
Run and Catch: Dynamic Object-Catching of Quadrupedal Robots

Yangwei You1, Tianlin Liu1∗, Xiaowei Liang1, Zhe Xu1, Mingliang Zhou1, Zhibin Li2, Shiwu Zhang3

Abstract— Quadrupedal robots are performing increasingly
more real-world capabilities, but are primarily limited to
locomotion tasks. To expand their task-level abilities of object
acquisition, i.e., run-to-catch as frisbee catching for dogs, this
paper developed a control pipeline using stereo vision for legged
robots which allows for dynamic catching balls while the robot
is in motion. To achieve high-frame-rate tracking, we designed a
ball that can actively emit homogeneous infrared (IR) light and
then located the flying ball based on binocular vision positioning
using the onboard RealSense D450 camera with an additional
IR bandpass filter. The camera was mounted on top of a 2-DoF
head to gain a full view of the target ball. A state estimation
module was developed to fuse the vision positioning, camera
motor readings, localization result of RealSense T265 equipped
on the back, and the legged odometry output altogether. With
the use of a ballistic model, we achieved a robust estimation
of both the ball and robot positions in an inertial coordinate.
Additionally, we developed a close-loop catching strategy and
employed trajectory prediction so that tracking and run-to-
catch were performed simultaneously, which is critical for such
drastically dynamic and precise tasks. The proposed approach
was validated through both static testing and dynamic catch
experiments conducted on the CyberDog robot with a high
success rate.

I. INTRODUCTION

Object catching is a significant challenge for legged robots,
as it requires precise and real-time state estimation, cou-
pled with the generation of highly dynamic motions and
maintaining balance using legs. Although there has been
a long history of study on this task [1], [2], [3], [4], [5],
only a handful of works have focused on legged robots.
Compared to fixed-based manipulators or wheeled mobile
platforms, the nature of discrete foot-ground contacts from
legged locomotion has a much higher level of noise in
odometry, coupled with complex floating-base dynamics.
In this context, our work investigated ball-catching tasks
for a quadruped robot, and developed a full stack solution
including a fast vision system and a novel state estimation to
simultaneously localize both the robot and flying ball, which
demonstrated high success rates for ball-catching tasks using
only onboard sensors.

A. Related work

For fixed-base systems, ball catching was accomplished
with a 4 degree of freedom (DoF) manipulator [6], [7]. The
desired catching point is obtained by combining parabola

1 Xiaomi Robotics Lab, Xiaomi Sci-Tech Park, Anningzhuang Road,
Haidian District, Beijing, 100085, P.R.China.

2 University College London, Department of Computer Science, London
WC1E 6BT, UK

3 University of Science and Technology of China, No.96, JinZhai Road
Baohe District, Hefei, Anhui, 230026, P.R.China.

∗ Corresponding author. Email:liutianlin1@xiaomi.com.

Fig. 1: System overview of CyberDog for ball-catching. A Re-
alSense D450 camera with IR bandpass filters is mounted on a
2-DoF head and the basket is at its front. One x86 computer and
its battery are placed on the back with a RealSense T265 tracking
module on top. Red dotted line is the target ball’s trajectory.

curve prediction with error correction. Another ball catcher
system is developed by Frese et al., who proposed an
Extended Kalman filter (EKF) to track and predict the target
catching position [8]. One of the state-of-the-art works is
achieved by an EKF estimator that localizes ball position [9].
Another catching research is done by a fix-based humanoid
robot, where a linear Kalman filter is re-initialized every time
a new ball is thrown and predicts the ball destination and
catch timing [10]. Though all those works achieved impres-
sive results, the noise and uncertainties of the localization of
fixed-based robots are much less challenging compared to
legged robots in motion.

