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Abstract

General relativity is the best theory at present to describe gravitational interactions. One of
its predictions is the existence of black holes. Because general relativity is not compatible with
Quantum Mechanics, some new Physics must exist to unify them. This makes systems like
black holes, where both quantum mechanical and general relativistic phenomena are expected
to occur, particularly interesting objects of study. The discovery of astrophysical black holes
opened the doors to detailed studies of these objects, both from the point of view of under-
standing the consequences and limitations of general relativity and of gaining insight into the

effects of strong gravity on physical processes that occur in their vicinity.

To study these objects, we must resort to observations performed on Earth (or in space around
the Earth). This means that we require radiation or particles to travel between these regions
of the universe towards our detectors. In the transport process, radiation or particles may be
absorbed, scattered, or added to the original bundle, as well as distorted by the gravitational and
relativistic phenomena at play in the extreme regions of their origin. As such, it is essential to
have a way of understanding this transport mechanisms and how it may affect the observations
performed on Earth. Only in this way are we able to confidently make conclusions about the

phenomena happening very close to these black holes.

The main focus of this thesis was the development of a formalism and algorithm able to perform
general relativistic transport calculations of both particles with and without mass in a self-
consistent manner. This algorithm was built on and generalized another general relativistic

radiation transport (GRRT) formalism which focused on massless particles.

This formalism is then applied to two distinct astrophysical scenarios. The first is related to the
detection of electromagnetic flares across multiple energy bands from the vicinity of Sagittarius
A* the black hole at the centre of the Milky Way. We performed GRRT calculations for this
system, performing a thorough analysis of the effects of general and special relativity in the
distortion of flares, considering a time-dependent spectral evolution of the emissivity profile

and taking into account the energy bands in which observations take place.

The second scenario is related to the propagation of massive particles accelerated in the vicinity
of black hoes and their interactions with the medium around them. We were able to identify
and explain interesting trends in their behaviour and see how they were affected by different
aspect of special and general relativity. We investigated how the particle’s Lorentz factor and
its acceleration region influences the location and timing of where interactions would take place
and found some unexpected degeneracies which may impact the interpretations made from

observations associated to these systems.
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Impact Statement

The unifying theme of this thesis is its contribution to better understanding the physical pro-
cesses happening in massive black hole environments. The impact of the work performed here,
however, is more far-reaching, applying to other systems and providing useful insights into

fundamental physics. Some of the impact areas of this thesis are highlighted below.

1. Impact on the field of general relativistic radiation transport (GRRT)
A key focus of this work was to develop a general covariant formalism for the transport of
massive and massless particles in strong gravity. This formalism surpasses the traditional
general relativistic radiative transfer formulations constructed by previous researchers.
The ability to calculate the covariant transport of both massless and massive particles,
in non-relativistic and highly relativistic regimes, across 3 dimensional media with non-
uniform absorption and emission was essential to the calculations presented in this thesis.
The formalism can go beyond the specific science questions addressed in this work, and
it will be a useful means for us to gain better understanding of the physical processes
taking place in strong-gravity systems. The code developed during this PhD is modular
in nature, making it easy to add to and adapt to different astrophysical contexts. This
will allow further work in the fields described below and others where problems rely on a

proper treatment of radiation transport in strong gravity systems.

2. Impact on the field of general relativity (GR)
In the process of developing the formalism and code mentioned above, several interesting
facts were found regarding the propagation of particles in general relativity. These findings
contribute to a better understanding of certain aspects of this complicated theory. The
code developed may provide useful visualizations of unexpected phenomena which, while

a direct consequence of GR, might not be intuitively predicted or understood.

3. Impact on the applications of GRRT to real astrophysical systems
The study of flares associated to massive black holes, in particular to Sagittarius A*, has
been going on for over 20 years. Despite the multiple observational, theoretical and mod-
elling efforts, the physical processes responsible for them are not yet clear. The research in
this thesis shed light into how gravitational, relativistic and bandwidth effects affect the

observations of such flares. The intense distortions caused by these effects together with



the fact that narrow band observations may significantly differ from the bolometric light
curve profiles demonstrates the importance of being cautious when proposing physical
models in light of such observations alone. This has the potential to justify proposals to
fund multi-band observational campaigns of both nuclear massive black holes and other

black hole systems.

. Impact on the understanding of the physics of massive particle transport in
black hole environments

Processes associated to the production of flares very close to massive black hole systems
are also capable of accelerating massive particles to very large energies. These particles,
produced or accelerated very close to the black hole, will go on to interact with the medium
surrounding them in ways which are affected by the black hole’s strong gravitational field.
By exploring how particles of different mass and energy accelerated at different distances
from the black hole interacted with the medium around them, we were able to identify
degeneracies which will affect the interpretation of observations from such systems. We
also demonstrated the potentialities of the GRRT formalism developed during this PhD
to studying the propagation and interactions of massive particles in black hole systems

with their surrounding medium.

. Impact on the wider community

The ray tracing and covariant transport work produced in this thesis has several appli-
cations that go beyond the realm of Astrophysical research. Firstly, it is a great tool
for outreach. People are curious about black holes, and having visualization tools such
as the ones developed in this work allows them to gain a better understanding about
these strange objects. Secondly, it can contribute to the entertainment industries. As
an example, several Pizar animation movies rely on ray tracing techniques to produce
their realistic images. Similarly, movies featuring black holes, such as Interstellar, rely
on scientifically accurate ray tracing and radiation transport algorithms to produce the
realistic black hole images which make them so iconic. It is possible that the algorithms
developed in this work may find their way into such industries, impacting a community
to whom it would at first sight appear useless. Finally, this work deals above all with
transport equations. While here they are used in the very concrete case of radiation

and particles transported from the vicinity of black holes, similar transport equations are
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widely used in several different fields, from fluid dynamics to the calculation of absorbed
dose in radiotherapy. While the algorithm presented in this thesis is not directly appli-
cable to these situations, some of the tools developed in the process may become useful

to researchers working with transport equations in their own fields.
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Covariant absorption coefficient
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Relativistic three-momentum vector
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Chapter 1

Introduction

1.1 Massive nuclear black holes

Michell (1784) and Laplace (1799) were the first people to predict the existence of objects whose
escape velocity would be larger than the speed of light. They predicted that nothing would
escape from them and that they would be dark. Although their calculations were performed
using Newtonian gravity, the result of the radius below which such objects would become “dark”
turned out to coincide with the event horizon radius calculated using general relativity (The
Nobel Comittee for Physics, 2020).

Very soon after the publication of Einstein’s theory of general relativity (Einstein, 1916),
Schwarzschild published a solution to the Einstein field equations corresponding to the space-
time due to a spherically symmetric stationary mass (Schwarzschild, 1916). Later, Kerr pro-
posed another solution to Einstein’s equations, this time for a spinning body (Kerr, 1963),

which generalized the Schwarzschild solution.

In 1939, Oppenheimer and Snyder realized that the collapse of spherically symmetric, pressure-
free matter would eventually result in the presence of a horizon from inside which there could
be no communication to the outside (Oppenheimer and Snyder, 1939). However, it was not
obvious that such collapse into a singularity with the formation of a horizon would occur in real

astrophysical situations, where the assumption of perfect spherical symmetry would be unlikely
to hold.

It was only in 1965 that Penrose showed that during the collapse of matter, there is a formation
of trapped surfaces regardless of the symmetries of the system. These are two-dimensional
space-like surfaces with the property that the two null geodesics orthogonal to them at a point!
will converge. Penrose showed that, when such surfaces form, gravitational collapse inevitably
ends in a singularity (Penrose, 1965). This showed that the collapse of matter into a singularity

is a consequence of general relativity without the requirement of special symmetries?.

IE.g. if the surface is a 2-sphere with ¢ =constant and r =constant, then there will be an in-going and an
out-going radial null geodesic orthogonal to the surface at each point.
2Penrose was awarded half of the 2020 Physics Nobel Prize for this work (The Nobel Comittee for Physics,



2 Chapter 1. Introduction

1.1.1 Massive black hole in the Galactic Centre - Sagittarius A*

The first empirical observations to determine the existence of supermassive black holes consisted
of measuring the motion of bodies in the central regions of galaxies, calculating the density of
the object responsible for the gravitational field on which they moved and comparing it to
that of the densest stable multi-body objects known to exist. A density larger than this would
indicate the presence of a single, very dense object which could be a supermassive black hole.
Miyoshi et al. (1995) noticed that the kinematics around the centre of a galaxy (NGC 4258)

could not be explained by a dense stellar population.

In 1971 it had been suggested that, just as other galaxies, the Milky Way would host a su-
permassive black hole at its centre (Lynden-Bell and Rees, 1971). Evidence for the presence
of a supermassive black hole in the centre of the Mikly Way was obtained by the monitoring
of the orbits of stars at the galactic centre. This was performed by two independent teams
lead by Ghez (at the Keck Observatory) and Genzel (at the Very Large Telescope), both of
whom shared the 2020 Physics Nobel Prize with Penrose for their work (The Nobel Comit-
tee for Physics, 2020). These observations were performed in the near infrared band, as the
dust present in the line-of-sight towards the Earth does not significantly obscure radiation with
wavelength as long as this. Another advantage of using these wavelengths was that it was pos-
sible to obtain a very good angular resolution, which is necessary to distinguish and monitor
the motion of individual stars. In particular, the two groups (Schodel et al., 2002; Ghez et al.,
2003) looked at the motion of the star S2, with a period of less than 16 years, and established
that the elliptical orbit was due to a mass of about 4 x 10 M, constrained in a region of radius
at most equal to the pericentre of the orbit (Ghez et al., 2008; Gillessen et al., 2009). This
corresponds to a density consistent with the presence of a supermassive black hole. In these
works, the authors also provided consistent estimates of the distance to the galactic centre to

be approximately 8 kpc.

The numerical values for the properties of Sgr A* used for the calculations presented in this

thesis are summarised below?®
e Mass: 4.297 x 10°M,, = 8.547 x 10*°Kg (GRAVITY Collaboration et al., 2022)

e Distance to Earth: 8.277kpc = 2.56111239 x 10?2cm (GRAVITY Collaboration et al.,
2022)

e Spin and viewing angle: Currently, there is no consensus as to the spin of Sgr A*

nor the viewing angle of the line of sight from the Earth relative to the spinning axis.

2020).
3See (GRAVITY Collaboration et al., 2022, table B1) for a summary of the best fits for these parameters in
other recent studies.



1.2. Flares in the Galactic Centre 3

Different studies using different models and data favour very different values of both spin
and inclination (or viewing) angle. For instance, the models tested in Event Horizon
Telescope Collaboration et al. (2022) yielded values as diverse as a spin of @ = 0.998 and
inclination of ¢ = 10° through a = 0.5 and ¢ = 30° to @ = 0.9 and ¢« = 70°. These are
just some examples of how poorly constrained these values are at the moment. In an
attempt to make the results as applicable as possible, not only for Sgr A* but for other
black hole systems, we perform most calculations for two extreme spins: a = 0 for non
rotating (Schwarzschild) black holes and a = 0.998 for rotating (Kerr) black holes. All
calculations can be easily reproduced for any other value of spin. Unless otherwise stated,
the spin of the Kerr black holes used in the calculations in this thesis was a = 0.998. In
terms of inclination, we calculate some results for various inclinations and then focus on
mostly edge on views (i.e. inclinations close to i = 90°) due to the particularly interesting

features that arise at such viewing angles.

1.2 Flares in the Galactic Centre

1.2.1 Multi-waveband observations

Brown and Lo (1982) discovered variability in the emission around Sgr A* using the 35 km
radio-link interferometer at the National Radio Astronomy Observatory (NRAO). They found
that the flux density of the radio emission changed by 20-40% on timescales ranging from days
to years. Later, Miyazaki et al. (1999) found variations of 100% in the emission of millimeter

wavelengths on timescales of a week.

Baganoff et al. (2001) provided the first observation of what is now widely referred to as “flares”
from Sgr A*. The authors detected a large X-ray flare in the 2-8 keV band in a Chandra
observation, with a power increase by a factor of 50 on timescales of ~ 160 minutes. This
observation was followed by the detection of other X-ray flares, this time with XMM-Newton.
Some were similar to those detected by Baganoff et al. (2001), namely (Goldwurm et al., 2003),
and one seemed of a different nature, being much brighter and softer than previously detected
flares (Porquet et al., 2003). Later, Bélanger et al. (2005) detected two bright X-ray flares
with a luminosity increase by factor of 40, with durations of 4ks and 10ks, both of which were
accompanied by smaller flares. Porquet et al. (2008) also detected a nearly symmetrical, bright
flare with XMM-Newton, followed by 3 smaller flares. It was later discovered that the X-ray
variability extends to the 3-70 keV band, as measured by NuStar (Barriére et al., 2014; Zhang
et al., 2017). Some bright X-ray flares were found to have nearly symmetrical light curves
(Porquet et al., 2003), while others showed an asymmetric profile with a slow-rise-fast decay

profile (Nowak et al., 2012).



4 Chapter 1. Introduction

Flares were also detected on near infra-red (NIR) bands both with the Very Large Telecope
(VLT), lasting from 30 to 85 minutes, (Genzel et al., 2003) and with the Keck telescope (Ghez
et al., 2004), lasting around 40 minutes. Short term variability on the scale of 90 minutes
was also found at 100 GHz and 140 GHz (Miyazaki et al., 2004). At lower frequency, flares
at 20 GHz were found to lag flares at 43 GHz by 20-40 minutes (Yusef-Zadeh et al., 2006).
Observations on the Very Large Array (VLA) found that the peak of a flare at 8 GHz lagged
the peak at 9.9 GHz by 18 minutes (Michail et al., 2021a), while ALMA found no time lags
between the 223 GHz and 229 GHz flares (Wielgus et al., 2022).

These joint detections led to an effort to perform coordinated observations across the electro-
magnetic spectrum in order to better understand the nature of the flares. The first simultaneous
detection of an NIR and X-ray flare was reported by Eckart et al. (2004). The authors found
an X-ray flare with a duration of ~40 minutes with Chandra (2-8 keV) and a simultaneous NIR
flare with the VLT. A potential time lag between the X-ray and the NIR flares was reported
in (Eckart et al., 2006a), though other studies found that the time delay was consistent with
zero (Eckart et al., 2006a, 2008; Boyce et al., 2019). A time lag was also found between X-ray
and radio flares (Capellupo et al., 2017), although there was a possibility that the observations

over the two bands were not correlated.

A systematic lag was found between NIR flares and radio/submm flares (Yusef-Zadeh et al.,
2007, 2009; Michail et al., 2021b; Boyce et al., 2022), and between X-ray and submm flares
(Yusef-Zadeh et al., 2008; Marrone et al., 2008; Trap et al., 2011; Kunneriath et al., 2010). An
exception to this was the multi-band flare reported by Fazio et al. (2018), where the X-ray
emission followed the sub-mm flare, both of which preceded were preceded by an NIR counter-
part. Based on multiple observations, X-ray flares always seem to be associated with NIR flares,
with the NIR flares being longer than their X-ray counterparts (Dodds-Eden et al., 2009), while
the reverse isn’t always the case (Marrone et al., 2008; Trap et al., 2011). Furthermore, NIR
flares were found to have substructure with a quasi-periodicity of ~15 minutes (Eckart et al.,
2006a) or ~20 minutes (Trippe et al., 2007) and they were found to be highly linearly polarized
(Nishiyama et al., 2009).

Finally, by analysing the linear polarization of a bright NIR flare, the GRAVITY collaboration
found that its polarization angle rotated during the flare (GRAVITY Collaboration et al.,
2020b). This is consistent with the astrometric observations in GRAVITY Collaboration et al.
(2018), where the centroid of the emission shows a clockwise motion, and it suggests that the

emission source is polarised and orbiting the black hole.
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1.2.2 Current understanding and models

To have a full picture of the astrophysics involved in the production of the flares observed, it is
necessary to understand: i) the radiation process responsible for the emission; ii) the mechanism
responsible for energising the radiating particles; iii) the properties (structure, location and
motion) of the emitting region. We noted that over 100 papers have been produced which
present results addressing the three points above, both recurring to modelling and analysis of

observational data. Some of the main findings are summarised below.

i) Radiation processes

Bremsstrahlung radiation, synchrotron radiation and inverse Compton (IC) scattering are
among the most common radiative processes in energetic astrophysical environments. They
are believed to responsible for producing the flaring emission from Sgr A*. While the low
energy radiation such as radio and NIR is likely due to synchrotron emission, higher energy
radiation, such as X-rays, could be due to Bremsstrahlung or direct synchrotron emission,
Compton up-scattering of lower energy photons of the ambient radiation field by the same
population of electrons that contribute to the synchrotron emission (synchrotron self Compton,
or SSC) or Compton up-scattering off a different electron population (IC). Which one of these

mechanisms is actually responsible for the flares is still a debated topic.

For example, Baganoff et al. (2001) and Markoff et al. (2001) proposed that X-rays could
be due to either pure synchrotron radiation or synchrotron self-Comptonisation (SSC), while
Liu and Melia (2002) argued that they are thermal Bremsstrahlung radiation. Ghez et al.
(2004) favoured the direct synchrotron scenario; Eckart et al. (2004) favoured SSC without
excluding the possibility of pure synchrotron; Yuan et al. (2004) excluded the option of SSC
on the basis of the required non-thermal to thermal electron fraction (the requirement would
be too high). Goldston et al. (2005) found general agreement between their calculations using
synchrotron emission with magneto-hydrodynamic (MHD) simulations and the observations;
while Eckart et al. (2006a, 2008, 2012) showed agreement between their SSC calculations and

the observations.

Yusef-Zadeh et al. (2006, 2008) argued for IC and against synchrotron emission, but Liu et al.
(2006) reopened the hypothesis of pure synchrotron, which was supported by Nishiyama et al.
(2009). Marrone et al. (2008) found agreement of observations with calculations of an expanding
emission region by SSC. Dodds-Eden et al. (2009) found it difficult to quantitatively explain a
particular bright X-ray flare with IC processes, and instead found synchrotron emission more
viable; Barriére et al. (2014) also found that a pure synchrotron model was preferred to the
SSC alternative. Boyce et al. (2019) supported the SCC process but pointed out that it was

not clear whether all X-ray flares were produced by the same mechanism. Fazio et al. (2018)
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and Michail et al. (2021a) found that the data was consistent with an expanding synchrotron
plasma model. Other relevant studies include e.g. Zhang et al. (2017); Fazio et al. (2018);
Boyce et al. (2022).

Despite the different opinions on the radiative process responsible for the flares, it is indisputable
that very energetic particles must be present. As such, another large field of research with
regards to the flaring activity in the Galactic Centre is the investigation of possible energising

mechanisms to accelerate the emitting particles.

ii) Origin of the energetic particles

In order to explain the observed flares, one needs a mechanism capable of accelerating the
particles to the required high energies while, simultaneously, doing so on a compact spatial

region.

Yuan et al. (2003) performed magneto-hydrodynamic (MHD) simulations of radiatively ineffi-
cient accretion flows (RIAFs) and found a highly time-dependent dissipation of magnetic energy.
This raised the hypothesis that solar flare-like acceleration events might happen in the vicinity
of the black hole, giving rise to the flares. Liu et al. (2004) performed simulations using an
acceleration mechanism inspired by the solar flare model (plasma wave turbulence) and saw the
creation of IR flares accompanying X-ray bursts, as seen in observations. Chan et al. (2009)
found that MHD turbulence by itself was not enough to produces flares of the magnitudes

observed and suggested that other physical processed would be necessary to explain them.

With this information, Yuan et al. (2009) proposed that the flares could be energised by mag-
netic reconnection, in a way similar to the production of solar flares. These could be accompa-
nied by the formation of a blob of plasma (or a plasmoid), similar to the process that causes

coronal mass ejections (CMEs) in the Sun.

Following this proposal, several groups performed MHD and GRMHD (General relativistic
magneto-hydrodynamic) simulations to investigate whether magnetic reconnection would oc-
cur in the black hole’s accretion environment. Dodds-Eden et al. (2010) found that magnetic
reconnection may occur neat the innermost stable circular orbit around the black hole in time
scales consistent with those of the observed flares. Masada et al. (2010) and Uzdensky (2011) in-
vestigated the role of extreme gravity and magnetic fields to understand the differences between

magnetic reconnection in such extreme systems and the Sun.

The scenario proposed by Yuan et al. (2009) was developed into a more concrete MHD model
for Sgr A* flares by Li et al. (2017), who were able to reproduce the broad light curve and
spectral properties of IR and X-ray flares, despite not being able to reproduce the temporal
asymmetries of the light curves. Chael et al. (2018) performed GRMHD simulations with and
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without magnetic reconnection and unable to replicate the large flares observed with thermal
electrons only, indicating a need to include non-thermal electrons in the models. These were
included in simulations by Chatterjee et al. (2021), who indeed found an agreement between the
flares resulting from their calculation and the constraints on the flares provided by multi-band

observations.

The simulations from Ripperda et al. (2020) and Dexter et al. (2020) indicated that magnetic
reconnection events can take place in magnetically arrested disks, with the former showing the
formation of hot spots which could be responsible for the energetics of the Sgr A* flares and
the latter finding an agreement of the calculated light curves and sky motion of the emitter
with the observations of IR flares. Murchikova and Witzel (2021) also reported that magnetic

reconnection was likely the cause of large NIR flares.

The GRMHD simulations performed by Nathanail et al. (2022) demonstrated the formation
of plasmoids associated with magnetic reconnection events very close to the event horizon.
Ripperda et al. (2022) found similar results and noticed that the escaped plasmoids could last

a full orbit as hot spots, agreeing with the observations from Sgr A*.

All of these studies indicate that magnetic reconnection is expected to occur in the vicinity
of black holes and, similarly to what happens in the sun, it may give rise to the formation of

plasmoids.

iii) Emitting region properties

The timing of the flares constrain the emitting region to be small. For instant, the changes
in the NIR flux from Sgr A* on timescales At < 45 s (Eckart et al., 2012) place an upper-
bound on the spatial size of the flaring region to be [c]JAt < 2.2 7, (neglecting the effects
gravitational lensing and other relativistic effects). This upper bound is consistent with the
more recent constraint of [¢]At < 5 7, obtained from the modelling of near-IR flares detected
by the GRAVITY instrument (GRAVITY Collaboration et al., 2020a). Similarly, assuming
mm-wavelength flares are connected to IR and X-ray flaring events, the observed adiabatic
expansion velocities of the radio components (typically ~1072 [c]) and the observed durations
of these multi-wavelength flares (~20 mins — 1 hr), when combined imply a minimum flaring
region size of [c|]At 2 0.5 r, (Eckart et al., 2012).

This, together with the shape of the light curves, suggest that the compact region is on an
orbit around the black hole. The solar magnetic reconnection and plasmoid model discussed in
the previous section, which is supported by the results from MHD simulations which show the
potential formation of such plasmoids is consistent with such a small orbiting emitting region.
Further details and references regarding the emitting region properties are provided in section
3.1.



8 Chapter 1. Introduction

1.3 Overview of radiation and particle transport

Astrophysics is, at its core, an observational science. Historically, it has relied mostly on
observations of electromagnetic radiation. These consist of the detection of photons from far
away sources and in the measurement of their properties, such as intensity, frequency/energy,
direction and polarization, in order to understand both their source and the media through
which they propagated. Radiative transport (also referred to as radiation transfer/transport)
is a tool which allows astrophysicists to calculate how radiation propagates between it’s emission
and detection sites. It consists of an equation which takes into account the different phenomena
that radiation is subject to along it’s path, e.g. emission, absorption, polarization changes and

scattering.

With the development of new instrumentation technologies, non-photonic messengers started
to be used to gather information about the universe. These include particles (e.g. neutrinos)
and, since more recently, gravitational waves. Given the importance of the role played by
these new messengers, in particular non-photonic particles, in modern astrophysics, it became
important to have a formulation of radiation transport that could also deal with radiation in
the form of particles other than photons. Such a formulation is developed in chapter 2. Below
is a summary of the classical ways in which radiation and particle transport are usually dealt
with.

1.3.1 Radiative transport
i) Geometrical optics approximation

The classical radiative transfer equation deals with the propagation of electromagnetic radiation
in the framework of geometrical optics. In this framework, which also referred to as the eikonal
approximation, the propagation of light is considered to occur as rays rather than waves in the
electric and magnetic fields. Rays are conceptually constructed “lines” tangent to the direction
of propagation of the electromagnetic wave (Rybicki and Lightman, 1979). The propagation
laws resulting from this simplification are valid as long at the wave can be locally approximated
by a planar and monochromatic wave. As such, geometric optics is always true to plane
waves. Other types of wave (and waves propagating in in-homogeneous media) can only be
considered approximately planar if the deviations from planarity occur in length and time
scales respectively much larger than the wavelength and period of the wave, respectively (see

chapter 7 of Thorne and Blandford, 2017, for a rigurous proof of this limit).

The systems of interest to this thesis are massive nuclear black holes. One can take the radius of
the event horizon to be the smallest in-homogeneity length scale in the system. For a black hole

such as Sgr A*, this radius is approximately 13 x 10° km and the time it takes for light to cross
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it is 42s*, both of which are much larger than the wavelength or period of any electromagnetic
radiation that can be realistically detected on earth. As such, this approximation is valid for

the systems dealt with in this thesis.

The exposition in this section follows that in Rybicki and Lightman (1979).

Consider a bundle of photons with frequency within dv of v moving along nearly the same
trajectory (a ray) and reaching some detector of area dA from some a direction within a solid
angle df). The specific intensity [, is defined as the energy crossing that area from that solid

angle by photons of that frequency per unit time, i.e.:

dE
b= A aaa (1.1)

In vacuum, the specific intensity of a bundle of photons is conserved along a ray. This is a
result of energy conservation, as can be seen by the following simple argument presented in
(Rybicki and Lightman, 1979, section 1.4):

Considers two areas normal to the propagation of a ray at different locations, dA; and dA,,
stationary with respect to each other at a distance R from one another. The solid angle
from which the radiation through dA; originated is given by Rybicki and Lightman (1979)
dQ; = dAy/R?, and similarly dQ; = dA;/R?.

The energy going through them in a time interval t is given by dE; = I,;dA; dt d€; diy
and dEy = 1, 9d A, dt d€2y dvs, respectively, where 1, ; is the specific intensity through the area
dA;. By energy conservation, the energy carried by rays going through both surfaces must be
the same at both surfaces, i.e. dE; = dF5. For the same frequency interval dv around v, we
must have I,,1dA; dt dAy/R?* dv = I,,dA, dt dA;/R* dv = I,,; = 1,5 along the ray. In other

words, if s denotes distance travelled along the ray, one must have that

drl,
ds

~0. (1.2)

If the ray goes through some medium, however, energy can be added to (by emission or scatter-
ing into the ray) or removed from (by absorption or scattering out of the ray) the ray, changing
its specific intensity. For the purpose of this thesis, no scattering is considered. Emission can be
split into two different types: spontaneous and stimulated emission. Since stimulated emission
depends on the incident radiation, it is treated together with absorption. The spontaneous

emissivity coefficient j, is defined as the energy emitted spontaneously per unit volume dV per

4 Assuming a black hole mass of 4.297 x 105M,.
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unit time dt per solid angle dQ2 per frequency range dv, i.e. j, = dE*™/(dVdQdvdt). So the
intensity added to a bundle of cross section dA travelling a distance ds through an emitting

medium (i.e. travelling through a volume dV = dAds) is given by

dEem
dr,™ =

~dAdaraods e (1.3)

The absorption coefficient «, is defined as the fraction of intensity lost when traveling a certain
distance through a medium, i.e.
dr,*™ = —a,I,ds (1.4)

As mentioned above, one can include stimulated emission in this term by splitting «, into
two terms: one positive, corresponding to the true absorption which removes intensity from
the bundle, a>; and one negative, which incorporates the role of stimulated emission, adding
intensity to the bundle, a®™. Hence a, = a® + a°™ can be positive or negative, depending on

the relative strength of the true absorption and stimulated emission processes.

ii) The radiative transfer equation

Since, by equation (1.2), the intensity in vacuum remains constant along a ray, the only changes
in intensity (in the absence of scattering) are those due to emissivity and absorption of the
medium through which the ray propagates, i.e. dI, = dI®™ + dI,*™. So, the change in

intensity along a ray is given by the classical transfer equation:

dl,
= - IJIl/ .1/ L.
P a,d, + 7 (1.5)
df,
— 1,45, 1.
= O +S (1.6)

where the optical depth

7,(8) = /08 ds'a,(s") (1.7)

and the source function

S, = (1.8)

oy

were introduced. Using an integrating factor, the solution to this equation can be readily found
to be (Rybicki and Lightman, 1979):

I(s) = I,(0)e™ ™) + / ds’ j,(s")e (=) o (1.9)
0
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L(1) =L,0)e ™ + /0 dr! S, (r!)e (=), (1.10)

Equation (1.10) is known as the formal solution of the transfer equation. This equation is not
covariant® , as some of its terms depend on frequencies, times and areas, all of which are frame
dependent. This is the basic equation which is generalized, in a covariant manner, to massive

particles in section 2.

1.3.2 Boltzmann equation for particle transport

The exposition in this subsection follows that in Thorne and Blandford (2017).

Of one the simplest ways of studying the behaviour of large numbers of particles, including
the energy carried by them, is provided by kinetic theory. The main object of kinetic theory
is that of distribution function or phase-space density, i.e. the density of particles in a certain

phase-space volume.

