
JoCG 13(2), 73–89, 2022 73

Journal of Computational Geometry jocg.org

ORIENTATION PRESERVING MAPS OF THE SQUARE GRID

Imre Bárány,*Attila Pór,� and Pavel Valtr�

Abstract. For a �nite set A ⊂ R2, a map φ : A → R2 is orientation preserving if for
every non-collinear triple u, v, w ∈ A the orientation of the triangle u, v, w is the same as
that of the triangle φ(u), φ(v), φ(w). We prove that for every n ∈ N and for every ε > 0
there is N = N(n, ε) ∈ N such that the following holds. Assume that φ : G(N) → R2 is an
orientation preserving map where G(N) is the grid {(i, j) ∈ Z2 : −N ≤ i, j ≤ N}. Then
there is an a�ne transformation ψ : R2 → R2 and z0 ∈ Z2 such that z0 + G(n) ⊂ G(N)
and ∥ψ ◦ φ(z) − z∥ < ε for every z ∈ z0 + G(n). This result was previously proved in a
completely di�erent way by Ne²et°il and Valtr, without obtaining any bound on N . Our
proof gives N(n, ε) = O(n4ε−2).

1 Introduction

This paper is about orientation preserving maps of the n× n grid. We denote by G(N) the
grid {(i, j) ∈ Z2 : −N ≤ i, j ≤ N} and by G∗(n) the grid {(i, j) ∈ Z2 : 0 ≤ i, j ≤ n− 1}. A
map φ : G(N) → R2 is orientation preserving if for every non-collinear triple u, v, w ∈ G(N)
the orientation of the triangle u, v, w is the same as that of the triangle φ(u), φ(v), φ(w), or
with a formula

sign det
[
u v w
1 1 1

]
= sign det

[
φ(u) φ(v) φ(w)
1 1 1

]
.

We are going to show that given an orientation preserving map φ : G(N) → R2 there is an
n × n subgrid of G(N) whose image under φ is very close to an a�ne image of the n × n
grid, provided that N is large enough (polynomial in n and 1/ε). More precisely, we have
the following result where the norm ∥ ∥ is Euclidean.

Theorem 1. For every n ∈ N and for every ε > 0 there is N = N(n, ε) such that if

φ : G(N) → R2 is an orientation preserving map, then there is an a�ne transformation

ψ : R2 → R2 and z0 ∈ Z2 such that z0 +G∗(n) ⊂ G(N) and for every z ∈ z0 +G∗(n).

∥ψ ◦ φ(z)− z∥ < ε.

Here N(n, ε) = O(n4ε−2).
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Theorem 1 without the explicit bound on N(n, ε) was already proved by Ne²et°il
and Valtr [5, Lemma 10] as the key tool for proving several Ramsey-type results. The proof
in the paper [5] relied on repeated compactness arguments, thus it could give no upper
bound on N . Our bound N(n, ε) = O(n4ε−2) makes ground for giving explicit bounds for
Ramsey-type results given in the paper [5]; see concluding remark (1) on page 105 of [5]
where the lack of an explicit bound is discussed. From the (discrete and) computational
geometry point of view, the most interesting consequences of our bound N(n, ε) = O(n4ε−2)
in Theorem 1 might be those which are connected with the study of order types, as described
in the next section.

Remark 1. The functionN(n, ε) in Theorem 1 satis�es the lower boundN(n, ε) = Ω(n2ε−1).
The example showing this is given in the last section.

2 Connections to order types and motivation

An order type of size n is an equivalence class of all n-point sets which can be mapped
into each other by strongly order preserving maps, where a map φ : A → R2 from a �nite
planar point set A to R2 is strongly orientation preserving if it is orientation preserving
and, additionally, it maps collinear triples of A to collinear triples. If the sets of an order
type are in general position then we say that the order type is in general position. Order
types have been studied from various perspectives, for example, see the paper of Goodman
and Pollack [1] for a classical result and the recent paper of Pilz and Welzl [6] for further
references.

The span of a �nite point set A ⊂ R2 is the ratio between the maximum distance
in A and the minimum distance in A. Note that due to projective transformations the
supremum of the spans of the sets of any �xed order type (of size at least three) is ∞. We
de�ne the span of an order type T as the in�mum of the spans of the point sets in T . By
famous results of Goodman, Pollack and Sturmfels [2] and of Kratochvíl and Matou²ek [3],
there are order types of size n with double exponential span.

Theorem 2. For n > 1, let f(n) be the smallest real number such that, for any order type

T of size n in general position and for any δ > 0, there exists a set A in T having the span

smaller than f(n) + δ. Then there are two positive constants c1 and c2 such that, for any

integer n > 3,
22

c1n ≤ f(n) ≤ 22
c2n
.

Our Theorem 1 considers subsets of sets of some order type with a small span. In
particular, an immediate consequence of Theorem 1 says that some order types have the
property that any set of this order type contains a rather large subset whose a�ne image
has a very small span (asymptotically as small as possible for the given size).

