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Abstract—Fluid antenna system (FAS) is a new flexible antenna
technology that offers a new approach to multiple access, referred
to as fluid antenna multiple access (FAMA). The performance of
FAMA has been investigated but previous results were based on
simplified spatial correlation models. In this paper, we will revisit
FAMA for the two-user case and study the outage probability by
characterizing the joint spatial correlation among the ports. We
first derive a closed-form lower bound on the outage probability
and reveal that in the absence of spatial correlation, the outage
probability of the system decreases exponentially as the number
of ports increases. We then show that the channel model can be
greatly simplified by focusing upon a limited number of channel
variables, allowing us to derive the outage probability using the
approximate model. To gain insight, we further approximate the
channel model and provide another approximation of the outage
probability that is easier to compute. Simulation results validate
the approximations and demonstrate that the outage probability
decreases with the number of ports but has an error floor unless
the antenna size is increased. Also, when the number of ports
is fixed, the outage probability initially decreases exponentially
with the size but eventually approaches the lower bound.

Index Terms—Fluid antenna, fluid antenna multiple access,
outage probability, spatial correlation.

I. INTRODUCTION

Due to the limited radio spectrum and the explosive growth
of mobile data and devices, massive connectivity has become a
major driver for the fifth generation (5G) and beyond mobile
communication systems [1]. Realizing massive connectivity
is however a difficult task. Massive multiple-input multiple-
output (MIMO) [2], [3] is currently the de facto technology
in 5G to support a large number of users on the same channel
by separating multiuser signals in the spatial domain while
non-orthogonal multiple access (NOMA) [4], [5], [6] is an
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ambitious scheme to overload the spectrum by requiring each
user with intelligent power allocation to eliminate inter-user
interference utilizing interference cancellation. Under practical
conditions, both techniques however could struggle to cope.
One reason is that channel state information (CSI) is required
at the base station (BS) and complex optimization (precoding
for massive MIMO and user clustering and power control for
NOMA) needs to be performed, limiting their scalability. In
5G, massive MIMO is not designed to serve more than 12
users while NOMA (or rate-splitting multiple access (RSMA)
[7]) is too expensive to handle more than 3 users.

To improve scalability, we need a much simpler approach,
one that scales better with the number of users and requires
less CSI at the BS. To this end, recent efforts in fluid antenna
system (FAS) show potential [8], [9]. Specifically, if a user
is equipped with FAS, the user will have the ability to scan
through the channels in the spatial domain and choose to
receive the signal at the position (referred to as ‘port’) where
the interference suffers from a deep fade. This is referred to as
fluid antenna multiple access (FAMA). FAS relies on flexible
antenna technologies that may come in the form of liquid-
based antennas [10], [11], [12], reconfigurable RF pixel-based
antennas [13], [14], [15], stepper motor-based antennas [16],
[17], and flexible structures using metamaterials [18].

Despite being a new topic, recent researches in FAS already
cover single-user [19], [20], [21], [22], [23], [24], [25] and
multiuser systems [26], [27], [28]. The interest of this paper
will be on the multiuser scenario where FAS is used primarily
for multiple access. FAMA was first introduced in 2022 by
Wong and Tong [26]. The idea of FAMA lies in the fact that
multiuser signals fade independently in space and as such, the
FAS at a given user can find and operate at the port where
the interfering users all fade deeply to have interference-less
signal reception for communication. Depending on how fast
the user updates the port of FAS, FAMA can be classified into
fast [26], [27] and slow FAMA [28].

Fast FAMA requires each user to switch its port on a
symbol-by-symbol basis while slow FAMA is more practical
and only has users switching their ports if their channels
change. In [28], it was demonstrated that several users can
be accommodated on the same channel using slow FAMA to
achieve a high multiplexing gain without CSI at the BS side
and interference cancellation receivers at the users. In [29],
an analytical framework for the outage performance of large-
scale FAS-enabled communications was presented, where all
users employ a circular multi-FAS array. To reduce the channel
estimation overhead, a novel sequential linear minimum mean-
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TABLE I
LIST OF NOTATIONS

Notation Definition Notation Definition
Wλ Size of the fluid antenna, where W is the

normalized size and λ is the wavelength
M,L Key parameters in the approximation

N Number of ports pout,k(rk) Outage probability of the FAMA system
sj Data symbol intended for user j g̃

(n)
j,k , ĝ

(n)
j,k , ĝn,l

j,k , g
n,l
j,k Approximations of g(n)

j,k

g
(n)
j,k Channel gain from the j-th BS antenna to the

n-th port of user k
Φ
(n)
k Φ

(n)
k = |ĝ(n)

k,k |/|ĝ
(n)

k̄,k
|

η
(n)
k Additive Gaussian noise Φ̂n,l

k Φ̂n,l
k = |ĝn,l

k,k|/|ĝ
n,l

k̄,k
|

y
(n)
k Received signal at the n-th port of user k Ψ̂k Ψ̂k = max

{
Φ̂n,l
k , 1 ≤ n ≤ N, 1 ≤ l ≤ L

}
gj,k (g

(1)
j,k , . . . , g

(N)
j,k )T Φ

n,l
k Φ

n,l
k = |gn,l

k,k|/|g
n,l

k̄,k
|

σ2
j,kΣ Covariance matrix of gj,k Ψk Ψk = max

{
Φ
n,l
k , 1 ≤ n ≤ N, 1 ≤ l ≤ L

}
UΘUH Eigenvalue decomposition of Σ J0(·) Zero-order Bessel function of the first kind

γth SIR threshold Q1(·, ·) Marcum Q-function of order 1
rk rk =

√
γthpk̄/pk I0(·) Modified Bessel function of the first kind

squared error (LMMSE)-based channel estimation method was
performed for only a very small number of antenna ports.
It was shown that the developed framework can accurately
capture the channel estimation errors on the performance of
the considered network deployments. In [30], the NOMA and
FAS techniques are combined to expand the communication
range of a downlink millimeter wave (mmWave) system.

Accurate performance evaluation is crucial in understanding
the true potential of FAMA but the performance analysis of
FAMA so far has been limited to a simplified channel model
[31], which is unable to accurately characterize the spatial
correlation amongst the ports of the FAS. In [32], Khammassi
et al. adopted the eigenvalue-based model to fully account for
the channel correlation over the ports, and revealed that the
outage probability performance for a single-user FAS could
be quite different from what was originally reported in [19].
In particular, the results in [32] illustrated that increasing the
number of ports (i.e., the spatial resolution of FAS) has a
diminishing return. However, the situation in FAMA is much
less understood. In [33], the eigenvalue-based channel model
was considered for a two-user slow FAMA system.

In this paper, we extend the work of [33] focusing on the
two-user slow FAMA system.1 Our goal is to approximate the
fully correlated channel model, analyze the outage probability
of the system based on the accurate but simplified model, and
gain more insights on how the performance scales with the
fluid antenna size W and the number of ports N . The main
contributions of this work are summarized below.

• Assuming that each user has access to the received signals
from all ports, we first derive a closed-form lower bound
on the outage probability. We show that this bound can
be viewed as the outage probability of a special FAMA
system with no spatial correlation among the ports. In
this idealized scenario, increasing N provides each user

1This paper improves [33] by further simplifying the analysis and making
the resulting expressions more tractable. In contrast to [33], the distinctive
contributions of this paper include: a closed-form lower bound on the outage
probability that serves as a benchmark; a second-stage approximation of the
channel model and the outage probability analysis based on it; and more
insightful observations derived from both the analysis and simulation results.

with a larger number of alternatives in selecting a port
with minimal interference. Consequently, the lower bound
experiences an exponential reduction with an increase in
N and can thus be arbitrarily small. As we will analyze
and also show by simulations, this is quite different from
the real FAMA system since the channel gains of different
ports are usually highly correlated.

