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Abstract

The description of an accreting neutron star (NS) with a pure dipole magnetic

field structure, allowing for a tilt from the spin-axis, is challenged when applied

to Pulsating Ultra-Luminous X-ray sources (PULXs), which are X-ray bright (

≳ 1039erg s−1 ), accreting, magnetised NSs.

One explanation of the apparent super-Eddington emission from PULXs in-

volves the NS’s ultra-strong (≳ 1013G) magnetic field reducing the opacity of the

accreting plasma, consequently raising its Eddington limit (from ∼ 1038erg s−1).

However, NGC5907 ULX-1 presents an issue for the simple dipole topology, as

its observed spin-period and inferred magnetic field strength would place it in the

propeller regime. Relaxing the dipole topology assumption resolves this by decou-

pling the magnetic field strengths in the accretion column and magnetosphere. I

developed an accretion column model, incorporating multipole components, and

calculated the change to the maximum luminosity. Results demonstrated the need

for a multipolar magnetic field in NGC5907 ULX-1 and likely in NGC7793 P13.

PULXs’ high accretion rates were theorised to sheathe the NS magnetosphere

in an optically thick envelope. Whereas the luminosity amplification model was

unsuccessful in explaining the observed pulsed fraction of PULXs, no similar test

had been done for the optically thick envelope model. I developed a model for the

time-resolved spectral emission from an optically thick envelope, accounting for

tilt from the spin-axis, and calculated the pulsed fraction. This model successfully

explained the high pulsed fractions seen in NGC7793 P13 and NGC5907 ULX-1.

In conclusion, these results show the significance of the magnetic field struc-

ture in shaping the observed emission, especially for PULXs. Future missions that
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provide higher quality datasets of NS spectra will demand a more comprehensive

understanding of the effects of the magnetic field structure. This thesis contributes

to advancing that understanding.
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field topology can significantly influence the accretion column properties, which
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et al. (2017a). The pulsed fraction profile shown is from a model

with L39 = 10, B12 = 0.8, P = 1.1 s,ξ = 10◦. The blue shaded

region indicates the pulsed fraction profiles obtainable from this

model by varying the inclination (from i= 10◦ for the region bound-

ing line below to i = 70◦ for the region bounding line above). The

dashed line in the blue region indicates the pulsed fraction profile

for the model with i = 25◦, which we found to most closely match

the pulsed fraction data. . . . . . . . . . . . . . . . . . . . . . . . 147
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Chapter 1

Introduction

1.1 Overview

Neutron stars (NSs) present a rich and diverse phenomenology in different

messenger-modes: gravitational waves, neutrino emission, and the entirety of the

electromagnetic spectrum. Decoding these signals is a crucial step in understanding

the properties of NSs but it requires an accurate model to correctly interpret the phe-

nomena. The central aim of this thesis is to contribute in making an accurate model

by examining how the magnetic field configuration affects predicted observables.

Of particular interest is the study of X-ray emission, which gives a window into

the highly energetic phenomena in the universe. The X-ray emission from NSs of-

fers a unique laboratory to test our most successful quantum field theory - quantum

electrodynamics (QED) - in a regime that is otherwise inaccessible to terrestrial

experiments. This regime is the strong-field regime of QED, where super-strong

magnetic fields affect the properties of plasmas and even the vacuum, changing the

behaviour of electromagnetic propagation.

So far, a super-strong magnetic field is associated only with NSs, whose ma-

terial composition allows for a magnetic field of such magnitude. This magnetic

field affects the observables of the X-ray emission: from cyclotron absorption lines

to the pulse profiles. In the first place, the magnetic field of a NS is a crucial part

of how they are distinguished from their compact-object counterparts: black holes.

Although there is a large body of work that investigates the effects of a magnetic
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field on the NS environs, many models rely on a simple description of the magnetic

field structure, namely as a pure dipole.

In this thesis, the focus of investigation is accreting NSs, and specifically those

that exhibit super-Eddington emission. These NSs are in a group of the most lumi-

nous persistent X-ray sources, barring active galactic nuclei. They have posed as

a problem for using a simple description of the magnetic field structure, especially

when giving a self-consistent account of the accretion process - from accretion disc

to emission close to the surface. For accreting NSs with super-Eddington emission,

many open questions still remain and the physics is far from fully settled. The anal-

ysis here is meant to show an example scenario where the magnetic field structure

changes the observables.

1.2 Accreting Neutron Stars

A NS in a binary system that accumulates material from its companion star is called

an accreting NS. The infalling material is supplied by the companion star, which ei-

ther ejects material in a stellar wind, or loses material through Roche-lobe overflow

(Savonije, 1978). Once captured in the gravitational well of the NS, the infalling

material liberates its gravitational energy as radiation. This emission is observed

in the X-ray band (Giacconi et al., 1971) and it is the basis for the study of the

properties of accreting NSs.

The available gravitational energy per unit mass of infalling material is ob-

tained by integrating the work from moving a unit mass from infinity to the NS

surface, where the gravitational potential energy is converted into radiation, i.e.

∫ R

∞

−GM
r2 dr =

GM
R∗

, (1.1)

where M and R∗ are the mass and radius of the NS, respectively. Therefore, for a

mass accretion rate Ṁ, the luminosity from accretion is given by

L =
GM
R∗

Ṁ. (1.2)
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The observed X-ray luminosity of accreting NSs spans many orders of magnitude:

∼ 1032 − 1042 erg s−1, which indicates a large range of possible mass accretion

rates.

In general, there is an upper limit to the possible luminosity, called the Ed-

dington luminosity, because of a back-reaction of the radiation on infalling matter.

The Eddington luminosity is calculated from equating the force of gravity acting on

the infalling material, with the outgoing radiation pressure on the infalling material,

which gives

LEdd ≈ 1.3×1038
(

κT

κ

)( M
M⊙

)
erg s−1, (1.3)

where κ is the scattering opacity of the infalling material, and κT is the Thomson

scattering opacity of electrons.

In the scenario of accretion from stellar wind (of the companion star), the ac-

creting material is modelled to infall from all directions, i.e. spherically symmetric

infall, onto the NS because of a lack of bulk angular momentum. In the Roche-lobe

overflow accretion case, the accreting material has substantial angular momentum

and so forms an accretion disc, which mediates the infall (Pringle & Rees, 1972;

Shakura & Sunyaev, 1973).

Theoretical study of the X-ray spectra from an accreting NS suggests that the

X-ray continuum is seeded by thermal emission from the NS surface, which is

heated by the collision of the infalling material with the surface; cyclotron emis-

sion; and thermal brehmsstrahlung from the hot infalling material. The seed X-ray

spectrum is modified by Compton scattering of the photons by relativistic electrons

in the infalling magnetised plasma to produce the final X-ray emission (Basko &

Sunyaev, 1975; Becker & Wolff, 2007) that is modelled as a power-law with an

exponential cutoff.

There are various observational characteristics from accreting NSs that can be

used as a diagnostic of the system, the principal being periodic pulsations (Lamb,

1977; Rappaport & Joss, 1977), which was first discovered from the X-ray sources

Centaurus X-3 (Giacconi et al., 1971; Schreier et al., 1972) and Hercules X-1
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(Tananbaum et al., 1972). This particular characteristic was the first direct evi-

dence for the existence of accreting NSs. It was quickly shown that the regular,

coherent pulsations could be successfully explained using the model of magneti-

cally controlled accretion, developed from the early 1970s onward (Pringle & Rees,

1972; Davidson & Ostriker, 1973; Lamb et al., 1973; Ghosh & Lamb, 1978). In

this scenario, the strong (> 1012G) NS magnetic field disrupts the flow of the in-

falling material at the magnetosphere and subsequently channels the accretion flow

along magnetic field lines towards the magnetic poles. The gravitational energy of

the infalling material is therefore released at the magnetic poles, which results in a

hot-spot with an area A ≈ 1% of the total surface. The thermal emission from this

area has an effective blackbody temperature

Teff ∼ 1.7
(

L
LEdd

) 1
4
(

A
106cm

)− 1
4

keV, (1.4)

i.e. in X-rays; or if the accretion rate is above a critical rate, the result is an accretion

column supported by a radiative shock above the surface (Basko & Sunyaev, 1976),

which is discussed in more detail in §3. The footprint of the hot-spot/accretion

column on the NS surface depends on the structure of the magnetic field (Rappaport

& Joss, 1977). In particular, if the magnetic poles are misaligned with the rotation

axis, an observer sees a moving emitting area. 1 Thus, the X-ray emission from an

accreting NS has periodic pulsations, occurring with the spin period.

Across all accreting NSs with a periodic pulsation, there is an observable

change in the pulse period (Giacconi, 1975; Bildsten et al., 1997). This charac-

teristic can also be explained by the model of magnetically controlled accretion.

Namely, the change in the spin period over time is due to a transfer of angular mo-

mentum between the accreting material and the NS (Rappaport & Joss, 1977; Ghosh

et al., 1977). To produce a secular change in the spin period, there needs to be a

transfer of angular momentum along a stable axis and so the accretion is thought to

be fed by a disc.

1The external magnetic field is thought to be locked in place on the surface, so co-rotates with
the NS.
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The simplest description of the spin period changes is to assume the disc mate-

rial moves with a Keplerian velocity and deposits all its excess angular momentum

to the NS at the magnetosphere (Pringle & Rees, 1972; Lamb et al., 1973). In this

case, for a NS spinning with a frequency ωs = 2π/P, where P is the spin period, the

NS has total angular momentum

K = ωsI, (1.5)

where I is the moment of inertia of the NS, the change in angular momentum of the

NS is given by

K̇ = Ṁ
(√

GMRm −R2
mωs

)
, (1.6)

where Rm is the magnetospheric radius, defined later in §2.1.1.1. This can be related

to the change in spin period using the time derivative of equation (1.5) and assuming

the moment of inertia is approximately constant, i.e.

−2π
Ṗ
P2 I = K̇ = Ṁ

(√
GMRm −R2

m
2π

P

)
. (1.7)

The change in angular momentum, L̇, vanishes for the specific period

Peq = 2π

(
GM
R3

m

)− 1
2

, (1.8)

which is called the equilibrium spin period of the accreting NS. In the case where

the NS is spinning faster than the equilibrium spin period, the disc material (at the

magnetospheric radius) has a lower angular momentum than the NS. Thus, angular

momentum is transferred outwards from the NS to the disc material (K̇ < 0). This

moves the disc material to an orbit at a greater distance than Rm, which prevents

accretion. This is called the propeller effect (Illarionov & Sunyaev, 1975).

Because the magnetospheric radius can be related to measurements of the spin

period, the spin period derivative, and luminosity, attempts have been made to esti-
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mate the magnetic field strength from a combination of these observables (e.g. see

Erkut et al. 2020). However, the mechanism that drives the disc-magnetosphere

interaction (and subsequently a precise quantification for the angular momentum

transfer) is unknown, e.g. see Lai (2014) for a review of the different mechanisms

that have been studied. This makes an inference of the magnetic field strength from

these observables alone uncertain.

A direct measurement of the magnetic field strength local to the hot-

spot/accretion column can be made when there is a detection of electron cyclotron

resonance features (CRFs) in the X-ray spectrum. CRFs are believed to be absorp-

tion lines in the X-ray continuum resulting from resonant scattering of the seed

photons through the accreting magnetised plasma near the surface (Staubert et al.,

2019). The energy of the CRF is related to the magnetic field strength by

Ecycl = h
eB
mec

≈ 11.6 B12 keV, (1.9)

where e and me is the charge and mass of an electron respectively, and B12 is the

magnetic field strength in units of 1012G.

The first CRF was serendipitously discovered in the spectrum of Hercules X-1

at an energy of ∼ 58 keV (Truemper et al., 1978), which corresponds to a mag-

netic field strength ∼ 5.0× 1012G for the fundamental harmonic. These magnetic

field strengths are expected at the NS surface near the magnetic poles, which gives

credence to the theory that the X-ray production is local to the surface rather than

farther away in the magnetosphere.

1.3 Super-Eddington Accreting Neutron Stars
Theoretical work in understanding the processes of accreting NSs has also been

invigorated by the discovery of pulsating ultra-luminous X-ray sources (PULXs),

which are a sub-class of ultra-luminous X-ray sources (ULXs). A comprehensive

literature review of the phenomenology of ULXs is available by Kaaret et al. (2017)

as well as literature reviews of the theoretical work pertaining to ULXs in general

by Fabrika et al. (2021) and ULXs as accreting NSs by Mushtukov & Tsygankov
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(2022); King et al. (2023). In this section, I present the relevant background to

motivate a study of multi-polar magnetic fields in PULXs.

ULXs are X-ray bright point-like sources, found inside or near the optical ex-

tent of a galaxy but outside of the galactic nucleus (to exclude active galactic nu-

clei among the class members). They are defined by an X-ray luminosity that ex-

ceeds 1039erg s−1, which is greater than the Eddington luminosity for stellar mass,

M ∼ 1− 10 M⊙, black holes (BHs). The most widely accepted model of ULXs is

as a stellar mass black hole undergoing super-critical accretion (Gladstone et al.,

2009) (also known as super-Eddington accretion), in contrast to Eddington limited

accretion by an intermediate mass (M ∼ 102−104 M⊙) BH (Colbert & Mushotzky,

1999), although there are ULXs that exhibit phenomena more readily explainable

by the presence of an intermediate mass BH accretor (Kaaret et al., 2017). The

super-critical accretion model is supported by high-resolution spectra observations

of several ULXs: spectral modelling shows a significant difference in the model

parameters for the spectra of galactic sub-critical BH X-ray binaries and the spec-

tra of ULXs (Stobbart et al., 2006; Gladstone et al., 2009); spectroscopic analy-

sis shows a relativistic shift in absorption lines, which indicates the presence of

ultra-fast (v ∼ 0.1c) outflows (Pinto et al., 2016, 2017; Kosec et al., 2018) that are

expected in the super-critical accretion mode (Fabrika et al., 2021).

PULXs are a sub-class of ULXs that exhibit a regular, sinusoidal pulsation with

a period ∼ 1s in their X-ray emission. The pulsations are strongly suggestive of a

NS accretor (Bachetti et al., 2014). However, the mechanism by which an accreting

NS is able to exceed its Eddington luminosity limit by over two orders of magnitude

(Israel et al., 2017a) is still an open question.

Previous theoretical work on the magnetically controlled accretion model for

NSs found that a highly-magnetised NS is able to exceed its Eddington luminosity

by a factor of several, owing to the geometry of the accretion column (Basko &

Sunyaev, 1976). In these models, an optically thick, radiation pressure supported

accretion column forms above the NS surface (because the accretion rate is above

the critical rate in these cases). The radiation primarily escapes perpendicular to
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the infall direction after multiple scatterings in the accretion column. This escape

direction is due to the accretion column being geometrically thinner perpendicular

to the magnetic field lines than parallel to the magnetic field lines. However, the

effect of the geometry of an accretion column from a dipole magnetic field topology

alone is unable to account for the observed luminosities in PULXs.

A more recent calculation on the maximum luminosity by Mushtukov et al.

(2015) includes the opacity reduction from an ultra-strong magnetic field (>

1014G), which results in a lower optical depth of the accretion column parallel to the

magnetic field lines. This effect, coupled with the geometry of the accretion column

does allow for luminosities up to 1041erg s−1. However, another problem arises for

the PULXs with the highest luminosities, such as NGC5907 ULX-1 (Israel et al.,

2017a) when the magnetic field is assumed to be a pure dipole (which is done by

all previous models examining the maximum luminosity). The co-rotating, ultra-

strong dipole magnetic field of the NS should prevent accretion altogether because

of a centrifugal barrier (Illarionov & Sunyaev, 1975; Stella et al., 1986; Tsygankov

et al., 2016), i.e. the propeller effect. The proposed solution of a more complex

magnetic field topology (Israel et al., 2017a) is one of the areas of investigation of

this thesis, discussed in §3.

The magnetic field structure determines the geometry of the accreting NS sys-

tem, which itself has effects on the emission properties. Previous works on con-

structing a model of accreting NS systems assumes a pure dipole magnetic field

topology for simplicity (e.g. see Basko & Sunyaev 1976). This assumption is suit-

able for studying the effects of the magnetic field at large distances from the NS

because of the steeper fall-off in strength of higher-order multipole components.

However, at distances closer to the NS surface, the higher-order multipole com-

ponents can dominate and the assumption of a pure dipole field will change the

interpretation of observables because of differences in the topology and magnetic

field strength of each component.

For example, in models of the surface emission of X-ray dim, isolated NSs

(XDINs), the presence of higher-order multipole components has been shown to
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affect the light curves (Page & Sarmiento, 1996; Zane & Turolla, 2006). In general,

the emission is expected to be contingent on the magnetic field structure. In fact,

suggestions of a more complex magnetic field topology than a pure dipole were

already made for several sources from the initial analysis of the pulse profiles (Rap-

paport & Joss, 1977). This points to a need for a systematic analysis in accreting

NSs of how different magnetic field structures influence the emission properties.



Chapter 2

Background

2.1 Magnetic Field Structure

A self-consistent description of the magnetic field of a NS, generated by processes

in the core and crust, is still an open question (Spruit, 2008). For the purposes of the

investigation of this thesis, where the focus is on a systematic analysis of the effects

of different magnetic field structures, no attempt is made to derive the magnetic

field structure from physical principles. Instead, I treat the magnetic field external

to the NS, B⃗, as a static, current-free magnetic field, which satisfies

∇× B⃗ = 0⃗. (2.1)

In general, an irrotational vector field can be written as the gradient of a scalar field,

hence in this case

B⃗ =−∇ψ, (2.2)

where ψ is the magnetic potential.

The divergence-free condition for the magnetic field becomes a condition that

the Laplacian of the magnetic potential vanishes, i.e.

∇
2
ψ = 0. (2.3)
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In a spherical coordinate system (r,θ ,ϕ), where r is the radial coordinate, θ is the

colatitude coordinate, ϕ is the longitude coordinate, the general solution to equation

(2.3) is a sum of the spherical harmonics, which takes the form

ψ(r,θ ,ϕ) = ∑
ℓ,m

Cℓ,m

rℓ+1 Pm
ℓ (cosθ)eimϕ , (2.4)

where ℓ is the degree of the (multi-)pole; m is an integer in the range −ℓ ≤ m ≤ ℓ;

Cℓ,m is a constant coefficient; and Pm
ℓ is the associated Legendre polynomial of

degree ℓ and order m, satisfying the general Legendre equation

d
dµ

[
(1− x2)

d
dµ

Pm
ℓ (µ)

]
+

[
ℓ(ℓ+1)− m2

(1− x2)

]
Pm
ℓ (µ) = 0, (2.5)

where µ = cosθ . Solutions of order m= 0 result in an axisymmetric magnetic field,

which are referred to in the literature as purely poloidal magnetic fields. In fact, the

axis of symmetry is the magnetic moment, which is aligned along the zenith (θ = 0)

in the spherical coordinate system.

In general, the magnetic field can be decomposed into its poloidal and toroidal

components, where the poloidal components are axisymmetric about the magnetic

moment, i.e. they have Bϕ = 0. In this thesis, I focus on the effects of the poloidal

components and the tilt of the magnetic moment with respect to the rotation axis.

The effects of a toroidal component are not examined. These effects have been

studied for the light curves from the surface emission of magnetars (Pavan et al.,

2009), and on the polarization observables from the surface emission of cooling

NSs (Taverna et al., 2015), albeit where the toroidal component is represented by a

global twist to the poloidal component rather than as an expansion in terms of the

spherical harmonics.

An expression for the magnetic field vector of each poloidal component can be

obtained from the general spherical harmonic solutions (2.4) by setting m = 0. The

degree ℓ poloidal potential is

1
rℓ+1 P0

ℓ (µ), (2.6)
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where P0
ℓ can be found by solving equation (2.5). For reference, the Legendre

polynomials for the degree 0,1,2,3 poloidal components, i.e. the monopole, dipole,

quadrupole, octupole components respectively, are given in table 2.1.

ℓ P0
ℓ (cosθ)

0 1
1 cosθ

2 1
2(3cos2 θ −1)

3 1
2(5cos3 θ −3cosθ)

Table 2.1: The Legendre polynomials of order 0 up to degree 3, corresponding to the angu-
lar part of the monopole, dipole, quadrupole, and octupole.

In the spherical coordinate system, the poloidal magentic field components are

given by

Br = ∑
ℓ

(ℓ+1)
Cℓ,0

rℓ+2 P0
ℓ (µ),

Bθ =−∑
ℓ

Cℓ,0

rℓ+2 sinθ∂µP0
ℓ (µ), (2.7)

where B⃗ = Br r̂+Bθ θ̂ . The coefficients for each poloidal component can be related

to the magnetic field strength on the surface (at the magnetic pole where θ = 0) of

the degree ℓ poloidal component, Bpole,ℓ, by

Cℓ,0 =
Rℓ+2
∗

(ℓ+1)
Bpole,ℓ, (2.8)

where R∗ is the radial distance of the NS surface from the centre. This allows for an

easy comparison between the relative strengths of the poloidal components in the

total magnetic field. In the following, the ratio between a higher-degree poloidal

component strength with the dipole component strength, at a distance R∗ and at the

pole θ = 0, is denoted by Γ.

2.1.1 Magnetic Field Lines

Infalling material, moving with a velocity v⃗, interacts with the NS magnetic field,

B⃗, through the Lorentz force, F⃗ = q⃗v× B⃗, where q is the charge of the species. The
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infalling material can be treated in bulk as a plasma fluid and a fluid pressure can

be calculated.

The interaction regimes are typically separated: at distances far from the NS,

outside of the magnetosphere, where the influence of the NS magnetic field on

the dynamics of the infalling material is negligible; at distances close to the NS,

inside the magnetosphere, where the magnetic field channels the accretion flow

along magnetic field lines. The characteristic distance for the separation of the two

regimes is the magnetospheric radius.

At distances closer than the magnetospheric radius, the magnetic pressure

dominates over the fluid pressure of the accreting material and so the fluid flows

along the magnetic field lines. In this regime, v⃗ is parallel to the magnetic field di-

rection and so the Lorentz force vanishes. This is the so-called force-free magnetic

field approximation.

Because the accretion flow follows the magnetic field lines, their shape deter-

mines the geometry of the accreting NS system. Thus, a treatment of the magnetic

field lines is required to understand the effects of different magnetic field struc-

tures in the magnetically controlled accretion scenario. I lay out a method for this

treatment in the following, extending from previous works on the construction of

coordinate systems for magnetically controlled accretion by Canalle et al. (2005);

Adams & Gregory (2012).

The magnetic field lines are 1-dimensional paths in R3, where B⃗ is tangent at

every point along the path. This means that the iso-surfaces (in 3D) of the magnetic

potential are perpendicular to the magnetic field lines. In general, the magnetic field

lines can be constructed from a scalar field q with iso-surfaces perpendicular to the

iso-surfaces of ψ so that

∇ψ ·∇q = 0. (2.9)

Because the iso-surfaces of ψ are a 2-dimensional surface, there is still a degree of

freedom in the choice of q, namely the vector field f ϕ̂ satisfies (2.9) for a function

f (r,θ), in place of ∇q. By requiring that the vector field ∇q is also perpendicular
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to f ϕ̂ , q can be found from solving the partial differential equations in the vector

equation

∇q = f ∇ψ × ϕ̂. (2.10)

This results in a scalar field q whose isoclines are the magnetic field lines.

In spherical coordinates, solving equation (2.10) in r̂ yields the scalar field

q = R2
∗ sin2

θ ∑
ℓ

1
ℓ(ℓ+1)

(
R∗
r

)ℓ

Bpole,ℓ ∂µP0
ℓ (µ), (2.11)

which can be verified to satisfy the other partial differential equation in θ̂ in equation

(2.10) using the fact that the associated Legendre polynomial satisfies the general

Legendre equation (2.5). A set of points for a magnetic field line is determined by

solving for all points with a constant value of q.

The scalar function q also captures information on the local (magnetic) polar-

ity of the magnetic field. This can be understood by considering the magnetic field

in the associated spherical coordinate system. Namely, at certain θ intervals, the

polarity can be reversed from that close to the pole at θ = 0. This is true for higher

degree poloidal components than a pure dipole. Thus, in order to find all the mag-

netic field lines that reach out to some maximum radial distance r, it is necessary to

consider the values ±q. From the ordering choice in the cross-product in equation

(2.10), q > 0 everywhere for the pure dipole magnetic field.

Using the framework developed, it is possible to calculate the geometry of an

accreting NS system with an arbitrarily complex (poloidal) magnetic field config-

uration. In the following, I calculate some of the geometric quantities in the pure

dipole magnetic field case and I show the difference in the multi-pole (up to oc-

tupole) magnetic field case.

2.1.1.1 Magnetospheric Radius

The magnetospheric radius is the characteristic length scale that delineates the re-

gion where the magnetic force dominates the accretion flow dynamics from the
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region where the magnetic force is negligible to the overall accretion flow dynam-

ics. The physics of the disc-magnetosphere interaction are not well understood,

and there are several approaches for calculating the magnetospheric radius, namely

through a balance of the magnetic field energy, stress, or pressure with the disc

material energy, stress, or pressure respectively (Ghosh & Lamb, 1979).