Due to its simplicity, the quadrotor has been widely re-
searched for ball-catching. Muller et al. presented a Kalman
filter based estimation to predict the state of balls [11]. With
a proposed learning-based model predictive controller and
EKF, Bouffard et al. demonstrated the possibility of catching
a ball with a quadrotor [12]. However, perception with a
ground-based vision system needs careful calibration before
the task, which imposes additional limitations. With only
an onboard camera, a reinforcement learning (RL) based
approach is applied by Silva et al. which estimates the
ball position and velocity by camera feed and determines
the hitting point [13]. Another research uses an unscented
Kalman filter (UKF) based estimator to fuse optical flow and
inertial data by a simple 2-D visual ball tracker [14]. But
due to the differences in dynamics, control strategies, and
sensors, these algorithms from quadrotors cannot be directly
transferred to legged locomotion.

A mobile ball catcher was developed by building an



active stereo camera to track flying balls [15], which was
recently improved by applying deep learning to initialize the
Kalman filter estimator [16]. However, the camera is on the
ground, not onboard, which does not have uncertainties in
odometery. State-of-the-art works in ball catching on mobile
robots are accomplished on DLR’s Rollin’ Junstin robot
[17], [18], [19], which senses the ball state with a pair of
cameras mounted on the sides of head. It tracks two flying
balls simultaneously with a multiple hypothesis approach.
The UKF based estimator takes into account the sensor
uncertainties rather than simply fitting a parabola curve. To
deal with the kinematics uncertainties, such as elasticity of
links and wheel slip, the robot computes its head pose based
on inertial measurement unit (IMU) integration, instead of
odometery. One interesting related work recently was done
by Huang et al. that they implemented an RL controller to
allow quadrupedal robots to hit balls as a football goalkeeper
[20]. One major limitation is that ball tracking relies on an
external camera instead of being onboard.

To summarize, this research presents three key challenges:
(1) to holistically address noisy odometry, motion instabil-
ity, and complex floating-base dynamics; (2) successfully
catching a flying ball within a short period like one second
requires the precise timing and accuracy of all sub-modules
(simultaneous tracking and running-to-catch, and a close-
loop catching strategy is a must for higher accuracy); and
(3) using onboard sensors and computing present additional
challenges, requiring the perception, localization, and control
to function solely on a floating base robot itself.

B. Contribution

This study aims to achieve ball-catch tasks for a
quadrupedal robot using only onboard sensors during dy-
namic walking. Legged robots, unlike wheeled counterparts,
face numerous hard constraints and uncertainties, such as
the constant discrete switch of foot-ground contact, foot
slippage, and swing-stance landing impact. To successfully
catch a flying ball during walking, it requires not only the
prediction of the trajectory of a flying ball, but also a reliable
state estimation to coordinate with dynamic gait generation
as an integrated framework.

The contributions of this paper are as follows:
1) The design of an onboard vision system that embeds

a stereo camera to track a custom-built infrared (IR)
ball robustly and precisely, which allows the focused
development of the state estimation.

2) A novel state estimation strategy that simultaneously
estimates the positions of the ball and robot by fusing
sensor information, which improves tracking and lo-
calization accuracy and resolves the challenge of noisy
odometry during legged locomotion.

3) A control pipeline, comprising vision detection
and dynamic locomotion control, is developed for
quadrupedal robots with onboard sensors only to suc-
cessfully perform dynamic ball-catching. To the best of
our knowledge, this is the first such pipeline reported
in the literature.

Fig. 2: The modified RealSense D450 camera with a cover and
two IR filters mounted on the top of a 2-DoF head.

Fig. 3: The first row are the raw images from left and right cameras
with IR bandpass filters and the second row are the corresponding
binarized images. The ball was hanging in the air during day time
but still well segmented.

This paper is organized as follows. Section II introduces
the robot platform and the design of the vision system and
IR ball. Section III elaborates on each module in the control
pipeline. Section IV presents the experiments on the real
robot and the data analysis. We conclude this study and
suggest an intriguing direction of using event cameras for
future work in the last section.

II. HARDWARE & SYSTEM

Before introducing the control method, we first give a
broad view about the robot and the modified vision system
we used to complete this ball-catch task.

