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Abstract

Logic is the study of reasoning. Typically, it proceeds in terms of inferring a conclu-

sion from established premises. The systematic use of symbolic and mathematical

techniques to determine the forms of valid reasoning on this plan determines De-

ductive Logic. Reductive Logic is the dual paradigm that proceeds by generating

from a putative conclusion a set of sufficient premises. While logical consequence

can be characterized through proof-theoretic and semantic approaches, work in Re-

ductive Logic has traditionally focused on the former. This monograph is composed

of three parts that illustrate the interplay between semantics and proof in Reductive

Logic: Part I comprises a case-study, Part II develops tools and gives result for a

more general account, and Part III considers a semantics entirely based on notions

of proofs. These a briefly outlined below.

In Part I, the monograph examines proof-search in the logic of Bunched Im-

plications (BI), presenting technical results such as cut-elimination, logic program-

ming, and focusing. It also illustrates a novel approach to soundness and complete-

ness (S&C) for BI that proceeds entirely through proof-search methods, eliminating

the need for constructing term- and counter-models.

In Part II, the monograph introduces and develops the theory of a paradigm

of proof system called ‘algebraic constraint systems’ (ACSs). Briefly, ACSs are

sequent calculi enriched with an algebra over which constraints are generated during

reduction that, when solved, determine a proof. They help bridge the gap between

proof theory and semantics in Reductive Logic. In particular, the part uses ACSs for

the following: to provide a general account of the approach to S&C studied in BI; to

systematically generate relational calculi for logics that satisfy specific conditions;
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and to derive a semantics of IPL from its proof theory.

In Part III, the monograph explores proof-theoretic semantics — the approach

to meaning in logic based on proof rather than truth — and provides both general

insights and a range of technical results.

While the monograph contains several contributions to logic across mathemat-

ics, informatics, and philosophy, its real contribution is to demonstrate the viability

and merit of studying semantics from the perspective of Reductive Logic and to

give methods, techniques, and tools for a systematic theory to be developed.
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Impact Statement

This monograph is about logic. In particular, it develops the theory of logic (as

opposed to its applications). Therefore, its impact is primarily academic. That the

contributions it contains are substantial is witnessed by publications — see Ghe-

orghiu et al. [79, 77, 82, 80, 81] — at a range of conferences and journals. The

following are some of the fields to which this work contributes:

- MATHEMATICAL LOGIC. This work gives several technical results on the

metatheory of the logic of Bunched Implications (BI) in Part I, and on the

semantics of intuitionistic propositional logic (IPL) in part III.

- COMPUTATIONAL LOGIC. This work relates proof-search and semantics in

Part I and Part II, where it also introduces a tool — algebraic constraint sys-

tems (ACSs) — for studying proof-search and semantics in computational

logic.

- PHILOSOPHICAL LOGIC. This work develops Reductive Logic as a paradigm

in which to study semantics, as well as the mathematical treatment of the

inferentialist account of logic known as proof-theoretic semantics.

- PROOF THEORY. This work contains a range of results on the proof theory of

BI in Part I, and introduces a new type of proof system (i.e., ACSs) in Part II.

The work on proof-theoretic semantics in Part III may also be considered a

part of proof theory.

- MODEL THEORY. This work provides techniques and tools for studying

model-theoretic semantics in Part I and Part II. In particular, it provides a
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novel approach to proving soundness and completeness.

While the monograph contains a number of results supporting the above fields, its

deeper impact is the development of techniques and tools that enable future work

in those fields. In particular, it lays the foundation for a more systematic account

of Reductive Logic and of the interplay between semantics and proof theory. This

enables precise pathways for the work in the various fields above to mutually inform

one another.

There are several potential impacts outside of the academic world. The tech-

nical work on proof-search for BI in Part I is valuable according to the applications

of the logic — for example, BI is the assertion language of Separation Logic [108].

Similarly, ACS are a means to study control problems during proof-search — for

example, Harland and Pym [99, 98] have used it to study the context-management

problem in logic programming with linear logics. In general, the use of logic as

a mathematical tool for problem-solving — including, for example, its application

in program/systems verification — requires both proof- and model-theoretic tech-

niques, whose relationship this monograph investigates. Finally, Reductive Logic

lies at the heart of widely deployed proof assistants such as LCF [87], HOL [86],

Isabelle [151], Coq [1, 19], Twelf [2, 155], and more; most of which can be seen as

building on Milner’s theory of tactical proof [143], which gave rise to the program-

ming language ML [152]. The theory of tactical proof is shown in Part III to be

implicit in apparently different systems of proof-search that have been developed,

thereby providing a uniform framework for their use in practice.
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Chapter 1

General Introduction

Logic is the study of reasoning. It is characterized symbolically by two compo-

nents: a language in which assertions are expressed and a judgement (⊢) on asser-

tions determining consequence. This view of logic did not mature in any mathe-

matical way until the algebraic study in the nineteenth century by Boole [24] and

de Morgan [42], and the symbolic approach of Frege [62, 75] — see Gabbay and

Woods [69] for a summary. Almost immediately, however, a pantheon of logics

became available, which includes, for example, logics that qualify assertions (i.e.,

modal logics) and those that capture intensional reasoning (i.e., substructural and

relevant logics). Whenever a new logic is developed, the theoretical work of the

logician lies in developing and relating two broad approaches of inquiry: proof the-

ory (the study of reasoning systems) and semantics (the study of meaning). This

monograph concerns investigating how these two approaches relate to each other

from the perspective of Reductive Logic.

What is Reductive Logic? Traditionally, the definition of a system of logic is

given in terms of asserting a conclusion from established propositions according to

specific rules of inference,

Established Premiss1 . . . Established Premissk

Established Conclusion

w�
This systematic use of symbolic and mathematical techniques to determine the

forms of valid deductive argument defines Deductive Logic. This is all very well as
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a way of defining proofs, but it relatively rarely reflects how logic is used in prac-

tical reasoning problems. In contrast, one often begins with a putative conclusion

and applies the inference rules ‘backwards’. In this usage, the rules are sometimes

called reduction operators, read from conclusion to premisses, and denoted

Sufficient Premiss1 . . . Sufficient Premissk

Putative Conclusion

~w
The systematic use of symbolic and mathematical techniques to determine the forms

of valid reductive argument defines Reductive Logic. Hence, Reductive Logic and

Deductive Logic are dual to each other. Notably, the space of reductions of a propo-

sition is larger than its space of proofs, including also failed searches. It appears

that this idea of reduction was first explained in these terms by Kleene [112]. The

first step in developing a mathematical theory of Reductive Logic — in the setting

of intuitionistic and classical logic — has been given by Pym and Ritter [173].

The reductive paradigm more closely resembles the way in which mathemati-

cians actually prove theorems and, more generally, the way in which people solve

problems using formal representations. It also encapsulates diverse applications

of logic in computer science, such as the programming paradigm known as logic

programming, the proof-search problem at the heart of AI and automated theorem

proving, precondition generation in program verification, and more — see, for ex-

ample, Kowalski [121]. Though described in terms of derivations, they need not

be understood as formal constructions in a formal system, so Reductive Logic is

also reflected at the level of truth-functional semantics — the perspective on logic

utilized for model-checking and thus verifying the correctness of industrial systems

— wherein the truth value of a formula is calculated according to the truth values

of its constituent parts. The idea that the unfolding of (an inductive definition of) a

semantics is much like backward reasoning in a symbolic proof system is explored

extensively in this monograph.

By introducing control, one may delegate work to a computer. The more

control structure provided, the more work delegated: mechanical problem solv-

ing begets algorithmic theorem proving techniques begets a programming language
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paradigm known as logic programming. The witnessed interaction between logic,

control, and computation has been put by Kowalski [120] as follows:

Algorithm = Logic + Control

Emphasising the reductive perspective, and identifying problem solving with proof-

search, Pym and Ritter [173] instantiate the slogan as follows:

Proof-search = Reductive Logic + Control

This perspective demonstrates how Reductive Logic encapsulates diverse applica-

tions of logic described above.

Indeed, it is precisely control that determines the efficacy of a proof-search

procedure: some procedures will be complete, some not, some will affect the

shape of proofs being found, and some will affect the complexity of the proce-

dure. Background to the issue of reduction, control, and proof-search in the context

of capturing human reasoning is discussed extensively in, for example, the work

of Kowalski [120] and Bundy [29]. Reductive reasoning lies at the heart of widely

deployed proof assistants such as LCF [87], HOL [86], Isabelle [151], Coq [1, 19],

Twelf [2, 155], and more. Most of this can be seen as building on the theory of tacti-

cal proof by Milner [143], which eventually gave rise to the programming language

ML [152]. It is discussed in more detail in Part III.

This explains the perspective of Reductive Logic. It remains to explain what is

meant by proof theory and by semantics.

By proof theory, we mean the study of formal systems of inference and their

constructions as mathematical objects with static and dynamic properties. There

are many paradigms of proof systems — for example, axiomatic systems, natural

deduction systems, tableaux systems, display calculi, etc. — this monograph con-

centrates on sequent calculi, broadly conceived, but also uses natural deduction

in the sense of Gentzen [200]. To clarify: the monograph concentrates on the se-

quent calculus format — that is, this restriction does not mean calculi with ‘left’
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and ‘right’ rules — which is without loss of generality as the other paradigms are

expressible in standard ways. A valuable property of sequent calculi, in the context

of reduction, is that they have local correctness in the sense that whether or not a

reduction
Γ1 ▷∆1 . . . Γn ▷∆n

Γ▷∆
⇑

is well-formed depends only on the content of the sequents involved. We defer

further explanation of sequent calculi and their use to when it becomes relevant in

the body of the monograph.

By semantics, we will, for the majority of the monograph, mean model-

theoretic semantics (M-tS) in the sense of Tarski [201, 203] (especially in the

form of possible world semantics — see Kripke [124, 125]). In M-tS, logical

consequence is defined in terms of models — that is, abstract mathematical struc-

tures in which propositions are interpreted and their truth is judged. According to

Tarski [201, 203], a propositional formula ϕ follows model-theoretically from a

context Γ iff every model of Γ is a model of ϕ — that is,

Γ ⊨ ϕ iff for all models M, if M ⊨ ψ for all ψ ∈ Γ, then M ⊨ ϕ

A logic is sound with respect to a semantics if consequence implies validity (i.e.,

Γ ⊢∆ implies Γ ⊨ ∆); a logic is complete with respect to a semantics if validity

implies consequence (i.e., Γ ⊨ ϕ implies Γ⊢ϕ). Typically, the validity judgement is

defined inductively on the syntax of the formal language. For example, disjunction

(∨) in intuitionistic propositional logic (IPL) is typically defined as follows:

M,x ⊨ ϕ ∨ψ iff M,x ⊨ ϕ or M,x ⊨ ψ

— here x denotes a certain world in the structure M. Checking whether a given se-

quent is valid according to this characterization requires one to unfold the semantics

according to the inductive definition; for example, one asks if ϕ ∨ψ is valid (at x in

M) by asking if ϕ or ψ are valid (at x in M). The model-theoretic reading of logical
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consequence is central to the applications of logic, specifically in the industrial uses

of logic, such as for systems and program verification.

Importantly, in M-tS, meaning and validity are characterized in terms of truth.

We emphasize this because this monograph also considers an alternative approach

to semantics, proof-theoretic semantics (P-tS). In P-tS meaning and validity are

characterized in terms of proof.

The general idea underlying P-tS is discussed in more detail in Chapter 19 —

see also Francez [61], Schroeder-Heister [193], and Wansing [213]. The philosoph-

ical paradigm underpinning P-tS is inferentialism — the view that the meaning of a

proposition is determined by its inferential behaviour (see Brandom [26]). This may

be viewed as a particular instantiation of the ‘meaning as use’ principle advanced

by Wittgenstein [215].

To illustrate the paradigmatic shift from M-tS to P-tS, consider the proposition

‘Tammy is a vixen’. What does it mean? Intuitively, it means, somehow, ‘Tammy is

female’ and ‘Tammy is a fox’. In inferentialism, its meaning is given by the rules,

Tammy is a fox Tammy is female
Tammy is a vixen

Tammy is a vixen
Tammy is female

Tammy is a vixen
Tammy is a fox

These merit comparison with the laws governing ∧ in IPL, which justify the sense

in which the above proposition is a conjunction:

ϕ ψ

ϕ ∧ψ

ϕ ∧ψ

ϕ

ϕ ∧ψ

ψ

This is the sense of meaning that P-tS concerns.

In this monograph, we concentrate on two major branches of P-tS: proof-

theoretic validity (P-tV) in the Dummett-Prawitz tradition — see, for example,

Schroeder-Heister [190] — and base-extension semantics (B-eS) — see, for ex-

ample, Sandqvist [184, 182, 183]. The terminology, which is taken for the two

branches is taken from the referenced work, may be misleading as both define

‘validity’ and make use of ‘base-extension’ in doing so. For the purposes of this

monograph, we regard the former as a particular stream of ideas for defining the
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semantics of arguments, and the latter as the same but for a semantics of a logic.

This distinction is not part of P-tS broadly, but enables us to discuss with more

immediate discernment recent developments in the field — see Part III.

This monograph investigates the interplay between semantics and proof theory

from the perspective of Reductive Logic. It comprises three parts, each supporting

the other, but which are separate domains of investigation and can be handled in-

dependently. We presently give a terse explanation of each part and a summary of

the overall picture they deliver, as each has its own introduction and conclusion that

gives a more detailed account of their contributions.

Part I of this thesis is a case study of the logic of Bunched Implication

(BI) [150]. It investigates reduction and proof-search in BI using standard tech-

niques in proof theory. We study BI because it has a relatively subtle meta-theory

resulting from it using complex data structures of propositions — specifically, it

uses bunches rather than lists or multisets for collections of formulae — and, there-

fore, applying the standard techniques in this setting exposes how they work. The

technical contributions include cut-elimination, logic programming, and a focused

system for the logic. The part culminates with a proof of soundness and com-

pleteness, with respect to a standard model-theoretic semantics for the logic, that

proceeds entirely in terms of reduction and proof-search (as opposed to term- and

counter-model constructions). The advantage is that constructing models can be

quite subtle for BI because of its complex structure. A general account of this ap-

proach to soundness and completeness is given in Part II,

Part II introduces a type of proof system called an algebraic constraint system

(ACS). Briefly, ACSs are a generalization of sequent calculi that carry labels on the

data within sequents corresponding to elements of an algebra such that, during re-

duction, one generates constraints on those labels. The correctness of a construction

in an ACSs is then global because one must solve the constraints to verify that the

construction is a proof. What is the advantage? While ACSs described in this way

seem more complex than sequent calculi, they can be much simpler, and several

examples of ACSs and their uses across a range of logics are included in the text.
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In particular, one can use the algebra as leverage to study proof-search in another

sequent calculus as it can allow one to defer committing to certain choices to the

end of construction when one solves the constraints. For example, using Boolean

algebra, one can render proof-search for BI in its standard sequent calculus, with all

the complex interactions between additive and multiplicative structures, as simple

proof-search in IPL — this is illustrated in the body of the section. For this mono-

graph, ACSs are useful as they help bridge the gap between semantics and proof

theory: first, the novel approach to soundness and completeness in Part II can be

expressed quite generally using the theory of ACSs; second, one can use ACSs to

derive a model-theoretic semantics from a proof-theoretic specification of a logic

— see Chapter 17.

Part III investigates P-tS from the perspective of Reductive Logic. In P-tS,

validity is grounded in derivability in atomic systems, which (as we discuss) coheres

with the background work on Reductive Logic by Pym and Ritter [173] in which

validity is determined relative to atomic derivations called indeterminates — see

Chapter 20. The part analyses the two major branches of P-tS — namely, P-tV

in the Dummett-Prawitz tradition and B-eS — from the perspective of Reductive

Logic. It demonstrates the B-eS for IPL by Sandqvist [181] can be understood as the

declarative counterpart of the basic P-tV by Prawitz [164] and that its completeness

can be understood in terms of logic programming, in which case the treatment of

negation (a subtle issue in P-tS — see, for example, Kürbis [126]) can be understood

in terms of the celebrated negation-as-failure protocol.

Overall, this monograph is about investigating semantics from the perspective

of Reductive Logic. It contains several technical results on reduction and proof-

search (especially for IPL and BI) and introduces a paradigm of proof systems that

enables a more uniform and systematic study. Relative to these technical devel-

opments, it provides a new method for studying soundness and completeness in

model-theoretic semantics. It also studies P-tS from the perspective of Reductive

Logic, exposing deep connections between its two major branches and delivering

an understanding of negation, which is subtle. These contributions come across
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mathematical, philosophical, and computational logic and open up the opportunity

for new approaches to the theory and practice of logic.



Background



Chapter 2

Intuitionistic Propositional Logic

Central to this monograph is intuitionistic propositional logic (IPL), whose math-

ematical treatment serves both as motivation and provides a background of basic

results on which the work is built. This chapter concerns the technical results of

IPL to which we shall often refer. The history, development, and philosophy under-

pinning IPL, while interesting, are not important for this work and are, therefore,

largely elided — see Dummett [52].

2.1 Syntax & Consequence
There are many presentations of IPL in the literature. Therefore, we begin by fixing

the relevant concepts and terminology for this work.

Definition 2.1 (Formula). Fix a set of atomic propositions A. The set of formulas F

(over A) is constructed by the following grammar:

ϕ ::= p ∈ A | ϕ ∨ϕ | ϕ ∧ϕ | ϕ → ϕ | ⊥

We use meta-variables Γ and ∆, possibly adorned with subscripts, to denote

sets of formulae. We use the following abbreviations, where ϕ is a formula and Γ

is a finite set:

Γ̂ :=
∧

ϕ∈Γ

ϕ ¬ϕ := ϕ →⊥

Definition 2.2 (Sequent). A sequent is a pair Γ▷Φ in which Γ is a set of formulas,

and Φ is either a formula ϕ or is the emptyset ∅.
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M,w ⊩ p iff w ∈ [[p]]

M,w ⊩ ϕ ∧ψ iff M,w ⊩ ϕ and M,w ⊩ ψ

M,w ⊩ ϕ ∨ψ iff M,w ⊩ ϕ or M,w ⊩ ψ

M,w ⊩ ϕ → ψ iff for any v ∈ V, if w ⪯ v and M,v ⊩ ϕ, then M,v ⊩ ψ

M,w ⊨⊥ never

Figure 2.1: Kripke’s Semantics for IPL

Intuitionistic propositional logic (IPL) is a certain judgement ⊢ on sequents,

called consequence — we write Γ ⊢ ϕ to denote that Γ ▷ ϕ is a consequence of

IPL. This judgement exists a priori, but may be characterized in various ways — in

particular, through semantics and proof theory. Such characterizations are presented

in the following sections.

2.2 Model-theoretic Semantics
A well-known characterization of IPL is the possible world semantics given by

Kripke [125]. We assume general familiarity, and give a brief summary only to

keep the monograph self-contained.

Definition 2.3 (Frame). A frame is a pair F := ⟨V,⪯⟩ in which ⪯ is a partial order

on V.

Definition 2.4 (Interpretation). An interpretation of the atoms A in the frame ⟨V,⪯⟩

is a mapping J−K : A → P(V).

Definition 2.5 (Satisfaction). Satisfaction is the least relation satisfying the clauses

of Figure 2.1 in which M := ⟨⟨V,⪯⟩, [[−]]⟩ such that ⟨V,⪯⟩ is a frame, [[−]] is an

interpretation of A in F , and w ∈ V.

Definition 2.6 (Model). A model is a pair M := ⟨F , [[−]]⟩ that is persistent: for any

u,w ∈ V and ϕ ∈ F, if w ⪯ u and M,w ⊩ ϕ , then M,u ⊩ ϕ . The set of all models is

denoted K.
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This concept of model induces a validity judgement as follows:

Γ ⊩ ϕ iff for any M ∈ K and any w ∈M, if M,w ⊩ Γ, then M,w ⊩ ϕ

This judgement is IPL-consequence:

Theorem 2.7 (Kripke [125]). Γ ⊢ ϕ iff Γ ⊩ ϕ .

This summarizes the typical possible world semantics for IPL. Another similar

semantics of IPL that actually predates it is the one given by Beth [20]. The problem

with this earlier semantics is that it has a complicated clause for disjunction (∨).

We give a terse account of it presently, as it will be referred to in later chapters

(particularly in Part I).

A frame ⟨V,⪯⟩ is a Beth frame if it is a rooted tree — that is, there is a distin-

guished node, the root r, such that for any other node x there is a sequence of worlds

x0 ≤ x1 ≤ ...≤ xn−1 ≤ xn such that x0 = r and xn = x. In a Beth frame, a set B ⊆ V

bars x ∈ V if B is a maximal linearly ordered subset of V containing x. The notion

of satisfaction and model is as above, except for the treatment of disjunction:

M,w ⊩ ϕ ∨ψ iff any B ⊆ V barring w contains v such that

v ⪰ w and either M,v ⊩ ϕ or M,v ⊩ ψ

2.3 Natural Deduction
This section contains a terse but complete characterization of IPL in terms of natural

deduction. We assume general familiarity with the subject — see, for example,

Troelstra and Schwichtenberg [207], Negri and von Plato [149] — and, therefore,

elide justification and elaboration accordingly.

Definition 2.8 (Argument). An argument is a rooted tree of formulae with some

leaves marked as discharged with an associated edge understood as the place where

the leaf is discharged.

An argument is open if it has undischarged assumptions; otherwise, it is closed.

The leaves of an argument are its assumptions, and the root is its conclusion. An
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ϕ ψ

ϕ ∧ψ
∧I

ϕ ∧ψ

ϕ
∧1
E

ϕ ∧ψ

ψ
∧2
E

[ϕ]
ψ

ϕ → ψ
→I

⊥
ϕ

EFQ

ϕ

ϕ ∨ψ
∨1
I

ψ

ϕ ∨ψ
∨2
I

ϕ ∨ψ
[ϕ]
χ

[ψ]
χ

χ
∨E

ϕ ϕ → ψ

ϕ
→E

Figure 2.2: Natural Deduction System NJ

argument A is an argument for a sequent Γ▷ϕ iff the open assumptions of A are a

subset of Γ and the conclusion of A is ϕ . We use the following notations to express

that A is an argument for Γ▷ϕ:

A
ϕ

Γ
A

Γ
A
ϕ

An argument regulated by rules for a natural deduction system is a derivation

in that system.

Definition 2.9 (Natural Deduction System NJ). The natural deduction system NJ is

composed of the rules in Figure 2.2.

Definition 2.10 (Derivation in NJ). The set of NJ-derivations is defined inductively

as follows:

- BASE CASE. If ϕ is a formula, then the one element tree consisting of just ϕ

is an NJ-derivation.

- INDUCTIVE STEP. Let r ∈ NJ be the following rule:

[Γ1]
ϕ1 ...

[Γn]
ϕn

ϕ

— the sets Γ1,...,Γn may be empty. For i = 1, ...,n, let Di be an NJ-derivation of

ϕ1 containing open assumptions Γi (and possible others). The tree with root ϕ and

immediate sub-trees D1, ...,Dn with the the elements of Γ1 possibly discharged is an
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NJ-derivation.

Observe that we do not insist in the base case of Definition 2.10 that the for-

mula is an atom.

An argument is closed iff it contains no open assumptions. A closed derivation

in NJ is a proof in NJ. We write ⊢NJϕ to denote that there is an NJ-proof of ϕ .

Theorem 2.11 (Gentzen [200]). There is an NJ-proof of ϕ iff ϕ is a consequence

of IPL — that is,

⊢NJϕ iff ⊢ ϕ

More generally, we write Γ⊢NJϕ iff there is an NJ-derivation all of which open

assumptions are Γ and whose root is ϕ . This enables (using the Deduction Theorem

— see Herbrand [101]) the following restatement of the above theorem:

Proposition 2.12. There is an NJ-derivation of Γ▷ϕ iff Γ ⊢ ϕ .

2.4 Sequent Calculus
While natural deduction gives a proof-theoretic characterization of IPL, it is difficult

to analyze; for example, it is difficult to use NJ to check whether or not an arbitrary

sequent Γ▷ϕ is a consequence of IPL. The problem is the non-determinism afforded

by the elimination rules; for example, an NJ-derivation of Γ ▷ χ may conclude by

the use of ∨E on some formula ϕ ∨ψ , but it is not clear from analyzing χ what

formulae ϕ and ψ to choose. An alternative proof-theoretic treatment more conve-

nient for computation (especially proof-search) is given by sequent calculi. As in

Section 2.3, we assume familiarity with typical presentations — see, for example,

Gentzen [200], Troelstra and Schwichtenberg [207], and Negri and von Plato [149].

Definition 2.13 (Sequent Calculus LJ). Sequent calculus LJ is comprised of the

rules in Figure 2.3, in which ϕ and ψ are formulae, Γ is a set of formulae, ∅ is the

emptyset, and Φ either a formula or the emptyset.

Definition 2.14 (Proof in LJ). The set of LJ-proofs is the smallest set of rooted trees

of sequents satisfying the following:
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ϕ ▷ϕ
ax

Γ▷Φ

ϕ,Γ▷Φ
wL

Γ▷
Γ▷ϕ

wR

Γ▷ϕ Γ▷ψ

Γ▷ϕ ∧ψ
∧R

ϕ,Γ▷Φ

ϕ ∧ψ,Γ▷Φ
∧1
L

ψ,Γ▷Φ

ϕ ∧ψ,Γ▷Φ
∧2
L

ϕ,Γ▷∅
Γ▷¬ϕ

¬R

ϕ,Γ▷Φ ψ,Γ▷Φ

ϕ ∨ψ,Γ▷Φ
∨L

Γ▷ϕ

Γ▷ϕ ∨ψ
∨1
R

Γ▷ψ

Γ▷ϕ ∨ψ
∨2
R

Γ▷ϕ

¬ϕ,Γ▷∅
¬L

ϕ,Γ▷ψ

Γ▷ϕ → ψ
→R

Γ1 ▷ϕ ψ,Γ2 ▷Φ

ϕ → ψ,Γ1,Γ2 ▷Φ
→L

Figure 2.3: Sequent Calculus LJ

- BASE CASE. The one element tree consisting of a sequent ϕ ▷ϕ , for any

formula ϕ , is an LJ-proof.

- INDUCTIVE STEP. Suppose LJ contains a rule instantiating to the following:

Γ1 ▷Φ1 ... Γn ▷Φn
Γ▷Φ

For i = 1, ...,n, let Di be an LJ-proof with root Γi ▷Φi. The tree with root Γ▷ϕ and

immediate sub-trees D1,..., Dn is an LJ-proof.

Theorem 2.15 (Gentzen [200]). There is an LJ-proof with root Γ▷ϕ iff Γ⊢ϕ .

The proof of this makes essential use of the admissibility of the following rule:

Γ▷χ χ,Γ▷Φ

Γ▷Φ
cut

That is, let LJ+ cut denote the sequent calculus resulting from LJ extended with

cut. The following result follows from Gentzen [200]:

Proposition 2.16 (cut-Admissibility). There is an LJ-proof of Γ ▷Φ iff there is an

LJ+ cut-proof of Γ▷ϕ .

Troelstra and Schwichtenberg [207]. One has an effective procedure way of

transforming an LJ-proof of a sequent into an LJ+ cut-proof of the same sequent,
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following the ideas and methods introduced by Gentzen [200]. The procedure is

closely related to the reduction operators given by Prawitz [168] (Section 2.3) on

natural deduction arguments.

Apart from its use in semantics, proofs in LJ+ cut can be much shorter than

in LJ — see, for example, Boolos [25]. So, why not simply include cut? The

sequent calculus without the cut is easier to analyze. In particular, its proofs are

analytic, meaning that all the formulae appearing sequents are sub-formulae of

the root — this is known as the sub-formula property. The sub-formula property

makes the sequent calculus a powerful computational device in terms of reductive

proof-search since the space of arguments is limited by the number of ways sub-

formulae can be combined to form sequents. Indeed, for IPL, the space becomes

restricted in that one has a decision procedure for consequence via proof-search —

see Gentzen [200].

2.5 Logic Programming

Proof-search may be used to give an operational semantics to logics; that is, ex-

pressing the logical constants in terms of how they are arrived at (as opposed to

how they affect truth relative to algebraic structures as in M-tS). This is explored in

this section. We closely follows work by Miller [139] (see also Harland [96]) as the

results and techniques are used in other parts of the monograph — see Chapter 8

and Chapter 23. There are, of course, other notable proof-theoretic approaches to

logic programming — see, for example, Gabbay and Reyle [64, 65] and Schroeder-

Heister and Hallnäs [94, 95].

The logical constant need to be proof-theoretically well-behaved for there to

be a tractable operational semantics. This is mostly the case for IPL and LJ. For

example, the ∧I rule is invertible — that is, Γ⊢ϕ ∧ψ iff Γ⊢ϕ and Γ⊢ψ — so

one may read the assertion of ϕ ∧ψ relative to a context Γ as asserting both ϕ and

ψ relative to Γ. However, disjunction is more subtle. One may not, in general,

read an assertion ϕ ∨ψ relative to a context Γ as saying that one either has ϕ or ψ

relative to Γ; for example, an LJ-proof witnessing ϕ ∨ψ ⊢ψ ∨ϕ must begin with
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∨E (not ∨I). Under certain conditions, however, disjunction is more tractable from

the perspective of proof-search. For example, IPL has the Disjunctive Property

according to which ∨I is invertible when the context is empty,

⊢ϕ ∨ψ iff ⊢ϕ or ⊢ψ

Intuitively, the problem with ∨I is when the context is not definite in the sense

that it contains the potential of a disjunction — for example, as discussed above,

it fails above when the context literally contains a disjunction. More generally,

disjunction is proof-theoretically well-behaved when the context is composed of

definite formulae.

The propositional hereditary Harrop fragment of IPL is determined by the

following grammar in which A ∈ A is an atomic proposition, D is a definite formula,

and G is a goal formula:

D ::= A | G → A | D∧D

G ::= A | D → G | G∧G | G∨G

A set of definite formulae P is a program — typically, it is a finite set, but we shall

have cause to consider infinite sets. The set of all programs is P. This terminology

arises as one thinks of programs P as a set of instructions relative to which one

computes goal formula G.

The judgement P ⊢o G obtains iff there is an execution in the operational

semantics for the hereditary Harrop fragment of IPL that concludes the sequent P ▷

G. The semantics in question is given by uniform proof-search in LJ — see Miller

et al. [140]. For purely technical reasons, we require a decomposition function

cl(−) : P → P that closes programs according to their conjunctions. Let cl(P) be

the least set satisfying the following:

- P ⊆ cl(P)

- If D1 ∧D2 ∈ cl(P), then D1 ∈ cl(P) and D2 ∈ cl(P).
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P ⊢o A if A ∈ cl(P) (IN)

P ⊢o A if G → A ∈ cl(P) and P ⊢o G (CLAUSE)

P ⊢o G1 ∨G2 if P ⊢o G1 or P ⊢o G2 (OR)

P ⊢o G1 ∧G2 if P ⊢o G1 and P ⊢o G2 (AND)

P ⊢o D → G if P ∪{D} ⊢o G (LOAD)

Figure 2.4: Operational Semantics for Hereditary Harrop IPL

Definition 2.17 (Operational Semantics). The operational semantics witnessing a

judgement P ⊢o G is given in Figure 2.4.

Theorem 2.18 (Miller et al.[139, 140]). P ⊢G iff P ⊢o G.

This completes the operational semantics of definite formulae. How does it

relate to the model-theoretic semantics of IPL presented in Section 2.2? Rather than

give a completely abstract characterization of models, one can take advantage of the

proof-search behaviour to construct a model from the definite formulae composing

the program relative to which goals may be evaluated. This is the subject of the

remainder of this section. It illustrates how one may use Reductive Logic to connect

proof theory and semantics.

Definition 2.19 (Interpretation). An interpretation is a mapping I : P →P(A) such

that P ⊆ Q implies I(P)⊆ I(Q).

Definition 2.20 (Satisfaction). The satisfaction judgement is given by the clauses of

Figure 2.5.

We desire a particular interpretation J such that the following holds:

J,P ⊨ G iff P ⊢ G

To this end, we consider an operator T (mapping interpretations to interpreta-
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I,P ⊨ A iff A ∈ I(P)

I,P ⊨ G1 ∨G2 iff I,P ⊨ G1 or I,P ⊨ G2

I,P ⊨ G1 ∧G2 iff I,P ⊨ G1 and I,P ⊨ G2

I,P ⊨ D → G iff I,P ∪{D} ⊨ G

Figure 2.5: Satisfaction for Hereditary Harrop IPL

tions) that unfolds programs:

T (I)(P) := {A | A ∈ cl(P)}∪

{A | (G → A) ∈ cl(P) and I,P ⊨ G}

Interpretations form a lattice under point-wise union (⊔), point-wise intersec-

tion (⊓), and point-wise subset (⊑); the bottom of the lattice is given by I⊥ : P 7→∅.

It is easy to see that T is monotonic and continuous on this lattice, and, by the

Knaster-Tarski Theorem [7], its least fixed-point is given as follows:

T ω I⊥ := I⊥⊔T (I⊥)⊔T 2(I⊥)⊔ . . .

Intuitively, each application of T corresponds to the application of a clause from the

program so that T ω corresponds to arbitrarily many applications.

Theorem 2.21 (Miller [139], Harland [96]). P ⊢o G iff T ω I⊥,P ⊨ G

The proximal relationship between the denotational semantics and proof-

search for the hereditary Harrop fragment for IPL supports and motivates the mono-

graph. Is the relationship always there? Yes — this is one of the theses of this mono-

graph and is developed explicitly in Part II. Since both proof-search and semantics

concern the unfolding of the logic one expects a close relationship. The challenge

is that the proof-search is usually so complex that the relationship is obscured.
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2.6 The BHK Interpretation
To conclude this introduction on IPL, we give a typical simplified account of the

Brouwer-Heyting-Kolmogorov interpretation, which involves numerous complex

ideas, following Troelstra and van Dalen [208].

Intuitionism, as defined by Brouwer [28], is the view that an argument is valid

when it provides sufficient evidence for its conclusion. This defines IL. A distin-

guishing feature is that IL differs from classical logic by rejecting tertium non datur

— that is, the ability to assert a proposition for the rejection of its negation — as

such an inference does not constitute sufficient evidence for its conclusion. An

important question is, what is meant by sufficient evidence?

Heyting [102] and Kolmogorov [114] provided a semantics for intuitionistic

proof, which captures the evidential character of intuitionism. This is the BHK in-

terpretation of IL. It is now the standard explanation of the logic — see, for example,

Dummett [52]. Supposing a notion of proof for atomic formulae,

- a proof A of ϕ ∧ψ is a pair ⟨B1,B2⟩ such that B1 is a proof of ϕ and B2 is a

proof of ψ

- a proof A of ϕ ∨ψ is either a pair ⟨0,B⟩ such that B is a proof of ϕ or a pair

⟨0,B⟩ such that B is a proof of ψ

- a proof of ϕ → ψ is a method of f for constructing a proof of ψ from a proof

of ϕ

- nothing is a proof of ⊥

We observe in this characterization apparent similarities with the characterization

of P-tV through satisfaction in Figure 20.1. Indeed, the motivating question is the

same as the one asked by Tennant [204] that serves as general motivation for P-tS

— see Chapter 19.

The propositions-as-types correspondence — see Howard [106] — gives an

standard way of instantiating the denotation of proofs in the BHK interpretation of

intuitionistic propositional logic (IPL) (see Section 2.6) as terms in the simply-typed
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λ -calculus. Technically, the setup can be sketched as follows: a judgement that Φ

is an NJ-proof of the sequent ϕ1, . . . ,ϕk ▷ϕ corresponds to a typing judgement

x1 : A1, . . . ,xk : Ak ⊢ M(x1, . . . ,xk) : A

where the Ais are types corresponding to the ϕis, the xis correspond to placeholders

for proofs of the ϕis, the λ -term M(x1, . . . ,xk) corresponds to Φ, and the type A

corresponds to ϕ .

Lambek [129] gave a more abstract account by showing that simply-typed λ -

calculus is the internal language of Cartesian Closed Categories (CCCs), thereby

giving a categorical semantics of proofs for IPL. In this setup, a morphism

Jϕ1K× . . .× JϕkK
JΦK−→ JϕK

in a CCC (where × denotes Cartesian product) that interprets the NJ-proof Φ of

ϕ1, . . . ,ϕk ▷ϕ also interprets the term M, where the JϕiKs interpret also the Ais and

JϕK also interprets A.

To generalize to full IL (and beyond), Seely [195] modified this categorical

setup and introduced hyperdoctrines — indexed categories of CCCs with coprod-

ucts over a base with finite products. Martin-Löf [136] gave a formulae-as-types

correspondence for predicate logic using dependent type theory. Barendregt [13]

gave a systematic treatment of type systems and the propositions-as-types corre-

spondence. A categorical treatment of dependent types came with Cartmell [31]

— see also, for examples among many, work by Streicher [199], Pavlović [153],

Jacobs [109], and Hofmann [105]. In total, this gives a semantic account of proof

for first- and higher-order predicate intuitionistic logic based on the BHK interpre-

tation.

That is all very well as explaining what a proof is for IL, but the space of objects

considered when finding an argument also contains things that are not proofs and

cannot be continued to form proofs. Constructed by backward inference, we call

these objects reductions. In IPL, an example of a reduction that fails to be a proof
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[Γ]⊢[Φ] : [ϕ] oo // JΓK
JΦK
⇝ JϕK

Φ ⇒ Γ▷ϕ
''

gg

xx

88

Figure 2.6: The Constructions-as-Realizers-as-Arrows Correspondence

is an NJ-derivation whose open assumptions are not theorems of IPL. While such

an argument is well-constructed according to intuitionism, it is not valid since it is

not closed and cannot be closed (i.e., the open assumptions cannot be substituted

for proofs).

To address this problem, Pym and Ritter [173] have provided a general

semantics of Reductive Logic that is close to P-tV. This is summarized in a

constructions-as-realizers-as-arrows correspondence — see Figure 2.6. The judge-

ment Φ ⇒ Γ▷ϕ denotes that Φ is a proof-search — that is, an attempt at construct-

ing a valid argument — for the sequent Γ▷ϕ; the judgement [Γ]⊢[Φ] : [ϕ] denotes

that [Φ] is a realizer of [ϕ] with respect to the assumptions [Γ]; and JΓK
JΦK
⇝ JϕK de-

notes that JΓK is a morphism from JΓK to JϕK. In the setting of Pym and Ritter [173],

the categorical interpretation of Reductive Logic employs polynomial constructions

over the underlying category in order to capture the use of indeterminates — that

is, variables that stand for uncompleted fragments of proofs.

This concludes the summary of IPL.
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First-order Classical Logic

Throughout this monograph, first-order classical logic (FOL) is used as a tool to

study metatheory. This is akin to the use of logic in, for example, universal algebra,

where it provides a platform on which one can uniformly express and investigate

different kinds of structures. We assume general familiarity with FOL — see, for

example, van Dalen [211] and Troelstra and Schwichtenberg [207] — and give a

terse but complete summary so we may refer to it without ambiguity.

As we wish to reserve traditional symbols such as ⊢and → for the other logics,

we will use ▶ and ⇒ for FOL. In both cases, we use the symbol ▷ as the sequents

symbol, regarding ⊢and ▶ as consequence relations.

3.1 Syntax and Consequence
There are many presentations of FOL in the literature. Therefore, we begin by fixing

the relevant concepts and terminology for this work.

Definition 3.1 (First-order Language). An alphabet is a tuple A := ⟨R,F,K,V⟩ in

which R, F, K, and V are pairwise disjoint countable sets of symbols, and each

element of R, F and K has a fixed arity.

The set TERM(A) of terms T from A is the least set containing K and V such

that, for any F ∈ F, if F has arity n and T1, ...,Tn ∈ TERM(A), then F(T1, ...,Tn) ∈

TERM(A).

The set ATOMS(A) is set of strings R(T1, ...,Tn) such that R ∈ R has arity n and

T1, ...,Tn ∈ TERM(A).
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The set WFF(A) of formulae from A is defined by the following grammar, in

which X ∈ V:

Φ := A ∈ ATOMS(A) | Φ ⇒ Φ | ΦNΨ | ΦOΨ | ∀XΦ | ∃XΦ | # |□

The symbols ⇒, N, O, #, and □ are implication, conjunction, disjunction, and

absurdity, and top, respectively, in FOL. They are inter-definable in the usual way;

for example, □ = A ⇒ A for any A ∈ ATOMS(A) — see, for example, van Dalen

[211]. Typically, O is reserved for multiplicative disjunction in Linear Logic [83]

(LL), but since we do not study LL in this monograph, the symbol is liberated. It

is suitable for denoting disjunction because it is aesthetically dual to N, reflecting

their algebraic relationship, and other standard symbols (e.g., ⊕) are used for other

purposes in later chapters.

We may use the usual convention for suppressing brackets; that is, conjunction

(N) and disjunction (O) bind more strongly than implication (⇒). Moreover, we

may use the usual auxiliary terminology for first-order languages (e.g., sub-formula,

closed-formula, sentence, etc.) without further explanation. Let be X a variable, T

be a term, and Φ a wff; we write Φ[X 7→ T ] to denote the result of replacing every

free occurrence of X by the term T so that no variable in T becomes bound in Φ

after the substitution.

Definition 3.2 (First-order Sequent). A first-order sequent (FO-sequent) is a pair

Π▷Σ in which Π and Σ are multi-sets of first-order formulae.

We write Π▶ Σ to denote that Π▷Σ is a consequence of FOL. We think of se-

quents as unjudged structures; in particular, we have ∅▷∅ as a well-formed sequent

in FOL, but it is not a consequence of FOL.

3.2 Proof Theory
One way to characterize FOL is by provability in a sequent calculus.

Definition 3.3 (Sequent Calculus G3c). The sequent calculus G3c is composed of

the rules in Figure 3.1 in which T is an arbitrary term, and Y is an eigenvariable.
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Φ,Π▷Σ,Φ
ax

#,Π▷Σ
#

Φ,Ψ,Π▷Σ

ΦNΨ,Π▷Σ
NL

Π▷Σ,Φ Π▷Σ,Ψ
Π▷Σ,ΦNΨ

NR

Φ,Π▷Σ Ψ,Π▷Σ

ΦOΨ,Π▷Σ
OL

Π▷Σ,Φ,Ψ
Π▷Σ,ΦOΨ

OR

Π▷Σ,Φ Ψ,Π▷Σ

Φ ⇒ Ψ,Π▷Σ
⇒L

Φ,Π▷Σ,Ψ
Π▷Σ,Φ ⇒ Ψ

⇒R

∀XΦ,Φ[x 7→ T ],Π▷Σ

∀XΦ,Π▷Σ
∀L

Π▷Σ,Φ[X 7→ Y ]
Π▷Σ,∀XΦ

∀R

Φ[x 7→ Y ],Π▷Σ

∃XΦ,Π▷Σ
∃L

Π▷Σ,∃XΦ,Φ[X 7→ T ]
Π▷Σ,∃XΦ

∃R

Figure 3.1: Sequent Calculus G3c

We write Π⊢G3c Σ to denote that there is a G3c-proof of Π ▷Σ. Troelstra and

Schwichtenberg [207] proved that G3c-provability characterizes classical conse-

quence:

Theorem 3.4. Π▶ Σ iff Π⊢G3c Σ

We use G3c to characterize FOL, as opposed to other proof systems, because

of its desirable proof-theoretic properties — for example, Troelstra and Schwicht-

enberg [207] have shown that the rules of the calculus are (height-preserving) in-

vertible and that the following rules are admissible:

Π▷Σ

Φ,Π▷Σ
wL

Π▷Σ

Π▷Σ,Φ
wR

Φ,Φ,Π▷Σ

Φ,Π▷Σ
cL

Π▷Σ,Φ,Φ
Π▷Σ,Φ

cR

3.3 Model-theoretic Semantics
Another way to characterize FOL is by validity in a semantics; in particular, by

validity in a model-theoretic semantics. As mentioned above, we assume familiarity

with the subject and therefore give a terse but complete account of definitions to

keep the paper self-contained.
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Definition 3.5 (First-order Structure). A first-order structure is a tuple S =

⟨U,R,F,K⟩ in which U is a countable set, K is a subset of U (i.e., K ⊆ U), F is

a countable set of operators on U (i.e., maps f : Un → U, for finite n), and R is a

countable set of relations on U (i.e., relations r ∈ Un for n > 1).

We may write α( f ) to denote the arity of a function or a relation. The same

notation may be used for the symbols in a first-order alphabet.

Definition 3.6 (Interpretation). Let S := ⟨U,R,F,K⟩ be a structure, and let A :=

⟨R′,F′,K′,V⟩ be an alphabet. An interpretation of A in S is a function J−K satisfying

the following:

- if x ∈ V, then JxK ∈ U;

- if c ∈ K′, then JcK ∈ K;

- if f ∈ F′, then J f K ∈ F, and α(J f K) = α( f );

- if R ∈ R′, then JRK ∈ R, and α(JRK) = α(R).

We may write J−K : A →S to denote that J−K is an interpretation of the alpha-

bet A in the first-order structure S . They extend to terms as follows:

JF(T1, ...,Tn)K := JFK(JT1K, ...,JTnK)

Let J−K : A → S be an abstraction, X ∈ V a variable, and A ∈ U. The A/X-

variant J−K′ of J−K is defined as follows:

J−K′ :=

A if Y = X

JY K otherwise

We may write J−K[X 7→ A] to denote the A/X-variant of J−K.

We use the term abstraction for what is traditionally referred to as a model —

see, for example, van Dalen [211]. This is to avoid confusion as we reserve ‘model’

for the semantics of the object-logics.
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A⊪ R(T1, ...,Tn) iff ⟨Jt1K, ...,JtnK⟩ ∈ JPK

A⊪Φ ⇒ Ψ iff not A⊪Φ or A⊪Ψ

A⊪ΦNΨ iff A⊪Φ and A⊪Ψ

A⊪ΦOΨ iff A⊪Φ or A⊪Ψ

A⊪ ∀XΦ iff A[X 7→ A]⊪Φ for any A ∈ U

A⊪ ∃XΦ iff A[X 7→ A]⊪Φ for some A ∈ U

A⊪ # never

A⊪□ always

Figure 3.2: Truth in an Abstraction

Definition 3.7 (Abstraction). An abstraction of an alphabet A is a pair A :=

⟨S,J−K⟩ in which S is a structure and J−K : A →S be an interpretation.

Let A := ⟨S,J−K⟩ be an abstraction. We may write A[X 7→ A] to denote

⟨S,J−K[X 7→ A]⟩.

Definition 3.8 (Truth in an Abstraction). Let A be an alphabet, let ϕ be a formula

over A, and let A= ⟨S,J−K⟩ be an abstraction of A. The formula ϕ is true in A iff

A⊪ ϕ , which is defined inductively by the clauses in Figure 3.2.

We can define truth of sequents as follows:

Π⊪ Σ iff for any abstraction A,

if A⊪ ϕ for every ϕ ∈ Π,

then A⊪ ψ for some ψ ∈ Σ

Theorem 3.9 (Gödel [84]). Π▶ Σ iff Π⊪ Σ.

This concludes the summary of FOL.



Chapter 4

The Theory of Tactical Proof

A general framework supporting the mechanization of Reductive Logic is the the-

ory of tactical proof introduced by Milner [143]. While little developed mathemat-

ically, the theory is sufficiently general to encompass as diverse reasoning activities

as proving a formula in a formal system and seeking to meet a friend before noon

on Saturday. It does not concern finding the best way to reason about a goal (e.g.,

minimizing the prospect of failure), though these things are important, instead it

makes precise how concepts used during reasoning — such as ‘goal,’ ‘strategy,’

‘achievement,’ ‘failure,’ etc. — relate to one another. The point is that all such

reasoning activities, different in domain and formality, can be articulated in terms

of a uniform language that a user may express insight into reasoning methods and

delegate routine, but error-prone, work to a machine. In the words of Milner [143]:

Here it is a matter of taste whether the human prover wishes to see

this performance done by the machine, in all its frequently repulsive

detail, or wishes only to see the highlights, or is merely content to let

the machine announce the result (a theorem!).

Following Milner [143], we introduce the theory at the full level of generality

in Section 4.1. Following this, we illustrate it in the context of proof-search for IPL

in Section 4.2, and then for logics in general in Section 4.3. It is tactical proof that

delivers systematically the various proof-assistants mentioned in Chapter 1
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4.1 Tactics and Tacticals

One has two classes of prime entities: goals and events. The two classes are carried

by the sets GOALS and EVENTS, respectively. The goals and events are related by a

notion of achievement ∝⊆ GOALS×EVENTS that determines what events witness

what goals. The idea is that an event E achieves goal G as it satisfies the description

that the goal has designated. Heuristically, an event achieves a goal when it satisfies

the description that the goal has designated. For example, the goal G that ‘Alice and

Bob meet before noon on Saturday’ is achieved by the event E is that ‘Alice and

Bob meet under the clock at Waterloo station at 11:53 on Saturday.’

We take reasoning about a goal as the process of replacing it with new goals

that suffice to produce the original. In the nomenclature of Reductive Logic, such

replacements are captured by reduction operators, which may be taken as a partial

function from goals to lists of goals:

ρ : GOALS ⇀ LGOALS

The goals produced by applying a reduction operator to a given goal are said to be

subgoals.

What renders a reduction from a goal to a list of subgoals valid is that any

events possibly witnessing the subgoals yield an event possibly witnessing the orig-

inal goal. This justification is witnessed by a procedure,

π : LEVENTS ⇀ EVENTS

Returning to the example above concerning Alice and Bob, the goal G may be

reduced to the following sub-goals:

G1 : Alice arrives under the clock at Waterloo Station before noon on Saturday

G2 : Bob arrives under the clock at Waterloo Station before noon on Saturday.

This reduction is justified by the fact that G1 and G2 are achieved by the following
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events, respectively, which yield E through the procedure of waiting:

E1 : Alice arrives at Waterloo Station at 11:57 on Saturday

E2 : Bob arrives at Waterloo Station at 11:53 on Saturday.

Thus, one step of reasoning amounts to applying a (partial) mapping takings

goals to subgoals together with a procedure,

τ : G 7→ ⟨[G1, . . . ,Gn],π⟩

These mappings are called tactics. According to the above discussion, we have the

following notion of validity:

Definition 4.1 (Valid Tactic). Let ∝ be a notion of achievement. A tactic τ is ∝-

valid iff, for any G,G1, . . . ,Gn ∈ GOALS and E ,E1, . . . ,En ∈ EVENTS, if τ : G 7→

⟨[G1, . . . ,Gn],π⟩ and E := π(E1, . . . ,En), and Ei ∝ Gi obtains for 1 ≤ i ≤ n, then

E ∝ G obtains.

Of course, a goal typically requires several iterations of reasoning of the above

form such that subgoals are resolved into further subgoals, and so on. For example,

suppose Alice starts from Andover and Bob starts from Birmingham; then, to reason

about G, one requires many component tactics that collectively bridge the distance

both physical and temporal — for instance, one may have the subgoal G′
1 for G1 that

‘Bob takes the tube to Waterloo Station from Euston Station’, which is witnessed

by the event ‘Bob takes the 11:46 southbound Northern Line service from Euston

to Waterloo on Saturday.’ Hence, we require a notion of composition of tactics.

A composition of tactics is called a tactical. A tactical is valid when it pre-

serves the validity of the tactics it combines:

Definition 4.2 (Valid Tactical). A tactical is valid iff it preserves the validity of

tactics; that is, if ◦ is a tactical and τ1,. . . ,τn are ∝-valid, then ◦(τ1, . . . ,τn) are

∝-valid.

The foregoing is a complete account of tactical reasoning as introduced by Mil-

ner [143]. To be precise in the semantics presented in this chapter, we supplement
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the above with some additional definitions.

Definition 4.3 (Tactical System). A tactical system T is a collection of tactics and

tacticals that are valid relative to some notion of achievement.

We have opted to present the theory in its full generality. In the sequel, we

apply it to the context of the use of logic as a reasoning technology. We follow the

account in Milner [143], which is the basis of many automated reasoning technolo-

gies using logic, such as the proof assistants mentioned in Section 19.