The Boltzmann transport equation, which forms the basis of the covariant formalism for radi-

ation transport, describes the conservation laws associated with this distribution function.

i) Phase-space density and conservation laws

Relativistic phase-space is a 7-dimensional space comprised of 4-dimensional spacetime together
with the 4-dimensional relativistic momentum space, constrained to the 3-dimensional mass
hyperboloid®. An inertial observer can, at any time ¢, consider a spacetime volume dV =
dV,dVp, where dV, = dx dy dz is a small spatial 3-volume element at time ¢ around some event
and dV, = dp, dp, dp, is a small 3-volume element in momentum space centered at relativistic
momentum p. Then, if AN is the number of particles lying in that, the phase-space density of

particles is defined as
7. dN

=5 (1.11)

5Throughout this thesis, covariant is used to refer to quantities which are Lorentz scalars, i.e. which are the
same in any observer frame, and to equations whose form remains unchanged in any frame (also known as tensor
equations). Invariant, on the other hand, is used to refer to quantities which remain constant. Quantities may
be covariant and not invariant (i.e. all observer agree with their value, but that value is changing), invariant
and not covariant (i.e. observer disagree on its value but agree that it is unchanging), covariant and invariant
or neither.

6Recall that, in special and general relativity, the 4-momentum of a particle of mass m is constrained by
the fact that p-p = —m?2. This constraint corresponds to constraining the particle’s momentum to lie on a
3-dimensional hyper-surface of momentum space where p - p = —m?2. This is known as the mass hyperboloid.
This is true for both massive and massless particles.
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Although the definition above uses a particular inertial observer, it is a standard result that
both dA and dV are covariant (see e.g. Misner et al. (1973) pages 585-587 or Thorne and
Blandford (2017) chapter 3). This means that F also is covariant, i.e. it has the same value

regardless of the frame in which it is measured.

The key conservation law with respect to phase-space density is given by Liouville’s theorem.
Consider a phase-space volume dV around a fiducial particle, small enough that the world lines
of those particles remain very close to the of the fiducial particle. Liouville’s theorem states
that, given some parameter [ along the fiducial particle’s world line”, the phase-space volume

occupied by these particles remains constant. I.e.

dy
— =0. 1.12
% (1.12)
In the absence of non-gravitational interactions, the number of particles in dV does not change.
As such, Liouville’s theorem implies that the phase-space density F also remains constant along
that world line. This is known as the collisionless Boltzmann equation:

dF
— =0. 1.13
4 (1.13)

The collisionless Boltzmann equation implies that, in the presence of collisions, any changes in

phase-space density must be due to those collisions, i.e.

dF  [(dF
A A 1.14
7= (). s

This is known as the Boltzmann transport equation. In this thesis, we do not consider general
collisions (e.g. no scattering, energy re-distribution or polarization changing phenomena are
considered). The types of collision considered here are effectively interactions in which radiation

dl dl
line-of-sight absorption or emission takes place.

is emitted or absorbed. So we restrict (g)col to (dlt)im, where “int” refers to interactions where

ii) Phase-space density and covariant intensity for photons

The covariance of phase-space density makes it a very useful object to study when transporting
radiation. The whole covariant radiative transport formulation described in chapter 2 is in fact

based on a quantity very closely related to it: the covariant intensity.

Consider a system of photons with phase-space density F. In spherical coordinates, the
momentum-space volume dV, can be written as d*p = |p|? d|p| dQ, where dQ2 = df + sin?(0)d¢
is the solid angle element spanned by dV,.

“The world line is the particle’s trajectory in four-dimensional spacetime.
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Now consider the spatial volume occupied by all photons which can go through a surface of
area dA orthogonal to the direction of propagation. These photons must be within a distance

c dt of the surface, so the spatial volume occupied by them is® dV, = ([c] dt) dA.

In this system, the number of photons with momentum within d|p| of |p| going through this

surface of area dA in time dt is then given by
dNjp| = F ([c] dt) dA |p|* d|p| A2 (1.15)

where the subscript |p| was added to emphasise the dependency of A on the photon’s momen-
tum. The photon’s momentum is given by p = fhv/[c|, where 71 is the unit vector pointing
in the direction of propagation. This, in turn, can be related to the its energy &£, = hv, where
the subscript v was added to emphasise the dependency of £ on v. So the number of photons

in the phase-space volume dV can be written as a function of photon frequency as

2
dN, = F (E) ([c]dt) dA hdv dQ (1.16)

[¢] [¢]
The total energy going through the surface due to photons with energy &, = hv is the photon

energy times the number of photons with that energy, i.e.

dE =&, dN,
hv\? hdv
= (hv) F (H) ([c] dt) dA o do
— [ZL_Q] V3 FdA dt dv d9 (1.17)

By comparing this to the definition of I, (equation (1.1)), the relationship between intensity

and phase-space density becomes clear:
h4
I,=(— ) F. 1.18
()" (1%

Since F is covariant and h*/[c?] is a constant, we can define a covariant quantity, Z,, known as

7, = % = (%) F. (1.19)

This is the quantity that is transported in the general relativistic radiation transport formulation

the covariant intensity, as:

8Throughout this thesis, geometrical units will be used, where G = ¢ = 1. However, in order to make the
physical meaning of the expressions clearer, factors of ¢ and G are printed in most equations inside square
brackets. To perform calculations in geometrical units one must simply set the terms in square brackets to 1.
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described in chapter 2. Bolzmann’s equation can then be written in terms of the covariant

dZ, dz,

1.3.3 Classical radiative transfer and Boltzmann’s transport equation

intensity as

The classical radiative transfer equation (1.5) can be seen as a particular case of Boltzmann’s

transport equation valid only in a specific frame. A frame-dependent version of equation (1.20)

dl, dl,
a - ( i ) 2

In that particular frame, the collisions (or interactions) that the bundle of rays is subject to

can be written as

are, in the absence of scattering, those which cause emission or absorption of radiation. Then,
the right hand side of equation (1.5) corresponds to the collision term, where the collisions are
measured in that particular frame, i.e. (d,/dl)c = —, I, + j,. As such, equation (1.5) can
be viewed as a frame-specific version of the Boltzmann transport equation (1.20) in the absence
of scattering, where the collision terms are represented by the phenomenological quantities ay,

and j,.

1.4 Thesis outline

This thesis is organised as follows. In chapter 2 we derive the general relativistic radiation
transport (GRRT) formalism developed during this PhD for both massive and massless par-
ticles. We also introduce the algorithm written to use the given formalism in astrophysical
contexts in the presence of Schwarzschild or Kerr black holes (the largest portion of this PhD),

as well as some of the code validation exercises that were performed.

In chapter 3 we apply the GRRT formalism to the concrete scenario of flares in the vicinity
of black holes. In this chapter we make use of the massless GRRT formalism, reproduce some
results from literature which validate the correct working of the code and explore the novel idea

of how a time-dependent emissivity affects the observations of flares at different energy bands.

Finally, in chapter 4 we showcase the potentialities of the GRRT formalism for massive particles
by performing some calculations for a simplified emission and absorption model inspired by

potential astrophysical situations. We conclude our work in chapter 5.



Chapter 2

(General relativistic radiation transport

formalism

The fundamental tool used in this thesis for studying astrophysical systems is radiation trans-
port. In section 1.3 the classic radiation transport formalism was introduced. In this section,
a fully covariant formulation of the same equations is presented. Such a formulation is partic-
ularly useful when transporting radiation to and from systems which are highly relativistic or
live in strong gravitational fields. In general, as a photon propagates through a certain medium,
in order to calculate the absorption and emission at each point, one must constantly transform
all these observer dependent quantities into a new frame. This is tricky and prone to errors.
Instead, the idea presented in this chapter is to perform the transport using solely covariant
quantities, i.e. quantities which are not observer dependent. At the end, these are transformed
into observer-dependent quantities. This formalism has another advantage: it is valid for both
massless particles (such as photons), and massive particles (such as protons). We treat the
motion of both massive and massless particles as following geodesics. For realistic massive
particles, which have spin, this is a simplification which neglects the spin-orbit coupling inter-
action, which results in a non-geodesic motion. Assessing the degree to which this impacts the
particle trajectory for the particle energies and the particle to black hole mass ratios presented
in this thesis is beyond the scope of this work. Since the spacetimes considered here are not
charged, magnetic fields are neglected and the particles are treated classically, their charge will

not impact their trajectories.

The formalism, therefore, consists of solving the covariant form of the radiation transport
equations along geodesics. As such, the algorithm has two key steps, which are described in
detail in this chapter. First, one needs to solve the geodesic equations to find the trajectories
followed by the individual particles. When we talk about the intensity of a ray/ intensity along
a geodesic, we are referring to the collection of all particles travelling along the same geodesic.
This step will be referred to as ray tracing and it is explained in detail in section 2.1. Then,
the covariant radiation transport equations are integrated along the particle geodesics. The

equations relate to a generalized notion of covariant intensity applicable to both massless and

15
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massive particles, defined in section 2.2. The formalism derivation and algorithm are both

presented in section 2.3.

2.1 Geodesics

2.1.1 Tangent vectors and connections

The exposition in this subsection follows that in Hull (2020).

Throughout this thesis, spacetime (M, g) refers to a 4-dimensional, time-oriented smooth man-

ifold M equipped with a smooth metric g, which is a solution to Einstein’s equations.

Tangent vectors can be viewed as directional derivatives® of functions: given a curve C : \ €
R — C(\) = p € M, a set of coordinates {z*} in the neighbourhood? of p and a function
f:peM — . eR, the tangent vector V, to the curve C(\) at p = C(\g) measures the

directional change of the function f along the curve:

il = )| = )

p=C(Ao)

9 ra)

o oz

(2.1)

z(p)

The set of all tangents vectors at p form the tangent space T,(M), and is it isomorphic to the
vector space R*. As such, any vector V,, € T,(M) can be written as linear combination of basis

vectors at p, e, as V, = v'ew),. Vplf] can be re-written as

Vplf] = v'ew)ulf] (2.2)

Although the definition of V), is coordinate independent, the calculations in these thesis are
all performed in particular coordinate systems. As such, it is useful to refer to vectors in a
coordinate way. By comparing equations (2.1) and (2.2), one can consider 9/0z* as a basis for

the vector space T,(M). Such a basis, where basis vectors are given by

e = 0/0x", (2.3)

!Tangent vectors are originally defined as equivalent classes of tangent curves. Two curves C and C’ at p
are considered equivalent if they are tangent to each other. Le. if %C(A)L}ZC(/\O) = %C/(O.)L):C’(Uo)' The
equivalence class of all curves tangent to each other at a point p is a tangent vector at p. The space of all
tangent vectors at p, i.e. all equivalence classes of tangent curves, forms the tangent space at p, 7,(M). The
term directional derivative comes from the fact that the derivative depends only on the rate of change of a
function in some direction at a particular point, without the need to recur to other points in the manifold.

20ne can always define coordinates in coordinate charts, i.e. portions of the manifold where the same set
coordinates make sense, such that in the intersection between charts the coordinate transformations are smooth.

Hence defining coordinates in the neighbourhood of a point is sensible.
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is called the coordinate basis. The components of the tangent vector are then given by (see

equation (2.1)):

w_ 4
W= (C(N)) . (2.4)

v* are components of a vector in R* and only depend on the equivalence class of curves, not
on the particular choice of curve. It is important to keep in mind that each tangent vector

(including the basis vectors) lives in the tangent space at a particular point in spacetime.

The vector space dual to the tangent space is called the co-tangent space 7, M, and elements

of this space, co-tangent vectors (or co-vectors), can be thought of as linear maps w, : v, €
TpM — wy(v,) € R. Given a basis {e,} for T,M and a dual basis {e"} for 7 M, we write

= w, M — p — yh
wp(vp) = wyvt, where w, = w,ep! and v, = vViey,),.

Tensors are generalizations of these concepts, with an (r, s) tensor being a linear function on r
vectors and s co-vectors, i.e A, : T/ (M) = T,M x ... x T*M x ... = R. The components of

the tensor A, in a certain basis {e,} and dual basis {e*} are given by A,(e,,, ..., €., €, ..., €")

We defined vectors as directional derivatives of functions. It is also useful to define some sort
of directional derivative of vectors and tensors. This requires the notion of an affine connection
(or just connection). A connection is a bi-linear map V : (X,Y) € T,H(M) X T,H(M) — VY €
ToH (M) defined by its action on basis vectors:

Vuezz = Veuey = Fuuaeav (25)

and I',,“ are the connection components. This connection is chosen so that it has certain

properties, namely:

VxY+2Z)=VxY +VxZ
Vi X =VxZ+VyZ
Vix)Y = fVxY
Vx(fY)=X[f]Y + fVxY.

Given these properties, one can work out the form of the connection for two general vectors in

a coordinate chart, X = X*e,, Y = Yte,:

VxY = Ve, (Y7e,) = X" (9,Y" +T,a"Y% e, (2.7)

Given a vector field X € 73 and a tensor field 7' € T, one can define a covariant derivative

Vx : T €T = VxT € 7T, whose explicit form is worked out by using the properties 2.6.
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Given a manifold with a metric tensor g, one can define a particular type of connection called
a metric connection. A metric connection is a connection for which Vyg = 0, VX € T(M),
where T (M) space of all vector fields in M (i.e. all maps that smoothly assign a vector to
each point in M) .

2.1.2 Geodesics in Kerr spacetime

A curve parameterized by A is a geodesic if its tangent vector u is parallel-transported along

the curve, i.e.
Vuu =0 (2.8)

where V is an affine connection. In a coordinate basis, the components of the tangent vector

can be written as u = ute, = (dz*/d\)e,. So, in coordinates, equation (2.8) becomes
BT, VP =0 (2.9)

where I'*,, are the connection components and the dot represents the derivative with respect
to A. It corresponds to four second order differential equations, one for each coordinate. The
components of a metric connection can be decomposed into a symmetric part, the Christoffel
connection (2.10), and an anti-symmetric part, formed by the components of a tensor called
the torsion tensor. A torsion-free connection is therefore one for which all components of the
torsion tensor vanish, and which is therefore symmetric. In general relativity we use the Levi-
Civita connection, which is the unique torsion-free metric connection. This fixes it to be given

precisely by the Christoffel connection:

1
sz/p = 59“0 (8;)901/ + augap - 8091/,0) . (210)

Here, 0, is the partial derivative with respect to z”, i.e. 9, = 0/0x".

As such we will always take I'*,, in equation (2.9) to be given by equation (2.10). We will refer

to them as “Christoffel symbols”, as they are usually referred to in literature.

According to the stationary-action principle, in the absence of external forces, particles move

through spacetime along curves of extremal length. The length of a curve in a spacetime with
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a metric g is given by (Hull, 2020)3:

[ daxrdav

By treating the length s as an action with Lagrangian density £ = \/g,, 2", it is easy to see
that, for the Levi-Civita connection, geodesics are length maximizing curves which obey the

Euler-Lagrange equations.

We next consider a Lagrangian £ = (1/2)g,,z#2z¥, which leads to the same equations of motion
as L. This Lagrangian is half of what is called the line element, since its square root is
precisely the infinitesimal length which, once integrated, provides the length of the curve. If a
spacetime is stationary, it is possible to find coordinates such that all the metric components
are independent of the time coordinate. Similarly, if a spacetime is axisymetric, it is possible to
find coordinates such that all the metric components are independent of ¢. In such a coordinate

system with z* = ([c|t,r, 0, ¢), the Euler-Lagrange equations yield

oL
~ = C} ;
A([c]t)
or . (2.12)
9 0

where C; and C, are constants. Having two conserved quantities means that the four second
order differential equations (2.9) may be simplified into two second order and two first order

differential equations.

There is a third quantity which is a constant of motion along a geodesic. Since the geodesic equa-
tions are curves of extremal length, by definition we have that, for a geodesic, d/d\(g,, #"3") =
0. Not only is this conserved along the geodesic, but it is also a covariant quantity, i.e. it is
the same in any frame. By definition, the tangent vector of a null geodesic is null, so that

guwd*a” = 0. For timelike geodesics, we consider a local Minkowski frame where the particle is

at rest. In this frame, #* = [¢| (1, 0), so that g,,@"%" = [c] gu = —[c]. We can summarize this
as

Gu't” = ¢, (2.13)
where £ = 0 for massless particles (null geodesics) and & = —1 for massive particles (timelike

geodesics) in geometrical units ([¢] = 1).

3The length of a curve C : A € R — C(\) € M is found by considering the curve as an embedded 1D
submanifold N of spacetime M with coordinate given by A. The induced metric on this submanifold, gy, is
the pull back on the spacetime metric i.e. gy = gy (dzt/dX)(dz”/dA). The length of the curve is then the
integral of the volume form on NV, Qx = \/gn over N, ie. s = [, Q.



20 Chapter 2. GRRT formalism

In this thesis we consider Kerr spacetimes, which are stationary and axisymetric. In Boyer-
Lindquist (BL) coordinates, where = = ([c]t,, 8, ¢), the line element of a Kerr metric is given

by

o : 2argr sin® 0 )
ds? = guarah = - (1 25 ) [)dr - S22 [ dedo + - dr?
) ) A (2.14)
2 .
+3d6? + <7"2 +a® + Lsrd sin? 9) sin® #dg¢? |
where the following quantities were introduced for convenience:
G . .
7s = 2M | — | (the Schwarzschild radius)
c
. J
~ M| (2.15)

Y =72+ a?cos’ 6

A =71%—rg+ad
Here, M is the mass of the black hole and .J is its spin angular momentum. Since in practical
calculations we use units such that ¢ = G = 1, the explicit ¢ and G metric dependencies is

shown by leaving ¢ and G in square brackets. The Schwarzschild line element is recovered by
setting J = 0 in (2.14) and (2.15) above.

Later it will be convenient to think of the metric tensor as a matrix, which in BL coordinates

is given by:
—?+ B850 0 0 Byvse
0 w0 0
g= 7 (2.16)
0 0 70 0
BsVoe 0 0 7
with
YA
a=1\—
A
A= (r*+a*)* — a®Asin*0
rsra
= 2.17
D (2.17)
71“1“ A
Yoo = 2
Asin? 6




2.1. Geodesics 21

In Kerr spacetimes, the constants of motion along a geodesic - equations (2.12) - are given by:

Cr = gu([dt) + gus0 (2.18)
Cy = gosod + gor([]1). (2.19)

One can find an explicit expression for C, in terms of C; and ¢ by eliminating ¢ between
equations (2.18) and (2.19). After some algebra, one finds that

(ZA¢ — 2aMrC)sin® 6

C, = 2.20
¢ > — 2Mr (2:20)
Away from the event horizon, equation (2.18) can be rewritten as
: h—C,
i = 900 = Ct (2.21)
Gtt

t can be substituted by this expression in equation (2.13), and hence one may solve for C:

02 = (%) (W 1 (SA)E? — 5A> + Asin?0¢? . (2.22)

One can also substitute for ¢ in equation (2.21) using (2.20) or for  using (2.22), to find the
first order differential equations describing ¢ and gb The equations of motion are now described

by two first order and two second order differential equations:

. 2M
i=Ct =l (2 +ad%) C — aCy] (2.23)
YA
AfME=-2r%)., (r-—MI-rA,
i E{Tt + = r (2.24)
. 3 — 92 .
+ 7% + [r + ( SE r ) a®M sin? 0] sin? f¢?
Y —2r\ .. 2sin20 . .
—2aMsin29( 227" )t¢+ ¢ Sil 97’“9}%
.1 2a*Mr ., 4aMr (r*+a?) .. a* ,
0 = ) (sm(20) { 2 " — =2 to — A~ (2.25)
: oMy (r2 +a2)?| . .
+a? + |A+ T(;f“) ¢2}—4m'~9> ;
- 2aMrCy + (X — 2Mr) Cycosec?d ‘ (2.26)

YA

These can be split into 6 first order differential equations, which is how our code performs the
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numerical integration.

Kerr spacetime admits a fourth constant of motion along geodesics. This is the Carter constant,

Q, given by:
Q =x%0%+ [Cy’cosec®d — a® (Cy* + &)] cos® 0 (2.27)

The meaning of Carter’s constant has been discussed in several papers (e.g. de Felice and Preti,
1999; Rosquist et al., 2009) since it was discovered in Carter (1968). In the limit of a — 0,
it corresponds to the total angular momentum of the particle minus its component in the z
direction; in the weak field limit (G — 0) it is a combination of the total angular momentum
excluding it’s component in the z direction and a term quadratic in the linear momentum in
the same direction. This constant is a result of the existence of a (2,0) Killing tensor field in

Kerr spacetime (see section 2.1.2.1).

Cy and C, are calculated using the initial conditions of each geodesic. It is those values,
as calculated from the initial conditions, which are used in the integration of the geodesic
equations (2.23)-(2.26). In order to evaluate the error in the integration, Cy and Cy are also
calculated independently at each integration step using equations (2.18) and (2.19), and their
value is compared to the initial value. Since only the initial value is used in the integration,

this provides an independent error estimation of the geodesic integration.

i) Killing tensor fields and Carter’s constant

A Killing tensor field is a generalization of a Killing vector field. A vector field X is a Killing

vector field if the Lie derivative £ of the metric with respect to X is zero, i.e.
Lxg =0, (2.28)

where the lie derivative of a tensor field A with respect to a vector field X with flow ox () for

some parameter \ is defined as

LxAl, = lim (0(6) Al _A’p) . (2.29)

€—00 €

Here p’ = o(e€), and o(e)*A is the pullback of the tensor A at p to p’. This means that the
metric does not change along the flow defined by X which indicates some symmetry of the

metric. This definition implies that Killing vectors satisty Killing’s equation:

VX, +V,X, =0 (2.30)
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The quantities given by X,u* are conserved along geodesics tangent to u (for a proof see
e.g. Wald, 1984, appendix C). Kerr spacetimes have two Killing vectors: 0; and 04, in BL
coordinates. C; and Cy can be found from these killing vectors as C, = 0, - u = ¢,,,(0p)*u” =
guu’ + grgu® and Cy = 0y - u = G, (D)1 = gpu' + gpsu®, recovering equations (2.18)-(2.19).
This notion can be generalized to tensor fields: a Killing tensor field A is a tensor field that
satisfies

Vi) =0 (2:31)

where the brackets indicate the symmetrical part of the tensor (e.g. By = (B + Buu)/2).

In particular, the following tensor :

K, = 28luny) + g (2.32)
with
r? 4 a2 a
H=—-:.10,— 2.33
< A ) b ) A) ( )
. r’+a®> A a

is a Killing tensor of Kerr spacetime (Wald, 1984, chapter 12). K, u"u” = Q + (Cy + aC})?
is its corresponding conserved quantity (Misner et al., 1973, sec 33.5), where Q is the Carter

constant as given in 2.27, which is also conserved.

ii) Physical interpretation of C,

In Newtonian mechanics, a time translation symmetry corresponds to the conservation of en-
ergy. However, given the difficulty in defining energy in general relativity, the physical meaning
of the conserved quantity C} is not obvious. To gain some insight into its physical meaning,
we start be rewriting equation (2.18) by re-scaling C; into a new quantity C;*, and writing it
in terms of the particle’s momentum p* instead of its 4-velocity u*. For massive particles the
particle’s 4-momentum p and its four velocity u are related by p = mu. For massless particles,

one can define
p=(E/[Du (2.35)

where € is the energy of the particle measured by some particular observer (e.g. the energy
measured by a stationary observer at infinity). Note that, although the choice of Eis arbitrary,
given a particular choice of observer, & is a Lorentz scalar, i.e. everyone will agree on the energy

measured by that observer.

4This energy it is given by £ = —pa® where 4 is the 4-velocity of such observer, in whatever coordinates
one chooses to work on.
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Then we have:

Cy* = gup' + 9t¢P¢- (2.36)

For particles of mass m, C;* = mC;. For photons, C;* = (5’ /c?]) C;, where £ is the energy
measured by the reference frame on which the 4-momentum p is defined®. For convenience, let
the photon’s 4-momentum p be defined with respect to a stationary observer far from the black

hole, so that £ is the photon’s energy measured by this observer.

Now consider some emitter/absorber moving with 4-velocity v’ relative to the stationary ob-
server at infinity. In the rest frame of the emitter/absorber, v’ = [¢] (1,0,0,0). So, we can

write:

Ct" = gup’ + giep” = %gttpt?/t + égwp%’t = %gtuu’tp“
, (2.37)

_1 1t 1 A/iu_lfu__g
= Egtp,u p"+ gigupt = Huup = H
where £’ is the particle’s energy measured by the primed observer. Here we used the fact that
the Kerr metric in Boyer-Lindquist coordinates has g, = g9 = 0 and that all components of
u’ other than u'* are zero. Above, ¢ was used to represent the 3 spatial indices and p the 4

spacetime indices.

A different emitter/absorber, say one with 4-velocity uf, would measure a different value of
C,*, namely C;* = —&7/[c|, where £ is the particle’s energy as measured in the dagger frame.
Hence, the value of the constant of motion C;* will be different in different reference frames.
Since the choice of primed (or dagger) frame is arbitrary, we see that C;" is in fact the energy

of the particle measured by any observer/emitter /absorber in its own rest frame.

Returning to the original constant of motion, C;, we see that

gl

- ——]. (2.38)
& &

This is actually an energy shift (up to a factor of ¢ and a minus sign): a ratio between the energy
of the particle measured by some emitter/absorber (the primed frame) and that measured by

the stationary observer far from the black hole (the hatted frame)S.

5For massive particles we can also write Cy* = (£/[c2]) Cy, where & is the particle’s rest mass energy.

SFor clarity of argument, we called the hatted observer a “stationary observer at infinity” and the prime and
dagger observers “emitters/absorbers”. This language is intuitive when talking about astrophysical observations,
where typically one is interested in comparing the photon energy at emission vs at detection. However, as
mentioned previously, the choice of the hatted reference frame used to define the photon momentum is arbitrary.
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For massive particles, where &€ is the particle’s rest mass energy, then C, = —[c]&’ /é' =
—[c]€"/(m[c?]) = —+'[¢], where 7/ is the Lorentz factor of the particle measured in the prime
frame. This implies that the Lorentz factor is, in a way, the massive particle analogue of redshift

in massless particles.

The meaning of C} for massive particles can also be interpreted in terms of observers and
emitters. Considering the same stationary observer far from the black hole and naming its
frame a tilde frame, so that the energy of the particle measured by the observer is £, one can

write C

—ild = =5l (239

As such, one can interpret C for both massive and massless particles as the energy shift between
some emitter (prime) and observer (tilde) which, for massive particles, requires a correction term

corresponding to the particle’s Lorentz factor in the observer’s rest frame.

iii) Physical interpretation of C,

Just time translation symmetry is associated with conservation of energy, in Newtonian me-
chanics rotational symmetries are related to the conservation of angular momentum. However,
just as in the case of energy, one needs to check the physical meaning of Cy in the context of
general relativity. In Newtonian mechanics, angular momentum is defined as L = r x p, where
r is the particle’s position vector and p its linear momentum. As explained in Grant (2020),
there is no equivalent of a position vector in GR, so it is not obvious how to define an angular

momentum in GR.

In section 2.1.2.i, we saw that Cy is conserved as a result of the existence of killing vector
0y = 0/0¢. In order to gain some insight into the physical interpretation of Cy, let us consider

this vector in Cartesian coordinates. Cartesian coordinates are related to BL coordinates via

x = V1?2 + a?sinf cos ¢ (2.40)
y=Vr2+a?sinfsin¢ (2.41)
z = rcosf. (2.42)

So we can rewrite the vector d, as

0, = (02/06)0, + (9y/06)0,
= —Vr2 4+ a?sinfsin ¢0, + Vr? + a?sinf cos ¢, (2.43)

= —y0, + x0,.
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If one think as a quantum physicist, this already looks like the operator of angular momentum
in the z-direction. As a general relativist, we go further and consider the conserved quantity

Cy = 0y - u (see section 2.1.2.1):

C¢ = 8¢ U
= gm’(a(ﬁ)wux + gy (aqb)yuy
= Gua(—yu )_‘_gyy(xu )
_ gm( yp )+gyy(xp )

(/1)

where g¢,, and g, are components of the metric in Cartesian coordinates. Far away from

(2.44)

the black hole, the metric (2.16) becomes the Minkowski metric in spherical coordinates. In
Cartesian coordinates, it is simply diag(—1,1,1,1). So, far from the black hole (e.g. for an
observer “at infinity”), C;, = (—yp® + z p¥)([c}]/€). For a massive particle, by analogy with the
Newtonian angular momentum, this is precisely the angular momentum in the z-direction per

unit rest mass. For massless particles it is instead the angular momentum per unit (£/[¢?]).

As such Cj can be interpreted as the value that a far away observer would obtain when mea-
suring the usual angular momentum of the particle in its rest frame, agreeing with the intuition

from Noether’s theorem in Newtonian mechanics.

2.1.3 Initial conditions for backward geodesic integration

In this section all expressions are written in geometrical units (G = ¢ = 1), unless clearly stated

otherwise.

In order to integrating the geodesic equations one must choose an initial position and 4-velocity
as initial conditions to the differential equations. Given that different initial conditions will
result in different geodesics, it is important that the choices made are physically motivated.
For the purpose of the calculations performed in the rest of these thesis, two different types of

initial conditions were considered. These are described below.

When performing radiative transfer calculations, one is often interested in the radiation from
a particular astrophysical event that will reach a distant observer. This is the setup for the
scenario considered in chapter 3. In particular, we consider radiation produced by events
happening in the vicinity of a black hole and reaching an observer very far from it. The
observer is represented by a screen which the particles (massless or massive) hit. Because of
the distance from the black hole, this screen can be considered to be approximately flat and the
particles are assumed to hit it perpendicularly. This is the same setup used in (Younsi, 2013),

which we will replicate here for completeness - see figure 2.1.
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2.