A. Robot Platform

The robot plaform we used to evaluate our algorithm
is a quadrupedal robot named CyberDog, which is the
first commercial legged robot product developed by Xiaomi
Robotics Lab. There are totally 12 DoFs excluding the two
of camera head, 3 for each leg, actuated by powerful quasi-
direct drive motors. The onboard perception system contains
various sensors, including touch sensor, ultra-sonic sensor,
GPS module, an ultra-wide-angle fisheye lens, and Intel’s Re-
alSense D450 camera for depth-sensing. These components
enable the robot to sense and communicate with surrounding
environment. There are also one IMU module at the centre of
body and encodes within each joint to determine the current
configuration of robot. One external x86 computer (Intel
CPU I7-8850H, 2.6Ghz to 4.3Ghz) is mounted on the back
to replace its own Nvidia Xavier perception board for more
computation power which guarantees better control stability



Fig. 4: IR light emission ball comprised of five parts: ball shell,
structure holder, IR light, cooling plate, and battery. Left: isometric
drawing. Middle: section view. Right: interior of the real ball.

and high communication bandwidth for data visualization
and logging. A 3D printed plastic box was designed to hold
the x86 PC which also contains a Lithium battery at the
bottom to power up the PC.

B. Vision System

To extend the field of view (FoV), we moved the Re-
alSense D450 camera from the front of CyberDog to the top
of a 2-DoF head as shown in Fig. 1. The two DoF, pitch
and yaw joints, are actuated by Dynamixel motors (XM430-
W210-T) separately. The mechanical range of the yaw joint
is −180◦ ∼ 180◦ while the pitch joint ranges from −120◦

to 40◦. In addition, IR bandpass filters are added on the two
infrared cameras of RealSense D450 so that the ball can be
efficiently segmented out from surrounding environments via
binarization as shown in Fig3. This dramatically improved
the tracking robustness and accuracy.

C. Ball Design

We designed a ball with active IR light emission so that
it can be easily captured by the aforementioned perception
system. The design details are given in Fig. 4. The ball shell
in the outer layer is separated into two pieces and screwed
together when in use. It protects the whole structure from
damage of impact and distributes the IR light evenly which
is important for the binocular cameras to get the accurate
ball centre. Similarly, the structure holder is also divided into
two symmetric plastic parts and connected by snaps. In its
core lies the lithium battery which powers up two IR lights
(wavelength 850nm) on the upper and lower sides.

III. METHODOLOGY

In this section, we elaborate on the four main modules
to achieve the ball-catch motions, namely the ball tracking
module of stereo camera, simultaneous state estimation of
both the ball and robot, ballistic trajectory prediction and
locomotion control of quadrupedal robots. The whole control
framework and the relationship among these modules are
depicted in Fig. 5.

A. Ball Tracking

The ball tracking module is based on the binocular vision
positioning technology. In order to obtain accurate image
information, we performed stereo rectification and undistor-
tion on the images according to the cameras’ intrinsic and
extrinsic parameters via ETH’s kalibr tool [21]. With the
help of extra IR bandpass filters, it is straightforward to

segment out the target ball through the binarization technique
of image processing as shown in Fig. 3. Thereafter, the
coordinates of ball centres in the image can be obtained
by calculating the centroid of the ball area. Considering
possible image noise, the connected domain with largest area
is chosen as the target ball area. Given the coordinates of ball
centre in the left and right images, the 3-dimensional(3D)
position of the ball in the camera frame 1 can be calculated
via the principle of binocular parallax:

px =

(
ul − cx

)
pz

fx
; py =

(
vl − cy

)
pz

fy
; pz =

f · b
ul − ur

, (1)

where px, py , pz represent the ball position in the left image
coordinate, which is right-handed with the positive y-axis
pointing down, x-axis pointing right and z-axis pointing away
from the camera. f is the focal length of the camera, b
(also called the baseline) represents the distance between
the optical centres of the two cameras, cx, cy , fx, fy are
camera intrinsic parameters, and (ul, vl) are individually the
horizontal and vertical pixel coordinates of the ball centre
projected on the left camera while (ur, vr) for the right
camera.

According to the specifications of RealSense D450, the
depth accuracy is 2% at 4 meters range which is mainly
decided by the physical limitation of camera resolution and
the length of baseline. We got similar measurement accuracy
with the proposed method when the target ball was held
statically at certain distances. However, the detection of our
approach is much more stable when the ball is flying in the
air.