Let ⊢ be the consequence relation for IPL — see Chapter 2. We have the

following setup:

- a goal is a sequent Γ▷ϕ in which Γ is a list of formulas and ϕ is a formula

- an event is a sequent ∆▷ψ such that ∆⊢ψ obtains

- the achievement relation ∝ is as follows:

(∆▷ψ) ∝ (Γ▷ϕ) iff ϕ = ψ and ∆ ⊑ Γ and ∆⊢ψ

(We write ∆ ⊑ Γ to denote that the set of elements in ∆ is a subset of the set

of elements of Γ)

In this context, a tactic is valid iff it corresponds to an admissible rule for IPL.

For example, in NJ the ∧I-rule determines the tactic τ∧I
which has the following

components:
Γ▷ϕ Γ▷ψ

Γ▷ϕ ∧ψ
⇑︸ ︷︷ ︸

reduction operator

∆1 ⊢ϕ ∆2 ⊢ψ

∆1,∆2 ⊢ϕ ∧ψ
⇓︸ ︷︷ ︸

procedure

This concludes the overview of the theory of tactical proof as used in this mono-

graph (Part III).

4.2 Tactical Proof and Intuitionistic Propositional

Logic
Having presented the theory of tactics as a metatheoretical framework in which one

studies reasoning — the construction of arguments — in its full generality, it is
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informative to consider how it applies in the concrete setting of natural deduction

for IPL.

In Section 4.1, we witnessed the following tactic corresponding to the ∧I rule:

τ∧ : (Γ▷ϕ ∧ψ) 7→ ⟨[(Γ▷ϕ),(Γ▷ψ)],∧R⟩

The analogous treatment of →I yields the following:

τ→ : (Γ▷ϕ → ψ) 7→ ⟨[(ϕ,Γ▷ψ)],→R⟩

These individual reasoning steps are combined with a tactical # that corresponds to

the sequential application of rules in natural deduction:

τ∧ # τ→ :
(
Γ▷χ ∧ (ϕ → ψ)

)
7→ ⟨[(Γ▷χ),(ϕ,Γ▷ψ)],∧R⊗→R⟩

The procedure ∧R⊗→R is the product of the procedures for ∧R and →R.

We have thus related natural deduction and consequence using tactics. And

yet, something is missing in this setup. What argument does τ∧ # τ→ witness? This

question demands an interpretation of tactics as arguments, understood as abstract

entities such as natural deduction arguments. We return to this problem in Part III

(Chapter 20)

4.3 Tactical Proof and Logic

The theory of tactical proof is an engine relating the search for arguments. It is,

essentially, a system of reduction operators that are step-wise justified by rules in

a sequent calculus. That is how we regard them in this chapter. The application

of tactics drives the computation of arguments, which is to say the search for argu-

ments, and a sequent calculus (in the sense of Chapter 14) defines the procedures

of the tactics. As such, supplying a sequent calculus amounts to supplying a no-

tion of inference against which the computation of an argument is justified. This is

captured in the semantic framework of this chapter in Section 20.4.1
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The dichotomy between proof and search actually predates the tactical proof.

The components were historically called analysis and synthesis, respectively — see

Pólya [162] for a general discussion of this study for mathematical practice. In

analysis, one repeatedly asks from what conditions could the desired result, which

is to say goal, be obtained; during synthesis, one derives from the analysis a solution

to the problem.

The shift from analysis to synthesis (i.e., the shift from computing subgoals to

using procedures, from reduction to deduction) is captured by a synthesizer.

Definition 4.4 (Synthesizer). Let L be a sequent calculus and T be tactical sys-

tem with achievement ∝ whose events are L-sequents. The achievement ∝ is an

L-synthesizer for T iff the procedures of T are the rules of L.

An example of a synthesizer is offered at the end of Section 4.1. Here the

reduction operators correspond to NJ rules, and the procedures correspond to LJ

rules.

In the same way that tactics are implicit in much of the literature on logic,

synthesizers also appear implicitly anywhere one considers the inferential content

within arguments in a certain space. The running case of natural deduction for IPL

discussed above is a key example; we give some others in Part III (Chapter 20).



Part I

Reduction, Control, and Semantics in

the Logic of Bunched Implications



Chapter 5

Introduction to Part I

This part of the monograph investigates reduction and proof-search in the logic

of Bunched Implications (BI) [150]. While the background on IPL in Chapter 2

suggests that Reductive Logic is a perspective in which one may see the interplay

between semantics and proof theory, it is a simple setting. In contrast, BI has a rela-

tively subtle meta-theory, with respect to both semantics and proof theory, meaning

that studying similar phenomena (e.g., reduction, control, and the relationship to

semantics) exposes the more subtle aspects of the interplay between semantics and

proof theory. Significantly, this part culminates with a novel approach to soundness

and completeness for BI, entirely based on proof-search, with respect to model-

theoretic semantics. This supports the more general investigation into semantics

and proof theory in Reductive Logic in Part II.

One way to understand BI is by contrast with Linear Logic (LL) [83], which

is well-known for its computational interpretation developed by Abramsky [3], and

others. In LL, the structural rules of weakening and contraction are regulated by

modalities, ! (related to□ in modal logic) and ? (related to ♢ in modal logic). To see

how this works, consider the left and right (single-conclusioned) sequent calculus

rules for the ! modality,
Γ,ϕ ▷ψ

Γ, !ϕ ▷ψ
and

!Γ▷ϕ

!Γ▷!ϕ

and note that weakening and contraction arise as

Γ▷ψ

Γ, !ϕ ▷ψ
W and

Γ, !ϕ, !ϕ ▷ψ

Γ, !ϕ ▷ψ
C
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respectively.

There are two important consequences of this setup. First, proof-theoretically,

the relationship between intuitionistic (additive) implication, →, and linear (multi-

plicative) implication,⊸, is given by Girard’s translation [83],

ϕ → ψ ≡ (!ϕ)⊸ ψ

Second, more semantically, LL has a rudimentary interpretation as a logic of re-

source via the so-called number-of-uses reading, in which, in a sequent Γ ▷ϕ , the

number of occurrences of a formula ψ in Γ determines the number of times ψ may

be ‘used’ in ϕ . The significance of the modality ! can now be seen: if !ψ is in Γ,

then ψ may be used any number of times in ϕ (including zero). This reading is

wholly consistent with the forms of weakening and contraction above.

The relationship between logic and structure offered in the above reading has

been called by Abramsky [4] the intrinsic view of logic. By comparison, BI is,

perhaps, the prime example of the contrasting descriptive view of resource — that

is, in the resource interpretation of BI, a proposition is not a resource itself, but a

declaration about the state of some resources.

Informally, in BI, a judgement M,m ⊨ ϕ ∧ψ is a declaration that the resource

m (in the model M) satisfies both ϕ and ψ (i.e., M,m ⊨ ϕ and M,m ⊨ ψ); mean-

while, the judgement M,m ⊨ ϕ ∗ψ says that m can be split into two parts n and n′

that satisfy ϕ and ψ , respectively (i.e., M,n ⊨ ϕ and M,n′ ⊨ ψ). We may illustrate

this idea by an example. Suppose chocolate bar A costs 2 gold coins, and chocolate

bar B costs 3 gold coins. We may write 3 ⊨ A∧B to say that three gold coins suffice

for both chocolates in the sense that one could freely choose to have either A or B;

meanwhile, we may write 7 ⊨ A ∗B to say that seven gold coins may be split into

two piles that suffice to purchase A and B — in particular, 3 ⊨ A and 4 ⊨ B. Notice

the persistence of the judgement; that is, since 2 < 3 and 2 ⊨ A, we also have 3 ⊨ A.

It is this kind of resource reasoning for which BI is, intuitively, suitable. Yet, this

does not define BI.

The original motivation for BI is, in contrast to LL, to have two primitive (in-
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tuitionistic) implications, one additive and one multiplicative. As a consequence,

contexts in BI are not the typical flat data structures typically used in logic (e.g.,

lists or multisets), but instead are layered structures called bunches. As a result,

BI has a well-motivated proof-theoretic formulation, but a more complex model-

theoretic formulation.

Of course, BI is one of many bunched logics — see, for example,

Docherty [44]. It is closely related to (and may even be understood as part of)

the family of relevance logics, where from the term bunch comes, which has re-

ceived extensive study — see, for example, Belnap [15]. and Read [176]. However,

the literature on BI departs slightly from relevance logics because its motivations

from substructural logic; for example, one often uses the terms additive and mul-

tiplicative in BI for what ought properly to be called intensional and extensional

(cf. Belnap [16]). These difference are largely superficial. Indeed, bunches are

generally useful algebraic structures in proof theory; for example, Schroeder-

Heister [186, 187] has used bunches as a structural entity in connection with struc-

tural extensional and intensional implications to define introduction and elimination

rules for logical connectives corresponding to the extensional ‘higher-level’ rules

— see Part III.

This part begins in Chapter 6 with a definition of BI and a brief survey of some

of its meta-theory to motivate later discussion. Chapter 7 provides a cut-elimination

argument for a sequent calculus for BI — while cut-admissibility is known for the

sequent calculus, it is through indirect means such as through the logic’s display

calculus (see Brotherston [27]) and semantically (see Frumin et al. [63]). Chap-

ter 8 studies logic programming in BI, closely following the treatment of IPL in

Chapter 2, but also considers a denotational perspective via coalgebra. Chapter 9

provides a focused calculus for BI — briefly, a calculus in which proof-search is

strictly controlled — and illustrates its soundness and completeness through a cut-

elimination argument. Chapter 10 uses proof-search to demonstrates the soundness

and completeness of BI with respect to a model-theoretic semantics. Significantly,

this approach entirely avoids term- and counter-model constructions, which are sub-



52

tle for BI because of the more complex structure of contexts (i.e., bunches) and the

interaction between the additive and multiplicative connectives — and is explored

further in Part II. The part concludes in Chapter 11 with a summary of contributions.



Chapter 6

The Logic of Bunched Implications

This chapter contains a background on BI that supports the subsequent chapters. It

provides the syntax of the logic in Section 6.1, and a proof-theoretic characterization

of it in Section 6.2. There is also a survey of some results on its semantics in

Section 6.3 which indicate the subtlety of the logic’s meta-theory.

6.1 Syntax & Consequence

Having already motivated BI in Chapter 5, we proceed with a formal, syntactic,

definition. Essentially, BI is free combination (i.e., the fibration — see Gabbay [68])

of (additive) intuitionistic logic, with connectives ∧,∨,→,⊤,⊥, and multiplicative

intuitionistic logic, with connectives ∗,−−∗,⊤∗.

Definition 6.1 (Formulas). Let A be a denumerable set of propositional letters. The

set of formulas F (over A) is defined by the following grammar:

ϕ ::= p ∈ A | ⊤ | ⊥ | ⊤∗ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ →ϕ | ϕ ∗ϕ | ϕ −−∗ϕ

A distinguishing feature of BI is that contexts are not one of the familiar struc-

tures of lists, multisets, or sets, since the two context-formers # and , representing

the two conjunctions ∧ and ∗, respectively, do not commute with each other, though

individually they behave as usual; contexts are instead bunches.
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Definition 6.2 (Bunch). The set of bunches B is defined by the following:

Γ ::= ϕ ∈ F |∅+ |∅× | Γ #Γ | Γ , Γ

The # is the additive context-former, and the ∅+ is the additive unit; the , is the

multiplicative context-former, and the ∅× is the multiplicative unit.

The use of # and , as the ‘additive’ and ‘multiplicative’ context-formers

are standard practice for BI (see, for example, O’Hearn and Pym [150] and

Docherty [44]). This stands in contrast to the practice in relevance logics where

the roles are usually reversed — see, for example, Read [176].

A bunch ∆ is a sub-bunch of a bunch Γ iff ∆ is a sub-tree of Γ. We may

write Γ(∆) to express that ∆ is a sub-bunch of Γ. The operation Γ(∆)[∆ 7→ ∆′] —

abbreviated to Γ(∆′), where no confusion arises — is the result of replacing the

occurrence of ∆ by ∆′.

Definition 6.3 (Sequent). A sequent is a pair Γ▷ϕ in which Γ is a bunch and ϕ is

a formula.

Since contexts — the left-hand side of sequents — are more complex than in

many of the more familiar logics (e.g., FOL, IPL, etc.), the following is an explicit

characterization of equivalence of bunches.

Definition 6.4 (Coherent Equivalence). Two bunches Γ,Γ′ ∈B are coherently equiv-

alent when Γ ≡ Γ′, where ≡ is the least relation satisfying:

- commutative monoid equations for # with unit ∅+

- commutative monoid equations for , with unit ∅×

- coherence — that is, if ∆ ≡ ∆′ then Γ(∆)≡ Γ(∆′).

By commutative monoid equations for ◦ with unit 1, we mean the following:

x◦ y ≡ y◦ x︸ ︷︷ ︸
commutativity

x◦ (y◦ z)≡ (x◦ y)◦ z︸ ︷︷ ︸
associativity

x◦1 ≡ x︸ ︷︷ ︸
unitality



6.2. Proof Theory 55

We have not included any contraction or weakening in this definition. When defin-

ing BI’s consequence judgement, # will indeed have both structural properties and ,

will have neither; this is what determines the former as ‘additive’ and the latter as

‘multiplicative’.

Bunches are typically understood as the syntax trees provided by Definition 6.2

modulo coherent equivalence, in the same way that sets or multisets for the contexts

of FOL or IPL may be understood as lists modulo permutation. The idea that the

context-formers represent the conjunctions provides the following transformation:

Definition 6.5 (Compacting). The compacting function ⌊·⌋ : B→ F is defined as

follows:

⌊Γ⌋ :=



ϕ if Γ = ϕ ∈ F

⊤ if Γ =∅+

⊤∗ if Γ =∅×

⌊∆1⌋∗ ⌊∆2⌋ if Γ = ∆1 , ∆2

⌊∆1⌋∧⌊∆2⌋ if Γ = ∆1 #∆2

That a sequent Γ▷ϕ is a consequence of BI is denoted Γ ⊢ ϕ .

6.2 Proof Theory
The motivations for the proof-theoretic presentation of BI are treated extensively

in O’Hearn and Pym [150, 171]; therefore, for the sake of brevity, we elide it and

proceed directly with the relevant definitions. We shall concentrate on the sequent

calculus presentation since we are primarily concerned with proof-search, but BI

admits all the usual proof-theoretic treatments such as axiomatic systems and ana-

lytic tableaux — see, for example, Galmiche et al. [73, 71, 74, 72, 70].

Definition 6.6 (System LBI). Sequent calculus LBI comprises the rules of Fig-

ure 6.1, in which ϕ,ψ,χ ∈ F, Γ,∆,∆′ ∈ B, and e has the side-condition ∆ ≡ ∆′.

Proof in a sequent calculus is defined in the usual way — see, for example,

Troelstra and Schwichtenberg [207].
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ϕ ▷ϕ
ax

Γ(⊥)▷ϕ
⊥L ∅× ▷⊤∗ ⊤∗

R ∅+ ▷⊤ ⊤R

∆′ ▷ϕ Γ(∆ , ψ)▷χ

Γ(∆ , ∆′ , ϕ −−∗ψ)▷χ
−−∗L

∆ , ϕ ▷ψ

∆▷ϕ −−∗ψ
−−∗R

∆(ϕ , ψ)▷χ

∆(ϕ ∗ψ)▷χ
∗L

∆▷ϕ ∆′ ▷ψ

∆ , ∆′ ▷ϕ ∗ψ
∗R

∆(∅×)▷χ

∆(⊤∗)▷χ
⊤∗

L

∆(ϕ #ψ)▷χ

∆(ϕ ∧ψ)▷χ
∧L

∆▷ϕ ∆▷ψ

∆▷ϕ ∧ψ
∧R

∆(∅+)▷χ

∆(⊤)▷χ
⊤L

∆(ϕ)▷χ ∆(ψ)▷χ

∆(ϕ ∨ψ)▷χ
∨L

∆▷ϕ

∆▷ϕ ∨ψ
∨R1

∆▷ψ

∆▷ϕ ∨ψ
∨R2

∆▷ϕ Γ(∆ #ψ)▷χ

Γ(∆ #ϕ →ψ)▷χ
→L

∆ #ϕ ▷ψ

∆▷ϕ →ψ
→R

∆(∆′)▷χ

∆(∆′ #∆′′)▷χ
w

∆▷χ

∆′ ▷χ
e(∆≡∆′)

∆(∆′ #∆′)▷χ

∆(∆′)▷χ
c

Figure 6.1: Sequent Calculus LBI

We write Γ⊢LBI ϕ to denote that there is a LBI-proof of Γ▷ϕ . We may express

that D is a LBI-proof of a sequent Γ▷ϕ , by writing D : Γ⊢LBI ϕ or D : Γ▷ϕ . To say

that LBI characterizes BI is to say the following:

Γ ⊢ ϕ iff Γ⊢LBI ϕ

The proof of this by Pym [171] makes essential use of the following rule:

∆▷χ Γ(χ)▷ϕ

Γ(∆)▷ϕ
cut

Brotherston [27] established the admissibility of cut in BI by an argument that

passes through the logic’s display calculus; and Frumin [63] has given a semantic

proof of cut-admissibility that has been verified in Coq. Therefore, we may leave

it out. However, as neither of these proofs go through the traditional permutation

style argument for LBI, we give one in Chapter 7.

The remainder of this section concerns some simple results about BI that fol-
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low immediately from analysis LBI and will be useful below.

Proposition 6.7. The following rules are derivable in LBI, and replacing w with

them does not affect the completeness of the system.

∆ #ϕ ▷ϕ
Taut

∆ #∅× ▷⊤∗ ⊤∗′
R ∆ #∅+ ▷⊤ ⊤′

R

∆▷ϕ ∆′ ▷ψ

(∆ , ∆′) #∆′′ ▷ϕ ∗ψ
∗′R

∆′ ▷ϕ ∆(∆′′ , ψ)▷χ

∆(∆′ , ∆′′ , (∆′′′ #ϕ −−∗ψ))▷χ
−−∗′L

Proof Sketch. We can construct in LBI-proofs with the same premisses and conclu-

sion as these rules by use of the structural rules. Let LBI′ be LBI without w but with

these new rules (retaining also ∗R , −−∗L, ⊤∗
R, ⊤R, and Taut), then w is admissible in

LBI′ using a standard permutation argument.

One may regard the above modification to LBI as forming a new calculus, but

since all the new rules are derivable it is really a restriction of the calculus, in the

sense that all proofs in the new system have equivalent proofs in LBI differing only

by explicitly including instances of weakening (w).

Despite LBI being analytic (i.e., only sub-formulae of a sequent will appear

in an LBI-proof of it), proof-search in LBI remains a difficult problem. Before any

of the logical problems, the syntax of BI already provides a challenge as it uses

a more complex data structure than many other logics (i.e., bunches rather than

lists) thereby rendering the notions of control more complex. Indeed, the complex

structure of bunches means that the space of reductions generated by LBI for any

given putative conclusion is infinite. Nonetheless, one may still study proof-search

in BI, as shown in Chapter 9 and Chapter 8.

6.3 Monoidal Semantics
To complete this introduction to BI, we provide a brief survey of its model-theoretic

semantics. This is background and none of the results are directly used in later parts

of the monograph, but it motivates the work in Chapter 10.

Throughout we use the syntax of FOL (Chapter 3) as notation for the ambient

logic. That is, we employ ⇒ for ‘implies’, N for ‘and’, and O for ‘or’, without
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further reference.

Preordered Commutative Monoids

In contrast to classical logic, in the model theory for non-classical logics, one thinks

of statements (i.e., formulas of the logic) not as being universally true, but instead

true with respect to a certain state of affairs, such as at a certain time or with respect

to some information. For intuitionistic propositional logic (IPL), a formula is true

when one can provide a method for witnessing (or constructing) it; the states in the

model-theoretic semantics for IPL are sometimes understood as witnesses of these

methods, and the clauses of the satisfaction relation specify how the witnesses relate

to each other — see, for example, Dummett [52]. The model-theoretic semantics

of BI is, intuitively, an extension of the model-theoretic semantics for IPL (see

Chapter 2) that allows these witnesses to be decomposed.

Decomposition is witnessed by a monoidal product — that is, w is a compo-

sition of u and v iff w = u ◦ v. A witness w satisfies an additive conjunction ϕ ∧ψ

when it satisfies both ϕ and ψ , and a witness w satisfies a multiplicative conjunc-

tion ϕ ∗ψ when there are two states u and v such that w = u◦ v, u satisfies ϕ , and v

satisfies ψ .

Definition 6.8 (Preordered Commutative Monoid). A preordered commutative

monoid (PCM) is a tuple M = ⟨M,⪯,◦,e⟩, in which ⪯ is a preorder on M, and

◦ is a commutative monoidal product on M with unit e ∈ M.

Definition 6.9 (Interpretation). Let M := ⟨M,⪯,◦,e⟩ be a PCM. An interpretation

[[−]] : A →M is a mapping [[−]] : A → P(M).

Let M = ⟨M,⪯,◦,e⟩ be a PCM. We may write w ∈M to denote that w ∈ M.

Using PCMs as the semantics for BI is coherent with the idea of it as a fibration

(see Gabbay [67]), which determines the bifunctoriality condition:

m ⪯ m′Nn ⪯ n′ ⇒ m◦n ⪯ m′ ◦n′

Definition 6.10 (PCM Pre-model). A PCM pre-model is a pair M := ⟨M, [[−]]⟩ in

which M is a PCM that is bifunctorial and [[−]] : A →M is an interpretation.



6.3. Monoidal Semantics 59

w ⊩ p iff w ∈ [[p]]

w ⊩⊤ always

w ⊩⊥ never

w ⊩⊤∗ iff e ⪯ w

w ⊩ ϕ ∧ψ iff w ⊩ ϕ and w ⊩ ψ

w ⊩ ϕ ∨ψ iff w ⊩ ϕ or w ⊩ ψ

w ⊩ ϕ → ψ iff for any v, if w ⪯ v and v ⊩ ϕ, then v ⊩ ψ

w ⊩ ϕ ∗ψ iff there are u,v st.u◦ v ⪯ w and u ⊩ ϕ and v ⊩ ψ

w ⊩ ϕ −−∗ψ iff for any u,v, if u ⊩ ϕ, then u◦ v ⊩ ψ

Figure 6.2: Satisfaction for BI in Preordered Commutative Monoids

Let M= ⟨M,⪯,◦,e⟩ be a PCM. We may write w ∈M to denote that w ∈ M.

Definition 6.11 (Satisfaction). Satisfaction is the least relation satisfying the

clauses of Figure 6.2 in which M := ⟨M, [[−]]⟩ is a PCM pre-model.

Definition 6.12 (PCM Model). A PCM pre-model M := ⟨M, [[−]]⟩ is a PCM model

iff it is atomically persistent — that is, for any p ∈ A and any u,w ∈ M,

if M,w ⊩ p and w ⪯ u, then M,u ⊩ p

The class of PCM-models is K.

Let M= ⟨M, [[−]]⟩ be a PCM. We may write w ∈M to denote that w ∈ M.

PCM models provide a notion of consequence as follows:

Γ ⊨ ϕ iff ∀M ∈ K∀w ∈M(M,w ⊩ Γ ⇒M,w ⊩ ϕ)

The soundness of BI with respect to this semantics (i.e., Γ⊢ϕ ⇒ Γ ⊨ ϕ) has

been known for a while (see, for example, Pym [171]) and is easy to prove us-

ing familiar methods, but completeness (i.e., Γ ⊨ ϕ ⇒ Γ⊢ϕ) is more subtle. The

following shows that BI is not complete:
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Proposition 6.13 (Pym et al. [171, 172]). Let Γ := (ϕ −−∗⊥)→⊥ # (ψ −−∗⊥)→⊥

and χ := ((ϕ ∗ψ)−−∗⊥)→⊥, for some ϕ and ψ ,

Γ ⊨ χ but Γ ̸⊢ χ

The form of Proposition 6.13 is pathological in that it expresses the incompat-

ibility of the consistency condition with the totality of the monoids: if there are u

and v such that u ⊩ p and v ⊩ p−−∗⊥, then u ◦ v ⊩ p ∗ p−−∗⊥, but then u ◦ v ⊩ ⊥,

which is absurd. However, BI is complete with respect to this semantics apart from

⊥:

Proposition 6.14 (Pym et al. [171, 172]). Let Γ and ϕ not contain ⊥. If Γ ⊨ ϕ , then

Γ⊢ϕ .

The Inconsistency Semantics

How do we modify the semantics so that BI is complete? One approach is to make

a slight concession to the absurd: include a distinguished element π dominating the

PCMs — ∀w(w ∈ M ⇒ w ⪯ π) — which satisfies absurdity (⊥). One varies the

satisfaction relation in Figure 6.2, to have the following clause for absurdity:

M,w ⊩⊥ ⊥ iff w = π

This induces a validity judgement ⊨⊥ relative to ⊩⊥ and the dominated PCMs.

However, BI is incomplete with respect to this semantics too:

Proposition 6.15 (Pym [171]). Let ϕ = ((ψ −−∗⊥)−−∗⊥)∨(ψ −−∗⊥). The judgement

∅× ⊨⊥ ϕ but ∅×⊢ϕ does not.

Consequently, one must modify the clause for disjunction too, effectively using

Beth’s clause instead of Kripke’s — see Chapter 2. A term-model construction

exists with respect to the Grothendieck sheaf-theoretic models studied by Pym et

al. [171, 172].
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Partial and Non-deterministic Monoids

Galmiche et al. [74] have considered variants of the monoidal semantics in which

the monoidal product is partial, which is both sound and complete. A more general

perspective is offered by Docherty and Pym [47, 44], who considered the option

of having non-deterministic monoids. This consideration arises naturally from the

setting up of a uniform metatheory for bunched logics by extending the metatheory

for intuitionistic layered graph logic — see Docherty and Pym [45, 46].

The structures involved in the semantics of Docherty and Pym [47, 44] are

similar to the ordered monoids above except rather than have a unit e, they have a

set of elements E at least one of which is a unit, which further satisfies the following:

e ∈ ENe′ ⪰ e ⇒ e′ ∈ E︸ ︷︷ ︸
Closure

e ∈ ENx ∈ y◦ e ⇒ y ⪯ x︸ ︷︷ ︸
Coherence

t ′ ⪰ t ∈ x◦ yNw ∈ t ′ ◦ z ⇒∃s,s′,w′(s′ ⪰ s ∈ y◦ zNw ⪰ w′ ∈ x◦ s′)︸ ︷︷ ︸
Strong Associativity

Accordingly, one takes the following variations of the clauses for satisfaction:

x ⊩⊤∗ iff x ∈ E

x ⊩ ϕ ∗ψ iff there exists x′,y,z st. x ⪰ x′ ∈ y◦ z,y ⊩ ϕ and z ⊩ ψ

x ⊩ ϕ −−∗ψ iff for any x′,y,z, if x ⪯ x′,z ∈ x′ ◦ y and y ⊩ ϕ, then z ⊩ ψ

As above, given an interpretation, such structures have been shown to be sound

and complete for BI. Moreover, one has soundness and completeness for related log-

ics upon suitable augmentation — for example, replacing the preorder with equality

one produces models for Boolean BI (see Docherty [44]).

The clauses used here may be simplified as follows:

x ⊩ ϕ ∗ψ iff there exists y,z st. x ∈ y◦ z,y ⊩ ϕ and z ⊩ ψ

x ⊩ ϕ −−∗ψ iff for any y,z, if z ∈ x◦ y and y ⊩ ϕ, then z ⊩ ψ

Soundness and completeness requires persistent models, but checking that a model

satisfies this criterion or constructing one that does can be challenging. Fortunately,
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there are results in the literature that address this issue.

In the deterministic case the problem can be resolved by assuming bifuncto-

riality, but generalizing the property to non-deterministic case is a delicate matter.

Cao et al. [30] have considered the following conditions:

z ∈ x◦ yNz ⪯ z′ ⇒∃x′,y′(z′ ∈ x′ ◦ y′Nx ⪯ x′Ny ⪯ y′)

z ∈ x◦ yNx′ ⪯ xNy′ ⪯ y ⇒∃z′(z′ ⪯ zNz′ ∈ x′ ◦ y′)

Assuming these properties, called Upward Closed and Downward Closed, respec-

tively, one recovers soundness with both the direct and indirect clauses for ∗ and

−−∗, respectively. Moreover, Cao et al. [30] showed that any structure satisfying ei-

ther condition together with Simple Associativity — t ∈ x ◦ yNw ∈ t ◦ z ⇒ ∃s(s ∈

y◦zNw ∈ x◦s) — can be conservatively transformed into sound models of BI satis-

fying all three. Docherty and Pym [48, 44] has further shown that strong associativ-

ity for the non-deterministic models suffices for the same result without assuming

the model to be either upward or downward closed.

The Relational Semantics

Galmiche et al. [74] attempted to put the partial semantics within a more general

framework. The structures are similar to those above. The monoidal product is

generalized to a relation R, such that R(w,u,v) means that w decomposes into u

and v, and one has a distinguished element π satisfying absurdity, satisfying the

following:

R(π,x,y)︸ ︷︷ ︸
π-max

R(y,x,π)⇒ π ⪯ y︸ ︷︷ ︸
π-abs

The preorder is now defined in terms of the relation (i.e., x ⪯ y =⇒ R(y,x,e)) , and

there are some additional conditions beyond commutativity and associativity:

R(z,x,y)Nx ⪯ x′ ⇒ R(z,x′,y)︸ ︷︷ ︸
Compatibility

R(z,x,y)Nz ⪯ z′ ⇒ R(z′,x,y)︸ ︷︷ ︸
Transitivity

The relational structures form models under an interpretation [[−]] of the atoms

when they are atomically persistent and, for any world w and atom a, if π ⪯ w, then



6.3. Monoidal Semantics 63

w ∈ [[a]]. The resulting semantics was shown sound and complete via a term-model

construction — see Galmiche et al. [74].



Chapter 7

The Admissibility of Cut

In Chapter 6, BI was characterized by the sequent calculus LBI without cut —

∆▷χ Γ(χ)▷ϕ

Γ(∆)▷ϕ
cut

Versions of cut are studied in many logic and are typically used when studying

meta-theory (e.g., it is used in translating natural deduction proofs into sequent cal-

culi proofs and thereby showing the soundness of the latter), also in more computa-

tional questions such as complexity of proofs — see, for example, Boolos [25].

Nonetheless, the presence of cut has the undesirable effect of rendering proof-

search non-analytic — that is, given a putative conclusion, one may have to guess

the formula χ not evident from analysisng the conclusion. Hence, one wishes to

show that one may appeal to cut when desired, but not have to rely on it to prove a

formula. This is what it means to be admissible; more precisely, while LBI charac-

terizes BI, so does the the extended system LBI cut-rule to it without changing the

logic.

Brotherston [27] has given a proof of admissibility for the rule using display

calculi, and Frumin [63] has given a semantic proof of it. However, it is not only

the admissibility of cut in itself that is useful, the proof of it can be too. The

Curry-Howard Correspondence Theorem [106] means that ‘rewrite’ proofs of cut-

admissibility correspond to normalization of some typed λ -calculus. Type systems

corresponding to BI have been studied by O’Hearn and Pym [150], and they have
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been deployed by Petricek [154] to model context-aware programming languages.

This chapter provides a procedure for gradually removing cuts from sequent calculi

proofs.

The earliest and still most traditional method of demonstrating the admissibil-

ity of cut in a sequent calculus is due to Gentzen [200]. The Hauptsatz, as it is often

called, is proved for first-order classical and intuitionistic logic. The proof proceeds

by recursively rewriting sequent calculus proofs in such a way the cuts gradually

disappear while leaving the conclusion unchanged. There are at least two attempts

in the literature on BI on rewriting proofs for cut-admissibility: one by Pym [171]

and one by Arisaka and Qin [8]. Both contain flaws, which are discussed below.

7.1 Previous Attempts
The rewriting method for cut-admissibility in a sequent calculus is characterized by

providing a transformation that permutes cuts upward (i.e., towards the leaves of

the proof) in an arbitrary proof from the sequent calculus by stating how they may

be permuted with other rules. This delivers admissibility when one can show that

some sequence of rewrites terminates in a cut-free proof, which is typically done by

establishing some well-founded measure that decreases with each transformation.

A typical measure used for this purposes is the multiset ordering induced by

lexicographic ordering (see Dershowitz and Manna [43]) on cut rank — see, for

example, Troelstra and Schwichtenberg [207].

The traditional cut-rank is a pair of the size of the cut-formula and the maximal

distance from the leaves of the proof.

Definition 7.1 (Size). The size of a formula ϕ , denoted σ(ϕ), is the number of

binary connectives that it contains; that is,

σ(ϕ) :=

0 if ϕ ∈ A∪{⊤,⊥,⊤∗}

σ(ψ1)+σ(ψ2)+1 if ϕ = ψ1 ◦ψ2 for ◦ ∈ {∧,∨,→,∗,−−∗}

Definition 7.2 (Height). The height of a proof D, denoted h(D), is the maximal
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number of nodes from root to leaf; that is,

h(D) :=

0 if D : Γ▷∆ is an instance of an axiom

max{h(D1), ...,h(Dn)}+1 if D has immediate sub-trees D1, ...,Dn

Definition 7.3 (Cut). A cut in a LBI+cut-proof D is a triple k = ⟨L,R,χ⟩ such that

the following is a sub-proof of D:

L : ∆▷χ R : Γ(χ)▷ϕ

Γ(∆)▷ϕ
cut

Definition 7.4 (Traditional cut-rank). Let k = ⟨L,R,χ⟩ be a cut in a LBI+cut-proof

D. Its cut-rank is a pair ⟨σ(χ),max{h(L),h(R))}⟩.

Definition 7.5 (Multiset Ordering). Let V be ordered by a relation ≺. Let M and

N be multi-sets over V. The multi-set ordering < is the least ordering on multisets

such that M < N iff there are X and Y such that M = (N −X)⊔Y with X ⊑ N and

X ̸=∅ and for any y ∈ Y there is x ∈ X such that y ≺ x.

Dershowitz and Manna [43] have shown that if ≺ is a well-order, then the

induced multiset ordering is also a well-order.

To show cut-admissibility, it suffices to provide a collection of operations on

proofs that replace cuts with cuts of smaller cut-rank.

Example 7.6. The following transformation shows how a cut may be permuted with

∧R and ∧L when their principal formulae is the cut-formula:

D1 : ∆▷ϕ D2 : ∆▷ψ

∆▷ϕ ∧ψ
∧R

D3 : Γ(ϕ #ψ)▷χ

Γ(ϕ ∧ψ)▷χ
∧L

Γ(∆)▷χ
cut

7→

D2 : ∆▷ψ

D1 : ∆▷ϕ D3 : Γ(ϕ #ψ)▷χ

Γ(∆ #ψ)▷χ
cut

Γ(∆ #∆)▷χ
cut

Γ(∆)▷χ
c

Though there are more cuts after the transformation than before it, both of
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them are on formulas of smaller cut-size. ■

When attempting permutations of cut with the other rules one eventually has

to handle the interaction with contraction (c):

D1 : ∆▷ϕ

D2 : Γ(ϕ #ϕ)▷χ

Γ(ϕ)▷χ
c

Γ(∆)▷χ
cut

The most obvious transformation is to produce the following:

D1 ▷∆▷ϕ

D2 : ∆▷ϕ D3 : Γ(ϕ #ϕ)▷χ

Γ(∆ #ϕ)▷χ
cut

Γ(∆ #∆)▷χ
cut

Γ(∆)▷χ
c

Unfortunately, this transformation does not result in a decrease in the usual ter-

mination measure outlined above. This is not unusual. The same problem arises

for FOL, which led Gentzen [200] to introduce the multi-cut rule that absorb con-

tractions in the cut-rule. The approach is suggested by Pym [171] for BI, but the

complex structures of bunches renders it difficult to implement in BI correctly.

The naive way to implement a multi-cut rule in BI is by cut′: let ϕ0 := ϕ and

ϕn := ϕn−1 #ϕ ,
∆▷ϕ Γ(ϕn)▷χ

Γ(∆)▷χ
cut′

The interaction with c shown above can indeed be handled by this rule; that is, one

transforms the given proof into the following strictly shorter proof:

D1 : ∆▷ϕ D3 : Γ(ϕ #ϕ)▷χ

Γ(∆)▷χ
cut′

What makes it naive is that it fails to consider other more complex interactions with

c, as observed by Arisaka and Qin [8]. For example, suppose that a proof contains
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a cut of the following form:

D1 : Σ▷ϕ

D2 : Γ(∆(ϕ) #∆(ϕ))▷χ

Γ(∆(ϕ))▷χ
c

Γ(∆(Σ))▷χ
cut

Here cut′ is no more useful than cut was before since the cut formula is contained

in two different sub-bunches.

Arisaka and Qin [8] proposed a less naive multi-cut rule to resolve this situa-

tion. Define ∆0 := ∆ and ∆n := ∆n−1 #∆, then bunched multi-cut is as follows:

Σ▷ϕ Γ(∆(ϕ)n)▷χ

Γ(∆(Σ))▷χ
cut′′

Unfortunately, this rule also fails to give the desired result. Consider what happens

when one of the bunches on which the multi-cut is applied is modified in the next

step; for example, one has a proof containing a cut of the following form:

D1 : Π▷ϕ

D2 : Γ(∆′(ϕ) #∆(ϕ))▷χ

Γ(∆(ϕ) #∆(ϕ))▷χ
w

Γ(∆(ϕ))▷χ
c

Γ(∆(Π))▷χ
cut′′

The cut′′-rule can indeed handle the contraction, but not the weakening,

D1 : Π▷ϕ

D2 : Γ(∆′(ϕ) #∆(ϕ))▷χ

Γ(∆(ϕ) #∆(ϕ))▷χ
w

Γ(∆(Π))▷χ
cut′′

Thus, the idea of multi-cut in BI merely postpones the problem of replication

in the interaction with c, rather than handling it.

We take another approach to cut-admissibility entirely: we modify the termi-

nation measure to track the number of replications of cuts due to contractions rather

than to absorb the contractions within the cut-rule.
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7.2 The Rewrite Transformation
The rewrite relation on proofs is defined by substituting sub-proofs that conclude by

uses of the cut-rule. To simplify later discussion, it is useful to make formal what is

meant by a cut in a proof.

Definition 7.7 (Cut). A cut in a LBI+cut-proof D is a triple k = ⟨L,R,χ⟩ such that

the following is a sub-proof of D:

L : ∆▷χ R : Γ(χ)▷ϕ

Γ(∆)▷ϕ
cut

It is useful to classify cuts into three groups: base, commutative, and principal.

This taxonomy is typical in cut-admissibility proofs proceeding by a rewrite proce-

dure — see, for example, Troelstra and Schwichtenberg [207]. The classes may be

distinguished structurally:

- A cut ⟨L,R,ϕ⟩ is a base cut iff either L or R consists of a single node (i.e.,

is an instance of an axiom).

- A cut ⟨L,R,ϕ⟩ is a commutative cut iff it is not a base cut and the cut-formula

is not principal in the last inference of either L or R.

- A cut ⟨L,R,ϕ⟩ is a principal cut iff the cut-formula ϕ is principal in the last

inference of both L and R.

To be able to specify the cut-transformations, we require a small technical

result.

Proposition 7.8. The following equivalences hold:

Γ(∅×)⊢ϕ iff Γ(⊤∗)⊢ϕ

and

Γ(∅+)⊢ϕ iff Γ(⊤)⊢ϕ
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Proof. This is observed by substitution of ∅× with ⊤∗ and ∅+ and ⊤ on proofs.

That is, consider an arbitrary LBI-proof D witnessing Γ(∅×)⊢ϕ . By case analysis

on the possible rules concluding D, one sees that there is a D′ witnessing Γ(⊤∗)⊢ϕ .

The same holds in the reverse direction, and mutatis mutandis for ∅+ and ⊤.

The transformation of cuts is defined by the following relation:

Definition 7.9 (Cut-reduction). The relation 7→ on proofs, cut-reduction, is defined

as follows:

- The reduction of base cuts is given in Figure 7.1a.

- The reduction of commutative cuts is given in Figure 7.1b with the trivial

commutative cuts elided — that is, we suppress commutative cuts in which one

simply permutes cut with the rule for a connective, such as in the following:

D1 : ∆ # χ1 ▷χ2
∆▷χ1 →χ2

→R
D2 : Γ(χ1 →χ2)▷ϕ

Γ(χ1 →χ2)▷ϕ ∨ψ
∨R

Γ(∆)▷ϕ ∨ψ
cut 7→

D1 : ∆ # χ1 ▷χ2
∆▷χ1 →χ2

→R D2 : Γ(χ1 →χ2)▷ϕ

Γ(∆)▷ϕ
cut

Γ(∆)▷ϕ ∨ψ
∨R

- The reduction of principal cuts is given in Figure 7.1c.

Definition 7.10 (Rewrite). Let D be a L+cut-proof. An L+cut-proof D′ is a rewrite

of D — denoted D⇝ D′ — iff there are L+ cut-proofs δ and δ ′ such that δ 7→ δ ′

and D′ is result of replacing a sub-tree δ with δ ′ in D.

It remains to show that the rewrite relation is terminating, under some sequence

of reductions, and that it terminates in cut-free proofs.

7.3 Termination of Rewrite
In this section, we show that the the rewrite transformation eventually (i.e., in

finitely many steps) yields cut-free proofs. To this end, we show that each step
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ϕ ▷ϕ
ax D : Γ(ϕ)▷χ

Γ(ϕ)▷χ
cut 7→ D : Γ(ϕ)▷χ

D : Γ▷ϕ ϕ ▷ϕ
ax

Γ▷ϕ
cut 7→ D : Γ▷ϕ

∅+ ▷⊤ ⊤R D1 : Γ(⊤)▷χ

Γ(∅+)▷χ
cut 7→ D′

1 : Γ(∅+)▷⊤︸ ︷︷ ︸
(Proposition 7.8 on D1)

∅× ▷⊤∗ ⊤∗
R D1 : Γ(⊤∗)▷χ

Γ(∅×)▷χ
cut 7→ D′

1 : Γ(∅×)▷χ︸ ︷︷ ︸
(Proposition 7.8 on D1)

(a) Reduction of Base Cuts

D1 : Π▷ϕ

D2 : Γ(∆)▷χ

Γ(∆ #Σ(ϕ))▷χ
w

Γ(∆ #Σ(Π))▷χ
cut 7→ D2 : Γ(∆)▷χ

Γ(∆ #Σ(Π))▷χ
w

D1 : ∆▷ϕ

D2 : Γ(ϕ #ϕ)▷χ

Γ(ϕ)▷χ
c

Γ(∆)▷χ
cut 7→

D1 : ∆▷ϕ

D1 : ∆▷ϕ D2 : Γ(ϕ #ϕ)▷χ

Γ(∆ #ϕ)▷χ
cut

Γ(∆ #∆)▷χ
cut

Γ(∆)▷χ
c

D1 : ∆▷ϕ

D2 : Γ′(ϕ)▷χ

Γ(ϕ)▷χ
e

Γ(∆) : χ
cut 7→

D1 : ∆▷ϕ D2 : Γ′(ϕ)▷χ

Γ′(ϕ)▷χ
cut

Γ(ϕ)▷χ
e

(b) Reduction of Commutative Cuts

Figure 7.1: Transformations of Cuts in LBI (Part 1)
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D1 : ∆▷ϕ D2 : ∆′ ▷ψ

∆ #∆′ ▷ϕ ∧ψ
∧R

D3 : Γ(ϕ #ψ)▷χ

Γ(ϕ ∧ψ)▷χ
∧L

Γ(∆ #∆′) : χ
cut 7→

D2 : ∆′ ▷ψ

D1 : ∆▷ϕ D2 : Γ(ϕ #ψ)▷χ

Γ(∆ #ψ)▷χ
cut

Γ(∆ #∆′)▷χ
cut

D1 : Σ #ϕ ▷ψ

Σ▷ϕ →ψ
→R

D2 : ∆▷ϕ D3 : Γ(ψ)▷χ

Γ(∆ #ϕ →ψ)▷χ
→L

Γ(∆ #Σ)▷χ
cut 7→

D2 : ∆▷ϕ D1 : Σ #ϕ ▷χ

Σ #∆▷ψ
cut D3 : Γ(ψ)▷χ

Γ(Σ #∆)▷χ
cut

Γ(∆ #Σ)▷χ
e

D3 : ∆▷ϕi

∆▷ϕ1 ∨ϕ2
∨R

D1 : Γ(ϕ1)▷χ D2 : Γ(ϕ2)▷χ

Γ(ϕ1 ∨ϕ2)▷χ
∨L

Γ(∆)▷χ
cut 7→

D3 : ∆▷ϕi Di : Γ(ϕi)▷χ

Γ(∆)▷χ
cut

D1 : ∆▷ϕ D2 : ∆′ ▷ψ

∆ , ∆′ ▷ϕ ∗ψ
∗R

D3 : Γ(ϕ , ψ)▷χ

Γ(ϕ ∗ψ)▷χ
∗L

Γ(∆ , ∆′)▷χ
cut 7→

D2 : ∆′ ▷ψ

D1 : ∆▷ϕ D3 : Γ(ϕ , ψ)▷χ

Γ(∆ , ψ)▷χ
cut

Γ(∆ , ∆′)▷χ
cut

D1 : Σ , ϕ ▷ψ

Σ▷ϕ −−∗ψ
−−∗R

D2 : ∆▷ϕ D3 : Γ(∆′ , ψ)▷χ

Γ(∆ , ∆′ , ϕ −−∗ψ)▷χ
−−∗L

Γ(∆ , ∆′ , Σ)▷χ
cut 7→

D2 : ∆▷ϕ D1 : Σ , ϕ ▷ψ

Σ , ∆▷ψ
cut D2 : Γ(∆′ , ψ)▷χ

Γ(∆′ , Σ , ∆)▷χ
cut

Γ(∆ , ∆′ , Σ)▷χ
e

(c) Reduction of Principal Cuts

Figure 7.1: Transformations of Cuts in LBI (Part 2)
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(i.e., each transformation) corresponds to a descent in some well-order on proofs

whose bottom elements do not contain cuts. The well-order in question is over a

refined notion of cut-rank that also tracks interactions with contractions.

Definition 7.11 (Contraction Potential). Let k = ⟨L,R,ϕ⟩ be a cut in a proof D. The

contraction potential of ϕ — denoted κ(k) — is the number of times a contraction

is used in R on a sub-bunch containing ϕ .

Essentially, contraction potential tracks the occurrence of a formula. Extending

the rewriting method used by Gentzen [200] (see Section 7.1) by such measures has

been considered before — see, for example, Schroeder-Heister [189].

Definition 7.12 (Cut-rank). The rank of a cut k = ⟨L,R,χ⟩ in a proof D is the

following triple:

⟨σ(χ),κ(k),max{h(L),h(R)}+1⟩

Let ≺ be the lexicographic ordering on ranks. Since it is a well-order, the

induced multi-set ordering, also denoted ≺, is a well-order. If D is LBI+ cut-

proofs then denote ρ(D) for the multiset of ranks of cuts in D. It remains to give a

procedure for rewriting such that each step corresponds to a reduction in the multi-

set ordering. We do this in two steps: first, we show that the reduction of a proof

containing at most one cut reduces in the multi-set ordering; second, transform

proofs with cuts into proofs without cuts by gradually removing the top-most cuts.

Proposition 7.13. Let D and D′ be LBI+ cut-proofs containing at most one cut,

if D⇝D′, then ρ(D′)≺ ρ(D)

Proof. The result follows by case analysis on the possible transformations. We will

give four key cases: the interaction with contraction, a base cut, a commutative cut,

and a principal cut. The rest of the transformations are similar to at least one of

these cases.

- CONTRACTION. Suppose D⇝ D′ is witnessed by a transformation for the
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interaction between c and cut — that is, the second transformation in Fig-

ure 7.1b,

D1 : ∆▷ϕ

D2 : Γ(ϕ #ϕ)▷χ

Γ(ϕ)▷χ
c

Γ(∆)▷χ
cut

7→

D1 : ∆▷ϕ

D1 : ∆▷ϕ D2 : Γ(ϕ #ϕ)▷χ

Γ(∆ #ϕ)▷χ
cut

Γ(∆ #∆)▷χ
cut

Γ(∆)▷χ
c

The one cut has been replaced by two cuts each of the same size of cut formula

but with a smaller contraction potential, and therefore each of which has a

smaller rank. Hence, ρ(D)⪯ ρ(D), as required.

- BASE CUT. Let that D ⇝ D′ be justified by the transformation δ 7→ δ ′ in

which ax is used on the left branch — that is, the first transformation in Fig-

ure 7.1a,

ϕ ▷ϕ
ax D1 : Γ(ϕ)▷χ

Γ(ϕ)▷χ
cut 7→ D1 : Γ(ϕ)▷χ

The one cut has been removed. Indeed, ρ(D′)≺ ρ(D), as required.

- COMMUTATIVE CUT. Let that D⇝ D′ be witnessed by the transformation

for the interaction between w and cut —- that is, the first transformation in

Figure 7.1b,

D1 : Π▷ϕ

D2 : Γ(∆)▷χ

Γ(∆ #Σ(ϕ))▷χ
w

Γ(∆ #Σ(Π))▷χ
cut 7→ D2 : Γ(∆)▷χ

Γ(∆ #Σ(Π))▷χ
w

By the same argument as in the above case, ρ(D′) ≺ ρ(D). Typically, it is

the cut-height that decreases for commutative cuts. The only exceptions are

in the interaction with weakening, which is treated here and in the interaction

with contraction, which is treated above.
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- PRINCIPAL CUT. Let that D⇝D′ be justified by the transformation in which

the principal connective of the cut-formula is ∧ — that is, the first transfor-

mation in Figure 7.1c,

D1 : ∆▷ϕ D2 : ∆′ ▷ψ

∆ #∆′ ▷ϕ ∧ψ
∧R

D3 : Γ(ϕ #ψ)▷χ

Γ(ϕ ∧ψ)▷χ
∧L

Γ(∆ #∆′) : χ
cut 7→

D2 : ∆′ ▷ψ

D1 : ∆▷ϕ D2 : Γ(ϕ #ψ)▷χ

Γ(∆ #ψ)▷χ
cut

Γ(∆ #∆′)▷χ
cut

The one cut has been replaced by two cuts each of which has a smaller cut-

formula, and therefore each of which has a smaller rank. Hence, ρ(D′) ⪯

ρ(D), as required.

Typically, it is size of the cut-formula that decreases for principal cuts.

This completes the case analysis.

Proposition 7.14. If D is an LBI+ cut-proof containing only one cut, then there is

an LBI-proof D′ such that D⇝∗ D′.

Proof. We proceed by induction on ρ(D).

- BASE CASE. If the rank of ρ(D) is minimal then, by Proposition 7.13, a

reduction of it must yield a proof without cuts. Such a proof is an LBI-proof.

- INDUCTIVE STEP. The induction hypothesis (IH) is as follows: for any D′

such that ρ(D′) ≺ ρ(D), if D′ is an LBI+ cut-proof containing at most one

cut, then there is an LBI-proof D′′ such that D′⇝∗ D′′. We proceed by sub-

induction on the number of cuts n in D′. The sub-induction hypothesis (sub-

IH) is as follows: for any D′′ such that ρ(D′′)⪯ ρ(D′) containing k < n cuts,

there is an LBI-proof D′′′ such that D′′⇝∗ D′′′.

- BASE CASE. n = 1. Let D′′ be such that D′⇝D′′. By Proposition 7.13,

ρ(D′′)≺ ρ(D′). Hence, by the induction hypothesis (IH), there is a cut-

free D′′′ such that D′′⇝∗ D′′′. By transitivity, we have D⇝∗ D′′′.
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- INDUCTIVE STEP. n > 1. Let D′′ be arbitrary such that D′ ⇝∗ D′′.

Consider a sub-proof δ of D′′ containing fewer than n cuts. Observe

that ρ(δ )≺ ρ(D′), hence (by the sub-IH) there is an LBI-proof δ ′ such

that δ ⇝∗ δ ′. Let D′′′ be the result of replacing δ by δ ′ in D′′. Observe

that D′′ ⇝ D′′′ and D′′′ has at most n− 1 cuts. By the sub-IH, there

is an LBI-proof D′′′′ such that D′′′ ⇝∗ D′′′′. By transitivity, we have

D′′⇝∗ D′′′′. By transitivity again, we have D⇝∗ D′′′′

This completes the sub-induction.

This completes the induction.

It remains to extend the result to LBI+ cut-proofs with an arbitrary number of

cuts.

