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ORIENTATION PRESERVING MAPS OF THE SQUARE GRID

Imre Bdrdny,* Attila Por," and Pavel Valtrt

ABSTRACT. For a finite set A C R?, a map ¢ : A — R? is orientation preserving if for
every non-collinear triple u,v,w € A the orientation of the triangle u,v,w is the same as
that of the triangle @(u), ¢(v), p(w). We prove that for every n € N and for every £ > 0
there is N = N(n,e) € N such that the following holds. Assume that ¢ : G(N) — R? is an
orientation preserving map where G(N) is the grid {(i,j) € Z%? : =N < i,5 < N}. Then
there is an affine transformation ¢ : R? — R? and 29 € Z? such that zy + G(n) C G(N)
and [|¢ o p(z) — z|| < € for every z € zg + G(n). This result was previously proved in a
completely different way by Negettil and Valtr, without obtaining any bound on N. Our

proof gives N(n,e) = O(nc2).

1 Introduction

This paper is about orientation preserving maps of the n x n grid. We denote by G(N) the
grid {(i,7) € Z*: =N <i,7 < N} and by G*(n) the grid {(i,j) € Z*> :0<i,j <n—1}. A
map ¢ : G(N) — R? is orientation preserving if for every non-collinear triple u, v, w € G(N)
the orientation of the triangle u, v, w is the same as that of the triangle p(u), p(v), p(w), or

with a formula ) o) )
. u vow| . o(u) @) e(w
sign det [1 1 1] = sign det [ 1 1 1

We are going to show that given an orientation preserving map ¢ : G(N) — R? there is an
n x n subgrid of G(IV) whose image under ¢ is very close to an affine image of the n x n
grid, provided that N is large enough (polynomial in n and 1/¢). More precisely, we have
the following result where the norm || || is Euclidean.

Theorem 1. For every n € N and for every ¢ > 0 there is N = N(n,e) such thal if

¢ : G(N) — R? is an orientation preserving map, then there is an affine transformation
¥ R?2 = R? and 29 € Z? such that 20 + G*(n) C G(N) and for every z € zo + G*(n).

[P op(z) -zl <e.

Here N(n,e) = O(ne™2).
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Theorem 1 without the explicit bound on N(n,e) was already proved by Nesetfil
and Valtr [5, Lemma 10| as the key tool for proving several Ramsey-type results. The proof
in the paper [5] relied on repeated compactness arguments, thus it could give no upper
bound on N. Our bound N(n,e) = O(n*e~2) makes ground for giving explicit bounds for
Ramsey-type results given in the paper [5]; see concluding remark (1) on page 105 of [5]
where the lack of an explicit bound is discussed. From the (discrete and) computational
geometry point of view, the most interesting consequences of our bound N (n,¢) = O(n*e~2)
in Theorem 1 might be those which are connected with the study of order types, as described

in the next section.

Remark 1. The function N (n,¢) in Theorem 1 satisfies the lower bound N(n, &) = Q(n%e™1).
The example showing this is given in the last section.

2 Connections to order types and motivation

An order type of size n is an equivalence class of all n-point sets which can be mapped
into each other by strongly order preserving maps, where a map ¢ : A — R? from a finite
planar point set A to R? is strongly orientation preserving if it is orientation preserving
and, additionally, it maps collinear triples of A to collinear triples. If the sets of an order
type are in general position then we say that the order type is in general position. Order
types have been studied from various perspectives, for example, see the paper of Goodman
and Pollack [1] for a classical result and the recent paper of Pilz and Welzl 6] for further
references.

The span of a finite point set A C R? is the ratio between the maximum distance
in A and the minimum distance in A. Note that due to projective transformations the
supremum of the spans of the sets of any fixed order type (of size at least three) is co. We
define the span of an order type T as the infimum of the spans of the point sets in T. By
famous results of Goodman, Pollack and Sturmfels [2] and of Kratochvil and Matousek [3],
there are order types of size n with double exponential span.

Theorem 2. Forn > 1, let f(n) be the smallest real number such that, for any order type
T of size n in general position and for any § > 0, there exists a set A in T having the span
smaller than f(n) 4+ 6. Then there are two positive constants c1 and ca such that, for any
integer n > 3,

221" < f(n) <2277,

Our Theorem 1 considers subsets of sets of some order type with a small span. In
particular, an immediate consequence of Theorem 1 says that some order types have the
property that any set of this order type contains a rather large subset whose affine image
has a very small span (asymptotically as small as possible for the given size).