• Although the eigenvalue-based channel model in [32] can
accurately characterize the spatial correlation among the
ports, it results in expressions involving N nested inte-
grals in the analysis of the outage probability, which are
computationally intractable. To facilitate the analysis, we
show that the channel model is determined by a Hermitian
Toeplitz matrix whose energy is mainly concentrated in
a few largest eigenvalues. As a result, it is possible to
approximate each channel coefficient by considering M
dominant eigenvalues, where M is considerably smaller
than N . Based on this simplified channel model, the
outage probability of the system is analyzed. However,
despite the significant simplification achieved in the first
stage, the approximated outage probability is still difficult
to compute, as it is a 4M -fold integral. Therefore, we
extend the second-stage approximation scheme for the
single-user FAS in [32] to the FAMA system. Adopting
this new model, another approximation of the outage
probability is derived and expressed as a 2-fold integral,
which is easy to compute and more insightful.

• Simulation results validate the performance of the two-
stage scheme in approximating the channel model. We
see that as N increases while the normalized size of the
fluid antenna W is fixed, the outage probability initially
decreases dramatically. However, it eventually saturates
due to the strong inter-correlation between closely spaced
ports, which suggests that an excessive increase in N does
not lead to additional gain if W is fixed. Furthermore,
for a given N , we observe that the outage probability
decreases almost exponentially as W increases at the
beginning and then approaches the lower bound we have
derived. This indicates that increasing the size of a fluid
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Fig. 1. A downlink slow FAMA system with a BS using two fixed antennas to communicate to two FAS-assisted users.

antenna can significantly improve the performance of the
FAMA system, especially when W is small.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce the two-user FAMA system and the exact
channel model. Section III provides the analysis of outage
probability. Section IV then attempts to make some interesting
observations of two-user FAMA using some numerical results.
Finally, Section V draws some concluding remarks. Auxiliary
technical results are given in the appendices.

Notations: We use boldface upper and lower case letters
to denote matrices and column vectors. E [·] and Cov [·] are
respectively the statistical expectation and covariance. CN
represents the complex Gaussian distribution. (·)T and |·| stand
for transpose and magnitude, respectively. (·)n,n′ denotes the
element of a matrix in the n-th row and n′-th column. To
help readers follow the mathematical contents, the meanings
of some key notations are summarized in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a downlink slow FAMA
system, comprising a BS and two users. The BS has two fixed
antennas, while each user is equipped with a FAS. Each BS
antenna serves one particular user. Without loss of generality,
we assume that the k-th antenna at the BS serves user k. The
fluid antenna’s location can be instantaneously switched to one
of the N predetermined ports, which are evenly distributed
along a linear dimension of length Wλ and share a common
radio frequency (RF) chain.2 Then, the received signal at the
n-th port of user k is given by

y
(n)
k =

2∑
j=1

g
(n)
j,k sj + η

(n)
k , for k = 1, 2, (1)

2This structure can be seen as an approximation of an RF pixel-based linear
FAS that has many compact antenna pixels, among which one antenna (formed
by several pixels) can be activated at each time [34]. Using this technology,
it is possible to switch the antennas with almost no time delay.

where sj ∼ CN (0, pj) denotes the signal intended for user j,
g
(n)
j,k ∼ CN (0, σ2

j,k) is the channel coefficient from the j-th
BS antenna to the n-th port of user k, and η

(n)
k ∼ CN (0, σ2

0)
denotes the additive white Gaussian noise. Here pj and σ2

0 are
respectively the signal and noise power, and σ2

j,k can be seen
as the large-scale fading of the link from the j-th BS antenna
to user k.

Let gj,k =
(
g
(1)
j,k , . . . , g

(N)
j,k

)T
and Σj,k = σ2

j,kΣ be the
covariance matrix of gj,k. As in [19] and [26], the spatial
correlation over the ports is characterized based on the Jake’s
model [35]. Thus, the (n, n′)-th entry of Σ is given by

(Σ)n,n′ =
1

σ2
j,k

Cov
[
g
(n)
j,k , g

(n′)
j,k

]
= J0

(
2π|n− n′|λ∆

λ

)
= J0 (2π(n− n′)∆) , (2)

where ∆ = W/(N − 1) is the normalized distance between
any two adjacent ports and J0(·) is defined in Table I.

Considering that a FAS usually has a large number of
ports, it would be very complicated and time-consuming to
estimate the full CSI, i.e., gj,k,∀j, k ∈ {1, 2}, if all the
ports are involved in the estimation. There have been some
works studying the performance of FAS-assisted systems with
channel estimation errors and the channel estimation problem
in FAS-assisted systems. For example, in [29], a novel se-
quential LMMSE-based method was performed to estimate the
channel gains for only a very small number of antenna ports.
Then, an analytical framework for the outage performance
that accurately captures the channel estimation errors was
presented. In [36], it was shown that in the case of finite
scattering channels, it is possible to transmit a small number of
pilots and estimate the sparse channel parameters at only a few
selected ports. Then, the full CSI can be reconstructed based
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on the geometric channel model. In this paper, we assume that
the full CSI is known at the BS for convenience. If only partial
CSI is known, one may modify the analysis in this paper by
using the technique proposed in [29].

It is known from (1) that the signal-to-interference plus
noise ratio (SINR) of user k at the n-th port is found as

γ
(n)
k =

pk|g(n)k,k |2

pk̄|g
(n)

k̄,k
|2 + σ2

0

(a)
≈

pk|g(n)k,k |2

pk̄|g
(n)

k̄,k
|2
, (3)

where k̄ = 1 if k = 2 and k̄ = 2 if k = 1, and (a) assumes that
the interference power is much greater than the noise power.
Though SINR provides a more precise measure of the system
performance, the signal-to-interference ratio (SIR) serves as a
suitable approximation in interference-limited environments.

This paper aims to analyze the outage probability of the
considered FAMA system, which is defined as

pout,k(rk) = Pr

max

 |g(1)k,k|2

|g(1)
k̄,k

|2
, . . . ,

|g(N)
k,k |2

|g(N)

k̄,k
|2

 <
γthpk̄
pk


= Pr

 |g(1)k,k|

|g(1)
k̄,k

|
< rk, . . . ,

|g(N)
k,k |

|g(N)

k̄,k
|
< rk

 , (4)

where γth is the SIR threshold and rk ≜
√
γthpk̄/pk.

In order to analyze pout,k(rk) and comprehend the perfor-
mance of the FAMA system under consideration, it is crucial
to model the channel vector gj,k such that it adheres to
the aforementioned distribution, i.e., g(n)j,k ∼ CN (0, σ2

j,k) and
E[gj,kgH

j,k] = σ2
j,kΣ. As demonstrated in [32], the eigenvalue-

based model can effectively achieve this objective by repre-
senting each channel coefficient g(n)j,k as a linear combination
of N independent and identically distributed (i.i.d.) complex
Gaussian random variables. In particular, let UΘUH denote
the eigen-decomposition of Σ, where U is a unitary matrix
and Θ = diag{θ1, . . . , θN} is the eigenvalue matrix, and
assume that the eigenvalues in Θ are arranged in descending
order, i.e., θ1 ≥ · · · ≥ θN . Let

gj,k = σj,kUΘ
1
2xj,k, (5)

where xj,k = (x
(1)
j,k, . . . , x

(N)
j,k )T and x

(n)
j,k ∼ CN (0, 1). Note

that x(n)
j,k can also be expressed as x

(n)
j,k = a

(n)
j,k + ib

(n)
j,k , where

a
(n)
j,k and b

(n)
j,k are i.i.d. real Gaussian variables with zero-mean

and variance 1
2 . It can be easily checked that gj,k constructed

in (5) satisfies E[gj,kgH
j,k] = σ2

j,kΣ. In addition, based on (5),
the n-th element of gj,k, i.e., g(n)j,k , can be expressed as

g
(n)
j,k = σj,k

N∑
m=1

√
θmun,mx

(m)
j,k

= σj,k

N∑
m=1

√
θmun,m

(
a
(m)
j,k + ib

(m)
j,k

)
, (6)

where un,m is the (n,m)-th element of U . Since J0(0) = 1,
it is known from (2) that (Σ)n,n = 1. Then, the variance of

g
(n)
j,k constructed in (6) is given by

σ2
j,k

N∑
m=1

θmu2
n,m = σ2

j,k(Σ)n,n = σ2
j,k. (7)

Hence, g(n)j,k ∼ CN (0, σ2
j,k). The model in (5) and (6) can thus

perfectly characterize the distribution of the channel gains and
the spatial correlation among the ports. However, using this
model for analysis results in expressions involving N nested
integrals, which are difficult to compute. Therefore, a channel
model that can accurately approximate the strong correlation
of fluid antennas, and at the same time, maintain analytical
tractability, is of great importance to the study.