Theorem 7.15. The rewrite relation is terminating.

Proof. Let D be a LBI+ cut-proof. We require to show that there is a LBI-proof D′

such that D⇝∗ D. We proceed by induction on the number of cuts n in D. The

induction hypothesis (IH) is as follows: if a LBI+ cut-proof D contains k < n cuts,

then there is an LBI-proof D′ such that D⇝∗ D′.

- BASE CASE. n = 0. This follows from the reflexivity of⇝∗.

- INDUCTIVE STEP. n > 1. Let D be a LBI-proof with k cuts. Let δ be a

sub-proof of D containing precisely one cut. By Proposition 7.14, there is an

LBI-proof δ ′ such that δ ⇝∗ δ ′. Let D′ be the result of replacing δ by δ ′ in

D. Observe that D′ contains at most n−1 cuts. Hence, by the IH, there is an

LBI-proof D′′ such that D′⇝∗ D′′. Since D⇝∗ D′, it follows by transitivity

that D⇝∗ D′′.

This completes the induction.

Corollary 7.16 (cut-Admissibility). Γ⊢LBI ϕ iff Γ⊢LBI+cut ϕ

When Gentzen [200] proves the Hauptsatz for FOL, it made proof-search in

logic tractable because it yielded the sub-formula property: the space of reductions
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of a putative conclusion need only contain sequents containing formulas that ap-

pear in the putative conclusion. Importantly, however, having an analytic sequent

calculus — that is, a sequent calculus with the sub-formula property — does not

automatically mean that one has a proof-search algorithm which is guaranteed to

find a proof whenever there is one. For example, the complexity of proof-search in

FOL is forbidding: FOL is Turing complete!



Chapter 8

Logic Programming

This chapter considers logic programming (LP) with BI. It is based on the following

article:

Gheorghiu, A. V., Docherty, S., and Pym, D. J. Reductive Logic, Coal-

gebra, and Proof-search: A Perspective from Resource Semantics. In

Samson Abramsky on Logic and Structure in Computer Science and

Beyond, A. Palmigiano and M. Sadrzadeh, Eds., Springer Outstanding

Contributions to Logic Series. Springer, 2021

Logic programming arose through work by Colmerauer, Keuhner, Kowalski,

and Philippe [41, 119]. In particular, it was the procedural interpretation of implica-

tions in clausal form by Kowalski and Keuhner [122] that centred it on proof-search

in FOL. Since FOL is undecidable, they achieved this by restricting to a fragment

of the logic that is sufficiently expressive to be interesting while being complete

with respect to a single rule under a fixed backtracking strategy — the Horn clause

fragment of FOL. This rendered logic central to symbolic artificial intelligence.

Eventually, this led Kowalski [120] to propose the following slogan:

Algorithm = Logic + Control

In this chapter, we concentrate on the proof-theoretic approach by Miller

et al. [139, 140] (cf. Gabbay and Reyle [64, 65], and Schroeder-Heister and

Hallnäs [94, 95]). The idea is that one can give an operational semantics for a
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logic programming language by restricting to a special kind of goal-directed proof-

search which finds uniform proofs — see Chapter 2. This strictly generalizes the

earlier work by Kowalski and Keuhner by showing that one can have multiple rules

as long as one has a control regime dictating when to apply which rule.

Recall from Chapter 2 that having an operational reading of formulae enables

one to give a particular canonical model-theoretic semantics that is informed by

that reading. This model-theoretic semantics is significant as it explains the sense

in which clauses in the context of a sequent are definitional, which underpins the use

of LP in symbolic artificial intelligence. Altogether, this indicates how Reductive

Logic can inform semantics for a logic in a serious way.

In this section we study the hereditary Harrop fragment for BI and its use as

a logic programming language through uniform proof-search. We are not really

studying computation, but rather restricting attention to a fragment of BI in which

proof-search is well-behaved; the point is that we get a particularly simple seman-

tics, closely related to proof-search, as a result. This illustrates the central idea

of the monograph: one can usefully study the relationship between semantics and

proof from the perspective of Reductive Logic.

The work in this chapter is based on earlier work by Armelı́n [9, 10]. In Section

8.1, we define definite clauses and goal formulae and give their operational reading.

In Section 8.2, we give a model-theoretic semantics for the hereditary Harrop frag-

ment of BI based on their operational reading, using a fixed point construction. In

Section 8.3, we give a denotational semantics of the operational reading in terms of

coalgebra. Finally, in Section 8.4, we discuss what it is that is actually computed by

the logic programming language,

8.1 The Hereditary Harrop Fragment

The hereditary Harrop fragment of BI (hHBI) is composed to two forms of formulae

defined by mutual induction: definite clauses and goal formulae. The intuition is

that a set of definite formulae define atoms proof-theoretically, while goal formulae

are complex statements over atoms requiring verification relative to a set of definite
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formulae.

Definition 8.1 (Definite Clauses, Goal Formulae, and Programs). The definite

clauses D and goal formulae G are defined by mutual induction as follows:

D ::= ⊤∗ | ⊤ | A ∈ A | D∧D | D∗D | G→A | G−−∗A

G ::= ⊤∗ | ⊤ | A ∈ A | G∧G | G∨G | G∗G | D→G | D−−∗G

A program P is any bunch comprised of definite clauses. The set of all programs is

denoted by P.

In Chapter 2, the operational reading of definite clause for IPL may be un-

derstood proof-theoretically as a strict control pattern on reductions in LJ in which

right rules are prioritised over left rules. The class of proofs thus defined are called

uniform proofs — see Miller et al. [140]. Unfortunately, uniform proof-search un-

derstood as the application of right rules before left rules is not sufficient for goal-

directedness in LBI, even for hHBI. For example, the following sequence of reduc-

tions is not goal-directed as the atom A is not principal in the first −−∗L, but it is

uniform in the informal reading given so far:

B▷B

A▷A e∅× , A▷A ⊤∗
L⊤∗ , A▷A −−∗LB , B−−∗⊤∗ , A▷A

This problem can be remedied by the introduction of a cut as follows:

B▷B
∅× ▷⊤∗

⊤∗L⊤∗ ▷⊤∗
−−∗L

B , B−−∗⊤∗ ▷⊤∗

A▷A E∅× , A▷A
⊤∗L⊤∗ , A▷A
CutB , B−−∗⊤∗ , A▷A

More complicated cases include the possibility that A is the atom defined by

the implication, in which case one can also make a judicious use of a cut to keep

the proof goal-directed.

The modification thus provided gives a goal-directed proof-search procedure

for hHBI. That is, we restrict to resolution proofs that are like uniform proofs, but

the right sub-proof of an implication rule consists of a series of weakening followed

by a cut on the atom defined by the implication.
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The control regime of resolution proofs can be enforced by augmenting →L,

−−∗L and ax to rules that encode the uses of cut. To this end, we use a particular

canonical presentation of bunches.

Definition 8.2 (Canonical Bunch). A bunch Γ is in canonical form iff the left-hand

branch of Γ is either a proposition, a unit or a canonical bunch of the opposite

(additive or multiplicative) type, and the right-hand branch of Γ is a canonical

bunch.

Proposition 8.3 (Armelı́n [9, 10]). For every bunch Γ, there is a canonical bunch

Γ′ such that Γ ≡ Γ′.

The purpose of canonical forms is to let us represent bunches in a convenient

way. Instead of writing a bunch like Γ1 , (Γ2,(... , (Γn−1 , Γn))) we can write it as

Γ1,Γ2, ....,Γn−1,Γn with no loss of information, where Γi is an additive bunch for

i = 1...n. To emphasize the shift in notation, we reserve the context-formers (i.e., ,

and #) for the traditional presentation and use the comma and the semicolon for the

special presentation.

Proposition 8.4 (Based on Armelı́n [9, 10]). The following rules, where α ∈

{⊤,⊤∗}∪A and all the bunches are in canonical form, are admissible, and replac-

ing →L, −−∗L and ax with them in LBI does not affect the completeness of the system,

with respect to hHBI:

P;G→α ▷G Q▷⊤∗
res1

Q,(P;G→α)▷α

P▷G res2P,G−−∗α ▷α

Γ▷⊤∗
res3

Γ,α ▷α

Moreover, uniform proofs in the resulting system are complete for the hereditary

Harrop fragment of BI.

To suppress the use of left rules that are not resolutions, we use clausal de-

composition — that is, the left inverse of compacting (Definition 6.5) for definite

formulae
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Definition 8.5 (Decomposition of Definite Clauses). The decomposition function

on definite clauses is defined as follows:

[D] :=



A if D = A ∈ A

G→A if D = G→A

G−−∗A if D = G−−∗A

∅+ if D =⊤

∅× if D =⊤∗

[D1] # [D2] if D = D1 ∧D2

[D2] , [D2] if D = D1 ∗D2

We are left with the structural rules of w and e, beyond the goal-directed rules.

They cannot be eliminated from LBI (or, rather, LBI modified with the resolution

rules). Therefore, we introduce an ordering on programs able to capture these struc-

tural relationships.

Definition 8.6 (Bunch-extension). The bunch-extension relation ≧ is the smallest

relation satisfying:

– if Γ ≡ Γ′[∆ 7→ ∆ #∆′], then Γ≧ Γ′

– if Γ≧ Γ′ and Γ′ ≧ Γ′′, then Γ≧ Γ′′

Though the use of this ordering seems to reintroduce a lot of non-determinism,

the choice it offers is still captured by the use of a control structure. Thus, once

a clause has been selected in the program, the weakening may be performed in a

goal-directed way to bring the clause to the top of the bunch. Anything additively

combined with the clause is removed (using weakening), and when something is

multiplicatively combined, the bunch is re-ordered so that the context-former of the
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P⊢o⊤ Always

P⊢o⊤∗ if [P]≡∅×;R

P⊢o A if [P]≧ S,A and S⊢o⊤∗

P⊢o A if [P]≧ Q,G−−∗A and Q⊢o G

P⊢o A if [P]≧ S,(Q;G→A) and S⊢o⊤∗ and Q;G→A⊢o G

P⊢o G1 ∨G2 if P⊢o G1 or P⊢o G2

P⊢o G1 ∧G2 if P⊢o G1 and P⊢o G2

P⊢o G1 ∗G2 if P ≡ R;(Q,R) and Q⊢o G1 and R⊢o G2

P⊢o D→G if [D];P⊢o G

P⊢o D−−∗G if [D],P⊢o G

Figure 8.1: Resolution System RBI

clause is principal. For example, we have the following sequence:

(Q0 , (Q1 #Q2)) , G−−∗α ≦ Q0 , ((Q1 #Q2) , G−−∗α)

≦ Q0 , ((Q1 #Q2) , (Q3 # (G−−∗α))

≦ Q0 , ((Q1 #Q2) , (Q3 # (Q4 #G−−∗α))

Altogether, this allows us to give an operational semantics for configurations

via goal-directed proof-search.

Definition 8.7 (Resolution System RBI). The resolution system is comprised of

rules of Figure 8.1 in which P is a program, D is a definite formula, G is a goal

formula, and A is an atom.

The first two clauses of Figure 8.1 are called the initial rules, the following

three the resolution rules (cut-resolution, −−∗-resolution, and →-resolution respec-

tively), and the final five are the decomposition rules.

Theorem 8.8. For any configuration P▷G,

P ⊢ G iff P⊢o Q
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Proof. This follows immediately from Proposition 8.4.

This concludes the operational reading of the hereditary Harrop fragment of

BI. Properly speaking, to make it a logic programming language, one needs to fix

a selection function and backtracking strategy. For intuitionistic logic, in which

programs are lists of definite clauses, one may simply choose to always attempt

the leftmost clause first when using a resolution rule; and, having made a choice,

one then progresses until success or failure of the search, returning to an earlier

stage in the computation in case of the latter. This forms one possibility which

has been called depth-first search with leftmost selection — see Lloyd [132] and

Kowalski [121]. Another example of a backtracking schedule and selection function

is breadth-first search with leftmost selection, where after one step of reduction

one immediately backtracks so that every possibility is tried as soon as possible.

These two choices are the extremes of a range of possibilities which have different

advantages and disadvantages including complexity — see Plaistead and Zhu [161].

8.2 Model-theoretic Semantics
As in Chapter 2, the operational reading of definite formulae yields a model-

theoretic semantics that precisely encodes it. This is the subject of the present

section, closely following the method presented by Miller [139] (originating with

Apt [7]).

Interpretation and Satisfaction

We interpret a given program as the set of atomic formulae which it satisfies. That

is, relative to mappings I : P→P(A), we define the judgement I,P ⊩ G. This is

closely related to the monoidal reading of BI — see Chapter 6.

Definition 8.9 (Monoid of Programs, Interpretation). The monoid of programs is

the structure ⟨P,≧,◦,∅×⟩, where ◦ is multiplicative composition.

Definition 8.10 (Interpretation). An interpretation of the monoid of programs is an

order reversing mapping I : P→P(A).
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I,P ⊩⊤ iff Always

I,P ⊩⊤∗ iff P ≡∅×;R

I,P ⊩ A iff A ∈ I(P)

I,P ⊩ G1 ∨G2 iff I,P ⊩ G1 or I,P ⊩ G2

I,P ⊩ G1 ∧G2 iff I,P ⊩ G1 and I,P ⊩ G2

I,P ⊩ G1 ∗G2 iff there exists Q,R ∈ P such that
P≧ Q◦R and I,Q ⊩ G1 and I,R ⊩ G2

I,P ⊩ D→G iff I,(P; [D]) ⊩ G

I,P ⊩ D−−∗G iff I,(P, [D]) ⊩ G

Figure 8.2: Satisfaction for Hereditary Harrop BI

Definition 8.11 (Satisfaction for hHBI). Satisfaction ⊩ is the least relation satisfy-

ing the clauses of Figure 8.2, in which P is a program, D is a definite formula, G

is a goal formula, and A is an atom.

The aim is to define a special mapping J such that satisfaction coincides with

consequence — that is,

P ⊢G iff J,P ⊩ G.

The clauses of the semantics are sufficiently close to the resolution system that

the semantics is adequate for every interpretation that is adequate for atoms:

A ∈ I(P) =⇒ P⊢o A

A primitive example of such an interpretation is I⊥ : P 7→∅.

Proposition 8.12 (Adequacy). Suppose for any A ∈ A, if A ∈ I(P), then P⊢o A. If

I,P ⊩ G implies P⊢o G.

Proof. We proceed by induction on the satisfaction relation for the hereditary Har-

rop fragment of BI.
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- BASE CASE. There are three the sub-cases to consider for G∈{⊤,⊤∗}∪A. In

each one, the result follows by equivalence of the respective clauses between

program satisfaction and the resolution system.

- INDUCTIVE CASE. We consider each case given according to the structure of

the goal formula separately.

- G = G1 ∨ G2. By Definition 8.11, we have I,P ⊩ G1 or I,P ⊩ G2.

Therefore, by the induction hypothesis (IH), P⊢o G1 or P⊢BI G2. Hence,

P⊢o G1 ∨G2.

- G = G1 ∧G2. By Definition 8.11, we have I,P ⊩ G1 and I,P ⊩ G2.

Therefore, by the IH, P⊢o G1 and P⊢BI G2. Hence P⊢o G1 ∧G2.

- G = G1 ∗G2. By Definition 8.11, we have P ≧ Q ◦R with I,Q ⊩ G1

and I,R ⊩ G1. Therefore, by the IH, Q ⊢BI G1 and R ⊢o G2. Hence,

Q,R⊢BI G1 ∗G2. Whence P⊢o G1 ∗G2.

- G = D→G′. By Definition 8.11, we have P; [D]⊩G′. Therefore, by the

IH, P; [D]⊢BI G′. Hence, P⊢o D→G′.

- G = D−−∗G′. By Definition 8.11, we have P, [D]⊩G′. Therefore, by the

IH, P, [D]⊢o G′. Hence, P⊢o D→G.

This completes the induction.

It remains to construct J such that the semantics is also faithful to the resolution

system. We do this by essentially teaching I⊥ the resolution system through the

indefinite application of a transformation T representing one step of the operational

semantics.

The Least Fixed Point Interpretation

Since P(A) forms a complete lattice, so do interpretations — that is,

I1 ⊑ I2 iff ∀w(I1(P)⊆ I2(P))

(I1 ⊔ I2)(P) := I1(P1)∪ I2(P2)

(I1 ⊓ I2)(P) := I1(P1)∩ I2(P2)



8.2. Model-theoretic Semantics 87

The interpretation I⊥ is the bottom element of this lattice. We use the operational

semantics to move through step-wise incorporating more of the resolution system.

To this end, consider the following T -operator on interpretations:

Definition 8.13 (T -Operator). The T operator is defined as follows:

T (I)(P) :={A | [P]≧ Q,A and I,u ⊩⊤∗} ∪ (1)

{A | [P]≧ Q,G−−∗A and I,Q ⊩ G} ∪ (2)

{A | [P]≧ Q,(R;G→A) and

I,Q ⊩⊤∗ and I,(R;G→A) ⊩ G} (3)

Observe that the three parts of the definition correspond exactly to the res-

olution clauses of execution, so one application of T precisely incorporates one

resolution step. Applying it indefinitely, therefore, corresponds to performing an

arbitrary number of resolutions. This is handled mathematically by the use of a

least fixed-point.

It follows from the Knaster-Tarski Theorem [113, 202, 7] that if T is monotone

and continuous (see Proposition 8.15), then the following limit operator is well-

defined:

T ω(I⊥) := I⊥⊔T (I⊥)⊔T 2(I⊥)⊔T 3(I⊥)⊔ . . .

We may write P ⊩ G to abbreviate T ω(I⊥),P ⊩ G.

The completeness of the semantics follows immediately from the definition

of T , since it simply observes the equivalence between resolution and application

of the T -operator; that is, that T extends correctly. Soundness, on the other hand,

requires showing that every path during execution is eventually considered during

the unfolding.

Theorem 8.14 (Soundness and Completeness). P⊢o G iff P ⊩ G

Proof of Completeness (⇐= ). From Proposition 8.12, it suffices to show that the
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adequacy condition holds:

A ∈ T ω I⊥(P) =⇒ P⊢o A

It follows from Proposition 8.15 that the antecedent holds only if there exists k ∈ N

such that T kI⊥,P ⊩ A. We proceed by induction on k.

- BASE CASE. k = 0. This case is vacuous as I⊥(P) =∅.

- INDUCTION STEP. Only by at least one of (1), (2), or (3) in Definition

8.13 does A ∈ T kI⊥(P) obtain. In either case, the result follows from the

induction hypothesis and the correspondence between (1), (2), and (3), with

the resolution clauses of Figure 8.1.

This completes the induction.

Proof of Soundness ( =⇒ ). We proceed by induction on the length N of executions

in the resolution system.

- BASE CASE. N = 1. It must be that the proof of P⊢o G follows from the

application of an initial rule. Hence, either G =⊤, or G =⊤∗ and P ≡∅×;R.

In either case, P ⊩ G follows immediately.

- INDUCTIVE STEP. We consider each of the the clauses of Figure 8.1 sepa-

rately.

- Cut-resolution. We have [P] ≧ Q,A, where Q⊢o⊤∗ with height N′ <

N. Therefore, by the induction hypothesis (IH), Q ⊩ ⊤∗. Hence, A ∈

T (T ω(I⊥))(P) = T ω(I⊥)(P). Whence, P ⊩ A.

- −−∗-resolution. We have [P] ≧ Q,G′ −−∗ A, where Q ⊢o G′ with height

N′ < N. Therefore, by the IH, Q ⊩ G′. Hence, A ∈ T (T ω(I⊥))(P) =

T ω(I⊥)(P). Whence P ⊩ A.

- →-resolution. We have [P]≡ Q,(R;G′→A), where Q⊢o⊤∗ and R⊢o G′,

with heights N′,N′′ < N. Therefore, by the IH, Q ⊩ ⊤∗ and R ⊩ G′.

Hence, A ∈ T (T ω I⊥)(P) = T ω I⊥(P). Whence, P ⊩ A.
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- G = G1 ∨G2. We have P⊢o Gi for some i ∈ {1,2} with height N′ < N.

Therefore, by the IH, P ⊩ Gi for some i ∈ {1,2}. Hence, P ⊩ G1 ∨G2.

- G = G1∧G2. We have P⊢o Gi for all i ∈ {1,2} with heights N′,N′′ < N.

Therefore, by the IH, P ⊩ Gi for all i ∈ {1,2}. Hence, P ⊩ G1 ∧G2.

- G = G1 ∗G2. We have P≧Q◦R where Q⊢oG1 and R⊢oG2 with heights

N′,N′′ < N. Therefore, by the IH, Q ⊩ G1 and R ⊩ G2. Hence, P ⊩

G1 ∗G2.

- G = D→G′. We have P; [D]⊢BI G′ with height N′ < N. Therefore, by

the IH, [D];P ⊩ G′. Hence, P ⊩ D→G′.

- G = D−−∗G′. We have P, [D]⊢BI G′ with height N′ < N. Therefore, by

the IH, [D],P ⊩ G′. Hence, P ⊩ D−−∗G′.

This completes the induction.

It remains to show that T ω(I⊥) is well-defined; that is, that T is monotone and

continuous.

Proposition 8.15. Let I0 ⊑ I1 ⊑ . . . . be a collection of interpretations, let P ∈ P,

and let G be a goal. The following all hold:

- Persistence. I1,P ⊩ G =⇒ I2,P ⊩ G.

- Compactness. ⊔∞
i=1Ii,P ⊩ G =⇒ ∃k ∈ N : Ik,w ⊩ G.

- Monotonicity. T (I0)⊑ T (I1).

- Continuity. T (⊔∞
i=0Ii) = ⊔∞

i=0T (Ii).

Proof of Persistence. We proceed by induction on satisfaction.

- BASE CASE. The cases G ∈ {⊤,⊤∗} are immediate since satisfaction is inde-

pendent of interpretation. The case G ∈ A follows from the definition of the

ordering on interpretations.

- INDUCTIVE STEP. We proceed by case analysis on the clauses of Figure 8.2.
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- G1 ∨G2. By Definition 8.11, I1,P ⊩ G1 or I1,P ⊩ G2. Therefore, by the

IH, I2,P ⊩ G1 or I2,P ⊩ G2. Hence, I2,P ⊩ G1 ∨G2.

- G1 ∧G2. By Definition 8.11, I1,P ⊩ G1 and I1,P ⊩ G2. Therefore, by

the IH, I2,w ⊩ G1 and I2,w ⊩ G2. Hence, I2,w ⊩ G1 ∧G2.

- G1 ∗G2. By Definition 8.11, P ≧ Q,R such that I1,Q ⊩ G1 and I1,R ⊩

G2. Therefore, by the IH, I2,Q ⊩ G1 and I2,R ⊩ G2. Hence, I2,P ⊩

G1 ∗G2.

- D→G. By Definition 8.11, I1,([D];P)⊩G. Therefore, by the induction

hypothesis (IH), I2,(P; [D]) ⊩ G. Hence, I2,P ⊩ D→G.

- D −−∗ G. By Definition 8.11, I1,([D],P) ⊩ G. Therefore, by the IH,

I2,([D],P) ⊩ G. Hence, I2,P ⊩ D−−∗G.

This completes the induction.

Proof of Compactness. We proceed by induction on satisfaction.

- BASE CASE. The cases G ∈ {⊤,⊤∗} are immediate since satisfaction is inde-

pendent of interpretation. For the case in which G∈ A, note that
(
⊔∞

i=0
)
(w) =⋃

∞
i=0 Ii(w), so by the definition of satisfaction G ∈ Ik(w), for some k, and so

Ik,w ⊩ G.

- INDUCTIVE STEP. We proceed by case analysis on the clauses of Figure 8.2.

- G1 ∨G2. By Definition 8.11, ⊔∞
i=1Ii,P ⊩ G1 or ⊔∞

i=1Ii,P ⊩ G2. There-

fore, by the induction hypothesis (IH), ∃k ∈ N such that Ik,P ⊩ G1 or

Ik,P ⊩ G2. Hence, Ik,w ⊩ G1 ∨G2.

- G1 ∧G2. By Definition 8.11, ⊔∞
i=1Ii,P ⊩ G1 and ⊔∞

i=1Ii,P ⊩ G2. There-

fore, by the IH, ∃m,n ∈ N such that Im,P ⊩ G1 and In,P ⊩ G2. Let

k = max(m,n). By persistence, Ik,P ⊩ G1 and Ik ⊩ G2. Hence, Ik,P ⊩

G1 ∧G2.

- G1 ∗G2. By Definition 8.11, P ≧ Q ◦R such that ⊔∞
i=1Ii,P ⊩ G1 and

⊔∞
i=1Ii,Q ⊩ G2. Therefore, by the IH, ∃m,n ∈ N such that Im,Q ⊩ G1
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and In,E ⊩ G1. Let k = max(m,n). By persistence, Ik,Q ⊩ G1 and

Ik,R ⊩ G2. Hence, Ik,(Q,R) ⊩ G1 ∗G2. Whence, Ik,P ⊩ G1 ∗G2.

- D→G′. By Definition 8.11, ⊔∞
i=1Ii,([D];P)⊩G1. Therefore, by the IH,

∃k ∈ N such that Ik,([D];P) ⊩ G′. Hence, Ik,w ⊩ D→G′.

- D−−∗G′. By Definition 8.11, ⊔∞
i=1Ii,([D],P) ⊩ G′. Therefore, by the IH,

∃k ∈ N with Ik,([D],P) ⊩ G′. Hence, Ik,P ⊩ D−−∗G′.

This completes the induction.

Proof of Monotonicity. Let P ∈ P be arbitrary, and suppose A ∈ T (I0)(P). We re-

quire to show A ∈ T (I1)(P). We proceed by case analysis on Definition 8.13:

(1) Suppose [P]≧ Q,A such that I0,Q ⊩⊤∗. By persistence, I1,Q ⊩⊤∗. Hence,

by Definition 8.13, A ∈ T (I1)(P).

(2) Suppose [P]≧Q,G−−∗A such that I0,Q⊩G. By persistence, I1,Q⊩G. Hence,

by Definition 8.13, A ∈ T (I1)(P).

(3) Suppose [P]≧Q,(R;G→A) such that I0,Q⊩⊤∗ and I0,(R;G→A)⊩G. By

persistence, I1,Q ⊩ ⊤∗ and I1,(R;G→A) ⊩ G. Hence, by Definition 8.13,

A ∈ T (I1)(P).

This completes the case analysis.

Proof of Continuity. We consider each direction of the inclusion separately.

- ⊔∞
i=0T (Ii)⊑ T (⊔∞

i=0Ii). Let j ≥ 0, then I j ⊑ ⊔∞
i=1 Ii. By monotonicity, T (I j)⊑

T (⊔∞
i=1Ii). Since j was arbitrary, ⊔∞

i=1T (Ii)⊑ T (⊔∞
i=1Ii).

- T (⊔∞
i=0Ii)⊑⊔∞

i=0T (Ii). Let P∈P be arbitrary, and suppose A∈ T (⊔∞
i=1Ii)(P).

It suffices to show ∃k ∈ N such that A ∈ T (Ik). We proceed by case analysis

on Definition 8.13.

(1) Suppose [P] ≧ Q,A and ⊔∞
i=1Ii,Q ⊩ ⊤∗. By compactness, ∃k ∈ N such

that Ik,u ⊩⊤∗. Hence, by Definition 8.13, A ∈ T Ik(w).
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(2) Suppose [P] ≧ Q,G−−∗A and ⊔∞
i=1Ii,u ⊩ G. By compactness, ∃k ∈ N

such that Ik,Q ⊩⊤∗. Hence, by Definition 8.13, A ∈ T Ik(w).

(3) Suppose [P] ≧ Q,(R;G → A) and ⊔∞
i=1Ii,Q ⊩ ⊤∗ and ⊔∞

i=1Ii,(R;G →

A)⊩G. By compactness, ∃m,n∈N such that Im,Q⊩⊤∗ and Im,(R;G→

A) ⊩ G. Let k = max(m,n), then (by persistence) Ik,Q ⊩ ⊤∗ and

Ik,(R;G→A) ⊩ G. Hence, by Definition 8.13, A ∈ T Ik(w).

This completes the case analysis.

This demonstrates both inclusions, hence equality.

This concludes the model-theoretic semantics for the hereditary Harrop frag-

ment of BI, which is precisely analogous to the one for the hereditary Harrop frag-

ment of IPL in Chapter 2. In the next section, we consider an alternate coalgebraic

semantics that exposes more of the control structures involved.

8.3 Coalgebraic Semantics
Deductive Logic is inherently algebraic. That is, rules in a proof system in the de-

ductive paradigm can be understood as functions — deduction operators — that

canonically determine algebras for a functor. The space of valid sequents is defined

by the recursive application of these operators, which instantiates the inductive def-

inition of proofs. In contrast, Reductive Logic is inherently coalgebraic. That is,

reduction operators can be mathematically understood as coalgebras. The much

larger space of sequents (or configurations) explored during reductive proof-search

is corecursively generated, and reductions are coinductively defined. A terse, but

complete, summary of coalgebra for this section is given in Appendix A.

The operational reading of hHBI proceeds through proof-search. There is some

literature on denotational semantics of Reductive Logic. For example, Pym and

Ritter [174, 173] have studied categorical semantics for classical and intuitionistic

logic, and game-theoretic semantics in the spirit of Abramsky’s full abstraction for

PCF [5] — see also work by Miller [142]. In logic programming, Komendantskaya

et al. [115, 116, 117] have successfully implemented coalgebraic models for Horn
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clause Logic Pogramming; Bonchi and Zanasi [23] extended the work to a precise

bi-algebraic semantics. This is close to the the uniform treatment of denotational

readings of operational semantics given by Turi and Plotkin [209]. In this section

we give a coalgebraic semantics of the operational reading of hHBI following the

above tradition.

Abstracting the Setup

We begin by modelling the syntax of the hereditary Harrop fragment of BI. Follow-

ing this, we can define reduction operators as coalgebras from rules.

We use the standard free-construction to model language. We being with a

standard example to illustrate the idea.

Example 8.16. Consider the definition of a list of elements x from a set A,

ℓ ::= nil | x :: ℓ

There are two kinds of constructors here: nil, which denotes the empty list, and

the :: constructor represents the pairing of the two components. The | represents a

choice of constructors. Intuitively, therefore, the grammar is modelled by the least

fixed point of the functor FA : X 7→ nil+A×X, where nil is the emptyset. That is,

the functor F̂ defined by the following ω-chain:

nil−→ nil+A×nil−→ nil+A× (nil+A×nil)−→ ...

The arrows are inductively defined by extending with the unique function out of the

emptyset. Thus lists have the following coalgebraic denotation: L : X 7→ F̂A(X). In

particular L(A) are lists of elements from A. Observe that L is a monad whose unit

is the single-element list constructor a 7→ a :: (nil :: nil...) and whose multiplication

is concatenation of lists. ■

Sequents P ▷G can be modelled analogously to Example 8.16. To begin, one

models the grammar in Definition 8.1. There are several constructors in these gram-

mar(s) that need to be distinguished (i.e., they cannot all simply be the product of
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the category). Therefore, we sign the products with symbols distinguishing the kind

of pair. For economy in the notation, we shall use the logical constants both as syn-

tactic object and as the name for their denotations — for example,

∧ : (X ,Y ) 7→ X ×{∧}×Y and ∗ : (X ,Y ) 7→ X ×{∗}×Y

To simplify presentation, we use infix notation for these functors. The sets X and

Y are variables upon which the construction takes place, and at the end of the con-

struction they will be instantiated by A.

Modelling the syntax of the hereditary Harrop fragment of BI is slightly more

elaborate than in Example 8.16 because of the mutual induction taking place over

definite clauses and goal formulate. Consequently, we first consider mappings of

two variables delineating the structural difference of the two types of formulae:

FD(X ,Y ) := {⊤∗}+{⊤}+KA(X)+Y ∧Y +Y ∗Y+

X →Y +X −−∗Y

FG(X ,Y ) := {⊤∗}+{⊤}+KA(Y )+X ∧X +X ∨X +X ∗X+

Y →X +Y −−∗X

These definitions merit comparison with Definition 8.1.

We now model the unfolding of the inductive definition of definite clauses and

goal formulae simultaneously. To this end, we use the first and second projection

function π1 and π2 to put the right formulae in the right place. That is, we apply the

free construction to the following:

F(Z) := FG(π1Z,π2Z)×FD(π1Z,π2Z)

Here Z is a product of some sets X and Y . The functors defining F are sufficiently

simple and the category sufficiently well-behaved that the free construction yields a
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limit,

Z −→ Z +FZ =

Z +FG
(
π1(Z +FZ), π2(Z +FZ)

)︸ ︷︷ ︸
=FG(π1Z+FGZ,π2Z+FDZ)

×FD
(
π1(Z +FZ), π2(Z +FZ)

)︸ ︷︷ ︸
=FD(π1Z+FG(Z),π2Z+FD(Z))

−→ ...

Each transition in the construction is the embedding of the previously constructed

set within the next which contains it as a component of its disjoint union; for ex-

ample, the first arrow embeds Z in Z +F(Z). This embedding is in fact a natural

transformation I →I +F . Hence, as the construction continues more and more

stages of the inductive definition of definite clauses and goal formulae are captured.

The limit, therefore, contains all the possible goals and definite clauses at once.

Let F̂ denote the free functor for F , then the goal formulae and definite clauses

are recovered via the first and second projections,

F̂G(X) := π1F̂(X ,X) F̂D(X) := π2F̂(X ,X)

By fixing the set of atomic proposition A (i.e., the base of the inductive construc-

tion), the disjoint union present in the free construction means that all goal formulae

and definite clauses are present in F̂G(A) and F̂D(A), respectively.

Modelling bunches is comparatively simple since there is no mutual induction,

so it simply requires the free monad B̂ for the following functor:

B := F̂ + #+ ,+{∅×}+{∅+}

Configurations are pairs of programs and goals, so their abstract data-structure

is given by the functor G(X) := B̂(X)× F̂(X). In particular, configurations are

modelled by elements of G(A).

This concludes the modelling of the syntax for the hereditary Harrop fragment

of BI. Henceforth, we may use syntax and their denotations interchangeably. We

turn now to the modelling of rules as reduction operators.

Example 8.17. The configuration (A∧⊤)−−∗A▷A, where A ∈ A, is modelled by the
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tuple
(
((A,∧,⊤),−−∗,A),A

)
, which is nothing more than the typical encoding of the

syntax-tree as an ordered tree. ■

A rule r in a sequent calculus can be understood mathematically as relation r

on sequents that holds only when the first sequent (the conclusion) is inferred from

the remaining (the premisses) by the rule.

Example 8.18. The rule e in LBI, it is expressed by the following rule figure with

the condition ∆ ≡ ∆′:

∆▷ϕ
e

∆′ ▷ϕ

Observe that ∅× ≡∅× ,∅×, but ∅× ̸≡∅× #∅×. Therefore, this rule uderstood as a

relation e, we obtain (∅× ▷A)e((∅× ,∅×)▷A), but do not obtain (∅× ▷A)e((∅× #

∅×) ▷A). ■

These relations, in turn, can be canonically understood as a non-deterministic

partial functions, deduction operators. A relation r generated by a rule r yields the

function δr : L(G(A))⇀ P(G(A)),

δr : ℓ 7→ {(P,G) ∈ G(A) | (P,G)rℓ}

However, in Reductive Logic, we are interested in the inverse action. Maps

δ−1
r : G(A)→P(P(G(A))), defined as follows:

δ
−1 : (P,G) 7→ {ℓ ∈ P(G(A)) | δ (ℓ) = (P,G)}

These map a putative conclusion to sufficent premisses.

Example 8.19. Let r be the →-resolution rule. Its deduction operator and its inverse

are as follows:

δ : {(P;G→A▷G),(Q▷A)} 7→ (Q,(P;G→A))▷A

δ−1 : (Q,(P;G→A))▷A 7→ {(P;G→A▷G),(Q▷A)}

Recall that bunches are represented in canonical form. ■
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In this analysis we recognise that deduction operators are intuitively under-

stood as algebras for the P-functor, and reduction operators as coalgebras for the

PP-functor. We make now an important assumption for proof-search, as pre-

sented herein, to be effective: reduction operators are finitely branching. That is,

proceeding onward, we exclude rules whose upward reading renders an infinite set

of potential collections of sufficient premisses. At first this assumption seems to be

hugely restrictive, since almost all common proof-systems seemingly fail this crite-

rion; for example, e does not satisfy this condition! What is required is a means to

control the rule; for example, the e rule is confined in the resolution system (Figure

8.1) to the weak coherence ordering in Section 8.1 which is used in a controlled

way. Hence, we drop the P structure in deduction operators and their inverses, the

reduction operators, and replace it with the finite powerset monad Pf .

Definition 8.20 (Reduction Operator). A reduction operator over sequents G(A) is

a coalgebra ρ : G(A)→ Pf PfG(A).

In this setup, the use of a reduction operators in Reductive Logic is the appli-

cation of the coalgebra together with a choice function that instantiates a particular

set of sufficient premisses from the available,

G(A) ρ //Pf PfG(A) σ //PfG(A)

The choices presented by these steps represent the control problems of proof-search,

as discussed in Chapter 1; that is, the choice of rule, and the choice of instance.

When the construction in Example 8.19 is performed for the resolution system

in Figure 8.1, with the simplification on the structure of states and collections of pre-

misses, one forms the coalgebras in Figure 8.3. These are the reduction operators

for the resolution system understood as coalgebras.

This presentation already offers insight into the proof-search behaviour. For

example, the disjointedness of the defined portions of the reduction operators for the

operational and initial rules means the choice of application is deterministic for a

non-atomic goal. Therefore, one may coalesce the operators into a single reduction
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ρ⊤ : P▷⊤ 7→ {∅}

ρ⊤∗ : P▷⊤∗ 7→ {∅ | [P]≡∅×;R}

ρres1 : P▷A 7→ {{Q▷A} | [P]≧ Q,A}

ρres2 : P▷A 7→ {{Q▷G} | [P]≧ Q,G−−∗A}

ρres3 : P▷A 7→ {{Q▷⊤∗ , R;G→A▷G} | [P]≧ Q,(R;G→A)}

ρ∨ : P▷G1 ∨G2 7→ {{P▷G1} , {P▷G2}}

ρ∧ : P▷G1 ∨G2 7→ {{P▷G1 , P▷G2}}

ρ∗ : P▷G1 ∗G2 7→ {{Q▷G1 , R▷G2} | P ≡ (Q,R);S}

ρ→ : P▷D→G2 7→ {{P; [D]▷G}}

ρ−−∗ : P▷D−−∗G2 7→ {{P, [D]▷G}}

Figure 8.3: Coalgebraic Representation of RBI

operator as a goal destructor:

ρop := ρ∨+ρ∧+ρ∗+ρ→+ρ−−∗+ρ⊤+ρ⊤∗

Moreover, since there is no a priori way to know which resolution rule to use, one

in principle tests all of them, so uses a reduction operator of the shape:

ρres : P▷A 7→ ρres1(P▷A)∪ρres2(P▷A)∪ρres3(P▷A)

The presentation of ρop and ρres as operators is simple when working with coalge-

bras, but it is not at all clear how to present them as a single rule figures. Attempts

toward such presentations are the synthetic rules derived from focused proof sys-

tems — see, for example, Chaudhuri et al. [35, 34].

The Proof-search Space

The construction of reduction operators as above is an interpretation of a reduction

step. We now turn to modelling reduction proper; that is, we construct a coal-
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gebraic interpretation of the proof-search space — the structure explored during

proof-search. In practice, we simply formalize the heuristic exploratory approach

of reductive inference as the corecursive application of reduction operators.

Computations, such as proof-search, can be understood as sequences of ac-

tions, and the possible traces can be collected into tree structures where different

paths represent particular threads of execution. In logic programming, such trees

appear in the literature as coinductive derivation trees (CD-trees) — see, for exam-

ple, Komendantskaya et al. [115, 116, 117], and Bonchi and Zanasi [23] — and an

action is one step of reductive inference. Typically one distinguishes the two com-

ponents, the reduction operator and the choice function, by using an intermediary

node labelled with a •, sometimes called an or-node, as it represents the disjunction

of sets of sufficient premisses.

Example 8.21. Let P = ((∅×;B),C−−∗A,(B;B→A));A and G =⊤→A. The CD-

tree for P▷G in the resolution system is the following:

• // ∅

P▷G // • // P;∅+ ▷A

==

!!

// • // (∅×;B),(B;B→A)▷C

• //

''

B;B→A▷B // • // ∅

∅×;B▷⊤∗ // • // ∅

At the first bifurcation point, the three • nodes represent from top to bottom the

choice of the unique member of ρresi(P;∅× ▷ A) for i = 1,2,3. In the case of

ρres1 and ρres3 , the procedure continues and terminates successfully; meanwhile,

for ρres2 , it fails. ■

The bullets • serve only as punctuation separating the possible choice func-

tions, so the actual coinductive derivation tree is the tree without them.

Definition 8.22 ((Punctuated) Coinductive Derivation Tree). A punctuated coinduc-

tive derivation tree (PCD-tree) for a sequent S is a tree satisfying the following:
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- The root of the tree is S

- The root has |ρ(S)| children labelled •

- For each • there is a unique set {S0, ...,Sn} ∈ ρ(S) so that the the children are

PCD-trees for the Si.

A coinductive derivation (CD-tree) is the tree constructed from the PCD-tree by

connecting the parents of •-nodes directly to the children, removing the node itself.

The CD-trees model reduction only (as opposed to proof-search) since the rep-

resentation of a control regime is lacking. It remains to give a coalgebraic account

of CD-trees, which we do following Komendantskaya et al. [115, 116, 117] — see

also work by Bonchi and Zanasi [23].

The CD-structure on a set X of sequents is formally the cofree comonad C(X)

on the Pf Pf functor, the behaviour-type of reduction. It is constructed inductively

as follows: Y0 := X

Yα+1 := X ×Pf PfYα

Each stage of the construction yields a coalgebra ρα : X → Yα defined inductively

as follows, where I is the identify function:

ρ0 := I

ρα+1 := I × (Pf Pf ρα ◦ρ)

For some limit ordinal λ — see Worrell [216] — the coalgebra ρλ :G(A)→C(G(A))

precisely maps a configuration to its CD-tree.

To show that this model of the proof-search space is faithful we must show

that every step, represents a valid reduction; meanwhile, to show that it is adequate

we must prove that every proof is present. A proof is witnessed in a CD-tree by

choosing a particular path.

Definition 8.23 (Controlled Subtree of CD-tree). A subtree R of ρλ (P,G) is con-

trolled iff it is a tree extracted from the PCD-tree for P▷G by taking the root node
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and connecting it to the heads of the reduction trees of all the children of one •-node.

It is successful if and only if the leaves are all ∅.

Observe that the application of a choice function, determined by a control

regime, is precisely the choosing of a particular •-node at each stage of the ex-

traction.

Example 8.24. The following is an example of a controlled sub-tree from the exam-

ple (P)CD-tree above:

P▷G // P;∅× ▷A // ∅

The first choice of • is trivial (as there is only one) and the second choice is the

upper path. ■

We do not claim that every controlled sub-tree in a CD-tree is finite; in fact,

this is demonstrably not the case.

Example 8.25. Consider the PCD-tree for A;A→A▷A:

A→A;A▷A // • //

%%

A→A;A▷A // • //

%%

A→A;A▷A // . . .

∅ ∅

Every finite execution of the configuration is successful; however, there is an infinite

path which represents an attempt at proof-search that never terminates, but also

never reaches a invalid configuration. This further demonstrates the care that is

required when implementing controls because the depth-first search with leftmost

selection regime here fails. ■

Theorem 8.26 (Soundness and Completeness). A tree labelled with sequents is a

proof of a configuration P▷G in the resolution system if and only if it is a successful

controlled sub-tree of ρλ (P,G).

Proof. Immediate by induction on the height of proofs and the definition of reduc-

tion tree.
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Choice and Control

The difference between modelling the proof-search space and modelling proof-

search is subtle. It comes down to whether or not control admits a denotation.

We have thus far restricted attention to a traditional sequential paradigm for com-

putation, where one chooses one particular collection of sufficient premisses; now,

we now show that an alternative parallel model is immediately available from the

constructions above.

Recall that we have a two-step understanding of reductive inference: first, ap-

ply a reduction operator (understood as a coalgebra); then choose a collection of

sufficient premisses (by applying a choice function). The usual way to interpret it

is to perform these action in sequence as read, yielding the backtracking-schedule

approach to computation studied so far; however, it may be interpreted simply ex-

tracting a correct reduction from the proof-search space. In this latter reading the

traces of the proof-search space can be understood as being in a superposition, form-

ing a parallel semantics of computation. This reading has been thoroughly studied

for Horn clause logic programming by Gupta et al. [90, 91, 89] and this idea of

parallelism can be captured proof-theoretically by hypersequent calculi —see, for

example, work by Harland and Kurokawa [98, 127].

The coalgebraic model of the proof-search space immediately offers a coalge-

braic model of parallel proof-search; that is, the controlled sub-tree extraction from

ρλ : G(A)→G(G(A)). Indeed, this is precisely analogous to the parallel model of

Horn clause logic programming studied by Komendantskaya et al. [115, 116, 117].

The coalgebraic approach has the advantage over more traditional algebraic models

in that it allows for infinite searches, thereby extending the power of logic program-

ming to include features such as corecursion.

Indeed, the parallel semantics is amenable to a more accurate model by un-

packing the algebraic structure of the state-space, yielding a bialgebraic semantics.

Observe then that in the structure Pf Pf for reduction operators, the external func-

tor structures the set of choices, and the internal one structures the states themselves

(i.e., the collections of sufficient premisses). The outer one is disjunctive, captured
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diagrammatically by the or-nodes represented by • in the PCD-trees; meanwhile,

the inner one is conjunctive since every premiss needs to be verified. There is no

distributive law of Pf over Pf , but there is a distributive law of L over Pf which

coheres with this analysis:

[X1, ...,XN ] 7→ {[x1, ...,xn] | xi ∈ Xi}

This suggests a bialgebraic model for the parallel reading of the operational se-

mantics obtained by performing the same cofree comonad construction for the be-

haviour, but with PfL instead. This has already been studied in the case of Horn

clause logic programming by Bonchi and Zanasi [23].

These models are studied partly to let one reason about computation, and per-

haps use knowledge to improve behaviour. For example, in the sequential semantics

a programmer may purposefully tailor the program to the selection function to have

better behaviour during execution, meanwhile in the parallel approach the burden

is shifted to the machine (or, rather, theorem prover) which may give more time to

branches that are more promising. For example, while generating the (P)CD-tree

in Example 8.21 a theorem prover can ignore the branch choosing the C−−∗A in the

program since it is clear that it will never be able to justify C as the atom appears

nowhere else in the context.

The problem being handled in either case is how best to explore the space of

possible reductions. The two approaches, parallel and sequential, both suffer from

the amount of non-determinism in the system. In fact, this problem is exponentially

increasing with each inference made as each collection of premisses represents an-

other branch in the CD-tree. Moreover, in practice, with any additional features

in the logic the problem compounds so that such reasoning becomes increasingly

intractable.

8.4 Computation
So far we have given an operational reading of hHBI. Taking it as a programming

language, however, there ought to be something that it computes. Traditionally —
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for example, in the setting of Horn clause logic programming — what is comuted

is a unifier which states what object satisfy the condition of the goal according to a

program. This demands extending present setup to a predicate logic. ‘

Predicate hereditary Harrop BI

The standard approach for turning a propositional logic into predicate logic begins

with the introduction of a set of terms T, typically given by a context-free gram-

mar which has three disjoint types of symbols: variables, constants, and functions.

The propositional letters are then partitioned A :=
⋃

i<ω Ai into classes of predi-

cates/relations of different arities, such that the set of atomic formulae is given by

elements A(t0, ..., ti), where t0, ..., ti are terms and A ∈ Ai. In the model theory, the

Herbrand universe is the set of all ground terms T (terms not containing free vari-

ables), and the Hebrand base is the set of all atomic formulae (instead of atomic

propositions).

The extra expressivity of predicate logic comes from the presence of two quan-

tifiers: the universal quantifier ∀ and the existential quantifier ∃, which for the hered-

itary Harrop fragment of BI gives the following grammar for formulae:

D ::= ... | ∀x(G→A) | ∀x(G−−∗A)

G ::= ... | ∃xG

Formally, programs and goals are not constructed out of arbitrary formulae, but

only out of sentences: formulae containing no free-variables. However, since in this

fragment the quantifiers are restricted to different types of formulae (and the sets of

variables and constants are disjoint) they may be suppressed without ambiguity. For

example, the formulae A(x) regarded as a goal is unambiguously existentially quan-

tified, whereas when regarded as a definite clause it is unambiguously universally

quantified.

Rules for the quantifiers require the use of a mappings from θ : T → T that are

fixed on T ⊆ T, which are uniquely determined by their assignment of variables.
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P⊢o ∃xG if P⊢o Gθ for some susbtitution θ

P⊢o A if P≧ R;(Q,∀x(G−−∗B)) and
there is θ such that Q⊢o Gθ and Aθ = Bθ

P⊢o A if P≧ (Q,(R;∀x(G → B))) and Q⊢o⊤∗ and
there is θ such that R;∀x(G → B)⊢o Gθ and Aθ = Bθ

Figure 8.4: Unification in Predicate Hereditary Harrop BI

Such a function becomes a substitution under the following action:

ϕθ :=


A(θ(t0), ...,θ(tn)) if ϕ = A(t0, ..., tn)

ψ0θ ◦ψ1θ if ϕ := ψ0 ◦ψ1 for any ◦ ∈ {∧,∨,→,∗,−−∗}

ϕ if ϕ ∈ {⊤,⊤∗}

The resolution system (Figure 8.1) is thus extended with the operators in Figure 8.4

which incorporate the quantifier rules. Observe that substitution is used to match

a definite clause with the goal, and for this reason is traditionally called a unifier.

Since execution is about finding some term (some element of the Herbrand universe)

which satisfies the goal, one may regard the thing being computed as the combined

effect of the substitutions witnessed along the way, often called the most general

unifier.

The introduction of quantifiers into the logic programming language offered

here is minimal, and much more development is possible — see, for example, work

by Armelı́n [9, 10]. An attempt at a full predicate BI has been given by Pym [170,

171], but its metatheory is not currently adequate.

The intuition follows from the intimate relationship between implication and

quantification in intuitionistic logic — see, for example, Dummett [52]. The in-

tended reading of an implication A → B in BI is a constructive claim of the exis-

tence of a procedure which turns a proof A into a proof of B. Therefore, a proof

of an existential claim ∃xA(x) involves generating (or showing how to generate) an
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object t for which one can prove A(t); similarly, a proof of a universal claim ∀xA(x)

is an procedure which takes any object t and yields a proof of A(t).

The presence of both additive (→) and multiplicative (−−∗) implications in BI

results in the possibility of both additive (resp. {∃,∀} ) and multiplicative (resp.

{∃new,∀new}) quantifiers. Intuitively, the difference between ∀ and ∀new is that for

∀newxϕ makes a claim about objects x separate from any other term appearing in ϕ ,

thus it may be read for all new; similarly for the relationship between the ∃ and ∃new

quantifiers. This behaviour is similar to the freshness quantifier from nominal logic,

which is the familiar universal quantifier together with an exclusivity condition, and

has a well understood metatheory — see Pitts [160].

Example: Databases

We have thus developed a concept of logic programming using BI. Our motivations

are mathematical and technical, but they have practical consequences, which we

illustrate presently. In this section, we show that the concept of LP for BI in this

chapter is interesting and useful for working with databases.

Logic programming has historically had a profound effect on databases both

theoretically, providing a logical foundation, and practically, by extending the

power to incorporate reasoning capabilities — see, for example, Grant [88]. Stan-

dard relational database systems are the fundamental information storage solution

in data management, but have no reasoning abilities meaning information is either

stored explicitly or is not stored at all. One may combine a database with a logic

prohramming language resulting in a deductive database, which extends the capabil-

ities of such relational databases to included features such as multiple file handling,

concurrency, security, and inference.