Each of the calculation methods gives a magnetospheric radius of the order of

the Alven radius. This is the distance at which the magnetic energy density is equal

to the kinetic energy density of free-falling material (not material accreting from an

accretion disc). The magnetic energy density is given by

B⃗ · B⃗
8π

=
1

8π
∇ψ ·∇ψ, (2.12)

which for a pure dipole magnetic field evaluates to

1
8π

(
BpoleR3

∗
r3

)2
1
4
(
1+3cos2

θ
)
. (2.13)

The kinetic energy density of the free-falling material, assuming radial free-fall and

conservation of mass in a spherically symmetric infall, is given by

v ∼ vff =

(
2GM

r

)1/2

, (2.14)

|ρv|= Ṁ
4πr2 . (2.15)

In the case of a pure dipole magnetic field, equating the magnetic energy density

with the kinetic energy density of the infalling material at a radius r = RA and

colatitude θ = π/2 gives

RA = (128G)−1/7M−1/7B4/7
poleṀ−2/7R12/7

∗

≈ 9×107
(

Bpole

1012G

)4/7

ṁ−2/7m−1/7r12/7
6 cm, (2.16)

where in the second line ṁ = Ṁ/ṀEdd is the fraction of the mass accretion rate to
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the Eddington mass accretion rate, m = M/1.4M⊙, and r6 = R∗/106cm.

The magnetospheric radius is estimated from the Alven radius as

Rm = ΛRA, (2.17)

where Λ is a dimensionless parameter that accounts for the accretion mode, in par-

ticular Λ = 1 for wind-fed accretion and Λ ≈ 0.5 for disc-fed accretion (Ghosh &

Lamb, 1978).

For a higher degree poloidal magnetic field with a single dominant component,

the Alven radius can be given as a closed form solution similar to equation (2.16).

This time, the magnetic energy density can be evaluated at a θ value corresponding

to the weakest point of the magnetic field for the particular poloidal component (to

match the definition for the Alven radius in the pure dipole case). For example, in

the case of the pure quadrupole field, the weakest point of the magnetic field is at

θ = π/3 (and θ = 2π/3 by symmetry). Thus, the magnetospheric radius is given

by

Rm = Λ(128G)−1/11M−1/11B4/11
pole Ṁ−2/11R16/11

∗

≈ 2×107
Λ

(
Bpole

1012G

)4/11

ṁ−2/11m−1/11r16/11
6 cm. (2.18)

On the other hand, a multi-polar magnetic field does not provide a simple closed

form solution because the magnetic energy density has radial terms of different

order. Instead, the Alven radius must be computed numerically. However, because

the contribution to the magnetic energy density decays at a much higher rate for

higher degree poloidal components, i.e. going at least as r−2(ℓ+2) for a degree ℓ

poloidal component, equation (2.16) remains a good approximation for all magnetic

field configurations (with a dipole component) and mass accretion rates considered

in this thesis.
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2.1.1.2 Footprint of the Hot-Spot and Accretion Column

The hot-spot and accretion column are structures that result from the release of

gravitational potential energy by the infalling material close to the NS surface. The

location and dimensions of these structures depend on the footprint (on the NS

surface) of the magnetic field lines that confine the accretion flow. For wind-fed

accretion, the hot-spot/accretion column is an axially symmetric filled funnel about

the magnetic pole because accretion occurs spherically until the flow is redirected

by the magnetosphere. Thus, the hot-spot/accretion column is confined by the mag-

netospheric magnetic field lines only, i.e. magnetic field lines that reach out to

r = Rm at θ = π/2. For the disc-fed accretion, the hot-spot/accretion column is

an axially symmetric filled ring about the magnetic pole because accretion occurs

only along the plane of the disc until the infalling material is loaded onto magnetic

field lines at the disc-magnetosphere boundary, which is a region of finite width

(Ghosh & Lamb, 1979). The hot-spot/accretion column is confined between the

magnetospheric magnetic field lines (the outer edge of the boundary region) and

the magnetic field lines at the inner edge of the boundary region, i.e. magnetic field

lines that reach out to Rm−δ at θ = π/2, where δ is the finite width of the boundary

region.

Every point - including the footprint point - of the magnetospheric magnetic

field lines and of the boundary region magnetic field lines can be found from equa-

tion (2.11). The calculation is done by first finding the corresponding value of q for

each magnetic field line, which can be uniquely determined from a single known

point that the magnetic field line passes through. This known point is at the magne-

tospheric radius or boundary region, i.e. r = Rm (and r = Rm −δ ), θ = π/2.

For a pure dipole magnetic field topology, the scalar field q is given by

q = R2
∗ sin2

θ
1
2

(
R∗
r

)
Bpole, (2.19)
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which - after substituting for the value of q at r = Rm, θ = π/2 - can be written as

(
r

Rm

)
= sin2

θ . (2.20)

Therefore, the colatitude at which the magnetic field line meets the surface, θ∗, is

given by

µ∗ =±
[

1− R∗
Rm

]1/2

, (2.21)

where µ∗ = cosθ∗. The positive and negative value of µ∗ is the cosine of the colati-

tude of the footprint closest to the pole at θ = 0 and θ = π respectively. The area of

the hot-spot/accretion column footprint (closest to the pole at θ = 0 explicitly but

by symmetry equal to the area of the other hot-spot/accretion column footprint) is

subsequently calculated by integrating between the bounding magnetic field lines,

giving

SW = R2
∗

∫
ϕ=2π

ϕ=0
dϕ

∫
µ=µ∗

µ=1
dµ

= 2πR2
∗ [1−µ∗]≈ πR2

∗

(
R∗
Rm

)
, (2.22)

SD = R2
∗

∫
ϕ=2π

ϕ=0
dϕ

∫
µ=µ∗

µ=µI

dµ

= 2πR2
∗ [µI −µ∗]≈ πR2

∗

(
R∗
Rm

)(
δ

Rm

)
, (2.23)

where µI is the cosine of the colatitude at which the magnetic field line from the

inner part of the boundary region meets the surface, i.e.

µI =

[
1− R∗

rm −δ

]1/2

, (2.24)

and the approximations are made in the limit where rm ≫ R∗, rm ≫ δ .

For a multi-polar magnetic field topology, the scalar field q is a sum of different

orders of R∗/r, which means there is no closed form function as in equation (2.20).

The value of µ∗ must be computed numerically. Unlike in the calculation of the
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Figure 2.1: SW, for the pole at θ = 0, as a fraction of the total NS surface area against var-
ious magnetospheric radii, Rm, for magnetic fields made up of a dipole compo-
nent plus quadrupole component. The ratio of the strengths of the quadrupole
to dipole components is given by Γ = Bquad/Bdip. The red lines from top to
bottom progressively show the fraction of surface area for magnetic fields with
Γ = 0, 2, 4, 6, 8, 10.

magnetospheric radius in the multipole case, the pure dipole solution (2.21) is not

a good approximation. This can be seen in the figure below, where a comparison is

made between the footprint area of the magnetic field lines, which channel material

to the pole at θ = 0, of the pure dipole magnetic field with the footprint area of the

same magnetic field lines of multi-polar magnetic fields (in this case made up of a

dipole component plus quadrupole component).

The picture is further complicated for material channelled to the other poles of

a multi-polar magnetic field because the magnetic scalar potential is not necessarily

symmetric for θ reflected about θ = π/2. In the case of a multi-polar field made

up of a dipole component plus quadrupole component, there is an additional pole

(which is a ring at the equator from the quadrupole component) that changes the



2.1. Magnetic Field Structure 43

shape of the footprint of the channelling magnetic field lines. In the following, I

discuss the effect in the case of spherical (wind-fed) accretion first to exemplify the

additional considerations required to calculate the footprint accurately and then the

effect in the case of disc-fed accretion.

For spherical accretion, the accreting material falls radially towards the NS and

is deflected from a radial infall by the magnetic field. An example diagram of this

is shown in figure 2.2, where the multi-polar field is made up of a dipole compo-

nent plus quadrupole component. It is possible for the magnetosphere to be made

up of non-contiguous regions, which means there are additional magnetospheric

radii that apply for infall trajectories from a select subset of the whole domain of

θ . This occurs when there is a region outside of the NS surface that is dominated

by a higher degree poloidal component than the far field (as r → ∞). For exam-

ple, a magnetic field with a dipole component plus quadrupole component has an

additional quadrupole dominated magnetospheric radius given by equation (2.18),

which applies for infall trajectories that start at θ close to θ = π , specifically for θ

satisfying

cos(π −θ)>
Bdip

Bquad
(2.25)

which is obtained from solving for the values of θ when q = 0 and r > R∗.

The magnetic field line that bounds this region of the magnetosphere can be

determined using the same method as for the pure dipole case and for the mag-

netic field lines that connect to the pole at θ = 0 in the multi-polar case, in par-

ticular by finding a point at which the magnetospheric field line passes through:

(r,θ) = (Rm,2π/3), and evaluating the corresponding value of q. The footprint of

the magnetospheric field line is subsequently given by (R∗,θ∗), where µ∗ = cosθ∗

is computed numerically. The area of each hot-spot/accretion column footprint is

calculated by integrating between the footprint on the surface of the bounding mag-

netic field lines, as before.

In the disc-fed case, the problem of determining the hot-spot and accretion col-

umn footprint is made more complicated by the magnetic field null points, where
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Figure 2.2: A 2 dimensional diagram for the trajectories of (initially radially) infalling
charges in the presence of a multi-polar (dipole plus quadrupole) magnetic
field. The diagram shows the trajectories in one slice of constant ϕ for the
accreting NS system, the entire surface of trajectories follow from axial sym-
metry. The red solid lines with arrows show the trajectories of the charges. The
black shaded region shows the interior of the magnetosphere, where the mag-
netic field energy is strong enough to completely deflect all trajectories. The
blue circle shows the surface of the NS.
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B⃗ = 0⃗. This means that the magnetic energy density is no longer monotonically

increasing while approaching the surface along the field lines. Therefore, it is pos-

sible for the kinetic energy density of the infalling material to become larger than

the magnetic energy density along the path of a magnetic field line. At this point, the

force free approximation breaks down and it may be the case that the infalling ma-

terial spreads until reaching a region where the magnetic energy density is greater

than its kinetic energy density, where it is loaded onto the field lines again. Further

work is needed to determine the density distribution of the material among the hot-

spots / accretion columns for a multi-polar magnetic field configuration in general.

When the dominant contributions of the multi-polar magnetic field (at the NS

surface) are from a dipole degree poloidal component and an additional higher de-

gree poloidal component, which has a pole of the same polarity at θ = π as the

dipole component, e.g. a multi-polar magnetic field made up of a dipole compo-

nent plus octupole component, the calculation of the hot-spot / accretion column

footprint is made almost as simple as the pure dipole magnetic field case. For this

to be the case, the dipole magnetic field must be sufficiently strong to be the dom-

inating component at the magnetospheric radius. Otherwise, the additional poles

introduced by the higher degree poloidal component have to also be taken into ac-

count. In the calculation of the accretion column footprint in §3, the magnetic fields

satisfy this requirement and so the additional poles introduced by the higher degree

poloidal component can safely be ignored for the purposes of calculating the total

footprint area.

The difference in the area of the footprint can significantly influence the emis-

sion properties. For example, a basic first approximation of the the hot-spot effective

temperature can be obtained from the accretion luminosity, using equation (1.4). A

change in the area by an order of magnitude, which is possible for Γ ≥ 10, results

in a change to temperature of the hot-spot by a factor ∼ 2. This can significantly

change values of system properties that are inferred from spectral modelling, e.g.

the inferred accretion rate. In §3, I show that accounting for the higher degree multi-

pole components changes the accretion column geometry significantly (by an order
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of magnitude).

2.1.1.3 Cross-Sectional Area of the Accretion Column

Another geometric quantity that has effects on the properties of the accretion flow

and emission, especially in the disc-fed case, is the change in the cross-sectional

area of the channelling magnetic field lines. The geometric compression of the ac-

cretion flow space is responsible for some heating of the infalling material (Canalle

et al., 2005) and changes to the density that affect the radiation transport, which is

discussed in more detail in §3. This effect is important particularly when there is

an accretion column above the surface because in this case the infalling material

releases some of its heat above the surface.

Canalle et al. (2005) quantify the geometric compression with the H -function,

which is given by

H = ∂ψ

[
loghqhϕ

]
, (2.26)

where hψ , hq, hϕ are the metric elements for (ψ,q,ϕ) coordinates. The metric

elements hψ , hq can be expressed as

hψ =
1

|∇ψ|
, hq =

1
|∇q|

, (2.27)

which was implicitly given by Adams & Gregory (2012). This can be more easily

computed from the definition of the magnetic potential, ψ , and the scalar field, q,

that defines a magnetic field topology.

The H -function is directly used in the mass-continuity equation, namely since

∂ψ [ρv] =−H , (2.28)

when using the definitions of the curvilinear coordinates by Canalle et al. (2005).

Example values of the H -function, for various fixed colatitude angles, are shown

in figure 2.3.

Alternatively, an approximation of the geometric compression can be made
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Figure 2.3: The H -function as a function of the radial coordinate. The H -function is plot
for various initial colatitudes on the surface. The lines, from top to bottom,
correspond to an initial angle of θ0 = 1◦, 6◦, 12◦, 18◦, 24◦, 30◦, 36◦.

by recalculating the accretion column area for various heights above the surface,

i.e. SD = SD(h). This method is used in §3 (because I didn’t know about the H -

function when I wrote the paper). The H -function definition can be related directly

to this alternative approximate method but I leave this for a future work.

2.2 Radiative Transfer

The theory of radiative transfer provides a framework for decoding the information

from the electromagnetic emission of an accreting NS. In particular, the equations of

radiative transfer connect the microphysics responsible for the generation and prop-
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agation of the X-ray radiation in the vicinity of a NS to the observable phenomena

through a statistical description of the interaction processes.

The radiative transfer equations are a particular application of the collisional

Boltzmann transport equation, where the phase-space density function is the so-

called monochromatic specific intensity I j(ν). The specific intensity, I j(ν , x⃗, k̂, t),

can be understood to be the density of photons (up to a constant factor) of a particu-

lar quantum state (here with frequency ν and propagation direction k̂) at a position

x⃗ and at a time t (Meszaros, 1992). It is related to the energy dEν passing through

an area dA with unit normal n̂, along a direction k̂ within a solid angle dΩ of the

direction, in a time dt, by

dEν = I j(ν , k̂, x⃗, t) k̂ · n̂ dA dΩ dt. (2.29)

The geometry is often pictorially represented as in figure 2.4.

In general, the radiative transfer equations gives the change in intensity of a

light beam along a path due to absorption, emission, and scattering processes, i.e

due to interactions with charges. From the intensity, the other properties of the radi-

ation field, e.g. energy density, flux, and radiation pressure, can be obtained. Hence,

an understanding of how the absorption, emission, and scattering processes affect

the intensity is needed to quantify the changes in the properties of the radiation field

as it propagates to the observation point.

The X-ray radiation generated from accretion typically interacts with the in-

falling material (and is subsequently modified by the interaction) before escaping

the vicinity of the NS (and hence detected by X-ray telescopes). This occurs due

to the geometry of the emission region, in particular a hot-spot is exactly at the

footprint of the channelled accreting material so the radiation must pass through in

order to escape, and an accretion column is supported vertically above the surface

exactly by the locally released radiation from the infalling material.

In the following, I lay out an overview of the analysis of light propagation

in a magnetised plasma before returning to the calculation of the radiation field

properties through the transport equations. A more detailed treatment of each topic
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Figure 2.4: A diagram illustrating each of the geometrical components of the relationship
between the differential energy dEν and the specific intensity I j(ν). The black
shaded region shows a differential area dA with unit normal n̂. The red arrow
indicates the radiation intensity unit direction k̂ with the cone making a solid
angle of dΩ around the unit direction. The base of the k̂ vector is not coincident
with the base of the n̂ vector to show that they are affine.
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and other topics not covered here can be found in textbooks, e.g. Meszaros (1992).

For this thesis, I present the ideas that lead directly to the calculation of the energy,

flux, and radiation pressure for a cold, magnetised, dielectric plasma in the optically

thick case, i.e. using the Rosseland mean opacity, for the classical regime, starting

from the basic Maxwell equations in vacuum. In §3, I discuss modifications to the

classical treatment.

2.2.1 Physics of Light Propagation in Magnetised Plasmas

The effects of the properties of the infalling material, which is modelled as a mag-

netised (dielectric) plasma due to the high magnetic field strengths (> 1012G) close

the NS surface, on the propagation of electromagnetic waves can be understood by

contrasting to the propagation of the electromagnetic waves in a classical isotropic

vacuum. In a classical isotropic vacuum, the electromagnetic field is governed by

the sourceless microscopic Maxwell equations, which are given by

∇ · E⃗ = 0⃗,

∇ · B⃗ = 0⃗,

∇× E⃗ =−∂t B⃗,

∇×µ
−1
0 B⃗ = ∂tε0E⃗, (2.30)

where ε0 is the vacuum electric permittivity, and µ0 is the vacuum magnetic perme-

ability. The electric component of the well-known propagating (in vacuum) wave

solution to the sourcless microscopic Maxwell equations is given by

E⃗ = E⃗0 ei(⃗k·⃗x−ωt), (2.31)

where k⃗ is the propagation direction, c2 = (ε0µ0)
−1, and E⃗0 is a constant vector that

describes the plane of oscillation of the electric field, i.e. the polarization state of

the wave. The corresponding magnetic component can be obtained from the third



2.2. Radiative Transfer 51

of equations (2.30), giving

B⃗ = E⃗0 × k̂
1
ω

ei(⃗k·⃗x−ωt). (2.32)

Thus, the polarization state of an electromagnetic wave is uniquely determined from

the electric field oscillation and the propagation direction.

The first of equations (2.30) gives a condition on the possible polarization

states, namely

k⃗ · E⃗0 = 0, (2.33)

i.e. the polarization is perpendicular to the propagation direction.

The dispersion relation, which gives the speed of the wave propagation through

the medium, is obtained from the Fourier transformed latter two equations of (2.30),

giving

c2

ω2 k⃗×
(⃗

k× E⃗
)
+ E⃗0 = 0. (2.34)

The triple cross-product term can be rewritten as

N2 [I − k̂k̂
]
· E⃗0, (2.35)

where N2 = k2c2/ω2 is the refractive index, k⃗ = kk̂, k̂k̂ is a rank (0,2)-tensor over

the vector space of k̂ (and E⃗), and I is the rank (0,2) identity tensor (over the same

vector space). This gives a reformulation of the dispersion relation, in particular

(
I −N2 [I − k̂k̂

])
· E⃗0 = 0⃗, (2.36)

where 0⃗ is the zero vector. This reformulation makes simpler a contrast with the

rewritten formulation of the dispersion relation for a wave propagating in a cold,

magnetised (dielectric) plasma, provided later.

In a medium that responds to the passing electromagnetic wave, such as a
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plasma, the total electromagnetic field is a combination of the propagating electro-

magnetic wave and the medium response. This response is a result of the constituent

charges in the medium interacting with the passing electromagnetic wave. It is char-

acterised by the auxiliary electric and magnetic response fields, given by

D⃗ = ε0E⃗ + P⃗,

H⃗ =
1
µ0

B⃗− M⃗, (2.37)

where P⃗ is the electric polarization field, and M⃗ is the magnetisation field.

The electric polarisation is defined as the average electric dipole moment per

unit volume. The microscopic electric dipoles arise from a small displacement of

the charges in the medium because of the applied electromagnetic field. Positive

charges experience a force aligned with the direction of the electric field and so are

moved in that direction. On the other hand, negative charges experience a force

anti-aligned with the direction of the electric field and so are moved in the opposite

direction to the positive charges. The so-called bound charges that make up the

electric dipoles are unable to freely move throughout the medium but are accounted

for in the total charge density distribution in the medium, i.e.

ρ = ρfree +ρbound, (2.38)

where here ρ denotes the charge density.

The magnetisation is defined as the average magnetic moment per unit vol-

ume. The microscopic magnetic moments arise from the magnetic moments intrin-

sic to the charges themselves. Usually they are randomly oriented and average to no

net magnetic moment but they can become aligned with the application of a mag-

netic field. When averaged on length scales larger than the atomic scale, the mag-

netic moments can be approximated as being sourced by bound current loops in the

medium. These bound currents are distinguished from the free currents generated

by freely moving charges and are included in the total current density distribution



2.2. Radiative Transfer 53

in the medium, i.e.

J⃗ = J⃗free + J⃗bound, (2.39)

where J⃗ denotes the usual total charge density.

The equations that govern the behaviour of the macroscopic (response) fields

are the macroscopic Maxwell’s equations, which are given by

∇ · D⃗ = ρfree,

∇ · B⃗ = 0,

∇× E⃗ =−∂t B⃗,

∇× H⃗ = J⃗free +∂tD⃗. (2.40)

These equations resemble the typical (sourced) microscopic Maxwell’s equations,

except in how they account for the induced effects from an incident electromagnetic

wave. Comparison of Gauss’ law from the microcopic and macroscopic Maxwell’s

equations shows that

∇ · P⃗ =−ρfree, (2.41)

which is similar to Gauss’ law for the electric field E⃗, except that a polarization

field generated from the free charge density acts in the opposite sense to an electric

field generated by the total charge density. Similarly, comparison of the corrected

Ampere’s law in each case shows that

∇× M⃗ = J⃗bound −∂t P⃗, (2.42)

which is similar to the corrected Ampere’s law for the magnetic field B⃗.

For the purposes of the works considered in this thesis, the infalling material

is modelled as a cold, magnetised, dielectric plasma. In a dielectric medium, there

are no free charges (ρfree = 0) and the induced electric polarization is linearly pro-
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portional to the incident electric field, i.e.

P⃗ = α · E⃗, (2.43)

where here α is the electric susceptibility tensor. Similarly, the induced magnetisa-

tion is linearly proportional to the incident magnetic field, i.e.

M⃗ = χ · B⃗, (2.44)

where here χ is the magnetic permeability tensor. The auxiliary response fields can

be written in terms of the electric and magnetic susceptibility:

D⃗ = ε0ε · E⃗,

H⃗ = µ
−1 · B⃗, (2.45)

where ε = I +α/ε0 is the so-called dielectric tensor, and µ−1 = 1/µ0 − χ is the

reciprocated magnetic permeability tensor.

The effects of a dielectric plasma on the propagating electromagnetic wave

are entirely encoded in the dielectric tensor and magnetic permeability tensor. In

the absence of free charges and free currents, the macroscopic Maxwell’s equations

give a different condition for the possible polarization states than equation (2.33),

namely,

k⃗ · (I +α/ε0) · E⃗0 = 0⃗, (2.46)

which reduces to the classical vacuum polarization condition when the there is no

induced electric polarization in the plasma (because α vanishes). The dielectric

plasma dispersion relation differs from the classical vacuum dispersion relation,

namely,

c2

ω2 k⃗×
(

µ
−1 ·
[⃗
k× E⃗0

])
+ ε · E⃗0 = 0⃗. (2.47)
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The magnetised regime is appropriate when there is an external magnetic field,

in this case the NS magnetic field, that is strong enough to influence the motion of

the charges in the plasma. The cold approximation is appropriate when the thermal

motions of the charges is much smaller than the induced oscillations from an applied

electromagnetic field. Under these additional conditions, the magnetic permeability

tensor is well approximated as isotropic, so equation (2.47) can be simplified to

(
ε −N2 [I − k̂k̂

])
· E⃗0 = 0⃗, (2.48)

which can be easily compared with equation (2.36) for the dispersion in classical

vacuum. A non-isotropic magnetic permeability tensor arises when treating a vac-

uum or medium response with the theory of QED. The effects of the QED vacuum

become important for when the magnetic field strengths come close to or exceed

the quantum critical field strength ≈ 4.4× 1013G. These are important for the NS

magnetic field strengths considered in this thesis at ∼ 1013G, so the modifications

are discussed in a later section.

The solutions to the dispersion relations given in equations (2.36) and (2.48),

must hold for non-vanishing E⃗0 to allow for the existence of a non-trivial electro-

magnetic wave. Mathematically, the matrix in the dispersion relations must map a

subspace of its domain to 0⃗. Such a matrix is not invertible, so the condition can be

represented by

det
(
I −N2 [I − k̂k̂

])
= 0, (2.49)

det
(
ε −N2 [I − k̂k̂

])
= 0, (2.50)

for the classical vacuum case and cold, magnetised, dielectric plasma case respec-

tively.

The solution of N2 to equation (2.49) can be found immediately by represent-

ing the matrix in a basis with k̂ as one of the basis vectors, e.g. the 3-index basis

vector, which in particular I refer to for the rest of this thesis as the propagation

reference frame. The determinant equation can be expanded as a quadratic in N2
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given by

N4 −2N2 +1 = 0. (2.51)

This equation is satisfied by N2 = 1, i.e. k2 =ω2/c2, which is a degenerate solution.

The corresponding polarization state for each solution of N2 is obtained from

solving for E⃗0 in equation (2.36). In the propagation reference frame, the third com-

ponent of the vector equation is independent of N2 and is simply e3 = 0. This is

consistent with the polarization condition obtained from the microscopic Maxwell’s

equations given in equation (2.33). The remaining components of the vector equa-

tion depend on N2 and can be rewritten as a 2-dimensional matrix equation1−N2 0

0 1−N2

 ·

e1

e2

= 0⃗, (2.52)

which is satisfied for all possible values of e1 and e2 because N2 = 1. Hence, all

polarization states travel through the classical vacuum with the same propagation

speed.

The solution of N2 to equation (2.47) can be found following a similar ap-

proach to the vacuum case. However, the solution is not as immediate after rep-

resenting the matrix in the propagation reference frame. Instead, it is expedient

to rewrite the components of the vector equation (2.48) as a 2-dimensional matrix

equation first. The third component of the vector equation is independent of N2 and

so e3 can be written as a linear combination of e1 and e2, namely

e3 =−ε31

ε33
e1 −

ε32

ε33
e2 (2.53)

where εi j is the i j component of the dielectric tensor. This means that the third

component of the vector equation is a linearly dependent equation and the remaining

components of the vector equation can be reduced to a 2-dimensional form after
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substituting for e3, namelyη11 −N2 η12

η21 η22 −N2

 ·

e1

e2

= 0⃗, (2.54)

where

η11 = ε11 −
ε13ε31

ε33
, η12 = ε12 −

ε13ε32

ε33
,

η21 = ε21 −
ε23ε31

ε33
, η22 = ε22 −

ε23ε32

ε33
. (2.55)

The determinant equation (2.50) can now be equivalently (albient more simply)

expanded as a quadratic in N2 from equation (2.55), given by

N4 − (η11 +η22)N2 +(η11η22 −η12η21) = 0. (2.56)

This has solutions

N2
± =

(η11 +η22)±
√

(η11 −η22)2 +4η12η21

2
, (2.57)

which in general are non-degenerate.