III. MAIN RESULTS

In this section, we analyze the outage probability of the
two-user slow FAMA system. We first provide a lower bound
on the outage probability. Then as in [32], we approximate
the channel model (6) in two steps, and analyze the outage
probability of the FAMA system using the simplified models.

A. Lower Bound on the Outage Probability

Let yk = (y
(1)
k , . . . , y

(N)
k )T and ηk = (η

(1)
k , . . . , η

(N)
k )T .

The received signal of user k, i.e., (1), can be rewritten in a
vector form as

yk =

2∑
j=1

gj,ksj + ηk. (8)

Assume that user k can observe the received signals at all
ports, i.e., it knows all elements of yk. Obviously, this is an
ideal assumption that cannot be realized because each FAS has
only one antenna and one RF chain. Therefore, within each
symbol, the antenna can only stop at one port and observe the
signal at that specific point. We make this assumption here
mainly to derive a lower bound on the outage probability
in Theorem 1, and we no longer need it in the following
subsections. Applying the unitary matrix U , resulted from the
eigen-decomposition of Σ, to yk, and using the model of gj,k
constructed in (5), we obtain

ŷk = UHyk

=

2∑
j=1

hj,ksj + η̂k, for k = 1, 2, (9)

where

hj,k = UHgj,k = σj,kΘ
1
2xj,k, (10)

and η̂k = UHηk ∼ CN (0, σ2
0IN ). From the definition of xj,k

in (5), hj,k ∼ CN (0, σ2
j,kΘ). Hence, different from gj,k, the

entries in hj,k are independent of each other. The correlated
channel (1) is thus de-correlated by (9). Denote

plb
out,k(rk) = Pr

 |h(1)
k,k|

|h(1)

k̄,k
|
< rk, . . . ,

|h(N)
k,k |

|h(N)

k̄,k
|
< rk

 . (11)

In the following theorem we analyze plb
out,k(rk) and show that

it is a lower bound to the outage probability pout,k(rk).
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Theorem 1. The outage probability pout,k(rk) in (4) is lower
bounded by plb

out,k(rk), where

plb
out,k(rk) =

(
r2k

1 + r2k

)N

. (12)

Proof: See Appendix A.

Remark 1. As we explained in Appendix A, plb
out,k(rk) can be

seen as the outage probability of the special case of (1) with
no spatial correlation among ports and additive noise. In this
idealized scenario, increasing the number of ports N provides
each user with a greater number of alternatives in selecting a
port with minimal interference. Therefore, as shown by (12),
the outage probability experiences an exponential reduction
with an increase in N . However, in practice, the N ports of
a fluid antenna are evenly distributed within a limited linear
space of length Wλ and the ports are correlated. Hence, with
a fixed W , increasing N helps reduce the outage probability at
the beginning, but then saturates since a smaller port distance
causes strong inter-correlation. Accordingly, with a fixed N ,
if W increases, the distance between two adjacent ports gets
larger and the outage probability approaches the lower bound
plb

out,k(rk). We will further show this by simulations. ♢

B. First-stage Approximation

Here, we show that the channel model g(n)j,k in (6) can be
approximated by taking only a few eigenvalues into account.

1) Channel Model Approximation: In (6), the exact channel
model is mainly determined by Σ, which on one hand, ensures
g
(n)
j,k ∼ CN (0, σ2

j,k), and on the other hand, determines the
correlation of the elements in gj,k. In [32, Theorem 5], it is
demonstrated that when N is large, the fraction of eigenvalues
of Σ less than a small threshold approaches a constant that is
independent of the threshold. Then, it is proposed to consider
only ϵ-rank eigenvalues in the channel model, where (see [32,
(19)])

ϵ-rank ≈ 2W

(
N

N − 1

)
. (13)

In the following we study the property of the eigenvalues of Σ
from another perspective and show that similar observations
can be made as [32].

It can be found from (2) that the elements of Σ satisfy

(Σ)n,n′ = (Σ)n′,n

= (Σ)n+1,n′+1, for 1 ≤ n, n′ ≤ N − 1. (14)

Σ is thus a Hermitian Toeplitz matrix. Since a FAS usually
has large numbers of ports, i.e., N is large, we prove later that
θ1 ≫ θN and only a few eigenvalues of Σ are significant.
This makes it possible to approximate g

(n)
j,k in (6) by taking

only a few eigenvalues into account. Specifically, we consider
M ≪ N terms in (6) with the largest eigenvalues, neglect the
other terms, and obtain the following approximation

g̃
(n)
j,k = σj,k

M∑
m=1

√
θmun,m

(
a
(m)
j,k + ib

(m)
j,k

)
. (15)

By considering only M terms with dominant eigenvalues,
which capture the most significant channel variations, we

are able to reduce the complexity of the analysis while still
maintaining reasonable accuracy. Then, a crucial question is
to what extent g̃(n)j,k can approximate g

(n)
j,k . To address this, we

introduce a threshold θth for the eigenvalues of Σ and define
the step function

H(θ, θth) ≜

{
1, θ > θth,
0, θ ≤ θth.

(16)

In addition, we define
DN (θth) ≜

1

N

N∑
n=1

H(θn, θth),

SN (θth) ≜
1

N

N∑
n=1

θnH(θn, θth).

(17)

Obviously, we can interpret DN (θth) as the proportion of
eigenvalues greater than θth and SN (θth) as the average value
of those eigenvalues. The limits of DN (θth) and SN (θth) are
derived in the following theorem.

Theorem 2. As the number of ports N grows large, the limits
of DN (θth) and SN (θth) are, respectively, approximated as

lim
N→+∞

DN (θth) ≈
1

2π

∫ π

−π

Ĥ(f(x), θth)dx, (18)

lim
N→+∞

SN (θth) ≈
1

2π

∫ π

−π

f(x)Ĥ(f(x), θth)dx, (19)

where f(x), given in (44), is an exponential-form Fourier
series, and Ĥ(f(x), θth), provided in (45), is a smooth ap-
proximation of the non-continuous step function H(θ, θth).

Proof: See Appendix B.
In the following Table II, we compute the limits of DN and

SN based on (18) and (19). Since
∑N

n=1 θn = tr(Σ) = N ,
which is large, we set θth = 1. For comparison, the value of
ϵ-rank/N for different W is also provided in the table, where
ϵ-rank is defined in (13). Note that when computing the limits
of DN and SN , we consider a fixed ∆, i.e., fixed adjacent ports
distance, since otherwise the elements of Σ vary with ∆ (see
(43)). Here we set ∆ = W/99, i.e., the distance between any
two adjacent ports is fixed as if there are 100 ports.