Theorem 3. For any N > 2, there is an order type T of size N in general position such
that any set A of T contains a subset B of size n = Q(N'/3) which is an affine transform
of a set having span O(\/n).
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We remark that due to a simple packing argument the span of any set (or order
type) of size n > 2 is at least Q(y/n).

Another (almost immediate) consequence of Theorem 1 says that there are order
types T of arbitrary size n > 2 in general position such that any set A of order type T
contains a quite large subset of points which lie, one by one, in small neighborhoods of
equidistantly distributed points along some line.

Theorem 4. For any N > 2 and any € > 0, there is an order type Tn of size N in general
position such that any set A of T contains a subset B of size n = Q(N1/451/2) such that
for some line £ and for some n equally distributed points p1,...,pn on £ where the distance
between p; and p;y1 1s exactly d for some fixred d > 0 and for each v = 1,...,n — 1, the
following holds. There is exactly one point of B in the (ed)-neighborhood of p; for each
1=1,...,n.

Since some of the ratios of distances among sufficiently many equidistantly dis-
tributed points on a line approximate (with any prescribed precision) [ prescribed distance
ratios, Theorem 4 immediately implies the following result of Nesetfil and Valtr |5, Theorem
6].

Theorem 5 (NeSetiil and Valtr [5]). For any positive integer | > 0 and for any | + 1
positive real numbers €,11,72,...,17 > 0, there ezists a (finite) order type T in general
position such that any set of order type T determines | + 1 distances d;,i = 0,1,2,...,1,
such that \j—é —rl<e(i=1,2,...,10).

3 Preparations and sketch of proof

We start with introducing basic notation and definitions. For distinct u,v € R?, L(u,v)
denotes the line they span. The angle a(u,v) is defined as the angle the vector v — u and
the positive half of the x axis make. It is understood mod 2.

Assume ¢g : G*(n) — R? is an orientation preserving map with 0(0,0) = (0,0).
Define e, f € R? via po(n — 1,0) = (n — 1)e and ¢(0,n — 1) = (n — 1) f. Suppose further
that for all u,v € G*(n) with a(u,v) € {0,7/4,7/2}
|a(u, v) — alpo(u), po(v))] <7, (1)
where v > 0. For the proof of Theorem 1 we need the following lemma.

Lemma 1. Assume v = O(n~2). Then, under the above conditions for every (i,j) € G*(n)
we have

leo(i, ) — (e + 5 )l < 109> ([le]l + | £1])-
The proof is given in Section 8.

An important notion is that of a block of a grid. The horizontal block H; of G(m)
(i = —m,...,m) is the set of the lattice points on the segment [(—m, ), (m,1)], its first and
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last points are (—m, ), (m,4). The vertical block Vj for (j = —m, ..., m) is the set of lattice
points on the segment [(j, —m), (j, m)] with its first and last points defined analogously.

Similarly, the plus diagonal block D) of G(m) is the set of lattice points of G(m)
on the line x —y =i (i = 0,£1,...,£2m), and the minus diagonal block Dj is the set of
lattice points of G(m) on the line x+y =14 (i = 0, £1,...,4+2m). Their first and last points
are defined similarly. Two blocks are neighbourly if they lie on consecutive parallel lattice
lines.

Figure 1: Neighbourly blocks and ¢ blocks separated

Given an orientation preserving map ¢ : G(m) — R? the image ¢(B) of a block B is
called a ¢ block. We need separation properties (in the weak sense) of blocks and ¢ blocks.
Let B and B’ be two neighbourly blocks with distinct first and last point a,b and o, ¥,
respectively. Here b—a and b’ — o’ are parallel and point in the same direction, see Figure 1.
It is clear that both L(a,b’) and L(a’,b) separate B and B’. The orientation preserving
properties of ¢ imply that the lines

Ly = Llp(a), p(b)) and Ly = L((a'), (b))

also separate p(B) and p(B'), or, what is the same, conv ¢(B) and conv ¢(B’). The lines
L and Ly define a double cone (or wedge) W (B, B') with apex v = L; N Ly which is the
double cone not containing ¢(B) and ¢(B’). Similarly, let W (B, B") be the double cone
determined by L(a,b’) and L(a’,b), again the one not containing B and B’. The following
simple facts are well known.

Fact 1. If u,w are in different components of the wedge W¥ (B, B), then the line through
v and parallel with L(u,w) separates p(B) and ¢(B’).