Figure 2.1: Backward ray tracing initialization setup. Diagram from Figure 3.4 of Younsi (2013),
used with permission. The particle trajectories (red dashed line) are initialized at thee observer plane
(green axes), which is oriented so that the z-axis points in the negative r direction, towards the black
hole. The black (2/,y/, 2’) axis correspond to Cartesian coordinates centered at the black hole. The
observer plane is centered at Boyer-Lindquist coordinates (7obs, fobs; Pobs). The initial position of each
ray is given in terms of (z,y,z) = (o, 3,0) coordinates in the observer plane and the coordinates of
the observer plane origin.

The plane is oriented so that its normal, which we will call z, points towards the black hole.
In this way, we define the initial conditions of the geodesic’s coordinates by picking Cartesian
coordinates («, ) in the observer plane, and defining the location of the observer plane by
choosing (7 ops, Oobs, Gobs) in BL coordinates. The initial condition for ¢ at the observer plane are
set by choosing the time at the moment of detection to be ¢ = 0. The observer coordinates are
transformed into BL coordinates in a manner similar to Younsi (2013). First, they are trans-
formed into “black hole coordinates” and refer to as (2',y/, z'), Cartesian coordinates centered
at the black hole. Given coordinates (xg, o, 29) in the observer frame, the initial conditions

(20,99, 2'0) are given by:

7’0 = D (Yo, 20) COS Pobs — To SIN Pops (2.45)
v'o = D(Yo, 20) SIN Pops + To COS Pobs (2.46)
Z/O = (robs - ZO) COs Qobs + Yo sin gobs (247)

where D(y, z) = (\/robs2 + a? — z) sin Oops — y cosbOons. Then, they are transformed into BL

coordinates as:

o4 \/0? + 4a2(2)?

5 (2.48)

o =



28 Chapter 2. GRRT formalism

0o = arccos <@> (2.49)

To

¢0 — atan? (y/07 I/O) (250)
with o = (l‘lo)Q + (y,O)Q + (2,0)2 — a2,

These relations can be easily derived by setting M = 0 in the Kerr metric (2.14), which
corresponds to Minkowski spacetime, and comparing the metrics for this spacetime written in
Cartesian and BL coordinates. For the calculations performed in this thesis, the initial position

condition are always set as (xo, %o, 20) = (v, 5, 0).

The initial conditions for the derivatives ¢, 7, 6, and qb must also be determined. For this,
it is assumed that geodesics intersect the observer plane perpendicularly. This means that
Uy = Uy = 0, since the only non-zero component of the velocity is in the 2 direction. This

implies that z¢ = t'vgg,o =0 = 9p. 29, on the other hand, remains to be determined.

By differentiating equations (2.48)-(2.50) and (2.45)-(2.47) with respect to proper time or affine
parameter, they can be written as a function of &g, 39, 29. In particular, the following expressions

for 7q, 90, 9250 are obtained after setting &y = 79 = O:

. ToR sin O sin Oy, cos ® + R2 cos Oy cos Oops

7‘”0 =20 > = 2:'0 7’7(] (251)
90 Iy 7o sin 6y cos O ps — 7;cos 0 sin 0,1, cos O = % 070 (2.52)
. . sin By sin ® LT

Bo = oy —— = %y ¢y (2.53)

‘R sin 90

where R = /r2 +a? and the tilde quantities are the factors of the derivatives which are
independent of Z5. The sign in front of the equations was set so that, for Z; > 0 - see equation
(2.58) - the 4-velocity points away from the black hole, as it would in a real detection (i.e.,
since we will chose Zy > 0, the sign of the initial conditions is reversed with respect to what it

would be by differentiating the coordinates)”.

The initial condition for # or not free, since the 4-velocity must obey equation (2.13). Its
required value can be found either from equation (2.13) or from equations (2.21) and (2.22),

yielding the exact same result. The algorithm written for this thesis uses the first option,

"Note that these expressions differs slightly from those in Younsi (2013), who do not have an explicit 2
dependence. Since in Younsi (2013) the author deals only with massless particles, there is no need to show this
explicit dependency. This is for the reasons explained later in the main text: for massive particles any value
of Zp can be chosen, including Zy = 1. Secondly, the signs are reversed. This is because the author wrote the
equations pointing backwards in time, while we chose to calculate them first forward, to be consistent with
observations, and flip them when performing backward ray tracing.
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finding that £, for the Kerr metric is given by:

; —(2g:h0) + \/(29t¢¢30)2 — 4G (grrTE + 9o00E + Jo0dE — &) (2.54)
0= -
204

where we picked the positive root. This has an implicit dependence on the choice of %y, which

becomes clear by rewriting ¢, as:

 —(200000) + V/ (201000)2 — 41000 (F0)? + Go0(0)? + oo (0)? — €/50)

to = 2 2.55
0=t o (25)

For null geodesics { = 0 and o o¢ Zp. So the initial conditions for the derivatives are i* =
20 (1570, To, éo, éo), where Lfo is also defined as the component of £, with %, factored out. As such,
the choice of %, is not significant for massless particles. In particular, one may set it to 2y = 1
and find the initial conditions for (£, 7o, 0o, gz.So) = (go, To, éo, ngSO). Any other choice of Z; would
yield the same geodesic: since null geodesics must lie on the light cone of the point where they
hit the observer plane, there is only one possible null geodesic which reaches that same point
perpendicularly®. Choosing a different value of Z, simply corresponds to re-scaling the affine

parameter linearly.

For massive particles, on the other hand, the £/22 term breaks the linearity between £, and Zg.
Since the particle’s 4-velocity * is not linearly proportional to Zy, one is not free to arbitrarily
choose a value of Zy. In particularly, one cannot simply normalize it to 1. As will be seen later,
this would correspond to choosing a particular timelike geodesic from a particular location
in the observer plane, which in practice corresponds to only allowing particles with a certain

velocity to reach the observer plane at that location.

When detecting a particle, the observer usually has information about the particle’s energy and
mass. With this knowledge, in an orthonormal frame”, one can find the particle’s momentum

using (with the factors of ¢ added explicitly for clarity):
pup" = —m?[?] = =&*/[°] + |p|? (2.56)

where |p|? = m? |z| (since this now related to dealing with massive particles) is the norm of the
spatial part of its 4-momentum and £ its total energy measured in that frame (all quantities
are measured in the same frame). For the setup presented above, the initial conditions for the

spatial part of the 4-velocity in the observer frame are & = (&,7, 2) = (0,0, 29). So, equation

8In fact there are two: one future and one past directed. This will be relevant for section 2.1.3.i. But there
is a single future directed null geodesic with a certain spatial direction through a point.
9An orthonormal frame is a frame in which the metric has the form Guv = Nuv- See section 2.1.4 for details.
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Ray tracing: x’-y’ projection of rays initialized on z=0 plane Ray tracing: x'-z’ projection of rays initialized on y=0 plane
10.01 10.0 4 —— mIc2E=0.0  ---- m[c2)e=0.7
7.5 7.5 / e
5.0 1 5.0 1, g
251 251 x "
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Figure 2.2: Comparison of the spatial trajectories of backward integrated null (filled lines, m[c?]/€ =
0.0) and timelike (dashed lines, m[c?]/€ = 0.7) geodesics around a Schwarzschild black hole. Left: all
geodesics were initialized and remain on the equatorial plane; the plot shows the projection of their
spatial trajectory into the z’-y’' plane. Right: all geodesics were initialized and remain on the 3’ = 0
plane; the plot shows the projection of their spatial trajectory into the z’-z’ plane. Due to the spherical
symmetry of the spacetime, there is no distinction between the two cases.

(2.56) can be re-arranged as

—m?[c?] = —&?/[*] + m? 3] (2.57)

moz[cy(ﬁ)ll 2.58)

where the positive root for Zy was chosen. For a particle of mass m, the value of Z; depends

only on the ratio of its total energy to rest mass energy and not on its energy nor its mass
alone. Note that this 2y is not the particle’s speed, v = |[da/dt| < [¢]. Instead, it is 2o =t v/[c]
and, for highly relativistic particles one has zy > 1.

In the limit of ultra-relativistic particles, where £ > mlc?|, %y becomes very large, so that
£/z2 — 0 in equation (2.55) and the linear dependency of the initial conditions on %, is ap-
proximately recovered. This means that in the ultra-relativistic limit, trajectories of massive
particles approach null geodesics. In practice, this implies that, above a certain £ /m|c?] thresh-
old, massive particles can be treated effectively as massless in the geodesic calculation. Figures
2.2 and 2.3 show the spatial trajectories of geodesics with different m[c?]/€ ratio: some null
(m[c?]/€ = 0) and some timelike (m[c?]/€ = 0.7). Different values of m[c?]/€ yield different
geodesics, with their trajectories quickly approaching null trajectories as m[c?] /€ increases (see
chapter 4 for details). An interesting feature to notice is how the spatial trajectories of particles

with different masses only start to deviate from each other once they get very close to the black

hole.
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Figure 2.3: Comparison of the spatial trajectories of backward integrated null (filled lines, m[c?]/& =
0.0) and timelike (dashed lines m[c?]/€ = 0.7) geodesics around a Kerr black hole with spin parameter
a = 0.998. Left: all geodesics were initialized and remain in the equatorial plane; the plot shows the
projection of their spatial trajectory into the z’-y’ plane; the asymmetry around the x-axis is due to the
frame dragging caused by the spin of the black hole. Right: all geodesics were initialized in the 3’ = 0
plane, but do not remain in that plane due to frame dragging. Note that, in Cartesian coordinates,
the event horizon is no longer a sphere but rather an ellipsoid with the z’ and 1/-axes elongated with
respect to the z’-axis due to the black hole spin.

i) Backward initial conditions algorithm

In real astrophysical situations, the photons or massive particles originate from far away and
travel along geodesics towards the observer. However, it is more efficient to perform the geodesic
calculation backwards, starting from the observer and moving backwards in time along the
geodesic. By doing this, one avoids integrating many rays which never reach the observer.
Equations (2.51)-(2.53) point away from the black hole and (2.54) is positive, as expected.
However, we want to solve the geodesic backward in time, from the observer plane towards its
origin. So after calculating (fo, 7, 0o, Q‘ﬁo) using the equations above, we flip the sign of the initial
conditions: (io,i'o,ég,éo) — —(io,fo,éo,(bo). We then use equations (2.18)-(2.19) to calculate
the values of C; and Cy required to solve the geodesic equations (2.23)-(2.26) for the new initial
conditions . Using these values, we are able to perform the geodesic integration backwards in

time.

2.1.4 Initial conditions for forward geodesic integration

In some situations, one might be interested in performing ray tracing and radiative transfer
calculations in order to understand local physical processes rather than to compute observables.
In these cases, the backward ray tracing approach described in section 2.1.3 is not as useful and
one must resort to forward ray tracing. This involves determining physically motivated initial

conditions for the geodesic integration at the emission site.

The scenario described in chapter 4 addresses the interaction of radiation emitted by a source
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close to the black hole with its surroundings. As such, a forward ray tracing algorithm is more
appropriate in this case. In order to choose the initial conditions for the integration, one must
make some assumptions about the emission on a local level and define them in the co-moving

9 in which the emitter is at rest. Then, an

frame of the emitter, i.e. the local inertial frame!
appropriate tetrad is used to transform the vector components between this co-moving frame
and the Boyer-Lindquist frame, i.e. the frame in which the metric has the form in equation

(2.16). In this section, the tetrad formalism is introduced and its application to the algorithm
described.

i) Tetrads

In a region of spacetime with a particular set of coordinates {x*}, there is a natural way to
define a basis for vectors in the tangent space of the spacetime manifold in that region. This is
called the coordinate basis'* {e,} = {9/02*}, and its dual {e*} := {da*} is the basis for the
cotangent space. Tensors can then be written in terms of components in this basis (v = u”e,;
g = guwete”’; etc). The metric components in (2.14) or (2.16) are written in the coordinate

basis corresponding to the Boyer-Lindquist coordinates (¢, 7,6, ¢), whose basis vectors are

e; = (1,0,0,0)
e.=(0,1,0,0)
(2.59)
es = (0,0,1,0)
€y = (0, O, O7 1)
In this section, we will refer to the metric components in this basis as giprjw = g(e,, €,)'* and

we will refer to the frame formed by the basis vectors as the BL frame.

In some situations, it is useful to work on a mon-coordinate basis. This is a basis where each
basis vector is a linear combination of coordinate basis vectors. Usually, roman indices are used
to label such bases. l.e. given a certain coordinate basis e,, one can create a non-coordinate
basis €, = €,"e,. The matrices € with components €, are usually called vierbeins or tetrads for
4-dimensional manifolds such as the spacetimes considered in this thesis. A general 4-vector V/
can be written in either basis: V = V%, = V(¢ "e,) = V*e,. So, the components of a vector
transform as V# = Ve or V* = V#(e™1),*, where we define ¢! to be the inverse of ¢, so

a ?

that (e71),%,” = d,” and &"(e71)," = 6°. Similarly, the components of a general co-vector

W =W,e*=W,((e1), e") = W,e" transform as W, = ¢,*W,.

19A local inertial frame at a point p is a frame in which the metric at p is Minkowskian, ie. g,.[, =
diag(—1,1,1,1) and 94 guwlp = 0.

1 This is the basis used in section 2.1.1.

12Recall that the components of any tensor in a particular basis are found by acting with that tensor on the
basis vectors, e.g. giprjw = 9(€u;ev)
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It is always possible to transform a non-coordinate bases into another one which is orthonormal
(Hull, 2020) and so we will only consider non-coordinate bases which are orthonormal. For a

Lorentzian manifold, a bases is said to be orthonormal if
9(€q, &) = g(€l ey, €,7e,) = €.1°6,"g(ey, en) = €€, 9 = Nab (2.60)

where 7 is the Minkowski metric and the last equality above is the condition for orthonormality.

It is easy to see that the BL coordinate basis is not orthonormal: it has off-diagonal elements
(hence it is not orthogonal, since e; - es = g(et, e) # 0) and its eigenvalues are not +1 (hence

it is not normalized, since e.g. e; - e, = g(ey, €;) # £1).

Consider an observer at point p with BL coordinates (t,7, 0, ¢) moving with a 4-velocity with

coordinate basis components given by
u= (u',u" v’ u®) = u'e, +u"e, +u’ey + uley. (2.61)

In order to define the initial conditions locally to this observer, one needs to find a set of basis
vectors {€, €1, €2, €3} corresponding to a locally Minkowski frame at p, co-moving with the

observer.

ii) The locally non-rotating frame (LNRF)

Such a frame can be found in two steps. First, we find a locally non-rotating frame (LNRF),
the frame “carried” by an observer which is co-rotating with the black hole. Such an observer,
moving at constant r and constant # and whose angular velocity is exactly that caused by frame
dragging, i.e. wiNrRr = —Gio/Jes is called a zero angular momentum observer, or (ZAMO).
Because they co-rotate with the spacetime, such observers see an unchanging geometry in their
neighbourhood (Semerak, 1993).

Consider a particular observer with 4-velocity given by
u = (u,0,0,u?) (2.62)

One can build a set of orthonormal non-coordinate basis vectors co-moving with this observer.
For the frame to be co-moving with the observer, the timelike basis vector, €y, is chosen to

point in the direction of the observer’s 4-velocity, i.e.
€ =no(1,0,0,w) x u (2.63)

where ng > 0 is a normalization constant to ensure that the frame is normalized and w = u? /u’.

In this new basis, the observer’s 4-velocity at p is given by u & le€g + 0e; + Oes + Oez. This
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demonstrates that, in this frame, the observer is at rest as desired.

As to the spatial components of the local Minkowski metric, they are chosen so that €; points

in the Boyer-Lindquist r direction, €; points in the 6 direction and €3 points in the ¢ direction.

In order to guarantee the orthogonality of the frame, one must, in general, add a time component
to the new basis vectors. However, since €y has no e, nor ey components, €; and €5 do not
need an e; component. As such, in terms of the coordinate basis, the new frame basis vectors

have components:

€] — N € = (0, ny, 0, O)
€ =ngey = (0,0,n9,0) (2.64)
€3 = N3, € + N3y €5 = (N3, 0,0, n34)

for some components ng,ng, nst, n3g. The components are found by requiring that €, - €, =

9BL)w (€a)" (€)" = Map, With the result:

1
nNg =
Va2 = Y4By + w)
1
ny = 5
y = (2.65)
\/ 06
no
Ngy = ——— +w
ot \/Z sin 0 oo (ﬁd) )
U 2
N3g = —F——— (" — +w
%= X sing (& = Bogs(Bs + w))

where the signs of the roots were chosen to be aligned with the definitions (2.64), and the
symbols are those defined in (2.15) and (2.17).

The basis vectors {€1, €2, €3} form a spatial Cartesian basis. For the particular case of a ZAMO,

where w = wiNrF = —0t6/9sp = — s, the non-coordinate basis vectors become

(1,0,0,—5,)

€) =

0,

€1 =

i
oo
o

=
VO

> (2.66)
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The new basis {€,} can be written in terms of the coordinate basis {e,} as a linear combination
€, = €,'e,. €, can be thought of as the components of a matrix formed by stacking the

components of the new frame basis vectors, written in the coordinate basis as:

L0 0 0
0 L 0 0
¢ = VI (2.67)
O O Y06 0
B o
_f O 0 v/Asin 0
o 0 0 0
0 e 0O 0
el = V7 (2.68)
0 0 Yoo 0
B¢\/ZSin0 O O VAsiné

These provide the correct transformations between a coordinate frame and the LNRF (see e.g.
Takahashi, 2007).

The Kerr metric can be written in this new LNFR basis'? either by calculating (gpngre))a =
9(€q: €) = (9BL))w(€a) "(€) " or using the tetrad directly as (gunre))ar = €." guw €75, Which

yields (in matrix form):

~100 0

g:o100 (2.60)
0 010
0 001

Since g(€q, €5) = N, this frame is indeed orthonormal, as desired.

iii) The co-moving frame

As mentioned above, a particularly interesting frame is one co-moving with an observer. Given
the orthonormal LNRF basis, it is possible to use Lorentz transformations to transform to
another orthonormal frame. Let the observer have a general 4-velocity given by u = u'e; +

u"e, + u’ey + u®e, in the BL basis, which corresponds to

u=u'ey +u'e; +uley + ules (2.70)

(u® 4 Byut)v/Asinf .
3

= au'ey + /" €1 + /oou’es + -

(2.71)

13Note that the metric tensor is always the same, independently of the basis in which it is written. As such,
it can always be referred to as g. When writing the metric components, the indices used should make it clear
which basis one is in: Greek indices and (¢, r, 8, ¢) refer to the BL basis while Latin indices and (0, 1,2, 3) refer
to the co-moving orthonormal basis. For clarity, in some situations the components are written as (g;pr))u or
(9[com])abs Tespectively, though this is not strictly necessary.
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in the LNRF basis. In this basis, the observer has spatial 3-velocity given by v* = u’/u’, where
i = 1,2, 3 represents spatial indices. One can define the absolute 3-velocity as v? = Zf’zl(vi)2

and hence define a Lorentz factor

1
R
_ (w'a) (2.72)
\/_ ()23 + (u0)?700 + (U?) 765 + 20 u? Byryps + (uh)*(—a + By*vps))

U

where in the last line we used the fact that the term in brackets in the denominator is simply
the norm of the 4-velocity, which is always equal to —1. A generic Lorentz boost can be used
to transform between orthonormal frames moving at a constant velocity with respect to each
other. As such, we can use the Lorentz boost transformation as the tetrad for transforming
between the LNRF and an orthonormal frame co-moving with some observer/emitter or other

object. A generic Lorentz boost is given by (Takahashi, 2007):

Y vy VoY vy

2.2 2 2
viy vivey vivsy

A= | VT TR T o (2.73)
= ViV 2 V2’Y Vovs 2 . .

VoY Vivay 1+ 2 2V3Y
2 I+ 1+ 1+

v v1v3y? vavsy? 1+ v3y?

37 iy Tty Tty

The basis vectors transform between the LNRF and the co-moving frame as €jcomja = Aabe[LNRF] b
and the components of vectors transform as Vieom” = V[LNRF}b(Afl)ba. The inverse Lorentz

transformation A~! is obtained by replacing v — —o® in equation (2.73).

To transform directly from the BL to the co-moving frame, it is only necessary to combine the
tetrad which transforms between the BLL and the LNFR bases with the Lorentz transformation
between the LNRF and the co-moving bases, i.e.

é[BLtocom] =A-¢ (2~74)
so that the basis vectors transform as
Efcom]a = (E[BLtocom])a" €] = A€, €1y, (2.75)
and the components of a generic vector V' transform as

a P a A b,y —1\ @
‘/[COIH] :‘/[BL}M(E[BILtocom]>:u - [BL]M(E 1)# (A l)b (276)
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and

‘/[BL]M = Vcom}a<€[BLtocom})au - ‘/[com]aAabgb“' (277)

iv) Initial Conditions in the co-moving frame

The problem addressed in chapter 4 requires the determination of physically meaningful initial
conditions in an orthonormal co-moving frame of an emitter with a generic 4-velocity u =
(u',u",u?, u®) in the BL frame. In particular, the initial conditions are chosen so that all rays
are emitted isotropically from a point (the emitter’s location), in the frame co-moving with the
emitter, as defined above. The spatial orientations of the rays, i (with -7 = 1), in this frame

are defined by two angles (¢, ¢’) using a Fibonacci grid'.

Note that €', ¢" are not the BL coordinates, but rather some polar coordinates with respect
to the centre of the co-moving frame. By using the standard polar to Cartesian coordinate
transformation, the initial spatial directions of the rays/particles are written in Cartesian coor-
dinates. Let the spatial part of the relativistic 4-velocity k of the emitted photons or particles
be'® k = |k|f, where |k| is found using the same expression as for Zy in 2.58, hence defining
k', k? and k*. The timelike component k° is found by requiring that g(k, k) = &, where £ = 0
for massless particles (as photons) and £ = —1 for massive particles. Since the co-moving frame
is locally Minkowski, this condition reduces to (k°)* =k -k — &.

Given these initial 4-velocities in the co-moving frame, the components of k£ in the BL coordinate

basis can be found as kpr)” = Kjcom]" (€[BL tocom])d’ , Using the tetrad 2.74.

In this way, the components of the initial 4-velocity of each ray are found in the BL where all
calculations are performed. Figure 2.4 shows an example of the effect of transforming isotropic

vectors in the co-moving frame into the BL frame.

An important point is that the co-moving frame defined by the tetrad above is only Minkowski
at the point p where the tetrad is defined. Away from p, it starts to deviate from Minkowski.
As such, when performing forward ray tracing calculations using these initial conditions, all
rays are considered to be emitted from a single point source. In this way, the vector component

transformations are ensured to be valid for all rays.

14 A Fibonacci grid is a particular grid where points are distributed roughly isotropically on a sphere. We
used the algorithm described in Roberts (2020): For a grid of N rays, the i-th ray points radially outward from
the emission point, in a direction given by 6, = arccos(1 — 2(i + 0.5)/N) and ¢} = 27i/§, where § = (1 +/5)/2
is the golden ratio.

I5Here the particle’s 4-velocity is referred to as k rather than u to distinguish it from the emitter’s velocity w.
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Initial geodesic directions in the emitter's comoving frame

Initial geodesic directions in the BL frame

- 4.5
05 -1.0 4.0

Figure 2.4: Left: Spatial directions of emitted geodesics in the emitter’s co-moving frame. The
emitter is on a prograde Keplerian orbit (see A.1) around a Kerr black hole at = 6r,. The origin of
the vectors is at the emitter’s location. The axes centered at the emitter are primed (z’, v/, 2") (left)
to distinguish them from the BL Cartesian axes (x,y, z) (right). Right: initial conditions of the same
rays transformed into the BL frame for an emitter momentarily at (r,0,¢) = (6rg,90°,0°), orbiting
in the equatorial plane at constant r and in the direction of increasing ¢, i.e. momentarily in the +y
direction. The relativistic beaming effect is very clearly visible, with rays concentrating towards the
direction of motion. The scale of the vector lengths is arbitrary. Only their direction and the ratio of
the lengths is relevant. These transformations were calculated for 100 null geodesic initial conditions
for illustration purposes. The effect is similar for timelike geodesics.

2.1.5 Ray tracing algorithm

The ray tracing part of the code consists of the integration of the geodesic equations (2.23)-
(2.26) with the initial conditions described in sections 2.1.3 and 2.1.4. The code was written in
Fortran 90, using a Runge-Kutta-Felhborg algorithm of order 4/5 for the geodesic integration.

The integration terminates when one of the following conditions are met:

1. The geodesic reaches an area within some small distance from the event horizon. These
geodesics are considered to be absorbed by the black hole. The margin is set in order
to avoid the coordinate singularity at the horizon. Given a certain observer grid, the
collection of pixels whose geodesics fall into the black hole form what is often referred
to as the black hole shadow. This is the lensed image of the event horizon: background
radiation does not hit those particular pixels as it would have had to originate at the

event horizon. See figures 2.5 and 2.6 for illustrations of this effect.

2. The geodesic is moving away from the black hole and goes beyond a certain distance from
it. These geodesics are considered to escape. For the case of backward ray tracing, these
would be geodesics that reach the observer from distant regions beyond the BH. Since in
most cases one is interested in geodesics coming from the vicinity of the black hole, these
are not particularly relevant. For the forward ray tracing cases, one is mostly interested
in investigating the trajectories of geodesics close to the black hole, without reference to a

distant observer. As such, once a geodesic goes beyond a certain distance, it is no longer
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Figure 2.5: Spatial trajectories of backward ray traced null geodesics around a Kerr black hole. Black
lines correspond to geodesics which would have had to come from within the event horizon to reach the
observer (since in the backward integration they enter the event horizon). The pixels in the observer
plane corresponding to these geodesics form the black hole shadow. The observer plane is far away
from the black hole and centered on the equatorial plane (6,ps = 90°).

relevant for the processes being considered and the integration can be interrupted.

3. The geodesic reaches an optically thick surface (see notes on surface funding algorithm

below).
4. The optical depth along the geodesic exceeds a certain value (see section 2.2).

The radiation transport algorithm (see section 2.2) was also coded in Fortran 90. The code is
written in a modular manner, with shorter, more individualized routines being combined into
more complex ones to produce the final completed programme. This means that it is relatively
straightforward to change small parts of the code (e.g. the equations of motion or the the
emission and absorption coefficients), simply by creating new basic routines and using them as

the building blocks of the final programme.
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Figure 2.6: Shadow of a Schwarzschild (left) and Kerr (right) black hole viewed from 6y = 90°
(edge on). Black: photon shadow; this is the usual black hole shadow, produced by the capture of
background photons by the black hole. Cyan: shadow of particles with m[c?]/€ = 0.7. As seen in
figures 2.2 and 2.3, particles with different m|[c?]/€ ratio follow different geodesics. The higher this
ratio, the more they will feel the gravitational pull of the black hole. As such, particles with a larger
mass (for the same energy) which were originally further from the black hole end up falling into it,
resulting in a wider “particle shadow”. Other than the size, the general features of the shadow are the
similar. Note that while the Schwarzschild black hole shadow is circular, the frame dragging in Kerr
spacetime shifts and deforms the shadow. (resolution: 122,500 pixels).

The geodesic integration is the most computationally expensive part of the code. Given that
the propagation of particles along different geodesics is independent of each other, the code
is parallelized so that multiple geodesics can be calculated simultaneously. As such, the time
taken to calculate images of a given resolution depends on the number of CPUs available in the
computer being used. As will be explained in section 2.2, the radiative transfer calculations are
performed along each of these geodesics simultaneously for all energies in the case of massless
particles (the code uses a vectorized covariant intensity, with a vector entry for each particle
energy, to be able to perform the GRRT calculation for all energies at the same time). This
means that the computational time does not depend on the energy resolution of the calculations.
This resolution does, however, impact the computers that the code can run in: due to the
presence of very large vectors, computers without large enough RAM available will not be
able to run the code, and segmentation fault errors will result from trying to do so. For very
large resolutions, therefore, the code should only be run in computers with large enough RAM.
For massive particles this vectorization is not possible, since each energy will correspond to a
different geodesic. As such, only one particle energy can be calculated at one time. Finally, in
cases where one requires the calculation of images at several time steps (e.g. for the calculation
of the light curves described in chapter 3) the calculations are performed sequentially for each
time snapshot. This means that the computational time taken for the calculations increases
linearly with the temporal resolution. In addition to this, as explained in section 3.2.0.iii),

there is some additional time taken by the time sorting algorithm which also increases with the
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Figure 2.7: Error in the integration of a backward traced null geodesic reaching the observer at
Oobs = 45°. Left: projection of the geodesic trajectory in the (2/,y’) and (2/, 2’) planes; the black circle
represents the event horizon of the black hole. Right: difference between the value of all four conserved
quantities measured at each integration step vs their initial value, as a function of coordinate r; this
difference provides an estimate for the integration error. The colour code corresponds to the value of
the 6 coordinate at each point. Note how the most abrupt error increases happen when the geodesic
passes close to the poles, where the ¢ coordinate is not well defined. This explains the relatively large
€rTors.

temporal (and spatial) resolution. This step uses a Quicksort algorithm and as such it scales,
on average as N log N, and, in the worst case scenario, as N? (JaJa, 2000), where N is the

total number of pixels to be ordered (which depends both on temporal and spatial resolution).

i) Validation of the geodesic integration with conserved quantities

The error associated with the integration of the geodesics is quantified by calculating the four
conserved quantities, namely C;, Cy, @ and k?, at each integration step and evaluating how
much they change compared to their initial values. Figures 2.7 and 2.8 show examples of these
tests for two potentially problematic null geodesics: one that goes through the coordinate poles

and one that experiences an abrupt change in its ¢ direction.

ii) Surface finding algorithm

Many astrophysical radiative transport problems involve calculating the transport of radiation
from a particular emitting region. This can be optically thin or thick. If the emitting region
has some boundary, it becomes essential to be able to find that boundary as part of the ray
tracing calculation. Two examples of widely used emitting regions are geometrically thin and
optically thick accretion disks around the black hole and hotspots, usually represented by a

small spherical region in the vicinity of the black hole.