A deductive database combines two components. The extensional part contains

the atomic facts (ground atoms), and is the type of data that can exist in a relational

database; meanwhile the intensional part contains inference rules and represents

primitive reasoning abilities relative to a knowledgebase. In the case of the predicate

version of the hereditary Harrop fragment of BI, if there are no recursive rules in the

intensional database then it corresponds to views in a relational database. However,
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Column 1 Column 2 Column 3

Al(gebra) Lo(gic) Da(tabases)
Pr(obability) Ca(tegories) Co(mpilers)

Gr(aphs) Au(tomata) AI

Figure 8.5: Informatics Electives at Unseen University

even without recursion the two connectives offers extra abilities as demonstrated by

the following example.

Suppose Unseen University offers a computer science course. To have a well-

rounded education, students must select one module from each of three columns in

Figure 8.5, with the additional constraint that to complete the course students must

belong to a particular stream, A or B. Stream A contains Al,Gr,Lo,Ca,Au,Co,AI,

and students must pick one from each column, stream B contains the comple-

ment. This compatibility information for modules may be stored as an extensional

database provided by the bunch ED = (Col1,Col2,Col3) with each Coli bunch de-

fined as follows:

Col1 := A(Al) ; A(Gr) ; B(Pr) ; B(Gr)

Col2 := A(Lo) ; A(Ca) ; A(Au) ; B(Ca) ; B(Au)

Col3 := A(Co) ; A(AI) ; B(Da) ; B(Co) ; B(AI)

Let x be a list of subjects, then the logic determining CS courses for the

Astr(eams) and Bstr(eams) respectively is captured by an intensional database ID

given by the following bunch, where πi is the ith projection function:

Astr
(
π0(x),π1(x),π2(x)

)
→ str(x) ; Bstr

(
π0(x),π1(x),π2(x)

)
→ str(x) ;

A(x)∗A(y)∗A(z)−−∗Astr(x,y,z) ; B(x)∗B(y)∗B(z)−−∗Bstr(x,y,z)

The equivalent implementation in the predicate version of hHBI would require a

tagging system to show compatibility of the columns; meanwhile the computation

can be handled easily and (more importantly) logically in the present system.



Chapter 9

Focused Proof-search

The focusing principle was introduced for Linear Logic (LL) by Andreoli [6]. It

is a generalization of uniform proof-search, the procedure underlying standard ap-

proaches to logic programming — see Chapter 2 and Chapter 8. In this chapter,

we prove that LBI satisfies the focusing principle by showing the soundness and

completeness of a focused calculus FBI in which the focusing control regime is en-

forced by control symbols. This establishes the property in LBI because FBI-proofs

are canonically turned into focused LBI-proofs. This chapter is based on the follow-

ing paper:

Gheorghiu, A. V., and Marin, S. Focused Proof-search in the Logic of

Bunched Implications. In Foundations of Software Science and Compu-

tation Structures - FOSSACS 24 (2021), S. Kiefer and C. Tasson, Eds.,

vol. 12650 of Lecture Notes in Computer Science, Springer, pp. 247–

267

Focused proof-search is characterised by alternating focused and unfocused

phases of goal-directed proof-search. This alternation can be enforced by a par-

tition of the set of formulas into two classes, positive and negative. For negative

formulas, provability is invariant with respect to the application of a right rule; and

for positive formulas, provability is invariant with respect to the application of a

left rule. The unfocused phases of a focused proof comprise the exhaustive (reduc-

tive) application of rules which are safe to apply (e.g., ∧R in LJ — see Chapter 2);

conversely, the focused phase comprises the hereditary reduction (i.e., focused re-
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duction) of a formula and its sub-formulas where potentially invalid sequents may

arise, and backtracking may be required (e.g., ∨R in LJ — see Chapter 2). Dur-

ing focused proof-search the unfocused phases are performed eagerly, followed by

controlled goal-directed focused phases, until safe reductions are available again. A

sequent calculus satisfies the focusing principle when every provable sequent admits

a focused proof in that calculus.

The original proof of the focusing principle in LL by Andreoli [6] was via long

and tedious permutations of rules. In this chapter, we use a different methodology

that was originally presented by Laurent [130] and has since been implemented

for a variety of logics — see, for example, work by Liang and Miller [131], and

Chaudhuri et al. [34, 35]. The method is as follows: given a sequent calculus, first

one polarises the syntax according to positive and negative behaviours; second, one

gives a focused variation of the sequent calculus in which the control flow of proof-

search is managed by polarization; third, one shows that this system admits cut;

and, finally, one shows that in the presence of cut the original sequent calculus may

be simulated in the focused one. When the focused system is complete with respect

to the logic, the focusing principle holds.

In LBI certain rules (the structural rules) have no natural placement in either

the focused or the unfocused phases of proof-search. Thus, a design choice must

be made: to eliminate/constrain these rules, or to permit them without restriction.

In this paper, we choose the former as our motivation is to study computational be-

haviour of proof-search in BI, the latter being recovered by familiar admissibility

results. The only case where confinement is not possible is the exchange rule. In

standard sequent calculi the exchange rule is made implicit by working with a more

convenient data-structure such as multisets as opposed to lists; however, the specific

structure of bunches in BI means that a more complex alternative is required. The

solution presented is to use nested multisets of two kinds (additive and multiplica-

tive) corresponding to the two different context-formers and conjunctions.



9.1. Re-presenting the Logic of Bunched Implications 110

9.1 Re-presenting the Logic of Bunched Implications
In this section, we define the space B/≡ (i.e., bunches modulo coherent equiva-

lence) as containing nested multisets of two kinds — henceforth, nests. This read-

ing was suggested by Donnelly [50], though never formally realised. It allows us

to suppresses uses of exchange in proof-search. We expect no obvious difficulty in

studying focused proof-search with bunches instead of nested multisets; the design

choice is simply to reduce the complexity of the argument by supressing all uses of

exchange.

For readability, henceforth we use Γ to denote nests and to denote ∆ for

bunches.

Definition 9.1 (Two-sorted Nest). Nests (Γ) are formulas or multisets, ascribed

either additive (Σ), or multiplicative (Π) kind, containing nests of the opposite

kind:

Γ := Σ | Π Σ := ϕ | {Π1, ...,Πn}+ Π := ϕ | {Σ1, ...,Σn}×

The constructors are signed multiset constructors which may be empty in which

case the nests are denoted ∅+ and ∅×, respectively. No multiset is a singleton. The

set of all nests is denoted B/≡.

Let Λ and Γ be nests. We write Λ ∈ Γ to denote one of the following: either

Λ = Γ, when Γ is a formula; or Λ is an element of Γ regarded as a multiset. We

write Λ ⊆ Γ to denote that Λ is a sub-multiset of Γ — that is, if γ ∈ Λ and γ ̸= Λ,

then γ ∈ Γ. We write Γ{Λ}+ (resp. Γ{Λ}×), to denote that Λ is a sub-nest of Γ

of additive (resp. multiplicative) kind, and may write Γ{Λ} when the kind is not

specified. In either case Γ{Λ′} denotes the substitution of Λ for Λ′. A promotion in

the syntax tree may be required after a substitution either to handle a singleton or an

improper alternation of constructor types, as witnessed in the following example:

Example 9.2. The following inclusions are valid,

{ϕ ,χ }× ∈
{
{ϕ ,χ }×,ψ

}
+
⊆
{
{ϕ ,χ }×,ψ ,ψ ,∅×

}
+
= Γ{{ϕ ,χ }×}+
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We write Γ{{ϕ ,ϕ}+}+ to denote the substitution yielding {ϕ ,ϕ ,ψ ,ψ ,∅× }+.

Note the absence of the {·}+ constructor after substitution, this is due to a promo-

tion in the syntax tree to avoid having two nested additive constructors. Similarly,

since ∅× denotes the empty multiset of multiplicative kind, substituting χ with it

gives {ϕ,ψ ,ψ ,∅× }+ — that is, first the improper {ϕ,∅×}× becomes {ϕ}×; then,

the resulting singleton {ϕ}× is promoted to ϕ . ■

We have the following abuse of notation, where ◦ ∈ {+,×}, to denote promo-

tions:

Γ{{Π1, ...,Πi}◦,Πi+1, ..,Πn}◦ := Γ{Π1, ...,Πn}◦

The following are useful for analysing the structure of nests:

Definition 9.3 (Depth). The depth δ of a nest Γ is as follows:

δ (Γ) :=


0 ifΓ ∈ F∪{∅×,∅+}

max{δ (Γ1), ...,δ (Γn)}+1 if Γ = {Γ1, ...,Γn}+

max{δ (Γ1), ...,δ (Γn)}+1 if Γ = {Γ1, ...,Γn}×

It remains to relate bunches and nests. To this end, it will be useful to have a

measure on sub-bunches which can identify their distance from the root node:

Definition 9.4 (Rank). If ∆′ is a sub-bunch of ∆, then ρ(∆′) is the number of alterna-

tions of additive and multiplicative context-formers between the principal context-

former of ∆′, and the root context-former of ∆.

Let ∆ be a complex bunch, we write ∆′ ∈ ∆ to denote that ∆′ is a (proper)

top-most sub-bunch; that is, ∆ is a sub-bunch satisfying ∆ ̸= ∆′ but ρ(∆′) = 0.

Example 9.5. Let ϕ,ψ,χ ∈ F and let ∆ = (ϕ , (χ #∅+)) # (ψ # (ψ #∅×)). Consider

the parse-tree of ∆,

#

, #

ϕ # ψ #

χ ∅+ ψ ∅×
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Reading upward from ∅+ one encounters first # which changes into , and then back

to #, thus ρ(∅+) = 2; whereas, counting up from ∅× one only encounters #, thus

ρ(∅×) = 0. Hence, ψ,∅×,(ϕ , (χ ,∅×)) ∈ ∆. ■

The equivalence of bunches and nests is captures in terms of a canonical trans-

lation between them, witnessed by a nestifying function η and a bunching function

β , which are inverses of each other. The transformation β is simply going from a

tree with arbitrary branching to a binary one, and η is the reverse.

Definition 9.6 (Canonical Translation). The canonical translation η : B → B/≡ is

defined recursively as follows,

η(∆) :=


∆ if ∆ ∈ F∪{∅+,∅×}

{η(∆′) ∈ B/≡ | ρ(∆′) = 1 and ∆′ ∈ B×}+ if ∆ ∈ B+

{η(∆′) ∈ B/≡ | ρ(∆′) = 1 and ∆′ ∈ B+}× if ∆ ∈ B×

The canonical translation β : B/≡ → B is defined recursively as follows,

β (Γ) :=


Γ if Γ ∈ F∪{∅+,∅×}

β (Π1);(β (Π2); ...) if Γ = {Π1,Π2, ...}+

β (Σ1),(β (Σ2), ...) if Γ = {Σ1,Σ2, ...}×

Example 9.7. Applying η to the bunch in Example 9.5 gives the nest in Exam-

ple 9.2:

+

× ψ ψ ∅×

ψ χ

■

That η and β are correct in terms of relating bunches to bunches modulo co-

herent equivalence is witnessed by the following result:

Proposition 9.8. The following hold:
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1. if ∆ ∈ B then (β ◦η)(∆)≡ ∆;

2. if Γ ∈ B/≡ then (η ◦β )(Γ)≡ Γ;

3. let ∆,∆′ ∈ B, then ∆ ≡ ∆′ if and only if η(∆) = η(∆′).

Proof. Statements 1 and 2 follow by induction on the depth and rank, where one

must take care to consider the case of a context consisting entirely of units. State-

ment 3 employs the first in the forward direction, and proceeds by induction on

depth in the reverse direction.

Being able to systematically recast bunches as nests means that we can re-

present LBI in terms of the latter, without loss of expressive power. The result is

ηLBI.

Definition 9.9 (System ηLBI). The nested sequent calculus ηLBI is composed of

the rules in Figure 9.1, where the metavariables denote possibly empty nests.

Observe the use of metavariable Γ′ instead of Π (resp. Σ) as sub-nests in Fig-

ure 9.1. This allows classes of inferences such as

{Σ0, ...,Σi}× ▷ϕ {Σi+1, ...,Σn}× ▷ϕ

{Σ0, ...,Σn}× ▷ϕ ∗ψ
∗R

to be captured by a single figure because we identify {Σ0, ...,Σi}× and

{Σi+1, ...,Σn}× with some multiplicative nests Π1 and Π2, respectively, and re-

gard the context as the nest {Π1,Π2}+.

Example 9.10. The following is a proof in ηLBI:

A▷A
ax {B,C}+ ▷B

ax

{A,{B,C}+}× ▷A∗B
∗R

{A,(B∧C)}× ▷A∗B
∧L

A▷A
ax

{B,C}+ ▷C
ax

B∧C ▷C
∧L

{A,(B∧C)}× ▷A∗C
∗R

{A,(B∧C)}× ▷ (A∗B)∧ (A∗C)
∧R

A∗ (B∧C)▷ (A∗B)∧ (A∗C)
∗L

∅× ▷ (A∗ (B∧C))−−∗ ((A∗B)∧ (A∗C))
−−∗R

■
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{Γ,ϕ}+ ▷ϕ
ax

Γ{⊥}▷χ
⊥L ∅× ▷⊤∗ ⊤∗

R Γ▷⊤ ⊤R

Γ′ ▷ϕ Γ{Γ′′,ψ}× ▷χ

Γ{Γ′,Γ′′,{Γ′′′,ϕ −−∗ψ}+}× ▷χ
−−∗L

{Γ,ϕ}× ▷ψ

Γ▷ϕ −−∗ψ
−−∗R

Γ{{ϕ,ψ}×}▷χ

Γ{ϕ ∗ψ}▷χ
∗L

Γ▷ϕ Γ′ ▷ψ

{{Γ,Γ′}× ,Γ′′}+ ▷ϕ ∗ψ
∗R

Γ{∅×}▷χ

Γ{⊤∗}▷χ
⊤∗

L

Γ{{ϕ,ψ}+}▷χ

Γ{ϕ ∧ψ}▷χ
∧L

Γ▷ϕ Γ▷ψ

Γ▷ϕ ∧ψ
∧R

Γ{∅+}▷χ

Γ{⊤}▷χ
⊤L

Γ{ϕ}▷χ Γ{ψ}▷χ

Γ{ϕ ∨ψ}▷χ
∨L

Γ▷ϕ

Γ▷ϕ ∨ψ
∨R1

Γ▷ψ

Γ▷ϕ ∨ψ
∨R2

Γ′ ▷ϕ Γ{Γ′,ψ}+ ▷χ

Γ{Γ′,ϕ → ψ}+ ▷χ
→L

{Γ,ϕ}+ ▷ψ

Γ▷ϕ → ψ
→R

Γ{Γ′,Γ′}+ ▷χ

Γ{Γ′}+ ▷χ
c

Figure 9.1: Sequent Calculus ηLBI

Note, ηLBI is a re-presentation of LBI using the nested syntax. That is, it is not

really a development in the proof theory for BI.

Proposition 9.11 (Soundness and Completeness of ηLBI). Systems LBI and ηLBI

are equivalent:

- Soundness: If Γ⊢ηLBI Γϕ , then β (Γ)⊢LBI ▷ϕ;

- Completeness: If ∆⊢LBI ϕ , then η(∆)⊢ηLBI ϕ .

Proof. Each claim follows by induction on the context, appealing to Proposition 9.8

to organise the data structure for the induction hypothesis, without loss of generality.

9.2 The Polarised Syntax
Andreoli [6] witnessed in LL a partition of logical constants according to their be-

haviour, there are those that are synchronous and those that are asynchronous. The

former class corresponds to the behaviours for which the structure of the context

affects the applicability of the rule, and the later to those for which it does not. The
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logical connectives admitting synchronous behaviour are positive, and the logical

connectives admitting asynchronous behaviour are negative.

The two classes of formulae are not exclusionary — for example, ϕ ∧ψ is both

synchronous and asynchronous in LBI. That is, the following both hold for BI:

- If ∆ ⊢ ϕ and ∆ ⊢ ψ , then ∆ ⊢ ϕ ∧ψ

- If ∆ ⊢ ϕ and ∆′ ⊢ ψ , then ∆ #∆′ ⊢ ϕ ∧ψ

It cannot be said that either one of these is the behaviour of ∧ in BI since they

are both valid. The former behaviour is what is captured by ∧R in LBI; but, in the

presence of the structural rules e, w, and c, the rule may be replaced by the following

rule corresponding to the latter behaviour:

∆▷ϕ ∆′ ▷ψ

∆ #∆′ ▷ϕ ∧ψ

Nonetheless, in terms of proof-search, the former behaviour is preferable as the

converse implication also holds; that is,

∆ ⊢ ϕ and ∆ ⊢ ψ iff ∆ ⊢ ϕ ∧ψ

We have so far concentrated to the behaviour on the right of sequents. But the

same phenomenon can be studied in terms of the behaviour on the left of sequents.

For conjunction, we may study the following two behaviours:

- If ∆(ϕ) ⊢ χ and ∆(ψ) ⊢ χ , then ∆(ϕ ∧ψ) ⊢ χ

- If ∆(ϕ #ψ) ⊢ χ , then ∆(ϕ ∧ψ) ⊢ χ

This time, it is the latter that that is preferred because the converse implication

holds; that is,

∆(ϕ #ψ) ⊢ χ iff ∆(ϕ ∧ψ) ⊢ χ
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In summary, we have two set of behaviours:

Γ{ϕ}▷χ

Γ{ϕ ∧ψ}▷χ
∧−
L1

Γ{ψ}▷χ

Γ{ϕ ∧ψ}▷χ
∧−
L2

Γ{{ϕ,ψ}+}▷χ

Γ{ϕ ∧ψ}▷χ
∧+
L

Γ▷ϕ Γ▷ψ

Γ▷ϕ ∧ψ
∧−
R

Γ▷ϕ Γ′ ▷ψ

{Γ,Γ′}+ ▷ϕ ∧ψ
∧+
R

All of these rules are sound (i.e., if the premisses are consequence of BI, then so is

the conclusion), and replacing the conjunction rules in LBI with any pair of a left

and right rule will result in a sound and complete system. In LBI, the two rules with

the best behaviours in terms of proof-search (i.e., ∧−
R and ∧+

L ) are taken. Indeed,

the rules are inter-derivable when the structural rules are present.

To maximize the power of the results of this chapter, we shall give the ultimate

choice to the user as to whether they want a certain occurrence of ∧ in their putative

conclusion to be understood as positive (∧+) or negative (∧−).

Definition 9.12 (Polarised Syntax). Let A+⊔A− be a partition of A. The polarised

formulas are defined by the following grammar,

P,Q ::= L | P∨Q | P∗Q | P∧+ Q | ⊤+ | ⊤∗ | ⊥ L ::= ↓N | A ∈ A+

N,M ::= R | P → N | P−−∗N | N ∧− M | ⊤− R ::= ↑P | A ∈ A−

The set of positive formulas P is denoted F+; the set of negative formulas N

is denoted F−; and the set of all polarised formulas is denoted F±. The sub-

classifications L and R are left-neutral and right-neutral formulas respectfully.

Definition 9.13 (Unfocused, Neutral, and Focused Nests). A nest composed of only

positive formulae is an unfocused nest; the nests ∅× and ∅+ are also unfocused.

An unfocused nest in which all the formulae are left-neutral is a neutral nest. Let

Γ{L} be neutral nest, and let N be a negative formula; the nest Γ{N} is a focused

nest.

We shall use the meta-variable Γ to denote unfocused nests, Γ⃗ to denote neu-

tral nests, and Γ⃗{⟨N⟩} to denote a focused nest with negative formula N — that
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is, Γ⃗(↓N) is a neutral nest. The highlighting of the negative formula aids in this

notation aids readability and is not formally part of the syntax.

Definition 9.14 (Unfocused, Neutral, and Focused Sequents). An unfocused sequent

is a pair Γ▷N in which Γ is an unfocused nest and N is a negative formula. A neutral

sequent is a pair Γ⃗ ▷R in which Γ⃗ is a neutral nest and R is a neutral formula. A

focused sequent is either a pair Γ⃗{⟨N⟩}▷R in which Γ⃗{⟨N⟩} is a focused nest and

R is a right-neutral formula, or a pair Γ⃗▷ ⟨P⟩ in which Γ is a neutral nest and P is

a positive formula.

The shift operators ↑ and ↓ have no logical meaning; they simply mediate

the exchange of polarity, and thus the shifting into a new phase of proof-search.

Consequently, to reduces cases in subsequent proofs, we will consider formulas of

the form ↑↓N and ↓↑P, but not ↓↑↓N, ↓↑↓↑P, etc. A polarised formula canonically

determines a formula by eliminating all the control structure.

Definition 9.15 (Depolarization). The depolarization function ⌊·⌋ : F± → F is de-

fined as follows:

⌊ϕ⌋ :=



⊤ if ϕ ∈ {⊤+,⊤−}

⊥ if ϕ =⊥

⊤∗ if ϕ =⊤∗

A if ϕ = A ∈ A

⌊ψ⌋ if ϕ = ↑ψ or ϕ = ↓ψ

⌊ψ1⌋◦ ⌊ψ2⌋ if ϕ = ψ1 ◦ψ2 for ◦ ∈ {∨,∧,∗,→,−−∗}

The depolarization map extends to polarised nests ⌊·⌋ : B/±≡ → B/≡ as follows:

⌊{Π1, ...,Πn}+⌋= {⌊Π1⌋, ...,⌊Πn⌋}+ ⌊{Σ1, ...,Σn}×⌋= {⌊Σ1⌋, ...,⌊Σn⌋}×

The polarised syntax thus given allows us to express focusing syntactically

using the types of sequents and the shift operators as control structures. Importantly,
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for any nested sequent Γ▷ϕ , there is an unfocused sequent Γ′ ▷N such that ⌊Γ′⌋= Γ

and ⌊N⌋= ϕ .

This means that given a sequent for which one wants a focused proof in ηLBI

(or LBI) one begins by choosing a polarity, and different choice may return different

focused proofs. Taking arbitrary formula ϕ , the process by which one polarises it is

as follows: first, fix partion the propositional letters into positive and negative sets,

then assign a polarity to ϕ with the following steps:

- if ϕ is a propositional atom, it must be polarised by default;

- If ϕ =⊤, then choose polarization ⊤+ or ⊤−

- if ϕ = ψ1 ∧ψ2, first polarise ψ1 and ψ2, then choose an additive conjunction

(i.e., either ∧+ or ∧−) and combine accordingly, using shifts to ensure the

formula is well-formed

- if ϕ = ψ1 ◦ψ2 where ◦ ∈ {∗,−−∗,→,∨}, then polarise ψ1 and ψ2 and combine

with ◦ accordingly, using shifts where necessary.

Example 9.16. Suppose A is negative and B is positive, then (A ∗B)∧A may be

polarised by choosing the additive conjunction to be positive resulting in (↓A ∗

B)∧+ ↓A (when ↓(A∗↓B)∧+ A) would not be well-formed). Choosing to shift one

can ascribe a negative polarization ↑((↓A∗B)∧+ ↓A). ■

The above generates the set of all polarised formulas when all possible choices are

explored. The free assignment of polarity to formulas means several distinct focus-

ing procedures are captured by the completeness theorem; uniform proof-search, the

operational semantics delivering proof-search, corresponds to the choice in which

all the formulas are negative — see Andreoli [6].

9.3 The Focused Calculus
The polarised syntax enables us to give a focused system; that is, a system in which

only focused proofs can be constructed. Moreover, according to the polarization

chosen, every focused proof of a given sequent can be constructed in the focused

system.
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Definition 9.17 (System FBI). The focused system FBI is composed of the rules on

Figure 9.2.

It is, perhaps, proof-theoretically displeasing to incorporate weakening into the

operational rules as in −−∗L and ∗R in FBI, but it has good computational behaviour

during focused proof-search since the reduction of ϕ −−∗ψ can only arise out of an

explicit choice made earlier in the computation. The following example illustrates

how FBI enforces focusing during reduction:

Example 9.18. Let A and C be negative, and B be positive. The following is an

FBI-proof:

⟨A⟩▷A Ax−

↓A▷A
↓L

↓A▷ ⟨↓A⟩ ↓R B▷ ⟨B⟩ Ax+

{↓A,B}× ▷ ⟨↓A∗B⟩
∗R

{↓A, B}× ▷↑(↓A∗B)
↑R

{↓A,⟨↑B⟩}× ▷↑(↓A∗B)
↑L

{↓A,⟨↑B∧−C⟩}× ▷↑(↓A∗B)
∧−
L1

{↓A,↓(↑B∧−C)}× ▷↑(↓A∗B)
↑L (1)

⟨A⟩▷A Ax−

↓A▷A
↓L

↓A▷ ⟨↓A⟩ ↓R

⟨C⟩▷C Ax−

⟨↑B∧−C⟩▷C
∧−
L2

↓(↑B∧−C)▷C
↓L

↓(↑B∧−C)}× ▷ ⟨↓C⟩
↓R

{↓A,↓(↑B∧−C)}× ▷ ⟨↓A∗↓C⟩
∗R

{↓A,↓(↑B∧−C)}× ▷↑(↓A∗↓C)
↑R (2)

{↓A,↓(↑B∧−C)}× ▷↑(↓A∗B)∧− ↑(↓A∗↓C)
∧−
R

↓A∗↓(↑B∧−C)▷↑(↓A∗B)∧− ↑(↓A∗↓C)
∗L

∅× ▷ (↓A∗↓(↑B∧−C))−−∗ (↑(↓A∗B)∧− ↑(↓A∗↓C))
−−∗R

This is, intuitively, an FBI-proof equivalent to the ηLBI-proof in Example 9.10.

Observe that the only non-deterministic choices are which formula to focus on,

such as in steps (1) and (2), where different choices have been made for the sake

of demonstration. The point of focusing is that only at such points do choices that

affect termination occur. The assignment of polarity to the propositional letters is

what forced the shape of the proof; for example, if B had been negative the above

would not have been well-formed. This phenomenon is typical in focused systems

— see, for example, Chaudhuri [35, 34]. ■

Soundness of FBI follows immediately from depolarization:

Theorem 9.19 (Soundness of FBI). Let Γ be a polarised nest and N a negative

formula. If Γ⊢FBI N then ⌊Γ⌋⊢ηLBI ⌊N⌋
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FOCUSED PHASE

{⃗Γ,P}+ ▷ ⟨P⟩
Ax+

{⃗Γ,⟨N⟩}+ ▷N
Ax−

{⃗Γ,↓↑P}+ ▷ ⟨P⟩
P

{⃗Γ,⟨N⟩}+ ▷↑↓N
N

Γ⃗▷ ⟨⊤+⟩
⊤+

R {⃗Γ,∅×}+ ▷ ⟨⊤∗⟩
⊤∗

R

Γ⃗{⟨Ni⟩}+ ▷R

Γ⃗{⟨N1 ∧− N2⟩}+ ▷R
∧−
Li

Γ⃗▷ ⟨Pi⟩
Γ⃗▷ ⟨P1 ∨P2⟩

∨Ri
Γ⃗{∅+}▷R

Γ⃗{⟨⊤−⟩}▷R
⊤−

L

Γ⃗▷ ⟨P⟩ Γ⃗′ ▷ ⟨Q⟩
{⃗Γ, Γ⃗′}+ ▷ ⟨P∧+ Q⟩

∧+
R

∆⃗▷ ⟨P⟩ Γ⃗{⃗∆,⟨N⟩}+ ▷R

Γ⃗{⃗∆,⟨P → N⟩}+ ▷R
→L

Γ⃗▷ ⟨P⟩ Γ⃗′ ▷ ⟨Q⟩
{{⃗Γ, Γ⃗′}×, Γ⃗′′}+ ▷ ⟨P∗Q⟩

∗R
∆⃗▷ ⟨P⟩ Γ⃗{⃗∆′,⟨N⟩}× ▷R

Γ⃗{⃗∆, ∆⃗′, {⃗∆′′,⟨P−−∗N⟩}+}× ▷R
−−∗L

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NEUTRAL PHASE

Γ⃗▷ ⟨P⟩
Γ⃗▷↑P

↑R
Γ⃗{P}▷R

Γ⃗{⟨↑P⟩}▷R
↑L Γ⃗▷N

Γ⃗▷ ⟨↓N⟩
↓R

Γ⃗{⟨N⟩}▷R

Γ⃗{↓N}▷R
↓L

Γ⃗{{⃗∆, ∆⃗}+}▷R

Γ⃗{⃗∆}▷R
C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNFOCUSED PHASE

Γ▷⊤− ⊤−
R

Γ{⊥}▷N
⊥L

Γ▷N Γ▷M
Γ▷N ∧− M

∧−
R

Γ{P}▷N Γ{Q}▷N
Γ{P∨Q}▷N

∨L

Γ{{P,Q}+}▷N
Γ{P∧+ Q}▷N

∧+
L

{Γ,P}+ ▷N
Γ▷P → N

→R
Γ{∅+}▷N
Γ{⊤+}▷N

⊤+
L

Γ{{P,Q}×}▷N
Γ{P∗Q}▷N

∗L
{Γ,P}× ▷N
Γ▷P−−∗N

−−∗R
Γ{∅×}▷N
Γ{⊤∗}▷N

⊤∗
L

Figure 9.2: Focused System FBI
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Proof. Every rule in FBI except the shift rules become an admissible rule in ηLBI

when the antecedent(s) and consequent are depolarised, using Proposition 6.7. In-

stance of the shift rule can be ignored since the depolarised versions of the conse-

quent and antecedents are the same.

It remains to show that FBI is complete — that is, let Γ ▷N be an arbitrary

polarised sequent,

if ⌊Γ⌋⊢ηLBI ⌊N⌋, then Γ⊢FBI N

To show the completeness of FBI, we introduce a cut-rule so that any ηLBI-

proof can be simulated in FBI. Let ϕ⃗ denote a formula that is either ϕ or ϕ prenexed

with an additional shift. The cut-rule in question is the following:

∆▷ϕ Γ{ϕ⃗}▷χ

Γ{∆}▷χ
cut

Admissibility follows by a permutation argument similar to the on in Chapter 7.

Therefore, we shall give a comparatively terse account.

We separate the treatment of commutative cuts and principal cuts into two dif-

ferent propositions. To witness the requisite transformation we require weakening

in the focused system.

Proposition 9.20. If Γ⃗{⃗∆, ∆⃗′}×⊢FBI χ , then Γ{⃗∆, {⃗∆′, ∆⃗′′}+}×⊢FBI χ .

Proof. This follows from the usual permutation arguments — see, for example,

Troelstra and Schwichtenberg [207].

The setup for cut-admissibility is similar to that of Chapter 7. As before, a cut

κ in a FBI+ cut-proof D is a triple ⟨L,R,ϕ⟩ such that D contains the following

inference:
L : ∆▷ϕ R : Γ{ϕ⃗}▷χ

Γ{∆}▷χ
cut

Recall that the rank of a cut k = ⟨L,R,ϕ⟩ in a LBI-proof D is the triple

⟨σ(ϕ),κ(k),max{h(L),h(R)}+1⟩ — that is, the size of the cut formula, contrac-

tion potential (i.e., the number of times a constractions used in R on a sub-bunch
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containing the cut-formula), and the height of the cut.

We use the taxonomy of cuts in Chapter 7, but with the terms good cuts for

principal cuts and bad cuts for commutative cuts. We further sub-divide bad cuts

according to the branch on which the cut commutes.

A cut ⟨L,R,ϕ⟩ is classified as follows:

GOOD - If ϕ is principal in both L and R.

BAD - If ϕ is not principal in one of L and R.

Type 1: If ϕ is not principal in L.

Type 2: If ϕ is not principal in R.

As in Chapter 7, let ⪯ denote the multiset ordering derived from the lexico-

graphic ordering on cut rank. Denote D ⪯D′ iff M ⪯ N, where M is the multiset of

cuts in D and N is the multiset of cuts in D′.

Proposition 9.21. Let D be a FBI+ cut proof of S. There is an FBI+ cut proof D′

of S containing no good cuts such that D′ ⪯D.

Proof. Let D be as in hypothesis. If D contains no good cuts then D = D′ gives

the desired proof. Otherwise, D contains at least one good cut ⟨L,R,ϕ⟩. Let δ be

the sub-proof in D concluding with this cut. Assume there is a transformation of δ

yielding FBI+cut-proof δ ′ with the same conclusion such that δ ′ ⪯ δ . Since ⪯ is a

well-order, indefinitely replacing δ with δ ′ in D for various cuts yields the desired

D′.

It remains to justify the assumption. These are provided by permutation of

cuts analogous to those in Chapter 7, which we elide for economy. We give two

examples below to illustrate the idea; we use a double-line adorned with w to denote

an appeal to Proposition 9.20:

{⃗Γ′,A+}+ ▷ ⟨A+⟩
Ax+

R : Γ⃗{A+}▷ ⟨A+⟩
Γ⃗{{⃗Γ′,A+}+}▷ ⟨A+⟩

cut becomes
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R : Γ⃗{A+}▷ ⟨A+⟩
Γ⃗{{⃗Γ′,A+}+}▷ ⟨A+⟩

w

L1 : {⃗∆′′,P}× ▷N

∆⃗′′ ▷P−−∗N
−−∗R

R1 : ∆⃗▷ ⟨P⟩ R2 : Γ{⃗∆′,⟨N⟩}× ▷R

Γ⃗{⃗∆, ∆⃗′, {⃗∆′′′,⟨P−−∗N⟩}+}× ▷R
−−∗L

Γ⃗{⃗∆, ∆⃗′, {⃗∆′′, ∆⃗′′′}+}× ▷R
cut becomes

R1 : ∆⃗▷ ⟨P⟩
L1 : {⃗∆′′,P}× ▷N R2 : Γ⃗{⃗∆′,⟨N⟩}× ▷R

Γ⃗{⃗∆, ∆⃗′′,P}× ▷R
cut

Γ⃗{⃗∆, ∆⃗′, ∆⃗′′}× ▷R
cut

Γ⃗{⃗∆, ∆⃗′, {⃗∆′′, ∆⃗′′′}+}× ▷R
w

Proposition 9.22. Let D be an FBI+cut proof containing only one cut, and let that

cut be bad. There is an FBI+ cut-proof D′ such that D′ ≺D.

Proof. Let the cut in question be ⟨L,R,ϕ⟩. Without loss of generality, it is the last

inference in D. We show that it may be replaced by other cuts that are smaller in

cut rank. As in the proof of Proposition 9.21, we use a double-line adorned with a

w to denote an appeal to Proposition 9.20.

First, consider the case in which both L and R are both axioms. There are no

Type 1 bad cuts on axioms as the formula is always principal; meanwhile, the Type

2 bad cuts can trivially be permuted upwards or ignored — for example,

{⃗∆′′′,A+}+ ▷ ⟨A+⟩
Ax+

R1 : ∆⃗▷ ⟨P⟩ R2 : Γ⃗{⃗∆′,⟨N⟩}× ▷R

Γ⃗{⃗∆, ∆⃗′, {⃗∆′′,A+,⟨P−−∗N⟩}+}× ▷R
−−∗L

Γ⃗{⃗∆, ∆⃗′, {⃗∆′′, ∆⃗′′′,A+,⟨P−−∗N⟩}+}× ▷R
cut becomes

R1 : ∆⃗▷ ⟨P⟩ R2 : Γ⃗{⃗∆′,⟨N⟩}× ▷R

Γ⃗{⃗∆, ∆⃗′, {⃗∆′′,A+,⟨P−−∗N⟩}+}× ▷R
−−∗L

Γ⃗{⃗∆, ∆⃗′, {⃗∆′′, ∆⃗′′′,A+,⟨P−−∗N⟩}+}× ▷R
w

Second, in the remaining cases the cuts are commutative in the sense that they may

be permuted upward thereby reducing the second or third component of rank. A
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case in which the third component decreases is given as follows:

L1 : ∆⃗{⟨N1⟩}▷M

∆⃗{⟨N1 ∧− N2⟩}▷M
∧−
L1 R : Γ⃗{M}▷R

Γ⃗{⃗∆{⟨N1 ∧− N2⟩}}▷R
cut becomes

L1 : ∆{⟨N1⟩}▷M R : Γ{M}▷R
Γ{∆{⟨N1⟩}}▷R

cut

Γ{∆{⟨N1 ∧− N2⟩}}▷R
∧−
L1

The exceptional case is the interaction with contraction where the cut is replaced by

cuts whose rank are smaller in the second component — for example,

∆⃗′ ▷ ⟨L⟩
R1 : Γ⃗{{⃗∆{L}, ∆⃗{L}}+}▷R

Γ⃗{⃗∆{L}}▷R
c

Γ⃗{⃗∆{⃗∆′}}▷R
cut becomes

L : ∆⃗′ ▷ ⟨L⟩
L : ∆⃗′ ▷ ⟨L⟩ R1 : Γ⃗{{⃗∆{L}, ∆⃗{L}}+}▷R

Γ⃗{{⃗∆{⃗∆′}, ∆⃗{L}}+}▷R
cut

Γ⃗{{⃗∆{⃗∆′}, ∆⃗{⃗∆′}}+}▷R
cut

Γ⃗{⃗∆{⃗∆′}}▷R
c

Theorem 9.23 (Admissibility of Polarised Cut in FBI). Let Γ be a positive nest and

N a negative formula. Then, Γ⊢FBI N if and only if Γ⊢FBI+cut N.

Proof. If Γ⊢FBI N, then Γ⊢FBI+cut N trivially since FBI ⊆ FBI+ cut. It remains to

show that Γ⊢FBI+cut N implies Γ⊢FBI N.

Let D be a FBI+cut-proof of Γ▷N. If D has no cuts, then it is a FBI-proof, so

we are done. Otherwise, D has at least one cut. We proceed by induction on ⪯ to

show that there is a proof Γ▷N containing no cuts.

- BASE CASE. Assume D is minimal with respect to ≺ with at least one cut. By

Proposition 9.21, we can assume that the cut is bad. It follows from Propo-

sition 9.22 that there is a proof strictly smaller in ≺-ordering with the sam

conclusion, but this proof must be cut-free as D is minimal.
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- INDUCTIVE STEP. By Proposition 9.21, there is a proof D′ of Γ▷N contain-

ing no good cuts such that D′ ⪯ D. Either D′ is cut-free and we are done;

otherwise, D′ contains bad cuts. Let δ be a sub-proof of D′ containing pre-

cisely one cut. By Proposition 9.22, there is a proof δ ′ of the same sequent

such that δ ′ ≺ δ . Hence, by inductive hypothesis, there is a cut-free proof

δ ′′ of the sequent. Replacing δ by δ ′′ proof gives a proof of Γ ▷ϕ strictly

smaller in ≺-ordering; this follows as there are fewer cuts and their rank has

not increased. Thus, by inductive hypothesis there is a cut-free proof of Γ▷ϕ

as required.

This completes the induction.

It remains to show that FBI+ cut can simulate ηLBI.

Proposition 9.24 (Completeness of FBI+ cut). Let Γ be a polarised nest and N a

negative formula. If ⌊Γ⌋⊢ηΓLBI ⌊N⌋, then ⊢FBI+cutΓ▷N.

Proof. Suppose ηLBI contains a rule

Γ1 ▷N1 . . . Γk ▷Nk
Γ0 ▷N0

Let Γ′
i be an unfocused nest such that ⌊Γ′

i⌋ = Γi and Ni be a negative formula such

that ⌊N⌋, for 0 ≤ i ≤ k. We show that following is derivable in FBI+ cut:

Γ′
1 ▷N′

1 . . . Γ′
k ▷N′

k

Γ′
0 ▷N′

0

For →R,−−∗R,∧R,∧L,∨L,∗L,⊥L,⊤R,⊤L,⊤∗
L,ax,c∈ ηLBI, this this is immediate. as

well as for ax and c. In remains to consider →L, −−∗L, ∨R1, ∨R2 , ∗R, ⊤∗
R. In each

case, these rules have corresponding version in FBI, but the correspond rules are

focused; the unfocused version are simulated by using a cut to break the focusing

phase. We illustrate this be an example.
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Consider the ∗R-rule in ηNBI,

Γ▷ϕ ∆▷ψ

{{Γ,∆}×,∆′}+ ▷ϕ ∗ψ
∗R

It is simulated in FBI+ cut by the following derivation:

Γ▷↑ϕ+

Γ▷ ⟨↓↑ϕ+⟩
↓R

∆▷↑ψ+

∆▷ ⟨↓↑ψ+⟩
↓R

{Γ,∆}× ▷ ⟨↓↑ϕ+ ∗↓↑ψ+⟩
∗R

↓↑ϕ+ ▷ ⟨ϕ+⟩ P ↓↑ψ+ ▷ ⟨ψ+⟩ P

{{↓↑ϕ+,↓↑ψ+}×,∆′}+ ▷ ⟨ϕ+ ∗ψ+⟩
∗R

{{↓↑ϕ+,↓↑ψ+}×,∆′}+ ▷↑(ϕ+ ∗ψ+)
↑R

{↓↑ϕ+ ∗↓↑ψ+,∆′}+ ▷↑(ϕ+ ∗ψ+)
∗L

{{Γ,∆}×,∆′}+ ▷↑(ϕ+ ∗ψ+)
cut

Thus as each rule in ηNBI may be simualted in FBI+cut, each -ηNBI-proof can be

simulated by FBI-proof.

The admissibility of polarised cut together with the simulation result together

yield the completeness of FBI.

Theorem 9.25 (Completeness of FBI). Let Γ be a polarised nest and N a negative

formula. If ⌊Γ⌋⊢ηLBI ⌊N⌋, then Γ⊢FBI N.

Proof. From the hypohtesis, by Proposition 9.24, there is a FBI+cut-proof of Γ▷N

in FBI+ cut. From this, by Proposition 9.23, there is a proof of Γ▷N in FBI.

Given an arbitrary sequent the above theorem guarantees the existence of a

focused proof, thus the focusing principle holds for ηLBI and therefore for LBI.



Chapter 10

Semantical Analysis of the Logic of

Bunched Implications

This chapter illustrates a novel approach to proving completeness of proof system

with respect to a semantics that is symmetric to the traditional approach to prov-

ing soundness. Typically, when proving soundness, one proceeds by showing that

validity (⊨) is invariant with respect to the rules of the proof system; for example,

given the ∧I-rule in LBI, one would show if Γ ⊨ ϕ and ∆ ⊨ ψ , then Γ , ∆ ⊨ ϕ ∗ψ .

Meanwhile, when proving completeness, one typically provides a method for con-

structing counter-models out of terms; that is, if Γ ̸ ⊢ϕ , then one constructs a model

witnessing Γ ̸⊨ ϕ . Such constructions can be subtle and challenging for BI because

of the complex structure of bunches and the interaction between the additive and

multiplicative parts. In this chapter, we offer an alternative approach that avoids

counter- and term-model constructions entirely. Instead, we treat the unfolding of

the semantics according to its inductive definition analogously to the unfolding of

the proof systems in the proof of soundness. The view of these systems as unfolding

sets this work in Reductive Logic. This work is based on the following paper:

Gheorghiu, A. V., and Pym, D. J. Semantical Analysis of the Logic of

Bunched Implications. Studia Logica (2023)

The main ideas are later generalized in Part II — specifically, Chapter 16 and Chap-

ter 17.
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The intuition behind the approach to soundness and completeness in this chap-

ter is that the ways in which proof theory and model theory define the connectives

coincide; for example, in both paradigms, additive conjunction is characterized by

the behaviour that relative to some available information Γ one has the conjunction

ϕ ∧ψ if and only if, relative to the same information, one has each of ϕ and ψ ,

independently. Essentially, the approach in this chapter proceeds by showing that

one may restrict to a sufficiently systematic unfolding of the semantics that it can

be simulated in the proof system.

To characterize validity in terms of a space of reductions, one needs a proof

system for it, which is handled by encoding it in meta-logic (FOL — see Chapter 3)

such that worlds and formulas become terms and satisfaction becomes a relation

symbol. This is similar to other uses of logic to reason about mathematical objects

and structures. Therefore, the central part of the paper concerns giving a sequent

calculus for a restriction of the meta-logic expressive enough to reason about va-

lidity, while tractable enough to characterize its space of reduction. Since we work

with eigenvariables representing worlds, dubbed eigenworlds, we bypass truth-in-

a-model.

10.1 Model-theoretic Semantics
While various model-theoretic semantics for BI have been given in Chapter 6, those

are left as motivational background. We consider a variation of relational semantics

discussed at the end of Chapter 6. This handling of the semantics is in the style of

the style of Routley and Meyer [178] and Urquhart [210] for relevant logics.

Definition 10.1 (Frame). A frame is a quintuple F := ⟨U,e,π,⪯,R⟩ in which U

is a set, e and π are distinguished element of the set, ⪯ is a preorder on the set

dominated by π — that is, for any w in the set, w ⪯ π — and R is a ternary relation

on the set satisfying the following conditions:

- (Unitality) R(w,w,e)

- (Commutativity) R(x,y,z) iff R(x,z,y)
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w ⊩ p iff p ∈ [[w]]

w ⊩⊤ iff w ∈ U

w ⊩⊥ iff w = π

w ⊩⊤∗ iff e ⪯ w

w ⊩ ϕ ∧ψ iff w ⊩ ϕ and w ⊩ ψ

w ⊩ ϕ ∨ψ iff w ⊩ ϕ or w ⊩ ψ

w ⊩ ϕ → ψ iff for any v, if w ⪯ v and v ⊩ ϕ, then v ⊩ ψ

w ⊩ ϕ ∗ψ iff there are u,v st.R(w,u,v) and u ⊩ ϕ and v ⊩ ψ

w ⊩ ϕ −−∗ψ iff for any u,v, if R(v,w,u) and u ⊩ ϕ, then v ⊩ ψ

Figure 10.1: Satisfaction for BI

- (Associativity) if R(x,w,y) and R(y,u,v), then there exists a z such that

R(z,w,u) and R(x,z,v).

The elements of U in a frame F := ⟨U,e,π,⪯,R⟩ are called worlds. We may

write w ∈ F to denote w ∈ U.

Definition 10.2 (Interpretation). Let F := ⟨U,e,π,⪯,R⟩ be a frame. An interpreta-

tion [[−]] : A →F is a mapping [[−]] : A → P(U).

Definition 10.3 (Pre-model). A pre-model is a pair M := ⟨F , [[−]]⟩ in which F is a

frame and [[−]] : A →F is an interpretation.

Definition 10.4 (Satisfaction). Satisfaction is the least relation satisfying the

clauses in Figure 10.1, where M is a pre-model and w ∈M.

We require the following (general) persistence condition on satisfaction, to

model BI:

for any ϕ ∈ F and any w,u ∈ U, if w ⪯ u and w ⊩ ϕ , then u ⊩ ϕ

Moreover, we require the special world π to be absurd — that is, π ⊩ ϕ for any ϕ .
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This concept of a model here actually arises from the approach to completeness

that this chapter demonstrates. That is, the clauses are designed to reflect the proof-

theoretic behaviour of the connectives. This is explored further in Part II.

Definition 10.5 (Model). A pre-model is a pair M := ⟨F , [[−]]⟩ is a model when it

is persistent and π is absurd. The set of all models is M.

Definition 10.6 (Validity). A sequent Γ▷ϕ is valid — denoted Γ ⊨ ϕ — if, for any

model M ∈ M, at any world w in M, if w ⊩ Γ, then w ⊩ ϕ .

The intuition for why BI is complete for this class of frames (i.e., Γ⊨ ϕ implies

Γ⊢ϕ) is that it has precisely the structure required to simulate the proof-theoretic

characterization of BI. By definition, Γ ⊨ ϕ means that for an arbitrary world in an

arbitrary model such that w ⊩ Γ, it is also the case that w ⊩ ϕ . Since w is arbitrary,

this must hold by the contents of Γ, as expressed in terms of the structure of models,

not by certain properties of the world at a certain model.

10.2 Analysis of the Semantics
We give a formal analysis of the model-theoretic semantics above in a classical

first-order logic (FOL — see Chapter 3) regarded as meta-logic. This requires

the notations established in Chapter 3. Briefly, N is meta-conjunction, O is meta-

disjunction, ⇒ is meta-implication, □ is meta-top, and ▶ is meta-consequence.

Encoding in a Meta-logic

In short, we express the definitions in Section 10.1 as a theory of FOL. To econo-

mize on notation, we will overload a lot of symbols. In particular, we shall use as a

symbol in the meta-logic the mathematical object it intends to denote; for example,

the symbol ⊩ is overloaded as both a relation symbol in the meta-logic and the sat-

isfaction relation of BI. That this is without confusion follows from the correctness

of the encoding.

Definition 10.7 (Meta-alphabet for BI). The meta-alphabet for BI is the first-order

alphabet ⟨R,F,K,U⟩ in which the sets are as follows:
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- R := {R,⪯,⊩}, with each symbol of arity 2

- F := {⊤,⊥,⊤∗,∧,∨,→,−−∗,∗}, and each of ⊤, ⊥, and ⊤∗ of artity 1, and

each of ∧,∨,→,−−∗,∗ of arity 2

- K := A∪ e,π , with A the atoms of BI.

- V := Vw ∪V f , with Vw a denumerable set of world-variables and V f a denu-

merable set of formula-variables.

Terms constructed without Vw are called formula-terms. Hence, we use ϕ

to denote a formula-term, which is intuitively a BI-formula in which some sub-

formulas may be formula-variables. Let Γ be a bunch, we may write (w ⊩ Γ) to

abbreviate the meta-atom (w ⊩ γ), where γ is the formula-term corresponding to

the formula reading of Γ (Definition 6.5). We call meta-atoms of the form (w ⊩ ϕ)

assertions.

We desire a collection of meta-formulas Ω such that the following holds:

Ω,(w ⊩ Γ)▶ (w ⊩ ∆) iff Γ ⊨ ∆

Intuitively, the theory Ω is a definition of the proposed semantics of BI in the meta-

logic in the following sense: A FOL-model of Ω determines a BI-model and vice

versa. Here w is an eigenvariable; that is, it does not occur anywhere in Ω and,

therefore, represents an arbitrary world in the a BI-model corresponding to a given

FOL-model of Ω. Constructing Ω is the task of the remainder of this section: it

yields completeness if we can also show equivalence to consequence (as defined by

provability in LBI) in BI,

Ω,(w ⊩ Γ)▶ (w ⊩ ∆) iff Γ⊢ϕ

Ultimately, therefore, the approach to completeness in this chapter does not entirely

avoid model-existence — of course, connecting models and provability requires for

there to be a model at some point — but instead outsources it to model-existence
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for FOL, which is simpler and well-established, and uses the expressiveness of the

logic to capture the proposed semantics of BI.

While the task of constructing Ω may appear daunting, it is not. The definitions

of the previous section can be encoded in the meta-logic; that is, one may regard

the model theory of BI qua a theory in the meta-logic. There are two parts to cap-

ture: the sentences governing frames ΩM (Definition 10.5) and sentences governing

satisfaction Ω⊩ (Definition 10.4).

The sentences in ΩM are the universal closure of the following, in which

u,v,w,x,y,z are world-variables and ϕ is a formula variable:

R(x,x,e)︸ ︷︷ ︸
unitality

(
R(x,y,z)⇔ R(x,z,y)

)︸ ︷︷ ︸
commutativity

(
w ⪯ u ⇒ (w ⊩ ϕ ⇒ u ⊩ ϕ)

)︸ ︷︷ ︸
persistence(

R(x,w,y)NR(y,u,v)⇒∃z(R(x,z,v)NR(z,w,u))
)︸ ︷︷ ︸

associativity

w = π ⇒ w ⊩ ϕ︸ ︷︷ ︸
absurdity

The sentences in Ω⊩ are given by the universal closure of the meta-formulas

in Figure 10.2, which merits comparison with Figure 10.1, in which quantifiers are

taken to be over each implicit conjunct separately in the bi-implications — that is,

the universal closure of Φ ⇔ Ψ means the universal closure of Φ ⇒ Ψ conjoined

with the universal closure of the Φ ⇐ Ψ. There are two significant differences

between Figure 10.1 and Figure 10.2: first, there is no clause for (w⊩ p), where p ∈

A; second, there is no clause for (w⊩⊤∗). This is an effort to simplify computations

about satisfaction in subsequent parts of the paper.

The elimination of a clause for atomic satisfaction (w⊩ p) follows from work-

ing with validity directly (i.e., without passing though truth-in-a-model) as interpre-

tations are no longer required; that is, atomic satisfaction is captured by an atomic

tautology, Ω,(w ⊩ p) ▷ (w ⊩ p). We justify the omission of an encoding for the

⊤∗-clause at end of this section.

