined 7rp53 Rb1
loss acts synergistically as a potent driver of a lethal NE cancer phenotype; both de novo
and in the background of a pre-existing non-NE epithelial cancer(6). Although disruption

of 7P53and RB1 signalling is regarded as a hallmark of PD-NEC, genomic aberrations

in these two tumour suppressors, in particular £B1, do not appear to be as prevalent in
PD-NECs, other than in SCLC. A comprehensive multi-omic characterisation is still lacking
for the majority of EP-PD-NECs and may unveil a higher prevalence of such aberrations,

as shown in two recent whole exome/genome sequencing studies in GEP-PD-NECs(30,45).
Other phenotypic-specific PD-NEC molecular drivers may also exist and are yet to be
elucidated, and may be responsible for genotypic/phenotypic heterogeneity within the
EP-PD-NEC family. For example, genomic and transcriptomic profiling of LCPNEC has
unveiled two main molecular subgroups; one enriched in 7P53and RBL co-inactivation
(42%) and featuring low expression of NE-related genes, and the other enriched in 7P53
and Serine/Threonine Kinase 11 (S7K11)/Kelch Like ECH Associated Protein 1 (KEAPI)
co-alteration (37%) and featuring high expression of NE-related genes. Alternatively, in
TP53-and/or RBI-wild type EP-PD-NECs, TP53and RBI signalling can be suppressed by
events other than aberrations at their genomic loci, such as amplification of MDMZ2 (a TP53
repressor)(32), mutation of 7P73(a TP53 paralog)(18,45), deletion or epigenetic silencing
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of CDKNZA (which encodes for the RB1 signalling effector p16)(26,45) and amplification
of CCNEI (an RB1 antagonist)(26,30,38,45). Finally, TP53 and/or RB1 protein function
can be counteracted by viral onco-proteins, and when this suppression is chronic, it can
lead to PD-NEC development, as shown in Merkel cell carcinoma, which most commonly
is caused by a polyomavirus infection and lacks dual 7P53/RB1 loss(8). For example,
high-risk human papillomavirus has been reported in a subset of PD-NECs from the uterine
cervix- (42.5-92.2%)(37,38,40) and colon-rectum (28.0%)(26), where it is thought to play a
pathogenetic role through inhibitory interaction with RB1 protein.

Cancer cells defective in TP53 and/or RB1 function have a reduced ability to undergo

cell cycle arrest and enable DNA damage repair (DDR), if present. This makes those cells
critically reliant on other cell-cycle checkpoints, (e.g. cyclin-dependent kinases (CDKSs),
WEEL1, Aurora kinases (AURKS)) and components of the DDR pathway (e.g. CHK1,
poly(ADP-ribose) polymerase (PARP) proteins), especially in the context of DNA-damaging
treatment, such as platinum-based chemotherapy or radiotherapy(46-49). Growing evidence
points towards frequent dysregulation of the DDR pathway in both SCLC and EP-PD-
NECs, providing further rationale for the therapeutic exploitation of the synthetic lethal
relationship between cell-cycle deficiency and DDR in these cancers. Transcriptomic
profiling of SCLC (cell lines) and prostate-PD-NEC (human samples and patient-derived
xenografts) has unveiled significant enrichment in the expression of DDR proteins as
compared to non-NE epithelial cancers from the same organs(46,50). In EP-PD-NECs,
somatic alterations in DDR genes are present, albeit with varying prevalence partially
owing to differences in the number and selection of DDR genes evaluated (2.5-70.6%)
(18,20,27-29,31,32,34-38,40,41,44) [Figure 2, Table 1]. Germline mutations in DDR genes
occur in 29% and 20% of patients with SCLC and EP-PD-NEC, respectively, and are
predictive of increased sensitivity to platinum-based chemotherapy, laying the ground for
the investigation of DDR inhibitors in combination with DNA-damaging agents in this
patient subgroup(51). Inhibitors of CHK1, WEE1, CDKs, AURKSs and PARP proteins,

as monotherapy or in combination with other cell-cycle/DDR inhibitors or chemotherapy,
have shown promising /n vitro and in vivo activity in SCLC(46-49,52) and prostate-PD-
NEC(50,53-55) [Figure 3, “i” suffix = inhibitor]. Cell-cycle/DDR-directed therapies are
currently being evaluated in clinical trials in patients with SCLC(11) and EP-PD-NEC
[Table 2]. For example, a combination of the inhibitors of two DDR effectors; the ATR
Serine/Threonine Kinase (ATR) and DNA topoisomerase | (TOP1) demonstrated potent
synergy in a drug screening study in SCLC cell lines and was selected for clinical
investigation. A phase Il clinical trial provided initial evidence of its activity in patients
with SCLC (/7=25) or EP-PD-NEC (=10), previously treated with platinum/etoposide(56).

2.2 MYC family upregulation

MY C family proto-oncogenes, MYC, MYCL, MYC, are lineage-defining transcription
factors mutually exclusively amplified in ~20% of SCLC(16). In SCLC genetically
engineered mouse models (GEMMs) and human cell lines, MYCL amplification is enriched
in the ASCL1M9" subtype, and M7 YC amplification in the NEUROD1M9" subtype(57,58),
each driving distinct metabolic programmes(59). New evidence from SCLC GEMMs shows
that MYC drives phenotypic evolution, promoting loss of NE identity through NOTCH
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upregulation, leading to a temporal shift from ASCL1M3h (NENigh) to NEUROD1high
(NE'®W) to YAP1i9h or POU2F3M9N (non-NE) states(60). In SCLC preclinical models,
MYC sensitises cells to AURKA/B inhibition(57,61) (also shown in an early-phase clinical
trial(62)) and arginine-deprivation(59), and enhances sensitivity to CHK1(47) and CDK7
inhibition(49)[Figure 3].

Aberrant activation of MYC family members also occurs in EP-PD-NECs [Figure 2,

Table 1]. In GEP-PD-NECs, MYCis amplified in up to 51% of cases(18,19,26,28-30,44),
whereas MYCN or MYCL amplification is rarer (8.3%(26,28) and 4.3%(30), respectively).
In uterine-cervix-PD-NEC, either of the three MYC family members is amplified in
12.9-18.4% of cases(37,38). In prostate-PD-NEC, MYCN amplification or overexpression
is highly prevalent (MYCN amplification; 40.5-52.0%)(50,53,63,64), whereas MYC
amplification is less common (8.3%)(34)[Figure 2, Table 1]. Multiple lines of evidence
point towards MYCN upregulation as a pathogenetic driver and a critical therapeutic
vulnerability for prostate-PD-NEC, whereby MYCN upregulation promotes the emergence
of an androgen receptor-independent PD-NEC phenotype(50,53-55,64). Inhibitors of

MY CN synthetic lethal partners have shown promising preclinical activity in prostate-
PD-NEC [Figure 3], and some of these compounds have entered clinical investigation
[Table 2]. The epigenetic and transcriptional regulator enhancer of zeste 2 polycomb
repressive complex 2 subunit (EZH2) is highly expressed in prostate-PD-NEC(53,54,65),
where it cooperates with MYCN to repress androgen receptor signalling and drive a
PD-NEC gene expression programme, and MYCN overexpression sensitises to EZH2
inhibition /in vitroand in vivo(64). AURKA amplification or overexpression is also highly
prevalent in prostate-PD-NEC (AURKA amplification; 40-68%, predominantly co-occurrent
with MYCN amplification)(53,63). In fact, MYCN and AURKA reciprocally enhance
protein stability by physical interaction, and AURKA inhibition destabilises MYCN,
causing tumour regression in MYCN-overexpressing prostate-PD-NEC cell lines and mouse
models(53,54,64). Transcriptomic analysis of prostate-PD-NEC human tumours and patient-
derived xenografts has revealed significant upregulation of DDR (e.g. PARP1/2) and mitotic
cell-cycle (e.g. CDKS5) genes, alongside MYCN, and in vitro experiments have uncovered a
critical link between MYCN and DDR pathways in the establishment and maintenance of a
PD-NEC phenotype in prostate cancer cells(50,55). Both dual PARP/AURKA inhibition and
PARP/CDKS5 can suppress prostate-PD-NEC growth /n vitroand in vivo, with the former
combination showing enhanced activity compared to AURKA inhibition alone(50,55).
Although a single-agent AURKA inhibitor yielded disappointing results in a molecularly
unselected phase Il clinical trial in patients with prostate-PD-NEC or adenocarcinoma with
clinical features of androgen receptor independency progressing after antiandrogen therapy,
tumour samples from exceptional responders showed MYCN and/or AURKA amplification
or overexpression(66). Mechanistic studies investigating the biological function of MYC
family members and potential associated therapeutic vulnerabilities in other EP-PD-NECs
should be pursued.

2.3 Disruption of epigenetic regulation

Disruption of epigenetic regulation is among the most common oncogenic processes in
SCLC(16) and EP-PD-NECs [Figure 2, Table 1]. CREB Binding Protein (CREBBP) and
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E1A Binding Protein p300 (EP300) encode for histone acetyltransferases and are mutually
exclusively inactivated in ~13-15% of SCLC(16). They act as transcriptional co-activators
by interacting with transcription factors and enabling their access to promoters, and their
activity is counterbalanced by histone deacetylases (HDACS). In SCLC, CREBBP functions
as a tumour suppressor and its deficiency sensitises to HDAC inhibition in GEMMSs(67) and
EP300 inhibition in cell lines and xenografts(68) [Figure 3].

Overexpression of the histone methyltransferase £ZH2 or its protein product is frequent in
SCLC(46) and prostate-PD-NEC(53,54,65). In SCLC, EZH2 promotes chemoresistance by
epigenetic silencing of the cell-cycle regulator Schlafen family member 11 (SLFN11), and
EZH2 inhibition prevents/reverts acquired resistance to DNA damaging agents /n vitro and
in vivo(69) [Figure 3]. In prostate-PD-NEC, EZH2 inhibitors are effective in suppressing
tumour growth when used in combination with enzalutamide in 7rp53/Rb1 knockout mouse
models and derived cell lines(65), and as monotherapy in MYCN-overexpressing cell lines
and xenografts(64) [Figure 3].