Theorem 3. For any N ≥ 2, there is an order type TN of size N in general position such

that any set A of TN contains a subset B of size n = Ω(N1/3) which is an a�ne transform

of a set having span O(
√
n).
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We remark that due to a simple packing argument the span of any set (or order
type) of size n ≥ 2 is at least Ω(

√
n).

Another (almost immediate) consequence of Theorem 1 says that there are order
types T of arbitrary size n ≥ 2 in general position such that any set A of order type T
contains a quite large subset of points which lie, one by one, in small neighborhoods of
equidistantly distributed points along some line.

Theorem 4. For any N ≥ 2 and any ε > 0, there is an order type TN of size N in general

position such that any set A of TN contains a subset B of size n = Ω(N1/4ε1/2) such that

for some line ℓ and for some n equally distributed points p1, . . . , pn on ℓ where the distance

between pi and pi+1 is exactly d for some �xed d > 0 and for each i = 1, . . . , n − 1, the
following holds. There is exactly one point of B in the (εd)-neighborhood of pi for each

i = 1, . . . , n.

Since some of the ratios of distances among su�ciently many equidistantly dis-
tributed points on a line approximate (with any prescribed precision) l prescribed distance
ratios, Theorem 4 immediately implies the following result of Ne²et°il and Valtr [5, Theorem
6].

Theorem 5 (Ne²et°il and Valtr [5]). For any positive integer l > 0 and for any l + 1
positive real numbers ε, r1, r2, . . . , rl > 0, there exists a (�nite) order type T in general

position such that any set of order type T determines l + 1 distances di, i = 0, 1, 2, . . . , l,
such that | did0 − ri| < ε (i = 1, 2, . . . , l).

3 Preparations and sketch of proof

We start with introducing basic notation and de�nitions. For distinct u, v ∈ R2, L(u, v)
denotes the line they span. The angle α(u, v) is de�ned as the angle the vector v − u and
the positive half of the x axis make. It is understood mod 2π.

Assume φ0 : G∗(n) → R2 is an orientation preserving map with φ0(0, 0) = (0, 0).
De�ne e, f ∈ R2 via φ0(n − 1, 0) = (n − 1)e and φ0(0, n − 1) = (n − 1)f . Suppose further
that for all u, v ∈ G∗(n) with α(u, v) ∈ {0, π/4, π/2}

|α(u, v)− α(φ0(u), φ0(v))| < γ, (1)

where γ > 0. For the proof of Theorem 1 we need the following lemma.

Lemma 1. Assume γ = O(n−2). Then, under the above conditions for every (i, j) ∈ G∗(n)
we have

∥φ0(i, j)− (ie+ jf)∥ < 10γn2(∥e∥+ ∥f∥).

The proof is given in Section 8.

An important notion is that of a block of a grid. The horizontal block Hi of G(m)
(i = −m, . . . ,m) is the set of the lattice points on the segment [(−m, i), (m, i)], its �rst and
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last points are (−m, i), (m, i). The vertical block Vj for (j = −m, . . . ,m) is the set of lattice
points on the segment [(j,−m), (j,m)] with its �rst and last points de�ned analogously.

Similarly, the plus diagonal block D+
i of G(m) is the set of lattice points of G(m)

on the line x − y = i (i = 0,±1, . . . ,±2m), and the minus diagonal block D−
j is the set of

lattice points of G(m) on the line x+y = i (i = 0,±1, . . . ,±2m). Their �rst and last points
are de�ned similarly. Two blocks are neighbourly if they lie on consecutive parallel lattice
lines.

v

ϕ(a)

ϕ(b)

ϕ(b′)

ϕ(a′)

Wϕ(B,B′)a W (B,B′)

a′

b′

b

Figure 1: Neighbourly blocks and φ blocks separated

Given an orientation preserving map φ : G(m) → R2 the image φ(B) of a block B is
called a φ block. We need separation properties (in the weak sense) of blocks and φ blocks.
Let B and B′ be two neighbourly blocks with distinct �rst and last point a, b and a′, b′,
respectively. Here b−a and b′−a′ are parallel and point in the same direction, see Figure 1.
It is clear that both L(a, b′) and L(a′, b) separate B and B′. The orientation preserving
properties of φ imply that the lines

L1 = L(φ(a), φ(b′)) and L2 = L(φ(a′), φ(b))

also separate φ(B) and φ(B′), or, what is the same, conv φ(B) and conv φ(B′). The lines
L1 and L2 de�ne a double cone (or wedge) Wφ(B,B′) with apex v = L1 ∩ L2 which is the
double cone not containing φ(B) and φ(B′). Similarly, let W (B,B′) be the double cone
determined by L(a, b′) and L(a′, b), again the one not containing B and B′. The following
simple facts are well known.

Fact 1. If u,w are in di�erent components of the wedge Wφ(B,B′), then the line through
v and parallel with L(u,w) separates φ(B) and φ(B′).

Fact 2. If z1, z2 ∈ G(m) are in di�erent components of the wedge W (B,B′), then φ(z1)
and φ(z2) lie in di�erent components of the wedge Wφ(B,B′).