In order to find a surface, at each point of the integration one much check i) the time at which
the particle was at a certain point; ii) the location /shape of the surface at that time; iii) whether

the particle crossed the surface between the previous step and the current step. Step ii may
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Figure 2.8: Error in the integration of a backward traced null geodesic reaching the observer at
Oobs = 90°. Left and right plots as in figure 2.7. The colour code corresponds to the value of d¢/dt = qb /t
at each point. The geodesic remains in the equatorial plane, so # = 0 throughout the integration. In
this case, the problematic part of the integration is the point where d¢/dt changes sign. It is clear
that this point of the integration, in yellow, is when the errors in all four quantities start to increase.
Still, they remain within reasonable bounds for the purpose of the GRRT calculations performed in
this thesis.

be skipped if the surface is stationary (e.g. a disk or torus) but needs to be considered if the
surface changes shape (e.g. expanding hotspot) or location (e.g. orbiting hotspot). In practice,
in order to optimize the code, the surface finding is not actually performed at each step. For
example, if one knows that the disk is in the equatorial plane and has inner radius r; and outer
radius 7,, then the detailed surface finding is only performed when the particle is close enough
to a vertical cylinder of radius r,. In this thesis, three types of surfaces were used: a thin
equatorial disk, a thick torus and orbiting spherical hotspot with constant radius. The detailed

surface finding algorithm is as follows'S.
1. Integrate step using RK4/5 algorithm;
2. If the surface to be found is a thin equatorial disk of inner radius r; and outer radius 7,:

(a) Check the 6 coordinate at the current and previous iteration. Check whether z = 0
plane was crossed between iterations by checking whether § > 7/2 in one iteration
and 6 < /2 in the other.

(b) If false: continue integration. If true: check radial coordinate in cylindrical polar
coordinates (p = /1?2 — 22, where z is the Cartesian z-coordinate of the current
integration point) to see whether the crossing of the z = 0 plane occurred within the

disk region, by investigating whether r; < p < r,.

(c) If false: continue integration. If true: check whether z coordinate of the current

iteration is within the error tolerance € from z = 0, i.e. whether |z| < e.

16Below we refer to the black hole coordinate 2’ as z for simplicity.
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(d)

(e)

(f)

If true: the current iteration point is considered to be on the surface. If false: check

whether the number of surface finding iterations is less than the specified maximum.

If true: Go back to the previous iteration and re-integrate with a reduced step size
and repeat the process. If false: Check whether error in z is less than twice the

error tolerance.

If true: accept point as being in surface. If false: output an error saying that

desired surface accuracy could not be reached. Move on to the next ray.

3. If the surface to be found is an equatorial torus (i.e. a torus centered in the equatorial

plane):

(a)

(f)

Define the angle spanned by the torus from the origin, s = arctan(rmin/ maj),
where 7, is the major radius of the torus (from the origin to the centre of the
torus) and rp,;, the minor radius, defining the torus’ width (see figure 2.9). Look at
the 0 coordinate of the current iteration and check whether it is within o, from

the equatorial plane.

If false: continue integration. If true: check whether the radial coordinate in
cylindrical polar coordinates (p = /72 — 22) is within the torus region, i.e. whether

Tmaj — Tmin — € < P < Tmaj + Tmin + €, Where € is the error tolerance.

If false: continue integration. If true: check whether the current point is within the

error tolerance from the torus cross-section circle, i.e. whether |\/(p — rmaj)? + 2% —

Tmin‘ S €.

If true: the point is considered to be on the surface. If false: check whether the

number of surface finding iterations is less than the specified maximum.

If true: Go back to the previous iteration and re-integrate with a reduced step size.
If false: Check whether |\/(p — rmaj)? + 22 — T'min| < 2€.

If true: accept the point as being on the surface. If false: output an error saying

that desired surface accuracy could not be reached. Move on to the next ray.

4. If the surface to be found is a spherical orbiting hotspot, find the location of the plasmoid

centre at the time of emission in the following way:

(a)

Pick the initial location of the hotspot (r*(0),6*(0),¢*(0)). Then, the location of
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the hotspot at a given time t is given by

(6) =" (0)
o (6= 0°(0) (2.78)
5= (0 + 7

where Ty, is the orbital period found by assuming a Keplerian orbit (see A.1 for
details). In chapter 3 of this thesis, a backward-forward surface finding algorithm
is used. This involves fixing the position of the hotspot at certain emission times,
tem, performing a full geodesic integration and surface funding for that location,
increasing ten, fixing the new position, integrating again and so on (as described

below). So equations (2.78) above are solved for ¢ = tep,.

Once the plasmoid location is defined:

(a)

(e)

Find the spatial distance between the current iteration point and the centre of the

hotspot and check whether it is less than than the hotspot radius rys plus some error

tolerance €, i.e. \/(z —2*)2 + (y — y*)2 + (z — 2*)? < rps + €, where z*, y*, 2* are the

Cartesian coordinates of the hotspot’s centre and 7y, is the radius of the hotspot.

If false: continue integration. If true: check whether the distance between the pre-
vious iteration coordinates and the centre of the hotspot is within the error tolerance
of the hotspot radius (since we want to find a point on the surface and not merely
inside it).

If true: point is considered to be on the surface. If false: check if the number of

surface finding iterations is less than the specified maximum.

If true: Go back to previous iteration and re-integrate with a reduced step size.
If false: Check whether the distance from the surface is less than twice the error

tolerance.

If true: accept the point as being in surface. If false: output an error saying that

the desired surface accuracy could not be reached.

Thin disks are good approximations of certain astrophysical systems such as certain types of

accretion flow. More general and more realistic scenarios would be thick tori supported by

physical mechanisms (e.g. rotation or pressure supported, see e.g. (Younsi et al., 2012)).

However, depending on what one is interested in studying, simplified models of these accreting

regions may be good enough. Our code allows for the ad-hoc selection of the disk/ torus

parameters - although these are not entirely self-consistent, they speed up the calculations by
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Figure 2.9: Illustration of torus surface finding algorithm, with the definitions of the relevant quan-
tities Qorus,"min and Tmaj. The horizontal line is the 2’ axis and the figure shows a cross sectional cut
of the torus, only showing one of its sides with respect to the black hole.

not having to solve for the disk structure and still provide useful insight into the GR effects
close to the black hole.

Figure 2.10 shows the image of a photon-emitting thin disk around a Schwarzschild and a Kerr
black hole for different viewing angles, colour coded with the photon arrival time. By knowing
the velocity profile of the emitters, it is possible to calculate the energy shift of the photons
in the emitter’s local rest frame vs that measured by a far away observer. Figure 2.11 shows
the same disk images, this time colour coded with the energy shift &,s/Eem, assuming that the

material in the disk is on Keplerian orbits around the black hole, as described in section A.1.

Only photon disk images are shown in this section. However, note that, just as for the black
hole shadow (figure 2.6), the image of any other surface will also be different for particles with

different m|c?]/€ ratios.
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a=0.998, 6,,s = 89° a=0.998, 6,ps = 60°

0 10 20 30 40 50 60 70
Photon arrival time since first detection (ry/[c])

Figure 2.10: Image of a thin disk around a Schwarzschild (top) and Kerr (bottom) black hole seen
by a distant observer at a viewing angle of 89° (left) and 60° (right). The colour coding corresponds to
the arrival time of each photon calibrated against the arrival of the first photon, in geometrical units.
The disk extends from the innermost stable circular orbit (risco = 6rg for Schwarzschild black holes and
Tisco = 1.237 for Kerr black holes with a = 0.998) up to an outer radius of 207,. In the Schwarzschild
case, one can see a secondary image inside the main image (thin green circle). It corresponds to an
image of the bottom of the disk. The photons that produce it are emitted downward from the disk
and are lensed by the black hole towards the observer (see figure 2.12 for an illustration). This is not
visible in the Kerr case because the optically thick disk extends closer to the black hole, preventing
such rays from reaching the observer. In fact, the image of a disk in Kerr spacetime with inner radius
at r = 6ry also has a secondary inner ring, so the absence of it in the present figure is not due to spin
directly, but rather due to the fact that a higher spin allows the disk to extend closer to the black hole.
A few interesting points to note are that i) when a secondary image is present (top row), it arrives at
the observer plane significantly later than the primary image; ii) when the disk is viewed from 89°, the
top and bottom edges of the disk, which are images of its edge furthest from the observer, also reach
the detector later, indicating the longer distance that the corresponding rays must travel; iii) similarly,
the further half of the disk when viewed from 60° (top half) also experiences a longer travel time than
the bottom half, which is closer to the observer. Image resolution: 122500 pixels.
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a=0.998, Oyps =89° a=0.998, Oyps =60°

0.2 0.4 0.6 0.8 1.0 1.2
Energy shift &ps/Eem

Figure 2.11: Same as in figure 2.10, but colour coded with photon detected energy shift (observed
energy relative to the emitted energy), assuming that the emitting material in the disk is moving on
Keplerian orbits (section A.1) around the black hole. Being close to the black hole, the radiation emitted
from the disk experiences gravitational redshift which, on the left hand side of the disk, competes with
the Doppler blue shift. The right hand side of the disk, where the emitters are moving away from
the observer, experiences Doppler redshift as well as gravitational redshift. The gravitational redshift,
which affects the emission from the whole disk, is responsible for the asymmetry in the fraction of the
disk which is blue vs red shifted. Note that the disk in Kerr spacetime experiences a stronger redshift
due to its inner boundary being closer to the black hole. The similarity of the images to those in Wu
et al. (2006) supports the validity of our code. Resolution: 122500 pixels.
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T 40
“'8'%00 T 30

Figure 2.12: Illustration of the formation of the secondary image of a thin disk. The figure shows
a Schwarzschild black hole (black sphere) surrounded by a thin disk (black circles). The observer is
represented by a grid at a viewing angle of 45°, which here is placed artificially close to the black hole
for illustration purposes (in all calculations the observer was at a distance of 1041"g from the black
hole). Dots of the same color on the disk and observer plane are connected by a geodesic. The image
shows the trajectories of two geodesics (red lines) which originate from the bottom of the disk but
are lensed into the observer’s view by orbiting the black hole. These two geodesics hit the observer
plane in a different location, being part of the inner disk which is visible in the Schwarzschild images in
figures 2.10 and 2.11. These two geodesics are examples of how the secondary images form. A similar
process is responsible for the secondary images of orbiting spheres shown in chapter 3.
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2.2 Generalized Covariant Intensity

In section 1.3 the traditional formulations for photon transport using the classical radiative
transport equation (section 1.3.1) and particle transport using the Boltzmann transport equa-
tion (section 1.3.2) were introduced. The present section defines a generalization of covariant
intensity which is also valid for massive particles. In section 2.3 a unified radiation transport
formulation is presented which is valid for both massless and massive particles and is completely

covariant.

2.2.1 Massive particles (e.g. protons and neutrinos)

One of the key objectives of this thesis was to generalize the current radiation transport for-
malism to enable it to handle the transport of massive particles. In order to do so, it was first
important to define an analogue of specific intensity (1.1) for massive particles. Consider a spe-
cific intensity analogue to (1.1) but in terms of the total particle energy £ instead of frequency

IZ

I dE
T dAdt dQ g’
where E is the total energy through the surface of area dA and £ denotes the energy of the

(2.79)

individual particles contributing to I¢, just as v was the frequency of the individual particles

contributing to I,,.

By replacing £ = hv in the expression above, which is valid in the case of photons, one sees
that I = I,/h. This is expected, since & = hr and so (2.79) has an extra factor of h in the
denominator. As such, a definition of specific intensity in terms of particle energy is sensible
and can be used for the transport of both massive and massless particles, being easily converted

into the usual specific intensity for the case of photons, I,, by a factor of h.

Following the same procedure as in section 1.3.2.ii), it is possible to construct a covariant
quantity related to this energy-based intensity for massive particles. Consider the number all
particles within the same phase space volume, dNy = F ([¢] dt) dA |p[* d|p| d©? (equation
(1.15)). In section 1.3.2.ii) it was useful to rewrite this quantity in term of the particle’s

frequency instead of momentum (dN, = F (hv/[c])* ([c] dt) dA (hdv/[c]) dQ). In the present

section we want to write it in terms of the particle’s energy, €.

For massive particles, in a local orthonormal frame, the 4-momentum is related to the particle’s

total energy £ and mass m via p,p* = —(E/[c])* + |p|* = —m?[*]. So we have
£ = /m2[cY] + |p|2[cY], (2.80)
d& Ip| &
£ 1P s ap d€. 2.81
apl ~ e TP (25
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p| = [—2;]\/52 —m2[ct], (2.82)

where the positive roots were chosen so that the definition of the particle’s energy and the
magnitude of its 3-momentum are positive. From the equations above, d|p| may be written in

terms of d€ as:

£ £
d|p| = B W dé€. (2.83)

Then, by replacing |p| and d|p| in equation (1.15), one can define dNg written in terms of the

particle’s energy:

dNg = Fc]|p|* d|p| dt dA dQ|,

1 2 2 £
= F ] (@(8 [ ])) <[02] 52—m2[c4]d€) dt dA dQ (2.84)
=EE? — m%c‘*]% dt dA dQ

The total energy going through a surface of area dA in time dt due to particles with momentum

in d|p| and total energy £ is then given by

dE = £ dNg
F 2.85
:52 \ 52—m2[c4]ﬁ d€ dt dA d€. ( )
c
By comparing this to the definition of I¢ it is easy to see that!”
‘F
_ 2
Ig =& E2 — m2[04] (E) . (286)
One can also define a new covariant quantity Z¢, analogous to Z, as
I
Te = £ _z (2.87)

ENGETrE

where F is again the phase space density of the particles.

By taking m — 0 and replacing € = hv and Iz = I,/h in (2.87), one can check that, in the
massless limit:

1, Z,
Te lmso = ApE T A (2.88)

The fact that the two covariant intensity quantities defined above, Z, and Z¢, differ only by a

17¢.f. Lindquist (1966) eq. 2.7.
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constant factor of h* indicates that both are valid for transporting massless particle radiation,
while the later is more useful for the transport of massive particles. As such, in the remainder
of this thesis Z¢ will be used for both massive and massless particles, and for simplicity we will

refer to this quantity as the covariant intensity:.

i) Observables

The GRRT formulation described in this thesis can be used to accurately calculate observables
corresponding to astrophysical events and processes. The fundamental output of the code is the
covariant intensity Ig) along each geodesic i as a function of observed (or emitted, depending
on the context) particle energy, £. Given this information, it is easy to calculate observables

such as specific intensities, fluxes, luminosities etc.

In this thesis, factors such as distance to the source or solid angle spanned by it are not relevant,
since the focus is mainly on the morphology of images, spectra and light curves and not so much
on their numerical values. As such, the results are mainly presented in terms of intensities and

fluxes. In particular, the following quantities are calculated:

e Observer images: These show the total intensity detected by each pixel ¢ in the observer
frame at time ¢ in the observer plane, 1) (¢). Le. the sum of the specific intensity over all
observed particle energies: 10(t) = Y. I () = 3, (82\/m> TV (t). This
has dimensions of specific intensity integrated over particle energy, which in cgs units is
erg/(t cm?sr). In order to convert this into a luminosity, one would only need to multiply
the result by a factor of A2, where A is the area of each detector pixel and 2 the solid

angle spanned by the source in the observer’s sky.

e Spectra, light curves and spectrograms: These show the detected intensity across all
pixels as a function of particle energy (in spectra), time (in light curves) or both (in spec-
trograms). This quantity is denoted by I¢(t) = 3., IV (t) = 3, (52 E2 —m? [cﬂ) T (1).
Spectra are generally plotted at a specific time snapshot or a time interval. In the latter
case, I¢(t) is summed over all snapshots in that time interval and the plot shows (€, I¢),
where we defined Ie = ), I¢(t). In some cases, a spectral energy density (SED) plot
is presented instead of a spectrum, for ease of comparison with previous results from
literature. In SED plots, the quantity shown is £l = >, € I¢(t). Whether a spectrum
(I¢) or SED (E1¢) are plotted is clearly stated in the labels and captions of the relevant
figures. For light curves, I¢(t) is summed over all observed energies before being plotted,
i.e. the plot shows I(t) = > . I¢(t) as a function of observation time, i.e. (¢,1(t)). For
spectrograms, I¢(t) is plotted for each time for each detected energy, hence providing a
visualization of the time dependent spectral evolution of the detections. It is a stacking

of spectra across all observation times into the same plot.
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In order to make quantitative astrophysical predictions, these results can be easily scaled by
knowing the detector area, the distance between the detector and the source and the solid angle
spanned by the source in the observer’s sky plane. These are case specific and only change the

results by a scaling factor. In this thesis such factors are neglected.

2.3 Generalized covariant GRRT equations

In Lindquist (1966), the author derived a covariant form of the transport equations using the
tools of Principal Bundles for particles with arbitrary mass (i.e. massive or massless). The
starting point of the formalism developed there is the relativistic generalization of Boltzmann’s

transport equation (equation (1.14)), given by (Lindquist, 1966):

D dF
U F= (== 2.
P daH ( dA )Col ’ (2:89)

where \ is either the geodesic parameter (for null geodesics) or the proper time (for timelike
geodesics) along the geodesic of a fiducial particle; F is the covariant distribution function
(or phase-space density) as defined in section 1.3.2; p# is the 4-momentum of the fiducial
particle; and D/dz# is an operator defined for convenience in Lindquist (1966) as D/dz# =
d9/0xt—T,“ 8 p?0/0p™. As explained by the author, the term p“% is the directional derivative
of F along the geodesic parameterized by .

The transport equation in this fully covariant form is derived in Lindquist (1966) (c.f. equation
(1.6)):

D
p“@]: =nok (= F+J) (2.90)

where J is the covariant source function, ng is the proper number density of the medium (i.e.
the number density of the medium in its own rest frame, which is a Lorentz scalar and hence
covariant), and & is the covariant absorption coefficient!®.

While equation (2.90) is extremely elegant, when performing practical calculations it is useful
to write in terms of quantities which can be determined from micro-physics. In particular, it is
useful to write this equation in terms of quantities such as the usual absorption and emission
coefficients in the proper rest frame of the medium'®, o and j, respectively. In order to do

this, one must first understand how the covariant quantities in equation (2.90) relate to ag and

Jo-

18See section 2.3.2 for a discussion on these quantities.
9By proper rest frame, we mean the same as the medium’s local co-moving frame.
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2.3.1 Total derivative

The operator D/dz" = 9/0z" —T',%, p?0/0p™ was introduced in Lindquist (1966) for conve-
nience. One can re-write this in a form more useful for practical GRRT calculations by looking

at the geodesic equation in terms of the particle’s momentum instead of its 4-velocity.

In a Cartesian coordinate system, the particle’s 4-velocity is given by u = (ct,i,9,2). As
discussed in section 2.1.2.ii), for massive particles the particle’s 4-momentum p and its four
velocity u are related by p = mu and for massless particles, one can define p = (£/[¢?])u (see

equation (2.35)). Using this, the geodesic equation &% +I',%, @it = 0 can be written as
(E/[)dp® /dX = =T, p’p" (2.91)
for massless particles and
mdp®/d\ = T pPpt (2.92)

for massive particles. Given that F = F(x, p) and considering its total derivative, the left hand

side of equation (2.90) can be written as®:

pu%]:: [pu% _Fﬂaﬂpﬁpua;;a} F
= {p’” 0 +mdpa 0 }]—"
oz d\ Op~ (2.94)
:m[dxo‘ 0 +dpa 0 }
d\ Oz d\ Op~
_dF
=mor

20A note on dimensions
One can get some insight into the parameters used in the timeline and null geodesics above by doing some
dimensional analysis. Below, square brackets are used to represent the dimension of whatever physical quantity
is inside them. The left-hand-side of both equations (2.94) and (2.95) has dimensions of

[p|[z] '[F] = MLT'L™[F] = MT'[F] (2.93)

The right hand side of equation (2.94) has dimensions [m][\]}[F] = M[\]![F]. Equating this to (2.93), for
the dimensions to be correct, it is required that [A\] = T', i.e. the parameter used in the geodesics has dimensions
of time. This makes sense, since one typically parameterizes timelike geodesics with a parameter proportional
to proper time, which has dimensions of time.

For the case on null geodesics, the right hand side of equation (2.95) has dimensions [£y/c?][\]7}[F] =
ML?T—2T? L2\ 7[F] = M[\]7}[F], the same as for timelike geodesics. In order to equate this to (2.93), it is
again required that [A\] = T. Note that, although the affine parameter used to parameterize null geodesics is not
proportional to proper time (since there is no passage of proper time in null geodesics), it still has dimensions
of time. (In unit systems where ¢ = 1 this is the same as the dimension of length.)
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for massive particles along timelike geodesics and

D 0 0
[Tty - PV o
b d:z:“]: {p OxH Bp b apa] d
[0 Ear o],
OxH [02] dX op (2.95)
& [da” dpa 0 r .
2] | ax 3:13“ d\ op~
¢ ar
[e?] dA

for massless particles along null geodesics.

i) The classical 4-momentum of photons

In this section the 4-momentum for photons was constructed in terms of their 4-velocity as
E . i€ i€
p=-—u=—([dt, &) = —([c],v) = —=(1,n), (2.96)
@ @ 9 = @
where v = [¢|f is the 3-velocity of the photon and 7 the unit vector in the direction of propa-
gation. From a dimensional analysis perspective, this definition is reasonable. One can under-

stand the physical significance of this proportionality factor by comparing it to the equivalent

relationship for massive particles.

For massive particles, there is a meaningful concept of intrinsic energy - the rest mass energy
in the particle’s rest frame & = m[c?]. This m = £/[¢?] is precisely the proportionality factor
between p and u. Such a concept of intrinsic energy does not exist for massless particles.
However, by picking a particular observer, one can formulate a concept analogue to this intrinsic
energy: the energy measured by some agreed upon observer. Then &/[¢?] in equation (2.35) is
the massless equivalent to the rest mass m = &€ /[c?] for massive particles. Of course for photons
£ is arbitrary, unlike for massive particles. But once an observer is agreed upon, then & for
photons is the same in any frame. It is usual to chose this reference observer to be a stationary

observer at infinity, although any other observer would be equally valid.

A final note goes to the relationship between the classical momentum of a photon as defined
in this way and the usual quantum mechanical momentum of photons, p = hk, where £ is
its relativistic 4-wavevector. In vacuum, the dispersion of light is given by |k| = w/[c|, where
w = 27/v is the angular frequency of the wave. So the 4-momentum of photons in a non-
dispersing medium can be written as p = h(w/[c|, k) = h(w/[d], |k|) = (w/[c])(1,7). By
comparison with equation (2.96), one may identify hw = {€. The right-hand side is the photon

energy measured by a particular observer, which is related to that measured by an observer
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at infinity (or whatever observer is chosen to define p) via an energy shift factor £. The left
hand side is also the energy of the photon measured by the particular observer, according to
the Plank-Einstein relation. So the definition of the “classical” momentum of a photon as used

in this chapter is indeed reasonable.

2.3.2 Covariant absorption and emission coefficients

As discussed at the end of section 1.3.2, it is useful to think of the distribution function of
photons in terms of a photon intensity. In Lindquist (1966) the author shows that I, =
(R*/[c?]) Fv3, so that F = ([c?]/h*)Z, (cf. equation (1.19)). Using the energy-related quantities
defined in this chapter instead of the usual frequency-related quantities, one can show that,
for both massless and massive particles, the relationship F = [¢]Z¢ holds (as expected from
equation (2.87)).

The absorption and emission coefficients are usually functions of the photon frequency. Analo-
gously, for massive particles the absorption and emission coefficients are functions of the parti-
cle’s total energy, £. Following Lindquist (1966) (eq. 2.1), the covariant absorption coefficient

k is related to the usual absorption coefficient by

nok = ag\/ EF — m?[ct] = afeny/ E? — m?[c!] (2.97)

where ng is the proper number density of the medium, which is a Lorentz scalar and hence
covariant, «q is the absorption coefficient as measured in the local rest frame of the medium
and & is the energy of the particles as measured in the medium’s local rest frame. Since ngk is
covariant, its value is the same when measured in another frame, say a primed frame, where the
measured absorption coefficient and particle energy are, respectively o’ and £’. Note than this
definition of « is not specific, i.e. it implicitly includes information about the proper number

density of the medium. The same is be true about the emissivity coefficient j as defined below.

Again, following the notation in Lindquist (1966), one can define a covariant emissivity coeffi-
cient?! Q = kJ. This can be related to the usual source function S = j/a, where j is the usual
emissivity coefficient, by first noting that, by the covariance of equation (2.90), the covariant
source function J must relate to the usual source function S in the same way as F relates to

the specific intensity I¢, namely

S[c?]

£/ — ]

In particular, in order to to relate @) to the usual emissivity in the medium’s proper rest frame,

J = (2.98)

2Tn Lindquist (1966), scattering terms are also included in the definition of J, but in this thesis we restrict
ourselves to scenarios without scattering, so that the definition becomes J = Q/k.
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one may write (2.98) this frame, which will be labeled “y”. Then, @ and j are related as:

So[CQ]
=KkJ =K
“ E3/ & — m2[cY]
2 .
_ (@ £z — m2[04]> < Jjo/ s (2.99)
no 3/ & — m2[cY]
_ [02]j0
ngé'g ’
Then,
[*]jo 9 [*]j0
nokJ = =1/&°" — m?[c* ) 2.100

Noting that & is simply the particle’s energy in the proper rest frame of the medium, i.e. the
particle’s energy as measured by an observer co-moving with the medium, it can be re-written
as &% = (pyut)?, where u is the 4-velocity of the medium. In this way, the expression inside

the square root can be rewritten in a manner very easy to compute along a particle’s geodesic:

m?2[ct]

, (2.101)
P

V&7 —m2et] = \/(par)? — m2[ct) = —py |1 -

where the minus sign is due to the fact that p,u* < 0 for timelike or null geodesics but
v/ (pput)? > 0. The right hand side of equation (2.90) can now be written in terms of covariant

intensity as

2 2 [02]j0
nok (—F +T) =/ & — m?[ct] | —ap[c?|Ze
( + ) [ ] ( [ ] + 502 /802 o m2[c4]>

(2.102)

2.3.3 GRRT formulation - putting it all together

Finally, putting (2.94) or (2.95) and (2.102) together an expression of the covariant transport
equation emerges where local absorption and emission coefficients, which can be obtained from

micro-physical considerations, may be used without losing the covariance of the formulation:

S p _(mley’ —a Jo,5
dx (é/[@])\/l (Puu“) ( o,gOInggOQ 52_m2[64]> (2.103)
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where £ is the rest mass energy for massive particles and the energy measured by a particular
agreed upon observer used to define p (e.g. a stationary observer at infinity) for massless
particles??, while &, is the total energy of the particle as measured by the medium at \; all
other quantities on the right hand side are evaluated at A, with the subscript “y” again referring
to quantities measured in the local rest frame of the medium. The subscript & was added to the
absorption and emission coefficients to make it explicit that they depend on the total energy as

wn

measured by a local observer co-moving with the medium. The sign in the equation comes

from the signature chosen (— + ++).
The physics of equation (2.103)

Equation (2.103) can be split into two terms: the term in brackets on the right, which describes

the changes in intensity due to absorption and emission from the medium. The second term,

where p refers to the particle’s 4-momentum and u to the observer’s (or medium’s) 4-velocity,

given by

is a correction factor which appears due to the covariant treatment of the transport equations.

For massless particles, the correction factor is simply p,u*/(€/[c?]), where € is the energy of
the photon measured by a chosen observer with 4-velocity 4. By definition, € is such that the
photon’s 4-momentum is rrelated to its 4-velocity, u,, via p, = (£/[c*])u,. Let i, = ([c]f, .1, %)
be the photon’s velocity in Cartesian coordinates as measured in the hatted observer’s rest
frame, i.e. the frame where u = [¢](1,0,0,0). Then the photon’s momentum in this frame can
be written as p, = (é/[cz])([c]f, 1, %)

Then, in this frame, it is clear that (p,) u% = —ébé, where { is the rate of change of the photon’s
time coordinate as viewed by the hatted observer. Of course this is true in any other frame, i.e.
regardless of what frame we use to calculate (p,) a%, it will always correspond to the photon’s
energy as measured by the hatted observer multiplied by the rate of change of the photon’s

time coordinate as measured by that same observer.

But since by definition £ is the energy measured by the hatted observer, one must have ¢ = 1.

This means that the observer chosen as a reference for the definition of 4-momentum is also the

21n e.g (Younsi et al., 2012; Younsi and Wu, 2015) and other papers by the same authors, a similar GRRT
formulation is used for the massless particles, albeit in terms of frequency rather than energy. However, one
might notice that the factor of € /[c?] does not appear for massless particles. This is the case because the authors
use the photon’s 4-velocity instead of its 4-momentum. As such, they do not need this extra factor, which in
our formulation appears as a conversion between 4-velocity and 4-momentum. Since we are mostly interested
in massive particles, however, where formulating the equations in terms of 4-momentum makes the calculations
easier, we keep this factor for massless particles too.
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reference for the ticking of a clock. It also implies that the affine parameter for the geodesic

has been chosen such that it is equivalent to the time measured by this observer.