TABLE II
LIMITS OF DN (1) AND SN (1), AND ϵ-RANK/N FOR DIFFERENT W

W 0.5 1 2 3 4 5

Limit of DN (1) 1.3% 2.3% 4.3% 6.3% 8.3% 10.4%
Limit of SN (1) 0.9997 0.9996 0.9993 0.9990 0.9988 0.9996
ϵ-rank/N in [32] 1.0% 2.0% 4.0% 6.1% 8.1% 10.1%

Table II illustrates that the limit of DN (1) is very small,
indicating that only a small fraction of eigenvalues exceed 1.
On the other hand, the limit of SN (1) is quite close to 1.
This observation, combined with the fact that 1

N

∑N
n=1 θn = 1

suggests that the energy of Σ is concentrated in the largest
few eigenvalues. Moreover, it can be seen that DN (1) is quite
close to ϵ-rank/N . Therefore, with a sufficiently large N , g̃(n)j,k

in (15) can accurately approximate g
(n)
j,k using a small M . We

will further show this by simulations in Section IV.
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To facilitate the analysis of outage probability, following the
approach in [32], we introduce two additional variables c

(n)
j,k

and d
(n)
j,k , which are i.i.d. Gaussian variables with zero-mean

and variance 1
2 , to g̃

(n)
j,k , and get

ĝ
(n)
j,k = σj,k

M∑
m=1

√
θmun,m

(
a
(m)
j,k + ib

(m)
j,k

)

+ σj,k

√√√√1−
M∑

m=1

θmu2
n,m

(
c
(n)
j,k + id

(n)
j,k

)
. (20)

In contrast to g̃
(n)
j,k given by (15), the new approximation ĝ

(n)
j,k

offers two advantages. First, its variance is precisely σ2
j,k. Sec-

ond, as we will demonstrate in the subsequent subsection, this
approximation simplifies the analysis of the outage probability,
making it more feasible to evaluate.

2) Outage Probability Analysis: According to (20), the
outage probability of user k in (4) can be approximated as

pout,k(rk) ≈ Pr

 |ĝ(1)k,k|

|ĝ(1)
k̄,k

|
< rk, . . . ,

|ĝ(N)
k,k |

|ĝ(N)

k̄,k
|
< rk


= Pr

{
Φ
(1)
k < rk, . . . , Φ

(N)
k < rk

}
= F

max
{
Φ

(1)
k ,...,Φ

(N)
k

}(rk), (21)

where Φ
(n)
k = |ĝ(n)k,k |/|ĝ

(n)

k̄,k
|. In the following theorem,

we provide the cumulative distribution function (CDF) of
max{Φ(1)

k , . . . , Φ
(N)
k }.

Theorem 3. With the approximation ĝ
(n)
j,k provided in (20), the

CDF of max
{
Φ
(1)
k , . . . , Φ

(N)
k

}
is given by (22) at the bottom

of this page, where

F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(rk)

= 1−
∫ +∞

0

Q1


√√√√α

(n)
k,k

β
(n)
k,k

,
rkz√
β
(n)
k,k

 z

β
(n)

k̄,k

exp

−
z2 + α

(n)

k̄,k

2β
(n)

k̄,k


× I0


√
α
(n)

k̄,k

β
(n)

k̄,k

z

 dz, (23)

in which Q1(·, ·) and I0(·) are defined in Table I, and α
(n)
j,k as

well as β
(n)
j,k are given in (49).

Proof: See Appendix C.

Based on (21) and Theorem 3, we could obtain an approx-
imation of the FAMA system’s outage probability pout,k(rk).
To differentiate it from the scheme presented in the subsequent
subsection, we regard this as the first-stage approximation.

C. Second-stage Approximation

By taking into account only M largest eigenvalues, the
channel model g

(n)
j,k in (6) has been significantly simplified

by g̃
(n)
j,k and ĝ

(n)
j,k in the first stage. However, as shown by

(22), the CDF expression F
max

{
Φ

(1)
k ,...,Φ

(N)
k

}(rk), which is an

approximation of pout,k(rk), is still hard to compute as it is a
4M -fold integral (let alone the integral (23)). Therefore, in this
subsection we further approximate the distribution of ĝ

(n)
j,k in

(20) or ĝj,k = (ĝ
(1)
j,k , . . . , ĝ

(N)
j,k )T using the strategy proposed

in [32]. As in [32], we also call it second-stage approximation.
1) Channel Model Approximation: Here, we approximate

ĝj,k in two steps. In the first step, we define a random
matrix Ĝj,k of size N ×L, where each column has the same
distribution as ĝj,k, while different columns are statistically
independent. Therefore, Ĝj,k can be seen as an L-dimensional
extension of ĝj,k. Here L is a key parameter that affects the
approximation accuracy and has to be well designed. Then in
the second step, we define another random matrix Gj,k of the
same size to approximate the distribution of Ĝj,k.

In particular, we define

ĝn,lj,k = σj,k

M∑
m=1

√
θmun,m

(
âm,l
j,k + ib̂m,l

j,k

)

+ σj,k

√√√√1−
M∑

m=1

θmu2
n,m

(
ĉn,lj,k + id̂n,lj,k

)
, (24)

and

Ĝj,k =


ĝ1,1j,k ĝ1,2j,k · · · ĝ1,Lj,k

ĝ2,1j,k ĝ2,2j,k · · · ĝ2,Lj,k
...

...
. . .

...
ĝN,1
j,k ĝN,2

j,k · · · ĝN,L
j,k

 , (25)

where âm,l
j,k , b̂m,l

j,k , ĉn,lj,k, and d̂n,lj,k are i.i.d. Gaussian variables
with zero-mean and variance 1

2 . It can be seen from (24)
that each ĝn,lj,k consists of 2(M + 1) random variables, i.e.,
(â1,lj,k, . . . , â

M,l
j,k )T , (b̂1,lj,k, . . . , b̂

M,l
j,k )T , ĉn,lj,k, and d̂n,lj,k. The entries

in the same column of Ĝj,k share the same (â1,lj,k, . . . , â
M,l
j,k )T

and (b̂1,lj,k, . . . , b̂
M,l
j,k )T . Therefore, Ĝj,k has dependent rows

F
max

{
Φ

(1)
k ,...,Φ

(N)
k

}(rk)
=

1

π2M

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp

{
−

M∑
m=1

[(
a
(m)
k,k

)2
+
(
a
(m)

k̄,k

)2
+
(
b
(m)
k,k

)2
+
(
b
(m)

k̄,k

)2]}

×
N∏

n=1

F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(rk) da
(1)
k,k · · · da

(M)
k,k da

(1)

k̄,k
· · · da(M)

k̄,k
db

(1)
k,k · · · db

(M)
k,k db

(1)

k̄,k
· · · db(M)

k̄,k
, (22)
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and each of its column has the same distribution as ĝj,k. In
addition, it can be found that all entries in Ĝj,k use different
ĉn,lj,k and d̂n,lj,k, and distinct columns use different variables
(â1,lj,k, . . . , â

M,l
j,k )T and (b̂1,lj,k, . . . , b̂

M,l
j,k )T . Therefore, Ĝj,k has

independent columns and it can be seen as an L-dimensional
extension of ĝj,k.

Next, we define another random matrix Gj,k of size N ×L
to approximate the distribution of Ĝj,k. In particular, we define

gn,lj,k = σj,k

M∑
m=1

√
θmun,m

(
an,mj,k + ib

n,m

j,k

)

+ σj,k

√√√√1−
M∑

m=1

θmu2
n,m

(
cn,lj,k + id

n,l

j,k

)
, (26)

and

Gj,k =


g1,1j,k g1,2j,k · · · g1,Lj,k

g2,1j,k g2,2j,k · · · g2,Lj,k
...

...
. . .

...
gN,1
j,k gN,2

j,k · · · gN,L
j,k

 . (27)

We see from (26) that all entries in Gj,k use different cn,lj,k

and d
n,l

j,k, and the entries in the same row share the same

(an,1j,k , . . . , a
n,M
j,k )T and (b

n,1

j,k , . . . , b
n,M

j,k )T . Therefore, differ-
ent from Ĝj,k, Gj,k has independent rows and dependent
columns. As we will show below, the introduction of the
new random matrix Gj,k makes the analysis of the outage
probability much more manageable.

To ensure an effective approximation of Ĝj,k by Gj,k, it is
essential to determine a well-designed parameter L. As in [32],
we vectorize both Ĝj,k and Gj,k, and minimize the distance
between the covariance matrices of the obtained vectors by
optimizing L. Then, according to [32, Theorem 8], we have

L = min

{⌊
1.52(N − 1)

2πW

⌋
, N

}
, (28)

where ⌊·⌋ is the floor function.
2) Outage Probability Analysis: Now we analyze the out-

age probability of the considered FAMA system based on the
new approximation. First, we define

Φ̂n,l
k =

|ĝn,lk,k|
|ĝn,l

k̄,k
|
,

Ψ̂k = max
{
Φ̂n,l
k , 1 ≤ n ≤ N, 1 ≤ l ≤ L

}
.