Fact 2. If 21,29 € G(m) are in different components of the wedge W (B, B’), then ¢(z1)
and ¢(z2) lie in different components of the wedge W¥(B, B').

Remark 2. If T : R? — R? is an affine map (with positive determinant), then we can replace
@ by T o ¢ and this new map will be orientation preserving and so satisfy the conditions of
Theorem 1. In the next section we will “normalize” ¢ by choosing a suitable 7.
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Proof sketch. Here is a quick sketch of the proof of Theorem 1. We set N = 2m? (m
is large), G(m) C G(N) of course. We check that the horizontal and vertical blocks of
G(m) are separated by certain horizontal and vertical lines, and also that its plus and
minus diagonal blocks are separated by suitable lines of slope +1 and —1. This implies
that the corresponding ¢ blocks are separated by parallel lines that can be defined using
the map . We then apply an affine transformation so that the horizontal and vertical ¢
blocks are separated by horizontal and vertical lines, respectively. The diagonal separating
lines remain parallel of course, and after suitable scaling the slope of the plus diagonal ¢
separating lines is very close to 1. Then we find a suitable m x m subgrid G; of G(m) where
the horizontal and vertical separating lines are distributed fairly equidistantly. These lines
form a rectangular grid; see Figure 3. Each cell of this rectangular grid contains a unique
point w; j = ¢(4, j) for each (7,7) € G1. We show next that if two such points w!, w? belong
to the same ¢ block, then their line L(w', w?) is almost horizontal, vertical, or diagonal
depending on what kind of ¢ block w' and w? belong to. Finally we locate a small n x n
subgrid of G; which satisfies the conditions of Lemma 1.

Preparations for the proof of Theorem 1 are given in Section 4, the proof itself is in
Sections 5, 6, and 7. We remark that the proof does not use the full force of the orientation
preserving property. It is only required for triples u, v, w € G(N) where one of the pairs u, v
or v,w or w,u is horizontal or vertical or diagonal. Much stronger results can be proved
using more triples. We hope to return to this question in a companion paper soon.

4 Normalizing ¢

We set N = 2m? A simple computation shows that the lines L1 = L((0, N), (i, —m))
and Ly = L((0,—N), (i,m)) separate the neighbouring vertical blocks V;_; and V; of G(m)
for i = 1,...,m; see Figure 2. Then the vertical line through their intersection point also
separates V;_; and V;. Note that the lines L(¢(0, N), ¢(i,—m)) and L(p(0,—N), ¢(i,m))
are well-defined, let v be their point of intersection. Facts 1 and 2 show that the line passing
through v and parallel with Ly = L(¢(0,N),p(0,—N)) separates ¢(V;_1) and ¢(V;). All
these lines are parallel with Ly. The same way we define separating lines for the ¢(V_;)
and p(V_;41) blocks. Consequently all vertical ¢ blocks are separated by parallel lines. It
is important to point out that these parallel separating lines are uniquely determined by
©. The same method gives separating lines for the horizontal ¢ blocks of G(m) that are all
parallel with L(p(N,0),o(—N.,0)).

The same argument works again for the diagonal blocks of G(m). For instance one
can check that the plus diagonal blocks D;" and D | (for i = 1,...,2m) are separated by
the line through (—N, —N) and the last point of D;" and also by the line through (N, N)
and the first point of D;r, we omit the straightforward computation.

This way we fix parallel separating lines for the horizontal, vertical, and plus and
minus diagonal ¢ blocks of G(m). We now use Remark 2 to modify ¢ so that the separating
lines for the horizontal and vertical ¢ blocks of G(m) are horizontal and vertical, respectively.

JoCG 13(2), 73-89, 2022 77


http://jocg.org/

Journal of Computational Geometry jocg.org

(0,N)
(N, N)
Vi
(=N, 0) (IV,0)
G(in)
(N7 _N)
(07 7N)

Figure 2: G(N), G(m) and a vertical block

They will be denoted by

L(by)" = {(z,y) : y = b;} and L(a;)" = {(2,y) : © = a;},

here i,7 € [2m] and a1 < ag < ... < agy and by < by < ... < bay, where [m] denotes the
set {1,...,m}. The upper indices h and v refer to horizontal and vertical. From this point
onward we only work with points of the grid G(m).

To have simple writing we keep the same notation for the modified ¢. We note that
there is still some freedom to define ¢ more precisely, a translation and scaling in horizontal
and vertical directions are still allowed. That will come a little later.

