Agile and Versatile Robot Locomotion via Kernel-based Residual
Learning

Milo Carroll!, Zhaocheng Liu!, Mohammadreza Kasaei' and Zhibin Li?

Abstract—This work developed a Kkernel-based residual
learning framework for quadrupedal robotic locomotion. Ini-
tially, a kernel neural network is trained with data collected
from an MPC controller. Alongside a frozen kernel network,
a residual controller network is trained using reinforcement
learning to acquire generalized locomotion skills and robust-
ness against external perturbations. The proposed framework
successfully learns a robust quadrupedal locomotion controller
with high sample efficiency and controllability, which can
provide omnidirectional locomotion at continuous velocities. We
validated its versatility and robustness on unseen terrains that
the expert MPC controller failed to traverse. Furthermore, the
learned kernel can produce a range of functional locomotion
behaviors and can generalize to unseen gaits.

I. INTRODUCTION

The versatility of legged locomotion exceeds other forms,
such as wheeled locomotion, which requires continuous
ground support and cannot feasibly adapt to challenging
terrains [1], [2]. While quadrupedal animals access the most
remote locations by exploring terrains that are never seen
before [3], other forms of robots usually would fail to do so.

Traditional optimisation-based controllers perform well in
challenging terrains [4], [5], [6], [7]. However, due to high
computation demands, they are prone to external perturba-
tions and large model errors [3], [8]. Recently, Deep Rein-
forcement Learning (DRL) methods have resulted in many
robust locomotion controllers that operate at much higher
frequencies enabling higher resiliency against errors and
perturbations. However, RL-based controllers usually require
carefully designed reward functions and excessive training
data to produce an efficient controller with natural gaits [9],
[10], [11], [12]. Additionally, with the disagreement between
physics simulators and the real world, DRL controllers also
face the sim-to-real gap when testing on a real robot [13].

Many legged animals start walking shortly after birth [14]
due to pre-developed neural circuits, which are refined
rapidly to acquire expert skills. Inspired by this, Residual
learning (ResL) is introduced for training RL agents only to
adapt a prior control behavior, quickly learning robust and
natural legged locomotion [15], [16], [17], [18], [19]. ResL
methods can be grouped by the approach of providing the
control priors: library-based, controller-based, and learning-
based methods, of which have emerged chronologically. We
break these down in the following subsections.

1 Milo Carroll, Zhaocheng Liu and Mohammadreza Kasaei are
with the School of Informatics, University of Edinburgh, UK. Email:
{S2173175, zc.liu, m.kasaei} @ed.ac.uk

2 Zhibin Li is with the Department of Computer Science, University
College London, UK. Email: alex.li@ucl.ac.uk

A. Residual Learning (ResL) Methods

Library-based references. These methods use pre-defined
trajectory loops, which are static and can be quired to
provide references [17], [18]. They have been shown to
produce robust and versatile locomotion in a sample efficient
manner requiring less than 10M timesteps to converge, only
requiring a library consisting of a single loop [17]. Improved
velocity control can be achieved with a gait library providing
trajectories queried by the target velocity. Yet, this can
only provide priors for discrete velocities. Thus continuous
velocity control requires the agent to work against the prior
rather than working with it.

Controller-based references. These methods leverage ex-
isting expert controllers to provide the priors within a
ResL. framework, [19] and [20], using MPC and CPG-based
controllers, respectively. This is beneficial, as the expert
controller provides omnidirectional locomotion priors with
continuous velocity control. However, as the controllers are
adaptive to the robots state, the residual agent must learn
to model how these controllers respond, thus making the
RL problem considerably more challenging. This is further
reflected in the sample efficiency, with [19] and [20] both
requiring over 100M training timesteps to converge — con-
siderably more than the library-based methods.

Learning references. Learning has been incorporated into
the reference generation process in various ways [21], [22],
[23]. One approach uses a linear layer to adapt the trajec-
tories produced by a CPG controller [21], producing more
suitable trajectory priors for specific terrains. In [23], a
kernel is learned using a conditional variational auto-encoder
(cVAE [24]) from a motion database. The method provides
the desired omnidirectional locomotion, velocity control, and
versatility. Nevertheless, the sample efficiency of the method
remains weak (200M). When priors are stochastic [23] or
adaptive [19], [20], poor sample efficiency emerges. Thus,
here is an identified gap to achieve sample efficiency similar
to library-based methods and functionality comparable to
controller-based methods, in terms of generating omnidirec-
tional priors that are deterministic, non-adaptive, and provide
continuous velocity control.