The corresponding polarization state for each solution of N2 can now be ob-

tained from equation (2.46) by solving for the ratios of the components of the polar-

ization states from the dimensionally reduced vector equation (2.54) and the equa-

tions that relate e3 to the other components, which gives

K12,± :=
e1

e2
=

N2
±−η22

η21
, (2.58)

K32,± :=
e3

e2
=−

ε31K12,±+ ε32

ε33
. (2.59)

The polarization state is given by

ê± =C(K12,±,1,K32,±), (2.60)
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where C = (K2
12,±+1)−1/2 is the normalization of the polarization state in the 1−2

plane. Since the polarization state vector is written in the propagation reference

frame, the third component corresponds to the longitudinal electric field, while the

first two components correspond to the transverse electric field. Unlike the classical

vacuum case, the electric field of the propagating wave is not entirely perpendicular

to the direction of propagation, which can be seen from the condition in equation

(2.46).

The ratio of the polarization components in the 1−2 plane, K12,±, corresponds

to the ellipticity of the polarization state. It can be further simplified by substitution

of the expression for N2
±, which gives

K12,± =

[
b±
(

b2 +
η12

η21

) 1
2
]
, (2.61)

where

b =
η11 −η22

2η21
(2.62)

is the so-called ellipticity parameter of polarization.

The values for the crucial quantities b and K12,± can be calculated explicitly

once ε for the plasma is known.

2.2.1.1 Dielectric Tensor for a Cold, Magnetised Plasma

The dielectric tensor of a cold, magnetised plasma can be derived by considering

the (classical) motion of charges in the plasma under the influence of an applied

electromagnetic wave. The motion of the charges differs from the case of charges in

a classical vacuum because of the strong magnetic field and the additional damping

effects.

The motion induced by the electromagnetic wave sets up a bound current in

the dielectric plasma, so

J⃗bound = ∑
s

qsns⃗vs, (2.63)
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where the subscript s denotes the charge species, and qs, ns, v⃗s are the charge,

number density, and velocity of the charges species respectively.

Assuming the magnetisation field averages to zero, which can be done for a

non-rotating classical system in thermal equilibrium (according to the Bohr-van

Leeuwen theorem), the electric polarisation field is determined from the bound cur-

rent using equation (2.42), i.e.

J⃗bound = ∂t

(
D⃗− E⃗

)
. (2.64)

Because the electric polarisation field is changing in time due to the incident elec-

tromagnetic wave, the frequency associated with the change in the polarisation field

is the same as the frequency of the passing electromagnetic wave. Hence, a Fourier

transform in the time domain gives

D⃗ = E⃗ +∑
s

qsns

ω
v⃗s = ε0ε · E⃗, (2.65)

where ω is the frequency of the electromagnetic wave. Once v⃗s is known, the di-

electric tensor is obtained from comparing each component of the vector equation

(2.65).

In the case of a magnetised plasma, the non-relativistic equation of motion for

a charge species is the Lorentz force law, given by

ms
d⃗vs

dt
= qs

(
E⃗ + v⃗s × B⃗ext

)
+mνs⃗vs, (2.66)

where E⃗ is the electric component of the incident electromagnetic wave, B⃗ext is the

external magnetic field (from the NS), and νs is a constant of proportionality for

damping for each charge species. In this equation of motion, the magnetic compo-

nent of the incident electromagnetic wave is neglected because the magnetic field

of the NS is much stronger. After a Fourier transform in the time domain and using

vector product identities, equation (2.66) can be rearranged to obtain the velocity of
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the charge species,

v⃗s =
iqsωλs

ms(ω2λ 2
s −w2

s )

(
E⃗ − E⃗ · w⃗s

ω2λ 2
s

w⃗s

)
− qs

ms(ω2λ 2
s −w2

s )
E⃗ × w⃗s, (2.67)

where λs = 1− iνs/ω is a damping factor, w⃗s = qs/msB⃗ext is a vector with magnitude

ws, which is the cyclotron frequency for the charge species in the external magnetic

field.

The total dielectric plasma response is a sum of each of the charge species

velocity. The resulting dielectric tensor can be obtained from (2.65) and is given in

index form by

εi j = δi j

(
1+∑

s

ω2
p,sλs

ζs

)
−∑

s

ω2
p,sλs

ζs

ws;iws; j

ω2λ 2
s

+ εi jk ∑
s

iω2
p,s

ωζs
ws; j, (2.68)

where δi j is the Kronecker delta, ω2
p,s = nsq2

s/ms is the plasma frequency for each

particular charge species in the plasma, ζs = ω2λ 2
s −w2

s , and εi jk is the Levi-Civita

tensor.

The matrix for the dielectric tensor can be written explicitly after choosing a

set of orthonormal basis vectors. A natural choice is for one of the basis vectors, in

particular the convention is to choose the 3-index basis vector, to be parallel to B⃗ext

so that ws;3 = ws and ws;i = 0 for i ̸= 3. I refer to this basis as the magnetic reference

frame for the remainder of this thesis. None of the other basis vectors need to be

specified (other than forming an orthonormal set with the 3-index basis vector) to

obtain the matrix form of the dielectric tensor, given by

ε =


ε ig 0

−ig ε 0

0 0 η

 , (2.69)
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where

ε = 1+∑
s

ω2
p,s

ζs
λs,

ig = ∑
s

iω2
p,s

ωζs
ws,

η = 1−∑
s

ω2
p,s

ω2
1
λs
.

These expressions can be rewritten with the physically meaningful ratios of the

frequencies

vs =
(

ωp,s

ω

)2
, us =

(ws

ω

)2
, (2.70)

which is the ratio squared of the plasma frequency, and cyclotron frequency to the

wave frequency respectively. This gives

ε = 1−∑
s

vsλs

λ 2
s −us

,

ig = i∑
s

vsu
1/2
s

λ 2
s −us

,

η = 1−∑
s

vs

λs
.

A diagonal matrix representation of the dielectric tensor can be obtained by

using a rotating coordinate system, which is given via a transformation of the mag-

netic reference frame basis vectors, {b1,b2, ŵ}, to the rotating reference frame basis

vectors, {br,bl, ŵ}, namely,

br =
1√
2
(b1 + ib2),

bl =
1√
2
(b1 − ib2). (2.71)

In the previous definitions, the subscript denotes the helicity, with r and l being

right-handed and left-handed helicity respectively. This gives the diagonal matrix
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representation 
ε −g 0 0

0 ε +g 0

0 0 η

 . (2.72)

In all, the dielectric tensor for a cold, magnetised dielectric plasma is specified

entirely by the data for each charge species: {ms, qs, ns, νs}, the direction of the

magnetic field ŵ and its strength B, and the electromagnetic frequency ω . The

relationship between these quantities, as given by the dielectric tensor, is entirely

determined in the classical regime by the Lorentz force law.

For accreting NSs with a surface magnetic field strength between 1011G

and 1013G, the proton cyclotron energy ranges from 0.63× 10−4 keV to 0.63×

10−2 keV, whereas the X-ray photons produced in the accretion process have ener-

gies ranging from 0.1 keV to 100 keV. Hence, in these scenarios, the contribution

to the dielectric tensor from protons is negligible, i.e. vs ≪ 1 and us ≪ 1 for s

representing protons. This allows for a simplifying approximation of the dielectric

tensor by including only the electron contribution. If the electron damping is also

neglected (νe = 0 so that λe = 1), the dielectric tensor can be written in matrix form

(in the magnetic reference frame) as

ε =


1− v

1−u i vu1/2

1−u 0

−i vu1/2

1−u 1− v
1−u 0

0 0 1− v

 , (2.73)

where v = ve is ratio squared between the electron frequency in the plasma to the

wave frequency, and u = ue is the ratio squared between the electron cyclotron

frequency and the wave frequency.

On the other hand, for an accreting NS with a surface magnetic field strength

up to 1015G, which is one of the possible models for PULXs, the proton cyclotron

energy reaches up to 6.3 keV, which is in the X-ray band. In these cases, the proton

contribution to the dielectric tensor is no longer negligible for photons in the soft X-



2.2. Radiative Transfer 63

ray band (∼ 1 keV). A treatment including the ions is necessary for a more accurate

description of the radiation field properties. However, as a first approximation, I

consider only the electron contribution in future calculations in this thesis. The

inclusion of the proton contribution to the dielectric tensor for these calculations is

left for future work.

2.2.1.2 Description of the Polarization States

Returning to the dispersion relation condition for the cold, magnetised, dielectric

plasma case given in equation (2.50), the matrix can now be represented explicitly in

the magnetic reference frame. However, to use the work already done in the analysis

of the polarization states in the propagating reference frame in the previous section,

in particular the expressions in equations (2.53) - (2.62), the dielectric tensor must

first be written in the propagation reference frame.

A simplified form of the dielectric tensor can be obtained by substituting the

terms obtained from writing the dielectric tensor in the magnetic reference frame,

given in equation (2.69), into the more general form of the dielectric tensor, given

in equation (2.68). This gives

εi j = δi jε +(η − ε)ŵiŵ j + igεi jkŵk, (2.74)

where ŵ is the unit direction of the external magnetic field, i.e. ŵ = w⃗s/ws, which

is independent of the charge species. In fact, this simplified dielectric tensor is

still general, without approximations in its contribution from charge species and

damping factor. These approximations are dealt with in the expressions for ε, η , ig.

To write the dielectric tensor in the propagation reference frame requires a cal-

culation of the expression for ŵ in the propagation reference frame. The usual way

of describing the wave propagation direction in the magnetic reference frame is by

specifying an angle θ between the external magnetic field vector and the propaga-

tion direction vector, i.e. k̂ · ŵ = cosθ . There is a rotational degree of freedom in

the choice of the other two orthonormal bases, so choosing the simplest case that

the bases for the propagation reference frame, {t1, t2, k̂}, and the magnetic reference
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Figure 2.5: A diagram of the relationship between the propagating reference frame, with
basis vectors drawn in red, and the magnetic reference frame, with basis vectors
drawn in blue.

frame, {b1,b2, ŵ}, are related by a single clockwise rotation about b2, which fixes

b2 = t2 to be perpendicular to the k̂-ŵ plane, gives the relations

b1 = t1 cosθ + k̂ sinθ ,

ŵ =−t1 sinθ + k̂ cosθ . (2.75)

Figure 2.5 shows a diagram of the basis vectors and the transformation between

them. Hence

ŵ = (−sinθ , 0, cosθ) (2.76)

in the propagation reference frame.

Using the expression for the dielectric tensor in the propagation reference

frame, equation (2.61) for the ellipticity can be simplified further with the anti-

symmetries εi2 =−ε2i for i ̸= 2, and with the symmetry ε13 = ε31. In all, this gives
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η12 =−η21 and thus the ellipticity can be written as

K12,± =

[
b±
(
b2 −1

) 1
2

]
, (2.77)

where the ellipticity parameter can now also be rewritten in terms of the dielectric

tensor components ε, η , g:

b =−i
sin2

θ

2cosθ

(
ε2 −g2 − εη

gη

)
. (2.78)

The ellipticity parameter can be simplified further in the approximation that only the

electron contribution is significant and there is no damping. This gives the ellipticity

parameter in terms of u, v as

b = i
sin2

θ

2cosθ

(
u1/2

1− v

)
. (2.79)

The fact that b is a pure imaginary number means that the ellipticity K12,± will be a

pure imaginary number. Since these are the ratios of the electric field in the trans-

verse (to propagation) direction, the imaginary ellipticity means that the electric

field rotates about the propagation direction and the tip of the vector traces out an

ellipse. If the damping terms are included, then b is no longer purely imaginary,

since the ε and η terms are complex valued.

The ellipticities of the polarization states, as given in equation (2.77), are re-

lated by

K12,+K12,− = 1. (2.80)

This allows for a simplification of the polarization state vectors by the introduction

of the ellipticity iα = K12,− = (K12,+)
−1 (Ventura, 1979). The convention to use a

factor i in the definition of the ellipticity is to ensure α is a real value when damping

terms are neglected. The polarization vectors can now be written in terms of one
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ellipticity value, namely

ê+ =C(1, iα, λ1),

ê− =C(iα, 1, iλ2), (2.81)

where C = (1+α2)−1/2 is the transverse normalization, and

λ1 =− gsinθ

ε sin2
θ +η cos2 θ

[
−η − ε

g
cosθ +α

]
,

λ2 =− gsinθ

ε sin2
θ +η cos2 θ

[
−α

η − ε

g
cosθ −1

]
. (2.82)

In the approximation of negligible ion contribution (so only the electrons contribute

to the plasma response) and negligible electron damping, the longitudinal polariza-

tion components simplify further to

λ1 =−vu1/2

1−u
sinθ

[
u1/2 +α

] 1−u
1− (v+ucos2 θ)

,

λ2 =−vu1/2

1−u
sinθ

[
αu1/2 cosθ −1

] 1−u
1− (v+ucos2 θ)

. (2.83)

These expressions show that λi ∝ v and so can be neglected when the electromag-

netic frequency is much larger than the plasma frequency, i.e. ωp ≪ ω . For X-

ray radiation > 0.1 keV, this condition is typically met for the accreting plasma

(Kaminker et al., 1982), even at the base of the NS accretion column, where the

plasma density is greatest.

Finally, the refractive indicies can be more simply expressed as

N2
+ = 1+

1
iα

(
η21

η22

)
,

N2
− = 1+ iα

(
η21

η22

)
, (2.84)
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where

η21

η22
=−ig

cosθ(ε sin2
θ +η cos2 θ)− igsin2

θ

sin2
θ(ε2 −g2)+ εη cos2 θ

. (2.85)

Hence N± is complex valued in general, even when the damping term is neglected,

except for when the propagation direction is parallel to the magnetic field lines.

In this case (and excluding damping), N± is real (except close to the cyclotron

resonance u = 1, where N− becomes complex), which indicates that the charge

motions parallel to the magnetic field are responsible for extinction, i.e. this induced

parallel motion of the charges absorbs some of the incident electromagnetic wave

energy.

The real part of the refractive index gives the phase velocity of the associated

polarization mode. Hence, the difference in phase velocity for the polarization states

is found from

|ℜ(N+−N−)|, (2.86)

which vanishes when K+ = K−, or equivalently b =±1. However, when the damp-

ing term is neglected, e.g. as given in equation (2.78), b is purely imaginary. There-

fore, damping must be included for the difference in wave speeds to vanish. The

condition for differing wave speed for each polarization state is important for the

validity of treating the total radiation field as being composed of two radiation fields

with their own corresponding polarization state. This approximation, which is re-

ferred to as Faraday depolarization, simplifies the radiation transport equations con-

siderably because only the intensity of each normal mode needs to be calculated

instead of the full set of 4 Stokes parameters.

Physically, the Faraday depolarization effect is due to the difference in the

wave speed of the polarization modes. Propagating electromagnetic waves in a

dielectric plasma have a polarization state that is described as a superposition of

the polarization modes. The difference in phase velocity results in a rotation of the

polarization state.
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2.2.1.3 Magnetic Thompson Scattering

So far, the analysis of electromagnetic propagation in a dielectric medium has been

restricted to the calculation of the wave speed in the medium (refractive index)

and a description of the polarization states. To describe the change in intensity

of a light beam as it moves through a medium requires an understanding of how

much energy is transmitted or lost (in different directions) because of interactions

between the electromagnetic wave and constituent charges in the medium. This is

done in the classical regime by calculation of the magnetic Thompson scattering

cross-section for the charges, which differs from the usual Thompson scattering

cross-section because of the effect of an external magnetic field in constraining the

possible motion of the charge. This calculation has been done previously in the

context of NS atmospheres but I present the calculation in this thesis as a cohesive

whole with the end of obtaining the (magnetised) Rosseland mean opacities for

radiative transport in optically thick plasmas.

The differential Thompson scattering cross-section is defined as the fraction of

the total incident power of the wave that is transmitted in a direction Ω, i.e.

dσ

dΩ
:=

1
< S >

dP
dΩ

, (2.87)

where < S > is the time-averaged Poynting flux from the incident wave before scat-

tering and P is the emitted power after scattering in the direction Ω. The magnitude

of the Poynting flux from a plane wave in the classical vacuum with electric field E⃗

is given by

|⃗S|= µ
−1
0 |E⃗|2, (2.88)

and represents the electromagnetic energy flux (power per unit area with a specific

direction). To calculate the magnetic Thompson scattering cross-section in the case

of charges in the dielectric plasma requires expressions for the radiated electromag-

netic fields from the charges (due to induced motion by an incident electromagnetic

wave).
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In classical electrodynamics, an accelerated charge radiates electromagnetic

waves. The expressions for the electromagnetic field of a moving charge in general

is obtained from the Lienard-Wiechert potentials, which also accounts the finite

speed of electromagnetic waves, i.e. special relativistic effects. The fields for a

charge at position y⃗ moving with normalised velocity v⃗/c = β⃗ are given by

E⃗ (⃗x, t) = q

[
(r̂− β⃗ )(1−β 2)

γ3r2

]
ret

+
q
c

[
r̂

γ3r
×{(r̂− β⃗ )× ˙⃗

β}
]

ret
,

B⃗(⃗x, t) = r̂(tret)× E⃗ (⃗x, t), (2.89)

where t is the time coordinate, r⃗ = x⃗− y⃗ is the displacement vector between the

observation point at x⃗ and the charge at y⃗, r̂ = r⃗/r, γ = (1−β 2)−1/2 is the Lorentz

factor for the charge at a specific time, and where the expressions in square brackets

are evaluated at the (implicitly defined) retarded time tret = t − r(tret)/c.

For an observation point of the field in the far-field regime (r ≫ 1), the electric

field expression for the electric field to lowest order in r is given by

E⃗rad(⃗x, t) =
q
c

[
r̂

γ3r
×{(r̂− β⃗ )× ˙⃗

β}
]

ret
. (2.90)

It is worth noting that r̂ ≈ x̂ in the far-field regime and so specifying the observation

point x⃗ is (approximately) equivalent to specifying the unit propagation direction

vector k̂ of the radiated electromagnetic wave. Hence, the power transmitted by this

(far-field) radiated electric field into a direction Ω is given by

|⃗S|= dP
dA

=
1
r2

dP
dΩ

= µ
−1
0 |E⃗rad|2, (2.91)

where dA = r2dΩ is the differential receiving area of the power transmission in

the far-field. In the case where the emitted radiation of interest is of a specific

polarization state ê′, the polarized emitted power into a direction Ω is given by the
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(complex) projection of the radiated electric field on ê′, i.e.

dP
dΩ

=
r2

µ0
|ê′∗ · E⃗rad|2, (2.92)

where ∗ indicates a complex conjugate operation.

For the scattering of the electromagnetic wave by charges in a magnetised

plasma, the expression for each particular radiated electric field is obtained from the

expression for the velocity and acceleration of each corresponding charge species.

The velocity is given in equation (2.67) but can be rewritten in a more compact form

as

v⃗s =− iω
msω2

p,s
(εs − I) · E⃗, (2.93)

where εs is the dielectric tensor as in equation (2.68) but taking only the contribu-

tion from charge species s, and E⃗ = êEei(⃗k·⃗y−ωt) is the usual wave solution with

polarization state ê. The acceleration of the charges is simply obtained from dif-

ferentiating equation (2.93) with respect to time. Finally, the specific (for a charge

species) radiated electric field is given by

E⃗rad,s(k̂′,r, t) =

[
Eei(⃗k·⃗y−ωt)

γ3
s r

]
ret

Ss · ê, (2.94)

where

Ss =− qs

msc2 (I − k̂′k̂′) ·Πs (2.95)

is the scattering amplitude matrix for each species s, and where

Πs =
1
vs
(I − εs) (2.96)

is the polarization matrix for each species s.

The polarized emitted power, given in equation (2.92), can now be used to-

gether with the Poynting flux of the incident wave to obtain the differential Thomp-
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son scattering cross-section for each charge species in the plasma, and assuming

non-relativistic motions (so γs = 1), as

dσs

dΩ
= |ê′∗ ·Ss · ê|2. (2.97)

For transverse polarization states, i.e. (1− k̂′k̂′) · ê′ = ê′, which is not the general

case for the polarization normal modes of a cold, magnetised, dielectric plasma, this

simplifies to

dσs

dΩ
= r2

0,s|ê′∗ ·Πs · ê|2, (2.98)

where r0,s = qs/msc2 is the classical electromagnetic radius of the charge species.

Implicit in the expressions (2.97) and (2.98) is the dependence on the propagation

directions of the incoming incident wave k̂ and outgoing radiated wave k̂′ through

the polarization state vectors.

The differential Thompson scattering-cross section as given in (2.98) can be

simplified in a suitable reference frame, namely one in which the polarization matrix

is diagonal. This is the rotating reference frame, which was introduced in equations

(2.71) to diagonalise the dielectric tensor. The polarization matrix in the rotating

reference frame with basis vectors {br,bl, ŵ} is given by

Πs =


1/(λs −u1/2

s ) 0 0

0 1/(λs +u1/2
s ) 0

0 0 1/λs

 , (2.99)

and a general polarization state ê is expressed in terms of the basis vectors as

ê = erbr + elbl + e3ŵ, , (2.100)

where er, el, e3 are scalar components of the polarization state vector. Hence,

the dfferential Thompson scattering cross-section in the rotating reference frame is
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given by

dσs

dΩ
= r2

0,s

∣∣∣∣∣ e′∗r er

λs −u1/2
s

+
e′l∗el

λs +u1/2
s

+
e′∗z ez

λs

∣∣∣∣∣
2

. (2.101)

The differential Thompson scattering cross-section is typically integrated over

the incoming and outgoing propagation directions to obtain a total cross-section for

the interaction, which is the Thompson scattering cross-section. The integration

over the propagation directions is done in spherical coordinates to make explicit

some of the symmetries. Hence, an expression for the polarization states in terms

of spherical polar coordinates is needed. This expression can be obtained by using

a spherical coordinate system in the magnetic reference frame (with basis vectors

{b1,b2, ŵ}).

For a spherical coordinate system (R,θ ,ϕ) with axis that aligns with ŵ, the

propagation direction of an incoming wave k̂ in general is given by

k̂ = (sinθk̂ cosϕk̂, sinθk̂ sinϕk̂, cosθk̂), (2.102)

where cosθk̂ = k̂ · ŵ, and the coordinates θk̂, ϕk̂ explicitly show they are related to

the propagation direction. The polarization state has so far been calculated in the

propagation reference frame corresponding to its own wave. A series of rotation

transformations, i.e. the inverse of the one given in equation (2.71) and a second

rotation about ŵ, gives the vector in terms of the basis of the magnetic reference

frame. In the magnetic reference frame, it is simple to express in the spherical

coordinate system, i.e.

ê = ẽ1b1 + ẽ2b2 + ẽ3ŵ, (2.103)

where ẽi = ẽi(θk̂,ϕk̂) for i = 1,2,3. From the general form of the dielectric tensor

in equation (2.74), it is evident that the expression is invariant under rotation about

ŵ. Thus, by rotating k̂ about the ŵ axis, i.e. keeping θk̂ constant and changing ϕk̂,

the polarization state of the wave in unchanged, except in its projection along the
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corresponding axes perpendicular to ŵ, i.e.

ẽ1(θk̂,ϕk̂) = ẽ1(θk̂)cosϕk̂,

ẽ2(θk̂,ϕk̂) = ẽ2(θk̂)sinϕk̂. (2.104)

Thus, using the same spherical coordinate system but instead writing in terms of

the rotating reference frame basis vectors {br,bl, ŵ}, the polarization state vector is

given by

ê =
1√
2

ẽ1eiϕk̂br +
1√
2

ẽ2e−iϕk̂bl + ẽ3ŵ. (2.105)

The expression for ê′ in spherical coordinates in the rotating reference frame are

similar to equation (2.105), except with angles relating to its own wave propagation

direction i.e. θk̂′, ϕk̂′ .

The differential Thompson scattering cross-section can now be written as

dσs

dΩ
(k̂ → k̂′) = r2

0,s

∣∣∣∣1
2

ẽ′∗1 ẽ1ei(ϕk̂−ϕk̂′ )

(1−√
us)+iΓs

+ 1
2

ẽ′∗2 ẽ2e−i(ϕk̂−ϕk̂′ )

(1+
√

us)+iΓs
+

ẽ′∗3 ẽ3
1+iΓs

∣∣∣∣2 , (2.106)

where the denominators have been expanded fully with −νs/ω = Γ, and the depen-

dence of the components in θk̂ (or θk̂′) has been omitted for brevity. By integrating

over all of ϕk̂′ , i.e. the symmetry of the outgoing radiated wave, the cross-terms of

equation (2.106) vanish, leaving

∫
dϕk̂′

dσs

dΩ
= r2

0

[
1
4

|ẽ′1|2|ẽ1|2

(1−√
us)2 +Γ2

s
+

1
4

|ẽ′2|2|ẽ2|2

(1+
√

us)2 +Γ2
s
+

|ẽ′3|2|ẽ3|2

1+Γ2
s

]
. (2.107)

The integrations over all incident propagation direction angles, θk̂ and ϕk̂ gives the

Thompson scattering cross-section, which still depends on the angle of the outgoing

propagation direction with the magnetic field, as

σs(θk̂′)

σT
=

A1|ẽ′1|2

(1−√
us)2 +Γ2

s
+

A2|ẽ′2|2

(1+
√

us)2 +Γ2
s
+

A3|ẽ′3|2

1+Γ2
s
, (2.108)

where σT = (8π/3)r2
0 is the non-magnetised Thompson scattering cross-section (for
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the particular charge species), and

AI =
3
4

∫ +1

−1
d(cosθk̂)|ẽI(θk̂)|

2 (2.109)

for index I = 1,2,3.