Observe now that we have a grid-like structure (see Figure 3): the lines L(a;)" and
L(b;)" determine (2m — 1)? rectangular cells and each such cell contains the ¢ image of a
unique point from G(m). Precisely, the cell C(i, j) is just the rectangle [a;, aj+1] ¥ [bj, bj41]-
It contains the point w; j = ¢(1, j), the image of a unique point in G(m).

Suppose that m is large, m > 10° say. We also assume that m is a multiple of 4. Let
ap+4 — ap be the minimal among the numbers a7 — a3, a8 — aq, ..., a2m—2 — a2m—¢ and let
bg+4 — by be the minimal among by — b3, bg — by, ..., bapm—2 — bay—6. Note that we have left
out a “double frame” of the first and last two rows and columns. They will be needed later.
Now either p < m or p+ 4 > m. Similarly, either ¢ < m or ¢ +4 > m. We can assume by
symmetry that p,q < m. We use now our freedom to fix ¢ by requiring that a, = b, = 0
and apym = bygpm = m. It follows then that 0 < api4,by+4 < 4. From this point onward
we do not need the minus diagonal blocks, and a diagonal block will always mean a plus
diagonal one. (Note that we would have kept the minus diagonal blocks in case p < m and
qg+4>m.)
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Figure 3: The grid-like structure and the line L(wj ;,wy ;)

Remark 3. We fixed the map ¢ with the method just described and we keep the notation
o unchanged. We will recall at the end of Section 7 that it is of the form T o ¢ with a
well-defined affine transformation 7" : R? — R2.

5 The rectangular grid and the subgrid G

With ¢ fixed this way, our first target is to show that the set of points ay,...,aptn are
distributed rather equidistantly on the interval [0,m] on the z-axis, and the same for
bg, .. ,bg+m- Let R be the rectangle [ap, apim] X [bg, bg+m] and define G as the m x m
subgrid of G(m) whose ¢ image lies in R. Horizontal, vertical, and diagonal blocks of Gy
are defined the same way as those of G(m).

Assume B and B’ are neighbouring diagonal blocks of G4, L is their separating
line, and w;; € B and wj 11, w;—1; € B’, see Figure 4. We will need the following key
observation.

Claim 1. The line L intersects both C(i,5) UC(i —1,7) and C(i,j) UC(3,j + 1).

The proof is simple: if L does not intersect the double cell C(i,7) UC(i — 1,7) (say), then
it cannot separate the points w; ; and w;_1 ;. O

Lemma 2. If m is large enough, then 0 < apipi1 — aprr < 9 and 0 < bgyp1 — bgyr <9
forallk=0,1,...,m—1.
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Figure 4: The line L and the cell C(i, j).

Proof. We assume that £ > 4 since the inequalities apyx4+1 —ap+r < 4 and byipq1 —bgir < 4
are automatically satisfied for smaller k. Let B; be the diagonal ¢ block of G; that contains
the point wy, g4; for i = 0,1,2,3 and let B_; be the one containing wy4; 4 for ¢ = 1,2, 3.

The seven diagonals Bj, B, ..., B_3 are separated by six parallel lines L3, Lo, L1,
L_y,L_5,L_3 in this order (Lg is not defined). So for instance L3 separates Bs and Bs, see
Figure 5. The key observation (Claim 1) implies that Ls intersects C(p,q+2) UC(p,q+ 3)
and L_jz intersects C(p+2,q)UC(p+3,q). Then the lines L3 and L_3 intersect the rectangle
Ry = [ap, apia] X [bg, bg+4], so the distance between them is less than the diameter of Ry,
which is at most 4v/2.

Define the rectangle Ry, = [aptk, Gptkta] X [0k, Dyt k4] Where b = =2, —1,... ,m—3.
The above argument shows that the lines L3, ..., L_3 intersect the rectangle R, ,,_4. The
line L3 intersects both Ry and Rpy,,—4 so its slope is a positive number. Consequently the
angle 8 this line makes with the positive half of the x axis is strictly between 0 and 7/2. Of
course all diagonal separator lines have the same slope.

We claim that the cell C(p+ k + 2,9 + k + 2) C Ry, lies between the lines L and
L_3for k=-2—1,...,m—3; see Figure 5. (This is where the double frame will be used.)
Indeed, if it did not, then either the point (a4 k42, bg+k+3) is above the line L3, or the point
(@p+k+3, bg+k+2) is below the line L_g. In the former case Ls does not intersect the union
of the cells C(p+ k,q+ k+3) and C(p+ k+ 1,9+ k + 3) contrary to the key observation.
A similar argument works when the point (ap4x43,bg+k+2) is below L_s.