Now suppose that at some point in the photon’s trajectory, say at z*(\) the photon encounters
some medium with 4-velocity ', in whose local rest frame, the photon’s 4-velocity is measured
to be ul, = ([c]f’,4’,4/,#) and the 4-momentum p, = &[NP, 2,4/, %"). The photon’s
energy measured in this frame is then given by & = —p) u'* = &' where t' = '(}), ie. it

varies along the photon’s geodesic.

Comparing this with the results for the hatted frame, one can see that #'(\) = & /€. This
means that, at each point along the geodesic, #'()\) is the energy shift factor, the ratio of
the energy measured by the chosen arbitrary observer used in the definition of p and the
particular observer encountered by the photon at that point in its trajectory. In other words,
t" encompasses the information about the Doppler shift and gravitational redshift between that
point in the geodesic and the point chosen to be the “standard observer”. In this perspective, it
becomes clear that gravitational and Doppler energy shifts are simply a result of clocks ticking
differently in different frames, rather than of the photon gaining or losing “intrinsic energy” (c.f.

the discussion in section 2.1.2.ii)).

If the hatted observer is chosen to be a stationary observer at infinity, then #/()) is the ratio
between the energy measured by the observer with 4-velocity «'(A) at A and the energy measured
by the stationary observer at infinity. This is in fact the interpretation of the factor presented
in e.g. (Younsi et al., 2012), though here we show its more general physical meaning, regardless

of the choice of reference observer.

With this in mind, the correction factor p,u*/(£/[c?]) is, up to a factor of [¢?], simply the
energy shift factor between the chosen observer and the observer with velocity u at that point

in the geodesic.

For massive particles, the p,u*/(£/[c?]) factor has the same interpretation, except now the
chosen observer is always the particle itself, since the energy & is now the particle’s rest mass
energy. So, this part of the correction factor is just the difference in energy measured by the

observer at each point of the geodesic and the particle’s intrinsic rest mass energy.

The term inside the square root is maximum for massless particles, for which m = 0. In this
case, the whole term reduces to 1. For massive particles the effect of the term is to decrease the
changes in covariant intensity depending on how relativistic a particle is. For highly relativistic
particles (with respect to the medium with velocity u), m[c?]/(p,u*) — 0 and so this term
approaches 1, as for photons. For less relativistic particles, this term will reduce the effect

of absorption and emission along the particle’s geodesic. In the extreme case of a medium

i 2
comoving with the particle, m[c?]/(p,u*) = 1 so that 4/1 — <m[c ]) = 0. This means that

pput
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there will be effectively no emission nor absorption along the geodesic. This makes sense since
this case represents a particle effectively “frozen into” the medium, so that no interactions take
place. For massless particles this can never occur, as it is not possible for the medium to

co-move with them.

i) Relativistic beaming

Using covariant intensity in the radiative transport formulation deals not only with gravitational
and relativistic energy shifts, but also with relativistic beaming. This is the phenomenon by
which isotropic emission by a body in its own rest frame appears, in a frame with respect to
which it is moving relativistically, to be beamed into the direction of motion of the body. In
order to see how this is taken care of in the covariant formulation described in this chapter,

consider the following.

The specific intensity is defined as I = dEdA dt dQ2 d€ (see equation (2.79)). While this
specific intensity will be different in frames moving with respect to each other, the covariant

intensity Z¢ is same in all frames.

Consider a case similar to what will be discussed in detail in chapter 3: a body on an orbit
around a black hole, emitting radiation isotropically and mono-chromatically with energy & in
its own rest frame, which is seen by a stationary observer far away, edge-on (i.e. at f,ps = 90°
in figure 2.1). When the object is moving away from the observer, the energy of rays emitted
towards the observer will be redshifted to &, < &. The redshift, £,./& < 1 will be further from
1 the faster the object is moving away from the observer. Since the covariant intensity is the

same in both frames, then the detected intensity I¢, ons < Ig, 0.

Conversely, consider a portion of the rays emitted in the direction of motion. The observer will
measure their energy to be blueshifted, say & > &. Then the detected intensity from that

direction will be I¢ ops > Ig p.

The specific intensity can be thought of as the sum over all photons of the photon energy. So,
in a way, it measures the number of photons in a bundle. The increase in the observed intensity
when the emitter is moving towards the observer and, conversely, the decrease when it moves
away from it, encompasses the beaming effect, by which more radiation is seen to be emitted

in the direction of motion and less in the opposite direction.

2.3.4 Solving the GRRT equations

In practice, the GRRT equation are solved along the geodesics of the particles at the same
time as the geodesic equations are integrated. Following a similar procedure to that in Younsi

(2013), the code integrates the geodesic using an adaptive step size Runge-Kutta—Fehlberg-4/5
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integrator?®. Then, at each point of the integration, it integrates the GRRT equation using a
simple Euler method with the same step size as that used for the geodesic integration. The
actual integration is performed for a set of two coupled differential equations obtained from
equation (2.103). First, one may use an integrating factor to find the analytical expression for

the solution, obtaining the following result:

Ig()\) = Ig()\o)e_Tgo\)
A o 21\ 2
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(2.105)

where the optical depth is defined as

_ g - Pat” . m[c2] ? o /
e(\) = /A dx —(é/[czp\/l (WW> eV | (2.106)

A/

Then, equations (2.105) and (2.106) are differentiated with respect to the affine parameter .
In most cases to which GRRT is applied, the background radiation is negligible, i.e. Zg(Ag) = 0
(this is the case in scenarios such as those considered in chapter 3). As such, for these cases we

can write:

dTg 2
—_— = 1— 2.107
dA g/ 2] 0.6 ( )

2 .
dZe _ _ 1 Jo.&y o e (2.108)
dA 8/ 62 502 802 — m2 [04]

Equations (2.107) and (2.108) are straightforward to solve along a geodesic: m, the particle’s

23A few other higher order integrators were tested, especially for massive particles with different mass to
energy ratios. However, it was found that no single one of these was better for all particles and that, depending
on the fine tuned error parameters, some integrators were better for some mass to energy ratios and others for
other. Different integrators are built into the code, so for a specific problem a different integrator can be used.
However, the results presented in this thesis were all calculated with the Runge-Kutta—Fehlberg-4/5 integrator.
The other available Runge-Kutta integrators are: Dormand-Prince-4/5, Dormand-Price-4/5; Sharp-Smart-4/5,
Dormand-Prince-4/5; Dormand-Prince-5/6; Dormand-Prince-7/8, Enrught-Verner-7/8; Feagin-8/10; Legendre-
9/10; Feagin-10/12; Peter-11/12; Feagin-12/14.
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mass, is known; o ¢, and jo g, are the absorption and emission coefficients of the medium that
the particles go through in its own rest frame and are found from the relevant micro-physics; p is
the particle’s momentum at A and it is related to its 4-velocity, which calculated in the geodesic
integration; finally, u is the medium’s 4-velocity at that same point in the geodesic. Given that
the absorption and emission coefficients are generally energy dependent, these equations are
calculated for each individual energy &, so that the final result is an optical depth and a
covariant intensity for each individual detected energy. An important detail is that the energy
used for the absorption and emission coefficients must be the energy of the particle measured
by a local observer co-moving with the medium: it is not the energy that the standard observer

(e.g. the observer at infinity) measures.

By letting m — 0 and £ = hv in equations (2.103),(2.107) and (2.108) the expressions given
in Younsi et al. (2012) and Younsi (2013) for photons are recovered, noting that the authors

use units where G =c=h = 1.

An important note is that these equations were not derived for a specific spacetime. The
spacetime information is hidden in the metric used to calculate the dot products p,u® and
in the geodesic along which the equations are solved. In practice, however, all calculations

presented in this thesis were performed in Schwarzschild or Kerr spacetimes.

2.4 Computational algorithm for the GRRT formalism

Equations (2.107) and (2.108) are solved along the particle geodesics using a simple Euler
method with the same step size as in the the geodesic integration, A\. Le., the optical depth

and covariant intensity at integration step ¢ are calculated as

(i-1)
—pau’ m[c2]\?
((5/ []) \/1 - (p;;uu) ) O‘Ofo] (2.109)
(i—1)
—pru ~(m[c?] 2 Joe, -
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When performing forward ray tracing, p* = p is the particle’s 4-momentum. However, when

Tg(i) = Tg(i_l) + AN

T = T.07D £ AN

(2.110)

performing backward ray tracing, the particle’s momentum which comes out of the geodesic
integration is pointing in the wrong direction (spatially and in time). As such, it is first
necessary to reverse the particle’s momentum so that it is pointing in the correct direction
when moving forward in time, i.e. p* = —p. This step is necessary because all other quantities,

namely the fluid’s four velocity u, are defined in the positive time direction.

At each point in the geodesic integration, the following algorithm is used to update the covariant
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intensity and optical depth?*:

1. Find p* = —p. For massive particles, calculate the energy shift factor —p*u®/(€/[c?]).
Calculate also the massive particle correction factor (the square root term in (2.104)). For
massless particles, simply calculate —pfu®/(€/[c?]) = —U(p)at”, Where up, is the photon’s
four velocity. All of this is calculated using the coordinates of the particle’s location at

the previous integration step.

2. Using this energy shift factor, calculate the energy of the particles as measured by local

observers &.

3. Find the local absorption, oy ¢,, and emissivity, jog, for those energies at the particle’s

coordinates in the previous integration step.

4. Find the medium’s four velocity u at the coordinates occupied by the particle in the

previous integration step.
5. Finally, calculate 7¢® and Z¢® using equations (2.109)-(2.110).

Since this calculation requires knowledge of the previous integration step, the algorithm always
stores both the current and the previous integration steps. Since the trajectory of massless
particles is independent of their energy, the process above is performed for all observed energies
simultaneously, in a vectorized manner. For massive particles, on the other hand, different
energies will result in different initial conditions and, therefore, different trajectories. As such,
the algorithm can only be performed for one energy at a time, with each new energy requiring

the calculation of new geodesics.

The scenario covered in chapter 4 is different: there one considers a source of background
radiation and no further emission along the line of sight, i.e. Zg(A\g) # 0 and jo g, = 0. In this
case, equation (2.107) remains the same but equation (2.108) no longer captures the correct
behaviour of the system. In this case, the covariant intensity can be calculated directly from

equation (2.105) as

Te(\) = Ze(No)e =W (2.111)

240ther codes are available which perform either ray tracing or ray tracing with radiative transport, some
analytically /semi-analytically and others fully numerically. Some are specific for particular spacetimes (mostly
Kerr), while others are adaptable to different spacetimes, analytical or numerical. The most commonly used
ones are the following:

e Ray tracing only: Dexter and Agol (2009), and GRay (Chan et al., 2013)

e Ray tracing with radiative transport: GRTRANS (Dexter, 2016), which also calculates transport
of polarization; Odyssey (Pu et al., 2016b); RAPTOR (Bronzwaer et al., 2018); Elysium Koutsantoniou
(2022)
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where the optical depth at each step is calculated as per equation (2.109).

2.4.1 Tests and demonstrations

The first test performed on the GRRT code was to calculate the observed spectrum produced
by an emitting disk around a black hole. In order to facilitate the validation, the parameters
used are the same as in Fuerst and Wu (2004). Figure 2.13 shows the results of this calculation

including the spectral energy density for the direct image only?® and the full image of the disk.

In order to test the absorption part of the code, the image of an optically thick and geometrical
thin equatorial disk was calculated, but this time considering the presence of a lump of absorbing
material between the disk and the observer. In astrophysical situations, this scenario is very
plausible: a cloud of dust or another object can easily obstruct the path of light (or other
particles) between their emission and detection sites. For the purpose of this test, the absorbing
body was modeled as sphere of radius 2r, with centre at » = 87, on a circular orbit around
the black hole in the equatorial plane. This means that the absorbing body is both above and
below the emitting disk, being able to absorb radiation emitted upward or downward from the

disk. The results are presented in figure 2.14.

For the purpose of making the image clearer, figure 2.14 is an instantaneous snapshot of the
disk’s absorption by the absorbing body (i.e. it assumes that all photons emitted simultaneously
cross the absorber and reach the observer simultaneously). This allows us to focus on the
effects of absorption alone, rather than on the effects of the motion of the absorbing body as
the integration progresses. Note, however, that all physically relevant calculations in this thesis

in chapters 3 and 4 do account for the photon travel time correctly.

25 Just as in Fuerst and Wu (2004), the figure includes the image and SED considering direct images only.
This is to facilitate the comparison of the results from the numerical calculations with theoretical spectral
calculations, which can only be calculated for the direct image.
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Figure 2.13: Image of a thin disk around a Schwarzschild black hole seen by a distant observer at a
viewing angle of 45°. Top: observed image. Bottom: normalized measured SED. Left: including images
of all orders. Right: including only the the direct/first order image. The colour coding corresponds to
the bolometric intensity at each pixel, I(). The disk extends from the innermost stable circular orbit
(Tisco = 67“g) up to an outer radius of 10rs. In the direct image case, the inner circle of the image,
caused by rays that orbit the black hole on the way between the disk and the observer, is absent. In
order to produce this image, absorption was set to zero everywhere, and the disk considered optically
thick (i.e. rays cannot pass through it and reach the observer). The emissivity was set to 0 everywhere
other than at the disk surface. On the surface, j was set to decrease with radius as 1/73, as in Fuerst
and Wu (2004). In terms of energy dependence, the spectrum was set to a Gaussian centered at an
energy & = & (arbitrary units, corresponds to normalizing by peak energy &) and standard deviation
equal to 0.01&,. As in figure 2.11, each point on the disk was considered to be moving on Keplerian
equatorial orbits of constant r (see section A.1 for the components of the 4-velocity of each segment
of the disk as a function of its coordinates.). The key features of the spectrum are as follows: a) the
Doppler shift due to the disk’s rotation causes the originally Gaussian spectrum to split into two main
peaks: one at £/& < 1 and one at £/& > 1 (for a comment on the third peak at £/& = 1 in the
full image spectrum, see point c) below). Since £I¢ o €4, the flux of the blue shifted part of the
spectrum increases while that of the red shifted part decreases, which explains the asymmetry in the
height of the two peaks. b) In the absence of this effect, the two main peaks would be centered at
€Iz = 1. However, the gravitational redshift causes the whole spectrum to move to lower energies,
which explains why the two peaks are not centered around at £/& = 1, but rather at a lower energy.
¢) The SED of the full image has an extra peak around £/&y = 1. The explanation for this can be
found by looking at figure 2.11: from the images on the top row, it is clear that the rays from higher
order images (those forming the inner circles) experience almost no energy shift. This occurs because
the gravitational and Doppler shift at these points exactly cancel out, resulting in no net energy shift.
This means that, when the full image is considered, there is an excess of photons reaching the observer
with £/& =~ 1, resulting in the third bump observed in this spectrum. Spatial resolution: 122500
pixels; Spectral resolution: 300 energy steps.
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Figure 2.14: Full image of an emitting thin disk as in figure 2.13, but this time with absorption. The
material composing this absorber follows Keplerian orbits similar to those of the disk (see section A.1).
The top left panel shows the image that would be observed if part of the emission from a geometrically
thin and optically thick disk were absorbed by some material on the line of sight. The top right panel
shows the absorbed flux. This quantity is very relevant if one wants to study the effect of the emission
on local bodies, e.g. the heating of the absorber due to radiation. An interesting feature of this plot
is that there is some flux very weakly absorbed on the right region of the figure. This is also visible as
a small gap on the right hand side of the secondary image of the detected flux (top left panel). This
occurs because the lensing on those secondary rays causes them to go through the absorbing body,
which also extends below the disk. The bottom left panel shows the resulting image if one adds the
flux that is detected and that which is absorbed by the medium. All working correctly, one should
recover the left hand side image from figure 2.13 precisely. There is some small error in this, however,
due to the finite step size of the integration, as is visible on the bottom right panel. The fact that
the GRRT integration algorithm depends on the step size of the geodesic integration means that the
covariant intensity and optical depth will have some error induced by the differences in the step size of
the different geodesics when they enter the absorbing body. This is, however, small: the total difference
in the flux between the bottom left panel and figure 2.13 is only 0.46% of the total flux across all pixels
of figure 2.13. Spatial resolution: 122500 pixels; Spectral resolution: 300 energy steps.






Chapter 3

Massless particles: flares near massive
black holes

3.1 Introduction

In section 1.2, we introduced the multi-band observations of flares from Sgr A*. These events
are important to improving our understanding of the (astro)physics happening very close to
black holes. In an attempt to better understand this phenomenon, Yuan and Wang (2016)
performed a statistical study of the light curve profiles of X-ray flares in the 2 — 8keV band.
They found that the flares generally have asymmetric light curves, with no preference for a fast-
rise-slow-decay (FRSD) nor a slow-rise-fast-decay (SRFD) profile. Astrophysical flaring events
generally have an intrinsic FRSD profile. As such, this result led the authors to speculate
whether the SRFD observed in nearly 50% of the flares could be due to gravitational and
relativistic distortions of the emitted light curves. The present chapter addresses this question
and asserts whether flares produced by similar mechanisms with some time-dependent emission
spectrum can be distorted by gravitational and relativistic effects in such a way that a FRSL
emission could be detected as a SLFD flare in several cases. This investigation was performed

with the aid of GRRT calculations using the formalism developed in chapter 2.

As mentioned in section 1.2.2, the data on the flares across several energy bands suggests that
the emission originates from a compact region orbiting the black hole very close to its event
horizon. This is often referred to as the hotspot model for the emitting region (Meyer et al.,
2006b). Below is a summary of the key properties which justify the adoption of such a model for
studying the effects of general and special relativity on the flares, some of which were already

mentioned in section 1.2.1:

1. Flare frequency and duration
The period of the detected flares is consistent with the period of objects orbiting the
black hole within a few gravitational radii (e.g. Baganoff et al., 2001; Liu and Melia,
2002; Genzel et al., 2003; Eckart et al., 2006b; Yusef-Zadeh et al., 2006; Barriére et al.,

2014). The duration of the flares is consistent with a compact emitting region with an

67
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extent smaller than a few gravitational radii (e.g Yusef-Zadeh et al., 2008; Dodds-Eden
et al., 2009; Kunneriath et al., 2010; Michail et al., 2021b).

2. Emitter sky location and IR polarization
Using IR observations, it was possible to map the sky location and motion of the centroid
of the emission, which appeared to be moving on an orbit. It was also possible to perform
polarization measurements of the radiation during several IR flares, which showed a rota-
tion of the Stokes parameters throughout the flare (e.g. GRAVITY Collaboration et al.,
2018). Both observations indicate that the emitting body is orbiting the black hole.

3. Light curve morphology
Some of the observed light curves present features resembling those calculated using an
orbiting hotspot model (Karssen et al., 2017; GRAVITY Collaboration et al., 2020a).

Given the arguments above, the hotspot model has attracted much attention. The formation
mechanism of such hotspots is yet to be precisely established. Nonetheless, the consensus is
that it is a consequence of magneto-hydrodynamical processes, potentially in a way akin to the
formation of coronal mass ejections and flares in the sun (Yuan et al., 2009), but with the added
effects of strong gravity. This has been investigated by several groups using general relativistic
magneto-hydrodynamic (GRMHD) simulations (see e.g. Ripperda et al., 2022) and it appears
to be physically viable.

In order to understand the causes of these flares, theoretical and computational research groups
have modeled different aspects of the emission and propagation of radiation, all of which are
essential to form a complete picture of what is happening at the galactic centre. The main

focus areas can be split into two:

1. Plasma and magneto-hydrodynamic (MHD) processes
As described in section 1.2.2.1, one of the key focuses of the modeling of flares is the micro-
physics of the emitting and absorbing processes. The results from these works provide
information about the local emissivity and absorption coefficients. MHD simulations are
often used to study the formation of the emitting regions (e.g. plasmoids/ hotspots) near
the event horizon of Sgr A* and the mechanism through which energy is transferred to the
emitting particles. They provide information on the geometry and motion of the emitting

regions that may form in black hole environments®.

2. Radiation transport
Once the mechanisms through which the emitting region forms, the particles are ener-
gized and the emission/ absorption occur are understood, it is essential to understand the

transport of the emitted radiation towards the observer. This has to take into account the

1For references, please refer to section 1.2.2.ii).
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strong gravitational field through which the radiation propagates and it allows us to un-
derstand any distortions to the emitted radiation caused by relativistic and gravitational

effects.

This work investigates relativistic and gravitational effects from a radiation transport perspec-
tive. In order do this, it was important to isolate these effects from emission and absorption
processes. This is because the emission mechanisms, the effects of GR and the detector proper-
ties will all influence the resulting detected light curves. As such, we chose a simple parametric
model for the flare emission, absorption and emitting region which is consistent with the cur-
rent interpretation of observations. Given the wide acceptance of the hotspot model in the

community, this was the model adopted in the calculations performed in this chapter.

3.1.1 Relationship of this study with previous work

Multiple groups have published work about radiation transport, with several focusing on the
puzzle of flares described in this chapter. In this section we focus on work done using ray
tracing and radiation transport within the context of the hotspot model discussed above. None
of the works mentioned in this section discuss an intrinsic spectral evolution such as the one we
discussed in section 3.3.3, but rather focus mostly on work done along the lines of section 3.3.2.
Similarly, non of these works focus on the effect of the energy band at which the observations

are performed might have on the observed light curves.

One of the first calculations of an orbiting hotspot was performed by Schnittman and Bertschinger
(2004). Their objective was to explain observations of quasi-periodic X-ray emission from ac-
creting binary black hole systems. This was approached by adopting a simplified 2-dimensional
hotspot and a fully backward ray tracing calculation. An interesting conclusion from their work
was that the results referring to primary images alone were approximately independent of the
hotspot’s size and shape. As part of their findings, the authors also provided constraints on

the timings of flares expected as a function of the ISCO period for different spins.

Later calculations performed by Meyer et al. (2006a,b) focused on a particular IR flare from
Sgr A* which presented a large modulation (modeled as disk emission) superposed by smaller
flares (modeled as hotspots), and found a weak dependence of the model on the black hole spin.
In this study, only primary images were considered. The authors used the “transfer function”

method (Cunningham, 1975) for the radiative transfer calculation®.

2In short, this method consists of ray tracing the light rays from the observer to the emitting region and
multiplying the emitted radiation by a factor (the transfer function) which incorporates the effects of Doppler
shift, gravitational redshift and gravitational lensing at each point in the emitter. The factors depend on the
assumed velocity of the emitters, prescribed in Cunningham (1975). The values of the transfer function were
calculated and tabulated for several black hole spins and viewing angles in a way that could be used by other
researchers.
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Broderick and Loeb (2006) performed calculations of the hotspot model to explain the NIR and
submm flares from Sgr A*, using a synchrotron emission model. One of the main differences to
our work is that the authors used a physically motivated (energy dependent) absorption model.
They did not, however consider the case of a time-evolving emission spectrum and how that

would affect the results in each energy band.

The work of Hamaus et al. (2009) aimed to explain the observations of IR flares using a
methodology similar to the one described in 3.3.2. They considered an opaque sphere on a
circular equatorial Keplerian orbit around the black hole and adopt an approach similar to
ours, bypassing the direct determination of emissivity, output intensity and fluxes, and instead
using a parameterized model. The authors also consider a different emission region, in particular
a hotspot followed by an arc extending around the orbit. Their work differs from ours in that
no intrinsic spectral evolution is considered nor are the effects of finite energy band passes

considered.

Kusunose and Takahara (2011) also calculated the bolometric light curves resulting from a
synchrotron emitting plasma blob, this time one ejected from close to the inner accretion of a
black hole. Their calculations assumed that the blob was non-relativistic and beaming effects
were neglected. The authors focused on using a very accurate model for the intrinsic emissivity
and a simplified transport formalism rather than the other way around (which we preferred to
use). Their models result in accurate intrinsic emissivity profiles which one could use with our

code to perform more realistic predictions.

The geodesic integration and initial conditions used in Li et al. (2014) are similar those used
in this chapter. A major difference, however, is that they use a fully backward ray tracing
algorithm and consider only what we refer to as instantaneous light curves (which in literature
is often referred to as the “fast light approach”), so that (unlike in our case) no time accounting
correction is performed. The main results of the paper are observer images (primary and
secondary) and spectrograms of constant emissivity flares for Kerr and some non-Kerr BHs
viewed from 60 degrees, which are consistent with ours (see appendix B). An interesting result
from this paper is that the primary image component of the spectrograms are not very sensitive

to the size of the source.

The calculations performed in Younsi and Wu (2015) were again very similar to our constant
emissivity calculations, including a similar time accounting algorithm. Their work was used as a
validation for our code. Despite the fact that the authors use a more complicated synchrotron-
inspired emissivity, note that their bolometric light curves are precisely the same as ours for

all viewing angles, with the exception that they appear to be time-reversed®. The fact that

3 After discussions with the authors, it transpired that they performed the calculations of bodies orbiting in
the opposite direction from ours.
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bolometric light curves do not seem to depend heavily on the injection spectrum is interesting.

The work does not consider a spectral evolution of the intrinsic emissivity.

Karssen et al. (2017) performed calculations of an orbiting hotspot in order to estimate the
mass of Sgr A* based on the fitting of their models to X-ray observations data. The exact
algorithm that they use for the ray tracing and surface finding is not very clear. Again, they
use a synchrotron emissivity in an optically thin medium to model the light curves of NIR and

X-ray flares, with no calculations of time dependent spectra at different energy bands.

GRAVITY Collaboration et al. (2020b) used the grtrans code (Dexter and Agol, 2009; Dexter,
2016) to predict the motion of the emitter in the observer plane for flares originating from
objects in orbits which may not be circular nor in the equatorial plane of the black hole (though
their calculations in this paper are in fact for circular orbits) and then compared them to NIR
flare observations in order to constraint the orbital radius and inclination of the orbits. They
used a more complex emitter location model, but again did not consider the time dependent

spectrum or energy band pass effects.

While it is within the capabilities of our code to incorporate complex factors such as intricate
injection spectra, orbital motion, and emitter geometry—similar to the referenced work—we
have chosen to explore a simplified model. This decision aims to provide a clearer understanding
of the interplay between key elements: gravitational and relativistic effects, intrinsic energy
drift, and their manifestation in bolometric intensity and across various energy bands. It is
noteworthy that the literature lacks a detailed explanation of this nature, and our work serves
this purpose precisely. Despite our simplified assumptions, we have successfully demonstrated
the significant role played by the strong gravitational and relativistic effects in the distortion
of flares, not only for the case of constant emissivity but also for the case of time dependent
emission and with a focus on different band-pass observations, which is also absent from the

literature.

3.2 Computation model

i) Emitting region

Considering the different limits found by different authors (e.g. [c]At 2 0.5 7, and [c]At < 2.2 7,
(Eckart et al., 2012)) we chose an emitting region with a length scale of ~ 1 r,. For simplicity,
the emitter was modelled as a spherical region of radius R, = 0.5 r, orbiting the black hole at
r = 6.5 g for the case of a Schwarzschild black hole or r = 2.5 r, for the case of a maximally
rotating (a = 0.998) Kerr black hole. These values were chosen to be close to the innermost

stable circular orbit radius of the black holes, ri5co, for prograde orbits.
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Although the code can cope with hotspots with changing radius and moving vertically, the
calculations in this section were all performed for emitters of constant size on circular orbits at

constant 6. The location of the hotspot at a given time t is given, as per equation (2.78), by

0" (t) = 6(0) (3.1)
27t
Torb

where ¢t = 0 is the time at which the onset of the flare occurs and T, is the orbital period

found by assuming a Keplerian orbit (see A.1 for details on the equations).

ii) Intrinsic emissivity

We used a simplified model for the intrinsic emissivity and absorption. In particular, the emitter

was considered to be optically thick and no other absorption sources were considered.

The model of intrinsic emissivity chosen, jo.¢,, can be decomposed into three main components:
Js(&o, t) represents the time-dependent emission spectrum; jx(t,«) encompasses the spatial
dependency of jy g, (which is time-dependent in the case of a moving hotspot); ju(t) represents

the time-dependent modulation of the flare to capture its explosive nature. Thus:

Jo.go (2h) x js(&o,t) x gx(t, ) x jm(t), (3.2)

where t is the coordinate time and @ are the spatial coordinates. In particular, the spectrum
was chosen to be Gaussian with standard deviation og¢ (constant in time) and a time dependent

mean &(t), i.e.

_ 1 (€0 — &)
js(Eost) = e/ exp {— 202 —} - (3.3)

The spatial dependence of the emission is zero everywhere except on the surface of the hotspot,
so that the hotspot is considered optically thick. For the purpose of numerical calculations, (see
2.1.5 for details on the surface finding algorithm), if all points on the surface are symbolically

denoted by @gu.f, then

. 17 |m_wsurf(t)| <€7
t,x) = 3.4
ix(t,2) { 0, otherwise. (3.4)

where € is some numerical tolerance for the surface finding algorithm (i.e. all points for which
|z — Tsu(t)| < € are considered to be on the surface). Finally, the explosive modulation of

the emissivity is modeled parametrically as a fast linear increase mimicking an injection period



3.2. Computation model 73

starting at ¢ = 0 and ending at ¢t = t;,;, followed by a slow exponential decay mimicking a

cooling period with timescale tcoo1, With tin; < teool, 1.€.

0 t<0,

. 0<t <tp,
Jm(t) = tinj N ! (3.5)

t — ting
exp{—<t—3)} s tZtinj.