The final step in computing the magnetised Thompson scattering cross-section

is in giving the explicit expression for the polarization normal modes in the rotating

reference frame. Starting from the propagation reference frame, as in equations

(2.81), and following the transformation procedure, the polarization normal modes

for a cold, mangetised, dielectric plasma are given by

ê+ =
C√

2

cosθk̂ −λ1 sinθk̂

−α

 ,

cosθk̂ −λ1 sinθk̂

+α

 ,
√

2
{

sinθk̂ +λ1 cosθk̂

} ,

ê− =
iC√

2

α cosθk̂ −λ2 sinθk̂

+1

 ,

α cosθk̂ −λ2 sinθk̂

−1

 ,
√

2
{

α sinθk̂ +λ2 cosθk̂

} .

(2.110)

Under the approximation of transverse polarization states, when the wave fre-

quency is much larger than the plasma frequency, i.e. vs ≪ 1, the components of the

polarization normal modes are simplified and satisfy completeness relations given

by the sum of polarization states, in particular

∑
j=+,−

|ẽ j;i|2 =
1
2
(1+ cos2

θk̂), ∑
j=+,−

|ẽ j;3|2 = sin2
θk̂, (2.111)

where i = 1,2 and ẽ j;i denotes the i-th component of a the j-polarization normal

mode. From the completeness relations, the AI satisfy

∑
j=+,−

A j
I = 1, (2.112)

where I = 1,2,3 and A j
i denotes the j-th polarization normal mode of the Ai as given

in equation (2.109). Hence, the non-magnetised Thompson scattering cross-section
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for unpolarized scattering of each charge species, σT, is recovered in the limiting

case vs ≪ 1.

In all, there are 4 polarization normal mode scattering cross-sections,

σ+→+, σ+→−,

σ−→+, σ−→−, (2.113)

which will be used in the radiation transport equations to obtain the radiation field

properties.

2.2.2 Radiative Transfer Solution

The steady state, polarized radiative transfer equation in the large Faraday depolar-

ization regime (which allows for the intensity to be written in terms of the normal

modes) is given by

k̂ ·∇x⃗I j(ν , k̂, x⃗) = ∑
i

∫
dΩ

′dσi→ j

dΩ
(k̂′ → k̂)Ii(ν , k̂′, x⃗)−κ j(ν , k̂)I j(ν , k̂, x⃗), (2.114)

where ∇x⃗ denotes the ∇ operator acting on the coordinate space x⃗ only,
∫

dΩ′ de-

notes the integration over all directions k̂′,

dσi→ j

dΩ
(k̂′ → k̂)

is the differential scattering cross-section for an incident beam with polarization

state i and propagation direction k̂′ scattered to an outgoing beam with polarization

state j with propagation direction k̂, and

κ j(ν , k̂) = ∑
i

∫
dΩ

′dσ j→i

dΩ′ (k̂ → k̂′).

Several different methods exist to solve the radiative transfer equations in gen-

eral (Meszaros, 1992), such as a transformation to a second-order differential equa-

tion, which is the so-called Feautrier method, the Monte Carlo method, and the

moments of intensity method. The ideal use cases for each method depend on the
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simplifications and symmetries in the problem to be solved. For the work of this

thesis, I use the moments of intensity method, which takes an integral of the radia-

tive transfer equation (2.114) over all the directions of the intensity (and its higher

moments). This method is suitable for transport through an optically thick medium,

where the radiation field can be approximated as in local thermal equilibrium with

the medium.

The zeroth moment of the intensity is the total radiation energy density, given

by

Ui =
∫

dν dΩ Ii(ν , k̂, x⃗). (2.115)

The first moment of the intensity can be understood from the definition (2.29) as the

radiation flux vector, given by

F⃗i =
∫

dν dΩ k̂ Ii(ν , k̂, x⃗). (2.116)

Finally, the second moment of the intensity is the radiation pressure tensor, given

by

Pi =
∫

dν dΩ k̂k̂ Ii(ν , k̂, x⃗). (2.117)

Hence, taking the zeroth moment of the equation (2.114) gives

∇x⃗ · F⃗j = ∑
i

[∫
dν dΩ dΩ

′ dσi→ j

dΩ
(k̂′ → k̂)Ii(k̂′)−

∫
dν dΩ κ j(k̂)I j(k̂)

]
, (2.118)

where the full dependencies of the terms in ν and x⃗ have been ommitted. This

equation can be simplified by expanding the κ j(k̂) term and using the forward-

backward symmetry of the differential scattering cross section, namely

dσi→ j

dΩ′ (k̂ → k̂′) =
dσ j→i

dΩ
(k̂′ → k̂), (2.119)
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to get

∇x⃗ · F⃗j = ∑
i

[∫
dν dΩ dΩ

′
{

dσi→ j

dΩ
(k̂′ → k̂)Ii(k̂′)−

dσi→ j

dΩ
(k̂′ → k̂)I j(k̂)

}]
.

(2.120)

Hence, the first and last term of the equation can be integrated with respect to dΩ

and dΩ′ respectively, and the polarization states summed over to give

∇x⃗ · F⃗j = σ̄+→ j

∫
dν dΩ(I+− I j)+ σ̄−→ j

∫
dν dΩ(I−− I j), (2.121)

where σ̄i→ j is the intensity mean scattering cross-section, given by

σ̄i→ j =

∫
dν dΩ σi→ j(Ω)(Ii − I j)∫

dν dΩ (Ii − I j)
. (2.122)

Finally, using detailed balance, i.e. σ̄i→ j = σ̄ j→i, equation (2.121) can be written as

∇x⃗ · F⃗± = σ̄+→−(U∓−U±). (2.123)

For taking the first moment of intensity of the equation (2.114), it is convenient

to first divide by κ j before integrating. This gives

∫
dν dΩ

k̂k̂
κ j(ν , k̂)

·∇x⃗I j(ν , k̂, x⃗) =−F⃗j, (2.124)

where the first term has vanished after integrating with respect to dΩ because it

is anti-symmetric in k̂ while the differential scattering cross-section has reflection

symmetry in k̂, i.e.

dσi→ j

dΩ
(k̂′ → k̂) =

dσi→ j

dΩ
(k̂′ →−k̂)

=⇒ κi(ν , k̂) = κi(ν ,−k̂). (2.125)

After projection onto a direction n̂, equation (2.124) can be simplified using the
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projected pressure mean scattering cross-section, given by

1
κ̄i

=

∫
dν dΩ

n̂·k̂k̂
κi(ν ,k̂)

·∇x⃗Ii∫
dν dΩ n̂ · k̂k̂ ·∇x⃗Ii

, (2.126)

to get the projected first moment of intensity of the radiative transfer equation (in a

direction n̂)

1
κ̄ j

n̂ · (∇x⃗ ·Pj) =−n̂ · F⃗j. (2.127)

The system of equations given by (2.123) and (2.127) is not closed. Taking

successive moments of the radiative transfer equation continues to introduce higher

moments of the intensity, so a closure condition is needed to relate the moments of

intensity to one another. The most relevant closure condition for an optically thick

medium comes from the approximation that the radiation field is in local thermal

equilibrium. Specifically, this means that the medium is homogeneous on a length

scale larger than the mean free path length of the light (given by ℓ∼ 1/κ̄i), i.e. the

light is scattered multiple times in a homogeneous finite element of the medium,

and thus the radiation field is isotropic on these length scales. Under local thermal

equilibrium, the moments of intensity satisfy

1
3

Ui Id = Pi, F⃗i = 0⃗, (2.128)

where Id is the isotropic tensor. This closure condition is referred to as the Edding-

ton closure condition.

Applying the Eddington closure condition to the system of equations gives the

closed system:

∇x⃗ · F⃗± = σ̄+→− (U∓−U±) ,

1
κ̄±

1
3

n̂ · Id ·∇x⃗U± =−n̂ · F⃗±, (2.129)

which once solved specifies the radiation energy density field. The flux is non-
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vanishing in these equations because it is implicit that ∇x⃗ measures the change

in each quantity over a large enough length scale, i.e. the quantity of interest is

the flux between homogeneous finite elements of the medium. To obtain a solution

requires the computation of the intensity mean scattering cross-section, σ̄+→− given

in equation (2.122), and the pressure mean scattering cross-section, κ̄ j given in

equation (2.126).

From the local thermal equilibrium assumption, the intensity in each homo-

geneous finite element is approximately that of a blackbody, i.e. I j(ν , k̂, x⃗) =

Bν(T (⃗x)), where Bν is the Planck function and T (⃗x) is the temperature field. Hence,

the intensity mean scattering cross-section can be approximated by the Planck

mean, given by

σ̄
P
i→ j =

∫
dν dΩ σi→ j(Ω)Bν

4π
∫

dν Bν

, (2.130)

and the pressure mean scattering cross-section can be approximated by the Rosse-

land mean, given by

1
κ̄R

i
=

∫
dν dΩ

n̂·k̂k̂
κi(ν ,k̂)

·∇x⃗T (⃗x)∂Bν

∂T∫
dν dΩ n̂ · k̂k̂ ·∇x⃗T (⃗x)∂Bν

∂T

. (2.131)

For the problem of radiative transfer in the optically thick accretion column,

the Rosseland mean scattering cross-section can be simplified further. This is done

by choosing a coordinate system to specify x⃗ = (x,y,z) so that the basis vector for

the z-direction aligns with the magnetic field lines, and by choosing the spherical

coordinate system to specify k̂ so that the spherical axis also aligns with the mag-

netic field lines. A projection n̂ parallel to the magnetic field lines gives

n̂ · k̂k̂ ·∇x⃗ = cosθ [cosϕ sinθ∂x + sinϕ sinθ∂y + cosθ∂z] (2.132)

as the operator acting on T (⃗x). This operator can be integrated with respect to dΩ,

resulting in the first two terms vanishing by anti-symmetry in domain of dϕ . Hence
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the parallel Rosseland mean scattering cross-section is given by

1
κ̄R

i,∥
=

∫
dν dµ

3
2

µ2

κi(ν ,µ)
∂Bν

∂T∫
dν

∂Bν

∂T

, (2.133)

where µ = cosθ , and the symmetry of κi in ϕ was used, i.e. κi(ν , k̂) = κi(ν ,µ).

Similarly, a projection n̂ perpendicular to the magnetic field lines, in particular

along the x-axis, gives

n̂ · k̂k̂ ·∇x⃗ = cos2
ϕ sin2

θ∂x + sinϕ cosϕ sin2
θ∂y + cosϕ sinθ cosθ∂z (2.134)

as the operator acting on T (⃗x). This operator can be integrated with respect to dΩ,

which results in the second term vanishing by anti-symmetry in the domain of dϕ

and the third term vanishing by anti-symmetry in the domain of dµ . Hence the

perpendicular Rosseland mean scattering cross-section is given by

1
κ̄R

i,⊥
=

∫
dν dΩ

3
2π

µ2
⊥

κi(ν ,µ)
∂Bν

∂T∫
dν

∂Bν

∂T

, (2.135)

where µ2
⊥ = cos2 ϕ(1 − µ2). By symmetry of κi in ϕ and that

∫
dϕ sin2

ϕ =∫
dϕ cos2 ϕ , the result is exactly the same for a projection in the y-axis. Hence,

the perpendicular Rosseland mean scattering cross-section is sufficient to specify

the system of radiative transfer equations under the Eddington closure condition.

In general, without further assumptions on the temperature field, the system of

radiative transfer equations with the Eddington closure condition can be written out

fully as

∇x⃗ · F⃗± = σ̄
P
+→−(U∓−U±),

1
κ̄R
±,∥

1
3

∂∥U± =−F±,∥,

1
κ̄R
±,⊥

1
3

∂⊥U± =−F±,⊥, (2.136)

where ∂∥ and ∂⊥ is the partial derivative parallel and perpendicular to the magnetic
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field lines respectively; F±,∥ and F±,⊥ is the flux vector projected parallel and per-

pendicular to the magnetic field lines respectively.



Chapter 3

Maximum Luminosity

The work presented in this chapter was also published in Brice et al. (2021).

There has been a resurgence of interest on the question of the maximum lumi-

nosity of an accreting NS due to the discovery of a new sub-population of accreting

NSs (Bachetti et al., 2014; Fürst et al., 2016; Israel et al., 2017b,a; Carpano et al.,

2018; Wilson-Hodge et al., 2018; Sathyaprakash et al., 2019; Rodrı́guez Castillo

et al., 2020) - persistent super-Eddington (> 1039erg s−1) accreting X-ray pulsars,

called Pulsating Ultra-Luminous X-ray sources (PULXs) or Ultra-luminous Pul-

sars (ULPs), which exceed the NS Eddington luminosity by at least an order of

magnitude. How accreting NSs are able to produce persistent super-Eddington lu-

minosities is still an open question (King et al., 2023). In this thesis, I consider the

scenario of accretion by NSs with magnetar-like strength magnetic fields (> 1013G

at the surface) 1, as a continuation of the models of magnetically funnelled accre-

tion.

Basko & Sunyaev (1976) were the first to provide a detailed calculation of

the maximum luminosity in the magnetically funnelled accretion model. These

authors were attempting to explain X-ray pulsars observed with luminosities of ∼

1The alternative scenario put forward by King et al. (2023) is an extension of the models of
black hole accretion to the super-Eddington accretion rates (Gladstone et al., 2009), in which the
persistent super-Eddington luminosities are only apparent to an observer due to geometric beaming
by optically thick outflows from the accretion disc. Evidence for this model in the context of black
hole accretors has recently been obtained from IXPE observations of Cyg X-3 (Veledina et al., 2023).
However, the model remains a qualitative description with only phenomonelological modelling of
the luminosity amplification (King, 2009). The quantification of the luminosity amplification is still
an open question.
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Figure 3.1: Reprint of Fig.1 from Basko & Sunyaev (1976), which shows the geometry of
the accretion flow in the cases: (a) a narrow wall surrounding the magnetic pole,
(b) a filled column above the cap. In both cases, a radiative shock is present
above the NS surface and a slowly sinking column of gas manifests below the
shock.

few×1038erg s−1, which are already above the NS Eddington luminosity. In their

model, the change in geometry of the accretion flow from the magnetic funnelling

(by a dipole magnetic field), and the presence of a radiative shock above the NS

surface were crucial to the increase in maximum luminosity above Eddington. In

particular, they argued that accreting material funnelled from a disc was confined

to a narrow wall surrounding the magnetic pole, rather than filling the entire space

above the pole.

Figure 3.1, which is a reprint from Basko & Sunyaev (1976), illustrates the

geometry of the flow. In both cases, the flow below the radiative shock is slowly

sinking and optically thick to the radiation. The geometry of the flow in the narrow

wall case means a lower optical depth perpendicular to the flow direction than in

the filled column case. This results in the perpendicular flux of escaping radiation

to be greater than the the locally Eddington limited parallel flux.

In the narrow wall case, Basko & Sunyaev (1976) obtained an analytical ex-
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pression of the maximum luminosity, given by

Lmax ≈ 8×1038
(

l0/d0

40

)(
κT

κ

)( M
M⊙

)
erg s−1, (3.1)

where l0 is the circumference of the footprint of the wall on the NS surface, and d0

is the width of the wall on the NS surface. Several simplifying assumptions were

used to obtain the result in equation (3.1). Namely, the equations of hydrodynaics

and radiation transport were solved only for the radial coordinate in a spherical

coordinate system, the changes in plasma opacities induced by the strong magnetic

field were neglected (although the authors noted the potential for a further increase

to the maximum luminosity by this effect), and the magnetic field topology was

assumed to be dipolar.

Later, Lyubarskii & Syunyaev (1988) reconsidered the narrow wall model and

provided an estimate of the height of the slowly sinking region across the width of

the wall. These authors argued that because the slowly sinking region was radiation

pressure supported, the rapid decrease in radiation pressure from the centre of the

region resulted in a drop in height. However, a detailed calculation of radiation

pressure across the width of the wall, in addition to an estimate of the escaping

radiation, was only provided later by Mushtukov et al. (2015). I give the details

of this model, with the inclusion of a more general magnetic field topology, in the

following section.

Mushtukov et al. (2015) computed the maximum luminosity, using the 2D

model of Lyubarskii & Syunyaev (1988) as a basis, including the magnetically in-

duced changes to the plasma opacities for the first time. The new maximum lumi-

nosity was high enough to explain the luminosity of M82 X-2 at ∼ 1040 erg s−1

(Bachetti et al., 2014) - the first PULX discovered - provided the presence of an

ultra-strong (1014G) magnetic field at the NS surface. Tsygankov et al. (2016) found

evidence for an ultra-strong dipole field from the transitions between states with

luminosities differing by a factor of 40. However, with the discovery NGC5907

ULX-1 - the brightest PULX known to date - the required dipole magnetic field

strength to explain a luminosity of ∼ 1041 erg s−1 would place this source deep in
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the propeller regime (Israel et al., 2017a), where the accretion process is thought to

be halted completely.

A resolution to this issue was proposed in the discovery paper by Israel et al.

(2017a), namely that higher order multipole moments of the magnetic field domi-

nate close to the surface while a weaker strength dipole component would avoid the

propeller regime. There is a precedent for this kind of magnetic field topology in

magnetars (e.g. Tiengo et al. 2013), isolated NSs (e.g. Borghese et al. 2015, 2017),

and millisecond pulsars (e.g. Bilous et al. 2019).

The contribution of this thesis is in constructing a model of the accretion col-

umn (the slowly sinking region constituent of the narrow wall) that relaxes the as-

sumption of a pure dipole magnetic field topology. The model of Mushtukov et al.

(2015) is used as a basis. In this particular model, the equations of hydrodynam-

ics and radiation transport are treated in a (flat) Cartesian coordinate system with

the curvature of the field lines given an approximate treatment in the change of the

width and arc-length of the wall with increasing height above the NS surface.

A more accurate treatment of the hydrodynamic equations using a curvilin-

ear coordinate system has been done for a pure dipole magnetic field topology by

Canalle et al. (2005) and a dipole plus octupole topology by Adams & Gregory

(2012). However, these authors treat the hydrodynamics in an accretion regime

where the infalling plasma is optically thin throughout the infall. 2 The plasma

velocity profile is solved while the radiation transport is approximated as a cooling

mechanism for the flow.

Separately, Becker & Wolff (2022) provide a model for the optically thick

(radiation supported) accretion column regime that solves for the plasma velocity

profile with the final aim of quantifying the emergent spectra from the accretion

column. These authors treat of the coupled equations of hydrodynaics and radiative

diffusion in 2D, which follows from the previous work by Becker & Wolff (2007)

and taking the model in Becker (1998) as a basis. However, the model gives an

inconsistent treatment of the optical depth of the accretion column, namely in the

2In contrast, for super-Eddington accretion rates, the infalling plasma is optically thick for almost
all of the infall (e.g. see §4.2.1 on the regime of validity).
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context of the radiative transfer equations by assuming the local thermal equilibrium

closure condition while neglecting the use of the Rosseland mean opacity.

In contrast, the work of this thesis accounts for the optical depth self-

consistently in the radiation transport equations. This allows for an accounting

of the effects of the magnetic field strength in the computation of the maximum

luminosity. On the other hand, the treatment of the plasma velocity profile is by

ansatz (with consideration of the qualitative results from Becker & Wolff 2007) for

simplicity. Combining the two approaches of using a curvilinear coordinate system

to account for the magnetic field topology, e.g. Canalle et al. (2005); Adams &

Gregory (2012), with the hydrodynamics in an optically thick radiation supported

accretion column, e.g. Becker & Wolff (2022), is beyond the scope of this thesis

and is left for a future work.

3.1 Accretion Column Model
In this section, I derive the equations of hydrodynamics and radiation diffusion

that are used in the calculation of the maximum luminosity, following the original

model developed by Basko & Sunyaev (1976), although the derivation more closely

follows the work of Mushtukov et al. (2015) by solving in 2D. My contribution is

in the calculation of the accretion column geometry for multipolar magnetic field

topologies.

For the equations, a flat Cartesian coordinate system is used with coordinates

(x,h), where the h-axis is along the magnetic field lines, x = 0 is at the centre of the

accretion column, and h= 0 is at the NS surface. The curvature of the magnetic field

lines is neglected in the coordinates, i.e. the metric is approximated as isotropic,

because the accretion column is local to the magnetic poles, where the curvature

is not large. 3 However, the effect of the curvature of the magnetic field lines on

the plasma density profile and accretion column geometry is taken into account. In

particular, the corresponding changes for a multipolar magnetic field topology are

calculated.

3The effects of the curvature were found to still be as important as the radiative cooling and
gravity in the momentum equations for the hydrodynamics (Canalle et al., 2005).
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The accretion column geometry is specified by H for the maximum height of

the radiative shock, d0 for the width of the accretion column base, Hx for the height

of the shock at width x along the base, and dh for the width of the sinking region at

height h above the surface. Figure 3.2 shows a cross-section of the accretion column

with the geometric quantities labelled. In addition, the footprint of the accretion

column on the surface is an annulus 4 with arc length l0 and width d0 (see figure

3.1), where l0 and d0 are determined by the specifics of the disc-magnetosphere

interaction and the magnetic field configuration (detailed later). Finally, the total

area of the accretion column base is given by SD = l0d0.

In the accretion column (slowly sinking region), the plasma sinks to the NS

surface with a velocity much smaller than the free-fall velocity and liberates its

gravitational potential energy locally as X-ray radiation. The flow is approximated

as a steady-state flow, with velocity directed along the magnetic field lines only and

no momentum transport perpendicular to the magnetic field lines. Further, the fluid

pressure is assumed to be negligible compared to the radiation pressure. Follow-

ing Mushtukov et al. (2015), the equations are simplified by assuming the density

and velocity profiles are independent of x, and coincide with the profiles at the cen-

tre of the column. 5 Finally, the energy diffusion is assumed to be mediated by

the radiation flux between fluid elements and the radiation field is in local thermal

equilibrium with the fluid.

4This is only applicable for magnetic field configurations in which the magnetic field is suffi-
ciently strong to contain the accretion flow everywhere.

5This assumption is not physically motivated in the modelling, because the deceleration from
free-fall velocity occurs at the radiatiative shock. A self-consistent velocity and density profile does
depend on x, e.g. because of the dependence of the shock height with x when following the pre-
scription of the velocity profile given here. The more accurate computation of the hydrodynamical
quantities is beyond the scope of this analysis (of the maximum luminosity) and I leave it as future
work.
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Figure 3.2: A diagram of the cross-section of the sinking region in the accretion column.
The red lines show the location of the radiation shock. The blue-dashed lines
show the magnetic field lines that confine the accretion flow. The blue arrow
indicates the direction of the magnetic field and the black arrows indicate the
direction of the accretion flow. The maximum shock height is labelled H and
half of the column base width is labelled d0/2. For a given x, the coordinates
of the shock boundary in Cartesian coordinates are (x,Hx). Alternatively for a
given y = h, the coordinates of the shock boundary in Cartesian coordinates are
(dh,h). Reprinted from Brice et al. (2021).

Accordingly, the simplified equations of hydrodynamics are given by

ρv =
Ṁ

2SD
, (3.2)

∂Prad

∂h
=−ρ

GM
(R+h)2 , (3.3)

∂F∥
∂h

+
∂F⊥
∂x

= 0, (3.4)

where ρ is the plasma density; v is plasma velocity; Ṁ is the mass accretion rate;

Prad is the radiation pressure, which is isotropic due to the local thermal equilibrium

assumption; M, R are the mass and radius of the NS respectively; F∥, F⊥ is the
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parallel and perpendicular radiation flux respectively, which are obtained from the

first moment of the radiative transfer equation and given by

F∥ =− c
κ̄R
∥ ρ

∂Prad

∂h
, (3.5)

F⊥ =− c
κ̄R
⊥ρ

∂Prad

∂x
, (3.6)

where κ̄R
∥ , κ̄R

⊥ are the angle and energy averaged Rosseland mean opacities in the

direction parallel and perpedicular to the magnetic field lines respectively.

The parallel radiative flux in hydrostatic equilibrium is immediately obtainable

from equations (3.3) and (3.5) together, namely

F∥(x,h) =
c

κ∥

GM
(R+h)2 , (3.7)

which is consistent with the definition of the local Eddington flux. The perpendic-

ular radiative flux is obtained by integrating the energy balance equation (3.4) with

the boundary conditions

F⊥(h)|x=0 = 0, F⊥(h)|x=dh/2 = F⊥,esc(h), (3.8)

and applying the approximation ∂hF∥ is constant in x, which gives

F⊥ = F⊥,esc(h)
2x
dh

. (3.9)

Hence, the expressions for the radiation pressure are obtained by integrating

the partial differential equations (3.5) and (3.6) with the boundary conditions

Prad,∥(x)|h=Hx =
2
3

F∥(x,Hx)

c
,

Prad,⊥(h)|x=dh/2 =
2
3

F⊥,esc(h)
c

, (3.10)

which come from the assumption of negligible radiation flux entering the accretion

column, i.e. for the boundary points, the moments of intensity are only integrated
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over a hemisphere. This gives

Prad,∥(x,h) =
∫ Hx

h
ρ

GM
(R+h)2 dy+

2
3

F∥(Hx)

c
, (3.11)

and

Prad,⊥(x,h) =
F⊥,esc(h)

c

[
2
dh

∫ dh/2

x
ρκ⊥zdz+

2
3

]
, (3.12)

which are non-linear integral equations due to the dependence of the opacity terms,

κ∥ and κ⊥, on the temperature.