The line L3 intersects L(ap)” below the point (ap,bg+4), and intersects L(apim)"
above the point (apim,bg+m), so its slope has to be at least mT_‘l. Similar arguments show
that the slope of the line L_3 cannot be larger than . As both slopes are equal to tan j3
we have

m—4 m
<tanpg < .
m—4

(2)

So for m large, B is very close to 7/4 and the strip between L3 and L_3 (whose
width is at most 41/2) intersects both axes in a segment of length shorter than 9. This and
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Figure 5: Only some of the lines L; are shown, the cell C'(p+ k + 2,q + k + 2) is shaded.

the fact that the cell C(p + k + 2,q + k + 2) lies between the lines L3 and L_3 finish the
proof. O

The previous argument gives actually more. Namely, assume that By is an arbitrary
diagonal ¢ block of G; with neighbouring separating lines Ls, Lo, ..., L_3. Then every cell
containing a point of By lies between the lines L3 and L_3. But we will not use this fact.

We show next that if w! and w? belong to the same horizontal (or vertical) ¢ block,
then their line L(w!,w?) is almost horizontal (vertical). This is quite easy. Recall the
notation a(w!, w?) for the angle of the line L(w', w?) with the positive z-axis.

Lemma 3. Assumep <i <k <p+m andq+1 <j < qg+m—2. Then |tan a(w;;, wy ;)| <
%. Similarly p+1 <i <p+m—2and g < j < k < g+m imply that | cot a(w; j,w; )| < %

Proof for the horizontal case. The line L(wj ;,wy ;) (see Figure 3) intersects the line L(a,)"
on the interval [(ap, bj—1), (ap, bj+2)], as otherwise the cell C(p—1,j—1) or C(p—1, j+1) from
the double frame would be on the wrong side of L(w; j, wy ;), contradicting the orientation
preserving property of ¢. Same way, the line L(w; j, wy, ;) intersects L(ay4ym,)" on the interval
[(aptmsbj—1), (aptm,bjr2)]. The length of both intervals is at most 27 by Lemma 2. Same
proof applies in the vertical case. O

Lemma 2 shows that a4 — ay < 9%k when p <p’ <p'+k < p+m (and a similar
bound for by i — by). In fact a much stronger estimate holds.
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Lemma 4. Assume k <m/2, p<p <p ' +k<m, and ¢ < ¢ < ¢ +k < q+ m. Define
a=ayip—ay andb =byp—by. Then|a—b| < 46. Ifk divides m, then |a—k|, |b—Fk| < 46.

Proof. The main diagonal ¢ block in the rectangle [a,, ay 1] X [by, by yk], the one starting
with wy 4, is separated from the next diagonal block above by the line L whose slope is
tan 8. The key observation shows that this line intersects C'(p/,¢')UC(p/, ¢’ +1). Similarly,
L intersects C'(p/ +k—2,¢'+k—1)UC(p' +k—1,¢'+ k —1). This implies, using Lemma 2,

that
b—27

<tanf <

a—27
which, combined with (2), gives

<1—4> (a—27)<b<27—|—<1—|—4>a.
m m—4

The bounds here are of the form a £ 27 plus (or minus) a small error term. By Lemma 2
a = aytr — ay < 9k < 9m/2, and the error term is less than 27-+19 (if m > 80, say) and
la — b| < 46 follows.

Here b can be any of the numbers b(¢') := by4i — by with ¢ < ¢ <m+q— k. If
minb(q') < k < maxb(q'), then |a—k| < 46. Finally, if k£ divides m, then Zgn/kfl b(g+jk) =
m so the average of these b(¢')s is exactly k and minb(¢') < k < maxb(q’). So no a can

differ from this average by more than 46. O

We want to show the analogue of Lemma 3 for the diagonal ¢ blocks. For this
purpose we have to consider a smaller rectangle R’. Recall that m is divisible by 4, set
p=p+m/4,¢d =q+m/4, m' =m/2 and define R' = [ay, ay1m] X [by, by 1m/].

Lemma 5. Assume w!,w? € R’ belong to the same diagonal ¢ block, B*, of G1. If a(w!, w?)
differs from /4 by 6, then || < % where K is a constant, for instance K = 150 will do.