The concatenation of Ω⊩ and ΩM is the desired theory Ω. It is easy to see

by its model-theoretic semantics of FOL (see Chapter 3) that the desired condition

holds,

Ω,(w ⊩ Γ)▶ (w ⊩ ϕ) iff Γ ⊨ ϕ
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w ⊩⊤ iff

w ⊩⊥ iff w = π

w ⊩ ϕ ∧ψ iff (w ⊩ ϕ)N(w ⊩ ψ)

w ⊩ ϕ ∨ψ iff (w ⊩ ϕ)O(w ⊩ ψ)

w ⊩ ϕ →ψ iff ∀u(w ⪯ u ⇒ (u ⊩ ϕ ⇒ u ⊩ ψ))

w ⊩ ϕ ∗ψ iff ∃u,v(R(w,u,v)Nu ⊩ ϕNv ⊩ ψ)

w ⊩ ϕ −−∗ψ iff ∀u,w′(R(w′,w,u)⇒ (u ⊩ ϕ ⇒ w′ ⊩ ψ))

Figure 10.2: Satisfaction for BI (Symbolic)

The significance of this is that all the familiar tools of classical logic become avail-

able, including sequent calculi for reasoning about when the above implication

holds. The details of the proof-theoretic tools used for the meta-logic in this pa-

per is reserved for Section 10.2.

Definition 10.8 (Basic Validity Sequent). A basic validity sequent (BVS) is a meta-

sequent Ω,(w ⊩ Γ)▷ (w ⊩ ϕ).

Definition 10.9 (Complex Validity Sequent). A complex validity sequent (CVS) is a

meta-sequent Ω, Σ̄▷ Π̄ in which Σ̄ and Π̄ are sets of assertions.

To conclude this section, we explain why the ⊤∗-clause of satisfaction may be

omitted in Ω. Let Φ⊤∗ := ∀x
(
(x ⊩ I)⇔ (e ⪯ x)

)
, we claim Ω,(w ⊩ Γ)▶ (w ⊩⊤∗)

iff Ω,Φ∗
⊤,(w ⊩ Γ) ▶ (w ⊩ ⊤∗). This follows from the fact that Ω,Φ⊤∗,(w ⊩ Γ) ⊢

(w ⊩ ⊤∗) iff Γ⊢⊤∗, which is what we would expect for a model of BI, but then

we already have Ω,(w ⊩ Γ) ▶ (w ⊩ ⊤∗). In short, the ⊤∗-clause can be removed

from frames without loss of generality when encoding in the meta-logic because the

sequent calculus rule governing ⊤∗ requires that ⊤∗ is already part of the context —

indeed, this is the same reason satisfaction of atoms could be eliminated. The other

atomic rules, such as ⊤ and ⊥ do not satisfy this condition, therefore their clauses

are required.
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Meta-Logic Proof Theory

Having encoded the (putative) semantics of BI as a theory of the meta-logic, all of

the tools of FOL become available. In particular, that a meta-sequent is a conse-

quence of the meta-logic may be established by witnessing a proof for it in a proof

system for FOL. In this section, we develop a sequent calculus for the meta-logic

that is tractable for analyzing the semantics.

The logic of BI is constructive. Consequently, one expects satisfaction to be

constructive in the sense that, if Ω,(w ⊩ Γ) ▶ (w ⊩ ϕ) obtains, then there should

be a constructive proof of it. Therefore, we may restrict to an intuitionistic sequent

calculus for the meta-logic. This sequent calculus need only be sound and complete

for BVSs that are valid in classical logic, we do not require it to be sound and

complete for the whole logic.

The following is based on Dummett’s [52] multiple-conclusioned system for

first-order intuitionistic logic:

Definition 10.10 (Meta-sequent Calculus DLJ). Meta-sequent Calculus DLJ is

composed of the rules in Figure 10.3 in which θX denotes a substitution for X and

θ̂X denotes a substitution for X by an eigenvariable.

We elide rules for negation from Figure 10.3 as Ω is negation-free, so they

will not be required at any point. We may use double-lines to suppress the use of

multiple inference; for example, we may write

Φ,Φ′,Φ′′ ▷Π
NR

(ΦNΦ′)NΦ′′ ▷Π

to denote compactly the repeated use of NL — that is, to express the following:

Φ,Φ′,Φ′′ ▷Π NR
ΦNΦ′,Φ′′ ▷Π NR

(ΦNΦ′)NΦ′′ ▷Π

The rule of DLJ are sound for FOL, but not complete — for example, it cannot

prove ϕ ∨¬ϕ . We do not require full completeness, but only for it to be complete

for BVSs. To this end, it suffices to show that the following rules are admissible
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Σ▷Π

Φ,Σ▷Π
w Σ▷Π

Σ▷Π,Φ
w

Σ1,Ψ,Φ,Σ2 ▷Π

Σ1,Φ,Ψ,Σ2 ▷Π
e

Σ▷Π1,Ψ,Φ,Π2
Σ▷Π1,Φ,Ψ,Π2

e

Σ▷Φ,Π Σ▷Ψ,Π
Σ▷Π,ΦNΨ

NR
Φ,Ψ,Σ▷Π

ΦNΨ,Σ▷Π
NL

Φ,Σ▷Π Ψ,Σ▷Π

ΦOΨ,Σ▷Π
OL

Σ▷Π,Φ,Ψ
Σ▷Π,ΦOΨ

OR

Φ,Σ▷Ψ

Σ▷Φ ⇒ Ψ
⇒R

Φ ⇒ Ψ,Σ▷Π,Φ Ψ,Φ ⇒ Ψ,Σ▷Π

Φ ⇒ Ψ,Σ▷Π
⇒L

ΦθX ,∀XΦ,Σ▷Π

∀XΦ,Σ▷Π
∀L

Σ▷∀XΦ,Φθ̂X
Σ▷∀XΦ

∀R

Φθ̂X ,∃XΦ,Σ▷Π

∃XΦ,Σ▷Π
∃L

Σ▷Π,∃XΦ,ΦθX
Σ▷Π,∃XΦ

∃R

Φ▷Φ
ax

Φ▷□
□R

Figure 10.3: Meta-sequent Calculus DLJ

for DLJ-proofs of BVSs as including them recovers a meta-sequent calculus for

classical logic:

Σ▷Π,Φ

Σ▷Π,∀xΦ
∀KR

Φ,Σ▷Π,Ψ
Σ▷Π,Φ ⇒ Ψ

⇒K
R

Σ▷Π,Φ,Φ
Σ▷Π,Φ

cR
Φ,Φ,Σ▷Π

Φ,Σ▷Π,Φ
cL

Two rules are immediate:

Proposition 10.11. The cR-rule and cL-rule are admissible in DLJ.

Proof. Follows from the idempotency of intuitionistic disjunction and intuitionistic

conjunction. That is, since Φ ⇔ ΦOΦ is valid in intuitionistic logic, Σ⊢DLJ Π,Φ

obtains iff Σ⊢DLJ Π,ΦOΦ obtains. Similarly, since Φ ⇔ ΦNΦ is valid in intuition-

istic logic, Φ,Σ⊢DLJ Π obtains iff ΦNΦ,Σ⊢DLJ Π obtains. The result follows from

application of the application of OR and NL.

The remaining two rules (i.e.,∀KR and ⇒K
R) are generalized versions of ∀R

and ⇒R, respectively. Define DLJK := DLJ ∪ {∀KR,⇒K
R,cR,cL}. The relation-

ship between DLJ and DLJK is the same as the relationship between Dum-
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mett’s [52] (multiple-conclusioned) sequent calculus for intuitionistic logic and

Gentzen’s [200] sequent calculus for classical logic — that is, that certain rules

in the former system are guarded by a single-conlusioned condition that, if relaxed

to be multiple-conclusioned, recovers the latter system. Why can this guard be re-

moved for proofs of BVSs without effecting completeness of the calculus? A suffi-

cient guard is already captured in the change of world that takes place, as illustrated

in Example 10.17 below.

Rather than consider proofs (or reductions) for the meta-logic in general, we

restrict attention to proofs of CVSs and, eventually, BVSs. To this end, reductions

that use a meta-formula in Ω are controlled.

Definition 10.12 (Resolution). A resolution is a derivation that instantiates a clause

from Ω by applying the ∀L-rule, then applies the ⇒L-rule on the resulting sub-

formula, and then removes the sub-formula — that is, a derivation of the following

form:

Ω,Σ▷Π,Φ
w

Ω,Φ ⇒ Ψ,Σ▷Π,Φ
Ω,Ψ,Σ▷Π

w
Ω,Φ ⇒ Ψ,Ψ,Σ▷Π ⇒L

Ω,Φ ⇒ Ψ,Σ▷Π
∀L

Ω,Σ▷Π

A resolution is closed if the head of the clause matches with an assertion already

present in the meta-sequent, and one removes (by using wL or wR) the head in the

non-axiom premiss,

ax
Ω,Φ,Σ▷Π,Φ

Ω,Ψ,Σ▷Π
wL

Ω,Ψ,Φ,Σ▷Π
⇑ (resolution)

Ω,Φ,Σ▷Π

Ω,Σ,▷Π,Φ
wR

Ω,Σ,▷Π,Ψ,Φ
ax

Ω,Ψ,Σ▷Π,Ψ
⇑ (resolution)

Ω,Σ▷Π,Ψ

It is without loss of generality that we reduce with ⇒L immediately after re-

ducing with ∀L as the quantifier rule is invertible. Intuitively, a closed resolution

is a resolution in which the consequent of the implication replaces the formula that

matches the antecedent. A resolution is open iff it is not closed.
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When a resolution is closed, we may denote the reduction by the premiss that

is not a tautology, labeling it by the name of the justifying meta-formula. That is, let

f be name of some formula in Ω that instantiates to Φ ⇒ Ψ, then closed resolutions

using f are as follows:

Ω,Ψ,Σ▷Π
fL

Ω,Φ,Σ▷Π

Ω,Σ▷Π,Φ
fR

Ω,Σ▷Π,Ψ

When no confusion arises, we may suppress the left or right subscript on these

inference. Denoted in this way, resolutions may be thought of as rules (or, more

precisely, as reduction operators). This allows us to emphazise the steps that make

use of the theory Ω while de-emphasizing the meta-logical ones.

Example 10.13. Reasoning that Γ ⊨ ϕ ∧ψ arrives from Γ ⊨ ϕ and Γ ⊨ ψ is repre-

sented in the meta-logic by a closed resolution using the ∧-clause:

Ω,(w ⊩ Γ)▷ (w ⊩ ϕ) Ω,(w ⊩ Γ)▷ (w ⊩ ψ)

Ω,(w ⊩ Γ)▷ (w ⊩ ϕ)N(w ⊩ ψ)
wR

Ω,(w ⊩ Γ)▷ (w ⊩ ϕ)N(w ⊩ ψ),(w ⊩ ϕ ∧ψ) ax

Ω,(w ⊩ Γ)▷ (w ⊩ ϕ ∧ψ)

We suppress the conclusion of the ax-rule for readability. Using the compact nota-

tion for closed-resolutions, the same derivation may be denoted as follows:

Ω,(w ⊩ Γ)▷ (w ⊩ ϕ) Ω,(w ⊩ Γ)▷ (w ⊩ ψ)
NR

Ω,(w ⊩ Γ)▷ (w ⊩ ϕ)N(w ⊩ ψ)
∧-clause

Ω,(w ⊩ Γ)▷ (w ⊩ ϕ ∧ψ)

■

Since the theory Ω is conserved in DLJ-reductions, henceforth we may sup-

press it without further comment.

It is reasoning by resolution that captures what it means to use a clause of

satisfaction, hence the sequent calculus for the meta-logic ought to have resolutions

as the primary operational step during reduction. The fact that resolution is how

semantic reasoning is conducted is not surprising; after all, that a theory composed
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of clauses may be used to define a predicate is the idea underpinning Horn clause

logic programming (LP) — see Kowalski [121].

Resolutions can be used not only to perform computation about the satisfaction

relation, but to break up the structure of bunches such that they may be read in the

form of a classical context. We may think of this as unpacking the bunch. Of course,

it is essential that no information is lost in this process.

Definition 10.14 (Unpacking, Packing). An unpacking of a meta-atom (w ⊩ Γ) in

a meta-sequent Ω,Σ,(w ⊩ Γ) ▷Π is a sequence of closed resolutions using ∧- and

∗-clauses in the context with ∃L and NL applied eagerly. A packing is the reverse of

an unpacking.

Example 10.15. The following computation constitutes an unpacking of the meta-

formula (w ⊩ Γ , (∆ # ∆′)) in the meta-sequent (w ⊩ Γ , (∆ # ∆′)),(u ⊩ Γ′) ▷ (w ⊩

ϕ),(u ⊩ ψ):

R(w,x,y),(x ⊩ Γ),(y ⊩ ∆)N(y ⊩ ∆′ #∆′),(u ⊩ Γ′)▷ (w ⊩ ϕ),(u ⊩ ψ)
∧-clause

R(w,x,y),(x ⊩ Γ),(y ⊩ ∆ #∆′),(u ⊩ Γ′)▷ (w ⊩ ϕ),(u ⊩ ψ)
NL

R(w,x,y)N(x ⊩ Γ)N(y ⊩ ∆ #∆′),(u ⊩ Γ′)▷ (w ⊩ ϕ),(u ⊩ ψ)
∃L∃x,y(R(w,x,y)Nx ⊩ ΓNy ⊩ ∆ #∆′),(u ⊩ Γ′)▷ (w ⊩ ϕ),(u ⊩ ψ)
∗-clause

(w ⊩ Γ , (∆ #∆′)),(u ⊩ Γ′)▷ (w ⊩ ϕ),(u ⊩ ψ)

■

The notation Σw,Γ denotes a theory that arises from an unpacking of (w ⊩ Γ).

Unpackings do not have to be total — that is, one can have w ⊩ Γ(ϕ) unpack to

a theory Σw,Γ(ϕ) containing a meta-formula x ⊩ ϕ . In this case, the theory may be

denoted Σw,Γ(ϕ),x⊩ϕ . It is partial in the sense that the unpacking does not continue

on the assertion w ⊩ ϕ ,

Proposition 10.16 (Packing). Both packing and unpackings are invertible.

Proof. The result follows from the invertibility of NL and ∃L, as witnessed by the

following computations in which we use dashed lines to represent the inverse of a

rule:
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Σ,(w ⊩ ϕ ∧ψ)▷Π
∧-clause

Σ,(w ⊩ ϕ)N(w ⊩ ψ)▷Π
NR

−1
Σ,(w ⊩ ϕ),(w ⊩ ψ)▷Π

NR
Σ,(w ⊩ ϕ)N(w ⊩ ψ)▷Π

∧-clause
Σ,(w ⊩ ϕ ∧ψ)▷Π

Σ,(w ⊩ ϕ ∗ψ)▷Π
∗-clause

Σ,∃u,v
(
R(w,u,v)N(u ⊩ ϕ)N(v ⊩ ψ)

)
▷Π

∃L−1
Σ,R(w,u,v)N(u ⊩ ϕ)N(v ⊩ ψ)▷Π

NR
−1

Σ,R(w,u,v),(u ⊩ ϕ),(v ⊩ ψ)▷Π
NR

Σ,R(w,u,v)N(u ⊩ ϕ)N(v ⊩ ψ)▷Π
∃L

Σ,∃u,v
(
R(w,u,v)N(u ⊩ ϕ)N(v ⊩ ψ)

)
▷Π

∗-clause
Σ,(w ⊩ ϕ ∗ψ)▷Π

We may now return to the question of the adequacy of DLJ for BVSs despite

being intuitionistic. Heuristically, one expects DLJ to be adequate because the guard

distinguishing ⇒R and ∀R from ⇒K
R and ∀KR is captured by the change of world

when encountering an implication formula in the extract of a CVS. This idea is

witnessed in the following example:

Example 10.17. To see how the change of world acts as a sufficient guard for BI-

validity to be constructive, we may see how DLJK avoids the law of the excluded

middle (i.e., why (w ⊩∅×)▷ (w ⊩ ϕ ∨ (ϕ →⊥)) from holding in BI:

(w ⊩∅×),(u ⊩∅× #ϕ)▷ (w ⊩ ϕ),(u ⊩⊥)
∧-clause

(w ⊩∅×),(u ⊩∅×),(u ⊩ ϕ)▷ (w ⊩ ϕ),(u ⊩⊥)
pers.

(w ⊩∅×),u ⪯ w,(u ⊩ ϕ)▷ (w ⊩ ϕ),(u ⊩⊥)
⇒K

R(w ⊩∅×)▷ (w ⊩ ϕ),(w ⪯ u ⇒ (u ⊩ ϕ ⇒ u ⊩⊥))
∀KR(w ⊩∅×)▷ (w ⊩ ϕ),∀u(w ⪯ u ⇒ (u ⊩ ϕ ⇒ u ⊩⊥))
→-clause

(w ⊩∅×)▷ (w ⊩ ϕ),(w ⊩ (ϕ →⊥))
OR

(w ⊩∅×)▷ (w ⊩ ϕ)O(w ⊩ (ϕ →⊥))
∨-clause

(w ⊩∅×)▷ (w ⊩ ϕ ∨ (ϕ →⊥))

Moving to u and using persistence means that one has all the contextual information

about w available (i.e., that w ⊩ Γ is in the context enables u ⊩ Γ to be assumed);

but since u ⊩ ϕ in the context and w ⊩ ϕ in the extract are different atoms since

u and w are distinct, one has not reached an axiom. In short despite working in
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a classical system (i.e., DLKK), suppressing an additional computational step, the

above calculation witnesses that ∅× ⊨ ϕ ∨ϕ → ⊥ if ∅× ⊨ ϕ or ϕ ⊨ ⊥, which is

what one would expect of entailment for a constructive logic such as BI. ■

The way the change-of-world guard works is that the CVS to which one re-

duces when resolving an implications assertion contains two independent claims

about validity, as witnessed in Example 10.17, which may be separated out.

Definition 10.18 (World-independent). Sets of meta-formulas Σ and Σ′ are world-

independent if no free world-variable appearing in one appears in the other.

Proposition 10.19. Let Σ,Σ′,Π,Π′ be sets of propositional meta-formulas such that

Σ,Π and Σ′,Π′ are world-independent:

Ω,Σ,Σ′ ▶Π,Π′ iff Ω,Σ▶Π or Ω,Σ′ ▶Π
′

Recall that Ω,Σ,Σ′ ▶Π,Π′ obtains iff there there is a DLJK-proof of Ω,Σ,Σ′ ▷

Π,Π′. We proceed by by induction on DLJK-proofs. Note, the proof is sensitive to

she shape of formulas in Ω; for example, the induction step would fail if we had the

linearity axiom ∀x,y(x ⪯ yNy ⪯ x).

Proof. The if direction follows immediately by wL and w. For the only if direction,

assume Ω,Σ,Σ′ ▶ Π,Π′ and let D be a DLJK-proof of it. We proceed by induction

the number of resolutions in D.

BASE CASE. If D contains no resolutions, then Ω,Σ,Σ′ ▷Π,Π′ is proved by

ax together with the rules for the meta-connectives. But then there are proofs for

Ω,Σ ▷Π or Ω,Σ′ ▷Π′ since the rules for the connectives cannot affect what world-

or formula-variables.

INDUCTION STEP. Recall, without loss of generality, in DLJK, the ∀L-rule

is always followed by =⇒ L
K. If a resolution of Ω,Σ,Σ′ ▷Π,Π′ yields a meta-

sequent of the form Ω,Σ▷Π or Ω,Σ′ ▷Π′, then the result follows from the induction

hypothesis. We show that this is the case.

The only non-obvious case is in the case of a closed resolution using the →-

clause or −−∗-clause in the extract because they have universal quantifiers that would
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allow one to produce a meta-atom in the extract that contains both a world from

Σ,Π and Σ′,Π′ simultaneously, thereby breaking world-independence. We show

the →-case, the other being similar.

Let Σ = Σ′′,w ⊩ ϕ → ψ and suppose u is a world variable appearing in Σ′,Π′,

then we have the following computation:

Ω,Σ′′,Σ′ ▷Π,Π′,w ⪯ u Ω,Σ′′,Σ′ ▷Π,Π′,(u ⊩ ϕ) Ω,Σ′′,Σ′,(u ⊩ ψ)▷Π,Π′
⇒L

K

Ω,Σ′′,(w ⪯ u ⇒ (u ⊩ ϕ ⇒ u ⊩ ψ)),Σ′ ▷Π,Π′
∀L

Ω,Σ′′,∀x(w ⪯ x ⇒ (x ⊩ ϕ ⇒ x ⊩ ψ)),Σ′ ▷Π,Π′
→-clause

Ω,Σ′′,(w ⊩ ϕ → ψ),Σ′ ▷Π,Π′

The meta-atom (w ⪯ u) may be removed from the leftmost premiss because

the only way for the meta-atom to be used in the remainder of the proof is if w ⪯ u

appears in the context, but this is impossible. Hence, without loss of generality, D

applies wR to the branch, yielding Σ′′,Σ′ ▷Π,Π′, as required.

To prove that DLJ is adequate for proofs of CVSs it only remains to argue

that the change-of-world guard is implemented whenever it is required, and that it

indeed results in a world-independent situation.

Proposition 10.20. The ∀KR and ⇒K
R rules are admissible for DLJ-proofs of CVSs:

Proof. By case analysis on Ω, the only place on may require ∀RK or ⇒R
K over

∀R or ⇒R is when resolving an implicational assertion (i.e., using the →-clause

or the −−∗-clause). This is because they are the only clauses whose bodies contain

implications; notably, the clause for ∗ does not contain a meta-implication, and this

is so that it behaves like a conjunction, which delivers the packing and unpacking

above, as well as completeness.

In the case of →-clause, without loss of generality, the resolution may be taken

to be required for the proof such that persistence is applied eventually to the meta-

atom (w ⪯ u) producing by the resolution. By permuting resolutions, we may as-

sume that it is used immediately. By Proposition 10.16, these reductions are fol-

lowed by a packing:
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Σ̄,(w ⊩ Γ),(u ⊩ Γ #ϕ)▷ Π̄,(u ⊩ ψ)
∧-clause

Σ̄,(w ⊩ Γ),(u ⊩ Γ),(u ⊩ ϕ)▷ Π̄,(u ⊩ ψ)
pers.

Σ̄,(w ⊩ Γ),w ⪯ u,(u ⊩ ϕ)▷ Π̄,(u ⊩ ψ)
⇒K

R
Σ̄,(w ⊩ Γ)▷ Π̄,(w ⪯ u ⇒ (u ⊩ ϕ ⇒ u ⊩ ψ)

∀KR
Σ̄,(w ⊩ Γ)▷ Π̄,∀u(w ⪯ u ⇒ (u ⊩ ϕ ⇒ u ⊩ ψ))

Arguing similarly, in the case of the −−∗-clause, one has the following derivation:

Σ̄,(w ⊩ Γ),(w′ ⊩ Γ , ψ)▷ Π̄,(w′ ⊩ ψ)
∗-clause

Σ̄,(w ⊩ Γ),R(w′,w,u),u ⊩ ϕ ▷ Π̄,(w′ ⊩ ψ)
⇒K

R
Σ̄,(w ⊩ Γ)▷ Π̄,(R(w′,w,u)⇒ (u ⊩ ϕ ⇒ w′ ⊩ ψ))

∀KR
Σ̄,(w ⊩ Γ)▷ Π̄,∀w′,u(R(w′,w,u)⇒ (u ⊩ ϕ ⇒ w′ ⊩ ψ))

In either case, by the eigenvariable condition on universal instantiations, the

premiss is a meta-sequent of the form Ω,Σ,Σ′ ▷Π,Π′ in which Σ,Π and Σ′,Π′ are

world-independent. Hence, by Proposition 10.19, one yields premisses that one

may have reached using the single-conclusioned variants of the rules; whence, the

multiple-conclusioned variants are admissible.

The adequacy of DLJ follows as a corollary from the preceeding work.

Proposition 10.21. A CVS holds iff it admits a DLJ-proof.

Proof. Immediate by Proposition 10.20 and Proposition 10.11.

In the remainder of this section, we eliminate a particular behaviours from

DLJ in order to simplify the analysis of the space of reductions for a given CVS:

the possibility of introducing world-variables that are irrelevant.

When reducing a CVS, it is possible to instantiate a meta-formula in Ω with a

world not present in the meta-sequent, but such a world-variable represents an arbi-

trary world alien to information about models available in the sequent and therefore,

intuitively, it cannot be a required part of the reasoning used to establish or refute

the CVS.

Example 10.22. The following derivation is a reduction of a BVS that begins with

a resolution introducing a world alien to the original meta-sequent:

Ω,(w ⊩ p∧q)▷ (u ⊩⊤) Ω,(w ⊩ p∧q)▷ (w ⊩ p∨q) ⇒L
Ω,(u ⊩⊤)⇒,(w ⊩ p∧q)▷ (w ⊩ p∨q)

∀L
Ω,(w ⊩ p∧q)▷ (w ⊩ p∨q)
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■

We eliminate computation such as in Example 10.22 so that after resolutions

way may always interpret meta-sequents as BI-sequents (see Section 10.2, below).

Definition 10.23 (World-conservative). A DLJ-proof of a CVS is said to be world-

conservative if in any instance of ∀L or ∃R, every world-variable occurring in the

premiss occurs in the conclusion.

Proposition 10.24. A CVS holds iff it admits a world-conservative DLJ-proof.

Proof. Since ∀L has no pre-conditions, the result follows from Proposition 10.21 by

renaming variables. That is, suppose a DLJ-proof contains the following inference

that is not world-conservative (i.e., θu : u 7→ x and x does not appear in Σ or Π):

Ω,Σ,Ψθu ▷Π

Ω,Σ,∀uΨ▷Π

The proof can be made world-conservative by replacing all hereditary occurrences

of x in the proof by a world-variable y that does appear in either Σ or Π — for

example, the above inference becomes the following, where θ ′
u : u 7→ y:

Ω,Σ,Ψθ ′
u ▷Π

Ω,Σ,∀uΨ▷Π

This substitution is then propagated up through the reduction.

Kreisel [123] has shown that there is no constructive proof of completeness

for IPL with respect to its frame semantics. In this paper, the actual proof of com-

pleteness (i.e., Corollary 10.33) is certainly not constructive just because DLJ is

constructive.

Since the theory Ω is conserved in DLJ-reductions of BVSs, henceforth we

may suppress it without further comment.
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Reduction & Control
In this section, we give a meta-sequent calculus VBI, which is a restriction of DLJ

that we use to characterize reasoning about validity. In particular, it is one in which

closed resolutions are enforced precisely where we desire them.

In the meta-logic, we address validity, bypassing truth-at-a-world, because the

world-variables in meta-sequents do not stand for particular worlds, but rather are

generic representatives of worlds. As such, we may call them eigenworlds.

Example 10.25. Consider a meta-sequent (w ⊩ r)▷ (w ⊩ p∗q), in which p,q, and

r ∈ P, to which we wish to apply the ∗-clause,

∀ϕ∀ψ∀x
(
∃y∃z(R(x,y,z)Nx ⊩ ϕNy ⊩ ψNz ⊩ ψ)⇒ x ⊩ ϕ ∗ψ

)
Resolving with this clause produces the following meta-sequent:

(w ⊩ r)▷∃y,z
(
R(w,y,z)N(y ⊩ p)N(z ⊩ q)

)
In the absence of any specific worlds, one introduces eigenworlds u and v to elimi-

nate the existential quantifiers for y and z, respectively, yielding the following:

(w ⊩ r)▷
(
R(w,u,v)N(u ⊩ p)N(v ⊩ q)

)
This reasoning can take place at any world in any model; that is, suppose one

were given an actual model M, then the above shows that if it holds for actual

worlds a,b,c in M that R(c,a,b), a⊩ p, and b⊩ q obtain, then necessarily c⊩ p∗q

also obtains. ■

Our aim is to restrict to a meta-seqeunt calculus in which the possible ways in

which one may reason about a BVS can be analyzed. To this end, we introduce a

calculus for validity:

Definition 10.26 (System VBI). System VBI is composed of the rules in Figure 10.4

in which the theory Ω has been suppressed in the context and cl(asso) is invertible.
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w ⊩ Γ(ϕ #ψ)▷w ⊩ χ

w ⊩ Γ(ϕ ∧ψ)▷w ⊩ χ
cl(∧)L

w ⊩ Γ▷w ⊩ ϕ w ⊩ Γ▷w ⊩ ψ

w ⊩ Γ▷w ⊩ ϕ ∧ψ
cl(∧)R

w ⊩ Γ(ϕ , ψ)▷w ⊩ χ

w ⊩ Γ(ϕ ∗ψ)▷w ⊩ χ
cl(∗)L

w ⊩ ∆1 ▷w ⊩ ϕ1 w ⊩ ∆2 ▷w ⊩ ϕ2

w ⊩ Γ # (∆1 , ∆2)▷w ⊩ ϕ1 ∗ϕ2
cl(∗)R

w ⊩ Γ(ϕ)▷w ⊩ χ w ⊩ Γ(ψ)▷w ⊩ χ

w ⊩ Γ(ϕ ∨ψ)▷w ⊩ χ
cl(∨)L

w ⊩ Γ▷w ⊩ ϕi

w ⊩ Γ▷w ⊩ ϕ1 ∨ϕ2
cl(∨)R

w ⊩ ∆▷w ⊩ ϕ w ⊩ Γ(∆,ψ)▷w ⊩ χ

w ⊩ ∆ #ϕ → ψ ▷w ⊩ χ
cl(→)L

w ⊩ Γ #ϕ ▷w ⊩ ψ

w ⊩ Γ▷w ⊩ ϕ → ψ
cl(→)R

w ⊩ ∆2 ▷w ⊩ ϕ w ⊩ Γ(∆1 , ψ)▷w ⊩ χ

w ⊩ Γ(∆1 , ∆2,ϕ −−∗ψ)▷w ⊩ χ
cl(−−∗)L

w ⊩ Γ , ϕ ▷w ⊩ ψ

w ⊩ Γ▷w ⊩ ϕ −−∗ψ
cl(−−∗)R

w ⊩ Γ(∆)▷w ⊩ χ

w ⊩ Γ(∆ ,∅×)▷w ⊩ χ
cl(⊤∗)L

w ⊩ Γ(∆ ,∅×)▷w ⊩ χ

w ⊩ Γ(∆)▷w ⊩ χ
cl(⊤∗)L

w ⊩ Γ(∆ #∅+)▷w ⊩ χ

w ⊩ Γ(∆)▷w ⊩ χ
cl(⊤)L w ⊩ Γ▷w ⊩⊤ cl(⊤)R

w ⊩ Γ(ϕ)▷w ⊩ χ

w ⊩ Γ(⊥)▷w ⊩ χ
cl(⊥)L w ⊩ Γ #ϕ ▷w ⊩ ϕ

ax

w ⊩ Γ(∆2 , ∆1)▷w ⊩ χ

w ⊩ Γ(∆1 , ∆2)▷w ⊩ χ
cl(comm)

w ⊩ Γ((∆1 , (∆2) , ∆3)▷w ⊩ χ

w ⊩ Γ(∆1 , (∆2 , ∆3))▷w ⊩ χ
cl(asso)

w ⊩ Γ(∆2 #∆1)▷w ⊩ χ

w ⊩ Γ(∆1 #∆2)▷w ⊩ χ
e1

w ⊩ Γ((∆1 #∆2) #∆3)▷w ⊩ χ

w ⊩ Γ(∆1 # (∆2 #∆3))▷w ⊩ χ
e2

w ⊩ Γ(∆ #∆)▷w ⊩ χ

w ⊩ Γ(∆)▷w ⊩ χ
c

w ⊩ Γ(∆)▷w ⊩ χ

w ⊩ Γ(∆ #Σ)▷w ⊩ χ
w

w ⊩ ∆▷w ⊩ ϕ w ⊩ Γ(ϕ)▷w ⊩ χ

w ⊩ Γ(∆)▷w ⊩ χ
cut

Figure 10.4: Meta-sequent Calculus VBI
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Theorem 10.27. A BVS is valid iff it admits a VBI-proof.

Proof. The soundness of VBI is immediate by observing that each rule follows as

the application of a meta-formula in Ω; for example, the admissibility of cl(∧)R is

witnessed in this way in Example 10.13. It remains to argue for the completeness

of VBI.

By Proposition 10.24, a BVS is a consequence of the meta-logic iff it admits a

world-conservative DLJ-proof. But since DLJ is an intuitionistic calculus, we have

the same result for the single-conlusioned variant GLJ (i.e., the rules of DLJ with

only one meta-formula in the extract and OL forcing one to choose one disjunct).

We proceed by case analysis on the possible reductions for the BVS in GLJ and

show that they correspond to reductions in VBI.

We may express that there is a reduction taking C to P1, ...,Pn as follows:

P1 ... Pn
C ⇑

In particular, if the reduction continues by taking Pi Q1, ...,Qm the effect may be

expressed as follows@

P1 ... Pi−1 Q1 ... Qn Pi ... Pn
C ⇑

Without loss of generality, each reduction begins with an unpacking of the

BVS. We may write Πw,Γ(∆),x,x⊩ ∆ to denote a theory Σw,Γ(∆),x⊩∆. Moreover, with-

out loss of generality, in the case of closed resolution, we assume that the resulting

sub-formulas are immediately decomposed (i.e., are principal in the next reduction),

as otherwise the resolution could have been postponed until this is the case.

By Proposition 10.16, we apply packing eagerly; that is, we apply it whenever

it results in a sequent different from the original. Of course, there are more than one

possible ways to pack a meta-sequent, but this is no concern as the possible choices
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simply correspond to e2 ∈ VBI. An example is offered by the following:

(w ⊩ Γ((∆1 #∆2) #∆3)▷ (w ⊩ χ)

Πw,Γ(∆1#(∆2#∆2)),x,(x ⊩ ∆1),(x ⊩ ∆2),(x ⊩ ∆3)▷ (w ⊩ χ)
⇑

(w ⊩ Γ(∆1 # (∆2 #∆3)))▷ (w ⊩ χ)
⇑

The reductions of BVSs GLJ begin with one of the following: an axiom, an

open resolutions, a clause on an assertion in the extract, a clause on an assertion

in the context, a frame law, or a structural rule. We structure the case-analysis into

these groups for readability.

1. AXIOM. System GLJ contains two axioms: ax and □. Only one of them is

applicable to the unpacking of a BVS — namely, ax. If the reduction used ax, then

the unpacking of the BVS was of the form Σw,Γ,(w ⊩ ϕ) ▷ (w ⊩ ϕ). This is only

possible if the original BVS was of the form w⊩ (Γ #ϕ)▷(w⊩ ϕ). These reductions

are captured by VBI as an instance of its version of id.

2. OPEN RESOLUTIONS. Recall, an open resolution is a resolution that is not

closed — that is, one in which neither the antecedent nor the consequent of an

instantiation of a meta-formula in Ω matches with any meta-formula in the meta-

sequent. We consider the generic meta-sequent w ⊩ Γ(∆) ▷w ⊩ ϕ , which is un-

packed to Σw,Γ(∆),x⊩∆ ▷ (w ⊩ ϕ). A generic open resolution is as follows:

Σw,Γ(∆),x⊩∆ ▷Φ Σw,Γ(∆),x⊩∆,Ψ▷ (w ⊩ ϕ)

Σw,Γ(∆),x⊩∆ ▷ (w ⊩ ϕ)
⇑

By world-conservativity and by case-analysis on Ω, it must be that, for some χ ,

either Φ = (x ⊩ χ) or Ψ = (x ⊩ χ). By the invertibility of the resolutions, we may

continue with a closed-resolution to yield the following:

Σw,Γ(∆),(x⊩∆) ▷ (x ⊩ χ) Σw,Γ(∆),(x⊩∆),(x ⊩ χ)▷ (w ⊩ ϕ)

Σw,Γ(∆),(x⊩∆) ▷ (w ⊩ ϕ)
⇑

By Proposition 10.19 and by Proposition 10.16, each branch is then weakened and
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packed. In total, the reduction from the original BVS is as follows:

(x ⊩ ∆)▷ (x ⊩ χ) (w ⊩ Γ(∆ # χ))▷ (w ⊩ ϕ)

(w ⊩ Γ(∆))▷ (w ⊩ ϕ)
⇑

Such reductions are captured by VBI as an instance of c followed by cut.

3. EXTRACT-CLOSED RESOLUTIONS. An extract-closed resolution is a closed res-

olution on a meta-formula in the extract. Without loss of generality, the unpacking

at the beginning of each reduction is trivial when it is not required for the reduction

to take place.

∧ - Reductions beginning with the ∧-clause are as follows:

(w ⊩ Γ)▷ (w ⊩ ϕ) (w ⊩ Γ)▷ (w ⊩ ψ)

(w ⊩ Γ)▷ (w ⊩ ϕ)N(w ⊩ ψ)
NR

(w ⊩ Γ)▷ (w ⊩ ϕ ∧ψ)
⇑

These reductions are captured by VBI as cl(∧)R.

∨ - Reduction beginning with the ∨-clause are as follows:

(w ⊩ Γ)▷ (w ⊩ ϕi)

(w ⊩ Γ)▷ (w ⊩ ϕ1)O(w ⊩ ϕ2)
OR

(w ⊩ Γ)▷ (w ⊩ ϕ ∨ψ)
⇑

These reductions are captured by VBI as cl(∨)R.

→ - Reductions beginning with the →-clause are as follows:

(w ⊩ Γ)▷ (w ⪯ u)⇒
(
(u ⊩ ϕ)⇒ (u ⊩ ψ))

(w ⊩ Γ)▷ (w ⊩ ϕ → ψ)
⇑

By the invertibility of ⇒R, this is continued to yield the following:

(w ⊩ Γ),(w ⪯ u),(u ⊩ ϕ)▷ (u ⊩ ψ)

(w ⊩ Γ)▷ (w ⊩ ϕ → ψ)
⇑
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Without loss of generality, this reduction is continued by persistence. This

follows by Proposition 10.19 as, if not, then (w ⊩ Γ) and (w ⪯ u) may be

removed without loss of completeness, but this removal can still happen after

persistence. Moreover, by Proposition 10.16, the reduction is thence contin-

ued by a packing. In total, the reduction is as follows:

(w ⊩ Γ #ϕ)▷ (u ⊩ ψ)

(w ⊩ Γ)▷ (w ⊩ ϕ → ψ)
⇑

These reductions are captured by VBI as cl(→)R.

⊤ - Reductions beginning with the ⊤-clause are as follows:

(w ⊩ Γ)▷

(w ⊩ Γ)▷ (w ⊩⊤)
⇑

Without loss of generality, the reduction ends by application of the□R-axiom.

These reductions are captured in VBI as instances of cl(⊤)R.

⊥ - Reductions beginning with the ⊥-clause are as follows:

(w ⊩ Γ)▷ (w =⊥)

(w ⊩ Γ)▷ (w ⊩⊥)
⇑

Without loss of generality, this is continued by the same reduction in reverse,

but this is equivalent to doing no reduction at all. Hence, we do not require a

rule in VBI corresponding to this case.

∗ - Reductions beginning with the ∗-clause are as follows:

Σw,Γ ▷R(w,u,v) Σw,Γ ▷ (u ⊩ ϕ) Σw,Γ ▷ (v ⊩ ψ)

Σw,Γ ▷R(w,u,v)N(u ⊩ ϕ)N(v ⊩ ψ)
⇑

Σw,Γ ▷ (w ⊩ ϕ ∗ψ)
⇑

This can only lead to a proof if there were R(w,u,v),(u⊩ ϕ),(v⊩ ψ) ∈ Σw,Γ,

in which case Γ = Γ′ # (∆ , ∆′). But then, without loss of generality, ax is ap-
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plied to one branch and Proposition 10.19 to the others, so that the reduction

yields the following:

Σu⊩∆1 ▷ (u ⊩ ϕ1) Σv⊩∆2 ▷ (v ⊩ ϕ2)

Σw,Γ′#(∆1,∆2) ▷ (w ⊩ ϕ1 ∗ϕ2)
⇑

Without loss of generality, by Proposition 10.16, the reduction is continued

by packing. These reductions are captured in VBI as instances of cl(∗)R.

−−∗ - Reductions beginning with the −−∗-clause are as follows:

(w ⊩ Γ)▷R(w′,w,u)N(u ⊩ ϕ)⇒ (w′ ⊩ ψ)

(w ⊩ Γ)▷ (w ⊩ ϕ −−∗ψ)
⇑

By invertibility of ⇒R and NL, this is continued to yield the following:

(w ⊩ Γ),R(w′,w,u),(u ⊩ ϕ)▷ (w′ ⊩ ψ)

(w ⊩ Γ)▷ (w ⊩ ϕ −−∗ψ)
⇑

Without loss of generality, by Proposition 10.16, this is continued with a pack-

ing. These reductions are captured in VBI as instances of cl(−−∗)R.

4. CONTEXT-CLOSED RESOLUTIONS. A context-closed resolution is a closed

resolution on a meta-formula in the context. Each case begins with an unpacking

that produces some assertion x⊩ χ on which the clause defining the case is applied.

∧ - Reductions beginning with the ∧-clause are as follows:

Πw,Γ(ϕ∧ψ),(x ⊩ ϕ),(x ⊩ ψ)▷ (w ⊩ χ)

Πw,Γ(ϕ∧ψ),(x ⊩ ϕ ∧ψ)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, it is continued by a packing.

These reductions are captured in VBI as instances of cl(∧)L.
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∨ - Reductions beginning with the ∨-clause are as follows:

ΠΓ(ϕ∨ψ),x,(x ⊩ ϕ)▷ (w ⊩ χ) ΠΓ(ϕ∨ψ),x,(x ⊩ ϕ)▷ (w ⊩ χ)

ΠΓ(ϕ∨ψ),x,(x ⊩ ϕ)O(x ⊩ ψ)▷ (w ⊩ χ)
OL

ΠΓ(ϕ∨ψ),x,(x ⊩ ϕ ∨ψ)▷w ⊩ χ
⇑

Without loss of generality, by Proposition 10.16, each branch is continued by

a packing. These reductions are captured in VBI as instances of cl(∨)L.

→ - Reductions beginning with the →-clause are as follows:

Πw,Γ(∆#ϕ→ψ),x,(x ⊩ ∆),∀y
(
(x ⪯ y)⇒

(
(y ⊩ ϕ)⇒ (y ⊩ ψ)

))
▷w ⊩ χ

Πw,Γ(∆#ϕ→ψ),x,(x ⊩ ∆),(x ⊩ ϕ → ψ)▷w ⊩ χ
⇑

The only choice of instantiation that can terminate in a proof is to instantiate

the quantified world-variable as x. At this point the resulting sub-formula

can be decomposed or else the resolution could be permuted with the next

resolution. Hence, the reduction is continued as follows:

Πw,Γ(∆#ϕ→ψ),x,(x ⊩ ∆)▷ (x ⊩ ϕ) Πw,Γ(∆#ϕ→ψ),x,(x ⊩ ∆),(x ⊩ ψ)▷ (w ⊩ χ)

Πw,Γ(∆#ϕ→ψ),x,(x ⊩ ∆),
(
(x ⪯ x)⇒

(
(x ⊩ ϕ)⇒ (x ⊩ ψ)

))
▷ (w ⊩ χ)

⇒L

Πw,Γ(∆#ϕ→ψ),x,(x ⊩ ∆),(x ⊩ ϕ → ψ)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, each branch is continued by

a packing. These reductions are captured in VBI as instances of cl(→)L.

⊤ - There are two possible reduction patterns beginning with the ⊤-clause. First,

one may have the following:

Πw,Γ(∆#∅+),x,(x ⊩ ∆)▷ (w ⊩ χ)

Πw,Γ(∆#∅+),x,(x ⊩ ∆),(x ⊩∅+)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, each branch is continued by

a packing. These reductions are captured in VBI as instances of w.
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Second, one may have the following:

Πw,Γ(∆),x,(x ⊩ ∆),(x ⊩∅+)▷ (w ⊩ χ)

Πw,Γ(∆),x,(x ⊩ ∆)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, each branch is continued by

a packing. These reductions are captured in VBI as instances of cl(⊤)L.

⊥ - Reductions beginning with the ⊥-clause are as follows:

Πw,Γ(⊥),x,(x = π)▷ (w ⊩ χ)

Πw,Γ(⊥),x,(x ⊩⊥)▷ (w ⊩ χ)
⇑

If another resolution is made then the the two resolution could have been

permuted, unless the resolution was with the absurdity law, in which case the

reduction continued to yield the following:

Πw,Γ(⊥),x,(x ⊩ ϕ)▷ (w ⊩ χ)

Πw,Γ(⊥),x,(x ⊩⊥)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, each branch is continued by

a packing. These reductions are captured in VBI as instances of cl(⊥)L.

∗ - There are two possible reduction patterns beginning with the ∗-clause. First,

one may have the following:

Πw,Γ(ϕ∗ψ),x,R(x,u,v),(u ⊩ ϕ),(v ⊩ ψ)▷ (w ⊩ χ)

Πw,Γ(ϕ∗ψ),x,(x ⊩ ϕ ∗ψ)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, each branch is continued by

a packing. These reductions are captured in VBI as instances of cl(∗)1L.

Second, one may have the following:

Πw,Γ(∆,⊤∗),x,R(x,x,e),(x ⊩ ∆),(e ⊩⊤∗)▷ (w ⊩ χ)

Πw,Γ(∆,⊤∗),x,(x ⊩ ∆∗⊤∗)▷ (w ⊩ χ)
⇑
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Without loss of generality, by Proposition 10.19 and Proposition 10.16, this

is continued to yield the following:

(w ⊩ Γ(∆))▷ (w ⊩ χ)

Πw,Γ(∆,⊤∗),x,(x ⊩ ∆∗⊤∗)),(x ⊩ ∆ ,⊤∗)▷ (w ⊩ χ)
⇑

These reductions are captured in VBI as instances of cl(∗)2L.

−−∗ - Reductions beginning with the −−∗-clause are as follows, in which Σ :=

{R(x,y,z),R(z,u,v)} and Ψ := ∀a,b
(
R(b,v,a)⇒ (a ⊩ ϕ ⇒ b ⊩ ψ)

)
:

Πw,Γ(∆,∆′,ϕ−−∗ψ),x,(y ⊩ ∆),(u ⊩ ∆′),Σ▷ (w ⊩ χ)

Πw,Γ(∆,∆′,ϕ−−∗ψ),x,Σ,Ψ,(y ⊩ ∆),(u ⊩ ∆′),(v ⊩ ϕ −−∗ψ)▷ (w ⊩ χ)
⇑

There is only one choice of instantiation for a and b that can terminate in

a proof, which yields the the following reduction pattern, in which Ψ′ :=

R(x,y,z),R(z,u,v),R(z,v,u)⇒ (u ⊩ ϕ ⇒ z ⊩ ψ) :

Πw,Γ(∆,∆′,ϕ−−∗ψ),x,Σ,(y ⊩ ∆),(u ⊩ ∆′),Ψ′ ▷ (w ⊩ χ)

Πw,Γ(∆,∆′,ϕ−−∗ψ),x,Σ,(y ⊩ ∆),(u ⊩ ∆′),(v ⊩ ϕ −−∗ψ)▷w ⊩ χ
⇑

The sub-formula is immediately decomposed or else this resolution and the

next could have been permuted. Hence, the reduction continues to yield sub-

goals

Πw,Γ(∆,∆′,ϕ−−∗ψ),x,R(x,y,z),R(z,u,v),(y ⊩ ∆),(u ⊩ ∆
′)▷ (u ⊩ ϕ)

and

Πw,Γ(∆,∆′,ϕ−−∗ψ),x,R(x,y,z),R(z,u,v),(y ⊩ ∆),(u ⊩ ∆
′)▷ (w ⊩ χ)

Without loss of generality, by Proposition 10.16, each branch is continued by

a packing. These reductions are captured in VBI as instances of cl(−−∗)L.

5. CASE ANALYSIS ON THE FRAME LAWS. The frame laws are unitality of
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e, commutative of R, associativity of R, persistence of ⪯, dominance of ⪯ and the

absurdity of π . Except for the first three frame laws, the clauses can only be used

after a particular resolution has occurred that introduces the appropriate atom, and

these cases have been considered above; for example, persistence requires (w ⪯ u)

to appear in the context, which can only happen if (w⊩ ϕ → ψ) was resolved in the

extract. We consider here the remaining cases.

Unit. - Reductions beginning with unitality are as follows:

ΣΓ(∆),x,(x ⊩ ∆),R(x,x,e)▷ (w ⊩ χ)

ΣΓ(∆),x,(x ⊩ ∆)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, the reduction is continued

with a packing. But, this simply yields the original sequent. Otherwise, it may

be that a weakening on x⊩ ∆ and R(x,x,e) is performed and then the packing

occurs. These reductions are captured in VBI as instances of cl(⊤∗)L.

Comm. - Reductions beginning with commutativity of R are as follows:

ΠΓ(∆,∆′),x,R(x,v,u),(u ⊩ ∆),(v ⊩ ∆′)▷ (w ⊩ χ)

ΠΓ(∆,∆′),x,R(x,u,v),(u ⊩ ∆),(v ⊩ ∆′)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, this is continued by a pack-

ing. These reductions are captured in VBI as instances of cl(comm)L.

Asso. - Reductions beginning with associativity of R are as follows:

ΠΓ(∆,(∆′,∆′′)),R(x,a,v),(y ⊩ ∆),R(a,z,u),(u ⊩ ∆′),(v ⊩ ∆′′)▷ (w ⊩ χ)

ΠΓ(∆,(∆′,∆′′)),R(x,y,z),(y ⊩ ∆),R(z,u,v),(u ⊩ ∆′),(v ⊩ ∆′′)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, this is continued by a pack-

ing. These reductions are captured in VBI as instances of cl(asso)L.

6. CASE ANALYSIS OF THE STRUCTURAL RULES. There are instances of the

structural rules that do not result in a change of sequent after packing; for example,

permuting meta-atoms that are not assertions is without effect. In the following we
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restrict attention to the cases where the use of the structural rule affects the packing

of the sequent.

e - Reductions beginning with an exchange are as follows:

ΠΓ(∆#∆′),x,(x ⊩ ∆′),(x ⊩ ∆′)▷ (w ⊩ χ)

ΠΓ(∆#∆′),x,(x ⊩ ∆),(x ⊩ ∆′)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, this is continued by a pack-

ing. These reductions are captured in VBI as instances of e1.

c - Reductions beginning with contractions are as follows:

ΠΓ(∆),x,(x ⊩ ∆),(x ⊩ ∆)▷ (w ⊩ χ)

ΠΓ(∆),x,(x ⊩ ∆)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, this is continued by a pack-

ing. These reductions are captured in VBI as instances of c.

w - Reductions beginning with weakening are as follows:

ΠΓ(∆),x,(x ⊩ ∆)▷ (w ⊩ χ)

ΠΓ(∆#∆′),x,(x ⊩ ∆),(x ⊩ ∆′)▷ (w ⊩ χ)
⇑

Without loss of generality, by Proposition 10.16, this is continued by a pack-

ing. These reductions are captured in VBI as instances of c.

This completes the proof.

It is useful to make precise how to read BI content from a BVS.

Definition 10.28 (State). The state of a BVS Ω,(w⊩ Γ)▷ (w⊩ ϕ) is the BI-sequent

Γ▷ϕ .

Each rule in VBI can be directly read in terms of its effect on states. In this way,

it is then a calculus of validity; for example, the cl(∧)R-rule captures the following
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action on states:
Γ▷ϕ Γ▷ψ

Γ▷ϕ ∧ψ

This we recognize as the ∧R-rule in sLBI. In this way, we may compare the

behaviour of validity and the behaviour of provability, thereby establishing be-

havioural equivalence, for which extensional equivalence (i.e., soundness and com-

pleteness) is a corollary.

10.3 Completeness via Meta-logic Proof-search
We show that the semantics in this chapter, which is fully described by VBI, charac-

terizes BI. We do this by showing that proof-search in VBI amounts to proof-search

in a sequent calculus for BI. Specifically the following calculus:

Definition 10.29 (System sLBI). System sLBI is composed of the rules in Fig-

ure 10.5 in which asso is invertible.

Proposition 10.30. Γ⊢LBI ϕ iff Γ⊢sLBI ϕ .

Proof. This is shown by routine results showing that all the rules of LBI are deriv-

able in VBI, and vice versa — see Gheorghiu [82].