3.1.1 Density profile

The equations for the radiative pressure (3.11) and (3.12) depend on the plasma

density, which is obtained from the mass continuity equation (2.15) once the veloc-

ity profile is known. However, the velocity profile is undetermined in the simplified

equations of hydrodynamics used to model the accretion column. Instead, follow-

ing Mushtukov et al. (2015), a prescription is given, specifically the velocity profile

is approximated by a power law in height:

v(h) =
vff

7

(
h
H

)ξ

, (3.13)

where the condition at the shock boundary is a deceleration from the free fall veloc-

ity, vff, to vff/7, and in the later analyses ξ = 1 is used a fiducial value. By the mass

continuty equation, the density profile is given by

ρ(h) =
Ṁ

2SD

(
GM
R

)− 1
2
(

49
2

) 1
2
(

1+
H
R

) 1
2
(

H
R

)ξ ( h
R

)−ξ

. (3.14)

The velocity vanishes at the NS surface, which results in an infinite density. Thus,

this prescription is inadequate at close distances to the surface. In particular, at

some point, the gas pressure becomes dominant over the radiation pressure. For

the purposes of calculating the luminosity, the lowest point above the surface can

be taken as the height where radiation pressure equals the gas pressure, since the
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contribution to the total escaping flux from lower heights becomes negligible.

3.1.2 Accretion column geometry

Expressions for the plasma density through equation (2.15) and the radiation pres-

sure in equations (3.11) and (3.12) depend on the accretion column geometry, in

particular the quantities SD, Hx, and dh. In turn, since the accretion flow is chan-

nelled by the magnetic field lines, the accretion column geometry depends on the

magnetic field topology close to the NS surface and the specific processes of the

material loading from the disc onto the magnetic field lines at the magnetosphere,

which I refer to in the following as the disc-magnetosphere interaction model.

The simplest disc-magnetosphere interaction model by Ghosh & Lamb (1978)

proposes that the disc is not sharply truncated at the magnetosphere. Instead, due

to magnetic turbulence, the disc penetrates into the magnetosphere resulting in a

boundary region of finite width δ , whereupon the material is loaded onto the mag-

netic field lines and channelled to the magnetic poles. A diagram of the model is

shown in figure 3.3.

Ghosh & Lamb (1978) give δ ∼Hm, where Hm is the height of a thin Shakura &

Sunyaev (1973) disc at the magnetosphere. This is the prescription used by Mush-

tukov et al. (2015) in their calculations of the maximum luminosity. However, for

much of the model parameter space considered in this thesis (as is shown later in

Fig. 3.14), the Shakura & Sunyaev (1973) disc is geometrically thick (Hm ∼ Rm)

and the prescription δ ∼ Hm gives a boundary region width comparable to the mag-

netospheric radius. Such a disc-magnetosphere interaction model is unlikely to be

physically realised because the assumptions made for the physical mechanism are

not valid on these length scales.

To account for the geometrically thick disc without calculating the boundary

region width self-consistently (which is beyond the scope of the work presented

here), I introduced a parameterised upper limit to the boundary region width (Brice

et al., 2021). Specifically, the boundary region width is limited so that δ < ζmaxRm,

where ζmax is the parameter in question. The effects of changing ζmax to the ac-

cretion column geometry and maximum luminosity were studied in detail in Brice
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Figure 3.3: A cross-section plot of the magnetic field lines. The magnetic field consists of
a dipole component and an octupole component with Γ = 3. The outer solid
blue lines show the magnetic field lines that reach out to the magnetospheric
radius. The inner purple solid lines show the magnetic field lines that reach to
the inner radius of the boundary region. The red segments in between represent
the disc that enters the boundary region. Reprinted from Brice et al. (2021)

et al. (2021) and is summarised in a later section.

After specifying the disc-magnetosphere interaction model, the accretion col-

umn geometry can be calculated by following the magnetic field lines from the

outer and inner edge of the boundary region to the NS surface. The footprint of

the magnetic field lines on the surface gives the accretion column base width, d0,

and the arc-length around the magnetic pole, l0. The topology of the magnetic field

lines close to the surface, i.e. 0 ≤ h ≤ R, determines the expansion of the width and

arc-length above the surface. For example, in the case of a pure dipole magnetic

field, the accretion column width and the arc-length at height h above the surface

are given by

d = d0

(
1+

h
R

)3/2

, l = l0

(
1+

h
R

)3/2

(3.15)

respectively (Basko & Sunyaev, 1976; Mushtukov et al., 2015). In the case of a

multipolar magnetic field, a numerical computation is required to obtain the appro-
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priate indicies, which for a larger Γ differs more from the pure dipole case. Figure

3.4 shows examples for various magnetic field topologies of the numerically com-

puted relationship between the accretion column dimensions and the height above

the NS surface, which give the indicies α and β for l and d respectively. For these

cases, the magnetic field topology is axisymmetric, thus the indicies satisfy α = β .

In general, the total surface area at a height h above the surface is given simply by

SD = l0d0

(
1+

h
R

)α+β

. (3.16)

3.1.3 Scattering opacity

The radiation pressure equations (3.11) and (3.12) depend on the Rosseland mean

opacities κ̄R
∥ and κ̄R

⊥. In a strongly mangetised plasma, and assuming large Faraday

depolarization, the radiation intensity is characterised by two normal modes: the

ordinary (O) and extraordinary (X) mode, which have different scattering opacities

that depend on the temperature and magnetic field strength. In this calculation of

radiation field, the two normal mode treatment is approximated by neglecting mode

exchange from scattering - treated by the first of equations (2.136). Instead, the in-

tensity is assumed to be in a fixed ratio throughout the accretion column, namely a

fraction f of the total radiation is in the X-mode. Hence, the Rosseland mean opac-

ities for the total radiation field is obtained from summing the last two of equations

(2.136), which gives

1
κ̄R =

f
κ̄R
−
+

1− f
κ̄R
+

(3.17)

for each direction ∥, ⊥.

In principle, the equation of mode exchange from scattering can be used to

calculate the coupled radiation fields and obtain the polarization degree, f , of the

accretion column self-consistently. However, this would require changes to the

computation scheme, which is beyond the scope of this study and would obfuscate

the comparisons with the previous work of Mushtukov et al. (2015). For this rea-
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Figure 3.4: Plots of the (normalised) accretion column dimensions, l/l0 and d/d0, with re-
spect to the height above the NS surface h. The black line in each plot shows
the normalised dimensions in the case of a pure dipole magnetic field topol-
ogy. The blue lines, from bottom to top in each plot, show the normalised
dimensions in the case of a multipolar magnetic field comprised of a dipole
component and octupole component with Γ = 1, 3, 10 respectively. Reprinted
from Brice et al. (2021).
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son, the approximate treatment of fixed polarization fraction was chosen. In §3.2.2,

I discuss how a variation in the X-mode fraction affects the accretion column prop-

erties.

As previously mentioned, the Rosseland mean opacities κ̄R
∥ and κ̄R

⊥ depend on

the temperature. Because the accretion column is optically thick, the assumption of

local thermal equilibrium is used. In this case, the radiation pressure is related to

the temperature by

Prad ≈
u
3
≈ aT 4

3
, (3.18)

where a is the radiation constant. This means that the equations (3.11) and (3.12)

are implicit equations of the radiation pressure, which need an iterative computation

to get a convergent solution. This is given in detail in §3.1.5.

Each step of the iterative computation involves a calculation of the Rosseland

mean scattering cross-section, which is determined from the differential scattering

cross-section. Mushtukov et al. (2015) use the magnetic Compton differential scat-

tering cross-section to include the effects of higher cyclotron resonances (Harding

& Lai, 2006). Alternatively, I use the magnetic Thompson differential scattering

cross-section, neglecting both ion and vacuum contributions for simplicity as a first

step (Brice et al., 2021), which can be easily included in future work. There is some

loss in accuracy from neglecting the higher cyclotron resonances, although this is

mitigated by the low number of energetic photons that would be scattered above

the fundamental resonance for the magnetic field strengths of interest in the PULX

models. In addition, the energy redistribution in the Compton differential scattering

cross-section are neglected anyway by assumption of local thermal equilibrium for

the radiation field.

3.1.4 Model estimates

An estimate of the radiation pressure, shape, and luminosity of an accretion col-

umn can be made for a sinking region with constant density profile ρ(h) = ρ , and

constant opacities κ̄R
∥ , κ̄R

⊥. In this case, the radiation pressure equations (3.11) and
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(3.12) can be integrated analytically to give

Prad,∥(x,h) = ρ
GM
R

[
Hx/R−h/R

(1+h/R)(1+Hx/R)
+

2
3

1
ρκ̄R

∥ R
1

(1+Hx/R)2

]
(3.19)

and

Prad,⊥(x,h) =
F⊥,esc(h)

c

[
ρκ̄

R
⊥dh/4

(
1− (2x/dh)

2)+2/3
]
, (3.20)

where only the functions Hx and dh are left to be determined. In equations (3.19)

and (3.6), the vertical optical depth of the accretion column is given by ρRκ̄R
∥ , while

the horizontal optical depth of the accretion column is given by ρκ̄R
⊥dh/2.

The expression for the normalized escaping flux can be obtained from

Prad,∥(x = 0,h) = Prad,⊥(x = 0,h). For h = 0, this gives

F⊥,esc(h = 0)
c

= ρ
GM
R

 H/R
(1+H/R) +

2
3

1
ρκ̄R

∥ R
1

(1+H/R)2

ρκ̄R
⊥dh/4+2/3

 . (3.21)

As done by Mushtukov et al. (2015), assuming Hx/R ≪ 1 gives the relation

Hx/R ∝ −x2. (3.22)

Thus, the shape of the shock in this simplified case is approximately quadratic near

the base of the column and becoming less so near the top.

The luminosity of the column is obtained by integrating the escaping flux over

the surface of the column, which gives

L = 4l0
∫ H

0

(
1+

h
R

)β

F⊥,esc(h)dh, (3.23)

which is not integrable analytically due to the dependence of dh on h. However, a

lower bound for the luminosity can be obtained by setting dh = d, i.e. approximating

the horizontal optical depth of the accretion column to be its maximum at all heights.

Because the accretion column is optically thick, i.e. ρκ⊥dh ≫ 1 and ρκ∥R≫ 1, then
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the lower bound luminosity is approximately given by

L ≈ 4
π

(
l0
d0

)(
κ⊥
κ∥

)
f (H/R)LEdd, (3.24)

where

f (H/R) =
1

1+H/R
[(1+H/R) log(1+H/R)−H/R] . (3.25)

This result was obtained previously by Mushtukov et al. (2015). However, in this

work, I have recovered the result for any magnetic field configuration that satisfies

α = β , which is true for any axially symmetric magnetic fields. Equation (3.24)

gives an approximate relation between the luminosity and the accretion column base

geometry, which was noted by Basko & Sunyaev (1975). In addition, as previously

discussed by Mushtukov et al. (2015), the function f (H/R) grows only logarith-

mically for large H/R, which sets a natural scale for the maximum luminosity for

when H/R = 1, i.e. the maximum luminosity is defined as the accretion luminosity

for which H = R.

3.1.5 Computation scheme

A particular accretion column model is specified by its input parameters, which are

the NS mass M, the NS radius R, the accretion luminosity Lacc = GMṀ/R, the

velocity power-law index ξ , the polarization degree f , the disc boundary region

width upper bound ζmax, and the strength of the magnetic field components at the

NS surface.

The output of the computation for a particular model is a radiation pressure

profile and the accretion column geometry, in particular the accretion column height

H. If H < R, the accretion luminosity parameter for the model is considered below

the maximum luminosity, conversely if H > R, the accretion luminosity parameter

is considered above the maximum luminosity.

The procedure for computing a radiation pressure profile for the accretion col-

umn model is to numerically integrate the radiation pressure equations (3.11) and
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(3.12). However, because of the dependence of the opacity terms, κ̄R
∥ and κ̄R

⊥, on

the temperature - which itself depends on Prad through equation (3.18) - the numer-

ical integration must be done iteratively until convergence of the radiation pressure

profile. The initial temperature distribution is taken from the estimated model, as

in §3.1.4, with a guess height H ′ and with the opacity set to the (unmagnetised)

Thompson scattering opacity.

Convergence of the radiation pressure profile is checked by proxy: the lu-

minosity given by equation (3.23) is within 1 per cent of the previous calculated

luminosity. The calculated luminosity is not checked against the accretion luminos-

ity because these are different unless the guess height is the height of the accretion

column. An outer iteration on the guess height H ′ is needed until the (converged)

calculated luminosity matches the accretion luminosity input parameter.

3.2 Numerical Results

3.2.1 Effects of the magnetic field strength and topology

In this section, I describe how changes in the magnetic field strength and topol-

ogy affect the accretion column properties, due to the changes they produce in the

opacities. The model has a magnetic field configuration made up of two compo-

nents: a dipole component and higher-degree multipole component. As a first step

for this work, I examine only magnetic field configurations that consist of a dipole

component plus an octupole component. The octupole degree was chosen over the

quadrupole degree to better localize the change to the magnetic field topology to

the NS surface and avoid potential problems with null points of the magnetic field

above the magnetic poles. In principle, other multipole degrees can be used in the

model.

To understand the effects of a change in the magnetic field strength, I computed

a series of models with different octupole component strengths while keeping other

model input parameters fixed. The effects due to an induced change in the accretion

column geometry are separated from the induced change in opacity by first using

only the accretion column base quantities l0 and d0 from a pure dipole magnetic field
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topology (irrespective of the contribution from the octupole component). For these

models, the curvature of the magnetic field lines is also neglected, i.e. α = β = 0.

The numerical results for two sets of models, which correspond to different val-

ues used for the accretion luminosity parameter and the dipole component strength,

are shown in black in figures 3.5 and 3.6. In particular, figure 3.5 shows the shock

height above the surface as a function of the depth, i.e. half of the vertical cross-

section of the accretion column. Figure 3.6 shows the profiles (in height above the

surface) of the central internal temperature, the effective temperature, and the per-

pendicular mean opacity in the accretion column. These properties were chosen in

particular for easy comparison with Mushtukov et al. (2015), in which the magnetic

field topology was assumed to be a pure dipole.

For a more self-consistent treatment of the effects of a multipolar magnetic

field, l0 and d0 must be calculated according to the magnetic field topology. In

general, the base size and depth of the accretion column differs from those of a

pure dipole topology (as previously discussed in §3.1.2). This difference affects

the plasma density, the internal temperature, the escaping flux, and the maximum

shock height. I computed a second set of models to study the effects from a change

in the accretion column base size and depth (using the approach detailed in §3.1.2).

For these models, the curvature of the magnetic field lines is taken into account

through the parameters α and β . The numerical results are shown by the red lines

in figures 3.5 and 3.6, alongside the results for models with fixed accretion column

base geometry.

Comparison of the computed maximum shock height H with those from Mush-

tukov et al. (2015) show that the values of H presented in this work are smaller. This

may be due to a difference in the calculation of the opacity (see §3.1.3). However,

the trends in the internal temperature profile, the effective temperature profile, and

the opacity profile of this model are similar to the trends shown by Mushtukov et al.

(2015), even when accounting for the magnetic field topology in the accretion col-

umn geometry. This indicates that the introduction of multipole components affects

the quantitative details of the results without introducing new physical effects from
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(a)

(b)

Figure 3.5: The normalised shock height of the accretion column as a function of the nor-
malised accretion column width. In (a), the models used L39 = 1.0. The black
lines show results for models with fixed accretion column base geometry vari-
ables l0 = 7.6×105cm and d0 = 1.4×104cm, which corresponds to a surface
dipole field strength of 3×1012G. In (b), the models used L39 = 10.0 and the
black lines show results for models with fixed accretion column base geome-
try variables l0 = 4.7×105cm, and d0 = 4.5×104cm, which corresponds to a
surface dipole field strength of 5×1013G. For both subfigures, the other model
parameters used were ξ = 1 and f = 1.0. The red lines show results for mod-
els with accretion column base geometry variables that are consistent with the
corresponding magnetic field topology.
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(a) (b)

Figure 3.6: Values for various properties of the accretion column as a function of nor-
malised height above the NS surface. The set of models in each subfigure
correspond to the models in figure 3.5. From top to bottom, the plots show
the internal (x = 0) temperature profile, the effective temperature of the emitted
radiation, and the perpendicular mean opacity κ̄R

⊥ (see text for details).

the geometric compression of the accretion column.

The first observation from figure 3.5 is that the shape of the shock is not

quadratic in x 6 but instead the accretion column is quite narrow. The height of the

shock above the surface drops to practically zero at a certain width x̃, which I refer to

as the sinking region width. This is the width at which the radiation pressure at the

base becomes equal to the Eddington flux pressure, i.e. Prad(x̃,h0) =
2
3FEdd(h0)/c.

For x > x̃, the radiation pressure at the base is smaller than the Eddington flux pres-

sure and no shock above the surface can be supported.

6This was noted by Mushtukov et al. (2015).
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Figure 3.7: The normalised shock height of the accretion column as a function of the nor-
malised accretion column width. The black solid line, blue-dotted line, and
orange dot-dashed line correspond to models with ξ = 1.0, 0.2, 2.0 respec-
tively. The models used L39 = 1.0, Bdip = 3×1012G and Boct = 0, f = 1.0.

The radiation pressure at coordinates (x,h0), i.e. some distance along the ac-

cretion column base, determines the height of the shock at x, Hx, by equation (3.11).

Thus, the radiation pressure profile along the column base determines the shape of

the shock. Prad(x,h0) is determined by equation (3.12), in which the function F⊥

was assumed to be a linear function in x. A different choice for F⊥ gives a different

shock shape.

Because F⊥ depends on the density profile, one way to modify this function

is by changing the velocity index ξ . Figure 3.7 shows a series of models with

varying velocity index. As expected, the shallow velocity profile results in a similar

shock shape to the analytical model, which predicts a quadratic shock shape from a

constant density profile. On the other hand, when a velocity index ξ > 1 is used, the

sinking region becomes narrower. This is a consequence of the greater deceleration

of the particles in the lower layers of the accretion column. The upshot is that the
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radiation energy released by the particles is concentrated in the lower layers, which

results in a lower shock height.

Figure 3.5 shows that the maximum shock height H decreases for an increasing

surface magnetic field strength. By reversing the argument, for a mixed maximum

shock height, a higher luminosity can be obtained by increasing the strength of the

multipolar component. In turn, this reduces the X-mode opacity, which allows for

radiation to more readily escape from the sides of the accretion column. As a result,

a smaller maximum shock height is sustained from the vertical radiation pressure.

The internal central radiation temperature profile is also anti-correlated with

the magnetic field strength (e.g. see the top plots of figure 3.6). This is because

models with a stronger magnetic field have a lower H, which means the accreting

material is decelerated closer to the NS surface by the shock. Hence, by conti-

nuity, the density in the sinking region is lower, and in turn the internal radiation

temperature is lower.

The effective temperature, Teff, obtained from the escaping flux using F⊥,esc =

σT 4
eff, is shown in figure 3.6. As already noted by Mushtukov et al. (2015), this

quantity does not reflect the radiation temperature directly. Instead, Teff increases

with increasing height above the NS surface and drops near the top of the accre-

tion column. At the bottom of the accretion column, both the density, ρ , and the

geometrical thickness of the sinking region, dh, are large, which results in a large

horizontal optical depth and a smaller escaping flux in that direction. Higher up, the

accretion column becomes smaller in size, and the horizontal layers have a lower

optical depth. The optical depth reduces more than the central temperature. This is

why the effective temperature generally increases with height in the deeper regions.

In fact, the peak of the effective temperature profile identifies the altitude at which

the escaping flux is greatest, and in turn this depends on the prescription for the

density profile. For the accretion columns with velocity index ξ = 1, the effective

temperature peak is close to the maximum shock height, where the optical depth is

lower. For ξ < 1, the peak in Teff is at a lower altitude than when ξ = 1.

The perpendicular Rosseland mean opacity κ̄R
⊥, (shown in figure 3.6) is cal-
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culated at the central plane of the sinking region, x = 0. This quantity depends on

both the total magnetic field strength in the accretion column and the temperature.

In general, a higher magnetic field strength or lower temperature reduces the perpen-

dicular Rosseland mean opacity. However, it is not a monotonic increasing function

of temperature or magnetic field strength. In fact, it is largest when the photons in

the sinking region have energies close to the electron cyclotron resonance energy.

Comparing the models with fixed column base geometry (the black lines in

figures 3.5 and 3.6) and models including the curvature calculation (the red lines

in figures 3.5 and 3.6), it is evident that there are no simple trends, which explain

the changes from the black cures to the red ones. This is because the change in the

accretion column base geometry (which decreases when the strength of the multi-

pole component is increased) results in a geometric compression of the accretion

column into a smaller area, whereas the change in the curvature of the mangetic

field lines results in an increase of the accretion column area higher up in the ac-

cretion column. For each model, the overall outcome of these competing effects is

different. However, the change in the accretion column properties is modest and

does not affect the qualitative behaviour discussed so far.

The effect of including the column geometry is easier to explain in the models

with multipolar magnetic fields, shown in figures 3.5(b) and 3.6(b), which are low

enough in height that the curvature does not make a substantial difference and the

main effect is the reduction in the base size. For these models (in red), the internal

temperature at a given height in the sinking region is increased compared with the

fixed base geometry models (in black), since the same amount of energy is produced

in a smaller area, and the perpendicular mean opacity rises following this increase in

the internal temperature. In addition, the density of the sinking region is increased,

which makes it more difficult for the radiation to escape from the sinking region,

hence decreasing the effective temperature.

On the other hand, the effect of the curvature alone can be understood by com-

paring the purely dipole models with Bdip = 5× 1013G [figures 3.5(a) and 3.6(b)].

In this case, the accretion column base area is unchanged, since there are no mul-
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tipolar magnetic fields, and the density is sufficiently high that the change in area

due to the curvature is a significant factor. For this model (in red), the density of

the accreting plasma is lower near the top compared with the fixed base geometry

model (in black), and this subsequently decreases the perpendicular mean opacity,

allowing for more radiation to escape. Hence, a lower maximum shock height is

sustained. At lower field strengths, [as for Bdip = 3× 1012G, figures 3.5(a) and

3.6(b)], the density inside the column is not high enough, hence this effect is not

substantial.

3.2.2 Mixed polarization

So far, only the models with polarization degree f = 1 have been considered. How-

ever, a more complete description of the radiation field in the accretion column

includes a mix of X-mode and O-mode photons as well as scattering between the

normal modes. Solving this problem self-consistently requires a complete angle

and frequency-dependent solution of the radiative transfer problem, which is not

the purpose of this work. Instead, to understand whether super-Eddington emis-

sion is possible when there is a substantial fraction of O-mode photons, I compute

a series of models with various fixed polarization degree f throughout the entire

accretion column.

In general and as expected, when a fixed fraction of O-mode photons is in-

troduced (and all other model parameters are held constant in the comparison), the

total opacity increases (as shown in the bottom plot of figure 3.9). However, even

with a significant fraction of O-mode photons ( f = 0.3), the average perpendicular

mean opacity is still well below the Thomson scattering opacity in the cases con-

sidered here. Solutions with a luminosity well above the Eddington limit are still

possible but a higher shock height H is sustained because the opacity is greater.

This results in a higher internal temperature and lower effective temperature. A set

of fixed X-mode fractions, f = 1,0.7,0.3, was used to illustrate the effect of chang-

ing polarization degree. Figure 3.8 shows the accretion column shock shape and

figure 3.9 shows the internal temperature, effective temperature, and perpendicular

effective opacity profiles respectively for the corresponding model.
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Figure 3.8: The normalised shock height of the accretion column as a function of the nor-
malised accretion column width. From top to bottom, the curves correspond to
different values of the polarization degree: f = 0.3 (orange dot-dashed line),
f = 0.7 (blue dot-dashed line), f = 1.0 (the black solid line). The models used
L39 = 1.0, Bdip = 3×1012G, Boct = 3×1013G, and ξ = 1.0.

For low magnetic field strengths (B < 1013G), the opacity decreases when a

fraction of O-mode photons is included. This occurs when a large portion of the

photons have energy close to or higher than the electron cyclotron resonance energy,

Ecycl ≈ 11.6 B12 keV. However, this work focuses on modelling an environment

with high magnetic field strengths (B > 1013G), in which case most photons have

energies well below Ecycl.

3.2.3 Disc-magnetosphere interaction

In these models, the magnetospheric radius depends on a dimensionless parameter

Λ, and the width of the boundary region depends on the prescription for ζ (see

section §3.1.2 for details). However, both the value of Λ and the expression for ζ

are poorly known, especially in the novel context of super-Eddington mass transfer

rates. Thus, to test the robustness of the model results, I examined the response of
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Figure 3.9: Values for various properties of the accretion column as a function of the nor-
malised height above the NS surface. The set of models correspond to the set in
figure 3.8. From top to bottom, the plots show the central internal temperature,
the effective temperature profile of the emitting radiation, and the perpendicu-
lar mean opacity, respectively.
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the accretion column base geometry quantities, l0 and d0, to changes in Λ and ζ .

For the models presented prviously, the canonical disc accretion value of Λ =

0.5 (Ghosh & Lamb, 1978) was used. However, the exact value of Λ depends

on the extent to which the NS magnetic fields threads the accretion disc (Wang,

1987) and for example Dall’Osso et al. (2016) suggest Λ in the range 0.3−1.0 as a

conservative estimate of the possible values. By varying the value of Λ across this

range, l0 changes by less than an order of magnitude. Since L ∝ l0 and ρ ∝ S−1
D , the

accretion column properties are not very sensitive to different values of Λ.

With regards to ζ , the boundary region width was assumed to be proportional

to the disc height, as done by Mushtukov et al. (2015). According to this prescrip-

tion, ζ is given by

ζ =
κT

c
3

8π

Ṁ
Rm

≈ 0.2L9/7
39 B−4/7

d,12 . (3.26)

However, since many of the models studied in this work have a large accretion

luminosity (with L39 ∼ 10) and low dipole magnetic field strengths (with Bd,12 ∼ 1),

the value of ζ can be close to or in excess of unity. These values of ζ correspond

to a boundary region width of the size of the entire magnetosphere, which is a

physically unlikely scenario. Thus, I introduced a maximum value of ζ by hand,

i.e. ζmax, which constrains d0 as a result. For ζ < ζmax, the value of ζ is governed

by equation (3.26).