Proof. Let u; = wy ; be the leftmost, and us = Wy —1i4m/—1 be the rightmost point of
B*in S, where S is the slab between the vertical lines L(a, )" and L(ay 4)"; see Figure 6.
Due to the definition of R and R’, both points uz = Wy i—1 and Ug = Wy 4/ —1,i4m’ aTe IN
R. For simplicity of notation, we further assume that B* is the block By (defined at the
beginning of the proof of Lemma 5.2.). Then By and B_; are the blocks neigbouring the
block B* = By. Since ¢ is orientation preserving, us € B_ is below the line L(w!, w?)
and uy € By is above. It follows that the point (a,41,b;—1) (denoted by X on Figure 6) is
below this line and the point (ay 4m/—1, bitm/+1) (denoted by Z) is above. Analogously the
point w1 ; € By is above the line L(w', w?), and then so is Y := (ay_1,b;+1). Similarly
Wy 4’ i+m/—1 € B_1 is below this line and then so is V' := (ay 4-m/41, bitm/—1); see Figure 6.
Analogously Z := (@ jm/—1, bisrm41) is above L(w!, w?).

Consequently the slope of the line L(w!,w?) is between the slopes of L(Y,V) and
L(X,Z). By Lemma 4 (m is divisible by m’) the numbers a4, — a, and by, — b; differ
from m' by less than 46. The slope of L(Y, V) is

bier’fl — bi+1 S (m’ — 46) —18 . 128
Qi1 — Q—1 (M +46) + 18 m' + 64’
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Figure 6: Some cells in By and the line L(w?!, w?).

we also used that by Lemma 2 agi1 — ag,bgr1 — b < 9. Similarly the slope of L(X, Z)
equals
bitm/+1 — bi—1 (m’ + 46) + 18 . 128
Qpimi—1 — Q1 (m/ —46) —18 m' — 64’

A straightforward computation shows that slope of L(w!,w?), which equals tan (% + 5) ~
1 + 24, differs from one by at most 256/(m — 128) (assuming that m is large enough) and
6] < £ follows with K = 150. O

6 Finding an even smaller subgrid

We set m = Cn?e~! where C > 0 will be specified later. Set p* = p+m/2 and ¢* = ¢+m/2
and define the rectangle R* = [ap«, ap1n] X [bg=, bg=+n] and let G consist of points z € Gy
such that ¢(z) € R*. Of course G2 is an n X n subgrid of Gy, a translate of the set of grid
points in G*(n): G2 = 29 + G*(n) for a suitable zg € Z2. This is the subgrid that we are
after as we shall see soon.

Note that n < m’ = m/2, in fact much smaller. We assume (as we can) that n
divides m. So R* is a tiny rectangle in the middle of R whose sides have length between
n—46 and n+46 because of Lemma 4. Then the diagonal ¢ blocks of GG that contain points
from R* are very close to the middle of R. It follows that if w', w? belong to a diagonal
¢ block By (say) of Go, then By satisfies the conditions of Lemma 5. Lemma 3 applies to
points in horizontal and vertical ¢ block of G.
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Corollary 1. If z', 22 belong to the same horizontal, diagonal or vertical block of G, then
a(p(zh), p(2?2)) deviates from 0,7 /4, /2, respectively by at most v := K/m.

Lemma 6. There is an affine map 9 : R? — R? such that (with C = 42K ) for every z € Go

lo(z) =V < 5.

Proof. Define ¢q : G*(n) — R? by
Po(i,J) = Wpr4ig=+j — Wp* g+

and set e = —-po(n — 1,0) and f = —L-(0,n — 1). Note that e and f are almost
orthogonal because e is away from the horizontal direction by at most v and f from the
vertical one at most by the same amount. So the angle between e and f differs from /2 by
less than 2. Then |e- f| < 0.1 if m is large enough (where e - f denotes the scalar product
of e and f). The z component of (n—1)e is close to n (by Lemma 4) and its y component is
at most 9 (by Lemma 2) so ||e]| is very close to one: 0.95 < |le|| < 1.05 if m is large enough.
The same way we get that 0.95 < || f|| < 1.05, too. This shows that e and f form an almost
orthonormal basis of R and |le| + || f]] < 2.1.

The conditions of Lemma 1 are satisfied for ¢ with v = K/m. So its conclusion
holds: for every (i,7) € G*(n)

lpo(i, ) = (e + 5 )l < 109> ([le]l + | £1])-

We define a linear map L : R? — R? by setting L(2) = L(z,y) = xe + yf and an
affine map ¥ : R? — R? via ¥(2) = L(2) + wp+ 4+; L is the linear part of .