The FoV of D450’s infrared cameras (Horizontal 87◦,
Vertical 58◦) is so limited that the flying ball can easily
get out of view and lose tracking. To address this issue, we
mounted the camera on top of a 2-DoF head as shown in
Fig. 2 so that the camera can move and keep staring at the
target. A simple PD controller is implemented to achieve the
camera view locking:

euk =
ul
k + ur

k

2
− uc, evk =

vlk + vrk
2

− vc

qyaw
k = qyaw

k−1 + kp · euk + kd · (
euk − euk−1

dt
)

qpitch
k = qpitch

k−1 + kp · evk + kd · (
evk − evk−1

dt
)

(2)

where qyawk and qpitchk are the position commands individu-
ally sent to the motors of the head yaw and pitch joints, the
subscript k and k−1 indicate the current and last time steps,
uc and vc are the pixel coordinates of image horizontal and
vertical centre, and kp, kd are the proportional and derivative
coefficients which can vary between different joints. The very
first joint commands qyaw

0 and qpitch
0 are given by reading the

current position of motors. It should be noted that the actual
position commands also consider the joint mechanical limits.

1Here we select the left camera coordinate as the camera frame.



Fig. 5: Integrated control pipeline consists of four core parts: ball tracking, state estimation, trajectory prediction, and locomotion control.
The ball tracking module estimates the 3D position of the target ball for the state estimation and trajectory prediction, and also produces
the 2D ball centre in the images for the camera view control. The predicted goal position and estimated robot pose are the input to a
closed-loop velocity feedback control to generate coordinated locomotion to chase the ball.

B. State Estimation

The ball tracking module acquires the ball position with
respect to the camera. To catch the ball, we need to predict its
trajectory in the future which requires the ball trajectory to
be presented in an inertial coordinate, i.e., a world frame. By
reading the motor status of the 2-DoF camera head, we can
get the transformation from the camera frame to the robot
frame. One missing link here is the robot pose with respect
to the world. Unfortunately, CyberDog’s legged odometry is
not reliable enough, especially during fast locomotion with
high step frequency. Compared with wheeled counterparts,
this is a common pain point for legged robots due to frequent
contact switches, foot slipping, and big landing impact. This
makes the ball-catch task even more challenging in our case.

To alleviate this issue, we mounted a RealSense T265
module on the back for robot localization and implemented a
Kalman filter taking both the ball position and robot position
as the state for estimation. The idea is to correct the robot
localization with the aid of a vision system and the known
ballistic model of ball throwing trajectory. The corresponding
state-space model can be written as: Xb

Ẋb

Xr


k+1

=

 I T 0
0 I 0
0 0 I


 Xb

Ẋb

Xr


k

+

 T̂ 0
T 0
0 T

[
G
Vr

]
k

(3)

[
Zb

Zr

]
k+1

=

[
I 0 −I
0 0 I

] Xb

Ẋb

Xr


k+1

(4)

where:
T = dt · I, T̂ =

1

2
dt2 · I

G =
[
0 0 −g

]T (5)

Eq. (3), (4) is the discretized state-space model we looked
into, and the states Xb, Ẋb, Xr are individually the ball
position, ball velocity and robot position in the assumed
world frame. Subscript k and k + 1 indicates the time step.
The input G is the gravity acceleration vector while Vr is

the robot velocity in the world frame which can be calculated
as: Vr = wRrV

r
r . wRr is the rotation matrix from robot

to world frame and Vr
r is the robot velocity represented

in the robot frame which is given by the legged odometry.
Similarly, the observation Zb is the ball position relative to
the robot represented in the world frame instead of camera
frame which is done by transforming the measurement of
ball tracking module with the head motor readings and wRr.
On the other hand, Zr is the robot position in the world
frame given by the RealSense T265. All the aforementioned
variables are 3D vectors indicating the x, y, z directions. In
the following of this paper, x is the forward direction our
robot heads to, y represents the lateral direction and z the
vertical direction. In Eq. (5), dt is the time interval between
the k and k+1 time step, g is the scalar gravity acceleration,
and I is an identity matrix with 3× 3 dimension.