In reductive logic, we may regard sequent calculi as transition systems that

dictate how sets of propositions may be transformed. This is how the proof-search

delivers an operational semantics of LP. In general, suppose desire to prove that

a sequent S is a consequence of a logic. We apply a rule of the sequent calculus

(reductively) to get a set of putative consequence S1, ....,Sn, each of which we desire

to show is a consequence of the logic — that is, if Si reduces to {S1
i , ....,S

k
i }, then

we reduce to {S1, ...,S1
i , ...,S

k
i , ...,Sn}. The process terminates when we reach the

empty set, which happens when all of the putative premisses are eventually reduced

to axioms. In this view, our approach to soundness and completeness is to show that

VBI and sLBI are equivalent as transition systems.

There are many notions of equivalence between transition system. Here we

are concerned with the subset that pertain to behavioural equivalence; that is, how
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Γ #ϕ ▷ϕ
taut ⊥▷ϕ

⊥L ∅× ▷⊤∗ ⊤∗
R Γ #∅+ ▷⊤ ⊤R

∆′ ▷ϕ Γ(∆ , ψ)▷χ

Γ(∆ , ∆′ , ϕ −−∗ψ)▷χ
−−∗L

∆ , ϕ ▷ψ

∆▷ϕ −−∗ψ
−−∗R

∆(ϕ , ψ)▷χ

∆(ϕ ∗ψ)▷χ
∗L

∆▷ϕ ∆′ ▷ψ

Γ # (∆ , ∆′)▷ϕ ∗ψ
∗R

∆(∅×)▷χ

∆(⊤∗)▷χ
⊤∗

L

∆(ϕ #ψ)▷χ

∆(ϕ ∧ψ)▷χ
∧L

∆▷ϕ ∆▷ψ

∆▷ϕ ∧ψ
∧R

∆(∅+)▷χ

∆(⊤)▷χ
⊤L

∆(ϕ)▷χ ∆(ψ)▷χ

∆(ϕ ∨ψ)▷χ
∨L

∆▷ϕ

∆▷ϕ ∨ψ
∨R

1 ∆▷ψ

∆▷ϕ ∨ψ
∨R

2

∆▷ϕ Γ(∆ #ψ)▷χ

Γ(∆ #ϕ → ψ)▷χ
→L

∆ #ϕ ▷ψ

∆▷ϕ → ψ
→R

Γ(∆ #∅+)▷χ

Γ(∆)▷χ
c∅+

Γ(∆ , ∅×)▷χ

Γ(∆)▷χ
c∅×

Γ(∆)▷χ

Γ(∆ #∅+)▷χ
w∅+

Γ(∆)▷χ

Γ(∆ , ∅×)▷χ
w∅×

Γ(∆′ #∆)▷χ

Γ(∆ #∆′)▷χ
comm+

Γ(∆′ , ∆)▷χ

Γ(∆ , ∆′)▷χ
comm×

Γ((∆′ #∆) #∆′′)▷χ

Γ(∆ # (∆′ #∆′′)▷χ
asso+

Γ((∆′ , ∆) , ∆′′)▷χ

Γ(∆ # (∆′ , ∆′′))▷χ
asso×

∆(∆′)▷χ

∆(∆′ #∆′′)▷χ
w

∆▷ϕ Γ(ϕ)▷χ

Γ(∆)▷χ
cut

∆(∆′ #∆′)▷χ

∆(∆′)▷χ
c

Figure 10.5: Sequent Calculus sLBI
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transitions in one system may be understood as transitions in the other. The finest

notion of behavioural equivalence is bisimulation.

Definition 10.31 (Bisimulation of Transition Systems). Let T1 := ⟨S1,⇝1⟩ and

Tn := ⟨S2,⇝2⟩ be transition systems. A relation ∼⊆ S1 × S2 is a bisimulation

between T1 and T2 iff, for any σ1 ∈ S1 and σ2 ∈ S2 such that σ1 ∼ σ2:

- if there is σ ′
1 ∈ S1 such that σ1⇝1 σ ′

1, then there is σ2 ∈ S2 such that σ2⇝2

σ ′
2 and σ ′

1 ∼ σ ′
2;

- if there is σ ′
2 ∈ S2 such that σ2⇝2 σ ′

2, then there is σ1 ∈ S1 such that σ1⇝1

σ ′
1 and σ ′

1 ∼ σ ′
2.

The transition systems are bisimilar iff there is a bisimulation between them.

Theorem 10.32. Reduction in sLBI is bisimilar to reduction in VBI.

Proof. Let ∼ be the least relation between BVSs and states,

{Ω,(w ⊩ Γ)▷ (w ⊩ ϕ)} ∼ {Γ▷ϕ}

By observing the symmetry of the rules in Figure 10.5 and Figure 10.4, we see that

∼ is a bisimulation.

By unpacking the soundness proof of Theorem 10.27 within the proof of The-

orem 10.32, one recovers the usual inductive proof of soundness. The contribution

of this paper is to demonstrate an analogous technique for proving completeness. In

this case, unpacking the completeness proof of Theorem 10.27 within the proof of

Theorem 10.32 one recovers a co-inductive proof of completeness. This highlights

the duality between soundness and completeness.

Corollary 10.33. Provability is extensionally equivalent to validity,

Γ⊢ϕ iff Γ ⊨ ϕ

We say extensionally equivalent in Corollary 10.33 to emphasize the work in

this paper in delivering behavioural equivalence.
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Of course, other completeness results follows too. Particularly interesting are

those pertaining to the additive and multiplicative fragments of BI — that is, sound

and completeness for IPL and MILL, respectively.

To end this chapter, we consider the difference the treatment of disjunction by

Kripke [125] and Beth [20] — see Chapter 2. The clause used by Kripke means

is such that validity of Γ ▷ ϕ ∨ψ behaves as the ∨R-rule of LBI. However, this

proof-theoretic definition for disjunction is not necessarily the most natural one.

Intuitively, ≤ represents ⊢IPL (by persistence). We may understand Γ⊢IPL ϕ1 ∨ϕ2

to mean that, if at some day one know Γ, then at a latter day one knows ϕ1 ∨

ϕ2. Therefore, one may understand that there is a sequence of days in which one

constructs from the information in Γ either ϕ1 or ϕ2. In this reading, the following

rules are a natural way to understand disjunction:

Γ▷∆ ∆▷ϕi
Γ▷ϕ1 ∨ϕ2

The semantic clause corresponding to these rules is Beth’s clause for disjunction —

see Chapter 2.



Chapter 11

Conclusion to Part I

This part of the monograph concerns reduction and proof-search in the logic of

Bunched Implications (BI) [150], and their relationship to the model-theoretic se-

mantics of the logic. While the technical results largely develop the proof theory

of BI, the part illustrates that semantics may be profitably studied from the point

of view of Reductive Logic. In this way, it may be regarded as a motivating case-

study to the thesis of the monograph — that is, that the interplay between semantics

and proof theory may be witnessed from the perspective of Reductive Logic. The

choice of BI for the case-study arises from the fact that the logic has a relatively

subtle meta-theory due to the interaction between the additive and multiplicative

connectives through the bunched structure of contexts. This makes it a useful set-

ting to review the traditional techniques and intuitions on the meta-theory of IPL

(see Chapter 2) as the more complex setting exposes subtleties not otherwise appar-

ent.

Chapter 6 serves as an introduction to BI. It contains a brief summary of some

of the work on the interpretation of BI as the logic over pre-ordered monoids, which

coheres with its resource reading. This background illustrates the subtlety of the

logic’s metatheory.

Chapter 7 provides a proof of cut-admissibility in the standard sequent calcu-

lus for BI. More precisely, it provies a rewrite method that transforms a proof with

cut into a proof without cuts. While cut-admissibility is know for BI — originally

proved by Brotherston [27] — it was not through a rewrite method, but rather in-
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directly through display calculi. Such a method is valuable for several reasons; for

example, it provides a method for turning a non-analytic proof into an analytic one.

Chapter 8 begins the proper study of proof-search in BI. It provides an oper-

ational reading of the hereditary Harrop fragment of the logic, which becomes a

logic programming language when the usual control structures are applied (e.g., a

backtracking scheme). This operational reading yields a model-theoretic seman-

tics for the fragment. This exposes that the semantics of the logical constants is

quite close to their reductive behaviour, but that meta-theoretic constructions (e.g.,

the T -operator) are required to precisely encapsulate the depth and breadth of the

proof-search space. The chapter also gives a coalgebraic interpretation of the oper-

ational reading of the hereditary Harrop fragment. This shifts the discussion into a

setting in which tools from coalgebra (and category theory, more generally) can be

used to ask and address questions of control.

Chapter 9 shows that BI has the focusing property. Essentially, this gener-

alizes the proof-theoretic foundations of the operational reading of the hereditary

Harrop fragment in Chapter 9 to the entire logic. Moreover, it illustrate the use of

the rewrite-method for cut-admissibility in Chapter 6 as it is this method (applied

to a focused system) that yields the focusing principle, by gradually transforming

unfocused proofs into focused proofs. This illustrates that, while subtle, the proof

theory for BI is relatively well-behaved.

Chapter 10 studies the semantics of BI from the perspective of Reductive

Logic. It provides a proof of soundness and completeness of BI with respect to

a model-theoretic semantics using proof-search in a meta-logic. Importantly, this

avoid term- and counter-model constructions, which are complex in BI because of

the bunched structure of contexts. The observation is that the unfolding of validity

judgements according to the inductive definition of the semantics is behaviourally

equivalent to the unfolding of a proof system for the logic. In this way, this gen-

eralizes the observations in Chapter 8 regarding the proximity of the meaning of

the logical constants and their reductive behaviour. The relationship between meta-

logic and object-logic exposed in this chapter is what motivates Part II.



162

Overall, this part provides several technical results for BI that together illustrate

the relationship between proof(-search) and semantics in Reductive Logic. While

this relationship is studied for BI, it does not appear to use anything in particu-

lar from that logic. Instead, that the investigation works despite the subtleties and

complexities in the meta-theory of BI suggests that it may be conducted in gen-

eral. While we have entirely concentrated on this question — that is, the relation-

ship between semantics and proof theory via Reductive Logic — there are other

questions that should be addressed relative to the technical results herein; in par-

ticular, having concentrated on ‘computational’ results (e.g., a rewriting proof of

cut-admissibility, logic programming, etc.), one expects associated computational

analysis of the methods/results (e.g., decidability, complexity, etc).



Part II

Algebraic Constraint Systems



Chapter 12

Introduction to Part II

This part is about a method for a general, uniform approach to studying the proof-

theoretic presentations of logics which provides insight into how they work and how

they are related to one another. For example, studying substructural systems helps

expose subtleties in fundamental results in proof theory such as cut-admissibility

(see, for example, Miller and Pimentel [141]) and proof-search (see, for example,

Andreoli [6]). Specifically, this part introduce a framework in which one can rep-

resent the reasoning in a logic, as captured by a concept of proof for that logic, in

terms of the reasoning within another logic through an algebra of constraints — as

a slogan,

Proof in L = Proof in L′ + Algebra of Constraints A

Such decompositions of L′ into L and A allow us to study the metatheory of the

former by analyzing the latter. The advantage is that the latter is typically simpler

in some desirable way — for example, it may relax the side conditions on the use

of certain rules — which facilitates, in particular, the study of proof-search with the

original logic of interest. We shall refer back to this slogan often and will use the

following abbreviated form:

L= L′⊕A

The ⊕ is not formal — that is, L′⊕A may be used for several ways of applying

constraints A to L′. This work is based on the following paper:
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Gheorghiu, A. V., and Pym, D. J. Defining Logical Systems via Alge-

braic Constraints on Proofs. Journal of Logic and Computation (2023).

(to appear)

The original example of the kind of decomposition in this part is the resource-

distribution via Boolean constraints (RDvBC) mechanism introduced by Harland

and Pym [99, 98] for the study of proof-search in substructural logics. It is ex-

plained in detail in Chapter 13, but we give a brief account here to illustrate what

the decomposition above means. Let V = [x1, ...,xn] be a list of (Boolean) variables.

Let Γ ·V denote the pointwise distributions of the variables over the formulae of

Γ — that is, [ϕ1, ...,ϕn] ·V := [ϕ1 · x1, ....,ϕn · xn]. Let V̄ denote the dual of V —

that is, V̄ := [x̄1, ..., x̄n]. The rule governing multiplicative conjunction can then be

expressed as follows:

Γ ·V ▷ϕ Γ ·V ▷ψ

Γ▷ϕNψ

Γ ·V ▷ϕ Γ ·V̄ ▷ψ

Γ▷ϕ ⊗ψ

One applies the constraints by giving an assignment of the Boolean variables and

evaluating formulae ϕ · x by keeping ϕ when x = 1 and deleting ϕ when x = 0.

Thus, Γ ·V represents, at the meta-level, a decomposition of Γ. Through this sys-

tem, one may analyze the various context-management strategies as deciding how

to split the context is postponed until the end of reduction. In terms of this slogan

above, RDvBC witnesses the decomposition of a substructural logic into classi-

cal/intuitionistic logic together with Boolean constraints.

The decompositions expressed by the slogan above may be iterated in valuable

ways. Each time we do such a decomposition, the combinatorics of the proof system

becomes simpler as more and more is delegated to the algebraic constraint. Eventu-

ally, the combinatorics becomes as simple as possible, and one recovers something

with all the flexibility of the proof theory for classical logic. Thus, we advance the

view that, in general, classical logic forms a combinatorial core of syntactic reason-

ing since its proof theory is comparatively relaxed — that is, possibly after iterating
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decompositions, one eventually witnesses the following:

Proof in L = Classical Proof + Algebra of Constraints A

The view of classical logic as the core of logic has, of course, been advanced before

— see, for example, Gabbay [66].

Using techniques from universal algebra, we define the algebraic constraints by

a theory of first-order classical logic; for example, we may define Boolean algebra

by its axiomatization — see Chapter 13. We then enrich the rules of a system

L with expressions from A to express the rules of another system L′. There are

several examples presented within, but we give a brief account for clarity presently.

A system comprising rules enriched in this way is called a (algebraic) constraint

system (ACS).

We consider two kinds of relationships an ACS may have with the logic of

interest. A constraint system is sound and complete when the evaluation of con-

struction from the constraints system concludes a sequent iff that sequent is valid in

the logic. A stronger relationship is faithfulness and adequacy:

- Faithfulness. The evaluation of a construction from ACS is a proof in the

logical system of interest.

- Adequacy. Every proof in the logical system of interest is the evaluation of

some construction from the ACS.

Both relationships are important, as illustrated by several examples.

The point of ACSs is that they allow us to study the metatheory of the logic of

interest. There are two principal such activities: first, one may use ACSs to study

proof-search in the logic of interest; second, they may be used to bridge the gap be-

tween the proof theory and model theory of a logic. On the latter use, ACSs allow a

general account of the novel approach to soundness and completeness proofs for BI

in Part I, which by-passes term- and counter-model constructions; furthermore, they

give a principled way of generating a correct-by-design model-theoretic semantics
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for the logic of interest by analyzing a proof system for it, making essential use of

algebraic constraints and the aforementioned decomposition to classical logic.

Of course, the idea that one may use labels to internalize the semantics of logics

within proof systems has taken several forms and goes back as far as Kanger [111].

It underpins a systematic development of analytic tableaux (see, for example, Fitting

[59, 60], Catach [32], Massacci [138], Baldoni [12], Docherty and Pym [47, 49,

44], and Galmiche and Méry [73, 71, 74, 72]), natural deduction systems (see, for

example, Simpson [196], and Basin et al. [14]), sequent calculi (see, for example,

Mints [144, 145], Viganò [212], Kushida and Okada [128]). Particularly significant

within this stream are the relational calculi studied by Negri [148, 146, 147].

The notion of ACS is closely related to Gabbay’s Labelled Deductive Systems

(LDSs) [67] — see also Russo [180]. However, the paper deviates from the es-

tablished theory of LDSs in two fundamental ways: First, one may choose any

syntactic structure in the grammar of the object-logic (e.g., data composed of for-

mulae, such as sets, multisets, bunches), not just formulae, to annotate; second, the

labels do not only express additional information but have an action on the struc-

ture. Note, there are other proof systems in the literature in which one labels data

composed of formulae — see, for example, Marx et al. [137]. Consequently, more

subtle examples are also available, not otherwise captured by LDSs.

We begin in Chapter 13 by explaining RDvBC to give a clear idea of what

ACSs are and how they work. In Chapter 14, we give a general account of proposi-

tional logic relative to which the theory of ACSs is developed. The formal account

of ACS follows in Chapter 15. A systematic account for generating relational cal-

culi — in the sense of Negri [147] — is given in terms of ACSs and illustrates their

use for metatheory. Chapter 17 uses ACSs to derive the semantics for IPL given by

Kripke [125] (see Chapter 2) from its proof-theoretic characterizations; this illus-

trates how ACS (more generally, Reductive Logic) bridges the gap between proof

theory and semantics. Importantly, it exposes that the meaning of the logical con-

stants is implicit in their rules, which is the subject of Part III. The part concludes

in Chapter 18 with a summary of the ideas and results.



Chapter 13

Example: Resource-distribution via

Boolean Constraints

This chapter provides a terse but complete account of resource-distribution via

Boolean constraints (RDvBC) mechanism used to study proof-search in substruc-

tural logics. The purpose of including it is to provide intuition and motivate the

idea and use of (algebraic) constraint systems (ACSs). It summarizes parts of the

following paper:

Harland, J., and Pym, D. J. Resource-distribution via Boolean Con-

straints. ACM Transactions on Computational Logic 4, 1 (2003), 56–90

In that paper, RDvBC is developed for LL, BI, and (uniformly) for a family of

relevant/relevance logics. This chapter only concerns BI as its background was

established in Part I.

Ultimately, what makes proof-search in LBI complex are the multiplicative

connectives (i.e., ∗ and −−∗) — or, more generally, the synchronous rules for any

of the connectives — as they demand deciding how to break up the context during

reduction.

Example 13.1. The following proof-search attempts differ only in the choice of
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distribution, one successfully produces a proof and the other fails:

p▷p ax
q▷q ax r▷ r ax

q , r▷q∗ r ∗R
p , q , r▷p∗ (q∗ r)

∗R︸ ︷︷ ︸
succeeds

?
p , q▷p

?
r▷q∗ r

p , q , r▷p∗ (q∗ r)
∗R︸ ︷︷ ︸

fails

How can we analyze the various distribution strategies? ■

There is a literature of intricate rules of inference in multiplicative logics that

are used to keep track of the relevant information to enable proof-search, but they

are generally tailored for one particular distribution method — see, for example,

Hodas and Miller [104, 103], Winikoff and Harland [214], Cervasto [33], and Lopez

[133]. In this context, Harland and Pym [99, 100] introduced RDvBC. The idea is

that rather than commit to a particular strategy for managing the distribution, one

uses Boolean expressions to express that a resource distribution needs to be made

and the conditions it needs to satisfy.

Briefly, in the RDvBC mechanism, one assigns a Boolean expression to each

formula requiring distribution. Constraints on the possible values of this expression

are then generated during the proof-search and propagated up the search tree, result-

ing in a set of Boolean equations. A successful proof-search in the enriched system

will generate a set of equations such that each solution corresponds to a distribu-

tion of formulae across the branches of the structure. Instantiating that distribution

results in an actual LBI-proof.

We begin by defining the constraint algebra that delivers RDvBC:

Definition 13.2 (Boolean Algebra). A Boolean algebra is a structure B :=

⟨B,{+,×, ·̄},0,1⟩ in which B is a set, + : B2 → B, × : B2 → B, ·̄ : B → B are

operators on B, and 0,1 ∈ B, satisfying the following conditions in Figure 13.1 for

any a,b,c ∈ B:

A presentation of the Boolean algebra is a first-order alphabet (see Chapter 3)

with equality for which the Boolean algebra is a model. We use the following, in

which X is a set of variables, e are expressions (i.e., meta-terms), and ϕ are Boolean
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a+(b+ c) = (a+b)+ c a× (b× c) = (a×b)× c

a+b = b+ c a×b = b×a

a+(a×b) = a a× (a+b) = a
a+0 = a a×1 = a

a+(b× c) = (a+b)× (a+ c) a× (b+ c) = (a×b)+(a× c)

a+ ā = 1 a× ā = 0

Figure 13.1: Boolean Algebra

formulae (i.e., meta-formulae):

e ::= x ∈ X | e+ e | e× e | ē | 0 | 1 ϕ ::= (e = e) | ϕNϕ | ϕOϕ | ¬ϕ | ∀xϕ | ∃xϕ

We are overloading + and × to be both function-symbols in the term language and

their corresponding operators in the Boolean algebra; similarly, we are overloading

0 and 1 to be both constants in the term language and the bottom and top element

of the Boolean algebra. This is to economize on notation. We may suppress the

× when no confusion arises — that is, t1 × t2 may be expressed t1t2. For a list

of Boolean expressions V = [e1, . . .en], let V̄ := [ē1, . . . ēn]; we may write V = e to

denote that V is a list containing only e. We may write V =V1 ⊔V2 to denote that V

is a concatenation of V1 and V2.

Let A be the set of atoms, and let F be the set of BI-formulae (over A) — see

Chapter 6. An annotated BI-formula is a BI-formula ϕ together with a Boolean

expression e, denoted ϕ · e — for example, p · x is an annotation of the p by the

Boolean variable x. The annotation of a bunch Γ by a list of Boolean expressions V

is defined inductively as follows:

- if Γ = γ , where γ ∈ F∪{∅+,∅×} and V = [e], then Γ ·V := γ · e;

- if Γ = (∆1 #∆2), and V = [e], then Γ ·V := (∆1 #∆2) · e;

- if Γ = (∆1 , ∆2), and V =V1 ⊔V2, then Γ ·V := (∆1 ·V1 #∆2 ·V2).



171

For example, p , (q # r) · [x,y] := p ·x , (q # r) ·y. Intuitively, the annotation of bunches

only acts on the top-level of multiplicative connectives and treats everything below

(e.g., additive sub-bunches) as formulae. This makes sense as all of the distributions

in LBI take place at this level of the bunch.

The idea in RDvBC is that Boolean constraints are used to mark the distri-

bution of formulae during reduction. This mechanism is captured by working a

sequent calculus LBIB over sequents enriched with Boolean expressions. The same

names are used for rules in LBIB and LBI to economize on notation.

Definition 13.3 (Constraint System LBIB). Constraint System LBIB comprised of

the rules in Figure 13.2, in which V is a list of Boolean variables that do not appear

in any sequents present in the tree.

An LBIB-reduction is a tree constructed by applying the rules of LBIB reduc-

tively, beginning with a sequent in which each formula is annotated by 1.

Example 13.4. The following is is an LBIB-reduction D:

(x1 = 1)N(x2 = 0)N(x3 = 0)
(p · x1) , (q · x2) , (r · x3)▷p ·1

ax
D′

(p ·1) , (q ·1) , (r ·1)▷p∗ (q∗ r) ·1
∗R

— here D′ is the following:

(x̄1y1 = 0)N(x̄2y2 = 1)N(x̄3y3 = 0)
(p · x̄1y1) , (q · x̄2y2) , (r · x̄3y3)▷q

ax
(x̄1ȳ1 = 0)N(x̄2ȳ2 = 0)N(x̄3ȳ3 = 1)

p · (x̄1ȳ1) , q · (x̄2ȳ2) , r · (x̄3ȳ3)▷ r
ax

(p · x̄1) , (q · x̄2) , (r · x̄3)▷q∗ r ·1
∗R

It is mostly easily understood when read reductively as one thinks of the constraints

as being generated during proof-search instead of guessed at the beginning of a

deductive construction. ■

Having produced an LBIB-reduction, if the constraints are consistent, their so-

lutions correspond to interpretations of the variables such that the constraints are

satisfied. Such interpretations I induce a valuation νI that acts on formulae by keep-

ing formulae whose label evaluate to 1 and deleting (i.e., producing the empty-string
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ε) for formulae whose label evaluate to 0; that is, let ϕ be a BI-formula and e a

Boolean expression,

νI(ϕ · e) :=

ϕ if I(e) = 1

ε if I(e) = 0

A valuation extends to sequents by acting on each formulae occurring in it; it ex-

tends to LBIB-reductions by acting on each sequent occurring in it and removing the

constraints.

Example 13.5 (Example 13.4 cont’d). The constraints on D are satisfied by any

interpretation I(z) = 1 for z ∈ {x1,y2} and I(z) = 0 for z ∈ {x2,x3,y1,y3}. For any

such I, the tree νI(D) is as follows:

p▷p ax
q▷q ax r▷ r ax

q , r▷q∗ r ∗R
p , q , r▷p∗ (q∗ r)

∗R

This is the successful derivation in LBI in Example 13.1. Significantly, by observing

the constraints, we see that a distribution strategy results in a successful proof-

search only if it sends only the first formula to the left branch. ■

Harland and Pym [99, 100] proved that LBIB is faithful and adequate for LBI

in the following sense:

- Faithfulness. If R is an LBIB-reduction and I is an interpretation satisfying

those constraints, then νI(R) is a LBI-proof.

- Adequacy. If D is an LBI-proof, then there is a LBIB-reduction R and an

interpretation I satisfying the constraints on R such that νI(R) =D.

Recall that we may think of BI as the free combination of intuitionistic proposi-

tional logic (IPL) and intuitionistic multiplicative linear logic (IMLL) — see Chap-

ter 6. Accordingly, we regard LBI as the combination of sequent calculi for these

two logics (i.e., LJ and IMLL, respectively) — that is,

LBI= LJIMLL
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Heuristically, the RDvBC mechanism outsources the substructurallity in IMLL to

Boolean constraints. Hence, in the form of the slogan of this paper,

IMLL= LJ⊕B

In this section, we have chosen to study BI (as opposed to just IMLL) to illustrate

the modularity of constraint systems. That is, we only have constraints participating

actively in part of the sequent calculus for BI, but with the same overall effect since

the other part conserves them. Abusing the slogan somewhat, we may express the

work of this section as follows:

LBI= LJ∪ (LJ⊕B)

The subsequent chapters of this part aim to define the use of constraints in

proof systems in general.
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y = 1NV := 0
ϕ · y , ∆ ·V ▷ϕ ·1 ax

y = 1NV = 0
⊥· y , ∆ ·V ▷ϕ

⊥L

y = 1NV = 0
∅× · y , ∆ ·V ▷⊤∗ ⊤∗

R
y = 1NV = 0

∅+ · y , ∆ ·V ▷⊤ ⊤R

∆ ·V ▷ϕ · e Γ(∆ ·V̄ , ψ · e)▷χ e = 1
Γ(∆ , ϕ −−∗ψ · e)▷χ

−−∗L
∆ , ϕ · e▷ψ · e e = 1

∆▷ (ϕ −−∗ψ) · e
−−∗R

∆(ϕ · e , ψ · e)▷χ e = 1
∆((ϕ ∗ψ) · e)▷χ

∗L
∆ ·V ▷ϕ ∆′ ·V̄ ▷ψ

∆ , ∆′ ▷ϕ ∗ψ
∗R

∆(ϕ · e #ψ · e)▷χ e = 1
∆((ϕ ∧ψ) · e)▷χ

∧L
∆▷ϕ ∆▷ψ

∆▷ϕ ∧ψ
∧R

∆(∅× · e)▷χ e = 1
∆(⊤∗ · e)▷χ

⊤∗
L

∆(∅+ · e)▷χ e = 1
∆(⊤· e)▷χ

⊤L

∆(ϕ · e)▷χ ∆(ψ · e)▷χ e = 1
∆((ϕ ∨ψ) · e)▷χ

∨L
∆▷ϕ

∆▷ϕ ∨ψ
∨R1

∆▷ψ

∆▷ϕ ∨ψ
∨R2

∆▷ϕ Γ(∆ #ψ · e)▷χ e = 1
Γ(∆ # (ϕ →ψ) · e)▷χ

→L
∆ #ϕ · e▷ψ e = 1

∆▷ϕ →ψ
→R

Γ(∆ · e)▷χ e = 1
Γ(∆ · e #∆ · e)▷χ

w
∆▷χ

∆′ ▷χ
e

Γ(∆ · e #∆ · e)▷χ e = 1
Γ(∆ · e)▷χ

c

Figure 13.2: Constraint System LBIB



Chapter 14

Propositional Logic

We desire to study constraint systems in general; that is, to define and study alge-

braic constraint systems (ACSs) for arbitrary propositional logics rather than spe-

cific ones. To this end, we require a general notion of propositional logic over which

constraint systems may be defined. This is the subject of the present chapter. In the

sense that Chapter 3 concerns a formal account of meta-logic, this chapter concerns

a formal account of object-logics. There are various doxastic philosophical desider-

ata that one may expect a propositional logic to satisfy, but they do not matter for

the technical developments herein, so a quite encompassing notion of propositional

logic is provided.

We begin by defining what a syntax for a propositional logic may be in Sec-

tion 14.1. The consequence judgement is a relation on sequents for the propositional

logic that exists a priori — that is, we do not take the stance that semantics is prior

to proof, or vice versa. In Section 14.3, we give a generic notion of model-theoretic

semantics that will allow us to generalize the ideas of Chapter 10; that is, analyze

consequence in a logic through reduction in a meta-logic (i.e., FOL).

14.1 Syntax and Consequence
We include context-formers explicitly as a part of the language of propositional

logic. This enables us to move between the propositional logics and the meta-logic

without ambiguity; moreover, it enables us to handle propositional logics that are

expressed in terms of more complex data structures of formulae than lists, multisets,
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or sets, such as the family of relevance logics — see, for example, Read [176] —

and the family of bunched logics — see, for example, work by Docherty, Pym and

O’Hearn [150, 171, 44] and Part I. More precisely, we include data-formers as they

may appear on either the left or right of sequents for the propositional logics, and

we use ‘context’ to refer to the left of sequents.

Definition 14.1 (Propositional Alphabet). A propositional alphabet is a triple P :=

⟨A,O,C⟩ in which A, O, and C are pairwise disjoint sets of symbols such that A is

countable and O and C are finite. The symbols in O and C have a fixed arity.

The elements of A are atomic propositions, the elements of O are operators,

and the elements of C are data-constructors. We use the term operators to subsume

‘connectives’ and ‘modalities’ in the traditional terminology. Moreover, we use the

term ‘data-constructor’ as a neutral term for what is sometimes called a ‘context-

former’ as we shall have data both on the left and right of sequents with possibly

different constructors and reserve the term ‘context’ for the left-hand side.

Definition 14.2 (Formula, Data, Sequent). Let P := ⟨A,O,C⟩ be a propositional

alphabet. The set of propositional formulae FORM(P) is the least set contain-

ing A such that, for any ϕ1, ...,ϕk ∈ FORM(P) and ◦ ∈ O, if ◦ has arity n, then

◦(ϕ1, ...,ϕn)∈FORM(P). The set DATA(P) is the least set extending FORM(P) such

that, for any δ1, ...,δn ∈ DATA(P) and • ∈ C, if • has arity n, then •(δ1, ...,δn) ∈

DATA(P). A P-sequent is a pair Γ▷∆ in which Γ,∆ ∈ DATA(P).

Example 14.3. The basic modal alphabet is B = ⟨A,{∧,∨,□},{∅, ,, #}⟩. The ari-

ties of ∧, ∨, ¬, ,, and # is 2; the arity of ¬ and □ is 1; and, the arity of ∅ is 0. We

may write ϕ ⊃ ψ to denote ¬ϕ ∨ψ , for any formula ϕ and ψ . Let p1,p2,p3 ∈ A.

Using infix notation, the following are examples of elements from FORM(B):

p3 (p1 ∧p2) (p3 ⊃ (p1 ∧p1))

These are also elements in DATA(B). Another example of an element from DATA(B)

is the following:

p3 , (p3 ⊃ (p1 ∧p2))
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The following is an example of a B-sequent:

p3 , p3 ⊃ (p1 ∧p2)▷p1 ∧p2

■

This completes the definition of the language of a propositional logic generated

by an alphabet. What makes language into a logic is a notion of consequence.

Definition 14.4 (Consequence). A consequence judgement over a propositional lan-

guage P is a relation ⊢on P-sequents.

Typically, we write consequence with infix notation; that is, we write Γ⊢∆ to

denote that the judgement ⊢obtains for the sequent Γ▷∆.

14.2 Sequent Calculus
One way to characterize consequence is by proof in a formal system. In this section,

we give a generic account of sequent calculus format relative to which we may

perform the investigation. Of course, all the other proof formats such as natural

deduction, axiomatic systems, and analytic tableaux may be presented in terms of

sequent calculi in standard ways, so this restriction is without loss of generality.

The advantage over using the sequent calculus format over any other paradigm is

that all the meta-logical structure required to expresses it is already included in the

definition of a logic above (e.g., by making data-formers explicit).

An inference is the process of beginning with some sequents — thought of as

a putative consequence of a logic — and ending with another sequent — thought of

as being entailed, according to our logic, by the original sequents. These inferences

are understood as instances of rules.

Definition 14.5 (Rule). A rule is a relation r on sequents.

That r(s,s1, . . . ,sn) obtains may be denoted by inference schemas:

s1 . . .sn

s
r
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The sequent s is said to be conclusion and the sequents s1, . . . ,sn the premisses. A

rule that has no premisses (i.e., a predicate on sequents) is called an axiom-rule.

With this notion of rule, we give the standard treatment of sequent calculi

proofs — see, for example, Troestra and Schwichtenberg [207].

Definition 14.6 (Calculus). A calculus is a set of rules containing at least one

axiom-rule.

Definition 14.7 (Proof). Let L be a calculus. The set of L-proofs is the set of rooted

trees of sequents inductively constructed as follows:

– BASE CASE. If there is an axiom-rule a ∈ L such that a(s), then the tree of

just the node s is an L-proof.

– INDUCTIVE STEP. If P1, . . . ,Pn are L-proofs with roots s1, . . . ,sn, respec-

tively, and there is a sequent s and a rule r ∈ L such that r(s,s1, . . . ,sn) ob-

tains, then the argument P with root s and immediate sub-trees P1, . . . ,Pn is

an L-proof.

The notion of proof from a calculus induces a notion of provability from the

calculus, which is a consequence relation:

Definition 14.8 (Provability). A sequent is L-provable iff there is a L-proof that

concludes it.

We say that a calculus L characterizes a logic when L-provability coincides

with the consequence relation of the logic. To be precise, this coincidence has two

directions: soundness and completeness. The calculus is sound for the logic when

it only proves the consequences of the logic, and it is complete when it can prove

all of the consequences of the logic.

Definition 14.9 (Soundness and Completeness). Let ⊢ be a consequence relation

and L be a calculus.

- Calculus L is sound for ⊢ iff, for any sequent Γ▷∆, if Γ⊢L ∆, then Γ⊢∆.
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- Calculus L is complete for ⊢ iff, for any sequent Γ▷∆, if Γ⊢∆, then Γ⊢L ∆.

Of course, several different calculi may characterize a logic, some of which

may differ substantially. One way to generate new calculi from old is by including

rules that are conservative over provability. Such rules are said to be admissible —

that is, r is admissible in L iff ⊢L∪{r} is sound with respect to ⊢L. More generally, a

rule can be admissible for a logic when it preserves validity in the logic — that is,

that is, r is admissible for ⊢ iff, for any sequents s,s1, ...,sn, if r(s,s1, ...,sn) obtains

and ⊢s1, . . . , ⊢sn, then ⊢s. Observe that if L is sound for ⊢, then it is necessarily the

case that all the rules in L are admissible for ⊢.

14.3 Model-theoretic Semantics
We now give a generic account model-theoretic semantics (M-tS) that can be used

to characterize consequence. By M-tS, we mean a possible world semantics á la

Kripke [124, 125] — see also Beth [20]. We follow Blackburn et al. [22] in the

approach for a general account of M-tS.

Definition 14.10 (Type). A type τ is a list of non-negative integers.

Definition 14.11 (Frame). Let τ := ⟨t1, ..., tn⟩ be a type. A τ-frame is a tuple

⟨U,k1, ...,kn⟩ in which U is a set and ki is a relation on U of arity ti.

Definition 14.12 (Assignment). Let P = ⟨A,O,C⟩ be a propositional alphabet. An

assignment of P to F is a mapping from propositional atoms to sets of worlds,

I : A → P(U).

We use the term assignment to distinguish it from the term interpretation used

for the meta-logic — see Chapter 3.

Definition 14.13 (Pre-model). A τ-pre-model over P is a pair M := ⟨F , I⟩, in which

F is a τ-frame and I is an assignment of P to F .

The elements of U are called possible worlds. One possible objection to the

definition of frames is the absence of operators (i.e., endomorphism f : Un → U).

This is to simplify the setup and is without loss of generality as operators may be



14.3. Model-theoretic Semantics 180

regarded as special types of relations; that is, the operator f : Un → U corresponds

to the n+1-ary relation R satisfying R(w,u1, ...,un) iff w = f (u1, ...,un).

Intuitively, a formula ϕ is true in a model M at a world w if the world w

satisfies the formulas.

Definition 14.14 (Satisfaction for a Type). Let τ be a type and P a propositional

alphabet. A τ-satisfaction relation for P is a relation ⊩ parameterized by τ-pre-

models between worlds w in the pre-models M = ⟨F , I⟩ and P-data such that the

following holds:

M,w ⊩ p iff w ∈ I(p)

Definition 14.15 (Semantics, Validity). Let τ be a type and P a propositional al-

phabet. A semantics is a pair S := ⟨M,⊩⟩ in which M is a set of τ-pre-models and

⊩ is a τ-satisfaction relation for P.

Definition 14.16 (Validity). A sequent Γ▷∆ is valid in S — denoted Γ ⊨S ∆ — iff,

for any M ∈ M and any w ∈M, if M,w ⊩ Γ, then M,w ⊩ ∆.

Example 14.17. Fix the type τ := ⟨2⟩. An example of a τ-frame is a pair ⟨{x,y},R⟩

in which R is a binary relation on {x,y}. Partition the atoms A into two classes A1

and A2; an example of an assignment I : A → P({x,y}) is given as follows:

I(p) :=

x if p ∈ A1

y if p ∈ A2

The pair M := ⟨F , I⟩ is an example of a model over B. The basic semantics K is

the pair ⟨M,⊩⟩ in which M is the set of all τ-pre-models and ⊩ is the least relation

satisfying the clauses in Figure 14.1 together with the following:

M,w ⊩ ∆ , ∆′ iff M,w ⊩ ∆ and M,w ⊩ ∆′

M,w ⊩ ∆ #∆′ iff M,w ⊩ ∆ or M,w ⊩ ∆′

The validity judgement ⊨K defines the modal logic K — see, for example,

Kripke [124], Blackburn et al. [22], and Fitting and Mendhelohn [60].
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M,w ⊩ p iff w ∈ I(p)

M,w ⊩ ϕ ∧ψ iff M,w ⊩ ϕ and M,w ⊩ ψ

M,w ⊩ ϕ ∨ψ iff M,w ⊩ ϕ or M,w ⊩ ψ

M,w ⊩ ¬ϕ iff not M,w ⊩ ϕ

M,w ⊩□ϕ iff for any u, if wRu, then M,u ⊩ ϕ

Figure 14.1: Satisfaction for Modal Logic K

■

The notion of semantics in this paper is generous, including many relations

that, perhaps, one would not typically accept as semantics. This is to keep the

presentation simple and intuitive. In subsequent chapters, we impose additional re-

strictions that result in certain behaviours desirable for analysis — see, in particular,

Chapter 16. While the running example of this chapter has been modal logic K, this

work coheres with the presentation of IPL in Chapter 2 and BI in Part I (Chapter 6

and Chapter 10).



Chapter 15

Algebraic Constraint Systems

Having defined both object-logics (i.e., propositional logics — see Chapter 14) and

meta-logics (i.e., FOL — see Chapter 3), it remains to define (algebraic) constraint

systems (ACSs). The heuristics have already been given in Chapter 12 followed by

an instructive example in Chapter 13. This chapter provides a general and formal

definition of them. Importantly, ACSs (e.g., LBIB) sit more naturally within the

perspective of Reductive Logic than Deductive Logic, with the intuition that one

generates constraints as one applies rules backwards. Therefore, when we speak of

using a rule, we mean it in the reductive sense. This chapter is short and techni-

cal, but it provides the framework for the remaining chapters of this part, in which

semantics are studied from the perspective of Reductive Logic using ACSs.

The chapter begins in Section 15.1 with a definition of an ACS for a proposi-

tional logic. It also defines soundness and completeness in terms of the ACS wit-

nessing consequence of the logic. A more refined relationship to the propositional

logic is defined —- faithfulness and adequacy — are defined in Section 15.2. Here

the ACS may be used to reason about proof in a sequent calculus for the object

logic — see, for example, the relationship between LBI and LBIB in Chapter 13. In

this way, soundness and completeness concern the global correctness of ACSs with

respect to the logic of interest; meanwhile, faithfulness and adequacy concern the

local correctness of ACSs.
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15.1 Constraints and Reductions
When we may say algebra to mean a first-order structure (see Chapter 3), we call the

terms and formulae from an alphabet in which that algebra is interpreted expressions

and constraints, respectively.

Definition 15.1 (Expression). An A-expression is a term over A.

Definition 15.2 (Constraint). An A-constraint is a formula over A.

We use the terms ‘expression’ and ‘constraint’ to draw attention to the fact that

we have a certain algebra in mind and a certain way that the constants and functions

of the alphabet are meant to be interpreted. For example, in Chapter 13, we always

take the symbol + to be interpreted as Boolean addition. What may change is the

interpretation of variables. In short, we have some intended interpretations that are

coherent.

Definition 15.3 (Coherent Interpretations). Let I be a set of interpretations of an

algebra A in A. The set I is coherent iff any I1, I2 ∈ I are equivalent except possibly

for their action on variables.

Typically, the set of intended interpretations is maximal in that any interpre-

tation of the algebra in the alphabet is either in the set or is not a variant of an

interpretation in the set. This becomes clear in the examples below; presently, it is

instructive to recall the handling of Boolean algebra in Chapter 13.

We use expressions to enrich the language of the propositional logic and

thereby express meta-theoretic conditions on formulae and sequents. Let P be a

propositional alphabet.

Definition 15.4 (Labelled Data). The set of labelled P-data is defined inductively

as follows:

- BASE CASE. If ϕ is a formula and e is an A-expression, then ϕ · e is a A-

labelled P-datum.
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- INDUCTIVE STEP. If δ1, ... , δn are labelled P-data, • is a data-constructor

in P with arity n, and e is an A-expression, then •(δ1, ...,δn) ·e is a A-labelled

P-datum.

Definition 15.5 (Enriched Sequent). An A-enriched P-sequent is a pair Π ▷Σ, in

which Π and Σ are multisets of A-labelled P-data and constraints.

We may suppress A and P when the alphabet for what algebra is labelling what

propositional language is clear. Observe that we have shifted from the object-logic

to the meta-logic; enriched sequents are a restricted form of meta-logic sequents

that encapsulate object-logic sequents with conditions expressed by expressions

from the algebra. This setup differs slightly from the presentation of RDvBC in

Chapter 13 to simplify the presentation of the general case. Recall that ‘data’ is the

general name for ‘contexts’ in the propositional logic, which may be bunches. Con-

sequently, the presentation of RDvBC in terms of enriched sequents would consist

of pairs of multisets, each containing only one element, the labelled bunch.

Example 15.6. The are various enriched sequents in RDvBC (Chapter 13). An

additional example is as follows:

p · x , (q # r) · y▷ (p∧q) · x

■

An algebraic constraint system (ACS) is a generalization of a sequent calculus

that uses enriched sequents and constraints.

Definition 15.7 (Algebraic Constraint System). A constraint rule is a relation be-

tween an enriched sequent and a list of enriched sequents and constraints. An

algebraic constraint system (ACS) is a set of constraint rules.

The constructions of an ACS are generated reductively on enriched sequents,

producing constraints along the way. That r(C,P1, ...,Pn) obtains for the enriched

sequents C,P1,..., and Pn may be expressed as follows:

P1 ... Pn
C

r
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In this case, C is an enriched sequent and P1, ...,Pn are either enriched sequents or

constraints. We use the terms premiss and conclusion analogously with sequenuset-

for calculus rules. We assume the convention of putting constraints after enriched

sequents in the list of premisses.

Example 15.8 (Example 15.6 cont’d). System LBIB in Chapter 13 is an ACS. An

example of a constraint rule is given by the following:

∆ ·V ▷ϕ ∆′ ·V̄ ▷ψ

∆ , ∆′ ▷ϕ ∗ψ
∗R

Here ∆ denotes a labelled datum. If e is the expression in ∆, then ∆ ·V denotes the

result of replacing e by a product of e and V — in particular, presently, by product

in the Boolean algebra.

The following inference is an instance of the rule:

p · (1x) , (q # r) · (1y)▷p ·1 p · (1x̄) , (q # r) · (1ȳ)▷q ·1
p ·1 , (q # r) ·1▷ (p∗q) ·1

■

Unlike sequent calculi, an ACS does not necessarily contain axioms (i.e., pred-

icates on enriched sequents). This is possible because the set of things an ACS

generates is defined co-inductively, so the restriction is unnecessary. We define re-

ductions co-inductively because ACSs sit within the paradigm of Reductive Logic.

Definition 15.9 (Reduction in an Algebraic Constraint System). Let C be an ACS

and S be an enriched sequent. A tree of enriched sequents R is a C-reduction of S

iff there is a rule r ∈ C such that r(S,P1, ..,Pn) obtains and the immediate sub-trees

Ri, with root Pi, are as follows: if Pi is an enriched sequent, it is a C-reduction of Pi;

the single node Pi, otherwise (i.e., if Pi is a constraint).

Example 15.10 (Example 15.8 cont’d). A reduction in an ACS is given in Example

13.4 in Chapter 13. ■
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The distinguishing feature of reductions in an ACS is the constraints. In par-

ticular, we are interested in the constraints in the premisses of the (reductive) ap-

plication of a constraint rule because we think of them as saying something about

the reduction as a whole as opposed to the constraints within an enriched sequents

whose scope is only that sequents.

Definition 15.11 (Side-condition). Let C be a ACS and let R be a C-reduction. A

side-condition of R is a constraint that is a leaf of R.

The side-conditions are global constraints on the reduction, determining the

conditions for which the structure is meaningful.

Definition 15.12 (Coherent Reduction). Let C be an ACS, let R be a C-reduction,

and let S be the set of side-conditions of R. The set S is coherent iff there is an

interpretation in which all of the side-conditions in S are valid; the reduction R is

coherent iff S is coherent.

We may regard coherent reductions as proofs of certain sequents, but this re-

quires a method of reading what sequent of the propositional logic the reduction

asserts.

Definition 15.13 (Ergo). An ergo is a map νI , parameterized by intended interpre-

tations I, from enriched sequents to sequents.

Let C be an ACS and ν an ergo. We write Γ⊢Cν
∆ to denote that there is a

coherent C-reduction R of an enriched sequent S such that νI(S) = Γ▷∆, where I is

an interpretation satisfying all the side-conditions of R.

These definitions all manifest in the presentation of the RDvBC mechanism in

Chapter:13, and are worth recalling for clarity. In particular, Example 13.4 illus-

trates a coherent reduction with constraints, and Example 13.5 illustrates the result

of applying an ergo to that reduction.

Definition 15.14 (Soundness and Completeness of Algebraic Constraint Systems).

An ACS may have the following relationships to a propositional logic:
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- Soundness: If Γ⊢Cν
∆, then Γ⊢∆.

- Completeness: If Γ⊢∆, then Γ⊢Cν
∆.

This defines ACSs and their relationship to logics. In Chapter 16, we give

an algorithmic method for producing sound and complete ACS for a large class of

propositional logic, including modal and substructural logics. In the next section,

we provide a stronger relationship between an ACS and a logic, which means that

the ACS can be used to reason about proofs in sequent calculus, as was the case

for RDvBC in Chapter 13. This is used in Chapter 17 to derive a semantics for IPL

from a proof-theoretic characterization.

15.2 Faithfulness & Adequacy
The soundness and completeness conditions (Definition 15.14) mean that ACSs are

simply an elaborate proof-theoretic characterization of a consequence relation in

a labelled sequent calculus. We desire to use ACSs to study other proof-theoretic

specifications of a logic. To this end, we use the side-conditions generated during

reduction to determine a set of interpretations that allow one to evaluate the reduc-

tion as a proof in a sequent calculus for the logic. This is the subject of the present

section.

Fix a propositional alphabet P, an algebra A, an alphabet A for that algebra,

and a set I of intended interpretations of A in A. Fix an ACS C and an ergo ν . The

ergo extends to C reductions by pointwise application to the tree’s enriched sequents

and deleting all the constraints. Using this extension, ACSs may be regarded as

computational devices capturing sequent calculi. For this reason, we do not use the

terms soundness and completeness but rather use the more computational terms of

faithfulness and adequacy.

Definition 15.15 (Faithful & Adequate). Let C be an ACS, let L be a sequent calcu-

lus, let ν be a valuation.

- System C is faithful to L if, for any C-reduction R and interpretation I satis-

fying the constraints of R, the application νI(R) is an L-proof.



15.2. Faithfulness & Adequacy 188

- System C is adequate for L if, for any L-proof D, there is a C-reduction R and

an interpretation I satisfying the constraints of R such that νI(R) =D.

Intuitively, ACS for a logic (more precisely, those that are faithful and ade-

quate with respect to a sequent calculus for a logic) distinguish the combinatorial

and idiosyncratic aspects of that logic. The former refers to how rules manipulate

the data in sequents, while the latter refers to the constraints generated by the rules.

Typically, the manipulation of data is precisely analogous to that of sequent calculi

for classical propositional logic (e.g., to G3c without the quantifier rules); for ex-

ample, the ∗R ∈ LBIB (see Figure 13.2) has the same form as the NR-rule in G3c

(Figure 3.1), but with only a formula on the right-hand side). This is what we mean

by saying that classical logic is the combinatorial core of a logic.



Chapter 16

Systematic Generation of Relational

Calculi

Relational calculi were introduced by Negri [147] as a systematic way to give

sequent-like calculi for modal logics. They can be viewed as constraint systems;

that is, the constraint algebra is provided by a first-order theory capturing an M-tS

for a logic, and the labelling action captures satisfaction in that semantics. Tradi-

tionally, x : ϕ is used in place of ϕ · x for relational calculi, and we shall adopted

this notation for this section to be consistent with the existing work. The change in

notation is a aide-mémoire that we are working with a particular form of constraint

systems, in contrast to the fully general perspective in Chapter 15. This chapter

gives sufficient conditions for a sequent calculus to admit a relational calculus. We

further give conditions under which these relational calculi (regarded as constraint

systems) are faithful and adequate for a sequent calculus for the logic. We continue

the study of the modal logic K in Chapter 14 as a running example.

First, we define what it means for a semantics of a propositional logic to be

first-order definable; this is a pre-condition for producing relational calculi that ex-

press the semantics. We call the propositional logic we are studying the object-

logic; and, we call FOL the meta-logic. For clarity, we use the convention prefixing

meta- for structures at the level of the meta-logic where the terminology might oth-

erwise overlap; for example, formulae are syntactic construction at the object level,

and meta-formulae are syntactic construction in the meta-logic.
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Second, we give a sufficient condition, called tractability, for us to take a first-

order definition Ω of a semantics and produce a relational calculus from it. Essen-

tially, the condition amounts to unfolding Ω within G3c so that we can suppress all

the logical structures from the meta-logic, leaving only a labelled calculus for the

propositional logic — namely, the relational calculus.

Third, we give a method for transforming tractable definitions into sequent

calculi and prove that the result is sound and complete for the semantics. This is a

general account of the approach to semantics in Chapter 10.

16.1 Tractable Propositional Logics
The frames in the model-theoretic semantics of normal modal logics are typi-

cally comprised of a universe U structured by an accessibility relation R — see

Kripke [124] and Blackburn et al. [22]. In the work by Negri [147] on relational

calculi for normal modal logics, the formulae over which the relational calculi oper-

ates come in two forms: they are either of the form (x : ϕ), in which x is a variable

denoting an arbitrary world, ϕ is a formula, and : is a pairing symbol intuitively

saying that ϕ is satisfied at x; or, they are of the form xRy, in which x and y are

variables denoting worlds and R is a relation denoting the accessibility relation of

the semantics. To generalize this approach, we begin by fusing the language P of

the propositional logic of interest (i.e., the object-logic) with a first-order language

F able to express frames for the semantics.