Genomic data indicates that a large proportion of EP-PD-NEC human samples of different
sites of origin harbour alterations in at least one epigenetic regulator(18-20,26,28-32,34-42)
[Figure 2, Table 1], with the AT-Rich Interaction Domain 1A (AR/D1A), histone lysine
methyltransferase 2 (KMT2) and histone lysine demethylase (KMD) family genes being
the most frequently affected. This is supported by data from an organoid panel of 18
GEP-PD-NECs/MiINENSs(45). Taken together, these data support epigenetic regulation as a
viable therapeutic target in EP-PD-NECs.

2.4 Expression of the delta-like ligand 3

The delta like canonical Notch ligand 3 (DDL3) is a NOTCH ligand which inhibits NOTCH
signalling through mechanisms yet to be fully elucidated in cancer. DLL3 is expressed with
high prevalence (~70-80%) and specificity on the cell surface of NE cancers, including
SCLC(70), LCPNEC(71), prostate-(72), GEP-(73), bladder-(74) and uterine cervix-PD-
NECs(37), and DLL3 targeting is being explored as a strategy for selective delivery of
anti-cancer treatment to NE cancer cells. Rovalpituzumab tesirine, an anti-DLL3 antibody-
drug conjugated showed promising preclinical and early-phase clinical activity in DLL3-
(over)expressing solid tumours(72,75,76), yet yielded poor efficacy and safety results in
subsequent larger clinical trials(77,78). This led to discontinuation of further development
of this drug. In SCLC, adoptive cell therapies using DLL3 as target antigen, including
bispecific T-cell engagers monoclonal antibodies and chimeric antigen receptor T-cells,
have shown /n vitroand in vivo tumour-suppression activity, which is enhanced by the
combination with immune checkpoint blockade (ICB)(79,80) [Figure 3]; these strategies are
currently in early-phase clinical investigation in patients with SCLC(77) and EP-PD-NEC
[Table 2].

2.5 Upregulation of antiapoptotic signalling

The BCL2 apoptosis regulator (BCL2) is an anti-apoptotic member of the BCL2 family
of mitochondrial apoptosis regulators. The majority of SCLC human samples overexpress
BCL2 protein(81) and BCLZ mRNA expression is predominantly high in SCLC cell
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lines, and predicts /in vitroand /n vivo SCLC sensitivity to the selective BCL2 inhibitor
venetoclax(82). The combination of venetoclax and a bromodomain and extraterminal
(BET) protein family inhibitor has also shown promising preclinical activity in SCLC(83)
[Figure 3]. A clinical trial is currently evaluating venetoclax in combination with or

after first-line platinum/etoposide +/- ICB in patients with SCLC (NCT04422210). BCL2
inhibition may also translate to EP-PD-NECs. In fact, a transcriptomic analysis of prostate-
PD-NEC human samples, cell lines and patient-derived xenografts revealed significant
BCL2 mRNA and protein overexpression. Furthermore, /n vivoand in vitro prostate-PD-
NEC models showed sensitivity to the pan-BCL2 family inhibitor navitoclax and was
synergistic with WEEL1 inhibition(84) [Figure 3]. Expression of BCL2 protein has been also
reported at a high prevalence in pancreatic-(85) and colorectal-PD-NEC human samples(23),
providing further rationale for extending investigation of BCL2 inhibitors to PD-NECs from
other anatomical sites.

3 ‘non-NE cancer-like’ vulnerabilities of EP-PD-NECs

3.1 Dysregulation of receptor tyrosine kinase pathways

Aberrant activation of receptor tyrosine kinase pathways is common in non-NE epithelial
cancers from different anatomical sites, including the GEP tract, prostate, bladder and
female genital tract(86,87), whereas it is infrequent in SCLC(16,46). Activating mutations
in KRAS and BRAF (predominantly V600E) are reported in GEP-PD-NECs at a similar
frequency as in GEP adenocarcinomas(18-28,44,88-90)[Figure 2, Table 1]. Similar to

their adenocarcinoma counterparts, pancreatic-PD-NEC is enriched in KRAS mutations
(23.1-41.7%)(18,28), and colorectal-PD-NEC enriched in KRAS (8.3-60%)(18,23-27,44,90)
and BRAF mutations (4.2-58.6%)(18,23-27,44,90), with the latter predominantly occurring
in the right colon. This suggests that targeted treatments for GEP adenocarcinomas may
also find application in patients with PD-NECs from the same site of origin. For example,
BRAF inhibitors are emerging as promising therapeutic strategies for BRAFYE9E mutant
colorectal-PD-NEC. Both single-agent BRAF inhibitors and combined BRAF and MEK1/2
inhibitors have shown remarkable activity in BRAFVP%E_mutant colorectal-PD-NEC human
cell lines, xenografts and patients (case reports)(25,89,91,92) [Figure 2]. A recent study
showed that BRAFVE9E_muytant colorectal-PD-NEC has an EGFR methylation signature
close to that of melanoma, which suppresses EGFR signalling and results in response to
single-agent BRAF inhibition(25). Collectively, these data support clinical investigation of
BRAF inhibitors in a subset of patients with colorectal-PD-NEC.

Dysregulations of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR
pathway are also recurrent events in EP-PD-NECs of different sites of origin [Figure 2,
Table 1]. Mutations and amplifications or copy number gains of P/3KCA are more frequent
in PD-NECs from the colon-rectum (4.9-12.5%)(18,24,26,27), bladder (14.8-16.7%)(35,36)
and uterine cervix (12.2-46.7%)(37-41), whereas mutations and deletions or copy number
losses of PTEN are more frequent in prostate-PD-NEC (16.7-52.9%)(31-34,63). Therapeutic
strategies targeting PI3K/AKT/mTOR signalling are currently being evaluated in clinical
trials in a number of non-NE epithelial cancers(87), and may also apply to patients with
EP-PD-NEC harbouring the same molecular vulnerabilities.
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3.2 Microsatellite instability

Microsatellite instability (MSI) is an established oncogenic driver for a subset of GEP
adenocarcinomas, most commonly of colorectal and gastric origin, occurring at a frequency
of ~7.5-22%(93). MSI is typically associated with a high tumour mutation/neoantigen
burden, dense lymphocytic infiltrates and immune checkpoint upregulation, and is a

positive predictor of response to ICB(94). Clinical trials utilising ICB demonstrated

durable responses in approximately half of patients with MSI-high cancers, including GEP
adenocarcinomas(94-96). This led to US Food and Drug Administration (FDA) approval of
two anti-PD-1 monoclonal antibodies: pembrolizumab for all patients with MSI-high cancer,
and nivolumab for patients with MSI-high metastatic colorectal adenocarcinoma.

MSI-high has a variable frequency in GEP-PD-NECs (0-69.2%), predominantly occurring
in those of gastric and colorectal origins(18-20,24,25,88,90,97-99)[Table 3]. Similar to
MSI-high gastric and colorectal adenocarcinomas, MSI-high GEP-PD-NECs have more
conspicuous lymphocytic infiltrates, are significantly enriched in CpG island methylator
phenotype and BRAF mutation, and have a more favourable prognosis compared to their
microsatellite stable counterpart(88,97,98). Overall, there is indication that MSI is a site-
specific driver for a subgroup of GEP-PD-NECs, mainly of gastric and colorectal origin,
which share biological similarities with MSI GEP adenocarcinomas, and may also benefit
from ICB.

4 Tumour-type agnostic immune biomarkers of EP-PD-NECs

ICB has proven effective in eliciting T-cell anti-tumour cytotoxicity with dramatic and
durable responses in a subset of patients with cancer. Yet, the majority of patients do not
respond to ICB or rapidly develop resistance (100). Currently, IHC expression of PD-L1,
high levels of tumour-infiltrating lymphocytes (TILs), and high tumour mutation burden
(TMB) predict ICB benefit in a number of cancer types(101,102). However, these are
imperfect predictive biomarkers and there is an urgent need for improved biomarkers for
patient selection and identification of synergistic therapeutic combinations.

ICB is currently in clinical trials in patients with EP-PD-NEC [Table 2], with initial
evidence of activity for the combination of the anti-PD-1 monoclonal antibody nivolumab
with the anti-CTLA4 monoclonal antibody ipilimumab(103). However, the EP-PD-NEC
immune landscape is not fully characterised. IHC expression of PD-L1 is reported

in 6-70% of patients(19,20,37,74,99,104-112)[Table 3]; similar variability is observed

in other cancer types, including SCLC, and is due to factors including spatial and
temporal intra-tumour heterogeneity of PD-L1 expression, lack of standardised methods,
and differences in clinico-pathological characteristics across studies(100,101). In EP-PD-
NECs, IHC expression of PD-L1 is more prevalent in tumour-associated immune cells
than in tumour cells(20,74,104,106-108), and is most commonly of low intensity and
restricted to a small proportion of the tumour sample(74,99,104,107,108,112). Tumour-
associated immune cells are present in the majority of EP-PD-NECs, with TILs reported
in 45.5-100% of cases(99,104,106,108,109,112), although usually at low density and
located at the tumour edges or at the tumour/stroma interface, rather than within the
tumour parenchyma(106,108). Recently, transcriptomic profiling of oesophageal-PD-NEC

Clin Cancer Res. Author manuscript; available in PMC 2022 May 15.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Frizziero et al.

Page 10

human samples revealed downregulation of immune response pathways with significantly
reduced expression of TIL and cytotoxic-TIL gene signatures compared to epithelial non-NE
oesophageal cancers. In addition, IHC showed exclusion of cytotoxic-TILs from the tumour
parenchyma in 85% of cases(30). Although further characterisation of tumour-associated
immune cell populations in EP-PD-NECs is needed, the evidence favours a predominant
‘immune-altered’ phenotype, as per Galon et al.(113). This suggests that the majority

of patients with EP-PD-NEC will likely show low sensitivity to ICB alone, but could
potentially benefit from the combination of ICB with therapies that can stimulate immune
checkpoint upregulation and immune cell infiltration, such as DNA-damaging agents. For
example, ICB alone has proven ineffective in SCLC, which is known to be immunologically
‘altered’/’cold’, in spite of a high TMB(114). However, the combination of ICB with
first-line platinum/etoposide recently received FDA approval with superior efficacy over
chemotherapy alone, in spite of a modest overall survival gain (<3 months)(115,116).
Compelling preclinical evidence shows enhanced ICB via combined inhibition of cell-cycle
or DDR regulators, such as CHK1, PARP (via cGAS-STING pathway)(117) or CDK7(118),
which generates genomic instability to stimulate the host adaptive immune response [Figure
3]. A number of ICB combination strategies have entered clinical investigation in SCLC(11)
and EP-PD-NECs [Table 2].