Since we chose tinj < teool, this gives us a reasonably sharp injection and slow cooling profile.
Inspired by solar flares, which exhibit a time-dependent spectrum, we allowed the peak of the
emitted spectrum to vary in our calculations®. There are several types of solar flares spanning
different energy bands and intensities, with different time dependent profiles. Since several
types of solar flares exhibit a drift in the emitted energies with time, we chose to incorporate
the time dependence of the spectrum as an energy drift. In particular, we chose to adopt
an energy drift similar to those of type III radio bursts, which is relatively well understood.
Various authors found that several type III radio bursts experience an energy drift of (see Reid
and Ratcliffe, 2014, for a review):

E(t) = £(0)e™". (3.6)

We will refer to D as the energy drift rate and, in general, it depends on the energy £. In
particular, if we define the drift of the peak energy, in this case the mean of the Gaussian
spectrum &, as D, then the peak energy of the emission will change according to equation

(3.6). In particular, the value of £(t) in equation (3.3) is calculated as:

g { g(O) s t < tinj , (37)

£(0) ePl—tm) ¢ >

Note that, in the calculations performed here, the width of the spectrum remains constant,

which implies that the energy drift rate is not the same for all energies.

Since most type III solar flares have a negative drift rate and given that Yusef-Zadeh et al.
(2006) found a justification for the peak emission energy of Sgr A* flares to decrease with
time, all the calculations presented here were performed for D < 0. Nevertheless, our code can

equally well deal with positive D.

4Yusef-Zadeh et al. (2006) show that a model of an adiabatically expanding source is consistent with the
peak emission frequency decreasing with time, hence providing a good justification for adopting a solar flare
type model with a decrease in the peak intensity.
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iii) Light curve calculation algorithm

To calculate light curves, algorithm 2.4 must be executed at multiple times. Particles take time
to move between the emitter and the observer and particles moving along different geodesics
will take different times to reach the observer, as is evident in figure 2.10. This means that
particles reaching the observer simultaneously were not necessarily emitted simultaneously. In
a situation where the emitter is stationary and the emissivity and absorption have no time
dependence, this is not an issue. However, this is also not a very interesting scenario from
the point of view of temporal evolution analysis. The difficulty arises when the emitter (or
absorber) is moving and their emissivity (absorption) coefficient is time dependent. In these
scenarios, particle bundles reaching the observer simultaneously could have been emitted when
the emitter was at different locations and when the local emissivity had different values. This
means that their contributions to the light curve will be different. Accounting for these effects

correctly is fundamental for all the calculations performed in the present chapter.

There are several ways to deal with this and, after some investigation, we concluded that
an algorithm similar to that used in Younsi and Wu (2015) was the most appropriate for our
particular setup. The main assumption is that all rays that reach the observer grid were emitted
simultaneously. We then use the emission time and the photon travel time to calculate the time

at which each photon would be observed. The algorithm is as follows:

—_

. Set up a grid at a given time (fy,’), defined as the emission frame j.

2. Find the location of the emitter and the emissivity coefficient at that particular time. For
the calculations in this chapter, the emitter’s location is given by equation (3.1) and its

emissivity by equation (3.2). Their values are fixed for the current frame.

3. Backward ray-trace each of the rays in the grid. This is done in parallel using OpenMP,
with as many threads as are available in the machine being used, each one dealing with

one ray. The initial conditions for the rays are found as per section 2.1.3.

4. Perform the radiation transport calculations along the geodesics as described in section
2.2, using the surface-funding algorithm to check whether the rays intersect the emitter’s

surface.

5. Record the time taken for each ray 7 to travel between the emitter and the detector,
tuavel’ and calculate the detection time for each ray as tqet’ = tiravel’ + tem’. Save the

result together with the covariant intensity at each of the sampled energies for that pixel.

6. Set up a similar observer grid at the next emission frame j + 1. Repeat the steps above

until the full emission time is covered.
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7. Order all the rays by arrival time and bin the covariant intensity into equally spaced

detection time bins, keeping information of the detection time and the pixel coordinates.

8. Calculate the light curves by summing over the flux or intensity across all particle energies

and all pixels in each time bin.

If the emitter is not optically thick, this algorithm is not the best and a full backward ray
tracing algorithm would be better. In such algorithms, one would setup a grid at a certain
detection time and, at each integration step, would find the emitter’s location at that time
along the geodesic and perform the surface finding and GRRT calculations. By doing it in
this way, one does not need to reorder the pixels by arrival time, as this is automatically
done. However, when we experimented with both algorithms we found that, for optically thick
emitters, a full backward ray-tracing algorithm missed out on some of the emission. Hence the

algorithm presented above is better and was used in these calculations.

In order to show the importance of doing the correct time accounting as described in the algo-
rithm above, some results in this chapter are shown for both the corrected and the instantaneous
algorithms. The instantaneous algorithm does not take into account the photon travel time
between observer and emitter and assumes that all photons emitted at the same time reach the
observer at the same time. This is often known in literature as the “fast light approach”. In

practice, it corresponds to replacing step 5 by tqet’ = tem’ and skipping step 7 above.

3.3 Results and discussion

3.3.1 Observer images

When a spherical object orbiting a black hole emits radiation, photons emitted in different
directions travel along different paths. Those that reach the observer do so at different times.
Figure 3.1 shows the energy shift and the arrival time of photons emitted simultaneously at
various locations, as seen by the observer. An energy shift of 1 means that the energy detected
is the same as the energy emitted; values < 1 mean that the detected photon’s energy was red
shifted (i.e. is lower than the emitted energy); values > 1 mean that the detected photon’s
energy was blue shifted (i.e. is higher than the emitted energy). The energy shifts are calculated
by assuming that the emitter is on a Keplerian orbit around the black hole, as described in
appendix A. In terms of arrival time, the values plotted are the delay with respect to the
first photon that reaches the observer. I.e. a value of 0 means that the photon reached that
particular pixel at the same time as the first photon to reach the screen, a value of 20r,/[c]
means that the photon reached that particular pixel 20r,/[c] after the first photon reached the
screen, and so on. In this chapter we shall often refer to primary images and secondary or

higher order images. Primary images are those formed by photons whose trajectories between
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the emitter and observer are bent by an amount less than or equal to 7/2, either in the 6 or
the ¢ directions. The images are secondary if they orbit the black hole and suffer an angular
deflection between 7/2 and 57 /4, and higher order if the angular deflection is greater than
5 /4. Sometimes, we will only distinguish between primary and higher order images, in which

case the secondary images are included in the higher order category.

For Schwarzschild spacetime (top panels of figure 3.1), it is very easy to distinguish the primary
and secondary images. The primary image corresponds to light that reaches the observer
directly from the hotspot. It arrives earlier than the secondary images, which reach the observer
after orbiting the black hole (see figure 2.12 for an illustration of the formation of a lensed image
of a disk, which follows the same principles as for a hotspot). In figure 3.1, the primary image is
coloured more white in the arrival time plots. For ¢ = 0°, the central blob is the primary image
and the thin ring around it, which arrives ~ 37ry/[c] ~ 0.36 T, later, is the secondary image.
For ¢ = 180°, the thick outer ring (which is called an Einstein ring) is the primary image and
the inner thin ring, which arrives ~ 35r,/[c] ~ 0.34T,,;, later, is the secondary image. For
¢ = 90° and ¢ = 270° the larger blobs on the right/left respectively are the primary images
and the elongated shapes on the left /right respectively are the secondary images, both of which
arrive &~ 21.5r,/[c] = 0.21 T, after the primary.

There are also primary and secondary images for the case of Kerr spacetime, but the time
difference between the two is not as pronounced. Unlike in the Schwarzschild case, in Kerr
spacetimes there is no left-right symmetry in the images. This is due to the frame dragging
effect caused by the black hole’s rotation. In particular, note how, at ¢ = 180°, the observer’s
image appears to be that of a hotspot already moving towards the observer, as if closer to 270°.
An FEinstein ring similar to that seen in the Schwarzschild case is also present in the Kerr case
(see snapshot images in figure 3.3), but it originates when the hotspot has not yet reached
180°. This is also due to the frame dragging effect. The difference in arrival time between the
first and last photons to be detected by the observer is much larger in the Kerr than in the
Schwarzschild case. The proximity of the orbit to the black hole results in higher order images
being able to reach the observer. The photons which give rise to such images orbit the black
hole multiple times, reaching the observer as late as 160r,/[c], or 5.2T,, (in the case of ¢ = 90°)
after the first detected photon.

Finally, note that the rings that form the secondary images in both the Schwarzschild and the
Kerr cases trace the border of the black hole’s shadow (see figure 2.6).

3.3.2 Hotspot with constant emissivity

The first step in the study presented in this chapter was to isolate the general relativistic effects

from the intrinsic emissivity. In order to do this, we considered the simplified model of a hotspot
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Figure 3.1: The images show the redshift and arrival time of photons on an observer grid of photons
emitted by a spherical hotspot instantaneously at position ¢(t*) during an equatorial orbit.
plasmoid is on an orbit of radius 6.5r; (Schwarzschild) or 2.5, (Kerr, a = 0.998). All images are
calculated at an observer viewing angle of 90°. See the main text for a description and explanation of

the results. Resolution: 600 x 600 pixels.
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Figure 3.2: Bolometric light curves from an orbiting hotspot at different viewing angles. The quantity
plotted is the integrated intensity I(t) = >, > ¢ Ig) (t), normalized by I5,., = max(I*(t)), where the x
denotes the time-corrected light curve for an observer at a viewing angle of 89°. Dashed lines: without
travel time correction (assuming instantaneous light travel). Solid lines: with travel time correction
(taking into account the light travel time). The x-axis spans one orbital period of the hotspot, with 0
corresponding to the hotspot located at ¢ = 90°. For Schwarzschild spacetime, the orbital period is
~ 1047 and for Kerr it is ~ 317,. Henceforth, all light curves will be plotted with respect to time as
fraction of the period rather than in terms of the actual time. These calculations were run on machines
with 128 physical cores (AMD epyc processor) and 1Tb of RAM, and each inclination angle calculation
took approximately 24 hours.

with constant emissivity orbiting a black hole.

i) Multiple viewing angles

Figure 3.2 shows the bolometric light curves that an observer would see from a hotspot with
constant emissivity (i.e. ju(t) = 1, & (t) = E(t*) = 1 and o¢ = 0.01) on a circular equatorial
orbit around a Schwarzschild (a = 0) and Kerr (a = 0.998) black hole. The results are presented
for different observer viewing angles, 6,,s. The x-axis spans one orbital period of the hotspot,
with 0 corresponding to the hotspot located at ¢ = 90°. The dashed lines correspond to the
instantaneous light curves that would be obtained if light travelled instantaneously between
the emitter and the observer (i.e. ignoring the light travel time). The solid lines are the light
curves obtained when accounting for the light travel time. The time corrected light curves are
more noisy than the uncorrected ones due to sampling: the algorithm used to correct for the
travel time results in some detection times being better sampled than others, while all emission
times are equally sampled. As the spatial and temporal resolution of the calculation increases,

the time corrected light curves become smoother.

Figure 3.2 shows that the peak bolometric intensity is larger the closer the viewing angle is to
90°. This is a combination of more radiation getting lensed towards the observer and of the
relativistic beaming effect (see section 2.3.3.i). The latter can be understood as follows: the

larger line-of-sight velocity of the emitter when the viewing angle is closer to 90° causes the
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emitted radiation to be more blue-shifted when the emitter moves towards the observer. This
in turn causes in the intensity of the radiation to increase, resulting in a higher peak bolometric

intensity.

Another feature that stands out in figure 3.2 is that the travel time correction affects the light
curves by shrinking them into shorter and stronger peaks, which arrive at the observer later than
if the light travel time were to be ignored. Finally, as is particularly clear in the Schwarzschild
black hole case, for high inclinations there are several peaks in the bolometric light curve. In the
next section, we will explore these morphological features by looking at the particular case of
a flare observed from a 89° viewing angle. This is because we found that the relativistic effects
are more pronounced the closer one is from 90°. We performed the calculations for 6., = 89°
in order to be able to compare our results with those in literature, which often use 89° instead

of 90° since a viewing angle of exactly 90° might be considered unlikely.

ii) Morphology of the light curve at a viewing angle of 89°

Figure 3.3 isolates the light curves seen from a viewing angle of 89° as well as some observer
images at some key snapshots. These are helpful to interpret the morphology of the observed

light curves and are presented for both the instantaneous and time corrected scenarios.

Although the bolometric light curves provide some insight into the general relativistic effects
on detected flares, a better understanding of the processes involved can be obtained by looking
at spectrograms, i.e. the light curves at each individual detected energy band (or equivalently,
the spectra at each detection time). This is particularly important given that detectors are
only sensitive to certain energy bands. As such, detected light curves are rarely bolometric,
but rather a cut in the spectrogram. Figure 3.4 shows the spectrogram corresponding to the
constant emissivity flares in figure 3.3. The relativistic and gravitational effects are very clear

in these plots.

The bolometric light curves in the Schwarzschild case (top panel of top image in figure 3.3) have
several interesting features. The peak of the instantaneous light curve happens at ~ 0.257,,,,
when the hotspot is exactly behind the black hole. This corresponds to the observer image at
the top of the second column. This shows that the intensity peak in the light curve corresponds
to the frame when most rays are lensed towards the observer from behind the black hole. At
this point, the observer of the time-corrected light curve still sees the hotspot as if it were
traveling away from the detector, between ¢ = 90° and ¢ = 180° (second column, bottom
frame). The peak of the time corrected light curve happens later, just after ~ 0.35T,,,. In the
corrected observer image we now see the Einstein ring from when the hotspot was at ¢ = 180°
(bottom panel, third column), but the fact that the photons have to travel longer to arrive at

the detector means that the peak is delayed with respect to the instantaneous one. At this
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Figure 3.3: Top panel: Bolometric light curves from an orbiting hotspot with constant emissivity
for Oons = 89° in Schwarzschild (top image) and Kerr (bottom image) spacetime. The light curves are
plotted on both linear (blue) and logarithmic (red) scales. Bottom panels: hotspot images. The images
are colour coded as the logarithm of the integrated intensity of each pixel (I (@) — Yool g)) divided by

the peak integrated intensity across all pixels of the time corrected curve (I*(t) = >, > ¢ 1 g) (t), where
the sum is performed over the time-corrected frames, and I5 ., = max(I*(?))). The filed of view is the
same as in figure 3.1. Resolution: 1000x 1000 pixels; 360 time frames; 200 energy bins. The data for
these plots comes from the same calculation presented in figure 3.2.
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Figure 3.4: Left: Observed spectrograms of an orbiting hotspot in Schwarzschild (top) and Kerr
spacetime with a = 0.998 (bottom). The x-axis spans one orbital period of the hotspot, starting at a
location of ¢ = 90° on the instantaneous plots. The time corrected plots start when the first photon
emitted at ¢ = 90° reaches the observer. The colour code is the specific intensity summed over all pixels
at each time frame (i.e. Ig(t) =), Iéz) (t)) normalized by I ., as in figure 3.3. In both calculations
the plasmoid starts at ¢ = 90°. The plasmoid is optically thick with uniform surface emissivity and
has a radius of 0.5r;. The local emissivity is constant in time and consists of a Gaussian spectrum
centered at £ = 1 and standard deviation of 0.01 for both cases. Spectrograms for the light curves
seen at other viewing angles are presented in appendix B. A summary of the key features is presented
in table 3.1. Right: light curves covering the specified energy bands. The data for these plots comes
from the same calculation presented in figure 3.2.
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point, the hotspot is really already travelling towards the observer (top panel, third column).

In the spectrograms of Schwarzschild spacetime (top of figure 3.4), these two times (¢ ~ 0.25 T},
and t &~ 0.35T,,;,) correspond to the brightest vertical lines in the instantaneous and the time
corrected frames, respectively (feature D). The lines can be explained by looking at the energy
shift plot for 180° in figure 3.1, where one sees a wide range of red and blue shifts, resulting in

multiple energies being seen in the detected spectrograms.

Feature B on the plots, the fainter (green) vertical line in both the instantaneous and time
corrected Schwarzschild spectrograms (at 0.75 7T, and 0.05 74, respectively) corresponds to
the observer images shown in the fifth and first columns of figure 3.3. At 0.75 T, the hotspot
is at ¢ = 0° (i.e. in front of the black hole). This is clear since the top image of the fifth
column corresponds precisely to the ¢ = 0° image in figure 3.1. The ring corresponding to
the secondary image, which experiences a wide range of blue and red energy shifts, results in
the vertical line seen in the spectrogram. The lensed photons increase the detected intensity
causing a small peak in the instantaneous light curve, particularly visible on the logarithmic
light curve plot. However, this secondary image will not reach the observer at the same time
as the primary image, due to the extra time that it takes for the photons to orbit the black
hole and be lensed back towards the detector. Instead, as we saw earlier, it will arrive at the
detector 0.35 T, after the observer sees the hotspot in front of the black hole. Despite the fact
that the plasmoid is physically located at ¢ = 0° at 0.75 T, it does not appear to be in this
location according to the light curve. The bottom image on the fifth column shows that, at
this point, the observer sees the hotspot further along its orbit, between ¢ = 0° and ¢ = 90°.
Just like the delay in the appearance of the main peak, this is due to the light travel time and
it is a manifestation of the Rgmer delay®. When the hotspot is in front of the black hole, the
time it takes for the direct image to reach the observer will be less than at any other point.
This means that, relative to the other rays traveling to the observer, those from this origin will
arrive sooner. The apparent location of the hotspot is aligned in the instantaneous and time

corrected spectrograms at ¢ = 90° (the start of the spectrogram) and ¢ = 270° (at 0.5 Toy,).

The time corrected spectrogram shows a third, very faint vertical line at ¢ ~ 0.77,,, (feature
G). This is the secondary image from when the hotspot is behind the black hole (thin inner
disk at ¢ = 180° in figure 3.1). Note that it happens about 0.357,,, after the main vertical
line, as expected from the time delay plots. In the instantaneous spectrogram this secondary
ring is assumed to reach the observer at the same time as the primary one, resulting in line G

being hidden by line D due to the primary Einstein ring.

SIf light travelled on a straight line between the hotspot and the observer, the difference in distance travelled
between ¢ = 0° and ¢ = 180° would be 12r, for an orbit at » = 6r,. This would correspond to an extra travel
time of 12r4/[c] ~ 0.12 T¢,1,. This is approximately the time difference between the peaks of the corrected and
the uncorrected curves in the Schwarzschild spacetime light curve.
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There are three other key structures in the Schwarzschild spectrogram: a nearly horizontal line
at around £ = 0.5 (feature A), a nearly horizontal line at around £ = 1.1 (feature C) and a
wavy line (features E and F). Before ¢t & 0.35 Ty, feature A is produced by the primary image
consisting of photons emitted by the plasmoid at locations ¢ € (0°,180°). These photons are
emitted in a direction opposite the plasmoid’s direction of motion with respect to the observer
and therefore are Doppler red shifted. During this period, feature C (which is a continuation
of feature H) is produced by the secondary image also consisting of photons emitted by the
plasmoid at locations ¢ € (0°,180°). Since these photons are emitted in the same direction as
the plasmoid’s motion relative to the observer, they are Doppler blue shifted (recall blue blob
at 90° in figure 3.1).

When the plasmoid is at ¢ = 180°, around half the emitted photons is Doppler blue shifted
and half is Doppler red shifted (recall the range of energy shifts in the Einstein ring at 180°
in figure 3.1). This results in the main vertical line visible in the spectrograms, feature D, as

discussed above.

After t =~ 0.35 Ty, the primary image is Doppler blue shifted up to a peak at ¢ = 270° (feature
E), after which it’s energy shift decreases until a minimum at ¢ = 90° (feature F, joining feature
A). All the other portions of the spectrogram correspond to secondary images. Finally, note
how the spectrogram is not symmetrical about £ = 1, and a much larger portion of the emission
is red shifted rather than blue shifted. This is a result of gravitational redshift, which affects
all parts of the orbit in a similar way. A summary of the key features of the spectrogram is

presented in table 3.1.

These features are also present in the Kerr spacetime case. The presence of a stronger gravi-
tational field due to the closest proximity to the black hole causes the lower range of detected
energies to be lower than in the Schwarzschild case and the presence of lensed images of multiple
orders results in extra lines and features which make the spectrogram more complicated than

its Schwarzschild counterpart.

3.3.3 Hotspot with time dependent emissivity

Next, we explored how these effects influence a flare from an emitter with time dependent

emissivity. The time dependency is as described in section 3.2.

i) Calculation parameters

In this section we consider the same emitting region as in the constant emissivity case: an
optically thick sphere of radius R, = 0.5 r orbiting the black hole at r = 6.5 r, for Schwarzschild
and r = 2.5 r, maximally rotating (a = 0.998) Kerr black holes respectively.
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Nearly horizontal line at around £ = 0.5;

A | primary image consisting of Doppler red-shifted photons emitted by the plasmoid at
locations ¢ € (0°,180°)
Vertical line at ¢ &~ 0.75 Ty, (instantaneous) and t ~ 0.05 T, (time corrected);

B | secondary ring visible in observer image in fifth (instantaneous) and first (time corrected)
columns of figure 3.3.
Nearly horizontal line at around & = 1.1;

o secondary image consisting of Doppler blue-shifted photons emitted by the plasmoid at
locations ¢ € (0°,180°).
Continuation of feature H.
Vertical line at t ~ 0.25 T, (instantaneous) and ¢ ~ 0.35 T}y, (time corrected);
due to the Einstein ring that occurs when hot spot is behind the black hole, as seen

D|. . . . .
in the observer images of the second (instantaneous) and third (time corrected)
columns of figure 3.3.
Highest energies reached in the spectrogram, from t = 0.35T,,;

E | primary image of the hot spot due to Doppler blue-shifted photons as the hot spot
moves towards the observer, peaking at ¢ = 270°.
Continuation of feature E;

F | primary image of the hot spot moving towards the observer with decreasing line-of-sight
velocity resulting in decreasing Doppler blue shift.
Vertical line at ¢ ~ 0.7 Ty, (time corrected only);

G | secondary image from when the hotspot is behind the black hole (thin inner disk at
¢ = 180° in figure 3.1). Feature hidden behind feature D in instantaneous spectrogram.
Nearly horizontal line at around £ = 1.1;

H | secondary image consisting of Doppler blue-shifted photons emitted by the plasmoid at

locations ¢ € (0°,180°); effectively corresponds to the same feature as feature C.

Table 3.1: Summary of key features in spectrograms of figure 3.4 (same features as in 3.6).
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As mentioned in section 3.2, the emissivity model is not physically motivated by a particular
process. It is rather a parameterized model which captures some key characteristics of explosive
emissivity in astrophysical systems. As such, the values chosen are in a way arbitrary and could
have been different. They were chosen to facilitate the demonstration of the general relativistic

effects in the flares.

The calculation was run for a duration of 37, so that the gravitational and relativistic effects
on the flare could be fully visible. This corresponded effectively to the flare’s emission lasting
3 orbital periods, after which it was switched off. At this point, the emissivity would have

decreased significantly due to cooling. However, in our plots this cutoff is still clearly visible.

The mechanism by which the cooling takes place in flares from the vicinity of massive black
holes such as Sgr A* is not yet understood, so that it is difficult to make a physically inspired
choice of the cooling (or drift) time scales. As such, the value of the cooling timescale used in
the calculations presented here was chosen to be comparable with the orbital timescale. It was
set t0 teool = 1.5 Tiyp, making it different for flares in Schwarzschild (tcoo = 156.3r,) and Kerr

(teool = 46.81,) spacetimes.

The flare spectrum was initialised as a Gaussian centred at 45 keV with standard deviation
2 keV. The flare injection timescale is effectively instantaneous, with t,; = 0.03 T5,,. This

results in the sharp initial rise in the bolometric light curve of the intrinsic emissivity.

The frequency drift timescale was also set to a value which would make the visualization of the
general and special relativistic effects clearer. In particular, we chose a drift rate such that, at
the end of the sampled period, the spectral peak had drifted to 0.1 keV. This corresponds to
a drift rate of D = In(0.1/45)/(3T,,p) or a drift time tq,s == —1/D ~ 0.491 Tiyp.

Figure 3.5 shows what the local emissivity looks like with the parameters used in the long
flare calculations performed in this section. The same emissivity parameters in terms of orbital
period were used was used for all flares, both in Schwarzschild and Kerr spacetimes. Since the
orbital period is different for both flares, however, the numerical values of the parameters are

different, though the shape of the intrinsic emissivity is the same.

ii) Spectrograms

Figure 3.6 shows the results for the case of a flare with the intrinsic explosive profile shown
in figure 3.5 originating from an object orbiting a Schwarzschild black hole at r = 6.57,. The
figure shows the spectrograms detected by an observer looking at them nearly edge on, at
Oo1s = 89° for flares whose onset occurs at four different azimuthal locations. The onsets occur
at ¢ = 0°, i.e. between the observer and the black hole, ¢ = 90°, ¢ = 180°, i.e. behind the
black hole with respect to the observer, and at ¢ = 270°. The figure also shows the bolometric
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light curves (in red) and the light curves that would be seen in specific energy bands. The first
band 2 — 8keV represents the Chandra band and the others were chosen so that they covered

different portions of the spectrogram.

Given the long duration of the flares considered, it is expected that, after some initial differences,
the overall structure of the spectrogram and bolometric light curve of the flares would look
similar for all origins. This is indeed the case. In all four spectrograms is it possible to see
three brighter moments. These occur when the emitting hotspot is behind the black hole
(equivalent to feature D in the spectrograms of figure 3.4). The effect of the intrinsic peak
energy drift is also clearly visible in all four panels. The modulations found in section 3.3.2
are convoluted with the overall energy drift, still being visible but moving down in energy with
time, as the flare’s intrinsic emissivity changes. In order to capture as much information as
possible, the plots in the figure are in logarithmic scale. The bolometric light curves of all four
plots closely resemble those shown in logarithmic scale in figure 3.3. The main difference is
an overall decrease in the peak intensity over time, as expected due to the intrinsic decrease
in emissivity as the flare evolves. A sharp cutoff is also expected around 37, the time the
intrinsic emissivity is turned off. In the ¢ = 180° and ¢ = 270° cases, this is precisely what
happens, with the remaining intensity being due to the emission from secondary images. In
the first cases, ¢ = 0° a small cutoff occurs around 37,;,, but the main one occurs later due
to delays in the arrival of different photons. For ¢ = 90°, this time delay results in the cutoff
happening later, at ~ 3.27T,,

Unlike the continuous emissivity flares, which are assumed to be “turned on” constantly, these
flares have a clear onset and cutoff time. This means that the difference in arrival time of
photons from primary and secondary images will be clearer. The first panel of figure 3.6 (¢ = 0°)
shows two solid lines sliding from higher to lower energies, and merging in the red region. The
first of them (feature A) is the primary image corresponding to the bottom horizontal line
in figure 3.4. The second one (feature C) is the secondary image corresponding to the top
horizontal line of figure 3.4. These two sliding lines merge in the large red block: the red
vertical line (feature D) corresponds to the vertical line in figure 3.4, when the plasmoid is
behind the black hole. Following this are features E and F, produced as the plasmoid moves
through ¢ = 270° until ¢ = 360°. The fainter blue-ish sliding lines (feature H) correspond to
the fainter horizontal lines in figure 3.4 of similar colour due to secondary images which arrive
at the observer while the primary image is sliding down from the peak energy. After this point,
the same structures get repeated at lower energies, becoming harder to distinguish by eye due to
the smaller spread of detected energies. Similar features are clear in the other plots, especially
for ¢ = 90°. The ¢ = 180° spectrogram begins precisely as the Einstein ring forms, with a brief
period of Doppler blue shift until the flare reaches its peak energy and starts sliding down to

lower energies. The intrinsic energy drift results in an overall decrease in peak energy even at
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the start of the flare, when Doppler shift alone would still cause it to increase. The very steep
decline which follows in this panel is due to the convolution of both the decrease in relativistic
Doppler blue shift and the intrinsic energy drift. The final panel shows very similar behaviour,
with the flare beginning already at the point where the decrease in Doppler blue shift would

cause it to shift to lower energies even in the absence of an intrinsic emissivity drift.

In figure 3.1 we looked at the delays between the arrival of photons travelling along different
paths towards the observer. For the locations sampled in the figure, the shortest and largest
time delay between the first and last photon to be detected were respectively ~ 25r,/[c| for
¢ = 90°, which corresponds to &~ 0.24 Ty, and =~ 50r,/[c] for ¢ = 180°, which corresponds to
~ 0.48 Ty, As such, we would expect there to be some detected radiation until ~ 0.24 T, to
~ 0.48 T,,1, after the intrinsic emissivity is “turned oft”, depending on where the cutoff happens.
Note that, since the pixel resolution used for the calculation of the spectrograms was higher
than that of the observer images, there are some higher order images which are captured here
which were not in the panels of figure 3.1, hence explaining why e.g. in the ¢ = 90° panel there

is some residual radiation detected after 3.25Tg,,.

Figure 3.7 shows the results for the same flares, now emitted from a body on an orbit at
r = 2.57, around a Kerr black hole with a = 0.998. Although the local emissivity was the same
as for the Schwarzschild case, a striking feature in these plots is the large amount of higher
order images present. This should not be a surprise based on the results for Kerr spacetimes
presented in section 3.3.2. The proximity to the black hole which orbiting bodies can achieve in
fast spinning Kerr spacetimes results in a large amount of high order lensed images. In figure
3.1 we saw that the time delays between the first and last detected photons for the hotspot
locations sampled could be as large as 5.2 T,,,,. For a flare cutoff at ¢ = 37T,,;,, this means that
one would expect to receive emission from secondary images until at least ¢ ~ 8.27T,,, much
later than what was observed in the Schwarzschild case. The detection of very faint radiation
close to t &= 97T, is due to the higher resolution of these calculations relative to those in figure

3.1, which results in even higher order images being detectable at later times.