A given z € G2 can be written uniquely as 29 + (4, j) where (i,5) € G*(n). For every
z =20+ (i,j) € G2 we have

lp(z) =9 = llwolisd) — (e + 5 f)]| < 10yn>(lle]l + [ /1)
< o2 e K€
Cn? cC 2
when choosing the constant C' > 42K. O

7 Proof of Theorem 1

The proof is quite easy now. The linear part, L, of 9 carries the vector (1,0) and (0,1) to
e and f, respectively. Since vectors e and f form an almost orthonormal basis of R?, L is
very close to the identity assuming that m and n is large enough. Then its inverse, L™!, is
also close to the identity implying that | L~ (z)| < 2||z| for all z € R2. In particular when
z € Gy and z := ¢(z) — ¥(z) we have using Lemma 6

IL7H (p(2) = 9(2)) <e.
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Observe now that

So in Theorem 1 the map 1 is ¥~!, or more precisely 9! o T" where T is the affine
map from Remark 2 O

8 Proof of Lemma 1

We will need the following almost elementary fact. Consider the quadrilateral @ = conv {X,Y, Z,V'}
as in Figure 7. Assume that

‘OZ(X,Y)’,’CY(‘/,Z)‘<")/,’04(X,Z)—7T/4’ < 7
‘O[(X’V)—7'('/2”’0[(}/72)—7('/2’ < 7.
Define

1+ tan 2

M = :
(1 — tan2y) cos 2y

Claim 2. Under the above conditions

X a a0 Ai41,0
Figure 7: The quadrilateral () and a piece of the ¢ grid.

The proof is simple: the sine theorem shows that, with the notation of Figure 7,

~d cos2y+sin2y

O
V2 cos 2y

d
—(cos 2y —sin27y) < a,d’, b,V <

V2

Proof of Lemma 1. We are going to use the inequalities of the claim in the quadrilaterals with
vertices o (4, 5), po(i—1,7), vo(i,j—1), and @o(i—1, j—1). We define a; ; = ¢o(%, j) —po(i—
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1,j) fori € [n — 1] and j € {0,1,...,n — 1} and, analogously, b; ; = ¢o(i,j) — wo(i,j — 1),
fori € {0,1,...,n—1} and j € [n — 1].

The claim shows that in the triangle with sides a;41,0 and b; 1 (see Figure 7), and in
the triangle with sides b; 1 and a; o

b ,
mt < Wil < Mand M7! < lasoll _ 5/
laitrol [1bi1 ]
Consequently
M2 < Nasoll < M? and so max |a; o < min ||a; o[ M2V, (3)
lait10]l ’ ’

The vectors e, f form a basis of R?, so a vector a € R? can be written uniquely as
a=a"e+a’f. Our first target is to show that every a7, is very close to one and every al j
is very close to zero. The analogous statement for bgy ; and b7 ; would follow by symmetry.

Condition (1) implies that e and f are almost orthogonal, their angle differs from
7/2 by less than 2y. The same condition implies that in the triangle with vertices 0, a; ;,
and af’je the angle at 0 is at most 2+, the angle at a; j, and the one at aije differs from /2
by less than 2v. Thus a7 ; > 0 follows. The sine theorem shows then that

llai 1

2y < < d 4
cosey aillell  cos2y an ()
v ||f
—sin2y < ;]H H < tan 27y implying \ai’j\ < aijtan 2. (5)
ag;lell ’ vl

Another form of (4) is

cos 2y max a; ;e[| < max [|a; ;|| and min [[a; ;|| < minai;le||/ cos2y

where j is fixed and the maxima and minima are taken over all i. Putting these inequalities
with 7 =0 in (3) we see that

max ag max ||a; o] M2(n—1)

minaf, ~ min [a;ol|cos?2y ~ cos?2y

=:1+A.

The average of the a7, for i € [n—1] is 1 because St aiy =n—1,sominafy <1 <maxaf,

implying that maxaj, < (1+A)minaf, <1+ A, and minaf, > maxaf,/(1+A) > 1-A.
Consequently
lajo — 1] < Afor all i € [n —1].

We need to estimate A:

M2(n71) 1+ tan?2 2(n—1) 1 n
Ao (Ltanzy _1
cos? 2 1 — tan 2y cos? 2
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Here 1/cos?2y = 1/(1 —sin?2y) < 1/(1 — (27)?) < 1 + 2(2v)? where the last inequality
holds for small enough > 0 as one can check directly. Then, using the inequality 1+t < e’
we get

(COS; 2fy>” < (1+2(29)%)" < exp{2n(29)?}.