Pembrolizumab has US FDA approval for the treatment of patients with advanced solid
tumours and TMB=10 mutations/megabase (mut/Mb). In SCLC, a high TMB enriched

for clinical benefit in patients treated with ICB alone in the phase 11 Checkmate032 trial
(TMB assessed by whole-exome sequencing in tumour tissue)(119), whereas it did not
predict increased response to ICB in combination with platinum/etoposide in the phase 111
IMpower133 trial (TMB assessed by targeted sequencing in cell-free DNA)(120). However,
the sensitivity of the methods for TMB assessment and the threshold for TMB-high differed
between these two studies. Overall, EP-PD-NECs exhibit a lower median TMB (1.7-7.1
mut/Mb)(18,19,30,37,40,42,44,99,121) [Table 3] than SCLC (~9 mut/Mb)(16), which may
be partially explained by a lesser role for tobacco smoking in EP-PD-NEC pathogenesis.
Bladder-PD-NEC represents an exception with a median TMB close to that of SCLC [Table
3], although secondary to enrichment in APOBEC rather than tobacco smoking mutational
signature(35,36). Nevertheless, a fraction of patients with EP-PD-NEC (~3-21.4%) exhibit a
high TMB and may benefit from ICB alone.

5 Origin and NE lineage plasticity

The origin of EP-PD-NECs remains elusive. Accumulating evidence from clinical
observations, genomic and transcriptomic studies suggests a distinct pathogenesis and, in
some anatomical sites, cell of origin for WD-NETs and PD-NECs(122-124). WD-NETS are
thought to develop from mature NE cells or pluripotent precursors primed for a NE lineage
commitment(122,123). SCLC predominantly originates from pulmonary NE cells(125),
whereas the cell of origin of EP-PD-NECs has never been formally identified. Comparative
analyses of the mutational landscape of PD-NECs, non-NE epithelial cancers, and mixed
NE/non-NE epithelial cancers from the GEP, bladder and prostate point towards a common
clonal precursor for same-organ PD-NEC and non-NE epithelial cancer histologies at these
anatomical sites(23,25,27,28,31,35,36). Multi-omic analyses of oesophageal-, bladder-, and
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prostate-PD-NECs indicate that, in spite of a close resemblance with their non-NE epithelial
cancer counterparts at a mutational level, their transcriptomic(30,84,126-128) and epigenetic
profiles(126-128) largely overlap with those of SCLC. A study looking at clonal phylogeny
of bladder-PD-NECs showed that site-specific mutations shared with non-NE epithelial
cancers appear earlier than PD-NEC phenotype-specific genomic events, such as 7P53/RB1
loss or genome doubling(35). Therefore, the predominant emerging hypothesis is that EP-
PD-NECs have distinct cells of origin, shared with same-organ non-NE epithelial cancers(6),
but a convergent phenotypic evolution shared with SCLC(35,126-128). Two main, non-
mutually exclusive mechanisms of EP-PD-NEC pathogenesis have been postulated: 1) origin
from a multi-potent, undifferentiated (stem cell-like) site-specific precursor with the ability
to alternatively acquire a non-NE cancer cell identity, 2) or through NE trans-differentiation
from an originally non-NE epithelial cancer cell. The latter phenomenon, known as NE
lineage plasticity, is emerging as the main mechanism underpinning the emergence of a
lethal NE phenotype in lung and prostate adenocarcinoma following targeted therapies, such
as anti-EGFR tyrosine kinase inhibitors and the antiandrogens enzalutamide and abiraterone.
Lineage plasticity is the ability of cancer cells to transition to an alternative developmental
lineage to adjust to adverse environmental conditions, such as those created by the selective
pressure of targeted therapies, leading to loss of dependency on the original oncogenic
driver, treatment resistance and tumour progression(6,7,129). To date, non-NE to NE cancer
lineage transition secondary to therapeutic suppression of an oncogenic driver has been
documented in the lung and prostate; a number of putative drivers have been identified,
including 7P53/RB1 loss, MYCN amplification or overexpression and perturbations in
epigenetic regulators such as EZH2, establishing vulnerabilities that can be therapeutically
leveraged(7,129). However, this phenomenon may also occur at other anatomical sites, and
through different mechanisms, and will likely become increasingly observed in clinic due to
the implementation of targeted therapies for a wider population of patients with cancer. This
may include patients with non-NE epithelial cancers from the GEP tract, bladder or uterine
cervix where the use of targeted therapies has so far been limited, yet is likely to increase
with the rapid progress in their molecular and biological characterisation. For example, a
study in patient samples provided initial evidence of NE trans-differentiation in pancreatic
adenocarcinoma, and NE trans-differentiation was driven by MYC overexpression in
GEMMs, and was associated with resistance to gemcitabine chemotherapy and increased

by gemcitabine in human cell lines(130). In addition, anatomical sites other than the lung
and prostate may be more prone to a different lineage reprogramming, such as epithelial-to-
mesenchymal transition, when cancer cells are forced into an identify shift by anti-cancer
treatment(7).

Finally, NE lineage plasticity might not only occur in the late stages of tumour evolution,
but also early in the oncogenic process(129), and may drive intra-tumour NE/non-NE
phenotypic heterogeneity in mixed epithelial cancers and, at least in part, be implicated

in the development of de novo PD-NECs. This implies that NE lineage plasticity-

directed therapies currently under investigation for treatment-induced PD-NECs could also
potentially find application for mixed or pure de novo PD-NECs.

The hypotheses surrounding the origin of EP-PD-NECs presented herein are still debated
and may not explain the whole spectrum of pathogenetic pathways. For example, two studies
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proposed a possible evolution of SCLC and LCPNEC from pulmonary-WD-NETS, based on
genomic sequencing of patient samples utilising a targeted panel of 40/88 genes commonly
altered in these cancers, suggesting that this may also apply to EP-PD-NECs(131,132),
although progression from a WD-NET to a PD-NEC is an extremely rare observation in
clinic, both in and outside of the lung.

6 Conclusions

There is growing interest in EP-PD-NECs within the scientific and clinical communities

to aid the management of these patients which are becoming more common in practice.
This increase in patients is partially attributable to the improved sensitivity of methods for
histopathological diagnosis, in particular the wider use of NE IHC markers. In addition, a
new entity is emerging, namely treatment-induced PD-NEC, resulting from the phenotypic
transition of pre-existing epithelial non-NE cancers. Rise in incidence of this is anticipated
as molecularly targeted therapies are more widely implemented for the treatment of non-NE
cancers. In addition, the more extensive use of liquid biopsies enabling temporal monitoring
of changes in the tumour genotype and phenotype may unveil a higher incidence of
treatment-induced non-NE to NE cancer lineage transition. Therefore, there is a demand

for more research into this lethal PD-NEC diagnosis, for which chemotherapy remains the
mainstay of treatment, yet yields short-lived benefits.

This review has attempted to provide a comprehensive overview of newly emerging
molecular vulnerabilities of EP-PD-NECs and shed light on potential directions for research
and treatment development [Figure 3]. New insight into multi-omic features of EP-PD-
NECs and NE cancer lineage plasticity are paving the way to new therapeutic opportunities
[Figure 4, “i” suffix = inhibitor] and also increasing the understanding of the pathogenesis of
these cancers.

SCLC is the best characterised NE cancer, and thus offers a paradigm for modelling EP-
PD-NEC. For example, the differential expression of NE lineage defining transcriptions
factors underpins the new emerging SCLC molecular classification, and is associated

with unique therapeutic vulnerabilities(12,14), and may aid in deciphering biological
heterogeneity within the EP-PD-NEC family. Variability in genomic features across and
within EP-PD-NEC subgroups per site of origin, such as a different prevalence of 7P53and
RB1 inactivation, underscores the need for a more granular classification of these cancers.
Transcriptomic profiling of 18 GEP-PD-NEC/MINEN organoids has unveiled molecular
subtypes differentially enriched in NE lineage defining transcription factors, including
ASCL1, NEUROD1, POU2F3 and ATOH1, shedding light on their potential role in EP-PD-
NEC biology(45). This was corroborated by a recent study in oesophageal-PD-NEC (human
samples, 7=38), where unsupervised clustering analysis of RNA sequencing data split the
population in an ASCL1M9" and a NEUROD1M9" subgroup with similar gene enrichment to
their SCLC counterparts(30).

Besides a better characterisation of EP-PD-NEC molecular subgroups, an improved
understanding of the EP-PD-NEC immune landscape and tumour microenvironment is
needed to inform development of novel effective therapeutic approaches. For example,
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inhibitors of the VEGF/VEGFR pathway are currently being investigated in combination
with chemotherapy or ICB in the clinical setting in patients with advanced EP-PD-NEC,
mainly of GEP origin [Table 2], with initial encouraging results(133-135). The rationale
behind this is that targeting angiogenesis is known to improve the efficacy of chemotherapy
and ICB in a variety of solid cancers(136). In addition, GEP-PD-NECs have a low
vascular density, yet prominent angiogenesis with increased endothelial cell proliferation
and abnormal vascular architecture, likely secondary to hypoxia(137), suggesting that
targeting angiogenesis might be effective in these cancers. In support to this, a recent study
has demonstrated potent /n vivo anti-tumour activity for two VEGF inhibitors in xenograft
models of SCLC and colon-PD-NEC(138). Nevertheless, angiogenesis in EP-PD-NECs
remains poorly studied.