Following the canonical paradigm of Kalman fitler, the it-
erative steps of state estimation can be divided into two steps,
predict and correct. To accelerate the estimation process, we
provided a dedicate initialization strategy for the Kalman
filter which is critical for fast motions like ball-catch. More
details are given below.

1) Start: At the beginning of the ball-catch task, to
initialize the Kalman filter, the robot stands in place and
gazes at the ball first to have a steady view. After collecting
certain frames of binocular camera images, the ball velocity
is estimated according to the equations below: ẋk

ẏk
żk

 = (Xb
s +

 0
0

1
2gTs ⊙Ts

)T†
s +

 0
0

−g(tk − t0)

 (6)

where:
Ts =

[
t1 − t0 t2 − t0 · · · tk − t0

]
Xb

s =

 x1 − x0 x2 − x0 · · · xk − x0

y1 − y0 y2 − y0 · · · yk − y0
z1 − z0 z2 − z0 · · · zk − z0

 (7)

[ẋk ẏk żk]
T is the latest estimated ball velocity along all three

directions. The subscript 0, 1, · · · , k indicates the window



size of k+1 ball positions we collected for the initialization.
0 stands for the first data while k is the latest. t0, t1, · · · , tk
records the timestamp of each ball position. The operators †
and ⊙ are individually the pseudo-inverse and the element-
wise multiplication.

Given the latest ball position Xb
k, the computed velocity

Ẋb
k, and the robot state from RealSense T265, we can set up

the initial state of Kalman filter accordingly.
2) Predict: According to Eq. (3), we can predict the next

state ahead based on the current state and input:

X−
k+1 = AXk +Buk + wk (8)

Eq. (8) is a simplified notation of Eq. (3) for the following
elaboration where Xk = [Xb Ẋb Xr]Tk , uk = [G Vr]Tk
and A, B are the corresponding state and input matrices.
The predicted next state X−

k+1 noted with the super minus
is known as a priori state estimate at step k + 1 given
knowledge of the process prior to step k + 1 [22]. wk is a
random variable representing the process noise which is as-
sumed to be independent, white and with normal probability
distribution p(w) ∼ N(0,Q). Hence, provided the process
noise covariance Q, the a priori estimate error covariance
can be projected:

P−
k+1 = APkA

T +Q (9)

3) Correct: We assume there also exists an Gaussian
noise vk+1 among the observation equation (4):

Zk+1 = HXk+1 + vk+1 (10)

where Zk+1 = [Zb Zr]Tk+1 and H is the corresponding
observation matrix. vk+1 is also represented with a nor-
mal distribution with the measurement noise covariance R:
p(v) ∼ N(0,R).

Thereafter, we can compute the Kalman gain Kk+1 based
on measurement update and prediction in Eq. (9):

Kk+1 =
P−

k+1H
T

HP−
k+1H

T +R
(11)

And the corrected a posteriori estimate state and error co-
variance are:

Xk+1 = X−
k+1 +Kk+1(Zk+1 −HX−

k+1)

Pk+1 = (I−Kk+1H)P−
k+1

(12)

C. Trajectory Prediction

In the ball-catch task, the robot needs to move in advance
before the ball reaching. This requires the prediction of goal
position according to the existing ball trajectory. Considering
the weight and size of the ball we used, the influence of
aerodynamics is negligible when it flies in the air. Therefore,
ballistic model is taken for the prediction:

z(t) = zk + żkt−
1

2
gt2 = h

t =
żk +

√
ż2k + 2g(zk − h)

g

(13)

where zk and żk are the current ball position and velocity
along the vertical direction, and h is the desired height which

Fig. 6: Experiment result of static testing. The upper plot is the ball
tracking position along x, y, z directions over time, and the lower
plot is the prediction error over time with different initialization
window sizes of Kalman filter.

should be set as the same height of the basket opening for
ball-catch. The computed t gives the remaining time for the
ball reaching to the goal. Because the velocities along x and
y directions are constant in the ballistic model, we can easily
get the goal position on the horizontal plane as:

xgoal = xk + ẋkt

ygoal = yk + ẏkt
(14)