Alternatively, a self-consistent approach is to introduce a new prescription for

ζ based on some set of physical principles, such as was done by Li & Wang (1999).

However, this would require extending disc-magnetosphere interaction models to

the case of a geometrically thick disc, which is not the purpose of this work. Hence,

as a substitute to considering many different prescriptions, I tested the response

of d0 to variations in ζ , without assuming a particular prescription as in equation

(3.26). To do this, d0 is calculated for various ζ in the range from 0.0−1.0. In each

case, the accretion luminosity and magnetic configuration are fixed. The models

had fixed input parameters: L39 = 1.0, Bd,12 = 3, Boct = 0. The results are shown in

figure 3.10.
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Figure 3.10: The accretion column base width, d0, in units of 104cm as a function of ζ .
The lines correspond to different magnetic field configurations, as specified in
the legend. The model used L39 = 1.0.

Across the range of ζ , the change in d0 can be an order of mangitude or more.

Since F⊥,esc ∝ d−1
0 (see §3.1.4), the luminosity of the accretion column is sensitive

to the changes in ζ . Hence, different prescriptions for ζ can lead to dissimilar re-

sults for the accretion column properties, in the particular the maximum luminosity.

3.2.4 Maximum luminosity

The central aim of this work is to calculate the maximum luminosity from a highly

magnetised, accreting NS, given a set of assumptions (e.g. the magnetic field con-

figuration). In order to calculate the maximum luminosity that can be sustained

in the accretion column, the maximum accretion luminosity, Lacc, is computed for

a model while fixing the maximum shock height H = R. In fact, at higher accre-

tion column heights, the luminosity still increases but the growth is logarithmic (see

§3.1.4) and the curvature of the magnetic field lines affects the vertical pressure bal-

ance equation (3.3), making the approximations unsuitable. Here, the calculation
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for the maximum luminosity is repeated for several magnetic field configurations,

namely a pure dipole field, a field with Boct = 3Bdip, and a field with Boct = 10Bdip,

while other model parameters have been fixed at ξ = 1, f = 1, ζmax = 0.2.

In agreement with the findings of Mushtukov et al. (2015), the value of the

maximum luminosity is mainly dictated by the accretion column geometry for mod-

els with total magnetic field strengths B < 1013G. This is because at the inter-

nal temperatures typical of the accretion column and for these low magnetic field

strengths, most of the photons have E > Ecycl and therefore are not subject to re-

duction in opacity induced by the magnetic field. For higher total magnetic field

strengths, B > 1013G, the scattering opacity of the X-mode is instead significantly

reduced, such that this becomes the determining factor in constraining the maximum

luminosity. This can be seen from the change in slope of the maximum luminosity

line in figure 3.11.

The (initial) decreasing trend in the maximum luminosity for increasing mag-

netic field strengths up to 1013G can be explained by an increase in the temperature

of the accretion column. Since the accretion column becomes thinner for higher

magnetic field strengths (due to the choice of ζmax = 0.2, the temperature increases,

which also increases the overall scattering opacity.

As expected, when a multipole component is included that is stronger than

the dipole component, the maximum luminosity is increased. This is because of

the increase in the total magnetic field strength at the surface (i.e. in the accretion

column). The maximum luminosity for a multipolar magnetic field is similar to

the maximum luminosity for a pure dipole field with the same total surface mag-

netic field strength. Thus, the change to the accretion column geometry due to the

presence of a higher order multipole does not affect the maximum luminosity in a

significant way (at least for the models presented in this work). Instead, the maxi-

mum luminosity is more sensitive to the change in accretion column geometry due

to the disc-magnetosphere interaction model.
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Figure 3.11: Maximum luminosity as a function of the dipole component strength at the NS
surface. The circle, triangle, and diamond points show the computed maxi-
mum luminosity for models with a fixed magnetic field configuration: pure
dipole, Γ = 3, and Γ = 10 respectively. The red-shaded area indicates the re-
gion for which the accretion luminosity exceeds the NS Eddington luminosity,
i.e. when the accretion flow is super-Eddington.

3.2.4.1 Maximum luminosity with mixed polarization

Models with a mixture of polarization modes has different accretion column prop-

erties from models with f = 1. Thus, the maximum luminosity is also calculated for

a models with a fixed polarization degree f = 0.7, which is expected in a more re-

alistic case for scattering dominated models). Figure 3.12 shows the results. As the

maximum shock height is typically increased, the maximum luminosity is lower

than in the pure X-mode case. However, this trend is reversed for the magnetic

field strengths below ∼ 1013G because the O-mode photons decrease the average

Rosseland mean opacity when a large portion of the photons have energy close to

or higher than the electron cyclotron energy, Ecycl.

Otherwise, from figure 3.12, the (interpolated) relation between the maximum
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Figure 3.12: The maximum luminosity as a function of the dipole component strength at
the NS surface. The circle, triangle, and diamond points in green show the
computed maximum luminosity for models with a fixed magnetic field con-
figuration: pure dipole, Γ = 3, and Γ = 10 respectively, and with a fixed po-
larization degree f = 0.7. The solid, dashed, and dot-dashed black lines show
the (interpolated) maximum luminosity for models with the same configura-
tions but with f = 1.

luminosity and the surface dipole field strength follows a shallower gradient than

for the models with f = 1, as predicted. However, the difference of the maximum

luminosity is less than a factor of 2 between models with f = 1 and models with

f = 0.7 (for the same magnetic field configuration). This is because in the diffusion

approximation, the flux that supports the accretion column vertically is from X-

mode photons. Thus, the effective mixed mode opacity, calculated in the Rosseland

approximation, is dominated by the X-mode opacity.

3.2.4.2 Comparison with previous models

Compared with the model from Mushtukov et al. (2015), this work uses a different

method for calculating the scattering opacity and a different disc-magnetosphere
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Figure 3.13: The maximum luminosity as a function of the dipole component strength at
the NS surface. The orange circles show the computed maximum luminosity
for a model with a pure dipole magnetic field configuration, and with ζmax ∼ 1.
The black line is the maximum luminosity according to the relation given in
Mushtukov et al. (2015).

interaction model. Figure 3.13 shows the maximum luminosity for models assum-

ing the same disc-magnetosphere interaction model as in Mushtukov et al. (2015),

namely by setting ζmax ∼ 1. In this case, the maximum luminosity differs only by a

factor of a few, indicating a good agreement between the codes.

3.2.5 Constraints on the parameter space

Before an application of this accretion column model to diagnose observed PULXs,

there are several conditions for a self-consistent physical description of a source

that constrain the parameter space. First, the assumption of a geometrically thin

accretion disc means that

Hm < Rm, (3.27)
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where Hm is the disc height at the magnetospheric radius and it depends on the

assumed disc model. For a standard Shakura & Sunyaev (1973) thin accretion disc

model at the accretion rates of interest in this model (L > 1039erg s−1), the inner

disc is radiation-pressure dominated. Thus, the disc height is given by

Hm =
κT

c
3

8π
Ṁ, (3.28)

which is independent of the radius.

Using (3.27) and (3.28), the condition Hm < Rm is equivalent to a lower bound

on the dipole component strength, above which this model is valid. This condition

is given by

Bd,12 > 0.034L9/4
39 R−3/4

6 m−2
Λ
−7/4. (3.29)

For magnetic configurations with a weaker dipole component, the thickness of the

disc becomes large at the magnetospheric boundary, causing it to envelop the mag-

netosphere. In this case, the estimates used in this model for the accretion col-

umn geometry and the assumptions made on the distribution of infalling plasma

are no longer applicable. A proper analysis of this scenario requires a new disc-

magnetosphere interaction model, which is beyond the scope of this work.

Secondly, as PULXs are rotating NSs, the strength of the dipole component

must be sufficiently small so the propeller effect is avoided. This means the mag-

netospheric radius must be smaller than the Keplerian corotation radius, which is

given by

Rco =

(
GMP2

4π2

)1/3

≈ 1.5×108m1/3P2/3cm (3.30)

where P is the NS spin period. The condition Rm < Rco is equivalent to an upper

bound for the dipole component strength, namely

Bd,12 < 4.57Λ
−7/4m−1/12R−5/2

6 L1/2
39 P7/6. (3.31)
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For models with a stronger dipole component, the propeller effect prevents accretion

onto the poles Illarionov & Sunyaev (1975).

Thirdly, I assume the spin period derivative to be dominated by the accretion

torque. A simple accretion torque model, where the angular momentum of the ac-

creting matter is transferred to the NS at the corotation radius (i.e. an over-estimate

of the accretion torque), gives an upper bound for the accretion luminosity, namely

Lacc > 0.66Ṗ−10P−7/31039erg s−1, (3.32)

where Ṗ−10 = 10−10Ṗ and P is in seconds. A lower accretion luminosity is incapable

of explaining the spin period derivative.

3.2.6 Applications

Working with the parameter space restrictions derived in §3.2.5, I diagnose the ne-

cessity for higher order multipole components in observed PULXs. The model and

parameter space constraints is applied to two PULXs, for which the application of

the model by Mushtukov et al. (2015) has led to the suggestion of the presence of

multipolar magnetic fields, namely NGC 5907 ULX1 (Israel et al., 2017a) and NGC

7793 P13 (Israel et al., 2017b). The luminosity of these sources vary by a factor of

∼ 8, which is large but unlikely to be from a transition to the propeller effect, unlike

in M82 X-2 (Tsygankov et al., 2016). Hence, I apply the upper bound for the dipole

component strength given by equation (3.31) to the range of luminosities.

3.2.6.1 NGC 5907 ULX-1

NGC 5907 ULX-1 (Israel et al., 2017a) is the brightest PULX found to date, with a

peak luminosity of (2.3±0.3)×1041erg s−1 and an observed luminosity variation

between 2.6× 1040erg s−1 to 2.3× 1041erg s−1. Observations from XMM-Newton

in 2003 and 2014 have shown a decrease in the pulse period from ∼ 1.43s to ∼

1.137s, which corresponds to a secular spin period derivative Ṗ ≈−8×10−10 s s−1.

Israel et al. (2017a) suggested the presence of multipole components of the

magnetic field when examining the source with the model by Mushtukov et al.

(2015). To test this argument using the computed maximum luminosity from the
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Figure 3.14: A plot of the model parameter space - accretion luminosity and dipole com-
ponent strength at the NS surface - for the source NGC5907 ULX-1. Several
example models (and the corresponding model parameter values) of the source
are shown by the black, red, and orange shapes, where the associated verti-
cal line represents the range of accretion luminosities from observations of the
source in a high-luminosity state Israel et al. (2017a). In particular, the models
shown by the red triangle and orange circle assume a luminosity amplification
by a factor of ≈ 6.8 and > 50 respectively. The light red and dark red shaded
areas show the region of parameter space for which the accretion luminosity
exceeds the thick disc and NS Eddington luminosity respectively at the mag-
netospheric boundary. The blue shaded area shows the region for which the
source in in the propeller regime. The green shaded area shows the region
for which the accretion rate (calculated from the accretion luminosity) is too
low to provide sufficient secular spin period derivative Ṗ =−8×10−10 s s−1.
From right to left, the grey, solid, dashed, dot-dashed lines show the maximum
luminosity relation given by the calculation done by Mushtukov et al. (2015),
and models from Brice et al. (2021) with Γ = 0,3,10 respectively.

model of this work, a figure analogous to fig. 3 of Israel et al. (2017a) is shown.

Figure 3.14 shows the parameter space constraints in the L−Bdip plane and a few

example models for NGC 5907 ULX-1.

In agreement with the previous findings, in order to explain the whole range

of observed luminosities up to the peak luminosity of NGC 5907 ULX-1 while
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assuming a pure dipole magnetic field topology, a strong magnetic field strength

is necessary, i.e. B > 1014G from this model and B > 1015G from the model by

Mushtukov et al. (2015). Specifically, the model presented here suggests a pure

dipole magnetic field with a surface strength Bdip ≈ 3.1× 1014G can give rise to a

luminosity of 2.3× 1041erg s−1. Although the strength of this magnetic field is an

order of magnitude lower the inferred from the model by Mushtukov et al. (2015),

the source is still in the propeller regime in this case.

For the PULX to be emitting with its peak luminosity without being in the

propeller regime, a multipolar magnetic field is required, in particular a dipole com-

ponent strength of Bdip ≈ 5.5 × 1013G and octupole component surface strength

of Boct > 5.5× 1014G (see figure 3.14). However, for all observed luminosities,

this configuration falls within the thick disc regime, i.e. the dipole magnetic field

strength is lower than the bound given in equation (3.29). While it can not be ex-

cluded that this contradiction may be resolved once a different and less simplified

disc model is adopted, to answer this question would require a thorough treatment

of the disc accretion and disc-magnetosphere interaction, which is beyond the scope

of this work.

Both the super-Eddington disc accretion rate and the propeller regime can be

avoided by introducing a moderate beaming factor of b ≤ 0.15. In this case, a

model with a multipole mangetic field configuration consisting of a dipole com-

ponent with strength Bdip ≈ 2.8×1013G and an octupole component with strength

Boct > 8.4×1013G can explain the range of observed luminosities up to b times the

peak luminosity.

Stronger beaming factors b < 0.02 allow for a reduced accretion luminosity

and therefore make a pure dipole configuration possible again. However, in this

case, the average accretion luminosity falls below the minimum set by the observed

secular spin period derivative, i.e. equation (3.32). Hence, according to this model,

the most favourable configuration for NGC 5907 ULX-1 includes a moderate beam-

ing factor and a multipolar magnetic field.
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3.2.6.2 NGC 7793 P13

NGC 7793 P13 was observed to have a peak luminosity of 1.6×1040erg s−1 and an

observed luminosity variation between ∼ 2.0×1039erg s−1 and 1.6×1040erg s−1.

A spin period of ∼ 0.42s was measured and a secular spin period derivative Ṗ ∼

−4.0×10−11s s−1. The constraints on the possible values of L and Bdip are shown

in figure 3.15, together with some example configurations for this source.

In this case, the whole range of observed luminosities (up to the peak luminos-

ity) can be achieved by a configuration with a multipolar magnetic field consisting

of a dipole component of strength Bdip ≈ 7.3×1012G and a much stronger octupole

component of strength Boct > 7.3×1013G (this is shown as the red triangular point

in figure 3.15). Under these conditions, the source is not in the propeller regime and

no beaming is required to avoid the super-Eddington disc regime. This particular

configuration has the advantage of being above the lower luminosity bound required

to explain the observed spin period derivative. However, the largest observed flux

levels are not compatible with the assumption of a geometrically thin disc, which

again may demonstrate that the disc model is overly-simplistic.

When a mild beaming factor of b < 0.25 is introduced, the accretion lumi-

nosity is small enough that it can be explained by a pure dipole configuration with

a surface strength of Bdip ∼ 1.4× 1012G. This conclusion is different to the one

from the model by Mushtukov et al. (2015). The only downside is that the lowest

observed luminosities fall below the bound required to explain the observed spin

period derivative. On the other hand, the secular spin period derivative may be the

cumulative result of alternative accretion phases and may have been accumulated

during epochs of larger mass transfer. Thus, this particular configuration cannot be

ruled out entirely from the simplified accretion torque model used here.

3.3 Discussion

Motivated by the recent discovery of pulsating ULXs (Bachetti et al., 2014; Fürst

et al., 2016; Israel et al., 2017b,a; Carpano et al., 2018; Wilson-Hodge et al., 2018;

Sathyaprakash et al., 2019; Rodrı́guez Castillo et al., 2020) and their interpretation
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Figure 3.15: A plot of the parameter space for the source NGC7793 P13. The two example
models (and corresponding model parameter values) are shown by the red
triangle and red circle, where the latter assumes a luminosity amplification
factor of 4. The shaded areas show the region of parameter space as in Fig.
3.14, except using Ṗ = −4.0× 10−11 s s−1. The lines show the maximum
luminosity relations for the magnetic field configurations as in figure 3.14.

as accreting magnetars (see Tong & Wang 2019), I have reconsidered the model

of columnated accretion onto a highly magnetised NS. The main aim was to find

models capable of producing a super-Eddington luminosity while avoiding the pro-

peller regime for the spin periods typcial of PULXs, i.e. P ∼ 1s. This was done by

calculating the maximum luminosity for a given set of model parameters and taking

into account other constraints of the parameter space.

The model considered in this work is similar to the one by Mushtukov et al.

(2015) but with the assumption of a purely dipole magnetic field topology relaxed.

In particular, the magnetic field configuration was made up of a dipole component

and octupole component. I chose this topology for study because of the fall-off in

the octupole component strength with distance from the surface and the polarity
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alignment (unlike for a dipole plus quadrupole topology).

To investigate the possibility of super-Eddington emission, I computed a series

of models, characterised by either a pure dipole magnetic field with strength of

∼ 3×1012G, or a magnetic field consisting of a dipole component with a stronger

(∼ 3,10 larger) octupole component. First, the accretion column was assumed to be

dominated by the lower opacity X-mode photons. In this case, a super-Eddington

solution with luminosity 1039erg s−1 −1040erg s−1 is always possible.

In models with a pure dipole topology, the accretion column height was higher

than the accretion column height in models that included the stronger octupole com-

ponent. As a result, the effective temperature of the accretion column, Teff, is larger.

Typically, Teff ≈ 3−15keV, with the peak temperature higher in the accretion col-

umn. This thermal emission is not observed directly because of reprocessing from

the optically thick free-falling material surrounding the sinking region. Further re-

processing from an optically thick envelope surrounding the magnetosphere is pos-

sible (see the next chapter and Mushtukov et al. 2017).

I investigated the impact of the polarization degree on the other accretion col-

umn properties by substituting a fixed fraction of X-mode photons to O-mode pho-

tons, which changes the effective mean opacity. Although the accretion properties

changed as a result, there was no significant variation in the maximum luminosity.

In general, the opacity local to the NS surface was a decisive factor for the pos-

sibility of NS super-Eddington emission (L > 1039erg s−1), as observed in ULXs.

However, the geometry of the accretion column footprint on the NS surface is an ad-

ditional factor in determining the accretion column properties, which had not been

investigated until this work. In particular, the thickness of the accretion column

has a significant effect on the luminosity. The greater maximum luminosity for a

given magnetic field strength that was calculated in this work compared with that

by Mushtukov et al. (2015) was partly due to the different approach to calculating

the accretion column thickness.

In principle, solutions for models with a luminosity L ∼ 1041erg s−1 are ob-

tainable. However, in order to avoid the propeller regime for a source with pulse
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period of the order ∼ 1s, the dipole component strength must be sufficiently low

(∼ 1013G). A low dipole component strength together with high accretion luminos-

ity results in a geometrically thick accretion disc, as already noted by Israel et al.

(2017a). In this scenario, the model is no longer valid. Consequently, there is still

an upper limit to the luminosity related to the dipole component strength.

The restriction to a thin accretion disc comes from the use of the Ghosh &

Lamb (1978) disc-magnetosphere interaction model, specifically to obtain estimates

for the truncation radius of the disc and the boundary region width, i.e. the disc pen-

etration into the magnetosphere. Ideally, a disc-magnetosphere interaction model

more suitable for super-Eddington accretion would be used, e.g. by Chashkina

et al. (2017), but this was beyond the scope of this work. Instead, to address some

of these limitations, I investigated the extent to which this disc-magnetosphere in-

teraction model affects the accretion column properties (and more generally the ex-

istance of a solution given a set of model parameters). I found an accurate value of

the truncation radius is largely irrelevant, whereas the boundary region width is cru-

cial. In particular, a variation of 30 percent in the boundary region width decreases

the accretion column base size by an order of magnitude.

Another limitation in this model is in the treatment of the hydrodynamics equa-

tions. The curvature of the magnetic field lines that constrain the accretion flow. In

principle, it is possible to account for the curvature in the equations of hydrodynam-

ics, e.g. as in Canalle et al. (2005) and Adams & Gregory (2012).

This model was applied to the two sources NGC 5907 ULX-1 and NGC 7793

P13 (see §3.2.6). The necessity for a multipolar configuration is different in each

case, once beaming is taken into account.

For NGC 7793 P13, the observed luminosity is ≈ 1.6× 1040erg s−1. When

taken at face value, this luminosity is too large to be compatible with the model

by Mushtukov et al. (2015) since it requires a magnetic field strength so high that

the source would be deep in the propeller regime. On the other hand, according

to the model in this work, the lowest observed luminosity is compatible with a

pure dipole magnetic field configuration, where the dipole component strength is
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Bdip ≈ 7.3× 1012G. The addition of a stronger octupole component with surface

strength Boct > 7.3×1013G explains the whole range of observed luminosities, even

up to the peak luminosity of 1.6×1040erg s−1.

The multipolar configuration does not conflict with the propeller effect, nor

with the super-Eddington accretion rate condition. Furthermore, it is compatible

with the simple treatment of the spin period derivative (see §3.2.5). However, the

observed peak luminosity is not compatible with the geometrically thin disc as-

sumption (which gives further credence that the disc model is over-simplified).

Other possibilities include moderate beaming, in which case the observed lu-

minosity is reachable for the case of a pure dipole magnetic field with strength

Bdip ≈ 1.4×1012G. However, this case is unlikely when considering the observed

spin period derivative because the average mass accretion rate is barely above the

minimum accretion luminosity of the overly-simplified estimate (which gives an

unrealistic lower bound).

The PULX NGC 5907 ULX-1 has a much higher peak luminosity of 2.3×

1041erg s−1. In this case, both a super-Eddington disc accretion regime and the

propeller regime can be avoided by invoking a moderate beaming factor of b< 0.15.

If the source has a magnetic field configuration consisting of a dipole component

with strength Bdip ≈ 3.2×1013G and a stronger octupole component strength Boct >

9.6× 1013G, the entire range of observed luminosities is under the maximum. A

pure dipole configuration is only possible with a stronger beaming factor b < 0.02.

However, this case is ruled out by the minimum luminosity of the overly-simplified

estimate.

There remains open questions that need to be addressed before arriving at a

self-consistent explanation of PULXs. As mentioned previously, the presence of

multipole magnetic field components can change the properties of the accretion

column significantly. The maximum shock height, H, is reduced in comparison

to case of a pure dipole magnetic field topology. This in turn results in a higher

effective temperature, which may manifest in the spectral data. In principle, a suf-

ficiently strong magnetic field would lower the shock height close to the surface
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so that H ≪ R. However, since this model assumes the radiation pressure pimarily

perpendicular to the sinking region, its validity becomes dubious as H → 0. In addi-

tion, as the maximum shock height of the column is lowered, the temperature of the

sinking region may exceed 100keV, whereupon the electron-positron pair creation

and annihilation play an increasingly important role in limiting the temperature of

the accretion column while simultaneously increasing the gas pressure (Mushtukov

et al., 2019). A calculation of the gas pressure as well as the pair creation and anni-

hilation process is necessary for a more accurate description. This has started to be

addressed by Suleimanov et al. (2022).

Several other simplifying assumptions were made in the model presented in

this work. First, the radiation pressure dominates over the gas pressure of the sink-

ing region of the accretion column. From computing several models, I found that

the assumption breaks down at the lower layers of the sinking region. Because a

power-law ansatz was used for the velocity profile, the model is not expected to

give an accurate picture in the lower layers of the sinking region, where the accre-

tion flow becomes stagnant and hence the density becomes infinite. However, the

contribution to the luminosity from these lower layers is negligible compared with

higher in the column, where the radiation pressure remains dominant.

Secondly, the calculation of the scattering opacity in this work neglected the

contribution from the ions and vacuum polarization effects, which are both expected

to become significant exactly in the strong magnetic field regime considered here

(B > 1013G). Additionally, a fixed fraction of X-mode photons made up the radia-

tion field throughout the accretion column. A more physically realistic calculation

would include the scattering between polarization modes as well as including mode

switching from resonant scattering. This is left as future work.

Finally, the role of energy advection was not taken into account, nor cooling

via neutrino emission. These processes were studied in Mushtukov et al. (2018) and

are expected to be relevant in the case of very luminous sources L ∼ 1041erg s−1.

In §3.2.6, a beaming factor was assumed instead.
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3.4 Summary
I developed a simplified model of the accretion column for strongly magnetised

NSs, building on and altering the model by Mushtukov et al. (2015). Crucially, the

assumption of a purely dipole mangetic field is relaxed. This allows for a larger

maximum luminosity.

When a magnetic field configurations with a significantly strong multipole

component is assumed, the luminosity released in the accretion column is limited

only by the accretion rate from the disc. This, in turn, calls for a more refined model

of the disc accretion and disc-magnetosphere interaction for super-Eddington accre-

tion, e.g. as investigated by Chashkina et al. (2017, 2019).

I applied the model to two PULXs, NGC 5907 ULX-1 and NGC 7793 P13, and

discussed how their observed properties (e.g. luminosity and spin period derivative)

can be explained in terms of different magnetic field configurations, either with

or without multipolar components. For both sources, the case with a multipolar

component is favoured. Although it may be difficult to differentiate further, the

strong multipole components may manifest in the spectra or polarization signal, an

issue that is left for investigation in a future work.



Chapter 4

Pulsed Fraction

The work presented in this chapter was also published in Brice et al. (2023).

The observed sinusoidal pulses from PULXs identifies their central engine as

a NS. These pulsations was first discovered in M82 X-2 (Bachetti et al., 2014) and

subsequently observed in the PULXs NGC 7793 P13 (Fürst et al., 2016; Israel et al.,

2017b) and NGC 5907 ULX-1 (Israel et al., 2017a). The observed pulse profile of

these sources remains sinusoidal throughout the whole energy range, but the pulsed

fraction increases with increasing energy, e.g. from ∼ 12% for < 2.5keV to ∼ 20%

for > 7keV for NGC 5907 ULX-1 (Israel et al., 2017a).