Finally, clinically useful biomarkers and patient-relevant preclinical models of EP-PD-NECs
remain urgently needed. Initial studies of circulating tumour cells (CTCs) and circulating
tumour DNA in patients with EP-PD-NEC provide evidence of their feasibility and potential
clinical utility in these cancers(21,139), with a largely untapped potential to overcome

the limited availability of tumour tissue. In SCLC, CTCs can give rise to animal models
which faithfully recapitulate the morphology and treatment sensitivity of donor patients’
tumours; so-called CTC-Derived eXplants (CDX)(13,48,140). CDX can be generated from
a 10mL blood sample and at multiple time points from the same patient, and are proving
valuable tools for /in vivo and ex vivo biological studies and drug screening(13,48,140). The
CDX technology may also find application in NE cancers outside the lung, as shown in a
recent study reporting on a CDX of treatment-induced prostate-PD-NEC(141). NE cancer
organoids are proving reproducible and tractable platforms that can support preclinical
investigation in EP-PD-NECs.
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Figure 1. Classification of Neuroendocrine Neoplasms.

A) Table describing the current nomenclature according to the 2018 International

Agency for Research on Cancer and World Health Organisation (WHQ) consensus

framework(3), and the 2019 WHO Classification of Tumours of the Digestive
System(1). Categories are based on morphological features for Neuroendocrine
Neoplasms of pulmonary origin, and a combination of morphological features and
Ki-67 expression for Neuroendocrine Neoplasms of extra-pulmonary origin. B)

Simplified graphic representation of Table A.

NET = neuroendocrine tumour; this refers to a neuroendocrine neoplasm with a well-
differentiated morphology (WD). NEC = neuroendocrine carcinoma; this refers to a

neuroendocrine neoplasm with a poorly-differentiated morphology (PD). G1 (grade 1) and
G2 (grade 2) identify low grades of proliferative activity and biological aggressiveness, and
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are defined by a Ki-67 index <20% for neuroendocrine neoplasm of extra-pulmonary origin.
G3 (grade 3) identifies a high grade of proliferative activity and biological aggressiveness,
and is defined by a Ki-67 index >20% for neuroendocrine neoplasms of extra-pulmonary
origin. MiNEN = mixed neuroendocrine non neuroendocrine neoplasm; this definition
applies to cancer from the gastro-entero-pancreatic tract composed of both neuroendocrine
and non-neuroendocrine histology, each accounting for at least 30% of the tumour mass.
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Figure 2. Common genomic alterations in Extra-Pulmonary NeuroEndocrine Carcinomas
Frequency (median and interquartile range) of samples harboring any genomic alteration

(point mutation, copy number gain, copy number loss, amplification, deletion, chromosomal
rearrangement) is reported for a selection all genomic studies in extra-pulmonary
neuroendocrine carcinomas presented in this review. GEP = gastro-entero-pancreatic tract.
UNK = unknown primary origin. H&N = head and neck. DDR = DNA damage repair.
Remaining acronyms are defined in Table 4. Studies selected were those where samples
included were from =10 patients.
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Figure 3.
Molecular vulnerabilities of Extra-Pulmonary NeuroEndocrine Carcinomas,

associated therapeutic opportunities and supporting preclinical and clinical evidence.
Part A presents SCLC-like and tumour-type agnostic molecular vulnerabilities. Part B
presents same-organ non-NE cancer-like molecular vulnerabilities.

mAB = monoclonal antibody. CTLA-4=cytotoxic T-lymphocyte antigen 4. ICB=immune
checkpoint blockade. TMB=tumour mutation burden. MHC I or ll=major histocompatibility
complex 1 or Il. TCR=T cell receptor. APC=cell presenting antigen. ADI-
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PEG-20=pegylated arginine deiminase. BET=bromodomain and extra-terminal domain
proteins. BiTE=bispecific T cell engager. CAR T cell=chimeric antigen receptor T

cell. HDAC=histone deacetylase. KMT2=histone lysine methyltransferase 2 family.
KMD=histone lysine demethylase family. MAPKs=mitogen activated protein kinases.
RTK=receptor tyrosine kinase. GF=growth factor. MSI=microsatellite instability. The suffix
“i” after the name of the protein means “inhibitor”. Remaining acronyms are defined in
Table 4.
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Figure 4. Summary of emerging therapeutic strategies for Extra-Pulmonary NeuroEndocrine
Carcinomas

DDR = DNA damage repair. ICB = immune checkpoint blockade. BiTE = bispecific T cell
engager. CAR T cell therapy = chimeric antigen receptor T cell therapy. TMB = tumour
mutation burden. The ‘i’ as suffix of the name of a molecular marker means “inhibitor”.
Remaining acronyms are defined in Table 4.

Clin Cancer Res. Author manuscript; available in PMC 2022 May 15.



Page 29

izziero et al.

Fr

AND J— (@e)8102

n %00 Ju %00 %e'TT i %00 Ju %00 %ol | %6s %00 wtsy | wvez | +s3m/reued y i 403

ausb-gL SON ABpayd

_E au au i i i %e'e Ju 1 wee | wee %00T | %008 AND +S3M oo 0g ,_m_ﬂm%ﬁ%m

HsI4 aEIs0ld I8 ._.H_mmw_ﬂ%m

ssolg (€9)eT0Z

HSId 6 si-6b ‘We

rJanbso

%00 1 %00 n %00 1 %00 Ju %00 n %e've %00 %eve AND +S3M snbeydosso o smvmﬁm_

%00 %00 %00 n %00 1 %00 %00 %00 n E %L'9Z %00 %eEL AND +S3M 19ppRIqIIeD ST amwm_m

m %e's i %00 m %00 i %e's i %L Ty wes | %00 m wroe | oo _m:oah sealoued i Nmm_ﬁww_mmom

%008 9%0'0T %00 %002 %009 . %0°0E %006 ausb-0g _M:%u WNRIL0J0D ST-01 9 kmm%\m,

000 | wszr | wsie %y %es | %es %00 %y %00 %262 wse | wes woo | ey | usze | wzv | ambos _mm:om_m w::fm__u_wmu_ ve i%w_wwm_m
sued

%08y %00 %00 %082 %08y . %00 %008 aUE-10 SO uojod st | mmmmmmmw

m %198 i %0'0T i %e'e i %e'sz 1 %e'eS %002 m weer | b _M:oﬂ wnR1u0j0D 08 H.mwwmw_
Burouanbas

%y B/U B/U %eY %E'8 '/U %8°0C winjoa1uojo) th ‘N M\ﬂwmhwm

e e Bju %9'85 %'LT e e 4odb wnIu0j0) 9% ,un_ﬁm_ww%w

] Burouanbas (68)8T02

B ’/u '/ %6'88 B/u e e J1abues d39 8t 7 Jepz1q

%L'8 %L'8 %0°eT %0'€T %T'9z %e'p %595 ausb.0g _M:oﬂ Jrorda0 €z m_w_www@_ﬂ

%e'g %zv %zy %S %29 %e'g wuszg | (TNGR) loued YNN+d3D v {oee

%T'S %00 %00 %L %e 0T %9T %0'65 ausb-0 _m%m 439 6¢ ,mvwow%m

e U e %89 %0°LT e e mc_g%gwmﬁm d39 q 68 _zﬁwmwm_m_mm

i %0'LZ m %0, o u 0B u m %b'S i %062 m %0'TT I %0'TS . _m%uwﬁum 43 SeT (67)0202

lo®eu Joeu j0eu d d 1265 SON 12 'V 1UI199Nd

%00 %e'82 %00 %oy I u %00 %L°6T %00 wbzz see | %sot %00 %8'€9 mbw,w@m _M:%u SINN+d39 st |y %wwm%

siuo | sAND suoneny | s1eno SAND suonen | sseno | sAND suoneny | ssepo | saNo | suoneinn | siewo | sano | suonew | siemo | sano suoneny | sseno | sAND suoneIny
2dv voMield Na3ld Jvug S T84 £sdL pouIaN utbLo Jo ans u 1oy

® Europe PMC Funders Author Manuscripts

SeuIou194eD aULID0PUT0INaN Aleuow|nd-.JIX3 Ul suoIlea]e dlwoush uowwod Jo uondiiassp pajielsg

T algeL

® Europe PMC Funders Author Manuscripts

available in PMC 2022 May 15.

Clin Cancer Res. Author manuscript



Page 30

izziero et al.