D. Locomotion Control
To make sure the robot arrives at the target place ac-

curately, we implemented a close-loop PD controller to
determine the desired locomotion velocities:

Vcmd
w = kp(X

goal
w − (Xr

w + wRrL)) + kd
wRrẊ

r
r,

Vcmd
r = rRwV

cmd
w ,

(15)

where Vcmd
w and Vcmd

r are individually the robot velocity
commands in the world and robot frames. They are 2-
dimensional(2D) vectors standing for the velocities along x
and y directions. Accordingly, Xgoal

w = [xgoal ygoal]T is the
2D goal position and Xr

w is the current position of robot in
the world frame. L is the relative position between basket
centre and robot centre in the robot frame. Ẋr

r is the current
robot velocity in the robot frame measured by the legged
odometry. wRr and rRw are 2 × 2 orientation matrices
of yaw rotation between robot and world. kp, kd are the
proportional and derivative coefficients. The final velocity
commands are clamped by certain limits to maintain a stable
and safe motion. In addition, the angular velocity of yaw
motion is set to zero and the desired body height is constant.

The locomotion control algorithm we adopted is similar
to the work of MIT Biomimetics Lab [23]. Given desired
locomotion velocities, model predictive control(MPC) plans
the body trajectory and reference contact force while whole
body controller is in charge of tracking planned trajectories
of MPC and generates joint commands accordingly. The joint
commands including desired position, velocity and torque are
served by joint motor controllers running at 20kHz.



Fig. 7: Example of CyberDog’s actual catch. The snapshots show the process from throwing the ball to the robot running and catching
the ball. The time interval between two neighboring snapshots is 0.13s. The upper left corner is the initial state, and the lower right corner
is the final state. The ball is highlighted with a red dashed box and the dash line indicates the direction of camera view.

IV. EXPERIMENT

Several experiments were conducted on our robot Cyber-
Dog to evaluate the performance of the proposed approach.
First, we carried out static testing to verify the accuracy and
robustness of the detection and prediction module without
involving the noise of robot localization under movement.
Then, actual ball-catch experiments were performed to show
the validity of the proposed method. The success rate of the
ball-catch task is more than 80% when the ball falls into
the reachable area (2x1.5m square). Fig. 7 shows a typical
example of a successful catch.

A. Static Testing

In this experiment, the robot lied on a table without
moving, and the ball was thrown to the front side of the
robot. As shown in the upper plot of Fig. 6, the ball
tracking trajectories are quite smooth except that the depth(x)
direction was a bit shaky when the ball was more than 2
meters away from the camera. This is acceptable considering
the physical limitation of the camera as mentioned in Section
III-A.

The lower plot of Fig. 6 presented the prediction error
over time when using different initialization window sizes
for the Kalman filter in Eq. (6). The prediction error was
calculated based on 3D Euclidean distance by comparing the
prediction result with the last detected ball position at the
end of the trajectory, which was taken as the ground truth
because it was closer to the camera with less measurement
error. Meanwhile, the prediction height h in Eq. (13) was also
set the same as the last ball position. The result indicated that
we can get a better prediction earlier if choosing a proper
initialization window size.

B. Dynamic Catch

As shown in Fig. 7, the ball was thrown around 2 meters
away from the robot and the whole flying trajectory lasted for
roughly 1.2 seconds in this experiment. During the period,
the robot stayed in place first to get a steady view of the ball

and then ran to its right behind to catch the ball (diameter
6cm) with a basket (diameter 14cm) mounted in the front.

Fig. 8 presents the recorded 3D tracking position of the
ball and the robot. The red dot stands for the measured
ball position which simply added the camera tracking result,
motor readings of 2-DoF camera head, and RealSense T265
output together. Obviously, there are some jumpy and unreal-
istic points in the middle. On the contrary, the ball position
marked as a blue dot is much more stable and smoother
after going through the state estimator. The predicted goal
is labeled as a green dot which correctly fell into the basket
opening. This is consistent with the snapshots in Fig. 7.