B. Learning Trajectory-based Controllers

Kinematic Motion Primitives (KMPs) [25] are used for
developing data-driven locomotion controllers [26], but they
produce static gaits and have no adaption, e.g. walking at
continuous target velocities. Similar controllability problems
exist in Dynamic Movement Primitives (DMPs) [27], [28],
[29]. Although, a trained DMP’s hyper-paramters can be

Stage 1: Expert Data Collection

Stage 3: Residual Learning

- S~ 110,141000hz
[Gait K |

\Generator MPC P *'T“ Prap erme S
Command|| (Controller Generator c PtD” ‘
S |_Controller | :
Generator "Command | —2Onyoter
] Generator G oV T :
T oepA) :
- PPO :
Stage 2: Kernel Learning | Uemdy @emd > :
7 ! vy E

Fig. 1: Overview of the proposed multi-stage robot locomotion framework, where the red components represent trainable

modules, and blue components represent fixed modules.

tuned to adjust amplitude, frequency, and offset of the trajec-
tories, showing potential for adaptive control. FastMimic [30]
exploits this, optimizing DMPs fitted to retargeted motion
capture data, demonstrating rapid imitation learning on a
physical robot [31].

Discriminative Neural Networks (NN) are frequently used
in trajectory prediction tasks but rarely within the locomotion
domain. In [32], an auto-encoder has been used to reconstruct
the robot’s state from a three-dimensional latent encoding;
Given the reconstructed states, they can execute trajectory-
based control. At inference time, [32] produce locomotion
by injecting time dependant oscillatory latents (€ [0, 1]) into
the decoder, enabling the generation of unseen gait patterns
but not locomotion. In [33], a fully connected NN has been
trained to predict trajectories given the robots’ state. Despite
achieving a low validation loss, functional locomotion is
not observed due to the exclusion of time-dependent inputs.
However, the model was trained to seed the NN of an RL
agent, where functionality was not the primary concern.
Generative models recently proposed have shown greater
effectiveness. In [34], a cVAE has been used to develop a
controller capable of navigating obstacles, gaps, and other
challenging terrains. VAE-Loco [35] uses a disentangled
VAE [36] for trajectory prediction, producing an omnidirec-
tional controller that controls the step height, frequency, and
stance duration. However, as these methods are stochastic,
they are not considered as a candidate solution.

In this paper, we approach the problem by providing de-
terministic, controllable, and learned priors, and thus bridge
the gaps described in the aforementioned three ResL groups.
Our core contribution is a novel ResL framework that is both
sample efficient and highly controllable, providing omnidi-
rectional locomotion at continuous velocities. Moreover, our
framework is validated to be more robust and versatile than
optimization-based controllers, and demonstrates consider-
ably better performance in navigating across highly chal-
lenging terrains and robust responses to large perturbations.

The remainder of this paper is organized as follows:
Section [l presents the proposed methodology. In Section [[TI}
a set of simulation environments for training and evaluating
the framework will be designed. Following, Section

conducts experiments to evaluate the performance of the
proposed approach, discusses the findings, and compares the
framework to other approaches. Finally, Section [V]concludes
the core findings, weaknesses, and future research directions.

II. METHODOLOGY

The locomotion framework proposed here enables om-
nidirectional locomotion, and demonstrates agile and ver-
satile navigation across a broad range of unseen terrains.
Given a target location, the controller must autonomously
navigate a robot across challenging terrains, such that the
distance Dyqrge¢ between the robot’s position and the target
is less than a minimum threshold D,,;,; maximizing the
targets reached within a time limit. The following subsection
presents a overview of our framework, and describes the non-
parametric modules followed by technical details of control
priors and the residual learning formulation.

A. Overview of the Proposed Architecture

The overall architecture of the proposed framework is
depicted in Fig. |1} As shown, it contains a kernel, a residual
RL agent, and a PD controller. The kernel is an MLP trained
to replicate the trajectories produced by a model-based MPC
controller. Given a set of velocity commands, it outputs foot
target positions in cartesian space relative to the robot’s
base. The RL agent learns to generate residual positional
trajectories, learning the robot’s dynamics and skills, such
as balance recovery, providing agility and versatility to the
framework. It produces foot target position deltas, summed
with the kernel output to retrieve the final targets, as shown to
be most effective by [18]. The final foot target positions are
converted into target joint angles using inverse-kinematics.
The PD controller is responsible for generating the applied
joint torques to realize the target joint angles.

B. Analytical Components

Command Generator: We introduce a Command Gerner-
ator module that generates X-Y and yaw velocity commands,
given the robot’s current location, posSp.se, and orientation,
OTMpgse, TOr chasing after a randomly sampled target lo-
cation, posiqrget- The commands update at a frequency of

20 hz, with a maximum delta of £0.005. Velocity commands
are constrained with in the range X:40.5, Y: 0.2, Yaw:
+7/4.