Definition 16.1 (Fusion). Let F := ⟨R,∅,K,V⟩ be a first-order alphabet and let

P := ⟨A,O,C⟩. The fusion F ⊗P is the first-order alphabet ⟨R∪{:},O∪C,K∪A,V⟩

To aid readability, we shall use the convention of writing ϕ̂ for meta-variables

that we intend to be interpreted as object-formulae and Γ̂ or ∆̂ for meta-variables

that we intend to be interpreted as object-data.

Observe that P-formulae and F-terms both becomes terms in F ⊗P, and : is

a relation. In particular, the object-logic operators (i.e., connectives, modalities)

are function-symbols in the fusion. Further note that both (x : ϕ) and (ϕ : x) are

well-formed formulae in the fusion, the former is desirable and the latter is not.
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In principle, one could work over a typed language in which these definitions are

enforced in the grammar (e.g., by using a typed language), but doing so does not

actually simplify matters.

As in Chapter 10, we desire a theory Ω over the fused language such that : is

interpreted as satisfaction in the semantics. Note, relative to such a theory, while

well-formed, a meta-formula (ϕ : x) is indeed nonsense.

Definition 16.2 (Definition of a Semantics). Let Ω be a set of sentences from a

fusion F ⊗P and let S be a semantics over P. The set Ω defines the semantics S iff

the following holds: for any Γ, ∆,

Ω,(x : Γ)▶ (x : ∆) iff Γ ⊨ ∆

Though a seemingly strong condition, such theories Ω are fairly systematically

constructed for the semantics present in the literature. Intuitively, the abstraction of

Ω — see Chapter 3 — are composed of models from the semantics together with an

interpretation of the satisfaction relation. That is, Ω is typically composed of two

theories Ω1 and Ω2, where Ω1 captures frames and Ω2 captures the conditions of the

satisfaction relation. For example, in modal logic, if the accessibility relation is tran-

sitive, then Ω1 contains ∀x,y,z(xRyNyRz⇒ xRz), and if the object-logic contains an

additive conjunction ∧, then Ω2 may contain ∀x, ϕ̂, ψ̂((x : ϕ̂∧ψ̂)⇒ (x : ϕ̂)N(x : ψ̂))

and ∀x, ϕ̂, ψ̂((x : ϕ̂)N(x : ψ̂)⇒ (x : ϕ̂ ∧ ψ̂)). This is the situation for BI in Chap-

ter 10.

Example 16.3. By the universal closure of (Φ ⇔ Ψ) we mean the meta-formulae Θ

and Θ′ in which Θ is the universal closure of Φ ⇒ Ψ and Θ′ is the universal closure

of Ψ ⇒ Φ. Consider the semantics K = ⟨K,R⟩ in Example 14.17. It is defined by

the universal closures of the formulae in Figure 16.1, which merits comparison with

Figure 14.1, together with the universal closure of the following:

(x : Γ̂ , ∆̂) iff (x : Γ̂)N(x : ∆̂)

(x : Γ̂ # ∆̂) iff (x : Γ̂)O(x : ∆̂)
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(w : ϕ̂ ∧ ψ̂) iff (w : ϕ̂)N(w : ψ̂)

(w : ϕ̂ ∨ ψ̂) iff (w : ϕ̂)O(w : ψ̂)

(w : ¬ϕ̂) iff
(
(w : ϕ̂)⇒⊥

)
(w :□ϕ̂) iff ∀u(wRu ⇒ u : ϕ̂)

Figure 16.1: Satisfaction for Modal Logic K (Symbolic)

Every model of K (see Chapter 14) arises as an abstraction of these formulas, and

vice versa. This theory is denoted ΩK.

As in the treatment of BI in Chapter 10, there is no meta-formula correspond-

ing to atomic satisfaction — that is, (w : p), where p is atomic — because it is

handled by the structure of meta-sequents. Again, it follows from working with va-

lidity directly (i.e., without passing though truth-in-a-model): atomic satisfaction is

captured by tautology,

Ω,(w ⊩ p)▷ (w ⊩ p)

■

We may use the meta-logic to characterize those propositional logics whose

semantics is particularly amenable to analysis; first-order definability is, perhaps,

the most general condition we may demand. What are some other properties of Ω

that may be useful? Since we are interested in a computational analysis of the se-

mantics, we require that Ω is finite, among other things. In particular, we restrict the

structure of the theory to something amenable to proof-theoretic analysis according

to G3c.

There is literature on generating proof systems for propositional logics defined

axiomatically; see, for example, work by Ciabattoni et al. [36, 39, 38]. Within this

tradition, Marin et al. [135] have used focusing in intuitionistic and classical logic,

thought of as a meta-logic, as a general tool to express uniformly an algorithm for

turning axioms into rules applicable across different domains. We use a similar

method and, therefore, polarize the syntax for the meta-logic.
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Recall that ATOMS(F⊗P) is the set of meta-atoms — that is, atoms of the first-

order language generated from the alphabet F ⊗P. The positive meta-formulae P

and negative meta-formulae N are defined as follows:

P ::= A ∈ ATOMS(F ⊗P) | ⊥ | PNP | N ⇒ P | POP | ∃XP

N ::= A ∈ ATOMS(F ⊗P) | NNN | P ⇒ N | ∀XN

This taxonomy arises from behaviour; specifically,using this taxonomy we can de-

fine a class of formulae that we can systematically transform into synthetic rules

using focusing in G3c. While closely related to the taxonomy used by Marin et

al. [135], whence the approach comes, it is not the same as they work over a syntax

that has positive and negative connectives.

Definition 16.4 (Polarity Alternation). The number of polarity alternations in a

polarized formula Φ is π(Φ) defined as follows:

π(Φ) :=



0 if Φ ∈ ATOMS(F ⊗P)

max{π(Φ1),π(Φ2)} if Φ = Φ1 ◦Φ2 and ◦ ∈ {N,O}

π(Ψ) if Φ = ∀XΨorΦ = ∃XΨ

1+max{π(Φ1),π(Φ2)} if Φ = Φ1 ⇒ Φ2

Definition 16.5 (Tractable Meta-formula). A meta-formula Φ is tractable iff Φ is

negative and π(Φ)≤ 1, or Φ is positive and π(Φ)≤ 2.

This definition is allows us to fully leverage focusing; that is, positive and

negative formulae correspond to unfocused and focused phases of reduction. A

combination of focused and unfocused phase may yield a formula in which the

choice of reduction affect termination; this is used in the proof of Proposition 16.9.

Thus, the definition of tractability is not necessarily a theoretical limit for converting

theories into systems of rules, but only the limit of using focusing to do so.

The class of geometric implications studied by Negri [146] for the generation

of sequent calculus rules from axioms defining propositional logics is a subset of the
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tractable formulae — a meta-formula Θ is a geometric implication iff Θ is the uni-

versal closure of a meta-formula of the form (Φ1N...NΦm)⇒ (∃Y1Ψ1O...O∃YnΨn)

such that Ψi := Ψi
1N...NΨi

mi
, with the Ψi

j meta-atoms for 1 ≤ j ≤ mi and 1 ≤ i ≤ n,

and Φi meta-atoms for 1 ≤ i ≤ m. Docherty and Pym [47, 44] have similarly used

this class of meta-formulae to give a uniform account of proof systems for the fam-

ily of bunched logics, with application to separation logics.

The motivation for tractability is to make a certain step in the generation of

relational calculi possible, as seen in the proof of Proposition 16.9 (below).

Definition 16.6 (Tractable Theory, Semantics, Logic). A set of meta-formulae Ω is

a tractable theory iff Ω is finite and any Φ∈Ω is a negative tractable meta-sentence.

A semantics S is tractable iff it is defined by a tractable theory Ω. A propositional

logic is tractable iff it admits a tractable semantics S.

Example 16.7. The semantics for modal logic in Example 14.17 is tractable, as

witnessed by the tractable definition in Example 16.3. ■

It remains to give an algorithm that generates a relational calculus given a

tractable definition and to prove correctness of that algorithm. Fix a semantics

S := ⟨M,⊩⟩ with a tractable definition Ω. Recall that Γ ⊨ ∆ obtains iff Ω,(x : Γ)▶

(x : ∆) obtains. The relational calculus we generate is a meta-sequent calculus R

for the meta-logic expressive enough to capture all instances Ω,(x : Γ) ▶ (x : ∆),

but sufficiently restricted such that all the meta-connectives and quantifiers may be

suppressed.

16.2 Generating Relational Calculi
Intuitively, relational calculi work by unfolding validity according to clauses of se-

mantics. Therefore, proof-theoretically, they are more natural understood in terms

of Reductive Logic. Given a tractable theory Ω, we systematically turn the elements

into rules by reduction in the meta-logic (i.e., FOL). More accurately, we collapse

sequences of invertible reductions in FOL into rules that have the same overall ef-

fect. Doing this for all the clauses in Ω yields a proof system that encapsulates its

content.
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By generic hereditary reduction on a meta-formula Φ we mean the indefinite

use of reduction operators from G3c on Φ and the generated sub-formulae, until

they are meta-atoms, beginning with a meta-sequent Φ,Π ▷Σ, with generic Π and

Σ. For example, the following is a generic hereditary reduction for (ANB)O(CND)

with A, B, C, and D as meta-atoms:

A,B,Π▷Σ

(ANB),Π▷Σ
⇑ NR

C,D,Π▷Σ

(CND),Π▷Σ
⇑ NR

(ANB)O(CND),Π▷Σ
⇑ OR

Such reductions are collapsed into synthetic rules, which is the rule-relation tak-

ing the putative conclusion to the premisses — see Chaudhuri et al. [35, 34] and

Marin [135]. The above instance collapses to the following:

A,B,Π▷Σ C,D,Π▷Σ

(ANB)O(CND),Π▷Σ

The quantifier rules have side-conditions in order to be applicable, and we assert

these conditions in the synthetic rule. For example, when using ∀L when doing

generic hereditary reduction on ∀XΦ, we require that the term T for which the

variable X is substituted in Φ is already present in the meta-sequent; for example let

Φ := (A(X)NB(X))O(C(X)ND(X)), we have the following synthetic rule for ∀XΦ

with the side condition that T occurs in either Π or Σ:

A(T ),B(T ),Π▷Σ C(T ),D(T ),Π▷Σ

∀X(A(X)NB(X)O(C(X)ND(X)),Π▷Σ

Definition 16.8 (Sequent Calculus for a Tractable Theory). Let Ω be a tractable

theory. The sequent calculus G3c(Ω) is composed ax,⊥,cL, cR, and the the synthetic

rules for the meta-formulae in Ω.

The tractability condition is designed such that the following holds:

Proposition 16.9. Let Ω be a tractable definition and let Π and Σ be multisets of

meta-atoms,

Ω,Π⊢G3c Σ iff Ω,Π⊢G3c(Ω) Σ
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Proof. Assume Ω,Π⊢G3c Σ. Without loss of generality — see, for example, Liang

and Miller [131] and Marin et al. [135] — there is a focused G3c+cR+cL-proof D

of Ω,Π ▷Σ, meaning that invertible rules are used eagerly and non-invertible rules

are used hereditarily. We can assume that D is focused upto possibly using instance

of cL or cR. That is, D is structured by sections of alternating phases of the following

kind:

- an instance of cL or cR

- hereditary reduction on positive meta-formulae on the right and negative

meta-formulae on the left

- eager reduction on negative meta-formulae on the right and positive meta-

formulae on the left.

Since Π and Σ are composed of meta-atoms and Ω is composed of negative meta-

formulae, D begins by a contraction and then hereditary reducing on some Φ ∈ Ω.

Since Φ is tractable, this section in D may be replaced by the synthetic rule for

Φ. Doing this to all the phases in D yields a tree of sequents D′ that witnesses

Ω,Π⊢G3c(Ω) Σ.

Assume Ω,Π⊢G3c(Ω) Σ. Since all the rules in G3c(Ω) are admissible in G3c,

we immediately have Ω,Π⊢G3c Σ.

Example 16.10. Consider the tractable theory ΩK in Example 16.3. The sequent

calculus G3c(ΩK) contains, among other things, the following rules corresponding

to the clause for ∧ in Figure 16.1 in which w, ϕ , and ψ already occur in Ω, Π, or

Σ:
Ω,Π▷Σ,(w : ϕ ∧ψ) Ω,(w : ϕ),(w : ψ),Π▷Σ

Ω,Π▷Σ

Ω,Π,(w : ϕ ∧ψ)▷Σ Ω,Π▷Σ,(w : ϕ) Ω,Π▷Σ,(w : ψ)

Ω,Π▷Σ

Of course, in practice, one does not use the rules in this format. Rather, one would

only apply the rules if one already knew that the left-branch would terminate; that
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is, one uses the following:

Ω,(w : ϕ),(w : ψ),(w : ϕ ∧ψ),Π▷Σ

Ω,(w : ϕ ∧ψ),Π▷Σ

Ω,Π▷Σ,(w : ϕ ∧ψ),(w : ϕ) Ω,Π▷Σ,(w : ϕ ∧ψ),(w : ψ)

Ω,Π▷Σ,(w : ϕ ∧ψ)

This simplification can be made systematically according to the shape of the meta-

formula generating the rules; it corresponds to forward-chaining and back-chaining

in the proof-theoretic analysis of the meta-formula — see, for example, Marin et

al. [135].

One desires a systematic account of the transformation of rules of arbitrary

shape into rules of other (more desirable) shape. This remains to be considered in

the context of relational calculi and demands further analysis on the structure of

Ω. Some results of such transformations for arbitrary sequent calculi have been

provided by Indrejczak [107]. ■

The calculus G3c(Ω) is a restriction of G3c precisely encapsulating the proof-

theoretic behaviours of the meta-formulae in Ω. It remains to suppress the logi-

cal constants of the meta-logic entirely, and thereby yield a relational calculus ex-

pressed as a labelled sequent calculus for the propositional logic.

Definition 16.11 (Relational Calculus for a Tractable Theory). Let Ω be a tractable

theory. The relational calculus for Ω is the sequent calculus R(Ω) that results from

G3c(Ω) by suppressing Ω.

Theorem 16.12 (Soundness & Completeness). Let S be a tractable semantics and

let Ω be a tractable definition for S.

Γ ⊨S ∆ iff (x : Γ)⊢R(Ω) (x : ∆)
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Proof. We have the following:

Γ ⊨S ∆ iff Ω,(x : Γ)▶ (x : ∆) (Definition 16.6)

iff Ω,(x : Γ)⊢G3c (x : ∆) (Proposition 3.4)

iff Ω,(x : Γ)⊢G3c(Ω) (x : ∆) (Proposition 16.9)

It remains to show that Ω,(x : Γ)⊢G3c(Ω) (x : ∆) iff (x : Γ)⊢R(Ω) (x : ∆).

Let D be a G3c(Ω)-proof of Ω,(x : Γ) ▷ (x : ∆), and let D′ be the result of

removing Ω from every meta-sequent in D. By Definition 16.11, we have that

D′ is a R(Ω)-proof of (x : Γ) ▷ (x : ∆). Thus, Ω,(x : Γ)⊢G3c(Ω) (x : ∆) implies (x :

Γ)⊢R(Ω) (x : ∆).

Let D be a R(Ω)-proof of (x : Γ)▷ (x : ∆), and let D′ be the result of putting Ω

in every meta-sequent in D. By Definition 16.11, we have that D′ is a G3c(Ω)-proof

of Ω,(x : Γ)▷ (x : ∆). Thus, (x : Γ)⊢R(Ω) (x : ∆) implies Ω,(x : Γ)⊢G3c(Ω) (x : ∆).

This theorem is deceptively simple. The setup is designed to yield it, in par-

ticular the notion of tractability. It is this theorem that delivers the approach to

completeness in Chapter 10, bypassing term- and counter-model constructions. In

Chapter 17, we use it to study the semantics of IPL.

Example 16.13. The sequent calculus in Example 16.10 becomes a relational cal-

culus R(ΩK) by suppressing Ω in the rules; for example,

Ω,Π▷Σ,(w : ϕ ∧ψ) Ω,(w : ϕ),(w : ψ),Π▷Σ

Ω,Π▷Σ

becomes
Π▷Σ,(w : ϕ ∧ψ) (w : ϕ),(w : ψ),Π▷Σ

Π▷Σ

Abbreviating ¬□¬Φ by ♢Φ and doing some proof-theoretic analysis on R(ΩK), we

have the simplified system RK in Figure 16.2. This is, essentially, the relational

calculus for K introduced by Negri [147]. ■

While we have effectively transformed (tractable) semantics into relational cal-

culi, giving a general, uniform, and systematic proof theory to an ample space of
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Φ,Π▷Σ,Φ
ax ⊥,Π▷Σ

⊥R

(x : ϕ),(x : ψ),Π▷Σ

(x : ϕ ∧ψ),Π▷Σ
∧L

Π▷Σ,(x : ϕ) Π▷Σ,(x : ψ)

Π▷Σ,(x : ϕ ∧ψ)
∧R

(x : ϕ),Π▷Σ (x : ψ),Π▷Σ

(x : ϕ ∨ψ),Π▷Σ
∨L

Π▷Σ,(x : ϕ),(x : ψ)

Π▷Σ,(x : ϕ ∨ψ)
∨R

(y : ϕ),(x :□ϕ),xRy,Π▷Σ

(x :□ϕ),xRy,Π▷Σ
□L

xRy,Π▷Σ,(y : ϕ)

Π▷Σ,(x :□ϕ)
□R

xRy,(y : ϕ),Π▷Σ

(x : ♢ϕ),Π▷Σ
♢L

xRy,Π▷Σ,(x : ♢ϕ),(y : ϕ)

xRy,Π▷Σ,(x : ♢ϕ)
⋄R

⊥,Π▷Σ

(x : ⊥),Π▷Σ
⊥L

⊥,Π▷Σ,⊥
Π▷Σ,(x : ⊥)

⊥R

(x : Γ),(x : Γ′),Π▷Σ

(x : Γ , Γ′),Π▷Σ
,L

Π▷Σ,(x : ∆),(x : ∆′)

Π▷Σ,(x : ∆ #∆′)
#R

Figure 16.2: Relational Calculus RK

logics, significant analysis remains to be done. In Example 16.13, we showed that

under relatively mild conditions, one expects the relational calculus to have a par-

ticularly good shape. This begs for further characterization of the definitions of

semantics and what properties one may expect the resulting relational calculus to

have; the beginnings of such an analysis are given below Definition 16.2 in which

we require Ω to contain a first-order definition of frames together with an inductive

definition of the semantics. Thus, the algorithm herein presents a wide platform

in which logics and their proof theory may be analysed. In particular, following

the treatment of BI in Chapter 10, this platform offers a new approach to proving

soundness and completeness that bypasses term- or counter-model constructions

entirely.

16.3 Faithfulness & Adequacy
In this section, we give sufficient conditions for faithfulness and adequacy of a

relational calculus with respect to a sequent calculus. More precisely, we give con-

ditions under which one may transform a relational calculus into a sequent calculus
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for the object-logic. The result is immediate proof of soundness and completeness

for the sequent calculus concerning the semantics; significantly, it bypasses term-

or counter-model construction. This is precisely the method used in Chapter 10.

While the work of the preceding section generates a relational calculus, one

may require some proof theory to yield a relational calculus that meets the condi-

tions in this section, faithfulness and adequacy. Likewise, one may require proof

theory on the generated sequent calculus to yield a sequent calculus one recognizes

as sound and complete with respect to a logic of interest. We do not consider these

problems here.

Our objective is to systematically transform (co-)inferences in the relational

calculus into (co-)inferences of the propositional logic. Regarded as constraint sys-

tems, relational calculi do not have any side-conditions on inferences; instead, all

of the constraints are carried within sequents. Thus we do not need to worry about

assignments and aim only to develop a valuation ν .

Fix a propositional logic ⊢ and relational calculus R. We assume the proposi-

tional logic has data-constructors ◦ and • such that

Γ◦Γ′⊢∆ iff (w : Γ)N(w : Γ′)⊢R (w : ∆)

and

Γ⊢∆•∆′ iff (w : Γ)⊢R (w : ∆)O(w : ∆′)

This means that the weakening, contraction, and exchange structural rules are ad-

missible for ◦ and • on the left and right, respectively. In particular, these data-

constructors behave like classical conjunction and disjunction, respectively.

Example 16.14. The logic with relational calculus RK satisfies the data-constructor

condition — specifically, , is conjunctive and # is disjunctive. ■

A list of meta-formulae is monomundic iff it only contains one world-variable

(but possibly many occurrences of that world-variable; we write Πw or Σw to denote

monomundic lists containing the world-variable w. A monomundic list is basic iff

it only contains meta-atoms of the form (w : Γ), which is denoted Π̄w or Σ̄w.
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Definition 16.15 (Basic Validity Sequent). A basic validity sequent (BVS) is a pair

of basic monomundic lists, Π̄w ▷ Σ̄w.

Definition 16.16 (Basic Rule). A rule in a relational calculus is basic iff it is a rule

over BVSs — that is, it has the following form:

Π̄
w1
1 ▷Σ

w1
1 ... Π̄wn

n ▷Σwn
n

Π̄w ▷Σw

Definition 16.17 (Basic Relational Calculus). A relational calculus r is basic iff it

is composed of basic rules.

Using the data-structures • and ◦, a BVS intuitively corresponds to a sequent

in the propositional logic. Define ⌊−⌋◦ and ⌊−⌋• on basic monomundic lists as

follows:

⌊(w : Γ1), ...,(w : Γm)⌋◦ := Γ1 ◦ ...◦Γm ⌊(w : ∆1), ...,(w : ∆n)⌋• := ∆1 • ...•∆n

We can define ν on BVSs by this encoding,

ν(Π̄w ▷ Σ̄
w) := ⌊Π̄

w⌋▷ ⌊Σ̄
w⌋

The significance is that whatever inference is made in the semantics using BVSs

immediately yields an inference it terms of propositional sequents.

Let r be a basic rule, its propositional encoding ν(r) is the following:

ν(Π̄w1
1 ▷Σ

w1
1 ) ... ν(Π̄wn

n ▷Σwn
n )

ν(Π̄w ▷Σw)

This extends to basic relational calculi pointwise,

ν(R) := {ν(r) | r ∈ R}

Despite their restrictive shape, the possible world semantics of logics in the

literature typically yield basic rules. For example, if the body of a clause is com-
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posed of only conjunctions and disjunctions of assertions, the rules generated by the

algorithm presented above will be basic. Sets of basic rules can sometimes replace

more complex rules in relational calculi to yield a basic relational calculus from a

non-basic relational calculus — see Chapter 10 and Chapter 17 for examples.

We are thus in a situation where the rules of a reduction system intuitively

correspond to the rules of a sequent calculus. The formal statement of this is below.

Theorem 16.18. A basic relational calculus R is faithful and adequate with respect

to its propositional encoding ν(R).

Proof. The result follows by Definition 15.15 because a valuation of an instance of

a rule in R corresponds to an instance of a rule of R on the states of the sequents

involved. In paritcular, faithfulness follows by application of ν on R-proofs; that

is, for any R-reduction D, one produces a corresponding ν(R)-proof by apply ν to

each sequent in D. Meanwhile, adequacy follows by introducing arbitrary world-

variables into a ν(R)-proof. Let D be a ν(R)-proof, it concludes by an inference of

the following form:

D1
ν(Π̄w1

1 ▷Σ
w1
1 ) ...

Dn
ν(Π̄wn

n ▷Σwn
n )

ν(Π̄w ▷Σw)

We can co-inductively define a corresponding R-with the following co-recursive

step in which Ri is the reduction corresponding to Di:

R1
Π̄

w1
1 ▷Σ

w1
1 ...

Rn
Π̄wn

n ▷Σwn
n

Π̄w ▷Σw

Hence, for any ν(R)-proof, there is a R-reduction R such that ν(R) = D, as re-

quired.

Of course, despite basic rules being relatively typical, many relational calculi

are not comprised of only basic rules. Nonetheless, the phenomenon does occur for

even quite complex logic. It can be used for the semantical analysis of that logic in
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those instances — see, for example, Chapter 10.



Chapter 17

Synthesizing Semantics for

Intuitionistic Propositional Logic

In Chapter 16, we gave a general, uniform, and systematic procedure for generating

proof systems for logics with model-theoretic semantics satisfying certain condi-

tions. What about the reverse problem? Given a proof-theoretic characterization

of a propositional logic, can we to derive a model-theoretic semantics for it? This

chapter provides an example of such a derivation for intuitionistic propositional

logic (IPL).

We begin from a naive position on IPL. Our definition of IPL is by LJ — see

Gentzen [200]. We choose this over other systems (e.g., G3i — see Troelstra and

Schwichtenberg [207]) because we assume that we do not even know much about

its proof theory so that we may explain through the analysis what we require. In

the end, we recover the model-theoretic semantics by Kripke [124] using constraint

systems as the enabling technology. Of course, we shall imagine that we do not

know the semantics.

Reflecting on Chapter 16, we expect the semantics we synthesize for IPL will

be tractable. Therefore, we intend to build a relational calculus to bridge the proof

theory and semantics of IPL as in Chapter 16, but this time we build it from the proof

theory side. Recall that relational calculi are fragments of proof systems for FOL

(i.e., the meta-logic). Therefore, in Section 17.1, we begin by building a constraint

system for IPL that is classical in shape using ACSs. The system is derived in
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a principled way from this desire, but it is only sound and complete for IPL. We

require it to be faithful and adequate for LJ because we hope to generate a clause

for each connective from its rules. Hence, in Section 17.2, we analyze the constraint

system to recover a faithful and adequate constraint system for IPL. In Section 17.3,

we study the reductive behaviour of connectives of IPL in this constraint systems

and write tractable FOL-formulae that capture the same behaviour in G3c. The

resulting theory Ω determines a model-theoretic semantics for IPL, as shown in

Section 17.4.

17.1 Multiple-conclusions via Boolean Constraints
While we have given the background to IPL in Chapter 2 according to the setup

of ACSs. This allows us to expose essential details in its behaviour. Its syntax is

provided by an alphabet J.

Definition 17.1 (Alphabet J). The alphabet J := ⟨P,{∧,∨,→,¬},{,, #,∅}⟩, in

which symbols ∧,∨,→, ,, # have arity 2, the symbol ¬ has arity 1, and ∅ has ar-

ity 0.

Let ≡ be the smallest relation satisfying commutative monoid equations for ,

and # with unit ∅.

Definition 17.2 (Sequent Calculus LJ). Sequent calculus LJ is comprised of the

rules in Figure 17.1, in which ∆ is either a J-formula ϕ or ∅, and Γ ≡ Γ′ and

∆ ≡ ∆′ in e.

In this chapter, provability in LJ defines the consequence relation ⊢LJ for IPL.

We desire to use ACSs to present IPL in a sequent calculus with classical shape.

The constraints inform us of where the semantics of IPL diverge from those of

FOL, which enables us to write down a theory that restricts abstractions to some

class of structures that are the models of IPL.

The sequent calculus for classical logic closest to LJ is Gentzen’s LK [200].

The points of departure are in cR, →L, and ¬L. These rules enable multiple-

conclusion sequents to appear in the latter but not the former. We enrich LK with

Boolean constraints (similarily to Chapter 13) to express this difference.
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Γ▷∆

ϕ , Γ▷∆
wL

Γ▷∅
Γ▷ϕ

wR
ϕ , ϕ , Γ▷∆

ϕ , Γ▷∆
cL

Γ′ ▷∆′

Γ▷∆
e

Γ▷ϕ Γ▷ψ

Γ▷ϕ ∧ψ
∧R

ϕ , Γ▷∆

ϕ ∧ψ , Γ▷∆
∧1
L

ψ , Γ▷∆

ϕ ∧ψ , Γ▷∆
∧2
L

ϕ , Γ▷∅
Γ▷¬ϕ

¬R

ϕ , Γ▷∆ ψ , Γ▷∆

ϕ ∨ψ , Γ▷∆
∨L

Γ▷ϕ

Γ▷ϕ ∨ψ
∨1
R

Γ▷ψ

Γ▷ϕ ∨ψ
∨2
R

Γ▷ϕ

¬ϕ , Γ▷∅
¬L

ϕ , Γ▷ψ

Γ▷ϕ → ψ
→R

Γ1 ▷ϕ ψ , Γ2 ▷∆

ϕ → ψ , Γ1 , Γ2 ▷∆
→L

ϕ ▷ϕ
ax

Figure 17.1: Sequent Calculus LJ

Example 17.3. The following is an enriched J-sequent.

(Γ ·1) , (ϕ · x)▷ (∆ · x̄) # (ψ · x)

■

For the rules that are the same across both systems (e.g., ∧I), the expressions

are inherited from the justifying sub-formulae of the conclusion; for example, one

has the following:

Γ▷ϕ Γ▷ψ

Γ▷ϕ ∧ψ
∧R becomes

Γ▷∆ # (ϕ · x) Γ▷∆ # (ψ · x)
Γ▷∆ # (ϕ ∧ψ · x) ∧B

R

For readability, we may suppress the Boolean expressions on these rules.

Definition 17.4 (Constraint System LK⊕B). Constraint System LK⊕B is com-

prised of the rules in Figure 17.2, in which Γ and ∆ are enriched J-data, and Γ ≡ Γ′

and ∆ ≡ ∆′ in eB.

The ergo rendering LK⊕B sound and complete for IPL is the same as for

RDvBC — see Chapter 13. In this setting, it may be regarded as the demand to

choose which formulae in the succedent of a sequent to assert as a consequence of

the context. This reading is closely related to the semantics of intuitionistic proof-
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Γ▷∆

ϕ , Γ▷∆
wB
L

Γ▷∆

Γ▷∆ , ϕ
wB
R

ϕ , ϕ , Γ▷∆

ϕ , Γ▷∆
cBL

Γ▷∆ #ϕ · x #ϕ · x̄
Γ▷∆ #ϕ

cBR

Γ′ ▷∆′

Γ▷∆
eB

Γ▷∆ · x̄ , ϕ · x
¬ϕ , Γ▷∆

¬B
L

ϕ , Γ▷∆

Γ▷∆ #¬ϕ
¬B
R

Γ▷ϕ #∆ Γ▷ψ #∆

Γ▷∆ #ϕ ∧ψ
∧R

B ϕ , Γ▷∆

ϕ ∧ψ , Γ▷∆
∧B1
L

ψ , Γ▷∆

ϕ ∧ψ , Γ▷∆
∧B2
L

ϕ , Γ▷∆ ψ , Γ▷∆

ϕ ∨ψ , Γ▷∆
∨B
L

Γ▷∆ #ϕ

Γ▷∆ #ϕ ∨ψ
∨B1
R

Γ▷∆ #ψ

Γ▷∆ #ϕ ∨ψ
∨B2
R

ϕ , Γ▷∆ #ψ

Γ▷∆ #ϕ → ψ
→B

R

Γ1 ▷∆1 · x̄ , ϕ · x ψ , Γ2 ▷∆2
ϕ → ψ , Γ1 , Γ2 ▷∆1 #∆2

→B
L

x = y = 1
ϕ · x▷ϕ · y axB

Figure 17.2: (Algebraic) Constraint System LK⊕B

search provided by Pym and Ritter [173, 174].

Definition 17.5 (Choice Ergo). Let I : X →B be an interpretation of the language

of the Boolean algebra. The choice ergo is the function σI which acts on J-formulae

as follows:

σI(ϕ) 7→


ϕ if ϕ unlabelled

σI(ψ) if I(x) = 1 and ϕ = ψ · x

∅ if I(x) = 0 and ϕ = ψ · x

The choice ergo acts on enriched J-data by acting pointwise on the formulae, and

it acts on enriched sequents by acting on each component independently — that is,

σI(Γ▷∆) = σI(Γ)▷σI(∆).

Example 17.6. Let S be the sequent in Example 17.3. If I(x) = 1, then σI(S) = Γ ,

ϕ ▷ψ ■

Proposition 17.7. System LK⊕B, with the choice ergo σ , is sound and complete

for IPL,

Γ ⊢σ

LK⊕B ∆ iff Γ⊢LJ ∆

Proof of Soundness. Suppose Γ ⊢σ

LK⊕B ∆, then there is a coherent LK⊕B-reduction
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R of an enriched sequent S such that σI(S) := Γ ▷∆, where I is any assignment

satisfying R. It follows that S is equivalent (up to exchange) to the sequent Γ′ ,

Π ▷Σ # ∆′ in which Γ′ and ∆′ are like Γ and ∆ but with labelled data and I applied

to the expressions in Π and Σ evaluates to 0 but applied to expressions in Γ′ and

∆′ evaluates to 1. We proceed by induction n on the height of R — the maximal

number of reductive inferences in a branch of the tree.

- BASE CASE. If n = 1, then Γ′,Π ▷ Σ,∆′ is an instances of axB. But then

S = ϕ · x▷ϕ · y, for some formula ϕ . We have ϕ ⊢LJ ϕ by ax.

- INDUCTIVE STEP. The induction hypothesis (IH) is as follows: if Γ′ ⊢σ

LK⊕B

∆′ is witnessed by LK⊕B-reductions of k ≤ n, then Γ⊢LJ ∆.

Suppose that the shortest reduction witnessing Γ′ ⊢σ

LK⊕B ∆′ is of height n+1.

Let R be such a reduction. Without loss of generality, we assume the root

of R is of the form Γ′ , Π ▷Σ # ∆′, as above. It follows by case analysis on

the final inferences of R (i.e., reductive inferences applied to the root) that

Γ⊢LJ ∆. We show two cases, the rest being similar.

– Suppose the last inference of R was by cR
B. In this case, R has an

immediate sub-tree R′ that is a coherent LK⊕B-reduction of either

Γ′ , Σ ▷Σ′ # ∆′ or Γ′ , Σ ▷Σ′ # ∆′′, in which Σ′ and ∆′′ are like Σ and ∆′,

respectively, but with some formula repeated such that one occurrence

carries an additional expression x and the other occurrence with an x̄.

Since the two reductions have the same constraints, the coherent as-

signment of R are the same as those R′. We observe that under these

coherent assignment R′ witnesses Γ′ ⊢σ

LK⊕B ∆′. By the IH, since R′ is

of height n, it follows that Γ⊢LJ ∆.

– Suppose the last inference of R was by →R
B. In this case, R has an

immediate sub-tree R′. If the principal formula of the inference is not

in ∆′, then R′ witnesses Γ′ ⊢σ

LK⊕B ∆′. Hence, by the IH, we conclude

that Γ⊢LJ ∆. If the principal formula of the inference is in ∆′, then R′ is

a proof of ϕ , Γ′ , Π▷Σ #∆′′ #ψ , where ∆′ := ∆′′ #ϕ → ψ . It follows, by
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the IH, that ϕ,Γ′⊢LJ ∆′′ #ψ . By the →R-rule in LJ, we have Γ⊢LJ ϕ → ψ

— that is, Γ⊢LJ ∆, as required.

This completes the case analysis.

This completes the induction.

Proof of Completeness. This follows immediately from the fact that all the rules of

LJ may be simulated in LK⊕B.

The point of this work is that LK⊕B characterizes IPL in a way that is com-

binatorially comparable to FOL. This is significant as the semantics of IPL is given

classically; hence LK⊕B bridges the proof-theoretic and model-theoretic charac-

terizations of IPL.

17.2 Faithfulness & Adequacy
Though we may use LK⊕B to reason about IPL with classical combinatorics, the

system does not immediately reveal the meaning of the connectives of IPL in terms

of their counterparts in FOL. The problem is that LK⊕B-proofs are only globally

valid for IPL, for the choice ergo σ . Therefore, to conduct a semantical analysis of

IPL in terms of FOL, we require a constraint system based on FOL whose proofs are

locally valid — that is, a system which is not only sound and complete for IPL, but

faithful and adequate. In this section, we analyze the relationship between LK⊕B

and LJ to produce such a system.

A significant difference between LK and LJ is the use of richer data-structures

for the suceedent in the former than in the latter (i.e., list or multi-sets vs formulae).

Intuitively, the data-constructor in the succeedent acts as a meta-level disjunction,

thus we may investigate how LK⊕B captures IPL by considering how cBR interacts

with ∨B
R. We may restrict attention to interactions of the following form:

Γ▷∆ # (ϕ · x) # (ψ · x̄)
Γ▷∆ # (ϕ · x) # (ϕ ∨ψ · x̄) ∨B2

R

Γ▷∆ # (ϕ ∨ψ · x) # (ϕ ∨ψ · x̄) ∨B1
R

Γ▷∆ #ϕ ∨ψ
cBR
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These may be collapsed into single inference rules,

Γ▷ϕ · xy #ψ · xȳ #∆

Γ▷ϕ ∨ψ · x , ∆

The other connectives either make use of constraints and, therefore, have no signif-

icant interaction with disjunction or can be permuted without loss of generality —

for example, a typical interaction between cBR and ∧B
R,

Γ▷∆1 #ϕ #ϕ Γ▷∆2 #ϕ #ψ

Γ▷∆1 #∆2 #ϕ #ϕ ∧ψ
∧B
R

Γ▷∆1 #∆2 #ϕ ∧ψ #ϕ
eBR Γ▷∆3 #ψ

Γ▷∆1 #∆2 #∆3 #ϕ ∧ψ #ϕ ∧ψ
∧B
R

Γ▷∆1 #∆2 #∆3 #ϕ ∧ψ
cBR

may be replaced by the derivation, which permutes the inferences,

Γ▷∆1 #ϕ #ϕ

Γ▷∆1 #ϕ #ϕ #∆2
wB
R

Γ▷∆1 #ϕ #∆2 #ϕ
eBR

Γ▷∆1 #∆2 #ϕ #ϕ
eBR

Γ▷∆1 #∆2 #ϕ
cBR Γ▷∆3 #ψ

Γ▷∆1 #∆2 #∆3 #ϕ ∧ψ
∧B
R

This analysis allows us to eliminate cBR as it is captured wherever the augmented

rule for disjunction needs it; similarly, we may eliminate cBL by incorporating it in

the other rules. This yields a new constraint system, LK+⊕B.

Definition 17.8 (System LK+ ⊕B). System LK+ ⊕B is given in Figure 17.3, in

which Γ and ∆ are enriched J-datum, and Γ ≡ Γ and ∆ ≡ ∆′ in e.

System LK+ ⊕B characterizes IPL locally — that is, it is faithful and ade-

quate for some sequent calculus for IPL. That sequent calculus, however, is not

LJ, but rather a multiple-conclusion system LJ+. Essentially, LJ+ is the multiple-

conclusion sequent calculus introduced by Dummett [52] with particular instances

of the structural rules incorporated into the operational rules.
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ϕ , Γ▷∆ #ϕ
ax Γ▷∆

ϕ , Γ▷∆
wB
L

Γ▷∆

Γ▷∆ #ϕ
wB
R

ϕ , ϕ , Γ▷∆

ϕ , Γ▷∆
cBL

Γ′ ▷∆′

Γ▷∆
eB

Γ▷∆ #ϕ

¬ϕ #Γ▷∆
¬B
L

ϕ · xy , Γ▷∆ xy = 1
Γ▷∆ #¬ϕ · x ¬B

R

ϕ , ψ , Γ⊢∆

ϕ ∧ψ , Γ▷∆
∧B
L

Γ▷∆ #ϕ Γ▷∆ #ψ

Γ▷∆ #ϕ ∧ψ
∧B
R

ϕ , Γ▷∆ ψ , Γ▷∆

ϕ ∨ψ , Γ▷∆
∨B
L

Γ▷ϕ · xy #ψ · xȳ #∆

Γ▷ϕ ∨ψ · x #∆
∨B
R

Γ▷∆ #ϕ ψ , Γ▷∆

ϕ → ψ , Γ▷∆
→B

L

Γ , ϕ · xy▷ψ · xy #∆ xy = 1
Γ▷ϕ → ψ · x #∆

→B
R

Figure 17.3: Constraint System LK+⊕B

ϕ , Γ▷∆ #ϕ
ax Γ▷∆

ϕ , Γ▷∆
wL

Γ▷∆

Γ▷∆ #ϕ
wR

ϕ , ϕ , Γ▷∆

ϕ , Γ▷∆
cL

Γ′ ▷∆′

Γ▷∆
e

Γ▷∆ #ϕ

¬ϕ , Γ▷∆
¬L

ϕ , Γ▷∅
Γ▷∆ #¬ϕ

¬R

ϕ , ψ , Γ▷∆

ϕ ∧ψ , Γ▷∆
∧L

Γ▷∆ #ϕ Γ▷∆ #ψ

Γ▷∆ #ϕ ∧ψ
∧R

ϕ , Γ▷∆ ψ , Γ▷∆

ϕ ∨ψ , Γ▷∆
∨L

Γ▷ϕ #ψ #∆

Γ▷ϕ ∨ψ #∆
∨R

Γ▷∆ #ϕ ψ , Γ▷∆

ϕ → ψ , Γ▷∆
→L

Γ #ϕ ▷ψ

Γ▷ϕ → ψ #∆
→R

Figure 17.4: Sequent Calculus LJ+

Definition 17.9 (Sequent Calculus LJ+). Sequent calculus LJ+ is given by the rules

in Figure 17.4, in which Γ and ∆ are J-datum, and Γ ≡ Γ′ and ∆ ≡ ∆′ in e.

Proposition 17.10. Sequent calculus LJ+ is sound and complete for IPL,

Γ⊢LJ ϕ iff Γ⊢LJ+ ϕ
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Proof. Follows from Dummett [52].

The choice ergo σ extends to a valuation from LK+⊕B to LJ+ by pointwise

application to every sequent within the reduction.

Proposition 17.11. System LK+ ⊕B, with valuation σ , is faithful and adequate

with respect to LJ+.

Proof. Faithfulness follows from the observation that each rule in LK+ ⊕B pro-

duces the corresponding rule in LJ+ when its constraints are observed. Adequacy

follows from the observation that every instance of every rule in LJ+ is an evaluation

of an instance of a rule of LK+⊕B respecting its constraints.

The force of this result is that we may use LK+ ⊕B to study intuitionistic

connectives in terms of their classical counterparts. This analysis allows us to syn-

thesize a model-theoretic semantics for IPL from the semantics of FOL.

17.3 Synthezising the Semantics
We desire to construct a set of meta-formulae Ω that forms a tractable definition of

a semantics for IPL. The idea is that we use LK+⊕B to determine meta-formulae

for each connective such that simulates the rules for IPL in LJ+ within LK+; for ex-

ample, the meta-formula for → in Ω should impose the single-conclusion condition

for →R.

We observe in LK+⊕B that intuitionistic conjunction has the same inferential

behaviour as classical conjunction,

Γ▷∆ #ϕ Γ▷∆ #ψ

Γ▷∆ #ϕ ∧ψ
∧B
R vs.

Π▷Σ,Φ Π▷Σ,Ψ
Π▷Σ,ΦNΨ

NR

Therefore, ∧ in IPL should be defined as N in FOL. A candidate meta-formula

governing the connective is the universal closure of the following:

(w : ϕ̂ ∧ ψ̂) iff (w : ϕ̂)N(w : ψ̂)

— we use the convention in Section 16 in which ϕ̂ and ψ̂ are used as meta-variables
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for formulae of the object-logic. This is the appropriate clause for the connective as

it enables the following behaviour in the meta-logic:

Ω,Π,(w : Γ)▷ (w : ϕ),Σ Ω,Π,(w : Γ)▷ (w : ψ),Σ

Ω,Π,(w : Γ)▷ (w : ϕ)N(w : ψ),Σ
NR

Ω,Π,(w : Γ)▷ (w : ϕ ∧ψ),Σ
resR

Recall, such derivations correspond to the use of the clause — see Section 16.2

— which may be collapsed into rules themselves. In this case, it becomes the

following:

Ω,Π,(w : Γ)▷ (w : ϕ),Σ Ω,Π,(w : Γ)▷ (w : ψ),Σ

Ω,Π,(w : Γ)▷ (w : ϕ ∧ψ),Σ
∧-clause

Intuitively, this rule precisely recovers ∧R ∈ LJ+,

Γ▷∆ #ϕ Γ▷∆ #ψ

Γ▷∆ #ϕ ∧ψ
∧R

Of course, it is essential to check that the clause also has the correct behaviour on

the left-hand side of sequents; that is, this clause also simulates ∧L.

We obtain the universal closure of the following for the clauses governing dis-

junction (∨) and (⊥) analogously:

(x : ϕ̂ ∨ ψ̂)⇔
(
(x : ϕ̂)O(x : ψ̂)

)
(x : ⊥)⇔⊥

It remains to analyze implication (→). The above reasoning does not fol-

low mutatis mutandis because the constraints in LK+⊕B becomes germane, so we

require something additional to get the appropriate simulation. Consider →B
R in

LK+⊕B,
Γ , (ϕ · xy)▷ (ψ · xy) #∆ xy = 1

Γ▷ (ϕ → ψ · x) #∆
→B

R

Since LK+⊕B is not only sound and complete for IPL but faithful and adequate, we

know that this rule characterizes the connective. The rule admits two assignment
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classes: x 7→ 0 or x 7→ 1. Super-imposing these valuations can capture the behaviour

we desire in the meta-logic on each other by using possible worlds to distinguish

the possible cases,

Ω,Π[w 7→ u],Π[w 7→ v],(u : ϕ)▷ (u : ψ),Σ[w 7→ v],Σ[w 7→ u]
Ω,Π▷ (w : ϕ → ψ),Σ

We assume that since u and v are distinct, they do not interact so that the rule

captures the following possibilities:

Ω,Π[w 7→ u],(u : ϕ)▷ (u : ψ),Σ[w 7→ u]
Ω,Π▷ (w : ϕ → ψ),Σ

Ω,Π[w 7→ v]▷Σ[w 7→ v]
Ω,Π▷ (w : ϕ → ψ),Σ

The assumption is proved valid below — see Proposition 17.18. Intuitively, these

capture the possible cases of →B
R. This justifies that this super-imposing behaviour

is what we desire of the clause governing implication. It remains only to find that

clause.

One of these possible behaviours amounts to a weakening — that is, reading

reductively, we remove (w : ϕ → ψ) from the succeedent — a behaviour already

present through interpreting the data-structures as classical conjunction and disjunc-

tion.

The other possible behaviour we recognize as having the combinatorial be-

haviour of classical implication concerns creating a meta-formula in the antecedent

of the premiss by taking part in a meta-formula in the succeedent of the conclusion.

Naively, we may consider the following as the clause:

(w : ϕ̂ → ψ̂) iff
(
(w : ϕ̂)⇒ (w : ψ̂)

)
However, this fails to account for the change in the world. Thus, we require the

clause to have a universal quantifier over worlds and a precondition that enables the

Π[w 7→ u] substitution. Analyzing the possible use cases, we observe that R must

satisfy reflexivity so that the substitution for u may be trivial (e.g., when validating

(w : ϕ ∧(ϕ → ψ))▷(w : ψ)). In total, we have the universal closure of the following
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meta-formulae:

(x : ϕ̂ → ψ̂) iff ∀y
(
(xRy)N(y : ϕ̂)⇒ (y : ψ̂)

)
xRx xRy ⇒∀Γ̂

(
(x : Γ̂)⇒ (y : Γ̂)

)
We have introduced an ancillary relation R precisely to recover the behaviour de-

termined by the algebraic constraints. Since the data-constructors behave exactly

as conjunction (∧) and disjunction (∨), we may replace Γ̂ with ϕ̂ without loss of

generality.

This concludes the analysis. Altogether, the meta-formulae thus generated

comprise a tractable definition for a model-theoretic semantics for IPL, called ΩIPL.

Any abstraction of this theory gives the semantics.

Definition 17.12 (Intuitionistic Frame, Satisfaction, and Model). An intuitionistic

frame is a pair F := ⟨U,R⟩ in which R is a reflexive relation on U.

Let J−K be an interpretation mapping J-atoms to U. Intuitionistic satisfac-

tion is the relation between elements w ∈ U and ϕ ∈ F defined by the clauses of

Figure 17.5.

A pair ⟨F ,J−K⟩ is an intuitionistic model iff it is persistent — that is, for any

J-formula ϕ and worlds w and v,

if wRv and w ⊩ ϕ , then v ⊩ ϕ

The class of all intuitionistic models is K.

This semantics generates the following validity judgment:

Γ ⊨ ∆ iff for any M ∈ K and any w ∈M, if w ⊩ Γ, then w ⊩ ∆

It remains to prove soundness and completeness for the semantics — see Sec-

tion 17.4 below. Of course, we have designed the semantics so that it corresponds

to LJ+.

As a remark, tertium non datur is known not to apply in IPL. How does encod-
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w ⊩ p iff w ∈ [[p]]

w ⊩ ϕ ∧ψ iff w ⊩ ϕ and w ⊩ ψ

w ⊩ ϕ ∨ψ iff w ⊩ ϕ or w ⊩ ψ

w ⊩ ϕ → ψ iff for any u, if wRu and u ⊩ ϕ , then u ⊩ ψ

w ⊩⊥ never

Figure 17.5: Satisfaction for IPL

ing of IPL within classical logic avoid it? It is instructive to study this question as it

explicates the clause for implication, which defines the intuitionistic connective in

terms of a (meta-level) classical one.

Example 17.13. The following reduction is a canonical instance of using the

clause:

ΩIPL,(wRu),(u : ϕ)▷ (w : ϕ),⊥
NL

ΩIPL,(wRuNu : ϕ)▷ (w : ϕ),⊥ ⇒R
ΩIPL ▷ (w : ϕ),(wRuNu : ϕ ⇒⊥)

∀R
ΩIPL ▷ (w : ϕ),∀x(wRxNx : ϕ ⇒⊥)

→-clause
ΩIPL ▷ (w : ϕ),(w : ϕ →⊥)

OR
ΩIPL ▷ (w : ϕ)O(w : ϕ →⊥)

∨-clause
ΩIPL ▷ (w : ϕ ∨ϕ →⊥)

Since (u : ϕ) in the antecedent and (w : ϕ) in the succedent are different atoms

since u and w are different world-variables, one has not reached an axiom. In short,

despite working in a classical system, the above calculation witnesses that ϕ ∨¬ϕ

is valid in IPL if and only if one already knows that ϕ is valid in IPL or one already

knows that ¬ϕ is valid in IPL. ■

The underlying conceit of this construction of the semantics is that the rules of

LJ+ define the logical constants of IPL, in some sense. The idea that the meaning

of a logical constant is determined by its rules is the subject of Part III.
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17.4 Soundness & Completeness
Since the semantics generated in this chapter is the one given by Kripke [124],

its soundness and completeness is known. Nonetheless, the method by which the

semantics was determined gives a different method for establishing this relationship

— namely, as an instance of the work in Chapter 16 (see also Chapter 10). We shall

concentrate on completeness.

Theorem 17.14 (Soundness). If Γ⊢ϕ , then Γ ⊨ ϕ .

Proof. This was shown by Kripke [125]. One may also apply the traditional induc-

tive proof — see, for example, Van Dalen [211]. Otherwise, use the bisimulation

techniques of Chapter 6.

In this paper, we shall prove completeness symmetrically. We show that the

relational calculus generated by the semantics is adequate for a sequent calculus

characterizing IPL. This suffices because the relational calculus is sound and com-

plete for the semantics, as per Theorem 16.12. To simplify the presentation, we shall

have contraction explicit in the relational calculus for ΩIPL rather than implicit.

Definition 17.15 (Relational Calculus RJ). The relational calculus RJ is comprised

of the rules in Figure 17.6 — Φ denotes a meta-formula, Π and Σ denote multiset

of meta-formulae, x and y denote world-variables, ∆ denotes object-logic data, ϕ

and ψ denote object-logic formulae. The rules ,L and #R are invertible, and the

world-variable y does not appear elsewhere in the sequents in →R.

Corollary 17.16. Γ ⊨ ∆ iff Γ ⊢σ

IPL ∆

Proof. Instance of Theorem 16.12.