The same way

1+ tan2y )27 L, 2tan2y 2n=1)
1 —tan2y N 1 — tan 2y
2 tan 2y
< 2n —1)———— ».
exp{ (n )1tan27}

Returning to A we have now

2tan 2
A < exp {2(n — 1)ﬂ + 2n(27)2} —1 < 10n~.

1 — tan 2y
The last inequality follows from e! < 1+ 1.1t which is true if ¢ > 0 is small enough and here

t=2(n-1) 12_?;112277 + 2n(27)? ~ 8n is indeed small. Consequently

|afo — 1| < 10ny and similarly |bg ; — 1| < 10n7. (6)

The same way one can check that M™ ! is only slightly larger than one, namely,
1< M1 <1+ 5ny.

In the quadrilateral with sides a; ;1 and a; j (see Figure 7) we have, using Claim 2

again, that Hjlgiiqll < M and so ||a; ;|| < M”leawH. Applying (4) twice gives
aF . Maigll ne1 laioll o1 @i
= cos 29| el cos 27|le]| cos? 2y

< (14 5ny)(1 4 10n7)(1 +2(27)?) < 1 + 16ny.

We could prove here that a7 ; > 1 — 16ny but this is not needed.

Claim 2 applies in the quadrilateral with vertices 0, (n — 1)e, (n — 1)f, and ¢(n —

1,n — 1) and shows that % < M. Using this in (5) gives that

1+ tan 2y
(1 — tan 2v) cos? 2~y

|af ;| < ai ;M tan2y < (1 + 16n7) tan 2y ~ tan 2y

which is approximately tan 27y in the given range v = O(n~2). Since there tan2y < 3y we
have
laf ;| < 4y and similarly [b7;] < 47. (7)

Next we estimate the difference u = ¢o(7,j) — (ie+ jf) = ue+u¥f. We begin with
| = laig+...+ajg+biy+...b7; —1i

< afo =1+ ...+ laiy — 1 + 61| + ...+ [b;
< il0ny + j4y < (n — 1)(10ny + 47) < 10yn?,
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where we used (6) and (7). Estimating |uY| is similar but starts with writing u? as
bpy 4. +bg;+ad, +...af; — ]

Finally, we have

w? = (uCe+ulf)? = (u¥)%e? + 2utuVe - f + (u¥)?f?
< (109 (Jlell + 1 £,
implying that o, 7) — (e + i)l < 10y2([lel] + ||} indeed. n

9 The lower bound on N(n,¢)

The example showing the lower bound in Remark 1 is the projective map ¢(z,y) —
(z,y)/(N + 1 —y) which is orientation preserving on G(N) and carries the horizontal line
y = j to the horizontal line y = j/(N +1—j) for j = 0,£1,...,£N. Assume 1 is the affine
map satisfying the conclusion of Theorem 1 with zg = (a,b) € Z2, zo + G*(n) C G(N).
Let zo, 21, 22, 23 be the vertices of the square zg + G*(n) with the subscripts chosen so that
z21—z20 =23 —22=(n—1,0) and 22 — 20 = (0,n — 1).

The map 1 is affine so is of the form ¢(x) = Lz +t where L : R> — R? is a linear
map and ¢ € R? is a translation. The vectors ¢(21) — ¢(20) and p(z3) — (22) are parallel
(actually both are horizontal). Thus

[¥op(z) —vopz)l _ [[L{p(z1) = e(z0)ll _ lle(z1) = o(20)ll
[P0 p(zs) —pop(z)l  lIL(p(zs) — ()l lle(zs) — o(z2)l]
_NAl-(tn-1) _  n-l

N+1-b N+1-b

Moreover, the vectors

Yop(z1) —1op(z) and 1 o p(z3) — 1 o p(22)
differ from 23 — 29 = 23 — 22 = (n — 1,0) by at most 2. Consequently the ratio of their

lengths is at least (n —1—2¢)/(n — 1+ 2¢) which is equal to 1 —4¢/(n—1+2¢). So we have

n—1 4e (n—1)(n—1+2¢)
< N>b-1 .
Nil-b-mn—142 "~ + Ac

Since —N <b< N — (n—1), we get

ON — N+N2N+b—1+(n_1)<z_1+2€)
&

< 1_’_(11—1)2_|_n—1>(n—l)2
- 4e 2 4e

when n > 4. This implies N(n,e) = Q(n?c71), indeed.
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