Just as in the Schwarzschild case, the key features of the constant emissivity spectrogram and
bolometric light curve can be identified in the spectrograms and bolometric light curves of
figure 3.7, despite with a decreasing intensity. In Kerr spacetime too, horizontal lines become
slanted due to the intrinsic emissivity profile, and the emissivity cutoff at around 3T, is also
visible in some of the spectrograms. In the Schwarzschild case, for ¢ = 0° a cutoff is visible at
t = 37T, In the Kerr case this cutoff is not clear, likely because at this point it is difficult to
distinguish the primary from higher-order images in this spectrogram. Other than in this case,
all other Kerr spectrograms show a discontinuity at the same times as in the Schwarzschild
case: t = 3.2T,y, for ¢ =90° and t = 3 T4y, for ¢ = 180° and ¢ = 270°. The cutoff is visible as

a discontinuity in the features corresponding to the primary image of the hotspot.
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Figure 3.5: Left: Local emissivity spectrogram responsible for the explosive-like flares calculated in
this chapter. The same emissivity was used for both Schwarzschild and Kerr spacetimes and for all
flare origin locations in terms of orbital period, so the numerical values of the parameters are different
in both cases. Right: light curves over the specified energy bands.

A key result from these calculations for both spacetimes is how different the light curves mea-
sured at different energy bands are. This was already true in the case of continuous emissivity
(section 3.3.2) and it is even more obvious here. In particular, since theses flares intrinsically
drift to lower energies, the lower energy band considered (here 2 — 8 keV) is the band where
the detected light curve most resembles the bolometric light curve for most of the flare’s du-
ration in each case. If the intrinsic emissivity drifted to higher energies instead, this would be
expected for higher energy bands. It is difficult to conclude whether FRSD flares may or may
not appear as SRFD flares based on the present calculations: the long duration of the flares
and the intrinsic time-dependent emissivity, convoluted with the relativistic effects, gives rise
to multiple secondary and higher order images, resulting in complex morphologies of multiple

flares from an observer’s perspective, which cannot be simply labeled as FRSD nor as SRFD.

3.4 Further remarks

3.4.1 Potential areas for exploration and model improvement

The calculations presented so far were aimed at identifying the effects of general and special
relativity, as well as observation band-pass, in the distortion of detected flares. It was therefore
desirable to consider a simple emissivity model to avoid the complications which arise due to
the convolution of a complicated emissivity profile and the general relativistic effects. As such,
a simple parameterized model for the emissivity was chosen (a thin Gaussian spectrum, emitted
from the surface of a spherical object on a circular equatorial orbit, without absorption). This
is indeed a simplification of the more complex reality. However, it allowed us to separate in
part the individual effects at play in each part of the spectrograms and hence provided insights

towards the interpretation of real observations. In a realistic situation, one would need to
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Figure 3.6: Left: Spectrograms of long explosive emissivity flares in Schwarzschild spacetime for
different onset locations. The grey bars represent the energy bands at which the band-specific light
curves on the right were calculated. A summary of the key features is presented in table 3.1. Right:
Bolometric (red) and band-specific light curves (grey) caused by a flare with in local emissivity as
in figure 3.5. The features in the top panel are labeled with the same labels as the corresponding
features in figure 3.4. Resolution: 1000 x 1000 pixels; 2160 time frames; 401 energy bins. These
calculations were run on machines with 128 physical cores (AMD epyc processor) and 1Th of RAM,
and the calculation took approximately 48 hours for each initial hot-spot location.
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Figure 3.7: Same as figure 3.6, but for a Kerr black hole with spin parameter a = 0.998. Resolution:
1000 x 1000 pixels; 2160 time frames; 401 energy bins. These calculations were run on machines with
128 physical cores (AMD epyc processor) and 1Tb of RAM, and the calculation took approximately
48 hours for each initial hot-spot location.



3.4. Further remarks 91

account for at least the following factors:

¢ Emission spectrum: A more realistic spectrum constructed based on a physical model
could be used instead of the simpler parameterised model used here. Although this is
not expected to produce large differences in the bolometric light curves (compare e.g.
with the light curves from Younsi and Wu (2015), which were calculated using a more
complicated synchrotron-inspired spectrum), it will be relevant when assessing full spec-
trograms or light curves at specific energy bands. Although the final outcome, including
the convolution of intrinsic emissivity and GR effects will be different, the GR effects

themselves will not change with this.

e Emission region: In reality, flares associated with magnetic eruptive events have a
complex time evolution and spatial structure, as seen in solar flares and flares form mag-
netic interactions in other stars (see e.g. Reid, 2020). Furthermore, based on results from
GRMHD simulations, it seems unlikely that the emission region is a sphere that retains
its shape perfectly over several orbits. Instead, its shape and size are likely to change.
Some previous results found that light curves due to the primary image are not highly
dependent on the shape or size of the emitting region (Schnittman and Bertschinger,
2004), though the higher order images would cause differences that would likely affect
the spectrograms and light curves, both bolometric and at specific energy bands. It’s
motion is also likely more complicated than an equatorial circular orbit (e.g. GRAVITY
Collaboration et al., 2020a). The different relativistic effects at play in a different orbit

will cause differences in the emitted light curves.

e Absorption: Accurate predictions of the time dependent spectral evolution of flares
from magnetic eruption events in the Galactic Centre would require a proper treatment
of line of sight absorption. This absorption can occur within the emitter itself (if it is not
opaque, both emission and absorption can occur at any point within the emitting region),
or outside it. Since absorption is often frequency dependent, it might affect different
portions of the same image differently due to Doppler energy shifts. As such, instead
of the simplified no-absorption model used in this work, if the aim of such calculations
is to make accurate predictions or parameter estimations from the observations, then a

self-consistent emission and absorption model will be necessary.

Given the modular structure of the code developed, it is in theory not difficult to adapt it to
incorporate any of the above modifications. In order to turn the results in this chapter into
more realistic observational predictions, one would be able to use physically motivated emission

and absorption models if they were to be provided.
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3.5 Conclusions and observational implication

Flaring events across the electromagnetic spectrum are common in several astrophysical sce-
narios, from the sun and other stellar systems (e.g. Benz, 2017; Hannikainen et al., 2005;
Garcia-Alvarez et al., 2003; Retter et al., 2005; Fuhrmeister et al., 2008) to massive black holes
in the centre of galaxies such as in the NGC4151 (Lawrence, 1980; Warwick et al., 1996) and
3C111 (Chatterjee et al., 2011; Schulz et al., 2020). Sgr A* also experiences such events. Some
of these systems have the benefit of being close to Earth, allowing for intense imaging and
studying. For others, on the other hand, accurate imaging becomes much harder and most

information must be obtained from light curves and spectral data.

In this work we have shown that, when the systems of interest are associated with black
holes, the highly relativistic motion and strong gravitational effects can significantly distort
the emitted flares, changing their spectrum, light curve profile and, in some cases making a
single flare appear as multiple ones. The closer to the black hole and the faster the emitter
moves with respect to the observer, the more pronounced such effects will be. Similarly, most
of the distortions are larger in the case of edge-on observations of the emitter’s orbit. We
considered both the case on continuous, constant emissivity and the case of flaring events with
a time-dependent explosive-like emissivity with an intrinsic energy drift and found that both

were affected by the gravitational and relativistic effects due to the proximity to the black hole.

Even for the simplified parameterized models used in this work these effects were present and
affected different energy bands differently, resulting in different light curve profiles at each
band. These calculations exemplify well that, when the events occur very close to a black hole,
obtaining light curve data only at specific energy bands may be misleading and, in the absence
of multi-wavelength observations and corrections for gravitational effects, may lead to incorrect
conclusions about the intrinsic emission properties of the flares. An interesting extension of
this work would be to explore the effects on flares with time scales shorter than the orbital time
scale. Given their shorter period, they will only cover a small portion of the orbit, so that the
general relativistic distortions on it will be less evident, except when the flare happens to cross
regions where the spectrogram 3.4 changes significantly in sort periods of time (e.g. around
¢ = 180°). There will also be multiple flares occurring, this time completely separated in time,
due to the late arrival of lensed images. By focusing on the primary image (or alternatively on
the strongest one, in the cases when the primary image flare is not the strongest), it would be
possible to evaluate the skewness of the corresponding portion of the light curve and evaluate
how the profile changed compared to the fast-rise-slow-decay intrinsic emissivity. It would then
be interesting to initialize such flares in randomized different locations (r, § and ¢) and to
perform a statistical analysis of the detected flare properties. Then, it might be possible to

establish how likely it is for a certain fast-rise-slow-decay flare to appear as a slow-rise-fast-decay
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one.

More realistic calculations of the observations of such flares may be performed by following
the proposed areas for future development mentioned in section 3.4.1. By including physically
inspired models, it will be possible to use the present code to perform realistic predictions of
detections which can be compared to observations. The general relativistic effects observed in
the simplified model will be similar, and such realistic calculations may provide a way to correct
for such effects in observations, hence aiding in our understanding of the intrinsic mechanisms

at play in the vicinity of black holes.






Chapter 4

Massive particles: interactions with the

propagation medium

4.1 Introduction

Energetic particles are generally associated with flaring events in the vicinity of black holes such
as those discussed in the previous chapter. The particles can carry large amounts of energy
and can interact with diffuse media such as accretion disks or tori around the black hole. The
deposition of this energy by such particles may unsettle the quasi-equilibrium of such structures,

altering their thermal and magneto-hydrodynamic state.

If the particles are emitted at distances from the the black hole comparable to the gravitational
radius, the effects of gravitational lensing and relativistic beaming due to the motion of the
emitter will cause them to focus in specific regions. The time delays caused by potentially
orbiting the black hole multiple times will result in a time-dependent energy injection into
the medium. And finally, the effects of gravitational and Doppler energy shifts may result
in an injection spectrum significantly different from the original particle spectrum at their

emission /acceleration point.

To quantify all these effects, it is necessary to have an appropriate GRRT formulation in the
from of a particular code which can account for the effects mentioned above for massive particles.
This is a first step into understanding the potential interactions which may take place in the
vicinity of black holes due to highly energetic particles, and it is an essential step which must be
understood before focusing on the sub-atomic physics and radiative cooling processes through

which such interactions actually occur.

This chapter showcases how the the massive particle GRRT formulation developed in chapter 2
can be used to investigate the potential timing and preferred location for these interactions, as
well as where the particles are most likely to deposit their energy. Note that the calculations in
this chapter are, at the point of writing this thesis, of an exploratory nature, without accurate

astrophysical scenarios and models. Despite this, there are clear astrophysical motivations

95
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for considering such a scenario. For example, in order to explain X-ray filaments (Zhang
et al., 2014) and certain y-ray emission (Aharonian et al., 2006) in the Galactic Centre, models
have been proposed which invoke the interaction of high energy cosmic rays accelerated in the
vicinity of Sgr A* with molecular clouds (Gabici et al., 2009). Such particles (likely protons)
would produce secondary particles via these interactions (high energy electrons) which would
be responsible for emitting the detected radiation. The calculations in this chapter can shed

light into these models.

There is also evidence that tidal disruption events in the vicinity of black holes can lead to
the production of neutrinos (Hayasaki, 2021) via hardronic interactions: energetic particles
from near the black hole would bombard the debris torus formed by the remnant of the tidally
disrupted star and interact with baryons present there. These calculations could be applicable
to the study of the particle bombardment and the transport of the resulting particles, which

would decay into neutrinos and leptons.

4.2 Computational model

The system considered in this chapter as a case study is that of a torus revolving in a pro-grade
direction around a Schwarzschild or Kerr central black hole. The torus is considered to be
much less massive than the black hole, so that the spacetime is well described by the black hole

metric alone.

Located between the inner surface of the torus and the event horizon of the black hole, on
the equatorial plane, is a source of high-energy photons or massive particles. The size of the
source Dy is very small compared to the gravitational radius of the black hole (i.e. Dy < 1),
and therefore the source is treated as a point-like object. Given the axisymmetry of both the
Schwarzschild and Kerr systems, the ¢ coordinate of emission or acceleration location was set
to ¢ = 0 in all cases and its distance from the black hole, rey,, was varied between 2.5 — 20r,.

The geometrical configuration of the system is illustrated in figure 4.1.

The emission was considered to be isotropic in the source’s local co-moving frame, and the
source is on a Keplerian circular orbit around the black hole. This was modeled by initializing
geodesics from the source’s location in equally spaced directions, with each geodesic representing
a bundle of massive particles or photons. The initial directions were then transformed into the

black hole’s Boyer Lindquist frame and the initial conditions set as described in section 2.1.4.

The target body was set to be a large torus with a major radius of 700r, and a minor radius
of 3007,. Given the distance between the surface to be found and the black hole, the error
tolerance of the surface finding algorithm was set to 1% of the major radius. This is a larger

tolerance than that used in chapter 3, where the surfaces to be found were much smaller.
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Figure 4.1: A schematic illustration of the geometrical configuration of the model adopted in this
study (not to scale); Left: face on (top) view; right: edge on (side) view. The energetic particles are
produced in the vicinity of a central black hole, which is surrounded by a geometrically thick accretion
torus. The source’s size is small compared to the sizes of the black hole and the accretion torus. As
such, it is treated as a point source and it is always chosen to be at ¢ = 0°. The distance between
the source and the black hole is much smaller than both the major and minor radii of the torus. The
emission of the particles is isotropic in the local rest frame of source.

Importantly, any interactions which would alter the trajectory of the particles (e.g. magnetic

fields which would affect charged particles) are neglected.

In this chapter we performed two different calculations. First, we investigated the location and
timing of the intersection of the particles with the target surface, without worrying about the
processes taking place within the torus. Therefore, the torus was considered optically thick and

the geodesic integration terminated as soon as the surface was reached.

Secondly, we investigated whether the energy deposition by the particles as they propagate
inside the absorbing body behaved as expected. For these calculations, a particular absorption
coefficient was chosen for the torus. The interactions between the particles and the torus
material are complicated, each having its own cross section resulting in different probabilities
of interaction. An “effective absorption coefficient” could be obtained from a combination of the
cross sections of all possible interaction processes that could take place within the torus, which
would involve a tricky calculation. In this chapter we do not use such a physically motivated
absorption coefficient. Instead, we chose particular values which would better illustrate the
capabilities of the GRRT algorithm discussed in this thesis.

Another significant simplification of the code is that we consider absorption coefficients which
are constant across all particle energies. This is unlikely to be the case in physical situations
and it is not a limitation of the code, which can deal with absorption coefficients of whatever
shape one desires, but rather a result of the absence of physical motivation to justify a more

complicated energy dependency. In particular, three absorption coefficients were chosen - one



98 Chapter 4. Massive particles: interactions with the propagation medium

where most particles were absorbed a short distance into the absorbing medium, one where a
large percentage of particles escaped the medium and one in between these two. In this way, a

wide range of possible physically motivated absorption coefficients is covered by the case study.

4.3 Results and discussion

4.3.1 Time-like geodesics

To perform GRRT of massive particles, the first step is to solve the geodesic equations for mas-
sive particles. Unlike for null geodesics in vacuum, there are multiple possible timelike geodesics
with the same spatial initial direction which a massive particle may follow, depending on the
particle’s initial spatial 3-velocity. Specifying an initial mass to energy ratio for the particle
determines the unique geodesic the particle will follow for a given initial spatial direction. This

is true for both the backward and the forward initial conditions.

Numerical accuracy is a very important factor to establish the validity of the results. Therefore,
we start by demonstrating the accuracy and performance of the code for timelike geodesics for
different mass to energy ratios. For ease of visualization and comparison, this calculation was

performed using backward ray-tracing.

In figure 4.2 we show the paths travelled by particles on timelike geodesics for different mass
to energy ratios, where the energy is the energy as measured in the local orthonormal frame
comoving with the emitter !. As expected, the spatial trajectories followed by massive particles
approach those of photons as their Lorentz factor increases (i.e. m[c?]/€ decreases). In fact, for
Lorentz factors greater than v = 102, the physical trajectories become nearly indistinguishable
from those of null geodesics. As shown on the last panel of figure 4.2, the travel times until
the vicinity of the black hole is reached also become nearly indistinguishable from the photon
travel times as the Lorentz factor of the massive particles increases. Again, this is expected as
particles travel closer to the speed of light. As such, in this chapter we only perform calculations

for massive particles with m[c?]/€ > 107

Let the particle’s 4-velocity be given by k = (%, 7, 0o, éo) = (to, o0, where Z; is the magnitude
of the spatial component of the 4-velocity and is given by equation (2.58). Then, as the particle

n special relativity (flat spacetime) the Lorentz factor v = 1/4/1 — (v/[c])? and the mass to energy ratio
m[c?]/€ are related by v = (m[c?]/€)~L. In the present chapter it is sometimes useful to talk about the particle’s
Lorentz factor. Following the special relativity definition, this will be used to refer to a particle’s energy to mass
ratio as measured by the particle’s emitter. I.e. in the present chapter a particle’s Lorentz factor is defined
v = (m[c?]/€)~! where £ is the particle’s energy measured by the emitter. This definition is reasonable since it
defines the initial conditions of the particle’s spatial velocity in the emitter’s frame, which is later transformed
into the black hole frame. In order to compare the timelike geodesics with null ones, in this thesis we mostly
speak in terms of the mass to energy ratio instead of the Lorentz factor, as it does not make sense to speak of
Lorentz factor of light, but for massive particles the terms are used interchangeably.



4.3. Results and discussion 99

x'-y’ projection x'-z' projection Particle travel time
10000 A

mlc2)/e:

— Te-1

— 6e-1
5e-1
4e-1
2e-1
le-1l
5e-2

8000 4

6000

y'(rg)
o

z'(rg)
o

r(rg)

4000 4

2000 4

0 2500 5000 7500 10000 12500
x'(rg) x'(rg) t(rg/lcl)

Figure 4.2: Backward ray tracing for particles of different masses in a Kerr spacetime with spin
a = 0.998. The first two plots show the projections of the spatial trajectory of the particles and the
third plot shows the particle’s distance from the black hole (which is at » = 0) as a function of travel
time. All geodesics have the same spatial initial conditions and only differ on their mass to energy
ratio. With the exception of the m = 0 geodesic (dashed line), which is null, all other geodesics are
timelike. Note that both the spatial trajectories and the travel times of timelike geodesics with mass
to energy ratios smaller than m[c?]/€ = 1072 (or Lorentz factor greater than v = 10%) become nearly
indistinguishable from those of null geodesics.

becomes more relativistic, the value of Z; - and hence also of 7, 90, (bo - becomes increasingly
large (see equations (2.51)-(2.53)). o, 6o, do are all proportional to . In order to calculate the

value of fy we use equation (2.54), i.e.

—(2g190) + \/(29t¢>¢0)2 — 49 (grrTE + Goo0E + GoodE — €)

fn =
’ 291

(4.1)
As the particle becomes more relativistic, all but the last term inside the square root increase
rapidly as 2. The £ term, on the other hand, is always of order 1. This means that, for
relativistic particles, the code needs to subtract numbers of very different orders of magnitude

from each other, which leads to computational errors.

For example, from equation (2.58) we see that a particle with m[c?]/€ = 107° has Z, & 10°, so
that the first three components of the term (g,,72 + gos0 + gosdE — €) in equation (4.1) are
of order 10'. As such, the code needs to subtract numbers 10 orders of magnitude apart (or
more, for more relativistic particles). This results in rounding errors that accumulate as the
integration progresses. As a response to this, the code makes use of the adaptive step size in the
Runge-Kutta algorithm and decreases it until the integration errors are within an acceptable
limit. While this may rectify the issue with the integration error at each step, a much larger
number of steps are now required to perform a very similar integration. This leads to two

undesirable consequences: firstly, the computational time needed to calculate these geodesics

2 Although it is usual to use an affine parameter such that £ = —1, one can always re-parameterize the geodesic
so that £ can become any number. However, this will not remove the computational error issue because the
terms 7, g and ¢g will change similarly with the new parameterization.
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Figure 4.3: Integration errors for the geodesics of particles with different mass to energy ratios. Left:
errors in C; and Cy as a function of radial coordinate along the geodesics of particles with different
mass to energy radios. Right: affine parameter A (top) and radial coordinate r (bottom) as a function
of iteration number of the integration calculation.

is much larger than that needed to solve the very similar null geodesics; secondly, it results in

an accumulation of rounding errors, making the resulting geodesics less reliable.

Figure 4.3 illustrates this by showing both the errors in C; and Cy as a function of distance to
the black hole for the geodesics plotted in figure 4.2. The two error plots (left) show that the
errors for the more relativistic particles increase. Note that the two least relativistic particles,
m([c?]/E = 0.7 and m[c?]/€ = 0.6, have higher errors at very small r. This is due to the fact
that these two particles are captured by the black hole. As such, they get much closer to the
event horizon - where a coordinate singularity arises and hence errors increase - than any of
the other particles in this calculation. However, for comparable r, it is clear that the largest

errors occur for the more relativistic particles, namely v = 10%, v = 10® and v = 10%.

The affine parameter plot (top right of figure 4.3) shows that the more relativistic a particle
is, the smaller the size of the integration step taken by the RK algorithm. The integration of
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null geodesics and of low velocity particles are the most efficient in terms of integration time
and step size. The affine parameter and distance to the black hole plots (right panels) show
that, as the initial velocity of the particle increases (i.e. m[c?]/E decreases), the total number
of iterations required for the particle to reach a similar stage in the integration significantly
increases. This results in the code being significantly slower for these particles. Given this, all
the calculations in this chapter were performed for particles with Lorentz factors only up to

~ = 10%, as previously mentioned.

4.3.2 Bombardment of a torus by massive particles
i) Optically thick® torus

Figure 4.4 shows a summary of the data calculated across various distances from the black
hole for multiple mass to energy ratios. The plot shows a histogram of the azimuth at which
the torus is hit by the accelerated particles in each case, followed by a summary of the peak
azimuthal location of the hits and the total fraction of the emitted particles which hit the
torus. The results provide insightful detail as to the effect of special relativity and gravity
in the propagation of particles with different masses emitted close to the event horizon of
Schwarzschild and Kerr black holes. The key results we will discuss are the azimuthal location
where particles concentrate on the torus (i.e. the peak ¢), the fraction of emitted particles that

hit the torus, and the arrival times of the particles to the torus.
Peak ¢

We begin by looking at the results for large r.,,. As the source’s distance from the black hole
increases, the differences between Schwarzschild and Kerr histograms decrease. The overall
shape of the histograms at large r., has two components: an oscillatory pattern spanning the
whole torus and a narrow peak, which in Schwarzschild spacetime is around ¢ = 180° and in
Kerr changes location with 7.,. This result is a combination of relativistic beaming, which
depends on the speed of the source and, hence, indirectly on its location, and gravitational
lensing. The interplay between these two effects results in the differences observed between the
different particle energies and source locations. Relativistic beaming causes more particles to
be emitted in the positive than the negative ¢ direction (see figures 2.4 and 4.6). This results
in more hits between ¢ = 0° and ¢ = 180° than between ¢ = 180° and ¢ = 360°, giving rise to

the oscillatory pattern.

The second feature present in the histograms, the thin peak, is a result of gravitational lensing.

3Optical thickness is generally used with respect to photonic absorption/ attenuation. In this chapter we
use the term optically thick to refer to systems where the particle’s mean free path is much smaller than the
scale of the system, so the system is effectively “opaque” to the particles, and optically thin to refer to systems
where the particle’s mean free path is large compared to the scale of the system, so the system is effectively
“translucid” to the particles.
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Figures 4.7 and 4.8 show an interesting phenomenon regarding this peak which is also clearly
visible on the top and middle panels of figure 4.4: while in Schwarzschild spacetime the peak
occurs always around ¢ = 180° (with the exception of very high m[c?]/€ particles at very
small 7o, - see later for comments on these), in Kerr spacetime the peak starts at higher ¢
and moves towards ¢ = 180° as the emitter’s distance from the black hole increases. This is a
result of the frame dragging effect, present only in Kerr spacetime, which competes with the
relativistic beaming and lensing effects mentioned above. When the particles travel very close
to the black hole, they experience a strong drag in the positive ¢ direction due to the rotation
of the spacetime around the black hole, caused by its spin. This means that, while particles
would focus at ¢ = 180° without spin, the drag causes them to focus further along the torus,
at higher ¢. The frame dragging effect becomes weaker further from the black hole. So, as the
source moves away, this effect loses importance and the results become more similar to those
of Schwarzschild black holes?.

For emission locations very close to the black hole, i.e. small 7., there are significant differences
between histograms of particles of different masses (see also figure 4.5). These differences
become less relevant as one progresses to larger radii. As the particle’s m[c?]/€ decreases, the
shape of the histograms approaches that of photons, as expected, with little differences between

different particle energies for m[c?]/€ > 0.1.

The peak ¢ location for very low energy particles at low 7y, is more messy than for higher energy
particles. These particles are less relativistic and hence are more sensitive to the gravitational
lensing from the black hole. The relativistic beaming will also be stronger for these particles.
The closer they are to the black hole, the stronger these effects will be. In some cases (e.g.
particles with m[c?|/€ = 0.7 emitted at r < 3ry in Schwarzschild spacetime) every emitted
particle ends up entering the event horizon, so no particles at all reach the torus. As the
particles become more relativistic or their emission radius increases, more of them become able
to escape the black hole and be lensed towards the torus. Figure 4.5 illustrates how the patterns
produced by such high m|c?]/€ particles in the torus are complicated, not quite matching those

of more relativistic particles or of high m[c?|/€ particles emitted further from the black hole.
Fraction of hits

The fraction of emitted particles which reach the torus varies both with radius and mass to
energy ratio. As shown in figure 4.4 (bottom panel), the fraction of hits is close to 40% in most
cases. This is expected for a torus of the given dimensions, which covers a solid angle of around
40% of the total sky plane. Excluding the Schwarzschild cases of 7ey = 2.57 and reym = 31y,

for which no low energy particles reach the torus®, the fractions of hits within a certain radius

4Recall that the peak of the Kerr light curve in figure 3.3 was also shifted to values of ¢ > 180° due to frame
dragging. See main text for a further comparison between these histograms and the light curves.
5These curves are not shown in the figure because, even for high energy particles the total fraction to reach



4.3. Results and discussion 103

as a function of mass to energy ratio follow a similar trend in both Kerr and Schwarzschild

spacetimes.

In order to understand these trends we must take into account the different factors which affect
whether or not particles reach the torus. These include: capture of the particles by the black
hole, gravitational lensing which focuses the particles, and relativistic beaming of the particle’s
initial directions due to the motion of the source. It is the competition between these different

effects that explains the different behaviours in the bottom panel of figure 4.4.

For example, if one considered a stationary source, for a given fixed rep, a larger m[c?] /€ would
correspond to a smaller initial particle speed, making it easier for the particles to be captured
by the black hole (resulting in less particles hitting the torus); on the other hand, a smaller
speed makes it easier for the particles to be focused onto the torus by gravitational lensing
(resulting in more particles hitting the torus). For a fixed m[c?]/€ ratio, a larger 7e, would
result in less particles being captured by the black hole (more torus hits) but it would also

result in less particles getting lensed and focused onto the torus (less torus hits).

If one considers also the motion of the source, whose speed increases the closer it is from the
black hole, the beaming effect also becomes relevant. For a given fixed 7oy, a larger m[c?]/€
corresponds to particles with lower initial 3-velocity, which experience a stronger relativistic
beaming, and hence a larger amount of particles would be moving closer to the equatorial plane,
where they are more likely to hit the torus. On the other hand, similarly to the stationary
source case, they are more likely to be captured by the black hole, which would decrease the hit
fraction. Finally, for a fixed m[c?]/€, a source at larger re, will have a lower velocity, resulting
in a less intense beaming, so that the particles’ initial velocities are more isotropic and hence
the fraction that hits the torus decreases®. On the other hand, just as in the stationary source
case, it also means particles are less easily captured by the black hole, potentially resulting
in more hits (but also less lensed, potentially resulting in less hits). Given all these different
combinations of factors, understanding how the number of hits changes with changing 7ey
and m[c?] /€ effectively consists of understanding which of these factors is dominating in each

situation.

the torus is also very small compared to higher ;. For ry = 2.55, no particles with m[c?]/€ > 0.4 reach the
torus. At lower mass to energy ratios, the fraction of hits increases until it stabilizes at ~ 3% for m[c?]/€ < 0.1.
For r; = 3rg, no particles with m[c?]/€ = 0.7 reach the torus. The fraction of hits increases until m[c?]/€ = 0.1,
below which it stabilizes at =~ 15%.

6This is clear by thinking about the expression for the velocity angle transformations in special relativity.
The relative speed of a particle with respect to its emitter will affect how much the angle will change when
viewed by a stationary observer (e.g. on the black hole frame). This effect will be smaller if the particle’s speed
in the emitter’s frame is very large compared to the emitter’s speed in the black hole frame, and will be more
substantial if the particle is less relativistic in the emitter’s frame than the emitter in the black hole’s frame.
So, in the case of small ¢y, where the emitter is more relativistic, the difference in the beaming for low m|[c?]/€
will be more significant than for high m[c?]/€ and than it will be for higher rep,.
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The bottom panel of figure 4.4 shows three different regimes in terms of the number of hits as a
function of particle mass for a given emission radius. We start by considering the hits fraction

for each fixed radius as a function of mass to energy ratio.

For large emission radii (7em > 107, for Schwarzschild and re, > 97, for Kerr) the number of
hits increases with m[c?]/€ in both cases. This means that the dominating processes in this
regime is likely the stronger beaming that occurs for larger m[c?]/€, making the particles more

focused into the equatorial plane and hence more likely to hit the torus.