The tracking data shown in Fig. 9 gives more details
about this experiment. Subplot 9a shows the ball tracking
results along all directions. The blue cycle line is the directly
measured position while the red dot line stands for the one
after Kalman filter. The window size k in Eq. (6) is set
to 10 for the initialization. The trajectories fit quite well
to the ballistic model, i.e., the movements are linear along
horizontal x and y directions and parabola along the vertical
z direction.

Subplot 9b presents the prediction errors along x, y direc-
tions which are calculated by comparing the last prediction
with others over time. The last prediction is taken as the
ground truth because the time it happened was closest to the
real catch whose result was verified by the experiment. The
z direction is constant and set according to the height of
the basket opening, e.g., 0.386m in this case. The prediction
error changed over time and converged to a reasonable
value around 0.3s after the ball was thrown. The spike of
x direction around 0.2s is because the robot started to move
at that time and added more noise to the robot localization.
Compared with the x direction, the smaller prediction error
of the y direction is due to the small lateral velocity of the
flying ball.



Fig. 8: Visualization of the ball-catch experiment via Rviz2. The
time interval between two neighboring subplots is 0.3s.

V. CONCLUSION

This paper proposed a control pipeline from stereo vision
to legged locomotion which allows quadrupedal robots to run
to catch flying balls. First, to achieve stable, accurate and
high-frame-rate tracking onboard, we designed an infrared
ball and located the flying ball based on binocular vision
positioning with onboard cameras by using IR filters. The
stereo camera on top of a 2-DoF head enlarges the camera
view. Thereafter, to resolve the significant noise of legged
odometry, a RealSense T265 on the robot’s back was used
for implementing a Kalman filter to estimate both the ball
and robot position simultaneously, by fusing the vision
positioning, camera motor readings, T265 localization, and
legged odometry altogether. In addition, we provided an
initialization strategy for the Kalman filter in case accelera-
tion is required for earlier prediction in dynamic tasks. The
proposed approach was validated well in static testing and
demonstrated successful dynamic catch experiments on the
real CyberDog robot.

One limitation is that to ensure the sole use of onboard
sensing and computing for the state estimation, we designed
an active IR emitting ball to bypass the processing speed
limitation stemming from the current vision solutions. There-
fore, to overcome the underlying issue in the vision system,
a completely new hardware solution is worth investigating.
For example, using an event camera to detect and extract the
outline of fast-moving objects at hundreds of Hz – matching
the frequency of servo control loops.

For this, we believe that future studies can build on
or reuse our proposed control framework and implement
event cameras for flying object detection and tracking, thus
significantly augmenting the capability for real applications.
Though given the limited resources and obligations within
a research project, we were not able to pursue this direc-
tion. Nonetheless, it presents an intriguing direction for the
research community to explore further.

ACKNOWLEDGMENT

This work is supported by Xiaomi Robotics Lab. Special
thanks to mechatronic engineers Yichu Yang, Peng Yu and
Jian Xiao for their help with the system design.

(a) Ball position tracking along x, y, z directions over time

(b) Prediction error along x, y directions over time

Fig. 9: Ball position tracking and prediction errors during the ball-
catch experiment.

REFERENCES

[1] R. Mori, K. Hashimoto, and F. Miyazaki, “Tracking and catching
of 3d flying target based on gag strategy,” in IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, vol. 5. IEEE, 2004, pp. 5189–5194.

[2] K. Deguchi, H. Sakurai, and S. Ushida, “A goal oriented just-in-
time visual servoing for ball catching robot arm,” in 2008 IEEE/RSJ
International conference on intelligent Robots and Systems. IEEE,
2008, pp. 3034–3039.

[3] G.-R. Park, K. Kim, C. Kim, M.-H. Jeong, B.-J. You, and S. Ra,
“Human-like catching motion of humanoid using evolutionary al-
gorithm (ea)-based imitation learning,” in RO-MAN 2009-The 18th
IEEE International Symposium on Robot and Human Interactive
Communication. IEEE, 2009, pp. 809–815.

[4] V. Lippiello, F. Ruggiero, and B. Siciliano, “3d monocular robotic
ball catching,” Robotics and Autonomous Systems, vol. 61, no. 12, pp.
1615–1625, 2013.