(29)

Since Ĝj,k,∀j, k ∈ {1, 2} has L independent columns and
each column has the same distribution as ĝj,k, the CDF of Ψ̂k

can be expressed as

FΨ̂k
(rk) = Pr

{
Φ̂n,l
k < rk, 1 ≤ n ≤ N, 1 ≤ l ≤ L

}
=

L∏
l=1

Pr
{
Φ̂1,l
k < rk, · · · , Φ̂N,l

k < rk

}
=

[
F
max

{
Φ

(1)
k ,...,Φ

(N)
k

}(rk)
]L

, (30)

where F
max

{
Φ

(1)
k ,...,Φ

(N)
k

}(rk) is the first-stage approximation

of the outage probability given in (21). Furthermore, we define
Φ
n,l

k =
|gn,lk,k|
|gn,l

k̄,k
|
,

Ψk = max
{
Φ
n,l

k , 1 ≤ n ≤ N, 1 ≤ l ≤ L
}
.

(31)

Since Gj,k,∀j, k ∈ {1, 2} has independent rows, the CDF of
Ψ̂k is

FΨk
(rk) = Pr

{
Φ
n,l

k ≤ rk, 1 ≤ n ≤ N, 1 ≤ l ≤ L
}

=

N∏
n=1

Pr
{
Φ
n,l

k ≤ rk, 1 ≤ l ≤ L
}
. (32)

In the following theorem, we provide the closed-form expres-
sion of FΨk

(rk).

Theorem 4. According to the above definitions, the CDF of
Ψk can be computed as

FΨk
(rk)

=

N∏
n=1

1

σ2
k,kσ

2
k̄,k

ξ2n

∫ +∞

0

∫ +∞

0

exp

(
− α1

σ2
k,kξn

− α2

σ2
k̄,k

ξn

)

×

1− ∫ +∞

0

Q1

√ α1

β
(n)

k,k

,
rkz√
β
(n)

k,k

 z

β
(n)

k̄,k

exp

−z2 + α2

2β
(n)

k̄,k


× I0

√
α2

β
(n)

k̄,k

z

 dz

L

dα1dα2, (33)

where ξn =
∑M

m=1 θmu2
n,m and β

(n)

j,k =
σ2
j,k

2 (1− ξn).

Proof: See Appendix D.
Since Gj,k approximates Ĝj,k, according to (21), (30), and

Theorem 4, we can get the second-stage approximation of the
outage probability as

pout,k(rk) ≈ F
max

{
Φ

(1)
k ,...,Φ

(N)
k

}(rk)
=
[
FΨ̂k

(rk)
] 1

L

≈
[
FΨk

(rk)
] 1

L . (34)

Theorem 5. If M is large enough such that ξn → 1, the CDF
of Ψk can be approximated as

FΨk
(rk) ≈

(
r2k

1 + r2k

)N

. (35)

Proof: See Appendix E.

IV. RESULTS AND DISCUSSIONS

In this section, we present simulation results to evaluate
the performance of the two-user slow FAMA system, and
study the accuracy of the proposed lower bound as well as
the approximation schemes. For convenience, we assume equal
transmit power for both BS antennas, i.e., p1 = p2. In addition,
we assume equal large-scale fading from different BS antennas
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Fig. 2. Outage probability versus γth with N = 50.

2 4 6 8 10 12 14 16 18 20 22 24

Normalized size of the fluid antenna W

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

O
u
ta

g
e
 p

ro
b
a
b
ili

ty

N = 30, Empirical result

N = 30, Lower bound

N = 40, Empirical result

N = 40, Lower bound

N = 50, Empirical result

N = 50, Lower bound

Fig. 3. Outage probability versus W with γth = 5 dB.

to the same user, i.e., σ1,k = σ2,k. Then, it is obvious from (4)
that σj,k does not affect the value of the outage probability.
Thus, we simply set σ1,k = σ2,k = 1. We assume that the FAS
operates at frequency of 5GHz with a wavelength λ = 6cm [9].
It is thus reasonable to consider W in the interval [0, 5], i.e.,
the size of a FAS on the user side (mobile phone or laptop)
varies from 0 to 30cm. In most figures in the simulation, we
consider W ∈ [0, 5]. However, in some cases, to observe a
trend in the outage probability or to see the performance of the
proposed approximation schemes under more configurations,
we also show large W . For example, in Fig. 2, by varying
W from 2 to 20, we see that the outage probability quickly
approaches the lower bound as W increases.

In the following simulation, some results are obtained based
on the closed-form expressions, e.g., the lower bound (12) and
the second-stage approximation of the outage probability (5).
Some results are obtained using Monte Carlo simulations by
averaging over 108 independent channel realizations. For ex-

2 4 6 8 10 12 14

M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W = 0.5, 1, 2, 3, 4, 5

Fig. 4. Average variance of g̃(n)
j,k ,∀n ∈ {1, . . . , N} versus the approxima-

tion level M with N = 100.

ample, the empirical value of the outage probability is obtained
by Monte Carlo simulation based on the exact channel model
g
(n)
j,k given in (6).

A. Lower Bound on the Outage Probability

In Fig. 2 and Fig. 3, we compare the empirical results
of the FAMA system’s outage probability with the lower
bound. It can be seen from these two figures that when the
normalized size of the fluid antenna W is large, the empirical
curves get quite close to the lower bound. This is because,
as shown in Appendix A, the lower bound can be seen as
the outage probability of an idealized FAMA system with no
spatial correlation among ports and additive noise. For a true
FAMA system, when N is fixed and W increases, the distance
between two adjacent ports gets larger and the correlation
between any two ports diminishes. The empirical results thus
approach the lower bound in this case. Moreover, Fig. 3 shows
that when N = 30 and N = 40, the empirical results generally
decrease with W , but the monotonicity of the curves vary at
some points. This is because the channel model is generated
based on the Jake’s model. As shown in (2), this model
involves the zero-order Bessel function of the first kind J0(·),
whose amplitude is not strictly monotonically decreasing with
respect to the variable. Therefore, in cases where the value of
W is large and its increment is relatively small, it is possible
for the empirical curves to exhibit oscillations.

B. First-stage Approximation

In this subsection, we investigate the performance of the
first-stage approximation. It should be noticed that although
the channel model g(n)j,k in (6) has been significantly simplified
by ĝ

(n)
j,k , the CDF expression in Theorem 3 is still hard to

compute as it is a 4M -fold integral (let alone the integral
(23)). Therefore, we obtain the first-stage approximation of
the outage probability based on the channel models g̃

(n)
j,k and

ĝ
(n)
j,k in (15) and (20) by Monte Carlo simulations.
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Fig. 5. Outage probability based on g
(n)
j,k , g̃(n)

j,k , and ĝ
(n)
j,k versus the SIR

threshold γth with W = 1 and N = 100.
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Fig. 6. Outage probability and the first-stage approximation versus N with
γth = 5 dB and M = 10.

It is known from (15) that g̃(n)j,k ∼ CN (0,
∑M

m=1 θmu2
n,m).

Fig. 4 depicts the value of

1

N

N∑
n=1

Cov
[
g̃
(n)
j,k

]
=

1

N

N∑
n=1

M∑
m=1

θmu2
n,m, (36)

which can be seen as the average variance of g̃
(n)
j,k ,∀n ∈ {1,

. . . , N}. Note that in the extreme M = N case, the value of
(36) is 1 since

∑N
m=1 θmu2

n,m = 1 (see (7)). Therefore, when
M is smaller than N and increases, the value of (36) should
gradually approach 1. Fig. 4 shows that this is true and can be
realized by a small M (in contrast to N ). For example, when
W = 0.5 and W = 2, the value of (36) is close to 1 with
M , respectively, being 3 and 6. Therefore, the exact channel
model g(n)j,k in (6) can be accurately approximated by taking
into account only a few eigenvalues of Σ. This is consistent
with the observation in Table II.
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Fig. 7. Outage probability and the first-stage approximation versus W with
N = 100 and M = 10.