Remark 2. If T : R2 → R2 is an a�ne map (with positive determinant), then we can replace
φ by T ◦ φ and this new map will be orientation preserving and so satisfy the conditions of
Theorem 1. In the next section we will �normalize� φ by choosing a suitable T .
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Proof sketch. Here is a quick sketch of the proof of Theorem 1. We set N = 2m2 (m
is large), G(m) ⊂ G(N) of course. We check that the horizontal and vertical blocks of
G(m) are separated by certain horizontal and vertical lines, and also that its plus and
minus diagonal blocks are separated by suitable lines of slope +1 and −1. This implies
that the corresponding φ blocks are separated by parallel lines that can be de�ned using
the map φ. We then apply an a�ne transformation so that the horizontal and vertical φ
blocks are separated by horizontal and vertical lines, respectively. The diagonal separating
lines remain parallel of course, and after suitable scaling the slope of the plus diagonal φ
separating lines is very close to 1. Then we �nd a suitable m×m subgrid G1 of G(m) where
the horizontal and vertical separating lines are distributed fairly equidistantly. These lines
form a rectangular grid; see Figure 3. Each cell of this rectangular grid contains a unique
point wi,j = φ(i, j) for each (i, j) ∈ G1. We show next that if two such points w1, w2 belong
to the same φ block, then their line L(w1, w2) is almost horizontal, vertical, or diagonal
depending on what kind of φ block w1 and w2 belong to. Finally we locate a small n × n
subgrid of G1 which satis�es the conditions of Lemma 1.

Preparations for the proof of Theorem 1 are given in Section 4, the proof itself is in
Sections 5, 6, and 7. We remark that the proof does not use the full force of the orientation
preserving property. It is only required for triples u, v, w ∈ G(N) where one of the pairs u, v
or v, w or w, u is horizontal or vertical or diagonal. Much stronger results can be proved
using more triples. We hope to return to this question in a companion paper soon.

4 Normalizing φ

We set N = 2m2. A simple computation shows that the lines L1 = L((0, N), (i,−m))
and L2 = L((0,−N), (i,m)) separate the neighbouring vertical blocks Vi−1 and Vi of G(m)
for i = 1, . . . ,m; see Figure 2. Then the vertical line through their intersection point also
separates Vi−1 and Vi. Note that the lines L(φ(0, N), φ(i,−m)) and L(φ(0,−N), φ(i,m))
are well-de�ned, let v be their point of intersection. Facts 1 and 2 show that the line passing
through v and parallel with L0 = L(φ(0, N), φ(0,−N)) separates φ(Vi−1) and φ(Vi). All
these lines are parallel with L0. The same way we de�ne separating lines for the φ(V−i)
and φ(V−i+1) blocks. Consequently all vertical φ blocks are separated by parallel lines. It
is important to point out that these parallel separating lines are uniquely determined by
φ. The same method gives separating lines for the horizontal φ blocks of G(m) that are all
parallel with L(φ(N, 0), φ(−N, 0)).

The same argument works again for the diagonal blocks of G(m). For instance one
can check that the plus diagonal blocks D+

i and D+
i−1 (for i = 1, . . . , 2m) are separated by

the line through (−N,−N) and the last point of D+
i and also by the line through (N,N)

and the �rst point of D+
i , we omit the straightforward computation.

This way we �x parallel separating lines for the horizontal, vertical, and plus and
minus diagonal φ blocks of G(m). We now use Remark 2 to modify φ so that the separating
lines for the horizontal and vertical φ blocks of G(m) are horizontal and vertical, respectively.
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G(m)

(0,−N)

(0, N)

(N,N)

(N,−N)

(−N, 0)

Vi

(N, 0)

Figure 2: G(N), G(m) and a vertical block

They will be denoted by

L(bj)
h = {(x, y) : y = bj} and L(ai)v = {(x, y) : x = ai},

here i, j ∈ [2m] and a1 < a2 < . . . < a2m and b1 < b2 < . . . < b2m where [m] denotes the
set {1, . . . ,m}. The upper indices h and v refer to horizontal and vertical. From this point
onward we only work with points of the grid G(m).

To have simple writing we keep the same notation for the modi�ed φ. We note that
there is still some freedom to de�ne φ more precisely, a translation and scaling in horizontal
and vertical directions are still allowed. That will come a little later.

Observe now that we have a grid-like structure (see Figure 3): the lines L(ai)v and
L(bj)

h determine (2m − 1)2 rectangular cells and each such cell contains the φ image of a
unique point from G(m). Precisely, the cell C(i, j) is just the rectangle [ai, ai+1]× [bj , bj+1].
It contains the point wi,j = φ(i, j), the image of a unique point in G(m).