Gait Generator: The gait generator, inspired by [31] and
[37], produces a contact schedule according the internal pa-
rameters: leg phases ¢1.4 € (0, 1], initial phases ;.4 € (0, 1],
swing ratio rsying € (0,1], and stance duration Tggmnce-
¢1.4 € (0,1] are updated at each time-step (200hz). Step
cycles consist of two states: stance (¢; > Tswing), When the
feet are in contact with the ground, and swing (¢; < T'swing)
when not. Given the initial phases and the current time, we
calculate the current phases:

Tswing = Tstance/(l - Tswing)rswinga (l)
Tstep = Tstance + Tswing (2)
¢; = 0; + (T /Tstep) mod 1. (3)

Different gaits are mainly defined by 6.4, which deter-
mine the coordination between legs. When using the MPC
controller [31], Tstance and r4ying Must be tuned to produce
feasible gait patterns. Gait parameters are in Table [I|

TABLE I: Gait generator parameters for different gaits.

Gaits 01 02 03 04 Tstance Tswing
walk 0. 0.5 0.75 0.25 0.3 0.25
trot 0.9 0.4 0.4 0.9 0.3 0.4

bound | 0.4 0.4 0.9 0.9 0.1 0.3

PD controller: We apply the torque control loop at
1000hz, as shown to be effective in the prior work of MELA
[38]. The K, and K, parameters are in Table @

TABLE II: Parameters of the PD controller.

Gains | abductor | hip | knee
Ky 100 100 | 100
Kg 1 2 2

Low Pass Filter: As in [19], only the residual outputs
of the agent, JA;, are parsed by the LPF as the kernel
trajectories are feasible and smooth:

SAPT = adA, + (1 — a)d AP (4)

where « is the smoothing factor, 5Aip is the residual after
passing through the LPF. Here setting a=0.1 can sufficiently
remove most of the noise. Some noise is beneficial for policy
exploration and improves responsiveness during highly noisy
instances where over-smoothing introduces bias.

C. Kernel

Training Labels: During swing states, the MPC con-
troller [39], [31], [37] uses Raibert Heuristics [40], which
generates positional target trajectories p:fjin o+ We use these
as labels for the swing legs. During stance states, we use
the foot positions p’;,,... after applying the motor torques
generated by the MPC stance controller as the labels.

Network Inputs include the leg phase variables and
velocity commands. We use the transformed normalized
phase |¢;] , forcing the phase greater than one during

swing states; This differentiates swing and stance states in
input space while allowing the network to generalize to
different gaits using an alternative rgying-

|¢’L| _ {1 + (¢i/rswin9)a

if ¢i <= Tswing
(¢z - Tswing)/(l - rswing)v '

otherwise
(&)

We denote the previously described as kernel-base. As
it accepts all the leg phases, it models the relative leg
phases; As such, it cannot predict alternative gait patterns.
kernel-ind overcomes this modeling each leg individually,
passing a single leg phase, velocity commands, and a one-
hot encoding referring to the target leg. The final variant,
kernel-ext, builds on kernel-base, additionally accepting step
height and ride height commands. Note, in the data collection
process for kernel-ext, we randomly select either step height
€ [0.05, 0.18] (default: 0.1) or the ride height € [0.18,0.28]
(default: 0.24) before walking to a new target location.

Using Optuna [41] to perform hyper-parameter tuning with
Bayesian Optimization, we find the best results using the
hyper-parameters in Table

TABLE III: Kernel hyper-parameters (All variants).

LR Linear LR decay | Dropout | Batch-norm
0.0024, 0.7 5e — 6 False
Network Activation Loss Batch size
(256x4) ReLU L1 200

D. Residual Agent

The residual RL agent, outputs positional residuals with
a maximum magnitude of Scm in each dimension for each
leg. We also note that the kernel-base variant is applied for
these experiments. Table [[V]shows the PPO hyper-parameters
selected via a random search.

TABLE IV: PPO hyper-parameters.

LR LR exp decay | Entropy | Epochs | Rollout

le—3 le—7 5e — 6 10 20000
Batch size FE Actor Critic
4000 (128x2) (128x1) (641)

State space: As opposed to other ResL methods pro-
viding deterministic priors [17], [18], we find excluding
the reference motion results in better learning. Although,
we found improved performance passing the leg phases
variables. Peak performance was achieved including neither,
but passing the residual after passing through the LPF from
the previous time-step &A%’ fl, which rectifies the Markov
Property violation induced by using a LPF.

TABLE V: Residual RL agent state features.