Fr

Ju Ju Ju Ju I %00 Ju %00 Jpu %E'E AND + |aued ausb-zge SON win}2a1-uojo) i3} (72)120z ‘WS 981
Burouanbas 4 .
B/U B/U e/U e/u B/U 10311p pue uoneoyndiwe ¥od winya8I-uojod p (£2)ST0Z ‘N emeziyel
e e B B e yodb wnjoaI-uojod 2% | (089102 0a veMeI0
'/U B/U /U /U B/ Burouanbas 1abues 439 8T (68)810z ‘1 4epzIQ
%00 %00 e e %00 faued aua6-05 SON Jeorda0 >4 w0
%0°0 40 B/U %0°0 40 B/U %0°0 10 B/u %0°0 10 B/u %0°0 10 B/u (YNQ0) jaued suab-g. SON MNN+dID ve (T2)0z0z 1 pressd
%ST %ST B B %00 1aued auab-05 SON d39 6€ (026102 ‘v 0215Ng
B/ B/ B/U B/U B/U BurouanbasoiAd-4od 439 Qmw (88)ST0Z ‘N aueuyes
i %0'ET Jju o e/u Jju Jo e/ %00 Jju Jo /U Jju o e/u i JjuJoe/u JuJo e AND d3ao SET (6T)020Z 'V 1u19INd
+ |aued ausb-v/265 SON e -
HI %6'6 _ %eL _ %8TT I %6'E %6'G %00 %E'S %ET | %00 %00 %99 /AND + |aued auab-09g SON YNN+d39 et | (811202 'V soppziuan
SIB3Y10 SAND suonemniy SI8Y10 SAND suonemny SI8Y10 SAND suoneinin s18y10 SAND suoneinin s18y10 SAND suonemniy
siopenbai Anwey yaa Anwey YHIN B} DAN Anurey poyIsN u 1Y
: HOLON
(papinod sauswesIa (ev)6T0Z
B/u /U B/U /U /U %29t %6°9L J0u sauab V\ N N 9z 7 13peiN
u) jaued SON
%00 %TL %TL %00 %00 %1 %627 | quopezemay | oau pue pesk | e
©/U 10 %0'0 %008 %001 10%00 %0'0T %0'0T %007 | queps60 _mmr_wm_m__ XIAI20 auLIaIN ot ﬁ%mm_wm
Ju e %EET %9 e | % au %E'ET Ju %L9 i %eET | AND+SIM XAI30 BULIBIN o [, om0z
%00 %z8T %e? %00 %9ET %e? T | auspeog _M:%u XINI30 SULIBIN w | ©ET0Z W
. e . . . . %05 . . . . . AND + [aued (8e)T202
%00 %0'CS %28 %00 %T'9 %00 \ %2 0T %00 %Iy %00 %2'eT aU3b-025 SON XIAI29 QULIBIN 67 X 13d
. . . . . . . . . . . . . . ANO + [aued (2€)ozoz
%00 %9'T %00 %L LT %00 %L'6 %00 %CE %00 %ETT %00 %eE %00 %L'LT oUBb-265 SON XIAI39 QULIBIN 29 oI
A %091 i i n %EEE %e'e8 samwsom | aesoid+ieppeig a a.wmwmm
moa ()
. . . . . . . . . JWEENYET G€)810z
Ju i %00 %8'vT Ju u %00 %EE %00 v'L§ | %0€e %065 | %562 Suab Jappelg 9 ‘L Bues
-TVE/18Z SON
. . . . . . . . . . . . - . AND + [aued S1eIsold (ve)8Toz
%00 %E'8 %00 %E'8 %E'8 %E'8 %00 %00 %00 %0°0 %L°9T %L'9T %E'8 %E'85 2U9B-76 SON 6 20|y emiebby
(Bunsoue)
Ju u Jju lo eju Ju %T" u Jju I u X e/ %0 m:_u:m\_y—m_mnw SIeIS0Id - Hmm:\ﬂow
o8 1 /u 10 e/l 1 %T'TT 08 1 oe / %00 / %009 ,_wm:.ﬁm\_m:a ; €16 SoH el
auab-05 SON
s1o | SAND suopeniN | s1elio SAND suonenN | s1epo | SAND suoneniN | s1a0 | SANO | suoneinn | sisio | SAND | suomeinn | s1an0 | SAND suopeniN | s1elao | SAND suoneINN
odv VOMEld N3Ld dvyg SVE 18d €5dL powaN u 12y

® Europe PMC Funders Author Manuscripts

® Europe PMC Funders Author Manuscripts

available in PMC 2022 May 15.

Clin Cancer Res. Author manuscript



Page 31

izziero et al.

Fr

a|duwres auues ay u1 uoneaijdwe + uoneinw juiod Burunooo-0d @
uoneoyljdwy [l
ureb Jaquinu AdoD

a|dwies awies ay} ui sso| Jaquinu Adod + uomenwi jurod BullIN00-0D O

(sauab Jualapip) ajdwes awes sy ur uoneoyljdwe + uonajsp BulN020-00 [

Juawabuedreal [ewosowolyd @

a|dwes awes ay} ur uonalap + uonrenw juiod HulIN0-0D O
uonsea @

sso| Jaquinu AdoD O

uoneINW 104 O

§ (papinoud SalIs ualayla .
B e e e %808 10U 3U36 ) 28l SON ¥ 9z (€4)6102 1 19pON
%eVT %00 %00 I %00 %evT Joured ausb-g2G SON 03U pue peay v | (emizoz ‘v oouno
%0'0T %002 B/U 10 %00 %0'0T 9%0°0T Jered ausb-2£9 SON XIAJ20 auaIN ot (1v)8T0z ‘a Buix
Jyu %Eee i %EET i e i (%495 i e AND +S3M XIAI80 auLiaIN st | (ov)ozoz ‘L vewiH
%eT %00 e e %00 fued 3u3b-05 SON XINI30 auLIBIN % oy 2o
Jyu %10z i % Tl e o181 e f%0zs | AND + 1aued ausb-0z5 SON XIAI30 auLiaIN 67 (88)T20Z ‘X tod
%00 | (siuamed Juiapip ut 41 3ins Jou) %p'9 %00 | yosapip ur p ains gmwcmwm %00 %00 %00 %00 | AND + foued 3uab-265 SON XINJ30 UL 29 (28)020z v oo
HI ] %052 Ju Ju n samsom | aeisoid +iapperg o (9£)8T02 'd Uays
(suoneanw Juiod |Je 41 Ins 10U) %g'EL %8zE i i u i u u w,ww\««mw\%\_m%u Jeppelg 19 | (se)etoz LN bueyd
%00 %e'8 %00 %e'8 9% 19T %00 %e's %e'8 %00 e e AND + [aued 3uab-T6 SON £ zt | (ve)sToz u remebby
(Butnsouen) a0
J/ulioeu au Jju lo eju au J/ulo eju B/u J/uJoeu B/u JjuJoeu Ju " >ZQU + Burouanbas / £€1-6 AMMYV_HDN “-H ueL
19Bues/jaued sush-0g SON ;
%gTr | %ese %ese %9'LT e e au %6'S e o |, oo joved ousb-g oom e i , n_ommwwm%w
HI wee | wee o%e'e Ju 1 i 1 i n AND +S3M Bareisold 0g (1£)9T0Z 'H Uexjog
HSId awisold I8 (€)TT0Z 'H Uenjag
3JeIS0Id ; (e9)eT0T
HSI4 6 sl-67 B i
%00 %092 %00 i %00 I Ju %00 %T'9z AND +S3M snbeydosao o (08)T20Z ' 1
%00 %eEL %00 %0°0% %00 Ju E %eET %00 %eET AND +S3M 13ppelalfeD o1 (62)0z0z ‘4 11
) ) ! . . d 2usb- (82)8102
i %L°99 yu %E'8 I %E'8 %00 Ju %E'8 AND + |2ued 8usb-60y SON sealoued [42 ‘g ZIMaINUO
%00 %002 e e %008 Joued auab-05 SON wnparruod | 55T | (12)r102 0 tuosIom
%00 %L T %00 %00 %00 %00 %00 %00 %00 | AND + laued ausb-6.7 SON o0 vz | (90)sT0z "u3 wreys
%00 %00 e %00 %00 Joued 8Ua6-T9 SON uojod sz | (s2)ozoz ‘rennapdes
s1U10 SAND suone | s1eno SAND suone | s1epno SAND suoneny | s1elno SANO suonen | s1eLno SANO suoneIny
s107[nBa1 onauabid3 Anwey yaa Anwey >IN Anwey OAN Iw_ﬁm poua bl 4o ans u Jod

® Europe PMC Funders Author Manuscripts

® Europe PMC Funders Author Manuscripts

available in PMC 2022 May 15.

Clin Cancer Res. Author manuscript



Page 32

Frizziero et al.

‘syusied QT= Woay a1am papnjoul sajdwes a1aym asoy) a1am palas|as
sa1pn1s "a1e1sold G/ora) AJeulIn g/XIAIBD BULIBIN £/dT9) £/X98U 79 peay / = A "sajdwies gz ur BurIN220 asoyy Ajuo atem Apnis syl ul payiodal suoneInw = r "$OAN-Ad-ereIsold ,0n0U 8p, puB P3ONPUI-lUBLIIEaIl Y10 = | 'SOIN-(d-81esold ,0n0u 8p, |[e = y *(sewouldsedouape

aressoud snotasid wouy Buneulbrio) SOIN-Ad-arelsold paonpul-jusieal) = 5 "UIBLIO d39-L11x8 paijiosdsun Ue woly 6 pue 19ei ¢39 8y} Wolk SOIN-Ad vT = 5 'SNINIIN 0T +SOIN-Ad 8Ind G = 5 'SNINIA 1 40 € S3pnjoul = ) 'SNANI 8T + SOIN-Ad 31nd ¥T= 5 "(SNININ)
swise|doau au1J20pUA0INAU-UOU BULID0PUIINaU PaxIW 9 + SOIN-Ad aind €G = q ‘papino.d jou ate sdnosBgns omy sy} Jo suoriodoid sAe[al 1I8BABMOY ‘SINOWINY BUIII0PUSOINBU PAYRIIUBISHIP [[9M £9 pue (SOTIN-Ad) Sewouldsed auloopusoInau parenualaylp Ajiood yioq

$9PNJOUI SIU} =  "PASSaSSE 10U dUaB = e/u *(a1e) AjaLIaIIXa 10 JUSR S UolRIa)[E BU) 8snedaq Ajfensn) uofealjgnd sy ul pspodal jou Aousnbaly uonelafe g pasAjeue susb = 4/u ‘uonoeal Ureyd asessWA|od = YOd "UOIESIPLGAY NHS Ul JUBISaIoN|) = HSI4 "SISA[eue uoleLieA Jsquinu
Adoa = AND Buiouanbas swouab sjoym = SO ‘Buidusanbas swoxa ajoym = SN “Burouanbas uonesauah 1xau = SON '19e41 d11eaIoued-0433us-0115eh = 439 *(Al1ge|IeAR 9NnSSI) UO paseq pasAjeue sauah ssoloe paleAw ‘papinoid si abuel e J1) pasAeue sajdwes Jo Jsquinu =

(sauab Jualayip) ajdwes swes sy ur uoneinw julod + uoneaijdwe + uons|ap Bulnaoo-0d [l
a|dwes awes ay} U1 Juswabuelieal [eLWOSOWOIYd + uonelnuw juiod Buting0-0) 0

® Europe PMC Funders Author Manuscripts ® Europe PMC Funders Author Manuscripts

Clin Cancer Res. Author manuscript; available in PMC 2022 May 15.



Page 33

Frizziero et al.