Fig. 5 illustrates the outage probability using the exact
channel model g

(n)
j,k , as well as its approximations g̃

(n)
j,k and

ĝ
(n)
j,k . It can be observed that compared to the curve obtained

from g
(n)
j,k , the outage probability resulting from g̃

(n)
j,k and ĝ

(n)
j,k

respectively serve as upper and lower bounds. As M increases,
the bounds approach quickly to the curve obtained from g

(n)
j,k .

The approximation is considered sufficiently accurate when
M = 4 (with W = 1 and N = 100), which aligns with the
observations in Fig. 4. Since both g̃

(n)
j,k and ĝ

(n)
j,k can provide

good approximations of g
(n)
j,k , and it is more convenient to

analyze the outage probability based on ĝ
(n)
j,k , we only plot the

curves for g(n)j,k and ĝ
(n)
j,k in the subsequent Figs. 6 and 7.

Figs. 6 and 7 provide insights into the impact of N and W
on the outage probability. Several observations can be made.
First, when W is small, e.g., W = 1, the outage probability
remains almost constant as N increases. In contrast, when W
is large, the outage probability first decreases greatly with N
and then saturates. This is because the antenna ports are highly
correlated. With a fixed W , increasing N initially helps reduce
the outage probability by introducing additional diversity.
However, as N becomes large, the benefits of increased N
diminish due to the stronger inter-correlation resulting from
smaller port distances. Secondly, for a given N , the system’s
outage probability decreases exponentially with W . But this
is not always true. In fact, as demonstrated in Fig. 3, for
a given N , when W becomes sufficiently large, the outage
probability approaches the derived lower bound. Furthermore,
both Fig. 6 and Fig. 7 highlight an interesting observation
regarding the approximation level M . When W is small, the
solid and dashed lines completely coincide, indicating that the
approximation scheme using ĝ

(n)
j,k with M = 10 is sufficient

for accurate results. However, when W becomes larger, for
example, W = 4.5 or W = 5, the outage probability obtained
using ĝ

(n)
j,k is noticeably smaller than that resulted from g

(n)
j,k .

This discrepancy arises because we set the approximation level
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Fig. 8. Empirical CDF versus the second-stage approximation of the outage
probability with (a). N = 50 and M = 10; (b). W = 5 and M = 10.
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Fig. 9. Outage probability and the second-stage approximation versus N
with γth = 5 dB and M = 10.

M to be 10 for all configurations. It is known from Fig. 4 that
this is adequate to accurately represent the channel behavior
when W is smaller than 4. However, when W = 5, a higher
approximation level, such as M = 12, is necessary to ensure
that the value of (36) approaches 1. In this case, the outage
probability obtained from ĝ

(n)
j,k is a lower bound to that based

on g
(n)
j,k , which is also demonstrated by Fig. 5.

C. Second-stage Approximation

Now we investigate the performance of the second strategy
in approximating the outage probability. Fig. 8 compares the
empirical CDF with the second-stage approximation over the
SIR threshold γth. Different values of M and N are also
investigated. It is evident that the curves approximated through
the second strategy are not as accurate as those obtained by the
first strategy. However, they still exhibit a commendable level
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Fig. 10. Outage probability and the second-stage approximation versus W
with N = 50 and M = 10.

of similarity with the empirical curves, especially when W is
relatively large (e.g., W = 10) or when N is of medium size
(e.g., N = 30 or 40). The difference in performance between
the first and second strategies stems from the fact that they
approximate the channel model in different ways. In the first
stage, the channel model g(n)j,k is approximated by g̃

(n)
j,k or ĝ(n)j,k

by only considering the largest M eigenvalues. Hence, for a
fixed N , with a well-designed M , this scheme performs quite
well. In the extreme case with M = N , it can be easily seen
from (6), (15), and (20) that g(n)j,k = g̃

(n)
j,k = ĝ

(n)
j,k . Obviously,

the first-stage approximation of the outage probability in this
case is exactly the true one. Despite this advantage, as shown
in Theorem 3, it is a 4M -fold integral, which is difficult to
compute and makes further analysis complicated. To address
this problem, the second scheme first constructs a random ma-
trix Ĝj,k, whose columns have the same distribution as ĝj,k,
and then proposes another random matrix Gj,k to approximate
Ĝj,k. The similarity between Gj,k and Ĝj,k is characterized
using the distance between their covariance matrices, which
is minimized by designing L [32]. This approximation (from
Ĝj,k to Gj,k) makes the formulation of the outage probability
easier to compute, but compromises the performance slightly.

Figs. 9 and 10 investigate the impact of N and W on the
outage probability. Similar observations about the performance
of the two-user FAMA system, e.g., the relationship between
the outage probability and N as well as W , can be made
from the empirical results as Figs. 6 and 7. It can also be seen
that when the outage probability is above 10−6, the second
strategy exhibits a good approximation performance. Another
interesting observation is that unlike the empirical result, the
approximation curves are not smooth and approximate the
empirical curves in a regressive manner. This is because the
approximation is obtained as follows (see (34))

pout,k(rk) ≈
[
FΨk

(rk)
] 1

L , (37)

where FΨk
(rk) is given in Theorem 4. Though FΨk

(rk) varies
smoothly with N and M , the value of L does not. Since L =
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min
{⌊

1.52(N−1)
2πW

⌋
, N
}

3, L generally increases with N and
decreases with W . Due to the floor function ⌊·⌋, the value of
L may change abruptly and this makes the curves unsmooth.
For example, as shown in Fig. 9, when W = 5 and N changes
from 60 to 65, the value of L increases from 2 to 3, and this
causes an obvious increase in

[
FΨk

(rk)
] 1

L . After that, as N
continues to increase to 80, the value of L remains fixed at 3.
Hence, as shown by Fig. 9,

[
FΨk

(rk)
] 1

L decreases with N in
this interval (65 ≤ N ≤ 80).

V. CONCLUSIONS

This paper presented an investigation into the outage per-
formance of a downlink slow FAMA system with two users.
The study focused on a fully correlated channel model that
effectively captures the correlation between any two ports of
the fluid antenna. In order to simplify the analysis, it was
demonstrated that each channel coefficient could be adequately
approximated by the M largest eigenvalues, in which M
is considerably smaller than N . By employing this approx-
imation, the outage probability can be expressed as a 4M -
fold integral. To further simplify the expression, we extended
the second-stage approximation scheme for the single-user
FAS in [32] to the considered FAMA system. Using this
new model, another approximation of the outage probability
was obtained, which involves a 2-fold integral and is easy
to compute and more insightful. Simulation results have vali-
dated the approximation and demonstrated remarkable outage
performance of the FAMA scheme. It is worth mentioning
that although the second-stage approximation can help greatly
simplify the analysis, its performance in approximating the
channel model under some configurations is not as good as the
first one. Therefore, further investigation is needed to explore
alternative modeling approaches and achieve a more accurate
approximation of the channel model.