Feature Description Dimensions
Vpase Frontal, lateral, vertical velocities of the robots base 3
Apase Roll, pitch, yaw velocities of the robots base 3
Vemd Target frontal and lateral velocities 2
Aemd Target yaw velocities 1

q Joint angles 12

q Joint angles rotational velocities 12
CoM Position of the center of the mass 3
pitchpgse Pitch of the robot base 1

rollpgse Roll of the robot base 1
fcia Contact state of each foot of the robot 4
5Ai’i f1 Residual applied at the previous time-step 12

Fig. 2: Evaluation of zero-shot task generalization on different terrains: (A) Tabletop: a 360-degrees see-saw platform with
the maximum inclination angle of 5 degrees; (B) A seesaw table with maximum 6 degrees inclination angle; (C) sinusoidal

surface; (D) Stairs on a flat ground.

TABLE VI: Reward function parameters.

i €D ~ v q weight
Linear velocity Vemd Vbase 18.42 | 0.0076
Angular velocity Aemd Apase 747 0.0264
Center of mass [0,0, —1] CoM 2.35 | 0.0298
Distance to target 0 Dtarget 0.74 | 0.0169
Roll and Pitch [0, 0] [pitchpase, Tollbgse] 7.47 | 0.0298
7 € Soeinp Reward function weight
. —19.8, if the robot fell
Falling penalty r= { 0, otherwise 1
Target reached r= {8’757 if Dtafget < Dmin 1
0, otherwise

Reward Function: We use a mixture of radial basis
functions (RBF), ¢; (7,7, q) = exp(—(y' —7)?q), (shown to
be effective in [30], [38]), and nominal rewards r; € F,,om
to define each feature of the reward function. RBF reward
function features, ¢; € ®, are parameterized by the target,
+', and the curve steepness, ¢; A steeper RBF function
incentivises learning and accommodates for attributes with
small numeric errors. Equation (6) represents our reward
function and its parameters are summarized in Table [V]}

Ri= Y wibi(vvma)+ D 7 (6)

P €D Ti€Fnom

III. SIMULATIONS

In this section, multiple scenarios for different aspects
of training and evaluation of the kernel and residual agent
will be designed. To this end, a simulated Al Unitree
quadruped is used in the PyBullet [42] physics simulator.
In our simulations, we wrap the PyBullet simulation in an
Open-Ai Gym [43] environment during RL experiments.

A. Training the framework

The first stage of the training process, training the kernel,
requires collecting locomotion data from an expert MPC
controller. The MPC controller [31] executes the trot gait,
with a stance duration of 0.2 s, which reduces the variation
in CoM allowing the network to learn better. It navigates to
500 consecutive target locations over the flat terrain, set at a
minimum distance of 2.5m in a random direction. Collecting
the data network inputs { vemd, @emd, ¢, ¢1.4} before
actions are taken, and labels {p,);.., Piiancet and after
each time-step (200hz).

In the second stage, we train the residual RL agent
on randomly selected terrains for five consecutive episodes
(75% height field, 25% perlin). The height-field perturbations
are sampled uniformly ~€ [3cm, 4.5cm]. Also, force pertur-
bations are applied to the robot at a random point on the
robot body, in a random direction horizontally, at intervals
~€ [5,8] seconds, with a magnitude ~€ [100, 350]N, for
a duration of 0.3s. The agent is trained for a total of 20M
timesteps, tasked with navigating to randomly selected target
locations, with a precision of D,,;, = 0.5m, using 5 cpu’s
in parallel, taking roughly 8 hours (NVIDIA GeForce GTX
1060 6GB, AMD Ryzen 5 2600X Six-Core Processor).

B. Evaluating the framework

The framework is evaluated for it’s versatility in four
terrains in ascending difficulty: A) Tabletop, B) Seesaw,
C) Sinusoidal, and D) Stairs (see Fig. [2). We set 5 target
locations to reach per run, placed to challenge the agent,
and start from 4 different starting locations. The pivoting
tabletop has a maximum rotation around the pivot of Sdeg.

—— kernel-base —— kernel-ind

— kernel-ext mpc

—— velocity commands

u
g os
0.0
E -0.5 Ty wy Y

] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time [s]

Fig. 3: The realized velocities of the robot given velocity
commands for the MPC controller and kernel variants.

The seesaw has an decline/incline of 6deg. The stairs have
a step height of 4cm. The sinusoidal terrain has a maximum
incline of 11.5deg.

Furthermore, we separately evaluate the robustness of the
framework applying external forces to the robot. It is tasked
with walking to a single target location on a flat terrain,
where a force is applied to a random location on the robots
body in a random direction in the horizontal plane for a
duration of 0.3 seconds. We determine success by the robots
ability to reach the target location. For each magnitude of
force applied ([250N, 900N]), we run 10 attempts and record
the percentage of successfully completed tasks, as shown in
Table [X] detailed in the next section.

IV. RESULTS AND ANALYSIS

The section analyzes the experiments, discusses observa-
tions in relation to related works, and provides numerical
evaluations for the kernel and the framework as a whole.