Suppose that m is large, m > 105 say. We also assume that m is a multiple of 4. Let
ap+4 − ap be the minimal among the numbers a7 − a3, a8 − a4, . . . , a2m−2 − a2m−6 and let
bq+4 − bq be the minimal among b7 − b3, b8 − b4, . . . , b2m−2 − b2m−6. Note that we have left
out a �double frame� of the �rst and last two rows and columns. They will be needed later.
Now either p ≤ m or p+ 4 > m. Similarly, either q ≤ m or q + 4 > m. We can assume by
symmetry that p, q ≤ m. We use now our freedom to �x φ by requiring that ap = bq = 0
and ap+m = bq+m = m. It follows then that 0 < ap+4, bq+4 ≤ 4. From this point onward
we do not need the minus diagonal blocks, and a diagonal block will always mean a plus
diagonal one. (Note that we would have kept the minus diagonal blocks in case p ≤ m and
q + 4 > m.)
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ap

bq

ap+m

bq+m

ai

wi,j
wk,j

bj

L(wi,j , wk,j)

L(ap)
v L(ap+m)v

L(bq)
h

L(bq+m)h

Figure 3: The grid-like structure and the line L(wi,j , wk,j)

Remark 3. We �xed the map φ with the method just described and we keep the notation
φ unchanged. We will recall at the end of Section 7 that it is of the form T ◦ φ with a
well-de�ned a�ne transformation T : R2 → R2.

5 The rectangular grid and the subgrid G1

With φ �xed this way, our �rst target is to show that the set of points ap, . . . , ap+m are
distributed rather equidistantly on the interval [0,m] on the x-axis, and the same for
bq, . . . , bq+m. Let R be the rectangle [ap, ap+m] × [bq, bq+m] and de�ne G1 as the m × m
subgrid of G(m) whose φ image lies in R. Horizontal, vertical, and diagonal blocks of G1

are de�ned the same way as those of G(m).

Assume B and B′ are neighbouring diagonal blocks of G1, L is their separating
line, and wi,j ∈ B and wi,j+1, wi−1,j ∈ B′, see Figure 4. We will need the following key
observation.

Claim 1. The line L intersects both C(i, j) ∪ C(i− 1, j) and C(i, j) ∪ C(i, j + 1).

The proof is simple: if L does not intersect the double cell C(i, j) ∪ C(i − 1, j) (say), then
it cannot separate the points wi,j and wi−1,j .

Lemma 2. If m is large enough, then 0 < ap+k+1 − ap+k < 9 and 0 < bq+k+1 − bq+k < 9
for all k = 0, 1, . . . ,m− 1.
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L(ai)
v

L(bj)
h wi,j

wi,j+1

C(i, j)

L

wi−1,j

Figure 4: The line L and the cell C(i, j).

Proof. We assume that k > 4 since the inequalities ap+k+1−ap+k ≤ 4 and bq+k+1−bq+k ≤ 4
are automatically satis�ed for smaller k. Let Bi be the diagonal φ block of G1 that contains
the point wp,q+i for i = 0, 1, 2, 3 and let B−i be the one containing wp+i,q for i = 1, 2, 3.

The seven diagonals B3, B2, . . . , B−3 are separated by six parallel lines L3, L2, L1,
L−1, L−2, L−3 in this order (L0 is not de�ned). So for instance L3 separates B3 and B2, see
Figure 5. The key observation (Claim 1) implies that L3 intersects C(p, q+ 2)∪C(p, q+ 3)
and L−3 intersects C(p+2, q)∪C(p+3, q). Then the lines L3 and L−3 intersect the rectangle
R0 = [ap, ap+4] × [bq, bq+4], so the distance between them is less than the diameter of R0,
which is at most 4

√
2.

De�ne the rectangleRk = [ap+k, ap+k+4]×[bq+k, bq+k+4] where k = −2,−1, . . . ,m−3.
The above argument shows that the lines L3, . . . , L−3 intersect the rectangle Rp+m−4. The
line L3 intersects both R0 and Rp+m−4 so its slope is a positive number. Consequently the
angle β this line makes with the positive half of the x axis is strictly between 0 and π/2. Of
course all diagonal separator lines have the same slope.

We claim that the cell C(p + k + 2, q + k + 2) ⊂ Rk lies between the lines L3 and
L−3 for k = −2,−1, . . . ,m− 3; see Figure 5. (This is where the double frame will be used.)
Indeed, if it did not, then either the point (ap+k+2, bq+k+3) is above the line L3, or the point
(ap+k+3, bq+k+2) is below the line L−3. In the former case L3 does not intersect the union
of the cells C(p+ k, q + k + 3) and C(p+ k + 1, q + k + 3) contrary to the key observation.
A similar argument works when the point (ap+k+3, bq+k+2) is below L−3.

The line L3 intersects L(ap)v below the point (ap, bq+4), and intersects L(ap+m)v

above the point (ap+m, bq+m), so its slope has to be at least m−4
m . Similar arguments show

that the slope of the line L−3 cannot be larger than m
m−4 . As both slopes are equal to tanβ

we have
m− 4

m
≤ tanβ ≤ m

m− 4
. (2)

So for m large, β is very close to π/4 and the strip between L3 and L−3 (whose
width is at most 4

√
2) intersects both axes in a segment of length shorter than 9. This and
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ap ap+4 ap+k ap+k+4

bq+k

bq

Rk

R0

L3

L−3

L2

Figure 5: Only some of the lines Li are shown, the cell C(p+ k + 2, q + k + 2) is shaded.

the fact that the cell C(p + k + 2, q + k + 2) lies between the lines L3 and L−3 �nish the
proof.