For small radii (47 < rem < bry for Schwarzschild and re, < 5r, for Kerr), the fraction
remains approximately constant up to a certain value of m[c?]/€, following which it decreases
and increases again. This indicates that there is a balance between the different factors up to a
certain mass to energy ratio, which is broken at a certain point. Then, the competition between
the different effects results in the drop and increase in the fraction hit. A possible explanation
would be that first the higher black hole capture dominates the trend, so that less particles hit
the torus as m[c?|/€ increases, but then the stronger beaming that occurs for larger m[c?]/€

beings to dominate.

We now look instead at how the hit fraction changes for changing 7., given a fixed m[c?]/E.
By looking at one of the more relativistic particles, it is easier to identify a trend for how the
fraction of particles reaching the torus changes with source distance to the black hole. For
Kerr black holes the trend is obvious: for a fixed m[c?]/€, the further from the black hole the
source is, the lower the fraction of particles that reach the torus. In this sense, the torus hitting
fraction in this regime is likely dominated by one of two effects: either gravitational lensing -
the further away the source is, the less lensing the particles experience, leading to less focusing
onto the torus - or the beaming effect - the larger r.p, is, the less relativistic the source is, so the
less beaming the particles experience and, having a more isotropic emission, the less particles
hit the torus.

In the Schwarzschild case, however, the trend is more puzzling. Up to a certain radius, the
fraction appears to increase with source distance from the black hole, and after that it starts to
decrease. The cutoff point is the ISCO radius, rigco = 6rg. Figure 4.6 shows the beamed initial
conditions of particles with m[c?]/€ = 0.6 for different radii, for both Kerr and Schwarzschild
black holes. For radii rey < 67y, the source in Schwarzschild spacetime is within the ISCO,
meaning that it cannot have a stable circular orbit (see assumed velocity profile in appendix
A). This results in a source velocity with a component in the negative radial direction, which in
turn changes the direction of the beamed emission. The component of the source’s velocity in
the negative radial direction results in more particles being emitted towards the black hole the
closer to the black hole the source is. In the extreme case of e.g. m[c?]/€ = 0.7 and 7oy, < 31,

every emitted particle ends up inside the Schwarzschild black hole’s event horizon. Particles
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with a lower mass to energy ratio will have a larger initial speed, allowing them to escape the
gravitational pull of the black hole even with such beamed initial conditions. As the source
moves away from the black hole, the beaming in the direction of the black hole becomes less
pronounced, and once the source crosses the ISCO, its velocity no longer has an r component,
so that the beaming occurs in precisely the same direction as in Kerr spacetime. This explains
why, for Schwarzschild black holes, the total hits fraction increases up to a certain radius before

it starts decreasing.

Finally, for radii in between these two groups (6ry < re, < 11rg for Schwarzschild and 6r, <
Tem < 107y for Kerr) the behaviour becomes more chaotic, with a trend similar to that of
high radii up to a certain point, following which the hit fraction drops in irregular ways. Such
behaviour is likely an effect of the competition between the higher Lorentz factor, which allows
particles to better escape the gravitational pull of the black hole and the lower Lorentz factor
which allows particles to experience a larger gravitational lensing, allowing their trajectories to

be bent and hit the torus in situations where more relativistic particles would simply escape.
Similarities with light curves from section 3.3.2

Regardless of how relativistic the source and particles are, the fact that the emission occurs
close to a black hole results in gravitational lensing affecting the particle trajectories. In section
3.3.1 we saw that, when a small source orbits around a black hole and the radiation from it is
monitored by a far away observer, an intensity peak is detected when the black hole is between
the source and the observer. This was due to the formation of an Einstein ring, in which a

large amount of the emitted rays was lensed towards the observer forming a ring-like structure.

The peak at ¢ = 180° in the histograms of particles emitted in Schwarzschild spacetime is due
to a similar effect. This point of the torus is the equivalent to an observer behind the black
hole. Though we did not find a perfect Einstein ring around this region of the torus, we found
a large over-density around (z = 0, ¢ = 180°), indicating that similar lensing effects are at play
in this scenario (see figures 4.7 and 4.8). The absence of an actual Einstein ring is also not
hard to understand. In the scenario discussed in section 3.3.1, only photons with trajectories
normal to the observer plane are allowed to reach the observer. Here, however, particles can
reach the torus from any direction, not just directions perpendicular to the torus’ surface. Both
the Einstein ring and the over-density around (z = 0, ¢ = 180°) can be understood by thinking
of the particle propagation in terms of wave fronts. By following the particle’s geodesics and
considering surfaces of constant coordinate time formed by all those geodesics, from a certain
time a caustic appears in the (z = 0,¢ = 180°) location. This is a region where, due to the
deformation to the wave front caused by the black hole, the wavefront crosses itself. This results
in an excess of particles reaching that particular location at all subsequent times. When one

considers only particles reaching the target object perpendicularly (as in the case in chapter 3),
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one is only sensitive to the portion of the wavefront parallel to it, which happens in a circular

region that will correspond to the Einstein ring.

Notice that the systems and treatments presented in the present chapter and in chapter 3 are
different in many respects (backward vs forward ray tracing; stationary observer at a specific ¢
vs extensive target; massless vs massive particles; source emitting continuously in its orbit vs
single burst of emission etc). However, surprisingly the results seem related: the shape of the
histograms in figure 4.4 has a striking similarity to that of the instantaneous bolometric light
curves viewed from 6,,s = 89° presented in figure 3.2. This is particularly true for massless
particles (m[c?]/€ = 0) emitted from the same distance to the black hole as that in figure
3.2 (i.e. Tem = 2.5rg and ey, = 61, for Kerr and Schwarzschild spacetimes respectively - see

relevant panels in figure 4.5), except they appear flipped with respect to the x-axis.

In fact, this result can be explained by noting that the systems are not as different as one might
think. In both there is a small emitting source orbiting close to the black hole, though here
it is a point source and in chapter 3 it had a finite size. In chapter 3, the observer was fixed
and the source moved. Here, the source is fixed and each ¢ bin can be considered a different
observer location and the number of particle hits in each ¢ bin can be thought of as moving
the observer with respect to a stationary source. The distance from the torus to the black hole,
400 4, is significantly larger than both the source size and the emitter’s distance from the black
hole. As such, the particle trajectories reaching each bin will not be significantly different from

those hitting an observer at the same ¢ as far as those in chapter 3.

A key difference between these histograms and the light curves in the previous chapter is
that the former measure only the particle count and do not consider their energy, unlike the
latter. This means that the shape of the two will not coincide exactly, but the main effects of
beaming and gravitational lensing are present in both: the beaming in the direction of travel
is responsible for the wavy pattern in the histograms and for the alternate wide increase and
decrease in bolometric intensity; in the light curves the gravitational lensing and focusing into
an Einstein ring when the source is behind the black hole with respect to the observer (180°)
is responsible for the main peak in the light curves, and the same gravitational focusing into a

caustic results in the peak seen in the histograms at the equivalent ¢ location.
Particle arrival times

Figures 4.9 and 4.10 show a density plot representing the azimuthal location (x-axis) and arrival
time (y-axis) of particles to the torus, with respect to the arrival of the first particle. The figures
also show a histogram of the arrival times. Such results would be interesting when considering
astrophysical situations when it would be necessary to understand the timings and locations of

events occurring far from the black hole due to particles in its vicinity.
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The patterns in figures 4.9 and 4.10 may at first appear very different. However, it is possible
to see interesting similarities arising. For example, in figure 4.10 the results for m[c?]/€ = 0.7,
Tem = 4.5r4 resemble those of m[c?]/E = 0.5 rem = 2.5r. Similarly, those of m[c?]/€ = 0.7,
Tem = 6rg resemble those of m[c?|/E = 0.5, rem = 41, and the results from m[c?|/E = 0.5,
Tem = 6ry resemble those of m[c?]/€ = 0.2 | rey = 2.57,. Similarly, in figure 4.9 there are
similarities between the m[c?|/E = 0.6, rem = 67y and the m[c?]/E = 0.4, rey = 41y cases, as
well as the m[c?]/€ = 0.4, rem = 4.57 and the m[c?]/€ = 0.2 rem = 31y cases. These similarities
support the idea of competing effects affecting high mass particles at small distances. They
are also reassuring in the sense that there is a clear evolution pattern as ones moves to higher

Lorentz factors and larger rqy,.

An interesting feature in these plots is that the total time span taken by particles to reach
the torus from a given 7, tends to decrease as m[c?]/E decreases. This is a combination of
two main effects. First, particles travelling faster will have a shorter arrival time difference
between longer and shorter paths than slower particles would for the similar paths. Secondly, a
few of the less relativistic particles seem to have significantly longer paths than the rest of the
particles, either because they loop around the black hole several times before escaping towards
the torus or because they undergo large elliptical-like orbits which eventually hit the torus.
Both these effects result in larger arrival time differences for less relativistic particles. A few
examples of longer paths are shown in figures 4.11 and 4.12. Only particle paths which reach
the torus are plotted, and those which arrive more than 10%r,/[c] after the first one are plotted

in colour instead of in grey.

ii) Optically thin torus

In this section we use the full 3D GRRT capabilities of the code to investigate the energy
deposition by massive particles onto a non-opaque torus with varying optical depth. The
calculations in this section were performed in Kerr spacetime (a = 0.998) for particles with a

mass to energy ratio of m[c?]/€ = 0.1 emitted from rey = 5ry.

When particles go through dense media such as an accretion torus, they may interact with the
particles in that region in several ways. Each of the possible interactions will have a particular
cross section which is often energy dependent. As described in section 4.2, we consider a

simplified effective absorption coefficient which is independent of particle energy.

Figures 4.13 to 4.15 show the incremental rate of energy deposition into the torus (i.e. the
incremental absorbed intensity) as a function of coordinate radius. Classically, from equation
(1.10), the bolometric intensity along a geodesic where j = 0 and o = constant is I(s) =
I(0)e=** (where s is some measure of distance along the curve) so that the absorbed intensity
is given by 1(s)[aps) = £(0)(1 —e™*°). At this distance from the black hole the particle’s velocity
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Figure 4.4: Top: histogram showing the number of particles that hit the torus within each ¢ bin.
The source is always located at ¢ = 0. Different colours represent different origin radii 7ep,, with all
mass to energy ratios for the same 7o, plotted in the same colour. Centre: location of the peak ¢ bin
for different origin radii and different mass to energy ratios. When no particles reach the torus (e.g.
m[c?] /€ for r = 3rg), no results were plotted. The colours which cannot be seen are hidden under the
lines of lower rem, in particular that of rey, = 6ry). Bottom: percentage of the emitted rays which
reach the torus. For the Schwarzschild case the r = 2.5r, and r = 3ry cases are not shown as the
percentages are much lower, reaching a maximum value of 3% and 15% respectively.
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Figure 4.5: Density plots: Arrival locations (2’ — ¢ plane) of particles emitted from a distance r of a
Schwarzschild (green panels) and Kerr (purple panels) black hole for varying m[c?]/€ (decreasing from
left to right) that reach an optically thick torus. The values of rey are indicated on the top left corner
of the plots. The colour bar represents the number of particles (summed over all arrival times) in each
bin. Histograms: azimuthal locations at which particles hit the torus. The total number of particles
that hit the torus, n, is shown on the top left corner of the panel (10° particles were emitted).
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Figure 4.6: Initial conditions of the spatial velocities of particles with m[c?]/€ = 0.6 emitted at
different distances from the black hole in both Schwarzschild (blue) and Kerr (red) spacetimes. Each
blurred ellipse is composed of 1000 arrows corresponding to the initial conditions of 1000 particles
emitted isotropically in the emitter’s frame, and projected onto the (2’,y’) plane. The emitter is a
point source with location identified by the black dots along the ¢ = 0 axis and it moves anticlockwise,
with a Keplerian velocity given by the equations in appendix A. The filled lines represent the event
horizon (black) and ISCO (red) radii for a Kerr spacetime with a = 0.998, while the dashed lines
represent the event horizon (black) and ISCO (blue) radii for Schwarzschild spacetime.

stays approximately constant, so that we may approximate dr/d\ = V for some constant V.
This means that we can parameterize the curve using r instead of A, as we typically would. So
we can think of a classical approximation of the expected energy deposition rate as a function

of coordinate radius as d/ppg/dr ~e™".

o where the proportionality

Over-plotted on the histograms is a curve proportional to e~
constant is chosen to fit the middle point of the histogram. As expected, for the two largest
absorption coefficients, the energy deposition rate matches the expected value as long as the
particles remain inside the torus. For the lowest value of «, the mean free path is longer, so
that the exponential curve for each particle is truncated as soon as particle leave the torus.
Since there are less extended exponential curves being added together (unlike in the cases of
higher o and lower mean free path) the results become more noisy which, together with the

low number of particles emitted, results in a poor match to the theoretical absorption rate.

The two lower panels in figures 4.13 to 4.15 show the bolometric intensity along each particle
path as a fraction of the bolometric intensity at the point of first contact with the torus, .
This fraction is a proxy for the probability of a particle not having interacted at that point.
As expected, for high absorption coefficients, most of the incoming particle intensity is lost,
resulting in a higher rate of energy deposition into the torus, while for low absorption coefficients

most of the particle intensity remains unchanged, indicating low probabilities of interactions.
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Figure 4.7: Histograms: azimuthal locations at which particles hit the torus in Schwarzschild space-
time (same as figure 4.5). Grey dotted lines show the angular region zoomed into in the bottom panels
(¢ € [170° — 190°]). Density plots: Density plot of the central region of the 2z’ — ¢ plane.
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Figure 4.8: Same as for figure 4.7, but for a Kerr black hole with a = 0.998. The zoom in the bottom
panels is into the region ¢ € [170° — 200°].
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for particles emitted in Schwarzschild spacetime.
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Figure 4.10: Same as for figure 4.9, but for Kerr spacetime with a = 0.998.
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Figure 4.11: Sample particle trajectories for particles with different m[c?]/€ (one in each column)
emitted from rey, = 6rg around a Schwarzschild black hole. All rays are initialized isotropically in
the emitter’s rest frame, but end up with different initial conditions after the transformation to the
black hole frame depending on the emitter’s position and four-velocity. Each row shows a different
perspective on the paths. All the paths plotted reach the torus and the ones coloured are those which

arrive more than 1037“g /[c] after the first particle. The black object on the bottom two rows represents
the black hole’s event horizon.
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Figure 4.12: Same as in figure 4.11 but for a Kerr black hole with a = 0.998.
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Figure 4.13: Rate of energy deposition on an accretion torus with absorption coefficient a = 0.01 by
massive particles produced close to a Kerr black hole. The top panel shows the total absorbed intensity
(i.e. energy deposition per unit time) as a fraction of the total intensity of the particle bundles that
reach the torus, Iy = Y, I'o( i.e. excluding any emitted particles which don’t reach the torus), where
I’y is the intensity of the bundle as it reaches the torus. The dotted line is an exponential proportional
to e, As expected the incremental absorbed intensity follows this trend well. The bottom panels
show the bolometric intensity of the particle bundles along the particle trajectories (note that the
intensities are calculated from the covariant intensity at each location) as a fraction of I'g. The panel
on the left shows a projection of the particle trajectories onto a cross-section of the torus (the red
dashed line marks the boundary of the torus’ cross section) and the one on the right a projection onto
the equatorial plane (the red dashed line marks the boundary of the torus as viewed from above).
The error tolerance in the surface finding algorithm results in some points which are still outside the
torus to be identified as part of the torus. This explains the yellow dots slightly outside the torus on
the bottom left panel and inside the inner circle on the bottom right panel. For a large absorption
coefficient, a = 0.01, as expected most of the energy is absorbed in the inner part of the disk. Results
calculated for 1000 emitted particles.
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Figure 4.14: Same as figure 4.13 for an accretion torus with absorption coefficient @ = 0.005. Again
the trend followed is, as expected, proportional to e,
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Figure 4.15: Same as figure 4.13 for an accretion torus with absorption coefficient v = 0.001. Now
the absorption is too low, so the incremental absorbed intensity histogram does not follow closely the
expected e™*". An exponential curve would be expected if the rays had a longer journey inside the
absorbing torus.
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Performing these calculations for different masses, emitter radii and black hole spins would
be similar, and these parameters are easy to change in the code. The main differences in the
results would be the locations in the torus where the particles would deposit energy (as seen
in figures 4.7 and 4.8) and the time when the energy deposition would occur (as seen by the

particle arrival times in figures 4.9 and 4.10).

The differences would be even more pronounced if the absorption coefficient had an energy
dependency: the different initial energies and energy shifts undergone by the different particles

will result is very different absorption patterns.

4.4 Conclusions and future work

In this chapter we have demonstrated how a covariant GRRT formalism with the ability to deal
with massive particles provides useful insight into the physics happening close to black holes.
Despite the simplified nature of the calculation parameters used, we were able to identify and
explain interesting features which are likely to be relevant if similar astrophysical systems are
studied.

We demonstrated a sample of the kind of studies which can be performed using the formalism

developed in this thesis and opened the door for potentially interesting astrophysical studies.

Massive and massless particles emitted in the vicinity of a black hole will propagate and interact
with the material, while subject to the effects of gravity. If they eventually reach us, the flux
and arrival timing of these particles will depend on the difference in their paths and the material
through which they propagated. If they do not reach us directly, secondary particles resulting
from their interaction with the material would carry such information. As such, regardless
of whether it is the primary or secondary particles that reach us, they may provide a way to

determine the location of their acceleration region in the vicinity of the black holes.

This work also provides a word of caution when interpreting observations from radiation or
particles produced by interactions close to black holes. The convergence of our results for Kerr
and Schwarzschild black holes as the emission region moves away from the black hole suggest
that there is a degeneracy between the black hole spin and other parameters. Similarly, our
results uncovered a degeneracy in the hits pattern in terms of azimuth and arrival time between
the particle’s Lorentz factor and its acceleration location r.,. That fact that the patterns are
not unique makes it more challenging to understand the exact acceleration mechanisms and
locations by looking at this data alone. Understanding the interacting medium and the type
of interactions which would take place, together with using such a solid GRRT framework, is

essential to forming a complete picture of the physical processes involved.



4.4. Conclusions and future work 121

A potential future direction that seems particularly interesting would be to improve the numer-
ical accuracy of the code to be able to distinguish subtle differences between the trajectories
of highly relativistic particles with only slightly different masses. In section 4.3.1 we showed
how timelike geodesics of particles with mass to energy ratios m[c?]/€ < 1072 were effectively
indistinguishable from each other and from null geodesics. If one is interested in investigating
highly relativistic particles such as cosmic rays or neutrinos and take their mass into account,
it is necessary to have a significantly better numerical accuracy. If this were the case, it might
be possible to identify subtle differences for instance in arrival times of the three neutrino mass
eigenstates emitted or transiting very close to a black hole in a way that would allow us to
calculate the corresponding interference between mass eigenstates and predict the shape of the
“light curve” of neutrinos arriving at the earth. This might provide interesting insights into the

nature of the neutrino mass hierarchy.

Overall, in this chapter we demonstrated the validity of the massive particle GRRT by showing
the convergence to the massless particle case for highly relativistic particles and demonstrated
the potentialities of such a formalism to the study of physics and astrophysics in the strong

gravity regions around black holes of different spins.






Chapter 5

Conclusion

5.1 Summary of key outcomes

The first major outcome of this work is an algorithm able to perform general relativistic trans-
port calculations of both particles with and without mass in a self-consistent manner. In chapter
2 we described in detail the formalism and the construction of the computational algorithm
that is able to do this. We have demonstrated the validity of the code by evaluating the com-
putational errors of individual geodesics and comparing some radiative transport calculation
results with others presented in literature. We also explored the physical meaning of different
components of the formalism. We found, for instance, that there is a relationship between
a massive particle’s Lorentz factor, a massless particle’s redshift and the constants of motion

along a geodesic.

Once the GRRT algorithm software was built, we used it to investigate different astrophysical
scenarios. In chapter 3 we showed that the highly relativistic motion and strong gravitational
effects that are associated with black hole systems can significantly distort the observational
features of the flares emitted in their vicinity, changing their spectrum, light curve profile and,
in some cases, making a single flare appear as multiple ones. We explained in detail the effects
of each of these components and when each was important. In particular, we saw how the
competition between gravitational redshift, Doppler shift and gravitational lensing affected the
spectrograms of these flares. We saw this for the case of a hot spot both with constant and
with time-dependent intrinsic emissivity. We found that, for flares of long duration compared
to the orbital time scale, the detected flares are significantly different from the intrinsic emis-
sivity profile, with a single flare appearing as multiple flares in both Schwarzschild and Kerr
spacetimes. In Kerr spacetime, flares resulting from higher order images of the emitting hot
spot were detected for more than double the flare duration time. These results provide initial

insights towards understanding the observed flare statistics.

In chapter 4 we evaluated the behaviour and accuracy of our code for particles of different mass
to energy ratios. We showed that the results tend to those of photons as the mass to energy

ratio decreases, as expected. We investigated the timings and positions where particles of

123
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different masses would interact with material along their path. These interactions may produce
secondary photons or other particles which could be detectable on earth. Performing GRRT
calculations of both the primary and secondary particles may provide a way to determine
the location of the primary acceleration region in the vicinity of the black holes. However,
we also identified certain degeneracies in the hits pattern in terms of azimuth and arrival
time between the particle’s Lorentz factor and its acceleration location, which might make it
challenging to determine the acceleration location and understand its mechanism by looking
at this data alone. A particularly interesting result was the similarity between the particle hit
location histograms calculated in chapter 4 and the light curves from a hot spot with constant
emissivity calculated in chapter 3. Although in hindsight the similarities are reasonable, as we
started these calculations we did not expect such an interesting connection between the two
cases. This also helped us better understand the nature of the Einstein ring and when it is and

is not manifest in the observer’s plane.

5.2 Open avenues for future developments

The work presented in this thesis is far from closed. There are several potential avenues for
further developments and investigations in each of the fields we mentioned. Below are some

ideas.

5.2.1 GRRT algorithm

The algorithm build as part of this PhD and presented in chapter 2 is modular in nature.
This makes it easy to add new features to it and to adapt the existing ones. Something that
would be interesting to add to the code which might be useful for the further explorations
mentioned in 5.2.2 would be polarization transport. This would allow us not only to calculate
changes in the intensity of radiation but also its polarization, which would provide another
source of information regarding the systems being studied. Some examples would include a
better understanding of the emission and the structure of the magnetic field along the line of

sight.

Another interesting development would be to consider how the medium through which the
radiation propagates may affect its propagation from a geodesic’s perspective. As shown in
Kimpson et al. (2019), when traveling through a plasma, light rays experience dispersion so
that photons of different energies travel along different (non-null) geodesics. Similarly, charged
particles travelling in media with magnetic fields will experience changes in their trajectories
with respect to the geodesic motion considered so far. Including these effects in the code might
result in interesting insights for both massless and massive particle propagation in ways that

might affect our interpretation of the observations. This is likely to impact further work in
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both fields 5.2.2 and 5.2.3.

5.2.2 Flares from massive black holes

The puzzle of the formation of flares in the Galactic Centre and in similar systems (discussed in
chapter 3) is still far from being resolved. In this work, we contributed to a better understanding
of how the strong gravity environment affects the morphology of these flares as seen by an
observer. A potential next step would be to incorporate physically motivated emission and
absorption models into our GRRT code. These would make it possible to use the present code

to perform realistic predictions of observables which could be compared to detections.

Another avenue for potential extension of this work would be to explore the effects on flares with
time scales significantly shorter than the orbital time scale. If the flares are indeed caused by
magnetic reconnection events, it is likely that their duration is shorter than what was considered
in chapter 3. It is also unlikely that the emission region would last such a long time without
being disrupted. These factors make the study of shorter flares an interesting extension of the
work. Their short duration would result in the individual gravitational and relativistic effects
being harder to identify, as only a portion of the spectrogram 3.4 would be covered by them.
However, having already understood the individual effects at play at each location, it is now
easier to spot them in shorter flares. Magnetic reconnection events which may give rise to these
flares in the dynamical environment that likely surrounds Sgr A* may occur in any location
around the black hole. As seen in the previous chapter, initializing a flare in different azimuthal
locations produces different observed light curve profiles. As such, it would be interesting to
initialize such flares in randomized different locations and to perform a statistical analysis of
the resulting observed flare properties. The insights gained from such a study would offer us a
handle to interpret the observational data for a better understanding of the statistics, allowing
us to better conclude whether the different morphologies of light curves could be distortions to

similar flares at their origin or whether they indicate different formation mechanisms.

5.2.3 Massive particles GRRT

Chapter 4 is arguably the one with the most potential for further developments. Since this
chapter was mostly a showcase of some of the features of the code, there could be multiple
physical systems to which it would be worth applying it. Some examples mentioned in sec-
tion 4.1 include the interactions of cosmic rays accelerated in the vicinity of black holes with
molecular clouds, resulting in secondary electrons which would be responsible for the emission
of X-ray filaments in the Galactic Centre. Another system would include the bombardment
of highly energetic particles associated with tidal disruption events into the disrupted star’s

debris, which would result in the production of particles that would decay into neutrinos.
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Another potential future direction that seems particularly interesting would be to use the
results from chapter 4 regarding the differences in the geodesics and arrival time of particles
of different masses to study the mass hierarchy of neutrinos. Our formalism has the capability
to deal with this, since it includes the subtle effects of mass, and our code had the potential
to calculate them. The main challenge to this is that, at the moment, the numerical errors
associated with our code do not allow us to distinguish particles with m[c?]/€ < 1072 from one
another. As such, the next step would be to improve the numerical accuracy of the code to
be able to distinguish subtle differences between the trajectories of highly relativistic particles
with only slightly different masses. It might then be possible to identify subtle differences for
instance in arrival times of the three neutrino mass eigenstates emitted very close to a black
hole in a way that would allow us to predict the shape of the “light curve” of neutrino flux
arriving at the earth based on the interference between those mass eigenstates. This might
provide interesting insights into the nature of neutrino masses (e.g. whether the mass hierarchy

is normal or inverted).

5.3 Final remarks

Black holes are interesting objects from the point of view of several research areas, from Math-
ematics to Physics and Astrophysics. Within Physics one of the things that makes them inter-
esting is the apparent incompatibilities associated with them that arise between the quantum
mechanical and general relativistic theories. From an Astrophysics point of view, their ability
to power extremely energetic phenomena and the process by which supermassive black holes

form are some of their major interests.

In recent years, GRRT calculations have allowed scientists in the Event Horizon Telescope
to produce the first images of black holes and their surrounding environment (Event Horizon
Telescope Collaboration et al., 2019). These and subsequent results have shown than the
environment surrounding black holes can be rather complicated, with the effects of strong
gravity making them even harder to study and understand. Given this, it is clear that being
able to disentangle the gravitational effects from other physical processes taking place in these
regions is very important. The work presented in this thesis contributes to understanding this

interplay.

As such, while this thesis does not directly address the specific issues of the formation of super-
massive black holes, the black hole’s ability to power extremely energetic events or the interplay
between general relativity and quantum mechanics, it developed ideas which contributed to im-
proving our understanding of some general relativistic phenomena; it also built tools that allow
researchers to make better sense of observations from these extreme regions of the universe,

hence contributing another piece to the puzzle of black holes.



Appendix A

Fluid velocity model

A.1 Keplerian fluid velocity

The code used for the calculations in this thesis uses the same flow velocities as in Pu et al.

(2016a). The code can support Keplerian (K), sub-Keplerian and free-fall flows, though all

calculations presented in this thesis were performed for a Keplerian flow. The exact expressions

used are:

r ( ) 0 r> Tisco »
U \T) =
5 - [2/ (3Tisco)]1/2 [(Tisco/’r) - 1]3/2 r S Tisco

32 4 )7 T > Tisco »
=4 ) .
()‘—I_GH) [T +2T(1+H)] r Srisco

where a is the spin of the black hole and
Q= u?/ul,

A= (7*12800 — 2a4/Tisco + a2) / (, /73 o — 24/Tisco + a) ,
H = (2r—a))/A

for the Keplerian flow. For the other flow types, please refer to Pu et al. (2016a).
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Appendix B

Constant emissivity hot spot

spectrograms at various angles

For completeness, here we present the spectrograms corresponding to a constant emissivity hot
spot on an equatorial as viewed by observers at different viewing angles, 6,,s. These complement

the bolometric light curves presented and discussed in figure 3.2.

By comparing the results side by side it is easy to identify similar features appearing the
both the Schwarzschild and the Kerr cases, despite the more complicated structures in Kerr
spacetime. The main structures discussed in chapter 3 for #,,s = 89° are still visible in these
plots, especially for higher inclinations. As the inclination angle decreases and the observation
happens more face on, the features become less well distinguished. This is especially the case
for 6,5 = 15°, where the Doppler blue and red shift becomes so small that the features caused
by it (the wavy pattern) becomes nearly imperceptible. As the viewing angle decreases, the
vertical line associated with the Einstein ring (feature D in figure 3.4) disappears and becomes
part of the oscillatory pattern due to the change between the Doppler red shifted and Doppler
blue shifted portions of the orbit.

The absence of this feature, which corresponds to the disappearance of the Einstein ring, makes
the distinction between the contribution of the primary and higher order images more clear,
especially in the Schwarzschild cases: the primary image corresponds to the trajectory in the
spectrogram that goes through the highest intensity peak (features E and F in figure 3.4). The

other lines in the spectrogram are produced by higher order images.
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Figure B.1: Spectrograms of hot spots with constant emissivity for different 6,5 in Schwarzschild
(left) and Kerr (a = 0.998, right) spacetime. The Schwarzschild spectrogram viewed from 60° is
precisely consistent with the spectrogram in figure 3 of Li et al. (2014), which includes the primary
and secondary image, while our spectrogram includes an extra order of lensed images (faint blue line).
If one considers the fist order images only, it is also consistent with the spectrograms in figure 4 of
Schnittman and Bertschinger (2004) and figure 7 of Pu et al. (2016b).
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