APPENDIX A
PROOF OF THEOREM 1

It is known from (10) that

|h(n)
k,k|

|h(n)

k̄,k
|
=

σk,k

√
θn|x(n)

k,k|

σk̄,k

√
θn|x(n)

k̄,k
|

=
|x(n)

k,k|

|x(n)

k̄,k
|
, (38)

where the last step follows from the assumption that σk,k =

σk̄,k. Since for all 1 ≤ j ≤ K and 1 ≤ n ≤ N , x
(n)
j,k

are independent of each other and |x(n)
j,k | ∼ Rayleigh( 1√

2
),

plb
out,k(rk) in (11) can be rewritten as

plb
out,k(rk) = Pr

 |x(1)
k,k|

|x(1)

k̄,k
|
< rk, . . . ,

|x(N)
k,k |

|x(N)

k̄,k
|
< rk


= Pr

{
X̂

X
< rk

}N

, (39)

3Note that if
⌊
1.52(N−1)

2πW

⌋
= 0, we force L to be 1

where X̂,X ∼ Rayleigh( 1√
2
) and they are independent. It is

obvious from (39) that plb
out,k(rk) can be seen as the outage

probability of the following channel

ỹk =

2∑
j=1

xj,ksj . (40)

In contrast to (8), the channel in (40) has uncorrelated channel
coefficients and no additive noise. Obviously, (40) can be seen
as a special case of (1) with no noise and far-apart ports
such that the channel gains at different ports are uncorrelated.
Therefore, its outage probability plb

out,k(rk) is a lower bound
to pout,k(rk). Now the result (12) can be proven by

Pr

{
X̂

X
< rk

}
= Pr

{
X̂ < rkX

}
=

∫ +∞

0

FX̂(rkx)fX(x)dx

(a)
=

∫ +∞

0

(
1− e−r2kx

2
)
2xe−x2

dx

= 1− 2

∫ +∞

0

xe−(1+r2k)x
2

dx

=
r2k

1 + r2k
, (41)

where (a) follows from using the fact that X̂,X ∼
Rayleigh( 1√

2
) and their probability density function (PDF)

as well as CDF. Combining (39) and (41), we then get (12).

APPENDIX B
PROOF OF THEOREM 2

Since Σ is a Hermitian Toeplitz matrix, it can be found as

Σ =


ϕ0 ϕ1 · · · ϕN−1

ϕ1 ϕ0
. . .

...
...

. . . . . . ϕ1

ϕN−1 · · · ϕ1 ϕ0

 . (42)

According to (2) and [32, (47)], the coefficient ϕn can be
represented in the following Fourier form

ϕn = J0(2πn∆)

=
1

2π

∫ π

−π

ei2πn∆ sin xdx

=
1

2π

∫ π

−π

f(x)e−inxdx, for n = 0, . . . , N − 1, (43)

where

f(x) =

m=+∞∑
m=−∞

J0(2πm∆)eimx, ∀x ∈ [−π, π], (44)

is a real and integrable function.
Then we apply [37, Theorem 1.1] to evaluate the limiting

distribution of DN (θth) and SN (θth). Note that [37, Theo-
rem 1.1] requires H(θ, θth) to be a continuous function. Thus,
we replace H(θ, θth) by a smooth and analytic approximation.
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There are different ways to approximate a step function. Here
we adopt the logistic function

Ĥ(θ, θth) =
1

1 + e−2t(θ−θth)
, (45)

as an approximation of H(θ, θth), where a larger t corresponds
to a sharper transition at θ = θth. Then we have

lim
N→+∞

DN (θth) = lim
N→+∞

1

N

N∑
n=1

H(θn, θth)

≈ lim
N→+∞

1

N

N∑
n=1

Ĥ(θn, θth)

=
1

2π

∫ π

−π

Ĥ(f(x), θth)dx, (46)

where the last step follows by using [37, Theorem 1.1]. Hence,
(18) is true. Analogously, based on the definition of SN (θth) in
(17) and (45), (19) can be proven by following similar steps.

APPENDIX C
PROOF OF THEOREM 3

For convenience, we denote aj,k = (a
(1)
j,k, . . . , a

(M)
j,k )T and

bj,k = (b
(1)
j,k, . . . , b

(M)
j,k )T . It is known from (20) that ĝ(n)j,k is a

Gaussian variable, and for a given (aj,k, bj,k), it follows

ĝ
(n)
j,k|(aj,k,bj,k)

∼ CN

(
σj,k

M∑
m=1

√
θmun,m

(
a
(m)
j,k + ib

(m)
j,k

)
,

σ2
j,k

(
1−

M∑
m=1

θmu2
n,m

))
. (47)

Hence, |ĝ(n)j,k|(aj,k,bj,k)
| follows Rice or Rician distribution as

shown below∣∣∣ĝ(n)j,k|(aj,k,bj,k)

∣∣∣ ∼ Rice

(√
α
(n)
j,k ,

√
β
(n)
j,k

)
, (48)

where
α
(n)
j,k = σ2

j,k

( M∑
m=1

√
θmun,ma

(m)
j,k

)2
+

(
M∑

m=1

√
θmun,mb

(m)
j,k

)2,
β
(n)
j,k =

σ2
j,k

2

(
1−

M∑
m=1

θmu2
n,m

)
.

(49)

Based on (48), we have
∣∣∣ĝ(n)k,k|(ak,k,bk,k)

∣∣∣ ∼ Rice

(√
α
(n)
k,k,

√
β
(n)
k,k

)
,∣∣∣ĝ(n)

k̄,k|(ak̄,k,bk̄,k)

∣∣∣ ∼ Rice

(√
α
(n)

k̄,k
,
√

β
(n)

k̄,k

)
.

(50)

Note that |ĝ(n)k,k | and |ĝ(n)
k̄,k

| are independent. Then for user

k, Φ(n)
k conditioned on (ak,k,ak̄,k, bk,k, bk̄,k) is the ratio of

two independent Rice random variables. We now derive its
CDF. For convenience, we consider two independent Rician
variables Ẑ ∼ Rice(

√
α1,

√
β1), Z ∼ Rice(

√
α2,

√
β2), and

denote R = Ẑ/Z. Then the CDF of R can be derived as

FR(r)

=

∫ +∞

0

FẐ(rz)fZ(z)dz

= 1−
∫ +∞

0

Q1

(√
α1

β1
,
rz√
β1

)
z

β2
exp

(
−z2+α2

2β2

)
I0

(√
α2

β2
z

)
dz,

(51)

where the last step follows from the CDF and PDF of Rice
distribution, Q1(·, ·) is the Marcum Q-function of order 1, and
I0(·) is the modified Bessel function of the first kind. Using
(51), the CDF F

Φ
(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(r
(n)
k ) can be obtained

directly using (23). For a given (ak,k,ak̄,k, bk,k, bk̄,k), (20)
indicates that Φ(n)

k ,∀n ∈ {1, . . . , N} are independent of each
other. Therefore, we have

F
(Φ

(1)
k ,...,Φ

(N)
k )|(ak,k,ak̄,k,bk,k,bk̄,k)

(r
(1)
k , . . . , r

(N)
k )

=

N∏
n=1

F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(r
(n)
k ). (52)

The joint CDF of (Φ
(1)
k , . . . , Φ

(N)
k ) is thus the expectation of

(52) over (ak,k,ak̄,k, bk,k, bk̄,k) and is given in (53) at the
bottom of this page. Since

F
max

{
Φ

(1)
k ,...,Φ

(N)
k

}(rk) = F
(Φ

(1)
k ,...,Φ

(N)
k )

(rk, . . . , rk), (54)

by replacing all r(n)k in (53) with rk, we get (22).

APPENDIX D
PROOF OF THEOREM 4

For convenience, denote ān
j,k = (ān,1j,k , . . . , ā

n,M
j,k )T and

b̄nj,k = (b̄n,1j,k , . . . , b̄
n,M
j,k )T . According to the definition of Ψk

F
(Φ

(1)
k ,...,Φ

(N)
k )

(r
(1)
k , . . . , r

(N)
k ) = E(ak,k,ak̄,k,bk,k,bk̄,k)

[
N∏

n=1

F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(r
(n)
k )

]

=
1

π2M

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp

{
−

M∑
m=1

[(
a
(m)
k,k

)2
+
(
a
(m)

k̄,k

)2
+
(
b
(m)
k,k

)2
+
(
b
(m)

k̄,k

)2]}

×
N∏

n=1

F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(r
(n)
k ) da

(1)
k,k · · · da

(M)
k,k da

(1)

k̄,k
· · · da(M)

k̄,k
db

(1)
k,k · · · db

(M)
k,k db

(1)

k̄,k
· · · db(M)

k̄,k
(53)
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in (31), its CDF can be computed as

FΨk
(rk)

=

N∏
n=1

Pr
{
Φ
n,l

k ≤ rk, 1 ≤ l ≤ L
}

=

N∏
n=1

E(ān
k,k,ā

n
k̄,k

,b̄n
k,k,b̄

n
k̄,k

)