The previous argument gives actually more. Namely, assume that B0 is an arbitrary
diagonal φ block of G1 with neighbouring separating lines L3, L2, . . . , L−3. Then every cell
containing a point of B0 lies between the lines L3 and L−3. But we will not use this fact.

We show next that if w1 and w2 belong to the same horizontal (or vertical) φ block,
then their line L(w1, w2) is almost horizontal (vertical). This is quite easy. Recall the
notation α(w1, w2) for the angle of the line L(w1, w2) with the positive x-axis.

Lemma 3. Assume p ≤ i < k ≤ p+m and q+1 ≤ j ≤ q+m−2. Then | tanα(wi,j , wk,j)| <
27
m . Similarly p+1 ≤ i ≤ p+m−2 and q ≤ j < k ≤ q+m imply that | cotα(wi,j , wi,k)| < 27

m .

Proof for the horizontal case. The line L(wi,j , wk,j) (see Figure 3) intersects the line L(ap)v

on the interval [(ap, bj−1), (ap, bj+2)], as otherwise the cell C(p−1, j−1) or C(p−1, j+1) from
the double frame would be on the wrong side of L(wi,j , wk,j), contradicting the orientation
preserving property of φ. Same way, the line L(wi,j , wk,j) intersects L(ap+m)v on the interval
[(ap+m, bj−1), (ap+m, bj+2)]. The length of both intervals is at most 27 by Lemma 2. Same
proof applies in the vertical case.

Lemma 2 shows that ap′+k − ap′ ≤ 9k when p ≤ p′ < p′ + k ≤ p+m (and a similar
bound for bq′+k − bq′). In fact a much stronger estimate holds.
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Lemma 4. Assume k ≤ m/2, p ≤ p′ < p′ + k ≤ m, and q ≤ q′ < q′ + k ≤ q +m. De�ne

a = ap′+k−ap′ and b = bq′+k−bq′. Then |a−b| < 46. If k divides m, then |a−k|, |b−k| < 46.

Proof. The main diagonal φ block in the rectangle [ap′ , ap′+k]× [bq′ , bq′+k], the one starting
with wp′,q′ , is separated from the next diagonal block above by the line L whose slope is
tanβ. The key observation shows that this line intersects C(p′, q′)∪C(p′, q′ +1). Similarly,
L intersects C(p′+k− 2, q′+k− 1)∪C(p′+k− 1, q′+k− 1). This implies, using Lemma 2,
that

b− 27

a
< tanβ <

b

a− 27
,

which, combined with (2), gives(
1− 4

m

)
(a− 27) < b < 27 +

(
1 +

4

m− 4

)
a.

The bounds here are of the form a ± 27 plus (or minus) a small error term. By Lemma 2
a = ap′+k − ap′ ≤ 9k ≤ 9m/2, and the error term is less than 27+19 (if m > 80, say) and
|a− b| < 46 follows.

Here b can be any of the numbers b(q′) := bq′+k − bq′ with q ≤ q′ ≤ m + q − k. If
min b(q′) ≤ k ≤ max b(q′), then |a−k| < 46. Finally, if k dividesm, then

∑m/k−1
0 b(q+jk) =

m so the average of these b(q′)s is exactly k and min b(q′) ≤ k ≤ max b(q′). So no a can
di�er from this average by more than 46.

We want to show the analogue of Lemma 3 for the diagonal φ blocks. For this
purpose we have to consider a smaller rectangle R′. Recall that m is divisible by 4, set
p′ = p+m/4, q′ = q +m/4, m′ = m/2 and de�ne R′ = [ap′ , ap′+m′ ]× [bq′ , bq′+m′ ].

Lemma 5. Assume w1, w2 ∈ R′ belong to the same diagonal φ block, B∗, of G1. If α(w
1, w2)

di�ers from π/4 by δ, then |δ| < K
m where K is a constant, for instance K = 150 will do.

Proof. Let u1 = wp′,i be the leftmost, and u2 = wp′+m′−1,i+m′−1 be the rightmost point of
B∗ in S, where S is the slab between the vertical lines L(ap′)v and L(ap′+m′)v; see Figure 6.
Due to the de�nition of R and R′, both points u3 = wp′,i−1 and u4 = wp′+m′−1,i+m′ are in
R. For simplicity of notation, we further assume that B∗ is the block B0 (de�ned at the
beginning of the proof of Lemma 5.2.). Then B1 and B−1 are the blocks neigbouring the
block B∗ = B0. Since φ is orientation preserving, u3 ∈ B−1 is below the line L(w1, w2)
and u4 ∈ B1 is above. It follows that the point (ap′+1, bi−1) (denoted by X on Figure 6) is
below this line and the point (ap′+m′−1, bi+m′+1) (denoted by Z) is above. Analogously the
point wp′−1,i ∈ B1 is above the line L(w1, w2), and then so is Y := (ap′−1, bi+1). Similarly
wp′+m′,i+m′−1 ∈ B−1 is below this line and then so is V := (ap′+m′+1, bi+m′−1); see Figure 6.
Analogously Z := (ap′+m′−1, bi+m′+1) is above L(w1, w2).