Mushtukov et al. (2021) showed that pulsed fractions > 20% make the inter-

pretation of PULXs as strongly beamed X-ray sources via optically thick outflows

unlikely. However, no similar quantitative study has been done for the pulsed frac-

tion in the super-Eddington accretion rate scenario.

Mushtukov et al. (2017) investigated some of the observational implications

of the super-Eddington accretion scenario otherwise, in particular focusing on the

absence of cyclotron resonance features (CRFs) in PULXs with super-strong mag-

netic fields. The authors found that an optically thick envelope around a NS forms

when there is a sufficiently large (> 1019gs−1) mass accretion rate, resulting in a

reprocessing of the accretion column emission. Hence the disappearance of CRFs.

Moreover, this reprocessed emission is thermal due to multiple scatterings as the

radiation travels through the optically thick envelope walls, and appears as a multi-

colour blackbody to an observer. Koliopanos et al. (2017) tested these predictions
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by fitting the spectra of ULXs (and some PULXs) to a dual thermal emission com-

ponent model, which was found to be in good agreement.

In this work, I study the observational properties of the radiation emitted by

an optically thick envelope in more detail. The main aim is to calculate the pulse

profile using an approximation of the physics and compare it with observations.

4.1 Envelope Model
In the standard picture of accretion onto a highly magnetised NS, the accretion disc

is assumed to be truncated at the magnetospheric radius, given by

Rm ≈ 7×107
ΛM1/7R10/7

6 B4/7
d,12L−2/7

39 cm, (4.1)

where Λ is a dimensionless parameter that depends on the mode of accretion (typi-

cally Λ = 0.5 for accretion via thin disc), Bd,12 is the surface dipole field strength at

the magnetic poles in units of 1012G, and L39 is the accretion luminosity in units of

1039erg s−1. In addition, the disc penetrates into the magnetosphere by some length,

here indicated as Pm. However, the exact physical process and hence an expression

for Pm is poorly known. In this model, the expression for Pm is extrapolated from

the thin accretion disc model to the scenario with a thick disc as

Pm ≈ Hm, (4.2)

where Hm is the height of the disc at the magnetospheric radius. An upper limit is

imposed so that Pm/Hm < 0.2.

For simplicity, the boundary region is assumed to be bounded by dipole mag-

netic field lines that extend to a maximum radius of Rm and Pm. Inside the boundary

region, the accreting material is channelled onto the NS surface, which is shown by

the diagram in figure 4.1.

If the accretion rate is > 1019gs−1, the accreting material forms an optically

thick envelope, which encloses the magnetosphere cavity (filled with only radia-

tion). As the envelope is optically thick, the radiation injected into the inner cavity
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Figure 4.1: A diagram of the bounding dipole magnetic field lines (solid blue curves),
reaching out to a radii Rm and Rm − Pm. The purple line shows the path of
radiation diffusion in the envelope. It is annotated by the path length D. The
centre black circle represents the NS.

cannot immediately escape and hence thermalises. The spectrum is given by the

Planck function at temperature Tin (Mushtukov et al., 2017).

The spectrum of the thermal radiation that emerges from the envelope, and is

observed at infinity, depends on the temperature of its outer boundary, Tin, which at

first approximation is related to Tout and to the local optical depth of the envelope,

τ , by

Tin = Toutτ
−1/4. (4.3)

As the local optical depth is determined by the dynamics of the accretion flow, and

the velocity field is not necessarily uniform inside the envelope, Tout varies along

the envelope wall as well. Thus, the spectrum of the escaping radiation is expected

to be approximately a multicolour blackbody, rather than a Planckian at a single

temperature.

The relationship between the cavity temperature, Tin, and the luminosity is

obtained after integrating the local flux σT 4
out (where σ is the Stefan-Boltzmann
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constant), over the surface of the envelope. Using equation (4.3), this gives

Lacc/2 = 2σT 4
in

∫
ϕ=2π

ϕ=0

∫
θ f

θ=π/2
τ
−1dA, (4.4)

where Lacc is the accretion luminosity, dA = dA(ϕ,θ) is the area element of the

envelope in spherical coordinates (with the zenith aligned in the direction of the

magnetic moment), and θ f is the latitute at which the same mangetic field line ter-

minates at the surface of the NS. In equation (4.4), only half of the accretion lumi-

nosity is accounted for because the geometry of the accretion column results in half

of the emission first entering the cavity and thermalising before escaping, whereas

the other half of the emission directly escapes through the exterior envelope wall,

i.e. does not contribute to the cavity temperature. The photons that directly escape

through the exterior envelope wall may be reprocessed from multiple scatterings,

which would result in spectral changes.

4.1.1 Local optical depth

In order to estimate the optical depth of the envelope, the path length of radiation

diffusion through the envelope wall is needed. The path length of escape is denoted

by D and its direction is assumed to be normal to the envelope surface. Hence, the

local optical depth is approximated by

τ = κeρD, (4.5)

where κe is the electron scattering opacity, and ρ is the local electron density along

D (which is approximated as constant).

The local density is given by

ρ =
Ṁ
v∥

1
Ac

, (4.6)

where Ṁ is the total mass accretion rate onto the NS, v∥ is the velocity of the charges

along the field lines (which is assumed to be constant along the photon escape path),

and Ac is the cross-sectional surface area perpendicular to the magnetic field lines,
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i.e. perpendicular to the velocity direction for the charges. In this case, the mass

transfer rate to each hemisphere is assumed to be equally distributed for all magnetic

field lines, which may not be the case in general.

Finally, Ac is calculated from the geometry of the envelope cross-section, and

for a purely dipole magnetic field topology is given by

Ac = 2π

(
Rm − 1

2
Pm

)
µ

3D, (4.7)

where θ is the magnetic latitude and µ = cosθ . The calculation is laid out explicitly

in appendix 4.4.1.

4.1.2 Dynamics

To obtain an expression for v∥, the dynamics of a charge moving along a dipole

field line of a NS, which rotates around a spin axis with angular velocity Ω, need

to be studied. The NS magnetic moment is misaligned from the spin-axis by an

angle ξ . In the following, an orthonormal coordinate system in which the z-axis is

aligned with the magnetic moment is used. This coordinate system is referred to as

the magnetic reference frame.

The radial coordinate of the dipole field lines, in spherical polar coordinates, is

given by

r(θ ,ϕ) = Rcos2
θ , (4.8)

where θ and ϕ are the latitude and the azimuthal angle in the magnetic axis ref-

erence frame, and R is the maximal distance that the field line reaches from the

source. In this model, R = Rm −1/2Pm is used for all ϕ (e.g. see appendix 4.4.1).

The charge moves under the influence of gravitational and centrifugal forces.

The gravitational force contributes a potential field

Vgrav(r) =
R3Ω2

K
r

, (4.9)

where ΩK = (GM/R3)1/2 is the Keplerian angular velocity at a distance R from the
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point mass. The centrifugal force is taken into account by introducing a constraint

to the Lagrangian:

Vang(r,θ ,ϕ) = d2
Ω

2, (4.10)

where d = d(r,θ ,ϕ) is the distance of the moving charge from the spin-axis (see

appendix 4.4.2 for a derivation of the full expression). Hence, the total Lagrangian

of a charge with mass m moving on the dipole field line given by equation (4.8),

under the influence of gravitational and centrifugal forces is

L =
1
2

mR2
θ̇

2 [4µ
2 −3µ

4]− 1
2

md2
Ω

2 +m
1

µ2 R2
Ω

2
K. (4.11)

The parallel velocity of the charge is defined as

v∥ = Rθ̇
[
4µ

2 −3µ
4]1/2

, (4.12)

and thus the effective potential is given by

Veff =−1
2

d2
Ω

2 +
1

µ2 R2
Ω

2
K. (4.13)

As the effective potential includes the gravitational and rotational potentials, the NS

spin effects the velocity along the field lines. Furthermore, the effective potential is

conservative and thus the Euler-Lagrange equations can be integrated to obtain an

analytic expression for the parallel velocity, which is given by

v∥(µ,ϕ) =
[(

d2 −d2
0
)

Ω
2 +

(
2

µ2 −
2

µ2
0

)
R2

Ω
2
K + v2

0

]1/2

, (4.14)

where µ0 = cosθ0 is the cosine of the initial latitude angle of the charge, d0 is the

distance of the charge from the spin-axis at θ = θ0, and v0 is the initial velocity of

the charge. The derivation of the initial angle expression for a geometrically thin

disc is given in appendix 4.4.3.

Following Mushtukov et al. (2017), the initial velocity of the charge at any disc
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height is approximated by the characteristic thermal velocity of the protons at the

inner disc radius (for a geometrically thin disc). This gives

v0 ≈ 0.056
(

1− γ

1+X

)1/2

Λ
−1/2m3/7L1/7

39 B−2/7
d,12

∣∣∣∣1− Ω

ΩK

∣∣∣∣c, (4.15)

where c is the speed of light, γ is the adiabatic index, and X is the hydrogen mass

fraction of the accreting material.

4.1.3 Calculation of the pulsed fraction

Once Tin and τ are known, Tout can be calculated for every point p on the outer

boundary of the envelope using equation (4.3). For each p, the specific flux along a

particular line of sight (LOS) is given by

FE,p(ℓ) = (np · ℓ)BE(Tout(p))∆Ap, (4.16)

where np is the normal to the surface of the envelope at p, ℓ is the LOS unit direc-

tional vector, BE(T ) is the Planck function at temperature T , and ∆Ap is the area

element of the envelope surface at p. The value of np · ℓ changes according to the

NS phase of rotation, denoted by φ .

The total specific flux along a particular LOS, FE , is obtained by summing over

all the points on the surface of the envelope that are in view, i.e.

FE = ∑
p inview

FE,p(ℓ). (4.17)

In particular, and depending on the viewing geometry, the points of the envelope

can be obscured by other parts of the envelope and/or by the accretion disc. Hence,

the points in view are dependent on φ and thus FE = FE(φ).

To obtain the flux over an energy interval, ∆E , the specific flux is integrated in

energy to give

F∆E =
∫

E∈∆E

FEdE. (4.18)



4.2. Numerical Results 132

The total flux from the NS includes a contribution from the disc emission. This

is accounted for in a similar way to equation (4.16), where the disc temperature and

disc angular area element at a point is used instead of Tout and ∆Ap respectively.

For this model, the standard multi-colour disc temperature profile (of a thin disc) is

used (Makishima et al., 1986), which is given by

T (r) =
[
3GMṀ/8πσr3]1/4

. (4.19)

For simplicity, the disc points from the inner disc radius at Rm to infinity are con-

sidered.

Finally, the pulsed fraction for the energy interval ∆E is calculated using the

definition

PF =
F∆E ,max −F∆E ,min

F∆E ,max +F∆E ,min
(4.20)

where F∆E ,max = maxφ F∆E and F∆E ,min = minφ F∆E denote the maximum and mini-

mum values of F∆E during a NS rotation period.

4.2 Numerical Results
The model in this work uses the standard Shakura & Sunyaev (1973) thin accretion

disc that is perpendicular to the spin axis. The accreting material subsequently flows

through the envelope as described in §4.1.

For each particular LOS, the phase-dependent spectrum and pulsed fraction

is calculated by ray-tracing the thermally emitting points on the envelope and the

accretion disc to an observer at infinity.

To this end, this work re-adapts the numerical ray-tracing code described in

Taverna & Turolla (2017), which was developed to calculate the spectra of mangetar

bursts originating from a magnetically trapped fireball. The code was modified to

allow for magnetic field lines reaching several hundred NS radii and a planar disc

geometry was added. The code takes into account the visibility of the envelope and

disc surface points by checking for (self-)shadowing by envelope and disc.
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Figure 4.2: The normalised specific flux in phase. The phase-resolved specific flux is
normalised with the phase-averaged specific flux, ⟨FE⟩φ . The pulsed pro-
file was taken from the phase-resolved synthetic spectrum of a model with
L39 = 10, B12 = 0.55, P = 0.4 s, ξ = 10◦, i = 45◦.

I considered a set of models, each one being characterised by the following pa-

rameters: the accretion luminosity in units of 1039erg s−1, L39, the (surface dipole)

magnetic field strength at the pole in units of 1012G, B12, the tilt of the dipole mag-

netic moment with respect to the spin axis, ξ , the observer LOS angle (i.e. the

inclination) with respect to the spin-axis of the NS, i, and the spin period of the NS,

P.

The synthetic spectrum in the 0.1− 20keV energy range is calculated for 60

grid-points in phase. For every model, the phase-resolved synthetic spectrum varies

sinusoidally in each energy interval. An example of the energy resolved profile,

corresponding to a model for NGC 7793 P13 considered in §4.2.2, is shown in figure

4.2. I analysed the phase-averaged synthetic spectrum by using the IDL routine

MPCURVEFIT to fit to a multi-colour disc plus blackbody model (mcd + bb). In

each case, a statistically good fit was found.
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In the following, the characteristic temperatures of the components from a best-

fit spectral model are indicated by Tmcd for the mcd component and Tbb for the bb

component, which I refer to collectively as the best-fit component temperatures. In

addition, I calculated the maximum temperature on the envelope wall, Tmax, which

I refer to as the envelope temperature, and the inner disc temperature, Tdisc, as diag-

nostic measures that are independent of the ray-tracer and spectral fitting.

Figures 4.3 and 4.4 show the results of varying the luminosity and dipole mag-

netic field strength on the envelope temperature and inner disc temperature along-

side the best-fit component temperatures for the same models. These plots confirm

that the best-fit component temperatures in the mcd+bb spectral fit (of the phase-

averaged spectra), Tmcd and Tbb, accurately track the underlying model variables

Tdisc and Tmax. Otherwise, the changes in ξ , i, and P did not significantly alter the

best-fit component temperatures nor the underlying model variables.

Figures 4.5, 4.6, 4.7, and 4.8 show the results of varying the luminosity, dipole

magnetic field strength, ξ , and i respectively on the pulsed fraction profile in energy.

Otherwise, there was no change to the pulsed fraction when P was varied within its

valid range for the model. All the models shared a common characteristic in their

pulsed fraction profile with energy, namely a change in the gradient of the pulsed

fraction profile, which I refer to as a “break” in the pulsed fraction profile.

Below, I discuss the response on the synthetic spectrum and pulsed fraction

profile when varying each of the model parameters in turn. I describe how each

parameter relates to the underlying model variables as a result of the choices made

in the modelling.

In the first case, the reason that a variation in the accretion luminosity param-

eter leads to a change in the underlying model variables can be understood from

equations (4.19) and (4.4). Namely, the inner disc temperature depends directly on

the accretion rate in equation (4.19) and the envelope temperature is determined by

the cavity temperature and minimum optical depth, both of which are related to the

accretion luminosity and accretion rate in equations (4.4) and (4.6) respectively.

The synthetic spectra show that the best-fit temperature trends are aligned with
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Figure 4.3: Inner disc temperature and envelope temperature, Tdisc and Tmax respectively,
and the characteristic temperatures from the best-fit mcd+bb spectral model,
Tmcd and Tbb respectively, as a function of the accretion luminosity. The other
model parameters were fixed to B12 = 1.0, ξ = 10◦, P = 1s, and i = 30◦. In
addition, Tmax is shown for models with various magnetic field strengths for
comparison.

the underlying model variable trends. In the primary cases shown in figure 4.3

where the model parameters were fixed to B12 = 1.0, ξ = 10◦, i = 30◦, P = 1s, the

increase in the mcd characteristic temperature is more rapid than the increase in the

bb characteristic temperature. A simple linear regression model for the logarithmic

luminosity and temperature values gives the relationship between the mcd tempera-

ture and accretion luminosity as Tmcd ∝ L0.44
39 whereas the bb temperature is related

to the accretion luminosity as Tbb ∝ L0.39
39 . This trend, where the power law index is

steeper for the component associated with the disc, is reflected in the relationship

of the accretion luminosity with the underlying model variables, i.e. Tdisc ∝ L0.46
39

and Tmax ∝ L0.39
39 . In addition, the power law index for the inner disc temperature

and envelope temperature were consistent for the alternate magnetic field strengths
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Figure 4.4: Same quantities as in figure 4.3, here shown as a function of the (dipole)
magnetic field strength, Bdip. The other model parameters were fixed to
L39 = 5, ξ = 10◦, P = 1s, and i = 30◦. Another line of Tmax for models with
L39 = 10 is shown for comparison.

shown in figure 4.3.

Since a variation of the accretion luminosity changes the synthetic spectrum,

the energy-dependent pulsed fraction is subsequently affected. In particular, models

with a higher accretion luminosity (with all other parameters held constant) exhibit a

lower pulsed fraction in all energy intervals, as shown in figure 4.5. In addition, the

break from steep increase in pulsed fraction with energy occurs at a higher energy

for models with higher accretion luminosity.

The fact that the pulsed fraction is lower for all energy intervals, including

for energies after the break, can be attributed to the specifics of the temperature

distribution on the envelope. Namely, the highest temperatures lie in a small region

close to where the disc meets the magnetosphere, which means the pulsed fraction at

high energies is representative of the change in effective area, i.e. the projected area

onto a plane perpendicular to the observer’s LOS, of these high temperature regions
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Figure 4.5: The pulsed fraction as a function of energy for models with various accretion
luminosities, labelled with each line. The other model parameters were fixed
to B12 = 1.0, ξ = 10◦, P = 1s, and i = 30◦.

during one full rotation of the system. For increased accretion luminosity, the higher

temperature regions make up a larger proportion of the total envelope area, and

hence there is a smaller change to the effective area during one full rotation.

The fact that the pulsed fraction break occurs at higher energy can be attributed

to a hotter inner disc due to an increased accretion luminosity (and simultaneously

smaller magnetospheric radius). It is the temperature of the hottest regions of the

disc that determines at what energy the disc flux peaks, after which the envelope

emission (with the higher characteristic temperature) dominates.

A change in the dipole magnetic field strength parameter leads to a change in

the underlying model variables, which (similarly to the analysis of the accretion

luminosity parameter) can be understood from the equations of the envelope model

outlined in §4.1. In this case, the inner disc temperature and envelope temperature

both depend inversely on the magnetospheric radius, which in turn depends directly
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Figure 4.6: The pulsed fraction as a function of energy for models with different values of
the magnetic field strength parameter, shown with each line. The other model
parameters were fixed to L39 = 5, ξ = 10◦, P = 1s and i = 30◦.

on the magnetic field strength, given in equation (2.16).

The best-fit temperatures from the synthetic spectra again show aligned trends

to the underlying model variables, with an increase in the dipole magnetic field

strength resulting in a decrease of the best-fit component temperatures. For the

models shown in figure 4.4, the model parameters were fixed to L39 = 5, ξ =

10◦, P = 1s, i = 30◦, and varied the magnetic field strength parameter between

B12 = 0.1 to 3.2. A linear regression model on the logarithmic Bd and temperature

values gives the relation between best-fit component temperatures and the dipole

field strength parameter as Tmcd ∝ B−0.42
d,12 and Tbb ∝ B−0.28

d,12 . This aligns with the

relations between the underlying model variables and the dipole field strength pa-

rameter, where Tdisc ∝ B−0.43
d,12 and Tmax ∝ B−0.29

d,12 .

Similarly to the case of increasing accretion luminosity, the changes to the

synthetic spectra from an increase in the magnetic field strength results in changes
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Figure 4.7: The pulsed fraction as a function of energy for models with different values for
the magnetic axis tilt, shown with each line. The other model parameters were
fixed to L39 = 5, B12 = 1.0, P = 1s, and i = 30◦.

to the pulsed fraction profile. In the case of increased magnetospheric radius, the

higher temperature regions on the envelope make up a smaller proportion of the

total envelope area, and so there is a larger change to the effective area during one

full rotation. Hence the pulsed fraction is larger for all energy intervals.

The pulsed fraction break occurring at a lower energy also naturally follows

from the explanation in the accretion luminosity case. In this case, the magneto-

spheric radius is increased with increasing magnetic field strength, which results

in the truncation of the disc farther from the compact object. Thus the inner disc

temperature is cooler and so the peak of the disc flux is at a lower energy.

In testing the model parameters ξ and P, there was no significant change to the

best-fit component temperatures nor in the underlying model variables when these

parameters were varied within their respective range of validity, except for parame-

ter values close to the limits of validity, e.g. when the period is close to the propeller
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Figure 4.8: The pulsed fraction as a function of energy for models with different inclina-
tions. The blue, green, and red lines show the pulsed fraction profile for models
calculated using i = 10◦, 30◦, 50◦ respectively. The other model parameters
were fixed to L39 = 20, B12 = 1, ξ = 10◦, P = 1s.

regime. However, an examination of the model behaviour in these scenarios is be-

yond the scope of this work, since the parameter limits are only approximated.

Despite no change in the underlying model variables, a variation of ξ , well

within the validity limits, produces a substantial difference to the pulsed fraction,

which is shown in figure 4.7. In this case, the pulsed fraction is not changed as a re-

sult of an altered contribution from the disc and the envelope emission components.

Instead, the pulsed fraction varies with increasing tilt because of the altered viewing

geometry to the envelope from the observer LOS. The high temperature region on

the envelope is located close to the magnetospheric equator so when the magnetic

moment is tilted relative to the spin axis, the high temperature region presents an ef-

fective area that depends on the phase of the rotation. With increasing ξ , the change

in the effective area during one full rotation is larger and hence producing a larger

pulsed fraction at all energies without a difference in the energy at which the break
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occurs.

One notable divergence is in the pulsed fraction profile for the model with ξ =

30◦, which can be seen to flat-line after the break. This change can be understood

as a result of the specifics of the viewing geometry to the envelope, in particular

that the points of hottest temperature on the envelope are visible throughout the

entire rotation. Hence, the envelope flux minimum (even at high energies) is non-

vanishing, which results in an upper limit of less than 100% to the pulsed fraction.

In the case of varying the parameter i, the underlying model variables are com-

pletely independent of the viewing angle so, again, there is no change to the phase-

averaged spectrum for most models. However, at high inclinations, i ≳ 60◦, the

best-fit temperature for the mcd component decreased. This can be understood as

an effect of a partial obscuration of the inner disc by the envelope. The fraction

of the inner disc obscured by the envelope increases as the LOS angle increases so

the hotter parts of the disc contribute less to the overall disc emission. Hence, the

resulting characteristic mcd temperature obtained from the fit is lowered.

For the same reasons as in the analysis of ξ , the changes of i produce a sub-

stantial difference to the pulsed fraction, which is shown in figure 4.8. However,

In this case, the break of the pulsed fraction profile occurs at a lower energy for

models with larger i. This is an effect of the inner disc obscuration by the envelope

(described above), which results in a lower disc specific flux at energies for which

the inner disc is the main contributor. Hence, the energy at which the envelope flux

dominates is down-shifted.

4.2.1 Parameter constraints

The envelope model as described in §4.1 is valid provided that the accretion column

emission is thermalised inside the magnetosphere cavity. This condition holds when

the envelope is optically thick, i.e. τ ≫ 1. As previously discussed by Mushtukov

et al. (2017), the condition of an optically thick envelope translates to a constraint

on the model parameters for self-consistent models. In the case of models with

ξ = 0◦, the constraint can be approximated by an accretion luminosity bound: L39 ≳

B1/4
12 . In the case of models with ξ > 0◦ i.e. a tilted magnetic axis to the spin axis,
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the equivalent minimum accretion luminosity bound depends on ξ and must be

computed numerically.

Another constraint on model parameters comes from the fact that the radiation

contained in the cavity exerts a pressure on the envelope walls. Since the material is

channelled along magnetic field lines, the magnetic field must be strong enough to

confine the accretion flow against the radiation pressure. As a rough approximation,

this means that the magnetic pressure (at the magnetospheric radius) is required to

be higher than the radiation pressure for the model to be self-consistent.

This translates into an upper bound for the accretion luminosity as a function

of the magnetic field strength. The exact maximum luminosity also depends on

ξ , due to the effect of the magnetic field tilt on Tin, and thus must be computed

numerically.

The minimum and maximum accretion luminosity is calculated as a function

of the mangetic field strength, for models with fixed P = 1s and for various values

of ξ . The results are shown in figure 4.9. The curves are truncated for the maxi-

mum accretion luminosity at the approximate magnetic field strength for which the

maximum accretion luminosity becomes lower than the minimum accretion lumi-

nosity for the corresponding models. Beyond this point, the cavity temperature is

not physical.

Specifically for the minimum accretion luminosity, the sharp increase reflects

the progressive onset of a propeller mechanism. This is the case when centrifugal

forces from the rotating magnetosphere (which are included in the velocity expres-

sion) become progressively dominant for larger magnetosphere radii, which in turn

decrease the velocity along the magnetic field lines and eventually halting accretion

altogether.