A. Kernel Analysis

To understand the degree kernel variants capture the
characteristics and controllability of the MPC controller, we
compare the velocity control performance exhibited on a flat
terrain, where a single velocity command is varied while the
others are fixed to zero. Fig. 3] demonstrates a performance
gap between all variants and the MPC controller. The kernels
cannot move at negative frontal velocities nor can they match
the maximum lateral, angular and positive frontal velocities
achieved with the MPC controller. In addition, the kernels
experience extremely high variance when turning, showing
a significant performance gap in the realized yaw velocities.
We observe no performance deterioration in kernel-ext from
kernel-base, despite achieving lower validation loss (Ta-
ble [VII). kernel-ind is the weakest when moving at negative
frontal velocities, but also experiences erratic behaviour
when commanded with high yaw velocities.

The variant, kernel-ind, demonstrates gait generalization
capabilities, producing unseen gait patterns that result in
effective locomotion. Fig. [shows the production of walk
and bound gaits, which were not provided during training.
Although it produces these gaits, the kernel behaves unde-
sirably when inputting high yaw commands as seen when
executing the trot gait Fig. [3]

0.5 1.0 1.5
Time [s]

Fig. 4: Zero-shot gait patterns generated using Kernel-ind.
Grey segments show the realized foot contacts, while the red
segments show foot contact error against the contact schedule
from the gait generator.

— FR — FL — BR — BL
0.15 4
2
o2 E 0.10 1
5
T 0.05
0.00 T T : :
0 10 20 30 40
Time [s]

Fig. 5: The peak realized the height of each foot over a
step cycle as the step height command increases (blue line),
controlled using kernel-ext.

—— target —— realized
= 0.25
£
of£
£ 020
0.15 + T T T T
0 10 20 30 40

Time [s]
Fig. 6: The realized height of the robots’ base as the
ride height command increases (blue line), controlled using
kernel-ext.

Training of kernel-ext results a minimal increase in
the validation loss (L1=7.1le — 4, see Table , while
allowing us to control the ride and step heights live, as
shown in Fig. [and Fig. [f] (The video can be found at
https://youtu.be/bUZJadWCRXU). We observed that the target
step height and ride height commands are not realized pre-
cisely, although it clearly demonstrates the desired behaviour.
Furthermore, we see greater inaccuracies in the realized
steps heights, where the error increases as the target height
increases.

B. Kernel Results

Our method demonstrates far superior results (6.2e — 4
mean absolute error) compared to [33], which achieves a
validation loss 0.007 (MSE), approximating 0.083 mean
absolute error. Furthermore, our method yields a functional
locomotion controller, as demonstrated by Fig. [3] The results
(Table [VII) required training on 2.1 hours of locomotion
data. Table [VIII] shows the results of training with less data,
determined by the number of target locations reached. The
validation performance deteriorates as the number of targets
decreases. However, training with only ten target locations

https://youtu.be/bUZJadWCRXU

—— Kernel-base + Agent

S
5]
S

mean
reward
g

o

Success
rate

TABLE IX: Evaluation comparing locomotion controllers.

~
n

o
°

// - Tabletop Reward/steps Num Targets | Success Rate
MPC (0.2) 0.016£0.11 2.5£2.89 0.5
- Kernel 0.065+0.0085 225%15 0
. Vet it atios Autibdt At audd Al Kernel+Agent | 0.097£0.001 5£0.0 1
I Seesaw Reward/steps Num Targets | Success Rate
ool £ MPC (0.2) 0.065+0.018 0.0£0.0 0
. e G Kernel 0.043£0.00245 0.0£0.0 0
23°° / Kernel+Agent | 0.09140.0006 5£0.0 I
Lo Stairs Reward/steps Num Targets | Success Rate
0.00 0.25 0.50 0.75 . 1.00 1.25 1.50 175 2.00 MPC (02) 0.073:‘:00022 0~0:|:00 O
Time-steps 7 Kernel 0.0470.0019 0.0£0.0 0
. . . . Kernel+Agent | 0.089+0.0024 475£1.0 0.9375
Fig. 7: Training of the agent with kernel-base to provide the Sinusoidal Reward/steps | Num Targets | Success Rate
priors, with the mean and standard deviation over four seeds. MPC (0.2) 0.082+0.0057 3+1.83 0.25
Kernel 0.04240.0021 0£0.0 0
Kernel+Agent 0.089+0.0026 475+1.0 0.9375

TABLE VII: Performance of kernel variants, showing the
mean minimum validation loss and the standard deviation.

Kernel-variant | Mean Validation Loss | Standard Deviation
Kernel-base 6.2e — 4 6.9¢e — 6
Kernel-ind 7.2e —4 4.9e — 6
Kernel-ext 7.1le—4 1.0e — 5
TABLE VIII: Kernel-base performance as the amount of

data increases.