Consequently the slope of the line L(w1, w2) is between the slopes of L(Y, V ) and
L(X,Z). By Lemma 4 (m is divisible by m′) the numbers ap′+m′ − ap′ and bi+m′ − bi di�er
from m′ by less than 46. The slope of L(Y, V ) is

bi+m′−1 − bi+1

ap′+m′+1 − ap′−1
>

(m′ − 46)− 18

(m′ + 46) + 18
= 1− 128

m′ + 64
,
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w2

L(w1, w2)

w1

ap′ ap′+m′

u2

u3

u4

bi

bi+m′

S

u1 = wp′,i

X

Y

Z

V

Figure 6: Some cells in B0 and the line L(w1, w2).

we also used that by Lemma 2 ak+1 − ak, bk+1 − bk < 9. Similarly the slope of L(X,Z)
equals

bi+m′+1 − bi−1

ap′+m′−1 − ap′+1
<

(m′ + 46) + 18

(m′ − 46)− 18
= 1 +

128

m′ − 64
.

A straightforward computation shows that slope of L(w1, w2), which equals tan
(
π
4 + δ

)
≈

1 + 2δ, di�ers from one by at most 256/(m − 128) (assuming that m is large enough) and
|δ| < K

m follows with K = 150.

6 Finding an even smaller subgrid

We set m = Cn2ε−1 where C > 0 will be speci�ed later. Set p∗ = p+m/2 and q∗ = q+m/2
and de�ne the rectangle R∗ = [ap∗ , ap∗+n]× [bq∗ , bq∗+n] and let G2 consist of points z ∈ G1

such that φ(z) ∈ R∗. Of course G2 is an n× n subgrid of G1, a translate of the set of grid
points in G∗(n): G2 = z0 + G∗(n) for a suitable z0 ∈ Z2. This is the subgrid that we are
after as we shall see soon.

Note that n < m′ = m/2, in fact much smaller. We assume (as we can) that n
divides m. So R∗ is a tiny rectangle in the middle of R whose sides have length between
n−46 and n+46 because of Lemma 4. Then the diagonal φ blocks of G1 that contain points
from R∗ are very close to the middle of R. It follows that if w1, w2 belong to a diagonal
φ block B0 (say) of G2, then B0 satis�es the conditions of Lemma 5. Lemma 3 applies to
points in horizontal and vertical φ block of G2.
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Corollary 1. If z1, z2 belong to the same horizontal, diagonal or vertical block of G2, then

α(φ(z1), φ(z2)) deviates from 0, π/4, π/2, respectively by at most γ := K/m.

Lemma 6. There is an a�ne map ϑ : R2 → R2 such that (with C = 42K) for every z ∈ G2

∥φ(z)− ϑ(z)∥ < ε

2
.

Proof. De�ne φ0 : G
∗(n) → R2 by

φ0(i, j) = wp∗+i,q∗+j − wp∗,q∗

and set e = 1
n−1φ0(n − 1, 0) and f = 1

n−1φ0(0, n − 1). Note that e and f are almost
orthogonal because e is away from the horizontal direction by at most γ and f from the
vertical one at most by the same amount. So the angle between e and f di�ers from π/2 by
less than 2γ. Then |e · f | < 0.1 if m is large enough (where e · f denotes the scalar product
of e and f). The x component of (n−1)e is close to n (by Lemma 4) and its y component is
at most 9 (by Lemma 2) so ∥e∥ is very close to one: 0.95 < ∥e∥ < 1.05 if m is large enough.
The same way we get that 0.95 < ∥f∥ < 1.05, too. This shows that e and f form an almost
orthonormal basis of R2, and ∥e∥+ ∥f∥ < 2.1.

The conditions of Lemma 1 are satis�ed for φ0 with γ = K/m. So its conclusion
holds: for every (i, j) ∈ G∗(n)

∥φ0(i, j)− (ie+ jf)∥ < 10γn2(∥e∥+ ∥f∥).

We de�ne a linear map L : R2 → R2 by setting L(z) = L(x, y) = xe + yf and an
a�ne map ϑ : R2 → R2 via ϑ(z) = L(z) + wp∗,q∗ ; L is the linear part of ϑ.

A given z ∈ G2 can be written uniquely as z0+(i, j) where (i, j) ∈ G∗(n). For every
z = z0 + (i, j) ∈ G2 we have

∥φ(z)− ϑ(z)∥ = ∥φ0(i, j)− (ie+ jf)∥ ≤ 10γn2(∥e∥+ ∥f∥)

< 21n2
Kε

Cn2
<

21K

C
ε ≤ ε

2

when choosing the constant C ≥ 42K.

7 Proof of Theorem 1

The proof is quite easy now. The linear part, L, of ϑ carries the vector (1, 0) and (0, 1) to
e and f , respectively. Since vectors e and f form an almost orthonormal basis of R2, L is
very close to the identity assuming that m and n is large enough. Then its inverse, L−1, is
also close to the identity implying that ∥L−1(x)∥ ≤ 2∥x∥ for all x ∈ R2. In particular when
z ∈ G2 and x := φ(z)− ϑ(z) we have using Lemma 6

∥L−1(φ(z)− ϑ(z))∥ < ε.
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Observe now that

ϑ−1(φ(z))− z = ϑ−1(φ(z))− ϑ−1(ϑ(z)) = L−1 (φ(z)− ϑ(z)) .