[5] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE
Transactions on Robotics, vol. 30, no. 5, pp. 1049–1065, 2014.

[6] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning, and experiments,” The International Journal
of Robotics Research, vol. 18, no. 1, pp. 64–92, 1999.

[7] W. Hong and J.-J. E. Slotine, “Experiments in hand-eye coordination
using active vision,” in Experimental Robotics IV. Springer, 1997,
pp. 130–139.

[8] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schäfer, M. Hahnle,
and G. Hirzinger, “Off-the-shelf vision for a robotic ball catcher,” in
Proceedings 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Expanding the Societal Role of Robotics in the



the Next Millennium (Cat. No. 01CH37180), vol. 3. IEEE, 2001, pp.
1623–1629.

[9] J. Kober, K. Muelling, and J. Peters, “Learning throwing and catching
skills,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012, pp. 5167–5168.

[10] J. Kober, M. Glisson, and M. Mistry, “Playing catch and juggling with
a humanoid robot,” in 2012 12th IEEE-RAS International Conference
on Humanoid Robots (Humanoids 2012). IEEE, 2012, pp. 875–881.

[11] M. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball jug-
gling,” in 2011 IEEE/RSJ international conference on Intelligent
Robots and Systems. IEEE, 2011, pp. 5113–5120.

[12] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predic-
tive control on a quadrotor: Onboard implementation and experimental
results,” in 2012 IEEE International Conference on Robotics and
Automation. IEEE, 2012, pp. 279–284.

[13] R. Silva, F. S. Melo, and M. Veloso, “Towards table tennis with a
quadrotor autonomous learning robot and onboard vision,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2015, pp. 649–655.

[14] K. Su and S. Shen, “Catching a flying ball with a vision-based
quadrotor,” in International Symposium on Experimental Robotics.
Springer, 2016, pp. 550–562.

[15] S.-T. Kao, Y. Wang, and M.-T. Ho, “Ball catching with omni-
directional wheeled mobile robot and active stereo vision,” in 2017
IEEE 26th International Symposium on Industrial Electronics (ISIE).
IEEE, 2017, pp. 1073–1080.

[16] S.-T. Kao and M.-T. Ho, “Ball-catching system using image processing
and an omni-directional wheeled mobile robot,” Sensors, vol. 21, no. 9,
p. 3208, 2021.

[17] B. Bäuml, O. Birbach, T. Wimböck, U. Frese, A. Dietrich, and
G. Hirzinger, “Catching flying balls with a mobile humanoid: System
overview and design considerations,” in 2011 11th IEEE-RAS Interna-
tional Conference on Humanoid Robots. IEEE, 2011, pp. 513–520.

[18] O. Birbach, U. Frese, and B. Bäuml, “Realtime perception for catching
a flying ball with a mobile humanoid,” in 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011, pp. 5955–
5962.

[19] B. Bäuml, F. Schmidt, T. Wimböck, O. Birbach, A. Dietrich, M. Fuchs,
W. Friedl, U. Frese, C. Borst, M. Grebenstein et al., “Catching
flying balls and preparing coffee: Humanoid rollin’justin performs
dynamic and sensitive tasks,” in 2011 IEEE International Conference
on Robotics and Automation. IEEE, 2011, pp. 3443–3444.

[20] X. Huang, Z. Li, Y. Xiang, Y. Ni, Y. Chi, Y. Li, L. Yang, X. B. Peng,
and K. Sreenath, “Creating a dynamic quadrupedal robotic goalkeeper
with reinforcement learning,” Oct. 2022.

[21] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2013, pp. 1280–
1286.

[22] G. Welch, G. Bishop et al., “An introduction to the kalman filter,”
1995.

[23] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.


	Introduction
	Related work
	Contribution

	Hardware & System
	Robot Platform
	Vision System
	Ball Design

	Methodology
	Ball Tracking
	State Estimation
	Start
	Predict
	Correct

	Trajectory Prediction
	Locomotion Control

	Experiment
	Static Testing
	Dynamic Catch

	Conclusion
	References