Number of Targets 10 25 50
Mean Validation Loss le —3 9.1e—4 | 8.4e—14
Standard Deviation 3.le—6 | 98¢ —6 | 5.3e—6
Number of Targets 100 200 400
Mean Validation Loss | 7.7e —4 | 6.7e —4 | 6.2e — 4
Standard Deviation 6.2e —6 | 5.5e—6 | 6.9¢e —6

(3.1 minutes), the kernel achieves a validation loss of 1e — 3,
capable of producing locomotion simulation.

C. Residual Agent Analysis

During training, we record the success rate, target count,
and reward. An episode is considered successful after nav-
igating to more than two target locations and not falling.
The target count is the number of target locations reached
with in a 60s period. The agent converges after only 7.5M
timesteps (see Fig. [7), showing significantly improved sam-
ple efficiency over other omnidirectional ResL methods: [20],
[19], and [23], requiring 250M, 100M, and 200M timesteps,
respectively. This suggests deterministic reference motions,
as provided by kernel-base and gait libraries, simplifies the
learning scenario. Furthermore, our framework outperformed
the kernel to seeded-agent framework [33], which required
200M timesteps.

D. Residual Agent Results

We measured the average reward per time-step, using the
final reward function (Table ; The success rate, defined
as the proportion of complete runs (reaching all the targets),
and the fall rate. Our framework (kernel+agent) demonstrates
versatility outperforming the MPC controller used to train
the kernel in every evaluation terrain with a success rate
of 93% in the most challenging stairs terrain. The results
are summarized in Table Furthermore, it is more robust
against perturbations, able to regularly recover its balance

TABLE X: Robustness against perturbations, using the MPC
with (Tstance =0.2).

Force (N) 250 300 350 400 450 500 550
MPC 1.0 0.8 0.9 0.7 0.5 0.3 0.4
Kernel 1.0 1.0 1.0 0.8 0.5 0.3 0.3

Kernel+Agent 1 1 1 1 0.9 0.8 0.9

Force (N) 600 650 700 750 800 850 900
MPC 1.0 0.4 0.1 0.2 0 0 0
Kernel 0 0 0 0 0 0 0

Kernel+Agent 0.8 0.7 0.4 0.8 0.6 0.3 0.2

after perturbations of 800N where the MPC controller fails
(Table [X).

V. CONCLUSIONS

In this work, we developed a ResL framework that is both
sample efficient and highly controllable, providing omnidi-
rectional locomotion at continuous velocities. We achieved
this by providing deterministic trajectory priors using a NN
trained on expert data collected from an MPC controller.
Additionally, our residual agent applied positional trajecto-
ries without knowledge of the priors or the terrain. Through
a set of simulated scenarios, the framework demonstrated
navigation on the most challenging terrains and demonstrated
superior performance over the MPC controller used to train
the kernel. Furthermore, the kernel exhibited gait generaliza-
tion capabilities, producing locomotion for walk and bound
gaits, when provided with only trot data.

For future work, we propose using the residual agent to
adapt the trajectories produced for unseen gaits, to enable
expert level control without any guidance directly from an
expert controller. Additionally, we hypothesise the frame-
work could exhibit greater robustness if the agent has direct
control over the body height and the step height.

ACKNOWLEDGEMENT

This work is partially supported by EU H2020 project
Enhancing Healthcare with Assistive Robotic Mobile Ma-
nipulation (HARMONY, 101017008).

REFERENCES

[1] J. Bhatti, A. R. Plummer, P. Iravani, and B. Ding, “A survey of dynamic
robot legged locomotion,” in 2015 International Conference on Fluid
Power and Mechatronics (FPM), 2015, pp. 770-775.

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

M. F Silva and J. T. Machado, “A historical perspective
of legged robots,” Journal of Vibration and Control, vol. 13,
no. 9-10, pp. 1447-1486, 2007. [Online]. Available: https:
/ldoi.org/10.1177/1077546307078276

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, p. eabc5986, 2020. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abc5986

J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1-9.

B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for push-
ing the limits of dynamic quadruped control,” in 2019 international
conference on robotics and automation (ICRA). 1EEE, 2019, pp.
6295-6301.

D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.

I. Chatzinikolaidis, Y. You, and Z. Li, “Contact-implicit trajectory op-
timization using an analytically solvable contact model for locomotion
on variable ground,” IEEE Robotics and Automation Letters, vol. 5,
no. 4, pp. 6357-6364, 2020.

T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” 2019.