So in Theorem 1 the map ψ is ϑ−1, or more precisely ϑ−1 ◦ T where T is the a�ne
map from Remark 2

8 Proof of Lemma 1

We will need the following almost elementary fact. Consider the quadrilateralQ = conv {X,Y, Z, V }
as in Figure 7. Assume that

|α(X,Y )|, |α(V,Z)| < γ, |α(X,Z)− π/4| < γ

|α(X,V )− π/2|, |α(Y,Z)− π/2| < γ.

De�ne
M =

1 + tan 2γ

(1− tan 2γ) cos 2γ
.

Claim 2. Under the above conditions

M−1 <
a

b
,
a′

b
,
b′

b
,
a′

a
,
b′

a
,
a′

b′
< M.

X

Y

ZV

d

a

a′

b
b′

ai+1,0ai,0

ai,j−1

ai,j

bi,1

Figure 7: The quadrilateral Q and a piece of the φ grid.

The proof is simple: the sine theorem shows that, with the notation of Figure 7,

d√
2
(cos 2γ − sin 2γ) < a, a′, b, b′ <

d√
2

cos 2γ + sin 2γ

cos 2γ
.

Proof of Lemma 1. We are going to use the inequalities of the claim in the quadrilaterals with
vertices φ0(i, j), φ0(i−1, j), φ0(i, j−1), and φ0(i−1, j−1). We de�ne ai,j = φ0(i, j)−φ0(i−
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1, j) for i ∈ [n− 1] and j ∈ {0, 1, . . . , n− 1} and, analogously, bi,j = φ0(i, j)− φ0(i, j − 1),
for i ∈ {0, 1, . . . , n− 1} and j ∈ [n− 1].

The claim shows that in the triangle with sides ai+1,0 and bi,1 (see Figure 7), and in
the triangle with sides bi,1 and ai,0

M−1 <
∥bi,1∥

∥ai+1,0∥
< M and M−1 <

∥ai,0∥
∥bi,1∥

< M.

Consequently

M−2 <
∥ai,0∥
∥ai+1,0∥

< M2 and so max ∥ai,0∥ ≤ min ∥ai,0∥M2(n−1). (3)

The vectors e, f form a basis of R2, so a vector a ∈ R2 can be written uniquely as
a = axe+ ayf . Our �rst target is to show that every axi,0 is very close to one and every ayi,j
is very close to zero. The analogous statement for by0,j and b

x
i,j would follow by symmetry.

Condition (1) implies that e and f are almost orthogonal, their angle di�ers from
π/2 by less than 2γ. The same condition implies that in the triangle with vertices 0, ai,j ,
and axi,je the angle at 0 is at most 2γ, the angle at ai,j , and the one at axi,je di�ers from π/2
by less than 2γ. Thus axi,j > 0 follows. The sine theorem shows then that

cos 2γ <
∥ai,j∥
axi,j∥e∥

<
1

cos 2γ
and (4)

− sin 2γ <
ayi,j∥f∥
axi,j∥e∥

< tan 2γ implying |ayi,j | < axi,j
∥e∥
∥f∥

tan 2γ. (5)

Another form of (4) is

cos 2γmax axi,j∥e∥ < max ∥ai,j∥ and min ∥ai,j∥ < min axi,j∥e∥/ cos 2γ

where j is �xed and the maxima and minima are taken over all i. Putting these inequalities
with j = 0 in (3) we see that

max axi,0
min axi,0

≤ max ∥ai,0∥
min ∥ai,0∥ cos2 2γ

<
M2(n−1)

cos2 2γ
=: 1 + ∆.

The average of the axi,0 for i ∈ [n−1] is 1 because
∑n−1

1 axi,0 = n−1, somin axi,0 ≤ 1 ≤ max axi,0
implying that max axi,0 < (1+∆)min axi,0 ≤ 1+∆, and min axi,0 > max axi,0/(1+∆) ≥ 1−∆.
Consequently

|axi,0 − 1| ≤ ∆ for all i ∈ [n− 1].

We need to estimate ∆:

∆ =
M2(n−1)

cos2 2γ
− 1 =

(
1 + tan 2γ

1− tan 2γ

)2(n−1)( 1

cos2 2γ

)n

− 1.
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Here 1/ cos2 2γ = 1/(1 − sin2 2γ) < 1/(1 − (2γ)2) < 1 + 2(2γ)2 where the last inequality
holds for small enough γ > 0 as one can check directly. Then, using the inequality 1+ t < et

we get (
1

cos2 2γ

)n

<
(
1 + 2(2γ)2

)n
< exp{2n(2γ)2}.

The same way (
1 + tan 2γ

1− tan 2γ

)2(n−1)

=

(
1 +

2 tan 2γ

1− tan 2γ

)2(n−1)

< exp

{
2(n− 1)

2 tan 2γ

1− tan 2γ

}
.

Returning to ∆ we have now

∆ < exp

{
2(n− 1)

2 tan 2γ

1− tan 2γ
+ 2n(2γ)2

}
− 1 < 10nγ.