0¥¥6.0£0.LON paiy10ads 10N (%609>29-1M) d39 wue buls |1 aseyd 3pIWO|0ZOW?a} + duigendade)
Joxeyjoed
TESE6TO0LON pay10ads 10N MNN wie ajbus || aseyd + |axenjoed + apisodols + unejdoqied
6TSS0.70LON 1S T JayVY u1bLIo Jo ays Auy wue a1buls || aseyd qewnzioensq + |axe|oed-gqeN
suoyo:
£2€9E6Z0.LON 15 T Jsyy wbuo o s AUv | 5 4o o) we ojBuis __m_mmusm T2e-N3d
0¢/L9€.E01LON pug MNN 10 439 wie ajbus 11 aseyd uedajouti-feu/pioe diuloy/N4-9
T1622T¥0LON puz u1bLIo Jo ays Auy wue a1buls || aseyd apIwojozowa |
ued3I0ULI
1580¢820LON puz MNN 10 439 pasiwopuel || aseyd /P13€ D1UI0J/N4-SG "SA ewnzidensq
+ UBd3j0uLIl/pIdR J1Ul10}/Nd-G
293)0 a1uljo
265/85£0LON puz utbLio 40 ays Auy pasIWopuel || 8seyd o %_&o_owom__m\ o _M___owmmw_
€12/5¥20LON puz uibLio Jo aus Auy wie 6uls |1 8seyd (ueosrodif) 880711
(swure |oxe1a00p
L16LEBEOLON pue iBlio go ays Auy 18][eJed) pasiwopuel || aseyd 10 UBI3)0ULII-[BU/PIJE J1UI|0Y/N4-S
¥T.2y070LON puz uibLo 4o ans Auy wie 31Bus | aseyd 20T-SVL
Ajuo
0 350 ‘sA Adelay) a Qule
856/8920LON T (%55>29-M) d3D pasiwopuel || sseyd HoHEn mm m:b__emﬁ_ “. m%%wcm_w&
apisodo)s + unejdogied Jo une|dsid
(ueomyoun
986087TOLON ST d39 wue a)buls || aseyd + une|dsio 03 uoissalboid uodn)
3p11081190 + UBIA0ULI + Ulle|dsi)
Z108¥220.LON T (%5G>29-1) M¥NN J0 439 wue abuis |1 aseyd SNWIJ0J3AS + BPIWOJ0ZOWAL
65756920L0N 18T u1bLIo Jo aus Auy wue a1buls || aseyd SNWI|04aAS + Ulre|dsiD
(swue apisodols + unejdog.ed Jo une|dsio
ver565¢0LON KT ANN 10439 18][eJed) pasiwopuel || aseyd "SA 3PIWO|0ZOWa} + dulgeldade)
SZHSZEVOLON T INA 10 439 (swue | spisodois + urrejdogued Jo uneldsio ‘sa

|1911esed) pasiwopuel || aseyd

une|di[eX0/UEd3)OULI/PITE JIUIOY/N-G

[(ERIVESETIoR]
Jeuolyeuusiul Je pajuasaid
10 paystgnd) s1insay

J81nusp|
nobsjers) [ea

juswiiea] Jo aulT]

® Europe PMC Funders Author Manuscripts

SO3AN
-dd-d3 10} u1bLIo Jo aUS

ubisap Apms

Adesylowsyd

(s)punodwod feuolrebnnsanu|

(pa191dwiod a0 BunInaoal 10U 8A1R9E ‘BuUIIINIDAL 1SNYeIS JUBWIINAJA
‘T20zZ AInc ‘/nobsferanealul]o//:sdiny) ewouldae) aul1oopugoinaN Adeuownd-ea1x3 yum siuaied Buipnjoul speray [eaiunjd uiobuo

¢ dlqeL

® Europe PMC Funders Author Manuscripts

Clin Cancer Res. Author manuscript; available in PMC 2022 May 15.


https://clinicaltrials.gov/

Page 34

Frizziero et al.

|exelizeqes +

9/260.¥0LON PuOA®] 4O 15T 8peisold wie 2IBUIS 11958Ud | i dogue + qewunuwiiidi + GeLIN|OAIN

G/¥28S€0.1ON puoAaq 1o 1sT 49ppe|q (su1oyod g) q| aseyd Adessyiowsyd DOS + gewnzijoiquiad

Jwinijay1o4n Jo 81eIsoid :

apisodole +

T16266S0LON puoAaq o IsT u1bLIo Jo ays Auy (1 ed) Em_m_%wm_vw_ wmwgg uirejdogued Jo ue|dsid ‘SA pIde d1uljo}

M 10UIS 11 8seld /N3-S + UedaWWIS + qewtjediio]

. Joxeljoed Jo

GS09STE0LON 1S T 1YY u1bLio Jo aus Auy wiie a)buis || aseyd ‘abels om| UB0330ULII + 10 BUOJE qeWnZI|0JqWad

T9E82/E€01DN puoAaq 1o 1sT u1bLio Jo aus Auy (s1oyo9 g) wue ajbuis || aseyd 3pIWO|0ZOWa) + GeWN|OAIN

8€95¢SV0LON pug 10 1sT MNN 10 439 wire a1buls || aseyd 91e1e10Q-nT,,1 + qeWN|OAIN
%1 9€=3lel SO-yuow-6
‘%T 6=440! (Syuow g'0T

an-olio) Etno) wouo2 7125608010N puz YINN 10 439 wie 3{Buss |1 aseyd qRWNWIIaWRA} + Gewn|eAng
e|inapded Ag 020 OWS3 18
pajuasaid synsas Areuiwijaid

TELT6SE0LON pig 1o pug d3o (suue gqewnwi|idi + gewnjoAIU JO GeWwn|OAIN

|a11esed) pasiwopuel || aseyd HEE : :

9T9EEEE0LON paiy10ads 10N as Areunin-oyush Auy wire a1buls || aseyd gqewnuwijid] + qewnjoAIN
%Yy =318l S4d
.;Eow_-@ ‘%r=440 ”@_mﬁ_&a
unj e yim uoruodoid e

\ S110409 a|dnjnwi)
Buipnjour ‘syusiyed gT=u) €T0¥E8Z0LON TNV | . . N_ZD . ( qewnuwi|id] + qewnjoAIN
110409 NIN-£9 341 10} (0202 SNWAY} ‘X1A489 ‘areisold ‘439 [e1) 19xseq ‘wie ajbuls || aseyd

S9y 13oueD ullD) e 18 dS
13%ed Ag paystiand s)nsay

690556¢0LON 1S T Jlsyv d3o wue 1Buis |1 aseyd qewnzijeyeds

0T¥6.T€0LON 1S T Jsv alelsold wie 8)6uls || sseyd gewnjsny

S0¥8.2€0LON puoAaq 10 T d3o 11/1 8seyd gqewnjeay

¥0v.¥TE0LON pug d3o wie ajbus || aseyd qewnjaay
‘sjiuow ¢'y=S0
UBIPAW (062€=4DAJI-%99M 8
:(suaned 2z=t 101 ‘Sy19am

G'9T 40 dn-mojo4 UeIpaL) ‘[ ¥€62SEE0LON 18 T Jsyv u1bLIo Jo ays Auy wue ajbuls || aseyd qewn(any
19 O Jouno4 Aq 6102 OOSV 1®
pajuasaid synsas Areuiwijaid

apex00|q 1ulodxoeyd aunwiw |

(saouatajuod
Jeuolyeu.siul Je pajuasaid
10 paystgnd) s1insay

Jsyiusp]
Aobsjerdy [eaiuld

juswiiea] Jo aulT]

® Europe PMC Funders Author Manuscripts

SO3N
-Ad-d3 10} uiblio 1o 8IS

ubisap Apms

(s)punodwod feuolrebnnsanu|

® Europe PMC Funders Author Manuscripts

Clin Cancer Res. Author manuscript; available in PMC 2022 May 15.



Page 35

Frizziero et al.

(saouatajuod
Jeuolyeu.siul Je pajuasaid
10 paystgnd) s1insay

§ZvySLy0LON _ PUOASQ 40 1T _ 9Je1so.d _ wie ajbus 11 aseyd _ qluniepi3
SJI0}igIyul Buljreubis aseury auso.A) J01dasey
07992600.LON _ pig Jo pug _ u1bLIo Jo ays Auy _ ] seud _ apisodols + une|dsio + Jeisouljag
sJore|nfa. aneusbids Jo sJolgIyu |
§6S60Z70LON pug uibLio Jo aus Auy wue a1Buis 11/1 aseyd 8ENS-93d + guedeony
(11 aseyd) puoAaq 1o
§60.8720LON 18T (1 aseyd) 15T Joyy u1bLio Jo aus Auy wiue 91buls /| aseyd ue2830do} + 0Z99N
(ABojoydiow 132 .
€0G968€0LON PuoAsq 10 T (1ews Ajuo) uiBLIo 40 ans AUy pasiwopuel || aseyd ue2930do] "sA uedalodol + qiuasozieg
(11 aseyd) payroads
¥/T20870.LON 1ou () aseyd) 1T Jouy u1buio Jo aus Auy wire a1buls [1/1 8seyd uIpalo8uIgIN| + qILIBsozZIeyg
Ue29)0d0} JO UBIB}OULI]
L6Y¥TSYOLON 1S TUoUY utbuio yo ays Auy (suoyoa z) uire elbuls | sseyd -eu + (qruasnwile) yrES68T AvE
sJore|nfe YAaq o a[oko-|jed Jo siolqIyu |
887.TSE0LON 1S T IV uibuo o aus Auy 1 3seyd LT202avWixX
18062770LON 18 T Joyy (e1aa | 8seyd 2e5v9L 19
Buissaidxa) uibrio Jo aus Auy
L€/¢0/.¥0LON 18 T lsyv 8Je]soid q| sseyd LS. DNV
Adesoyy 3119
9oURUSIUIRW SB
1€22657010N AEM“_EV_Q w:o__%w“a aJeIsoid pasiwopuel || 8seyd quedeliu + qew[a11a9 ‘sA qiiedesu +
) pug 1035T qew1}a199 + ure|dogued + [axenzeqe)
J0STOLYOLON 1S T 1YY arersoud (sHoyoa g) wiure ajbuis || aseyd quedeliu + gewijreisoq
1daoxa ‘u1blio Jo als Auy : : : :
glunuezoged
80296%720.LON paiy10ads 10N ays Areunn-oyiush Auy (sabess ¢) | aseyd + gewnuwijidl + gewnjoAlu
10 qIUNURZOQED + QBRWN|OAIN
(suoyod qglgnuezoged
¢8E998E0LON PUOA8G 40 15T 1oppelg adiynwy) wue ajbuls || aseud + gewnuwijidl + qewn|oAIN
qignuezoqed
2T.6.0v0LON puz u1buio Jo aus Auy wire 31buls || aseyd + qewnwiid) + GewnjoAIN
0990T6£0LON 18 T Jeyy aeIs0id (SHOY0D | 0 (ol Telsoqefe) + qewinzijoiquad
) wie ajburs 11/d1 8seyd :
9G65E9701LON pay19ads 10N XIAIBD BULIBIN wue a1buls || aseyd GeLNZIoeA3 + apisodola uie|doguea

Jsyiusp]
Aobsjerdy [eaiuld

juswiiea] Jo aulT]

® Europe PMC Funders Author Manuscripts

SO3N
-Ad-d3 10} uiblio 1o 8IS

ubisap Apms

10 uneldsIo + qewnzijaiwe)

(s)punodwod feuolrebnnsanu|

® Europe PMC Funders Author Manuscripts

Clin Cancer Res. Author manuscript; available in PMC 2022 May 15.