The self-consistency conditions rule out models with accretion luminosities

≲ 1039erg s−1 or ≳ 1040erg s−1, and in general models with tilts ξ > 40◦. Since

the accretion luminosity is twice the envelope luminosity, i.e. the luminosity

used to calculate the emission as used in equation (4.4), the maximum luminos-

ity constraint would exclude astrophysical sources with observed X-ray luminosi-
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Figure 4.9: The accretion luminosity bounds for an optically thick envelope, τ > 1, as a
function of the dipole field strength. All models are calculated with P = 1s.
The black solid, dashed, dot-dashed, and dotted lines indicate the minimum
accretion luminosity for models with ξ = 0◦,20◦,30◦,40◦ respectively. The
minimum accretion luminosity line for models with ξ = 10◦ overlaps with the
minimum accretion luminosity line for models with ξ = 0◦ so are omitted. The
progressively lower solid purple lines indicate the maximum accretion luminos-
ity for models with ξ = 0◦,10◦,20◦,30◦,40◦. These lines have been truncated
at the last Bd for which the maximum luminosity is greater than the minimum
luminosity for the corresponding models. The shaded red region indicates the
set of parameters for which the disc is super-critical.

ties ≳ 5×1039erg s−1. However, the anisotropy of the emission from the envelope

means that the observed luminosity (calculated assuming isotropic emission) can be

greater than the envelope luminosity. This luminosity amplification increases from

a factor ∼ 1.1 to ≳ 2 for increasing viewing angle i. Thus, for real astrophysical

sources, the apparent X-ray luminosity can be approximated as up to the accretion

luminosity. The full investigation of the luminosity amplification for an optically

thick envelope is left for a future work.
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4.2.2 Application to sources

In the following, I present the application of this model to two PULX sources: NGC

7793 P13 (Fürst et al., 2016), and NGC 5907 ULX1 (Israel et al., 2017a). These

sources were chosen because the pulsed fraction data was available for multiple

energy bands and because they were the sources from the previous chapter §3.

The aim was to identify whether the optically thick envelope model as de-

scribed in §4.1 is capable of explaining the spectra and pulsed fraction data. In

particular, I attempt to find a model that simultaneously agrees with the modelled

observational spectrum (as calculated by Koliopanos et al. 2017) and the pulsed

fraction profile of each source.

To find a suitable model for each source, firstly, the possible set of model pa-

rameters (specifically accretion luminosity and magnetic field strength) is narrowed

by using the temperatures from the best-fit mcd+bb spectral model from Koliopanos

et al. (2017). Secondly, the values of ξ and i are varied to find a geometric config-

uration that best reproduces the pulsed fraction profile of the observed X-ray data.

These data are taken from Fürst et al. (2016) and Israel et al. (2017a) for the sources

NGC7793 P13 and NGC5907 ULX1 respectively.

4.2.2.1 NGC 7793 P13

The spectrum of the XMM-Newton observation of NGC 7793 P13 (obs.

0748390901), in the 0.3 − 10 keV energy band, can be fitted by a combination

of two thermal components, one representing the disc (mcd model), and one rep-

resenting the hotter envelope (bb model), with Tmcd ≈ 0.6 keV and Tbb ≈ 1.7 keV,

respectively (see Koliopanos et al. 2017). The X-ray luminosity for the XMM-

Newton observation is L ∼ 7 × 1039erg s−1 (assuming isotropic emission and a

distance of ≈ 3.6 Mpc), and the spin period of the source is P ≈ 0.4 s (Fürst et al.,

2016).

The synthetic spectra for models with L39 = 10 are generated so that the flux

from the synthetic spectra is similar in value to the observed flux. Models with

B12 = 0.55 were able to produce synthetic spectra with best-fit temperatures of

Tmcd ≈ 0.8 keV and Tbb ≈ 1.6 keV, which are similar to the spectrum from the
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Figure 4.10: The pulsed fraction as a function of energy for the source NGC7793 P13.
The red and blue points with error bars are the observed XMM-Newton and
NuSTAR data, respectively, reported by Fürst et al. (2016). The pulsed fraction
profile shown is from a model with L39 = 10, B12 = 0.55, P = 0.4 s, ξ = 10◦.
The blue shaded region indicates the pulsed fraction profiles obtainable from
this model by varying the inclination i (from i = 10◦ for the region bounding
line at the bottom to i = 70◦ for the region bounding line at the top). The
dashed line in the blue region indicates the pulsed fraction for a model with
i = 45◦, which we found to most closely match the pulsed fraction data.

observation.

Using the model parameters obtained from matching with the observed spec-

trum, a model with ξ = 10◦ and i = 45◦ were able to closely match the pulsed

fractions as reported by Fürst et al. (2016) in the energy intervals 0.3− 0.8, 0.8−

1.6, 1.6−3.0, 3.0−5.0, 5.0−7.0, 7.0−9.0 keV and 3.0−5.0, 5.0−7.0, 7.0−

10.0, 10.0−20.0 keV (for XMM-Newton and NuSTAR data sets respectively). The

results are shown in figure 4.10. For this particular model, the overall trend of

the pulsed fraction profile is consistent with the observational data and the higher

energy (> 3.0 keV) pulsed fraction values are all within the 1σ error margin.
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4.2.2.2 NGC 5907 ULX1

NGC5907 ULX1 is the brightest PULX observed to date, with a luminosity that ex-

ceeds ∼ 500 times the NS Eddington luminosity in some observations (Israel et al.,

2017a). For this specific application, the synethic spectra of the model was matched

to the spectral data from XMM-Newton observation 072956AS1301 (Koliopanos

et al., 2017), which suggest an X-ray luminosity of ∼ 8.3×1040erg s−1 (assuming

isotropic emission and a distance of ≈ 17 Mpc). The best-fit mcd+bb model in this

case has characteristic temperatures Tmcd ≈ 0.7 keV and Tbb ≈ 1.4 keV respectively.

A spin period of P ≈ 1.1 s was used for the models (Israel et al., 2017a).

To match the observed flux of the source would require L39 ∼ 100, which is

above the maximum accretion luminosity of our models. Instead, models with an

accretion luminosity of L39 = 10 and a dipole magnetic field strength parameter of

B12 = 0.8 had a similar synthetic spectrum to the observed spectrum, with best-

fit temperatures of Tmcd ≈ 0.7 keV and Tbb ≈ 1.4 keV. This result suggests that

the spectrum can be adequately described by the optically thick envelope model

and that there is an additional mechanism responsible for the amplification of the

observed flux.

Together with the accretion luminosity and magnetic field strength parameters

used above, a model with ξ = 10◦ and i = 25◦ was able to reproduce the pulsed

fractions as reported by Israel et al. (2017a) in the energy intervals < 2.5 keV and

> 7 keV. The results are shown in figure 4.11.

4.3 Discussion and Conclusions
The model presented in this work is applicable in scenarios where the accreting NS

has a magnetic field B ≳ 1011 G, and the accretion rate is ≳ 1039 erg s−1, such that

an optically thick envelope can develop. If there is little or no beaming and if the

dipole magnetic field strength is typical of X-ray pulsars, PULXs fall in the range

of applicability.

This study is the first to account for the tilt of the dipole moment from the spin-

axis in the calculations of the velocity of the accreting material and the optical depth
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Figure 4.11: The pulsed fraction as a function of energy for the source NGC5907 ULX1.
The red bars are pulsed fraction values given in specific energy intervals
(0 − 2.5 keV and 7 − 12 keV) as reported by Israel et al. (2017a). The
pulsed fraction profile shown is from a model with L39 = 10, B12 = 0.8, P =
1.1 s,ξ = 10◦. The blue shaded region indicates the pulsed fraction profiles
obtainable from this model by varying the inclination (from i = 10◦ for the
region bounding line below to i = 70◦ for the region bounding line above).
The dashed line in the blue region indicates the pulsed fraction profile for the
model with i = 25◦, which we found to most closely match the pulsed fraction
data.

of the envelope. I found an analytical solution to the velocity of the accreting mate-

rial, which decreased computation time and enabled comparison of different model

parameters. Crucially, a tilt of the dipole moment leads to a non-homogeneous tem-

perature distribution on the envelope, which contributes to a greater pulsed emission

as the NS rotates.

The main aim of this work was to understand the observational implications

of an optically thick envelope. In particular, the pulsed fraction profile and phase-

averaged spectrum was studied by comparing the synthetic model data with obser-

vational data from PULXs.
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These models reproduced the trend of increasing pulsed fraction with increas-

ing photon energy, which is observed in PULXs (and in fact a large pulsed fraction

at high photon energies is a typical feature of X-ray pulsars in general). In partic-

ular, they were able to match the pulsed fraction profile of the two PULXs studied

for this work: NGC7793 P13 and NGC5907 ULX1. In fact, a range of pulsed frac-

tions was obtained, from < 5% to ∼ 50% (depending on the tilt and viewing angle).

Thus, the optically thick envelope scenario is also consistent with low pulsed frac-

tions, such as that measured for the PULX NGC1313 X-2 by Sathyaprakash et al.

(2019), provided the viewing angle is close to the spin-axis (as suggested by these

authors) and the dipole magnetic field tilt is small.

The synethic spectra produced by these models are broadly consistent with a

double thermal spectral model, which has previously been used to analyse ULX

spectra (Koliopanos et al., 2017). In particular, model parameters were found

that reproduced the mcd+bb best-fit parameters for NGC7793 P13 and NGC5907

ULX1.

While model parameters were found that reproduced the spectral best-fit pa-

rameters of NGC5907 ULX1, a lower accretion luminosity parameter was used in

the models than the value of the observed luminosity. This was necessary because

the value of the observed luminosity is an order of magnitude larger than the max-

imum accretion luminosity for the optically thick envelope models (see §3.2.5),

which suggests the need for another mechanism to explain the observed luminos-

ity, e.g. luminosity amplification through geometrical beaming by optically thick

outflows from a super-Eddington accretion disc (King & Lasota, 2020; Mushtukov

et al., 2021; Mushtukov & Portegies Zwart, 2023).

A possible mechanism for luminosity amplification in the optically thick enve-

lope model comes from the accretion column emission that is not injected into the

cavity. This part of the emission was not included in this work since the focus was

to model the envelope and disc emission. This emission from the accretion column

accounts for half of the total accretion luminosity and it is funnelled along a narrow

cone aligned with the magnetic axis (since the envelope exterior is optically thick).
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Hence, this emission is highly an-isotropic and would contribute significantly to a

luminosity amplification effect for observers that are within the emission cone.

The contribution of the accretion column to the spectrum requires a full radia-

tive transfer calculation, which is beyond the scope of this work. However, I spec-

ulate that this emission would be dominated by hard X-rays since it comes from a

relatively small region. In fact, Walton et al. (2018) find a hard X-ray power-law

excess in the pulsed part of the broadband spectra of NGC7793 P13 and NGC5907

ULX1 after fitting the lower energy spectra with an mcd+bb model, which could

indicate that this component of the accretion column emission does contribute in

these sources.

The spectral model best-fit parameters for both of the PULXs studied here sug-

gest that the dipole magnetic field strength is < 1012G at the NS surface. However,

the locally super-Eddington luminosity in the accretion column requires a magnetar-

like surface magnetic field strength, i.e. ≳ 1014G (Mushtukov et al., 2015). This

contrast can be explained by the presence of significant multipole components in

the magnetic field, i.e. a more complex magnetic field topology than a pure dipole

(Brice et al., 2021).

As part of this modelling, several simplifying assumptions were made that may

change the specifics of the phase-resolved synethic spectra. One of these assump-

tions is in the use of the Shakura & Sunyaev (1973) thin accretion disc model and

its spectral profile. This could be inaccurate at super-critical accretion rates (locally

super-Eddington for the disc) because the disc becomes geometrically thick due to

radiation pressure and the disc may be advection dominated (Poutanen et al., 2007;

Chashkina et al., 2019).

A more suitable disc model for this regime, (e.g. see Chashkina et al., 2017,

2019), would take into account the effect of the disc thickness on the disc emis-

sion and on the envelope emission. The spectral profile of a thick disc could differ

substantially from that of a thin disc due to changes in the density and viscosity of

the accreting material. In addition, a geometrically thick disc changes the spectral

profile of the envelope by blocking a portion of the emitting area of the envelope,
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which would result in a change of the temperature distribution on the envelope wall.

In the models of the two PULXs, the accretion disc is actually in the super-

critical regime and so is expected to produce outflows (Shakura & Sunyaev, 1973).

Material outflows would change the total mass accretion rate through the envelope

(Mushtukov et al., 2019) and hence change the spectral profile from both the disc

and envelope. In addition, certain LOS would be affected by the collimation of

emission by optically thick outflowing material, in a similar scenario to that pre-

sented by King & Lasota (2020). In this work, the accretion luminosity was as-

sumed to be equal to the mass accretion rate without any mass loss in outflows

for simplicity. In principle, a ray-tracing computation could include the effect of

collimation by outflows but this is left for a future work.

In conclusion, the observed pulsed fraction from NGC7793 P13 and NGC5907

ULX1 can be reproduced in this modelling of an optically thick envelope. In con-

trast, Mushtukov et al. (2021) found that the pulsed fraction values from these

sources would be difficult to explain in the scenario with highly geometrically

beamed emission.

4.4 Appendices

4.4.1 Envelope Cross-Section Area

The envelope cross-section area, Ac, given by equation (4.7) in §4.1.1 is calculated

from geometrical considerations of the accretion flow.

An infinitesimal surface, dAc, perpendicular to the local magnetic field line

direction, B⃗, is also perpendicular to the accretion flow direction. The infinites-

imal surface extends in the azimuthal direction ϕ⃗ with total arc-length 2πr cosθ

and extends in the direction ϕ⃗ × B⃗ with arc-length denoted by dℓ. Hence dAc =

2πr cosθdℓ.

Under the assumption that the photon propagation direction through the opti-

cally thick envelope occurs in the ϕ⃗ × B⃗ direction, the distance is given by

D =
∫ Rm

Rm−Pm

dℓ. (4.21)
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Approximating the circumference of the circles in the ϕ⃗ direction to be constant

for all infinitesimal areas along the ϕ⃗ × B⃗ direction, i.e. by taking the value for the

circumference at the field line at R = Rm − 1
2Pm, gives

2πr cosθ = 2π

(
Rm − 1

2
Pm

)
cos3

θ . (4.22)

This can be justified since the greatest difference in the circumference is 2πPm at

latitude θ = 0◦. The infinitesimal surfaces along the ϕ⃗ × B⃗ direction can now be

integrated, which gives

∫
R

dAc ≈ Ac = 2π

(
Rm − 1

2
Pm

)
Dcos3

θ . (4.23)

4.4.2 Distance to the spin axis in the magnetic reference frame

Points in the magnetic axis reference frame can be described in terms of an or-

thonormal basis

{⃗e1, e⃗2, b⃗}, (4.24)

where b⃗ is aligned with the magnetic dipole moment and e⃗1, e⃗2 satisfy e⃗1 ·⃗e2× b⃗= 1.

Since the dipole magnetic field is axially symmetric, we can choose e⃗1 and e⃗2 such

that the spin axis direction vector, Ω⃗, is given by

Ω⃗ =−sinξ e⃗1 + cosξ b⃗, (4.25)

where ξ is the angle of the tilt between the dipole magnetic moment and the spin

axis.

Let points in the spin axis reference frame be described in terms of the or-

thonormal basis

{⃗e′1, e⃗2, Ω⃗}, (4.26)

which is related to the magnetic axis reference frame vector basis, namely through
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the relations e⃗′1 = cosξ e⃗1 + sinξ b⃗ and the one given in equation (4.25). Hence a

point (x,y,z) in the magnetic axis reference frame is given by

(x′,y′,z′) = (xcosξ + zsinξ , y, −xsinξ + zcosξ ) (4.27)

in the spin axis reference frame. It follows that the distance squared of the point

(x,y,z) from the spin axis is given by

d2 = x′2 + y′2

= x2 cos2
ξ + z2 sin2

ξ +2xzcosξ sinξ + y2, (4.28)

which in a spherical coordinate system, (r,θ ,ϕ), of the magnetic axis reference

frame becomes

d2 = r2
[

cos2
ξ cos2

θ cos2
ϕ + sin2

θ sin2
ξ

+2cosθ cosϕ sinθ cosξ sinξ + cos2
θ sin2

ϕ

]
. (4.29)

Note that θ is the latitude angle and ϕ is the azimuth angle.

4.4.3 Initial Angle for tilted magnetosphere

In the model, the normal to the disc plane is aligned with the spin axis. Hence,

we obtain the initial angle, θ0, where the accreting disc meets the magnetic field

lines from equation (4.27) by setting z′ = Hm/2, where Hm is the height of the

disc at the magnetospheric radius. For dipole magnetic field lines extending to the

magnetospheric radius, r = Rm cos2 θ , we obtain

cos2
θ0 [cosξ sinθ0 − sinξ cosθ0 cosϕ] =

1
2

Hm

Rm
. (4.30)

In the case of geometrically thin disc, we set Hm = 0, which simplifies equation

(4.30) to

tanθ0 = tanξ cosϕ. (4.31)



4.4. Appendices 153

Note that θ0 = π/2 is a non-physical solution since the disc is actually truncated at

the magnetospheric radius.



Chapter 5

General Conclusions

5.1 Summary

Previously, models of accretion onto a NS assumed a pure-dipole magnetic field

topology for simplicity. In this thesis, I have shown that there is a significant change

to the properties of the emission (that originates close to the NS surface) because of

higher degree multipole components or a tilt in the magnetic field moment.

In addition, and particularly for highly-magnetised NS, I have shown that it is

possible to find an analytical solution to the dynamics of the accreting material for a

tilted (from the spin axis) magnetic field. I derived the velocity of accreting charges

for a pure dipole magnetic field topology explicitly. This derivation is easily gener-

alisable to the case of a multipolar magnetic field through the use of the curvilinear

coordinate system presented in §2.

In §3, I adapted an accretion column model (for a highly-magnetised NS) by

relaxing the assumption of a pure dipole magnetic field topology. I used the adapted

accretion column model to diagnose the necessity for a more complex (than pure

dipole) magnetic field topology in PULXs. This was done by taking into account

constraints on the strength of the dipole component from the spin period and spin

period derivative. The results showed a multipole component was necessary to

explain the peak luminosity of NGC 5907 ULX-1. The other PULX studied in

this work, NGC 7793 P13, had a lower peak luminosity by an order of magnitude

but a multipole component was still necessary if no luminosity amplification was
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assumed.

The magnetic field strengths and the complex magnetic field topology, found in

this analysis, suggests PULXs are related to magnetars, which have similar strength

and topology (Tong & Wang, 2019).

In §4, I investigated the phase-resolved spectrum from an optically thick,

closed envelope, which is theorised to manifest for super-Eddington accretion onto

a highly magnetised NS (Mushtukov et al., 2017). I enabled a systematic analysis of

the envelope models by deriving an analytical expression for the velocity of accret-

ing charges that are fixed on rotating and tilted (from the spin axis) magnetic field

lines. The phase-resolved spectrum and pulsed fraction profiles were calculated for

each model by ray-tracing emitting points on the envelope to an observer.

The aim of this work was to check the validity of the closed envelope model

against the data on PULXs by comparing the synthetic pulsed fraction profile with

the observed pulsed fraction profile. I showed that pulsed fraction profiles follow the

general trend seen from the pulsed fraction profiles of PULXs: an increasing pulsed

fraction with increasing energy. The synthetic pulsed fraction profiles were also

consistent with the profile shape, namely starting with a sharp increase at energies

≲ 1keV followed by a shallower increase from ∼ 1keV. A subset of the synthetic

pulsed fraction profiles matched the observed pulsed fraction profiles of NGC 7793

P13 and NGC 5907 ULX-1, which indicates the closed envelope model to be a

favourable interpretation of PULXs.

5.2 Future Work

There are several directions for research made apparent by the work of this the-

sis. I divided these research projects into two categories. In the first category, the

framework for the magnetic field structure can be further developed and applied

to other settings. In the second category, the models can be extended for further

investigation of PULXs. Each category is discussed in turn.

Foremost, the next study that directly relates to the work of this thesis is a

systematic study of the changes to the polarization degree due to higher degree
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multipole components (that dominate close to the surface). Taverna et al. (2015)

studied the polarization fraction and angle of radiation from a NS that propagates

through a QED polarized vacuum (that surrounds the NS) before arriving at an

observer. The effect of the QED polarized vacuum is to align the magnetic field

component of the radiation with the NS magnetic field direction until the adiabatic

radius, where the effect is too weak and the polarization angle of the radiation is

frozen in. Thus, the magnetic field topology at the adiabatic radius directly affects

the final polarization angle. By applying the cuvilinear coordinate system in §2.1.1,

the magnetic field direction at the adiabatic radius is easily found for more complex

magnetic field topologies. The results of this research project would give a way

to quantify the differences that are expected from variation in the magnetic field

topology. They have applications to the IXPE mission, which attempts to measure

the polarization of X-rays from astrophysical sources more precisely and brings

with it a need to accurately assess the polarization.

In general, the dynamics of the accreting material near magnetic null points is

not well understood. An analytical description of these dynamics is needed to cal-

culate (without simulation) the geometry of hot-spots and the footprint of accretion

columns in the case of a dipole plus quadrupole magnetic field topology. This hot-

spot geometry is needed for a calculation of pulse profiles (here meaning the shape

of the pulses in time) from a self-consistent model of accretion onto NSs. Hence, an

understanding of the dynamics gives a way of relating the shapes of pulse profiles

in accreting NSs with the magnetic field topology.

The curvilinear coordinate system of a axisymmetric magnetic field, described

in §2.1.1 can be applied to the accretion column model. This allows for a consistent

accounting of the curvature of the magnetic field lines, even for taller (H > R∗)

accretion columns. By using the globally consistent curvilinear coordinate system

(as done by Canalle et al. 2005) for the simplified hydrodynamical equations (of

the accretion column model in §3.1), some of the assumptions used in the accretion

column model can be relaxed, e.g. the maximum height for an accretion column is

H = R∗ above the surface.
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Once a way to account for the magnetic null points is found, it would also be

possible to extend the accretion column model to compute the maximum luminosity

from a NS with a dipole plus quadrupole magnetic field topology. The maximum

luminosity can be compared with that of the pure dipole and dipole plus octupole

topology. In the dipole plus quadrupole case, the geometric compression is not as

much as in the dipole plus octupole case. Thus, some change to the maximum

luminosity is expected from changes to the density and temperature of the accretion

column.

In addition, it may be possible to extend the analysis of the effect of the mag-

netic field structure to include the toroidal components. Non-axisymmetric mag-

netic field topologies give rise to asymmetric pulse profiles. The results from this

investigation would enable a method for interpretation of the asymmetries in ob-

served pulse profiles in terms of the asymmetry (about the axis) of the magnetic

field topology.

By using the curvilinear coordinate system for general magnetic field topolo-

gies and the ray-tracing technique, it is possible to study the pulsed fraction profiles

from geometries other than the one considered in §4, e.g. an accretion curtain or

accretion column, which applies to a variety of other sub-Eddington accreting NSs.

This enables a robust comparison between the pulsed fraction profiles from surface

hot-spots and from accretion columns, without resorting to approximations of the

geometry (e.g. a cone).

For further investigation of PULXs, the work of this thesis (both §3 and §4)

can be applied immediately to other known PULXs to infer trends in the population

as a whole, e.g. whether or not multipole components are usually needed, whether

or not super-Eddington accretion rates are usual.

However, there are a number of modifications that would improve the fidelity

of the accretion column model. In particular by accounting for the ion contribution

to the scattering cross-section and other QED effects, both of which may influence

the emission properties from a hot (∼ 100keV) and dense plasma (some of which

are now starting to be addressed by Suleimanov et al. 2022). These proposed mod-
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ifications are not new, and have already been addressed in other studies, e.g. the

ion contribution to the scattering cross-section (Zane et al., 2001), and the vacuum

resonance (Kaminker et al., 1982).

The inclusion of the proton cyclotron resonance in the accretion column model

would provide information about the necessary conditions for proton cyclotron line

formation in the accretion column of a super-Eddington accreting NS. This may

alter the credence for the proton cyclotron line found in the spectrum of M51 ULX8

(Brightman et al., 2018).

In addition, a self-consistent treatment of the polarization normal modes that

includes the scattering between the modes is desirable, since the maximum lumi-

nosity was seen to depend on the polarization degree (see §3.2.2). Currently in the

accretion column model, the polarization degree is constant throughout, which is

unlikely to be accurate given the variance in the temperature and density from the

bottom to the top of the column.

Despite the development of super-Eddington discs models (Chashkina et al.,

2017, 2019) and studies on the luminosity amplification from optically thick out-

flows (King, 2009; Mushtukov et al., 2021; Mushtukov & Portegies Zwart, 2023),

there are no quantitative studies on the luminosity amplification from a highly mag-

netised NS accreting at super-Eddington rates, i.e. luminosity amplification from

an optically thick envelope. The envelope model in this thesis only briefly begins

to address the luminosity amplification. A more systematic study of the luminos-

ity amplification is needed to properly assess the validity of applying the envelope

model to the most luminous PULXs, since the accretion rate constraint (given in

§4.2.1) should otherwise rule out most of the more luminous PULXs, including

NGC 5907 ULX-1.

The results from studies of super-Eddington discs can be implemented for the

envelope model. Unlike a thin disc, a thick disc would cover some of the envelope

emitting area, which would change the spectrum of the envelope (from the current

spectrum). This means a different set of model parameters would produce the best-

fitting synthetic spectrum to the observed spectrum (of a particular PULX). Whether
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this would resolve some of the issues with the inferred model parameters from the

best-fit spectra is to be determined.

The use of the observed pulsed fraction profile as a diagnostic tool for the

system can be applied more generally to spectral modelling of PULX. This works

particularly well for PULXs because the soft X-ray part of PULX spectra is ex-

pected to be dominated by the emission from the disc (if the accretion rate is super-

Eddington). The dominance of the disc emission in the soft X-rays bears out in the

pulsed fraction profile because the soft X-rays have a much lower pulsed fraction

than the hard X-rays. Thus, in the spectral models, there is (usually) a soft thermal

component, which is attributed to the disc emission. The other (harder) spectral

component is attributed to emission close to the NS, e.g. from the accretion column

or from the envelope. This interpretation of the origins of the spectral components

gives a new condition for validity through the use of the observed pulsed fraction

profile. Using such a condition would narrow the range of possible spectral models.

This list is only a number of the questions that were raised while conducting

the work in this thesis. Other questions related to the disc-magnetosphere interac-

tion have resurfaced in the context of super-Eddington discs. Providing a theory

to answer these questions would help in resolving questions about accretion more

generally. PULXs serve as a rich source for testing our understanding of the physics

of accretion.
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