The last inequality follows from et ≤ 1+1.1t which is true if t > 0 is small enough and here
t = 2(n− 1) 2 tan 2γ

1−tan 2γ + 2n(2γ)2 ≈ 8nγ is indeed small. Consequently

|axi,0 − 1| ≤ 10nγ and similarly |by0,j − 1| ≤ 10nγ. (6)

The same way one can check that Mn−1 is only slightly larger than one, namely,
1 < Mn−1 < 1 + 5nγ.

In the quadrilateral with sides ai,j−1 and ai,j (see Figure 7) we have, using Claim 2
again, that ∥ai,j∥

∥ai,j−1∥ < M and so ∥ai,j∥ < Mn−1∥ai,0∥. Applying (4) twice gives

axi,j ≤ ∥ai,j∥
cos 2γ∥e∥

< Mn−1 ∥ai,0∥
cos 2γ∥e∥

< Mn−1
axi,0

cos2 2γ

< (1 + 5nγ)(1 + 10nγ)(1 + 2(2γ)2) < 1 + 16nγ.

We could prove here that axi,j > 1− 16nγ but this is not needed.

Claim 2 applies in the quadrilateral with vertices 0, (n − 1)e, (n − 1)f , and φ(n −
1, n− 1) and shows that ∥e∥

∥f∥ < M . Using this in (5) gives that

|ayi,j | ≤ axi,jM tan 2γ < (1 + 16nγ)
1 + tan 2γ

(1− tan 2γ) cos2 2γ
tan 2γ ≈ tan 2γ

which is approximately tan 2γ in the given range γ = O(n−2). Since there tan 2γ < 3γ we
have

|ayi,j | ≤ 4γ and similarly |bxi,j | ≤ 4γ. (7)

Next we estimate the di�erence u = φ0(i, j)− (ie+ jf) = uxe+uyf . We begin with
ux :

|ux| = |ax1,0 + . . .+ axi,0 + bxi,1 + . . . bxi,j − i|
≤ |ax1,0 − 1|+ . . .+ |axi,0 − 1|+ |bxi,1|+ . . .+ |bxi,j |
≤ i10nγ + j4γ ≤ (n− 1)(10nγ + 4γ) < 10γn2,
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where we used (6) and (7). Estimating |uy| is similar but starts with writing uy as

by0,1 + . . .+ by0,j + ayj,1 + . . . ayj,i − j.

Finally, we have

u2 = (uxe+ uyf)2 = (ux)2e2 + 2uxuye · f + (uy)2f2

< (10γn2)2(∥e∥+ ∥f∥)2,

implying that ∥φ0(i, j)− (ie+ jf)∥ < 10γn2(∥e∥+ ∥f∥) indeed.

9 The lower bound on N(n, ε)

The example showing the lower bound in Remark 1 is the projective map φ(x, y) →
(x, y)/(N + 1 − y) which is orientation preserving on G(N) and carries the horizontal line
y = j to the horizontal line y = j/(N +1− j) for j = 0,±1, . . . ,±N. Assume ψ is the a�ne
map satisfying the conclusion of Theorem 1 with z0 = (a, b) ∈ Z2, z0 + G∗(n) ⊂ G(N).
Let z0, z1, z2, z3 be the vertices of the square z0 +G∗(n) with the subscripts chosen so that
z1 − z0 = z3 − z2 = (n− 1, 0) and z2 − z0 = (0, n− 1).

The map ψ is a�ne so is of the form ψ(x) = Lx + t where L : R2 → R2 is a linear
map and t ∈ R2 is a translation. The vectors φ(z1) − φ(z0) and φ(z3) − φ(z2) are parallel
(actually both are horizontal). Thus

∥ψ ◦ φ(z1)− ψ ◦ φ(z0)∥
∥ψ ◦ φ(z3)− ψ ◦ φ(z2)∥

=
∥L(φ(z1)− φ(z0))∥
∥L(φ(z3)− φ(z2))∥

=
∥φ(z1)− φ(z0)∥
∥φ(z3)− φ(z2)∥

=
N + 1− (b+ n− 1)

N + 1− b
= 1− n− 1

N + 1− b
.

Moreover, the vectors

ψ ◦ φ(z1)− ψ ◦ φ(z0) and ψ ◦ φ(z3)− ψ ◦ φ(z2)

di�er from z1 − z0 = z3 − z2 = (n − 1, 0) by at most 2ε. Consequently the ratio of their
lengths is at least (n−1−2ε)/(n−1+2ε) which is equal to 1−4ε/(n−1+2ε). So we have

n− 1

N + 1− b
≤ 4ε

n− 1 + 2ε
or N ≥ b− 1 +

(n− 1)(n− 1 + 2ε)

4ε
.

Since −N ≤ b ≤ N − (n− 1), we get

2N = N +N ≥ N + b− 1 +
(n− 1)(n− 1 + 2ε)

4ε

≥ −1 +
(n− 1)2

4ε
+
n− 1

2
>

(n− 1)2

4ε

when n ≥ 4. This implies N(n, ε) = Ω(n2ε−1), indeed.
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