Page 36

Frizziero et al.

JONgIYUL €2 T-(44D4) J0)dedal

10398} YmoJf 1se|qoIqY = qIuIepIT JouqIyul (YMENY) V 3seup| eloiny = (qiasife) LEZ8NTIN Uedaloul Jo AJB10w aA1Rde aU} I YdIuMm ‘8ENS 40 81eBNnfuod (93d) 109416 (ausjAuyse)Ajod = BENS-93d
"SIONGIYUI Y1V = 0Z99Il ‘QI8s0zZieq ‘qrussnwil|3 'sIonqIyul (dyvd) ssesswAjod (ssoqu-dav)Ajod = griedeons ‘quedentN "3119 #-V110-1ue pue T-ad-Iue = /T/02avwX (s3119) siebehus [180-L
oy1oadsiq €gO-1ue pue (€771Q) € puebil-eysp-nue = /G DNV ‘ZESYIL 19 10NqIyul 8se|A1eoesp auolsiy = Jelsoul|ag 1onqiyul ssepndad |Apndadip = arejAsaw jeisogeel “(00LVLOQ 10 I1VIV.LOA)
anfofeue UIeISOJRWOS B 0} parebnluod (22T wnnainj) punodwod aAldeoIpe) = 901e10Q-NT )1 0 9er0a-nT, ¢ ‘(7-v1LD) ¥ uabnue a1A00ydwA|-1 91X0103149-11ue 8y} Bunabie) sqyw = qewinwijawall
‘qewnwipid “(T-ad) T yresp pawweiboid-nue ayy Bunasbiel sqyw = gewnzijaiwed ‘qewijediio] ‘qewi|eisop ‘qewaiiad ‘qewnzijeueds ‘qewnzijoiquad ‘qewnjoAlN “(T7-Ad) T puebl) yiesp pawwelbold
ay1 Bunabliel sqyw = qewnjeAInp ‘qewniaAy “W-(493/) 10108} yimolh [erjayiopua Jeinasea ayy bunabiel (qyw) Apogiiue [euojoouow = qewnzioeAsqg ‘| JIN pue 13Y ‘2-(4493A) J01dadal 101084 yimolb
|e11ayiopua JejnaseA ayl Buipnjoul ‘saseury auisolAl ajdiinw Jo Jouqiyul = qiunuezoge) (TINQ ‘duisueiws) Juabe Adeayiowayd e yum parebnfuod g J101dadas uneisorewos ayy Bunabiel spndad e = Tzz-N3d
‘anfofeue UNLISOIRWOS = ap110aA100 “(J1oeidn) Jongiyur asejAioydsoyd suipiwAyl e pue (suipunyii) usbe Adessyiowayd e Jo UOIRUIGWOD © = ZOT-SV.L SI0)gIyul YO W = 8/ 0E-SA ‘SNWIj0JanT
‘syuabe Adelayiowaya = urdanwis ‘auigelioaded ‘UipaloBuIgIN] ‘|axelizeged ‘apiwojozows) ‘(ueaslodi]) 8801 ‘Uedslodol ‘apisodols ‘ue|dsio ‘urrejdogued ‘jaxeljoed-(qeu) punog-uiwingle ajoiedoueu
‘|axe1njoed ‘|axe1aoop ‘uedsjounl-(jeu) jewosodijoueu ‘uedsiouni ‘uiejdifexo ‘(j19einolonyy-G) N4-S Spunodwio) “ayel asuodsal aA11a[go parejal-sunwiwl = YOI drel asuodsal aA1393[00 = ¥YHO ‘[eAIAINS
981} uoIssaIBoid = SHd “[EAIAINS [[BJBAO = SO "8)ed |041U0D 8SeaSIP palejal-sunwill = YO QJ! "8sessIp a|qels = gS "aJed Jo pJepuels = DOS “UuIbLIo umouxun = NN ‘19e4} d1jealoued-0sjus-01seb = 439

(s101da281 UIIEISOIRWOS

1659/270.1ON pai1oads 10N BuISsa1dxa) NN

wie a|Buis | aseyd 20J810Q-N1, 7

Ade a1 apijonuoipe. 101dess .l apnded

"99°LT Ul stpuow

92 @S :(4soued IN © YyuMm
syuaned ¢ Buipnjour) siuaired g
JT 40 JUBWINIOA) Jae ‘[e 18 [ 8/988STOLON IST Joyv uiBuio jo aus Auy | 8seyd ©g/0s-Sa
IN uejade Ag £T02 4OV 1e
pajuasaid synsas Areuiwijaid

008ETTCOLON pue u1bLIo Jo ays Auy wie ajbus 11 aseyd snwijossng

(saouatajuod
Jeuoireu.siul ye pajuasaid aynusp] JUaWIeaI] JO BUIT] SOAN ubisap Apms (s)punodwod feuolrebnnsanu|

10 paysijgnd) synsay nob'sferaLeaIuND -dd-d3 4oy uibLio Jo aus

® Europe PMC Funders Author Manuscripts ® Europe PMC Funders Author Manuscripts

Clin Cancer Res. Author manuscript; available in PMC 2022 May 15.



syduosnuelA Joyiny sispun4 DA @doing ¢

syduasnuel Joyiny sispund JINd adoin3 ¢

Frizziero et al.

Table 3

Immune biomarkers of Extra-Pulmonary NeuroEndocrine Carcinomas

Page 37

Microsatellite instability

Reference n ggtleggg\rlyo Site of origin Disease stage Methods MSI-high cases
Oesophagus
(n=18), stomach
(n=16), pancreas
(n=13),
libladder/
Venizelos gﬁiar; yféact Stage IV: 79.6% | PCR (panel ™ BAT-25, BAT-26,
2021(18)’ 152 PD-NEC (n=3), colon ggaggz/l/ll/lll: NR-21, NR-24, MONO-27, Penta C | 8/152 (5.3%)
(n=45), rectum N and Penta D)
(n=36), unknown
primary (n=19),
(not reported
n=2)
PD-NEC or
. G3-WD-NET - -
Puccini, : NGS-based (MSI-high: 246 loci
2020(19) 135 (relative GEP nfa with insertions or deletions) 5/135 (3.7%)
proportions
not reported)
Oesophagus
(n=5), stomach
(n=23),
duodenum (n=5), . 4/60 (6.7%)
. ; Stage IV: 59.8%
Milione, ileum-cecum/ | L% (only 60 cases
2017(97) 112 PD-NEC appendix (n=13), i(t)ag;e/llllllll. IHC for MMR proteins subjected to
colon-rectum 7 MSI analysis)
(n=42), pancreas
(n=22),
gallbladder (n=2)
Whole pop:
11/89 (12.4%)
Oesophagus [Oesophagus:
(n=6), stomach 0%, stomach:
PD-NEC (n=36), *%, 11.1%,
Sahnane, 89 (n=53), duodenum (n=4), | Stage IV: 24% ’P\l(él?z(lpaﬂeRl_zz. ?\IARTZZE) ?@ﬂﬁ% duodenum:
2015(88) MINEN colon-rectum Stage I1/111: 76% ’ U 25%, colon-
(n=36) (n=37), pancreas for MMR proteins rectum: 16.2%,
(n=3), pancreas: 0%,
gallbladder (n=3) gallbladder: 0%]
PD-NECs: 7/53
(13.2%)
Busico Stomach (n=11), Stage IV: 66.7%
2019(2b) 39 PD-NEC pancreas (n:6), Stage 1/1/111: IHC for MMR proteins* 27/39 (692%)
colon (n=22) 33.3%
PD-NEC or
MINEN ok
La Rosa, i : Stage IV: PCR (panel " BAT-25, BAT-26,
2012(98) 34 (relative Colon-rectum 25-33.3% NR-Z(lp, NR-22, NR-24) 5/34 (14.7%)
proportions
not provided)
Oesophagus
(n=3), stomach } e
) (n=21), small Stage IV: 12.1% NGS-based classifiers m.SINGSZ
Xing, 33 | PD-NEC bowel (n=1) Stage VIIT: MSisensor, and MSlseq; MSI-high | /35 (94
2020(101) colon (n—_l) ' 89 g% : status: when >2 software programs °
P ' showed MSI-high.
pancreas (n=6),
gallbladder (n=1)
PD-NEC : either PCR (panel ** BAT25, 2/29 (6.9%)
Olevian, (n=14), Stage IV: 59.4% | pAT26, D25123, D5S346, (only 29 cases
32 K Colon-rectum Stage I/11/111 :
2016(90) MINEN 20.6% . D175250 + CAT25) or IHC for subjected to
(n=18) o MMR proteins * MSI analysis)
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Lee Stage IV: 36.7% | IHC for MMR proteins “and PCR
202'1(24) 30 PD-NEC Colon-rectum Stag;e 111/11: (panel ** BAT25, BAT26, D25123, | 1/30 (3.3%)
63.3% D5S346, D175250)
Captevila PCR (panel ™ BAT25, BAT26, gfga(s%‘;”’) (only
2019(25) 25 PD-NEC Colon n/a NR-21, NR-24, MONO;27) and subjected to
IHC for MMR proteins MSI analysis)
Pei, ) . . Stage IV: 3.9% NGS-based (criteria for MSI-high
2021(38) 51 PD-NEC Uterine cervix Stage 11: 96.1% definition not reported) 2151 (3.9%)
Cimic, : - NGS-based (MSI-high: 246 altered
2020(37) 31 PD-NEC Uterine cervix nla microsatellite loci) 0/31 (0.0%)
Locally
advanced (Stage | MSI quantitative score: proportion
Ohmoto 111, IVA, IVB): of MSI unstable sites to the total
2021(42’) 14 PD-NEC Head/neck 78.6% 130 homopolymer MSI marker sites | 0/14 (0.0%)
Metastatic assessed (targeted NGS-based).
(Stage IVC): MSI-high: MSI score =0.1.
21.4%
PD-L1 expression (IHC)
Scoring system ] -
Reference n ggtleg :)Ar/HO Site of origin Ab clone used and positivity Stained cells chels_l SN
gory threshold
PD-NEC or
Puccini G3-WD-NET
2020(1é) 135 (relative GEP SP142 nla nfa 8/135 (6.0%)
proportions
not reported)
GEP (r=21), lung TPS 21 % Tumour cells 9/57 (15.8%)
PD-NEC (r=16),
(r=48), genitourinary
Sy |7 | M | RO | R
G3-WD-NET (n=7), head/neck unclear Immune cells 14/57 (24.6%)
(m=3) (=4), MCC
(r=1).
TPS 21 % Tumour cells 0/53 (0.0%)
21% of the
Koshkin tumour area
\ 53 PD-NEC Bladder SP142 or SP263 :
2018(75) occupied by Immune cells | 16/53 (30.2%)
expressing
immune cells
Yang, i ~ Yang et al. score
2019(105) 43 PD-NEC Stomach 28-8 (ab205921) >4 Tumour cells 21/43 (48.8%)
Cimic, : - Tumour and
2020(37) 39 PD-NEC Uterine cervix 22C3 CPS 21% immune cells 4/39 (10.3%)
TPS 21 % Tumour cells 5/37 (13.5%)
21% of the
Roberts tumour area
y 37 PD-NEC GEP E1L3N :
2017(106) occupied by Immune cells | 10/37 (27.2%)
PD-L1
expressing
immune cells
Genitourinary
(m=18), UNK
ggllga(gbn 34 PD-NEC (n=10), GEP E1L3N CPS 21% Tn‘q‘mﬁﬁ; i’;ﬂs 12/34 (35.3%)
(r=5), head/neck
(m=1).
: Tumour cells 0/33 (0.0%)
g‘g?g?lh;é; 33 | PD-NEC n/a SH1orELL3N | Allred Score >2
Immune cells 7/33 (21.2%)
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;%28'(99) 31 PD-NEC GEP 22C3 TPS 21 % Tumour cells 9/31 (29.0%)
Bosch, 18 PD-NEC GEP EIL3N TPS 21 % T Il 3/18 (16.7%
2019(109) - 21 % umour cells (16.7%)