F. Abdolhosseini, H. Y. Ling, Z. Xie, X. B. Peng, and M. van de
Panne, “On learning symmetric locomotion,” in Motion, Interaction
and Games, ser. MIG "19. New York, NY, USA: Association for
Computing Machinery, 2019. [Online]. Available: https://doi.org/10.1
145/3359566.3360070

D.R. Song, C. Yang, C. McGreavy, and Z. Li, “Recurrent deterministic
policy gradient method for bipedal locomotion on rough terrain chal-
lenge,” in 2018 15th International Conference on Control, Automation,
Robotics and Vision (ICARCV). IEEE, 2018, pp. 311-318.

W. Yu, G. Turk, and C. K. Liu, “Learning symmetric and low-energy
locomotion,” ACM Transactions on Graphics, vol. 37, no. 4, pp.
1-12, aug 2018. [Online]. Available: https://doi.org/10.1145%2F3197
517.3201397

C. Yang, K. Yuan, S. Heng, T. Komura, and Z. Li, “Learning natural
locomotion behaviors for humanoid robots using human bias,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2610-2617, 2020.
J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez,
and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” 2018. [Online]. Available: https://arxiv.org/abs/18
04.10332

S. Grillner and P. Wallén, “Innate versus learned movements—a
false dichotomy?” in Brain Mechanisms for the Integration
of Posture and Movement, ser. Progress in Brain Research.
Elsevier, 2004, vol. 143, pp. 1-12. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S007961230343001X:

T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll,
J. A. Ojea, E. Solowjow, and S. Levine, “Residual reinforcement
learning for robot control,” 2018. [Online]. Available: |https:
/larxiv.org/abs/1812.03201

A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser,
“Tossingbot: Learning to throw arbitrary objects with residual
physics,” 2019. [Online]. Available: https://arxiv.org/abs/1903.11239
Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne,
“Feedback control for cassie with deep reinforcement learning,” 2018.
[Online]. Available: https://arxiv.org/abs/1803.05580

H. Duan, J. Dao, K. Green, T. Apgar, A. Fern, and J. Hurst, “Learning
task space actions for bipedal locomotion,” in 2021 IEEFE International
Conference on Robotics and Automation (ICRA), 2021, pp. 1276~
1282.

M. Kasaei, M. Abreu, N. Lau, A. Pereira, and L. P. Reis, “A cpg-based
agile and versatile locomotion framework using proximal symmetry
loss,” 2021. [Online]. Available: https://arxiv.org/abs/2103.00928

S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Real-time trajectory adaptation for quadrupedal locomotion using
deep reinforcement learning,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), 2021, pp. 5973-5979.

H. Shi, B. Zhou, H. Zeng, F. Wang, Y. Dong, J. Li, K. Wang, H. Tian,
and M. Q. H. Meng, “Reinforcement learning with evolutionary
trajectory generator: A general approach for quadrupedal locomotion,”
2021. [Online]. Available: https://arxiv.org/abs/2109.06409

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]
[40]
[41]
[42]

[43]

C. Yu and A. Rosendo, “Multi-modal legged locomotion framework
with automated residual reinforcement learning,” 2022. [Online].
Available: https://arxiv.org/abs/2202.12033

W. Jungdam, G. Deepak, and H. Jessica, “Physics-based character
controllers using conditional vaes,” ACM Transactions on Graphics
(SIGGRAPH 2022), 2022.

K. Sohn, H. Lee, and X. Yan, “Learning structured output
representation using deep conditional generative models,” in Advances
in Neural Information Processing Systems, C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran
Associates, Inc., 2015. [Online]. Available: https://proceedings.neurip
s.cc/paper/2015/file/8d55a249e6baa5c06772297520da205 1- Paper.pdf
A. Sprowitz, M. ajallooeian, A. Tuleu, and A. Ijspeert, “Kinematic
primitives for walking and trotting gaits of a quadruped robot with
compliant legs,” Frontiers in Computational Neuroscience, vol. 8,
2014. [Online]. Available: https://www.frontiersin.org/articles/10.33
89/fncom.2014.00027

A. Singla, S. Bhattacharya, D. Dholakiya, S. Bhatnagar, A. Ghosal,
B. Amrutur, and S. Kolathaya, “Realizing learned quadruped
locomotion behaviors through kinematic motion primitives,” 2018.
[Online]. Available: https://arxiv.org/abs/1810.03842

A. Tjspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings
2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292), vol. 2, 2002, pp. 1398-1403 vol.2.

M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel,
“Dynamic movement primitives in robotics: A tutorial survey,” 2021.
[Online]. Available: https://arxiv.org/abs/2102.03861

A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning rhythmic move-
ments by demonstration using nonlinear oscillators,” in Proceedings of
the ieee/rsj int. conference on intelligent robots and systems (iros2002),
no. CONF, 2002, pp. 958-963.