[
Pr
{
Φ
n,l

k

∣∣∣ (ān
k,k, ā

n
k̄,k, b̄

n
k,k, b̄

n
k̄,k)

≤ rk, 1 ≤ l ≤ L
}]

(a)
=

N∏
n=1

E(ān
k,k,ā

n
k̄,k

,b̄n
k,k,b̄

n
k̄,k

)

[
L∏

l=1

Pr
{
Φ
n,l

k

∣∣∣ (ān
k,k,ā

n
k̄,k,b̄

n
k,k,b̄

n
k̄,k)

≤ rk

}]
(b)
=

N∏
n=1

E(ān
k,k,ā

n
k̄,k

,b̄n
k,k,b̄

n
k̄,k

)

[(
F
Φ

n,l
k |(ān

k,k,ā
n
k̄,k

,b̄n
k,k,b̄

n
k̄,k

)
(rk)

)L]
,

(55)

where (a) and (b) follow from the fact that given (ān
k,k, ā

n
k̄,k

,

b̄nk,k, b̄
n
k̄,k

), Φ
n,l

k , 1 ≤ l ≤ L are i.i.d. For a given (ān
j,k, b̄

n
j,k),

gn,lj,k in (26) is Gaussian, i.e.,

gn,l
j,k|(ān

j,k,b̄
n
j,k)

∼ CN

(
σj,k

M∑
m=1

√
θmun,m

(
ān,mj,k + ib̄n,mj,k

)
,

σ2
j,k

(
1−

M∑
m=1

θmu2
n,m

))
. (56)

Hence,
∣∣∣gn,l

j,k|(ān
j,k,b̄

n
j,k)

∣∣∣ is Rice or Rician distributed, i.e.,

∣∣∣gn,l
j,k|(ān

j,k,b̄
n
j,k)

∣∣∣ ∼ Rice

(√
α
(n)
j,k ,

√
β
(n)

j,k

)
, (57)

where
α
(n)
j,k =σ2

j,k

( M∑
m=1

√
θmun,mān,mj,k

)2
+

(
M∑

m=1

√
θmun,mb̄n,mj,k

)2,
β
(n)

j,k =
σ2
j,k

2

(
1−

M∑
m=1

θmu2
n,m

)
.

(58)
Then, given (ān

k,k, ā
n
k̄,k

, b̄nk,k, b̄
n
k̄,k

), the CDF of Φ
n,l

k is given
by

F
Φ

n,l
k |(ān

k,k,ā
n
k̄,k

,b̄n
k,k,b̄

n
k̄,k

)
(rk)

= 1−
∫ +∞

0

Q1

√√√√α
(n)
k,k

β
(n)

k,k

,
rkz√
β
(n)

k,k

 z

β
(n)

k̄,k

exp

−
z2 + α

(n)

k̄,k

2β
(n)

k̄,k


× I0


√
α
(n)

k̄,k

β
(n)

k̄,k

z

 dz. (59)

It can be observed from (58) that α
(n)
j,k is a sum square of

Gaussian variables, and thus follows Chi-squared distribution.

According to [32, (68)], the PDF of α(n)
j,k is given by

f
α

(n)
j,k

(α) =
1

σ2
j,kξn

exp

(
− α

σ2
j,kξn

)
, ∀ α ≥ 0, (60)

where ξn =
∑M

m=1 θmu2
n,m. Then, based on (59) and (60),

we have

E(ān
k,k,ā

n
k̄,k

,b̄n
k,k,b̄

n
k̄,k

)

[
F
Φ

n,l
k |(ān

k,k,ā
n
k̄,k

,b̄n
k,k,b̄

n
k̄,k

)
(rk)

]L
=E

(α
(n)
k,k,α

(n)

k̄,k
)

1− ∫ +∞

0

Q1

√√√√α
(n)
k,k

β
(n)

k,k

,
rkz√
β
(n)

k,k

 z

β
(n)

k̄,k

× exp

−
z2 + α

(n)

k̄,k

2β
(n)

k̄,k

 I0


√
α
(n)

k̄,k

β
(n)

k̄,k

z

 dz

L

=
1

σ2
k,kσ

2
k̄,k

ξ2n

∫ +∞

0

∫ +∞

0

exp

(
− α1

σ2
k,kξn

− α2

σ2
k̄,k

ξn

)

×

1− ∫ +∞

0

Q1

√ α1

β
(n)

k,k

,
rkz√
β
(n)

k,k

 z

β
(n)

k̄,k

exp

−z2 + α2

2β
(n)

k̄,k


× I0

√
α2

β
(n)

k̄,k

z

 dz

L

dα1dα2. (61)

Substituting (61) into (55), we obtain (33).

APPENDIX E
PROOF OF THEOREM 5

If M is large enough such that ξn → 1, then we have
1−

∑M
m=1 θmu2

n,m ≈ 0. Hence, the second term of (26) can
be ignored, i.e.,

gn,lj,k ≈ σj,k

M∑
m=1

√
θmun,m

(
ān,mj,k + ib̄n,mj,k

)
≜ ǧn,lj,k . (62)

It is obvious that
|ǧn,lj,k | =

√
α
(n)
j,k , (63)

in which α
(n)
j,k is given in (58). Based on the PDF of α

(n)
j,k

provided in (60), we could obtain its CDF as

F
α

(n)
j,k

(α) =

∫ +∞

0

1

σ2
j,kξn

exp

(
− z

σ2
j,kξn

)
dz

= 1− exp

(
− α

σ2
j,kξn

)
, ∀α ≥ 0. (64)

Denote
Φ̌n,l
k =

|ǧn,lk,k|
|ǧn,l

k̄,k
|
,

Ψ̌k = max
{
Φ̌n,l
k , 1 ≤ n ≤ N, 1 ≤ l ≤ L

}
.

(65)

It is known from (62) that for a given n,

Φ̌n,l1
k = Φ̌n,l2

k , ∀ 1 ≤ l1, l2 ≤ L, (66)
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indicating that the columns of the N × L dimensional matrix
consisting of Φ̌n,l

k , 1 ≤ n ≤ N, 1 ≤ l ≤ L are all the same. In
addition, since gn,lj,k ≈ ǧn,lj,k , we have{

Φ
n,l

k ≈ Φ̌n,l
k , ∀ 1 ≤ n ≤ N, 1 ≤ l ≤ L, 1 ≤ k ≤ K,

Ψk ≈ Ψ̌k, ∀ 1 ≤ k ≤ K,
(67)

where Φ
n,l

k and Ψk are defined in (31). Now we compute the
CDF of Ψ̌k. First, we have the CDF of Φ̌n,l

k given by

FΦ̌n,l
k

(rk)

= Pr
{
ǧn,lk,k ≤ ǧn,l

k̄,k
rk

}
= Pr

{
α
(n)
k,k ≤ α

(n)

k̄,k
r2k

}
=

∫ +∞

0

F
α

(n)
k,k

(αr2k)fα(n)

k̄,k

(α)dα

=

∫ +∞

0

[
1− exp

(
− αr2k
σ2
k,kξn

)]
1

σ2
k̄,k

ξn
exp

(
− α

σ2
k̄,k

ξn

)
dα

=
r2k

1 + r2k
, (68)

where the last step holds due to the assumption that σk,k =
σk̄,k. Then, we can derive that

FΨ̌k
(rk) = Pr

{
Φ̌n,l
k ≤ rk, 1 ≤ n ≤ N, 1 ≤ l ≤ L

}
(a)
= Pr

{
Φ̌n,l
k ≤ rk, 1 ≤ n ≤ N

}
(b)
=

N∏
n=1

Pr
{
Φ̌n,l
k ≤ rk

}
(c)
=

(
r2k

1 + r2k

)N

, (69)

where (a) holds due to (66), (b) follows from the fact that
for a given l, Φ̌n,l

k ,∀1 ≤ n ≤ N are independent, and (c) is
obtained by using (68). Combining (67) and (69), Theorem 5
can be proven.
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