PD-NEC or
Kim G3-WD-NET
2016(110) 17 (relative GEP SP142 TPS 21 % Tumour cells 7117 (41.2%)
proportions
not reported)
20(;110é(111) 16 PD-NEC GEP nfa TPS 21 % Tumour cells | 6/16 (37.5%)
Busico, 1 PD-NEC GEP a >19% (scoring Tumour cells 0/39 (0%)
2019(20) system n/a) Immune cells | 11/39 (28.2%)
Morgan Tumour cells 7/10 (70.0%)
2015’(11’2) 10 PD-NEC Uterine cervix SP263 H-score 1 %
Immune cells 2/10 (20.0%)
Tumour mutation burden
Reference n 2019 WHO Site of origin Platform used rh::grian . Definition of Cases with high
category (Mut/Mb) high TMB TMB
117, NGS 365-gene 6.3,2.7
Chatmers 674 | PD-NEC UNK panel (median) 220 mut/Mb 8.5%, 6.1%
2017(121) i
nfa PD-NEC Colon-rectum pNaGnSISBS gene 220 mut/Mb ~5%
Venizelos, NGS 360-gene .
2021(18) 152 PD-NEC GEP + UNK panel 5.1 (median)
PD-NEC or
- G3-WD-NET
5858'(?'9) 135 (relative GEP NeGneS 5;]2;;14- 9.5 (mean) >17 mut/Mb 7%
proportions gene p
not reported)
Chen, Different NGS .
2020(44) 83 PD-NEC Colon-rectum platforms Aokt 5.2 (median)
Li, 2021(30) | 46 PD-NEC Oesophagus WES 2.31 (median)
Xing, 29 PD-NEC GEP WES 5.7 (medi
2020(99) - .7 (median)
Cimic, . . NGS 592-gene
2020(37) 39 PD-NEC Uterine cervix panel >17 mut/Mb 3%
ZHOIIZICY)TZZB) 15 PD-NEC Uterine cervix WES 1.7 (median)
ggfg?ss) 17 PD-NEC Bladder WES/WGS 10.7 (median)
Shen, Bladder (n=11), .
2018(36) 12 PD-NEX prostate (n=1) WES/WGS 9.8 (median)
o) 14 | PD-NEC Head/neck Doal C G| 7.1 (median) | 210mutMb | 21.4%

n=number of patients. MiNENSs = mixed neuroendocrine non-neuroendocrine neoplasms. G3-WD-NETSs = high grade (ki-67>20%) well
differentiated neuroendocrine tumours. GEP = gastro-entero-pancreatic tract. UNK = unknown origin. MCC = Merkel cell carcinoma. PCR =
polymerase chain reaction. IHC = immunohistochemistry. NGS = next generation sequencing. WES = whole exome sequencing. WGS = whole
genome sequencing. n/a = information not available. Antibodies used to detect the programmed death ligand 1 (PD-L1): 5H1 = mouse monoclonal
antibody (mAb) by Lieping Chen’s Laboratory (Yale University, US). ELIL3N = rabbit mAb by Cell Signaling Technology. EPR19759 (ab213524)
= rabbit recombinant mAb by Abcam. SP142 = rabbit mAb by Ventana (Roche). 22C3 = mouse mAb by Dako/pharmDx (Agilent). SP263 = rabbit
mAb by Ventana (Roche). 28-8 (ab205921) = rabbit recombinant mAb by Abcam. Allred score: ranges from 0 to 8 and combines the percentage
of PD-L1 expressing cells subdivided into 6 categories (0-5) with the intensity of PD-L1 expression subdivided into 4 categories (0-3). TPS =
tumour proportion score; percentage of PD-L1 expressing tumour cells on the total of viable tumour cells. H-score: ranges from 0 to 300 and is
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estimated by multiplying the percentage of PD-L1 expressing cells by the intensity of PD-L1 expression (0-3). CPS = combined positive score;
percentage of PD-L1 expressing tumour and immune cells on the total of viable tumour cells. Yang et al. score = combines the percentage of
PD-L1 expressing tumours cells subdivided into 4 categories (0-3) with the intensity of PD-L1 expression subdivided into 4 categories (0-3).
*mismatch repair proteins (MLH-1, MSH-2, MSH-6, PMS-2). **panel of selected microsatellite loci analysed by PCR.***publicly accessible NGS
database from the American Association of Cancer Research (AACR) Project Geno mics, Evidence, Neoplasia, Information, Exchange (GENIE)
consortium. Studies selected where those which included samples from =10 patients.
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List of genes cited in the paper (HUGO Genome Nomenclature Committee).

Table 4

ASCL1 Achaete-Scute Family bHLH Transcription Factor 1
NEUROD1 Neurogenic Differentiation Factor 1
ATOHI Atonal bHLH Transcription Factor 1
POUZF3 POU Class 2 Homeobox 3

YAP1 Yesl Associated Transcriptional Regulator
TP53 Tumor Protein P53

RBI1 RB Transcriptional Corepressor 1

STK11 Serine/Threonine Kinase 11

KEAPI Kelch Like ECH Associated Protein 1
MDM?2 MDM2 Proto-Oncogene

TP73 Tumor Protein P73

CDKNZA Cyclin Dependent Kinase Inhibitor 2A
CCNE1 Cyclin E1

WEE1 WEE1 G2 Checkpoint Kinase

CHEK1 (alias symbol CHKI)

Checkpoint Kinase 1

ATR ATR Serine/Threonine Kinase

TOPI DNA Topoisomerase |

myc MY C Proto-Oncogene, bHLH Transcription Factor
MYCL MYCL Proto-Oncogene, bHLH Transcription Factor
MYCN MYCN Proto-Oncogene, bHLH Transcription Factor
AURKA Aurora Kinase A

AURKB Aurora Kinase B

CDK7 Cyclin Dependent Kinase 7

EZH2 Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit
PARP1 Poly(ADP-Ribose) Polymerase 1

PARP2 Poly(ADP-Ribose) Polymerase 2

CDK5 Cyclin Dependent Kinase 5

CREBBP CREB Protein

EP300 E1A Binding Protein p300

SLFN11 Schlafen Family Member 11

DLL3 Delta Like Canonical Notch Ligand 3

BCLZ2 BCL2 Apoptosis Regulator

KRAS KRAS Proto-Oncogene, GTPase

BRAF B-Raf Proto-Oncogene, Serine/Threonine Kinase
MEK1 Mitogen-Activated Protein Kinase Kinase 1

MEK2 Mitogen-Activated Protein Kinase Kinase 2

AKTI AKT serine/threonine kinase 1

MTOR Mechanistic Target Of Rapamycin Kinase
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PIK3CA

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha

PTEN

Phosphatase And Tensin Homolog

CDZ274 (alias symbol PD-L1)

CD274 molecule

PDCDI1 (alias symbol PD-1)

Programmed Cell Death 1

CTLA4 Cytotoxic T-Lymphocyte Associated Protein 4

cGAS (CGAS in humans) Cyclic GMP-AMP Synthase

STINGI Stimulator Of Interferon Response cGAMP Interactor 1
VEGF(A/B/C/D) Vascular Endothelial Growth Factor (A/B/C/D)

FLTI1 (alias symbol VEGFRI)

Fms Related Receptor Tyrosine Kinase 1

KDR (alias symbol VEGFR?2)

Kinase Insert Domain Receptor

FLT4 (alias symbol VEGFR3)

Fms Related Receptor Tyrosine Kinase 4
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