T. Li, J. Won, S. Ha, and A. Rai, “Fastmimic: Model-based motion
imitation for agile, diverse and generalizable quadrupedal locomotion,”
2021. [Online]. Available: https://arxiv.org/abs/2109.13362

X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” in
Robotics: Science and Systems, 07 2020.

H. Yamamoto, S. Kim, Y. Ishii, and Y. Ikemoto, “Generalization of
movements in quadruped robot locomotion by learning specialized
motion data,” ROBOMECH Journal, vol. 7, no. 1, pp. 1-14, 2020.
A. Li, Z. Wang, J. Wu, and Q. Zhu, “Efficient learning of control
policies for robust quadruped bounding using pretrained neural
networks,” 2020. [Online]. Available: https://arxiv.org/abs/2011.00446
D. Surovik, O. Melon, M. Geisert, M. Fallon, and I. Havoutis,
“Learning an expert skill-space for replanning dynamic quadruped
locomotion over obstacles,” in Proceedings of the 2020 Conference
on Robot Learning, ser. Proceedings of Machine Learning Research,
J. Kober, F. Ramos, and C. Tomlin, Eds., vol. 155. PMLR,
16-18 Nov 2021, pp. 1509-1518. [Online]. Available: https:
/Iproceedings.mlr.press/v155/surovik21a.html

A. L. Mitchell, W. Merkt, M. Geisert, S. Gangapurwala, M. Engelcke,
O. P. Jones, 1. Havoutis, and I. Posner, “Vae-loco: Versatile quadruped
locomotion by learning a disentangled gait representation,” 2022.
[Online]. Available: https://arxiv.org/abs/2205.01179

E. Mathieu, T. Rainforth, N. Siddharth, and Y. W. Teh, “Disentan-
gling disentanglement in variational autoencoders,” in International
Conference on Machine Learning. PMLR, 2019, pp. 4402-4412.

Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots, “Fast and
efficient locomotion via learned gait transitions,” in Conference on
Robot Learning. PMLR, 2022, pp. 773-783.

C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li, “Multi-expert learning
of adaptive legged locomotion,” Science Robotics, vol. 5, no. 49, dec
2020. [Online]. Available: https://doi.org/10.1126%?2Fscirobotics.ab
b2174

Erwincoumans, “Code accompanying the paper learning agile
robotic locomotion skills by imitating animals.” [Online]. Available:
https://github.com/google-research/motion_imitation

M. H. Raibert, Legged robots that balance. MIT press, 1986.

“A hyperparameter optimization framework.” [Online]. Available:
https://optuna.org/

Admin, “Bullet real-time physics simulation,” Mar 2022. [Online].
Auvailable: https://pybullet.org/wordpress/

“Gymlibrary.ml.” [Online]. Available: https://www.gymlibrary.ml/

https://doi.org/10.1177/1077546307078276
https://doi.org/10.1177/1077546307078276
https://www.science.org/doi/abs/10.1126/scirobotics.abc5986
https://doi.org/10.1145/3359566.3360070
https://doi.org/10.1145/3359566.3360070
https://doi.org/10.1145%2F3197517.3201397
https://doi.org/10.1145%2F3197517.3201397
https://arxiv.org/abs/1804.10332
https://arxiv.org/abs/1804.10332
https://www.sciencedirect.com/science/article/pii/S007961230343001X
https://www.sciencedirect.com/science/article/pii/S007961230343001X
https://arxiv.org/abs/1812.03201
https://arxiv.org/abs/1812.03201
https://arxiv.org/abs/1903.11239
https://arxiv.org/abs/1803.05580
https://arxiv.org/abs/2103.00928
https://arxiv.org/abs/2109.06409
https://arxiv.org/abs/2202.12033
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://www.frontiersin.org/articles/10.3389/fncom.2014.00027
https://www.frontiersin.org/articles/10.3389/fncom.2014.00027
https://arxiv.org/abs/1810.03842
https://arxiv.org/abs/2102.03861
https://arxiv.org/abs/2109.13362
https://arxiv.org/abs/2011.00446
https://proceedings.mlr.press/v155/surovik21a.html
https://proceedings.mlr.press/v155/surovik21a.html
https://arxiv.org/abs/2205.01179
https://doi.org/10.1126%2Fscirobotics.abb2174
https://doi.org/10.1126%2Fscirobotics.abb2174
https://github.com/google-research/motion_imitation
https://optuna.org/
https://pybullet.org/wordpress/
https://www.gymlibrary.ml/

	INTRODUCTION
	Residual Learning (ResL) Methods
	Learning Trajectory-based Controllers

	Methodology
	Overview of the Proposed Architecture
	Analytical Components
	Kernel
	Residual Agent

	Simulations
	Training the framework
	Evaluating the framework

	Results and Analysis
	Kernel Analysis
	Kernel Results
	Residual Agent Analysis
	Residual Agent Results

	Conclusions
	References