We desire to transform RJ into a sequent calculus for which it is adequate,

which we may then show is a characterization of IPL. Such transformations are

discussed in Section 17.2, but the rules of IPL are slightly too complex for the pro-

cedure of that section to apply immediately. Therefore, we require some additional

meta-theory.
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Φ,Φ,Π▷Σ

Φ,Π▷Σ
c

Φ,Π▷Σ,Φ
ax ⊥,Π▷Σ

⊥
Π▷Σ,xRx ref

(x : ϕ),(x : ψ),Π▷Σ

(x : ϕ ∧ψ),Π▷Σ
∧L

Π▷Σ,(x : ϕ) Π▷Σ,(x : ψ)

Π▷Σ,(x : ϕ ∧ψ)
∧R

(x : ϕ),Π▷Σ (x : ψ),Π▷Σ

(x : ϕ ∨ψ),Π▷Σ
∨L

Π▷Σ,(x : ϕ),(x : ψ)

Π▷Σ,(x : ϕ ∨ψ)
∨R

Π▷Σ,(xRy) Π▷Σ,(y : ϕ) (y : ψ),Π▷Σ

(x : ϕ → ψ),Π▷Σ
→L

(xRy),(y : ϕ),Π▷Σ,(y : ψ)

Π▷Σ,(x : ϕ → ψ)
→R

(xRy),(x : Γ),(y : Γ),Π▷Σ

(xRy),(x : Γ),Π▷Σ
pers

⊥,Π▷Σ

(x : ⊥),Π▷Σ
⊥L

Π▷Σ,⊥
Π▷Σ,(x : ⊥)

⊥L

(x : Γ),(x : Γ′),Π▷Σ

(x : Γ , Γ′),Π▷Σ
,L

Π▷Σ,(x : ∆),(x : ∆′)

Π▷Σ,(x : ∆ #∆′)
#R

Figure 17.6: Relational Calculus RJ

The complexity comes from the →-clause as it may result in non-BVSs. How-

ever, we immediately use persistence to create a composite behaviour that a basic

rule can capture. This is because the combined effect yields BVSs whose contents

may be partitioned; by design, persistence uses world-variables that do not, and

cannot, interact throughout the rest of the proof.

Definition 17.17 (World-independence). Let Π and Σ be lists of meta-formulae. The

lists Π and Σ are world-independent iff the set of world-variable in Π is disjoint from

the set of world-variables in Σ.

Let S be a tractable semantics and let Ω be a tractable definition. Let Π1,Σ1

and Π2,Σ2 be world-independent lists meta-formulae. The semantics S has world-

independence iff, if Ω,Π1,Π2 ▶ Σ1,Σ2, then either Ω,Π1 ▶ Σ1 or Ω,Π2 ▶ Σ2.

Intuitively, world-independence says that whatever is true at a world in the

semantics does not depend on truth at a world not related to it.

Let Π1
i ,Π

2
i ,Σ

1
i , and Σ2

i be lists of meta-formulae, for 1≤ i≤ n, and suppose that
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Π1
i ,Σ

1
i is world-independent from Π2

i ,Σ
2
i . Consider a rule of the following form:

Π1
1,Π

2
1 ▷Σ1

1,Σ
2
1 ... Π1

n,Π
2
n ▷Σ1

n,Σ
2
n

Π▷Σ

Assuming world-independence of the semantics, this rule can be replaced by the

following two rules:

Π1
1 ▷Σ1

1 ... Π1
n ▷Σ1

n
Π▷Σ

Π1
2 ▷Σ1

2 ... Π2
n ▷Σ2

n
Π▷Σ

If all the lists were basic, iterating these replacements may yield a set of basic rules

with the same expressive power as the original rule.

Proposition 17.18. The semantics of IPL — that is, the semantics ⟨K,⊩⟩ defined by

ΩIPL — has world-independence.

An analogous proposition appears for the treatment of BI in Chapter 10 as

Proposition 10.19.

Proof. If ΩIPL,Π1,Π2 ⊢Σ1,Σ2, then there is a G3-proof D of it. We proceed by

induction the number of resolutions in such a proof.

BASE CASE. Recall, without loss of generality, an instantiation of any

clause from ΩIPL is a resolution. Therefore, if D contains no resolutions, then

ΩIPL,Π1,Π2 ⊢Σ1,Σ2 is an instance of ax. In this case, either ΩIPL,Π1 ⊢Σ1 or

ΩIPL,Π2 ⊢Σ2 is also an instance of ax, by world-independence.

INDUCTION STEP. After a resolution of a sequent of the form ΩIPL,Π1,Π2 ⊢

Σ1,Σ2, one returns a meta-sequent of the same form — that is, a meta-sequent in

which we may partition the meta-formulae in the antecedent and succeedent into

world-independent multi-sets. This being the case, the result follows immediately

from the induction hypothesis.

The only non-obvious case is in the case of a closed resolution using the →-

clause in the antecedent because they have universal quantifiers that would allow

one to produce a meta-atom that contains both a world from Σ1,Π1 and Σ2,Π2

simultaneously, thereby breaking world-independence.



17.4. Soundness & Completeness 220

Let Π1 = Π′
1,(w ⊩ ϕ → ψ) and suppose u is a world-variable appearing in

Σ2,Π2. Consider the following computation — for readability, we suppress ΩIPL:

Π′
1,Π2 ▷Σ1,Σ2,wRu Π′

1,Π2 ▷Σ1,Σ2,(u : ϕ)
NL

Π′
1,Π2 ▷Σ1,Σ2,(wRu)N(u : ϕ) Π′

1,Π2,(u : ψ)▷Σ1,Σ2 ⇒L
Π′

1,(wRuN(u : ϕ)⇒ u : ψ),Π2 ▷Σ1,Σ2 ∀L
Π′

1,∀x(wRxNx : ϕ ⇒ x : ψ),Π2 ▷Σ1,Σ2 →-clause
Π′

1,(w : ϕ → ψ),Π2 ▷Σ1,Σ2

The wRu may be deleted (by wL) from the leftmost premiss because the only

way for the meta-atom to be used in the remainder of the proof is if wRu appears in

the context, but this is impossible (by world-independence). Hence, without loss of

generality, this branch reduces to Σ′
1,Σ2⊢Π1,Π2. Each premiss now has the desired

form.

Using world-independence, we may give a relational calculus RJ+ character-

izing the semantics comprised of basic rules. It arises from analyzing the rôle of

the atom xRy in RJ to get rid of it. Essentially, we incorporate it in →R, which was

always its purpose — see Section 17.3.

Definition 17.19 (Relational Calculus RJ+). Relational calculus RJ+ is comprised

of the rules in Figure 17.7, in which ,L and #R are invertible.

Proposition 17.20. Γ⊢RJ ∆ iff Γ⊢RJ+ ∆

Proof. Every RJ-proof can be simulated in RJ+ by using (i.e., reduce with) pers

eagerly after using →L. Thus, Γ⊢RJ ∆ implies Γ⊢RJ+ ∆. It remains to show that

Γ⊢RJ+ ∆ implies Γ⊢RJ ∆.

Without loss of generality, in RJ+ one may always use pers immediately after

→R, as otherwise the use of →L could be postponed. Similarly, without loss of

generality, →L always instantiates the wRu with u 7→w — this follows as we require

the leftmost branch of the following to close, which it does by reflexivity:

Π▷Σ,(wRu) Π▷Σ,(w : ϕ) Π,(w : ψ)▷Σ

Π,(w : ϕ → ψ)▷Σ

A RJ+-proof following these principles maps to a RJ-proof simply by collapsing

the instances of →L and →R in the former to capture →L and →R in the latter.
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Φ,Φ,Π▷Σ

Φ,Π▷Σ
c

Φ,Π▷Σ,Φ
ax ⊥,Π▷Σ

⊥
Π▷Σ,xRx ref

(x : ϕ),(x : ψ),Π▷Σ

(x : ϕ ∧ψ),Π▷Σ
∧L

Π▷Σ,(x : ϕ) Π▷Σ,(x : ψ)

Π▷Σ,(x : ϕ ∧ψ)
∧R

(x : ϕ),Π▷Σ (x : ψ),Π▷Σ

(x : ϕ ∨ψ),Π▷Σ
∨L

Π▷Σ,(x : ϕ),(x : ψ)

Π▷Σ,(x : ϕ ∨ψ)
∨R

Π▷Σ,(x : ϕ) (x : ψ),Π▷Σ

(x : ϕ → ψ),Π▷Σ
→L

(y : ϕ),Π[x 7→ y]▷ (x : ψ)

Π▷Σ,(x : ϕ → ψ)
→R

⊥,Π▷Σ

(x : ⊥),Π▷Σ
⊥L

Π▷Σ,⊥
Π▷Σ,(x : ⊥)

⊥R

(x : Γ),(x : Γ′),Π▷Σ

(x : Γ , Γ′),Π▷Σ
,L

Π▷Σ,(x : ∆),(x : ∆′)

Π▷Σ,(x : ∆ #∆′)
#R

Figure 17.7: Relational Calculus RJ+

Observe that the propositional encoding of RJ+ is precisely LJ+. The connex-

ion to IPL follows immediately:

Corollary 17.21. System RJ+ is faithful and adequate with respect to LJ+.

Proof. Instance of Theorem 16.18.

Theorem 17.22 (Completeness). If Γ ⊨ ∆, then Γ⊢∆.

Proof. We have the following:

Γ ⊨ ∆ implies (w : Γ)⊢RJ (w : ∆) (Corollary 17.16)

implies (w : Γ)⊢RJ+ (w : ∆) (Proposition 17.20)

implies Γ⊢LJ+ ∆ (Corollary 17.21)

implies Γ⊢LJ ∆ (Proposition 17.10)

Since LJ characterizes IPL, this completeness the proof.

Thus, we have derived a semantics of IPL for LJ and proved its soundness and

completeness using the constraints systems. This semantics is not quite Kripke’s

one [124], which insists that R be transitive, thus rendering it a pre-order. This
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requirement is naturally seen from the connexion to Heyting algebra and the modal

logic S4. In the analysis of Section 17.3, from which the semantics in this chapter

comes, there was no need for transitivity; the proofs of soundness and completeness

go through without it.

One may add transitivity — that is, the meta-formula ∀x,y,z(xRyNyRz =⇒

xRz) — to ΩIPL and proceed as above, adding the following rule to RJ:

xRy,yRz,xRz,Π▷Σ

xRy,yRz,Π▷Σ

The proof of completeness passes again through RJ+ by observing that eagerly

using persistence does all the work required of transitivity; that is, according to

the eager use of pers, in a sequent xRy,yRz,Π ▷Σ, the set Π is of the form Π′[x 7→

y]∪Π′[y 7→ z], so that whatever information was essential about (the world denoted

by) x is already known about (the world denoted by) z by passing through (the world

denoted by) y.



Chapter 18

Conclusion to Part II

This part introduced a paradigm of proof system called an (algebraic) constraint

system (ACSs). They serves as a uniform tool for studying the metatheory of one

logic in terms of the metatheory of another. The advantage is that the latter may

be simpler or more well-understood in some practical sense. In short, a constraint

system is a labelled sequent calculus in which the labels carry an algebraic structure

to determine correctness conditions on proof structures. Among other things, they

give a uniform setting for the approach to soundness and completeness for BI in

Part I.

Chapter 13 provides a motivating example of a class of constraint systems

already present in the literature. The resource-distribution via Boolean constraints

(RDvBC) mechanism by Harland and Pym [99, 98] proceeds by enriching a sequent

calculus for a substructural logic — in particular, LL, BI, and a class of relevance

logics — with boolean variables that allow one to defer context-management to

end of the (reductive) construction of a proof, where it appears a set of Boolean

equations that may be passed to a solver. These systems are algebraic constraint

systems. While the systems may be used for proof-search, the point is really that

they be used to analyze the possible context-management strategies during proof-

search. The chapter summarizes work by Harland and Pym [99, 98] where such an

analysis is provided.

Chapter 14 defines propositional logic. This cannot be done without contro-

versy. The chapter provides a simple and intuitive notion that clearly encapsu-
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lates all of the typical ‘propositional logics’ in the literature, but is perhaps over-

encompassing. The point is that constraint systems may be defined uniformly for

this class. The chapter also provides a notion of a model-theoretic semantics for a

propositional logic relative to which we may illustrate the use of constraint systems

for bridging the gap between proof theory and semantics.

Chapter 15 defines (algebraic) constraint systems for the class of propositional

logics in Chapter 14. Importantly, ACSs more naturally fit in Reductive Logic (as

opposed to Deductive Logic) since one generates constraints when moving from

putative conclusion to sufficient premisses. The chapter uses RDvBC for BI (Chap-

ter 13) as a running example to illustrate the definitions, which shows that the

method indeed amount to constructing an ACS.

There are two possible relationships an ACS may have with a logic of interest:

soundness and completeness, and faithfulness and adequacy. The former is a global

correctness condition that says that completed reductions in the constraint system

(i.e., constructions to which one cannot apply further reduction operators) whose

constraints are coherent (i.e., admit a solution) characterize the consequence of a

logic. Meanwhile, the latter is a local correctness condition in that each reduction

step in the constraint system corresponds to a valid inference for the logic, when

its constraints are satisfied; consequently, a completed reduction corresponds to a

proof in a sequent calculus for the logic. Both correctness criteria are valuable in

applications of constraint systems for studying meta-theory.

Chapter 16 uses ACSs to systematically produce relational calculi for proposi-

tional logics satisfying the tractability condition. In short, a logic is tractable when

it admits a model-theoretic semantics that is first-order definable with a theory that

is well-behaved proof-theoretically. The tractability condition is defined explic-

itly on the structure of the first-order definition of the model-theoretic semantics.

The chapter also includes a condition one the relational calculus that automatically

yields soundness and completeness of a sequent calculus for the propositional logic

with respect to the model-theoretic semantics. While the chapter delivers the anal-

ysis uniformly, it is limited in the sense that further analysis is required in order to
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understand the structural properties of the relational calculi generated — in partic-

ular, one desires conditions on top of tractability so that the relational calculi are

analytic.

This work generalizes the work on the semantics of BI in Chapter 10. It is

not clear how the approach to soundness and completeness in this paper relates to

the more traditional approaches, but such investigation may aid in understanding

the principles underlying them and is left for future work. These questions are

not addressed in this chapter as the point is to use ACSs, which are most naturally

regarded reductively, to bridge the gap between proof theory and semantics.

Chapter 17 similarly uses ACS to bridge the gap between proof theory and

semantics, but in a stronger sense. While Chapter 10 and Chapter 16 move from

semantics to proof theory, this chapter considers the reverse problem: to derive a

model-theoretic semantics of a logic from its proof-theoretic specification. It does

not provide a general analysis, but rather it considers the problem in detail for IPL.

It illustrates how one can analyse the proof theory of IPL using ACSs (i.e., in Re-

ductive Logic) to recover Kripke’s [125] semantics. In this way, it illustrate very

strongly the relationship between semantics and proof theory in Reductive Logic.

A general, uniform, and systematic account is desirable, but is left as future work.

Overall, this part introduces ACS and uses them to study metatheory. No-

tably, ACSs sit most naturally within Reductive Logic (as opposed to Deductive

Logic). They are a powerful tool for investigating the interplay between semantics

and proof theory, as witnessed by the systematic generation of relational calculi.

What is more, they allow one to derive a semantics for a logic from a proof-theoretic

characterization by capturing choices during proof-search in terms of an algebraic

structure. In this way, this part provides a tool that may, perhaps, yield a precise

characterization of (model-theoretic) semantics in Reductive Logic, in contrast to

the exploratory investigations of this monograph. Finally, it illustrates that the se-

mantics of a logical constant is contained in the rule of inference governing it, which

is the basis of Part III.



Part III

Proof-theoretic Semantics



Chapter 19

Introduction to Part III

In Part I and Part II, logical consequence is understood according to the plan by

Tarski [201, 203]: a propositional formula ϕ follows from a context Γ iff every

model of Γ is a model of ϕ — that is,

Γ ⊨ ϕ iff for all models M, if M ⊨ ψ for all ψ ∈ Γ, then M ⊨ ϕ

This approach to logical consequence determines model-theoretic semantics (M-tS).

It is the dominant approach to semantics in logic, especially in terms of applica-

tions; for example, in the application of logic in program/systems verification, pro-

grams/systems are regarded mathematically as algebraic structures and formulae of

the logic express properties about the structures — see, for example, the use of BI to

reason about pointer-based programming languages by Ishtiaq and O’Hearn [108].

Of course, the practicalities of this deployment typically proceed through Reductive

Logic; that is, model-checking — the principle activity involved — proceeds by cal-

culating the truth value of a formula according to the truth values of its constituent

parts determined by unfolding the M-tS.

While M-tS is an intuitive, useful, and powerful approach to semantics in logic,

it is not the only one. Instead, one may ask more directly what logic says about rea-

soning (instead of structure). Accordingly, Tennant [204] provides an alternative,

proof-theoretic (as opposed to model-theoretic), reading of logical consequence: a

propositional formula ϕ follows proof-theoretically from a context Γ iff ϕ follows
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by some reasoning from Γ. This demands a notion of valid argument that encap-

sulates what the forms of valid reasoning are. That is, we require explicating the

semantic conditions required for an argument that witnesses

ψ1, . . . ,ψn; therefore, ϕ

to be valid. In short, rather than leave reasoning as something that occurs at the

meta-level and expressed in terms of logic, we may ask what logic says about rea-

soning, and vice versa.

This determines the field of proof-theoretic semantics (P-tS) [61, 193, 213].

There are two foundational problems:

- to define the validity of an argument in terms of notions of inference deter-

mined by a given logic; and

- to explicate the meaning of logical constants in terms of valid arguments.

Importantly, P-tS is not about giving proof systems or interpretations of proofs in

a particular proof system, though these are related issues — for example, in Chap-

ter 20, we discuss the BHK interpretation of intuitionistic logic and its relevance

to P-tS and Reductive Logic, but BHK is not a P-tS in itself — instead it is about

meaning relative to the notion of proof.

Observe that in M-tS, a rule in a formal system is justified by showing that

it derives only consequences of the logic; that is, it is truth-preserving in all mod-

els. Hence, inference follows from validity. Meanwhile, P-tS sits in the semantic

paradigm of inferentialism in which meaning (or validity) arises from rules of infer-

ence (see Brandom [26]). Nonetheless, as Schroeder-Heister [191] observes, since

no formal system is fixed (only notions of inference), the relationship between se-

mantics and provability remains the same as it has always been with soundness and

completeness are desirable features of formal systems. What differs is that proofs

in P-tS — understood as objects denoting collections of acceptable inferences from

accepted premisses — serve the role of truth in M-tS. This is clear in Chapter 20

and Chapter 21.
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To illustrate the paradigmatic shift from M-tS to P-tS, consider the proposition

‘Tammy is a vixen’. What does it mean? Intuitively, it means, somehow, ‘Tammy is

female’ and ‘Tammy is a fox’. In inferentialism, its meaning is given by the rules,

Tammy is a fox Tammy is female
Tammy is a vixen

Tammy is a vixen
Tammy is female

Tammy is a vixen
Tammy is a fox

These merit comparison with the laws governing ∧ in NJ, which justify the sense

in which the above proposition is a conjunction:

ϕ ψ

ϕ ∧ψ

ϕ ∧ψ

ϕ

ϕ ∧ψ

ψ

Hence, in P-tS, validity is grounded in terms of proof in systems of rules governing

atomic propositions — that is, formulae without logical structure — called atomic

systems or bases.

In this monograph, we consider two streams of work within P-tS that align

with the problems outlined above:

- Proof-theoretic Validity (P-tV) in the Dummett-Prawitz tradition (see, for ex-

ample, Schroeder-Heister [190]) is a semantics of arguments;

- Base-extension semantics (Be-S) — in the sense of, for example,

Sandqvist [184, 182, 183] — is a semantics of logical constants in terms

of arguments.

The terminology used for these two streams within the literature is somewhat mis-

leading: both concern validity and both make use of base-extension in doing so. The

terminology used to distinguish them here is taken from their associated literature,

but is not intended to denote sub-fields of P-tS. We distinguish the branches only to

be able to formally relate the two parts of the literature, which are intended to speak

of the same subject: meaning in terms of proof.

The mathematical treatment of both P-tV and B-eS has largely concentrated

on classical and intuitionistic propositional logic, and a terse account of this back-

ground is provided in Chapter 20 and Chapter 21. Presently, we give a brief



230

overview of the major ideas involved in each branch.

Proof-theoretic Valdity (P-tV). In this monograph, we follow the presentation by

Schroeder-Heister [190], who distinguished the computational and semantic aspects

of the earlier work.

In general, P-tV can be viewed as an attempt to execute the following program-

matic remarks by Gentzen [200]:

The introductions represent, as it were, the ‘definitions’ of the symbols

concerned, and the eliminations are no more, in the final analysis, than

the consequences of these definitions. This fact may be expressed as

follows: In eliminating a symbol, we may use the formula with whose

terminal symbol we are dealing only ‘in the sense afforded it by the

introduction of that symbol’.

The idea that rules are definitions sets P-tV in inferentialism; the priority of the

introduction rules involves Prawitz’s [168] normalization theory — see Chapter 20.

A consequence Γ⊢ϕ is read as saying there is a direct argument beginning

with Γ and concluding ϕ . An argument is a natural deduction object in the sense

of Gentzen [200], a tree of formulas with some marked as discharged. Some argu-

ments can be seen as representing other arguments; for example an NJ-derivation

is indirect (i.e., not direct) if it contains a detour — that is, an elimination rule is

used to remove a logical constant that was added by an introduced rule earlier in

the derivation — which may be removed through normalisation — for example, the

detour

D1
ϕ

[ϕ]
D2
ψ

ϕ → ψ
→I

ψ
→E

can be reduced as follows:
D1
ϕ

D2
ψ

The study of such reductions is the technical background to P-tV, provided by
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Prawitz [168]. The idea is that the normal form represents the suasive content of

the derivation with detours. Therefore: Arguments without assumptions and de-

tours are said to be canonical proofs and are inherently valid; the validity of an

arbitrary argument is determined by whether or not it represents, according to some

fixed operations (e.g., through a reduction in the sense of Prawitz [168]), one of

these canonical proofs. An argument containing open assumptions is valid when

arbitrary (valid) closures yield valid arguments. We call this condition cut:

if the open assumptions of a valid argument admit valid arguments, then

composing these arguments with the original yields an overall valid

argument.

The case in which the open assumptions are atomic requires us to consider the

validity of arguments relative to systems of rules governing such atoms. Thus,

validity is grounded in terms of atomic systems (also known as bases).

Base-extension Semantics (B-eS). The alternative branch of P-tS is B-eS. In short,

one defines a support judgement inductively according to the structure of formulas

with the base case (i.e., the support of atoms) given by proof in a base (also known

as atomic systems). This gives rise to consequence as the transmission of support:

a propositional formula ϕ follows proof-theoretically from a context Γ iff a base

supporting Γ also supports ϕ — that is,

Γ ⊩ϕ iff for all bases B, if ⊩B ψ for all ψ ∈ Γ, then ⊩B ϕ

Of course, restricted to just this, B-eS appears to be no more than a redressing of

M-tS — see, for example, Goldfarb [85] and Makinson [134]. However, it can

differ remarkably according to specific setups motivated by inferentialism. This

is where the subject becomes subtle. There are several incompleteness results for

(super-)intuitionistic logics — see, for example, Piecha et al. [157, 156, 159], Gold-

farb [85], Sandqvist [181, 182, 184, 183], Stafford [197].

Specifically, the problems arise around the semantics of disjunction and com-

pleteness. Briefly, the treatment of disjunction in the standard Kripke semantics for



232

IPL — that is, w⊨ϕ∨ψ iff w⊨ϕ or w⊨ψ — corresponds only weakly to NJ (char-

acterizing IPL) and,if such a clause is taken in the definition of validity in a B-eS

for IPL, it leads to incompleteness — see Piecha and Schroeder-Heister [157, 156].

Sandqvist [183] (following ideas by Dummett [51]) showed completeness when the

following clause is taken instead:

⊩B ϕ ∨ψ iff for all C ⊇ B and all atomic p,

ϕ ⊩C p and ψ ⊩C p implies ⊩C p

This clause corresponds more closely to the proof theory of IPL — specifically, to

the elimination rule in NJ.

It is perhaps not immediately apparent what it has to do with Reductive Logic.

Essentially, the connections arise from how construction in Reductive Logic and ar-

guments in P-tV are validated. Recall the constructions-as-realizers-as-arrows cor-

respondence from Reductive Logic by Pym et al. [175] described in Chapter 2. The

judgements there have analogues in the context of P-tS: the judgement Φ ⇒ Γ ▷ϕ

corresponds to P-tV, the judgement [Γ] ⊢[Φ] : ϕ corresponds to satisfaction (see

Chapter 20), and the judgement JΓK
JΦK
⇝ JϕK corresponds to B-eS — see Pym et

al. [175]. In particular, we move from the realizers perspective, in which the wit-

nessing arguments must be constructed explicitly, to the ‘types’ perspective, in

which the witnessing arguments are observed implicitly as arrows. More precisely,

the arrows characterize an inductively defined judgement W ⊨Θ (Φ : ϕ)Γ in which

W is a state of knowledge (i.e., the analogue of a base) and Θ is a set of indetermi-

nates. There are also substantial connexions between P-tS and logic programming

— see, for example, Hallnäs and Schroeder-Heister [94, 95] and Chapter 23.

This part begins in Chapter 20 with a presentation P-tV. Following this, Chap-

ter 21 provides a terse but complete account of the B-eS of IPL. Chapter 22 demon-

strates that the B-eS for IPL captures the declarative content of a basic version of

P-tV presented in Chapter 20. Chapter 23 investigates the B-eS for IPL from the per-

spective of logic programming (see Chapter 2). The part ends in Chapter 24 with a

conclusion and summary of results. In Appendix B, we show how P-tS arises when



233

logic is regarded as the science of inference (as opposed to truth).



Chapter 20

Proof-theoretic Validity

This chapter presents proof-theoretic validity (P-tV) in the Dummett-Prawtiz tradi-

tion. As explained in Chapter 19, the foundations of P-tV are both computational

(through normalization) and philosophical (through inferentialism). We follow the

presentation by Schroeder-Heister [190] in distinguishing the relevant parts.

We are working relative to the background on IPL in Chapter 2. In particu-

lar, an argument is a rooted tree of formulas in which some (possibly no) leaves

are marked as discharged. The leaves of an argument are its assumptions, and the

root is its conclusion. An argument is open if it has undischarged assumptions;

otherwise, it is closed. An argument A is an argument for a sequent Γ ▷ϕ iff the

open assumptions of A are a subset of Γ and the conclusion of A is ϕ . We use the

following notations to express that A is an argument for Γ▷ϕ:

A
ϕ

Γ
A

Γ
A
ϕ

Let A be an argument with open assumptions Γ = {ϕ1, ...,ϕn}; and let B1,...,Bn be

arguments with open assumptions Γ1, ...,Γn, respectively, and conclusions ϕ1,...,ϕn,

respectively. We write cut(B1, ...,Bn,A) to denote the result of composing A by

B1, ...,Bn at the assumptions; that is,

cut(B1, ...,Bn,A) :=
B1
ϕ1 ...

Bn
ϕn

A
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This is a helpful abbreviation for the composition of arguments.

We briefly outline the chapter. First, in Section 20.1, we define atomic sys-

tems, which ground P-tV. Second, in Section 20.2, we define a basic notion of P-tV

that heavily relies on the normalization theory of NJ. Third, in Section 20.3, we

define a general notion of P-tV with references to the basic version. Finally, in Sec-

tion 20.4, we give yet another account of P-tV as a uniform account of the validity

of construction relative to the theory of tactical proof (see Chapter 4).

20.1 Atomic Systems
The base case of P-tV is given by atomic systems. These supply the meaning, on

inferentialism, of atomic propositions analogous to the use of interpretation in M-

tS. Piecha and Schroeder-Heister [194, 158] have given an inductive hierarchy of

atomic rules and systems, which we include here. In some works on P-tS, ⊥ is

regarded as an atom, but in this monograph, ‘atom’ means propositional letter (i.e.,

an element of A).

Definition 20.1 (Atomic Rule). An nth-level atomic rule is defined as follows:

- A zeroth-level atomic rule is a rule of the following form in which c ∈ A:

c

- A first-level atomic rule is a rule of the following form in which p1, ...,pn,c ∈

A,
p1 . . . pn

c

- An (n + 1)th-level atomic rule is a rule of the following form in which

p1, ...,pn,c ∈ A and Σ1, ...,Σn are (possibly empty) sets of nth-level atomic

rules:
[Σ1]
p1 . . .

[Σn]
pn

c

Since the premisses may be empty, an mth-level atomic rule is an nth-level



20.1. Atomic Systems 236

atomic rule for any n > m. We say that a rule is properly nth-level iff it is nth-

level and at least one of the premisses is a set of (n−1)th-level rules which are not

(n−2)th-level rules. For example, the atomic rule

p
[p1]

c
[p2]

c
c

is both second- and third-level, but only properly second-level (i.e., not properly

third-level).

Having sets of atomic rules as hypotheses is more general than having sets of

atomic propositions as hypotheses; the former captures the latter by taking zeroth-

order atomic rules. Significantly, atomic rules are not closed under substitution.

Definition 20.2 (Atomic System). An atomic system is a set of atomic rules.

Atomic systems may have infinitely many rules (at most, countably infinite).

An atomic system A is properly nth-level iff, for any r ∈ A , there is k ≤ n such

that r is properly kth-level.

Piecha and Schroeder-Heister [194, 158] have defined a notion of derivation in

an arbitrary atomic system that generalizes Definition 2.10.

Definition 20.3 (Derivation in an Atomic System). Let A be an atomic system. The

set of A -derivations is defined inductive as follows:

- BASE CASE. If A contains a zeroth-level rule concluding c, then the natural

deduction argument consisting of just the node c is a A -derivation.

- INDUCTIVE STEP. Suppose A contains an (n+ 1)th-level rule r of the fol-

lowing form:
[Σ1]
p1 . . .

[Σn]
pn

c

And suppose that for each 1 ≤ i ≤ n there is an A -derivation Di of the fol-

lowing form:
Γi,Σi
Di
pi
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Then the natural deduction argument with root c and immediate sub-trees

D1,...,Dn is an A -argument of c from Γ1 ∪ ...∪Γn ∪A .

An atom c is derivable from Γ in A — denoted Γ⊢A c — iff there is a A -derivation

of c from Σ∪A .

Observe that atomic rules are taken per se and not closed under substitution.

An argument A is an NJ∪A -derivation for an atomic system A , iff it is regulated

by the rules of NJ and A both. In particular, when A is properly second-level, this

amounts to natural deduction in the sense of Gentzen [200] (see also Troelstra and

Schwichtenberg [207]).

There is a significant question on what kind of atomic systems should be con-

sidered — see, for example, Piecha and Schroeder-Heister [158]. We take that some

class of atomic systems has been fixed and proceed relative to this class. To distin-

guish the elements of the classes from the general notion of atomic systems, we call

them bases.

20.2 Basic Proof-theoretic Validity
There are many versions of P-tV in the literature. One of the original ones is pro-

vided by Prawitz [164] but is limited according to the general program of P-tS as it

fixed NJ as the calculus of arguments. We call this original work basic P-tV. It is

defined in the section as it informs the more general version of P-tV in Section 20.3

and is the background to the work in Chapter 22.

The idea behind basic P-tV is the question, what proof does a given NJ-

derivations represent? Here, ‘proof’ is understood as the underlying suasive content

of the NJ-derivation, not merely a closed NJ-derivation. That is, heuristically, basic

P-tV may be thought to concern the equivalence of arguments (as opposed to the

validity of arguments).

We provide a brief outline of this section. First, Section 20.2.1 gives the requi-

site background normalization theory for NJ. Second, Section 20.2.2 defines basic

P-tV. Finally, Section 20.2.3 represents basic P-tV in terms of a satisfaction relation

between arguments, atomic systems, and sequents.
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20.2.1 Normalization in NJ

Observe that in NJ (Figure 2.2), there are rules with subscripts I and E. The former

are the introduction rules (I-rules), and the latter are the elimination rules (E-rules).

They sometimes come in pairs that, when composed, yield no additional results; for

example, the derivation
D1
ϕ

D2
ψ

ϕ ∧ψ
∧I

ϕ
∧E

contains superfluous argumentation for ϕ as it is already concluded by D1. This is

the foundation of the normalization theory and, therefore, of P-tV.

Definition 20.4 (Detour). A detour in a derivation is a sub-derivation in which a

formula is obtained by an I-rule and is then the major premise of the corresponding

E-rule.

Definition 20.5 (Canonical). A derivation is canonical iff it contains no detours.

Prawitz [168] proved that canonical NJ-proofs are complete for IPL; that is,

we may refine Theorem 2.11— that is, ⊢NJϕ iff ⊢ϕ , where ⊢ is the consequence

judgement for IPL — as follows:

Proposition 20.6 (Prawitz [168]). There is a canonical NJ-derivation of ∅ ▷ϕ iff

∅⊢ϕ .

The proof of this statement uses a reduction relation ⇝ that precisely elimi-

nates detours; for example, detours with implication (→) are reduced as follows:

D1
ϕ

[ϕ]
D2
ψ

ϕ → ψ
→I

ψ
→E

⇝

D1
ϕ

D2
ψ

The reflexive and transitive closure of⇝ is denoted⇝∗.

Prawitz [168] proved that this reduction relation is normalizing and that the

normal forms contain no detours. If the normal form is closed, it is called canonical

proof.
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Proposition 20.7 (Prawitz [168]). If A is an NJ-proof for ∅▷ϕ , then there is canon-

ical NJ-proof A′ for ∅▷ϕ such that A⇝∗ A′.

Corollary 20.8 (Prawitz [168]). There is a canonical NJ-proof A for ∅ ▷ϕ that

concludes by the use of an introduction rule iff ∅⊢ϕ .

This establishes the relevant normalization theory for P-tV in this monograph.

It is this last corollary that renders the normalization theory relevant for P-tS relative

to Gentzen’s [200] programmatic remarks quoted in Chapter 19 as it gives particular

priority to the introduction rules of NJ.

20.2.2 Basic Proof-theoretic Validity

It remains to define basic P-tV. A discussion of how these ideas arise relative

to the computational consideration of normalization in NJ has been provided by

Schroeder-Heister [190].

Heuristically, basic P-tV explains that an NJ-derivation is not valid because it

is regulated by the rules of NJ, but rather because it represents some proof whose

validity arises from the a priori validity of the introduction rules. These rules a

priori are valid simply as we regard them, following the remarks by Gentzen [200]

in Chapter 19, as definitions of the logical constants.

Definition 20.9 (Basic Validity in a Base). Let B be a base. An A is B-valid iff

one of the following holds:

(1) A is a closed B-derivation

(2) A is a closed canonical NJ∪B-derivation whose immediate sub-derivations

A1, ...An are B-valid

(3) A is a closed non-canonical NJ∪B-derivation that reduces to a B-valid

canonical NJ∪B-derivation A′

(4) A is an open derivation and, for every C ⊇B, any extension of A by C -valid

arguments of the assumptions C1....,Cn is a C -valid argument.

Note that reduction here is in the sense of Prawtiz [168] — see Section 20.2.1.
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Definition 20.10 (Valid Argument). An argument A is valid iff, for every base B,

the argument A is B-valid

This defines P-tV. How does it relate to IPL (⊢)? It is easy to see that validity

is monotonic with respect to bases; that is, an argument A is B-valid iff, for every

C ⊇ B, A is C -valid. Consequently, all NJ-derivations are valid. This yields

soundness:

if Γ⊢ϕ , then there is a valid argument for Γ▷ϕ .

The converse (i.e., completeness) is not currently known. Schroeder-Heister [193]

suggests that, under a particular reading, basic P-tV is incomplete for IPL — see

also Piecha et al. [157, 156, 159]. In Chapter 22, we argue that such classical

readings do, perhaps, not accurately capture basic P-tV. The subtlety is how one

moves from a validity condition on derivations to a consequence judgement. An

initial step to this end is made in Section 20.2.3.

While basic P-tV does offer a notion of validity of arguments, it is limited in

that the derivations it considers are already regulated by NJ-derivations. Therefore,

it may instead be seen as explicating the suasive content of a given NJ-derivation.

It may then be thought of as providing a notion of equality on NJ-derivations; that

is, A and B are equivalent iff they represent (i.e., after reduction and substitution of

proofs for the assumptions) the same proof. The insistence on NJ comes from the

use of reductions, which are all parameterized to give the general notion of P-tV in

Section 20.3.

20.2.3 From Derivations to Sequents

We desire to express the declarative content of P-tV in terms of the logical constants

of IPL. Equivalently, we desire to explicate the meaning of the logical constants in

terms of P-tV. This is the subject of Chapter 22. To bridge the gap between P-tV

and B-eS, we introduce the satisfaction relation:

Definition 20.11 (Satisfaction in a Base). The satisfaction judgment A : Γ ⊩B ϕ

obtains iff A is a B-valid argument for Γ▷ϕ .
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This section concerns characterizing satisfaction in terms of the logical con-

stants of IPL. In doing so, we shift the emphasis from arguments to the logic. To

this end, we perform a case analysis on the defining conditions. Observe that Defi-

nition 20.9 has distinct clauses for closed derivations and open derivation, meaning

that we distinguish two classes of sequents Γ▷ϕ , those with Γ =∅ and with Γ ̸=∅.

If Γ ̸=∅, the condition for validity passes through clause (4) of Definition 20.9.

The clause for arguments containing open assumptions may be expressed as fol-

lows:

A : Γ ⊩B ϕ iff for any C ⊇ B, if for each ψi ∈ Γ there is Bi such that

Bi ⊩C ψi, then cut(B1, ...,Bn,A) : Γ1, ...,Γn ⊩C ϕ

To simplify things, without loss of generality, the ∧I, we may replace the B1,...,Bn

by a single argument:

A : Γ ⊩B ϕ iff for any C ⊇ B, if there is B

such that B : ∅ ⊩C Γ, then cut(B,A) ⊩C ϕ

This expresses satisfaction for sequents Γ ▷ϕ with Γ ̸= ∅ in terms of satisfaction,

as required.

If Γ =∅, the condition for validity passes through clauses (1), (2), (3) of Def-

inition 20.9. For clause (3), we only need to make sure to normalize at each stage,

so it remains only to consider clauses (1) and (2). We proceed by case analysis on

the structure of ϕ .

First, ϕ = p ∈ A, we appeal to (1) of Definition 20.9,

A : ∅ ⊩B p iff A is a B-proof of ∅▷p

This is sufficiently simple as it moves from the definition of validity in a base to

provability in an atomic system (Definition 20.3).

If ϕ ̸∈ A, then it is complex — that is, it contains at least one logical con-

stant. We proceed by case analysis on the structure of ϕ , using clause (2) of Defini-
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A : Γ ⊩B ϕ iff for any C ⊇ B, for any argument B,

if B : ∅ ⊩C Γ, then cut(B,A) : ∅ ⊩C ϕ

A : ∅ ⊩B p iff A is a B-proof of ∅ : p

A : ∅ ⊩B ϕ → ψ iff A⇝∗ Ā ∈→I(B) and B : ϕ ⊩B ψ

A : ∅ ⊩B ϕ ∧ψ iff A⇝∗ Ā ∈ ∧I(A1,A2) and

A1 : ∅ ⊩B ϕ and A2 : ∅ ⊩B ψ

A : ∅ ⊩B ϕ ∨ψ iff A⇝∗ Ā ∈ ∨I(B) and either
B : ∅ ⊩B ϕ or B : ∅ :⊩B ψ

A : ∅ ⊩B ⊥ never

Figure 20.1: Proof-theoretic Validity as a Satisfaction Relation

tion 20.9.

First, let ϕ = ⊥. Since bases do not contain falsum (⊥) and no rules that

produce it, one never witnesses satisfaction of ⊥. Therefore,

A : ∅ ⊩B ⊥ never

Second, let ϕ = ψ ◦ χ for ◦ ∈ {→,∧,∨}. By Corollary 20.8, since we have

reduced to a canonical argument, if A : ∅ ⊩B ϕ , then A ends by the use of an

introduction rule. By clause (2) of Definition 20.9, the immediate sub-trees of A

are also B-valid arguments. Thus, we have the following clauses:

A : ∅ ⊩B ϕ → ψ iff A⇝∗ Ā ∈→I(B) and B : ϕ ⊩B ψ

A : ∅ ⊩B ϕ ∧ψ iff A⇝∗ Ā ∈ ∧I(B1,B2) and B1 : ∅ ⊩B ϕ and B2 : ∅ ⊩B ψ

A : ∅ ⊩B ϕ ∨ψ iff A⇝∗ Ā ∈ ∨I(B) and either B : ∅ ⊩B ϕ or B : ∅ ⊩B ψ

This completes the investigation of Definition 20.9.

Proposition 20.12. Satisfaction in B satisfies the clauses in Figure 20.1

A significant feature of satisfaction is its constructiveness: when A : Γ ⊩B ϕ
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with Γ ̸= ∅, the argument A acts a function that takes a C -valid argument of the

assumption and yields a C -valid argument for the conclusion, for arbitrary C ⊇

B. This recalls the BHK interpretation of IPL, discussed in Section 2.6, and is an

essential observation in Chapter 22.

20.3 The Validity of Arguments
In the rest of this monograph, we are concerned with basic P-tV. However, for com-

pleteness, we briefly define a general notion of P-tV to show how the basic notion

evolves into something suitable as a semantics of arguments in general (i.e., not just

NJ-derivations).

In a series of papers, Prawitz [164, 166, 167] developed the notion of general

proof theory as the study of the notion of proof. This stands in contrast to other

traditions of proof theory that concern reducing mathematics to systems of rules

— see Prawitz [165] for a discussion. It was Dummett [51] who first realized the

philosophical significance of this program as giving a semantics of proofs.

Following the work in Chapter 20.2, we have the following heuristic is as fol-

lows:

– canonical proofs are a priori valid

– closed arguments are valid as a consequence of them reducing to canonical

proofs

– open arguments are regarded as placeholders for closed arguments according

to their possible closures; they are valid according to the ways that the open

assumptions may be proved.

Clearly, basic P-tV is a limited implementation of this plan in which arguments

are restricted to NJ-derivations and reduction is limited to normalization à la

Prawitz [168] (see Section 20.2.1). However, while we take the introduction rules as

a priori valid — following the programmatic remarks by Gentzen [200] quoted in

Chapter 19 — we need not acquiesce to the elimination rules or their corresponding
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reductions. Parameterizing over possible choices of reduction recovers a general

notion of P-tV that is conceptionally prior to proof systems.

There are many versions of P-tV in the literature. In this monograph, we follow

Schroeder-Heister [190], who has provided a succinct definition.

Definition 20.13 (Reduction). A reduction is a pair ⟨A1,A2⟩ in which A1 and A2

are arguments such that A2 has the same end formula as A1 and its open assump-

tions are a subset of the open assumptions of A1.

Schroeder-Heister [190] provides a detailed account of how reduction applies.

These details are unimportant here as we will not develop these ideas mathemat-

ically. Intuitively, from a set of reductions J , one induces a reducibility relation

⇝J (with reflexive and transitive closure⇝∗
J ) between arguments by applying re-

duction from J to sub-argument. The only constraint for such sets of justifications

is that they are closed under substitution in the following sense: if there is R ∈ J

such that
ϕ1 ... ϕn

A1 R
ϕ1 ... ϕn

A2

then there is R′ ∈ J such that

B1
ϕ1 ...

Bn
ϕn

A1 R′

B1
ϕ1 ...

Bn
ϕn

A2

This restriction makes sense as it means that justifications behave as a higher-order

term rewriting system.

Definition 20.14 (Validity in a Base). Let B be a base and J be a set of reductions.

An A is B-valid with respect to J iff one of the following holds:

(1) A is a closed B-derivation

(2) A is a closed argument that is J -irreducible and concludes with an intro-

duction rule from NJ such that its immediate sub-arguments A1, ...An are

B-valid with respect to J



20.4. Proof-theoretic Validity and Tactical Proof 245

(3) A is a closed argument and there is A′ that is B-valid with respect to J such

that A⇝∗
J A′

(4) A is an open derivation and, for every B′ ⊇ B and J ′ ⊇ J , any extension

of A by arguments B1....,Bn, which are B′-valid with respect to J ′, is a

B′-valid argument with respect to J ′.

Schroeder-Heister [190] remarks that extensions B′ ⊇ B and J ′ ⊇ J are in-

tended as monotonicity constraints.

Definition 20.15 (Valid). An argument A is valid with respect to a set of reduction

J (closed under substitution) iff, for every base B, the argument A is B-valid with

respect to J .

The soundness of IPL (i.e., the validity of NJ-derivations) is sensitive to the

choice of reductions; of course, when J is the set of standard reductions, all NJ-

derivations are valid (with respect to J ) — this recovers basic P-tV. We may also

ask about the completeness of IPL. This is known as Prawitz’s Conjecture:

Conjecture 20.16 (Prawitz [166, 169]). Let J be a set of reductions closed under

substitution. If there is an argument for Γ ▷ϕ that is valid with respect to J , then

Γ⊢ϕ .

There may be natural restrictions on the notion of J and atomic systems that

render this conjecture true or false; for example, one may sensibly restrict sets of

reduction to be those for which IPL is sound. Piecha et al. [157, 156, 159] have

shown that the conjecture is false with respect to certain interpretations of P-tV. We

discuss these results further in Chapter 22.

20.4 Proof-theoretic Validity and Tactical Proof
In this section, we use P-tS and the theory of tactical proof to give a general account

of the relationship between arguments and inference in Reductive Logic. We do

not mean to say that this framework is how one should go about using logic as a

mathematics of reasoning, but instead we aim to describe how logic is typically

used in the literature.
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The essential question in P-tV is, what is a valid argument? By framing the

relationship between arguments and consequence in the theory of tactical proof, we

can define various notions of validity on arguments according to the priority, by fiat,

of some sequent calculus characterizing consequence and some transformations of

arguments. There is nothing about tactics that pertains, in particular, to natural

deduction, so the notion of argument herein can be generalized to other paradigms,

too. These generalizations deliver the semantic framework for logic as a reasoning

technology that this chapter is about.

In Section 20.4.1, we propose a semantic framework that considers the entire

space of reductions, which proceeds through a general account of P-tV. We justify

the framework by a correctness property in Section 20.4.2 and through a series of

examples from the literature in which it is implicit in Section 20.4.3.

20.4.1 Proof-theoretic Validity, generalized

We begin with a space of arguments A. Within this space, there is a subset P ⊆ A

arguments that are a priori valid; these are called canonical proofs. These canonical

proofs are the basis on which the validity of all the other arguments is derived.

A given argument A ∈ A may represent another argument A′ ∈ A in some

way. For example, in the setting of natural deduction in the sense of Gentzen [200]

(Chapter 2), an argument containing a detour can be thought of as representing a

natural deduction argument arising reduction à la Prawtiz [168]. Thus, we take the

space of arguments to be equipped with some justification operators of the form

j : A ⇀ A that transform one argument to another.

It may be that arguments are left open in some sense. The idea is that the argu-

ment contains all the suasive content they require but has left something unjustified,

which can be filled in arbitrarily by valid arguments. Returning to the case of nat-

ural deduction (Section 2), this was the state of open derivations, which have left

the justification of their open assumptions unstated (by the very fact of them being

open). Therefore, we further equip the space of arguments with closure operators

of the form c : A ⇀ A, mapping arguments to arguments.

To summarize:
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Definition 20.17 (Argument Space). An argument space is a tuple A := ⟨A,P,J ,C⟩

in which A is the set of arguments, P is the set of proofs, J is the set of justification

operators j : A ⇀ A, and C is the set of closure operators c : A ⇀ A.

A notion of proof-theoretic validity precisely analogous to the treatment of IPL

in Section 20 follows immediately:

Definition 20.18 (Proof-theoretic Validity). Let A := ⟨A,P,J ,C⟩ be an argument

space. An argument A is A-valid iff one of the following holds:

- it is a canonical proof — A ∈ P;

- there is j ∈ J such that j(A) is A-valid;

- for any c ∈ C, the closure c(A) is A-valid.

Example 20.19 (Proof-theoretic Validity for IPL). Consider the arguments space

N := ⟨A,D,P,J ,C⟩ in which the components are as follows:

A - Comprises natural deduction arguments

P - Comprises canonical NJ-proofs

J - Comprises the reduction transformations by Prawitz [168]

C - Comprises maps that substitute open assumptions for derivation in a base.

The validity condition from Definition 20.18 instantiated to N is precisely Defini-

tion 14.16. ■

Of course, the point of the generalization of proof-theoretic validity in this

section is that other examples may be captured, too.

Example 20.20 (Proof-search Games). Consider the game-semantics of proof-

search for IPL by Pym and Ritter [174]; see also work by Miller and Saurin [142].

Succinctly, a (partial) strategy is a (partial) function that extends plays — sequences

of moves — that end on an opponent move, which satisfy certain conditions. Each

strategy represents an attempt at proof-search in LJ. A winning strategy (i.e., a
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strategy satisfying certain conditions) represents a successful proof-search — that

is, proof-search that finds an LJ-proof — but it may include backtracking. We have

the argument space S= ⟨A,D,P,J ,C⟩ in which the components are as follows:

A - Arguments are partial strategies

P - Canonical proofs are winning strategies without backtracking

J - The justification operators collapse backtracking sections of strategies

C - The closure operators extends partial strategies to total strategies.

The validity condition from Definition 20.18 instantiated to L renders a strategy

valid when it represents an LJ-proof. ■

Suppose one has a logic and a notion of argument for that logic; for example,

IPL and natural deduction. The setup of argument spaces still needs to allow us to

relate the two. As in P-tV for IPL (Chapter 20), we require a function determining

what sequents are witnessed by a particular argument in the space.

Definition 20.21 (Ergo). Let A be an argument space with arguments A. An ergo is

a map from arguments to sequents, e : A → S.

Definition 20.22 (Logical Argument Space). A logical argument space (LAS) is a

pair L := ⟨A,e⟩ in which A is an argument space and e is an ergo.

Observe that the use of an ergo turns proof-theoretic validity from a semantics

of proofs into a semantics in terms of proofs. A natural deduction argument with

open assumptions Γ and conclusion ϕ has the consequence Γ▷ϕ; this describes an

ergo. The notion of validity of arguments renders a LAS a characterize of some

logic; namely, the logic whose consequence relation consists of all those sequents

admitting valid arguments. Given a LAS L = ⟨A,e⟩, we write ⊢L to denote the

consequence relation of the logic it induces — that is,

Γ⊢L ∆ iff there is an A-valid argument A such that e(A) = Γ▷∆
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Recall that we take logics to be characterized by sequent calculi, generally con-

ceived — see Chapter 14. The relationship between the proof-theoretic semantics

and the logic is then captured by standard soundness and completeness conditions:

Definition 20.23 (Soundness and Completeness of Sequent Calculi). Let L be a

LAS and let L be a sequent calculus over sequents S.

- The calculus L is sound for L iff, for any sequent Γ ▷∆ ∈ S, if Γ⊢L ∆, then

Γ⊢L ∆.

- The calculus L is complete for L iff for any sequent Γ▷ ∈ S, if ⊢L∆, then

Γ⊢L ∆.

This relates logic to argument spaces in general. It remains to relate tactics

to argument spaces. This addresses the question at the end of Section 4.2, what

argument does a tactic represent? We have an interpretation from a system of

tactics to a space of arguments.

Definition 20.24 (Interpretation). Call a functions from A to LIST(A) an abstract

reduction operator (ARO).

An interpretation of is a function J−K that maps goals to arguments, tac-

tics to AROs, and tacticals to functions from AROs to AROs, such that τ : G 7→

⟨[G1, ...,Gn],π⟩, then JτK(JGK) 7→ [JG1K, ...,JGnK].

Example 20.25. Let τ∧ and τ→ and # be as in Section 4.2. To this setup, we add the

interpretation J−K, which answers the questions of what arguments are represented

by what tactics.

The interpretation J−K acts on goals (i.e., IPL sequents) Γ ▷ ϕ by mapping

them to the natural deduction argument consisting of nodes of formulas from Γ

going directly to a node for ϕ . It maps tactics to their actions on arguments. For

example,

Jτ→K(ϕ → ψ) 7→ ϕ
ψ

The tactical # interprets the composition of rules, respecting also discharge. Thus,
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we have the overall composite action:

Jτ∧ # τ→K(χ ∧ (ϕ → ψ)) = χ

[ϕ]
ψ

ϕ → ψ

χ ∧ (ϕ → ψ)

■

This completes the framework of this chapter. We have arguments, logic, and

tactics that are pairwise connected in simple, intuitive ways, faithful to mathemat-

ical practices, but presented generally. The following section demonstrates that

validity, tactical proof, and consequence are coherent throughout the framework.

20.4.2 Correctness

Thus, We have presented a tripartite logic framework as a mathematics of reasoning:

arguments, sequent calculi, and tactics. Above, we defined their relationships. It is

summarized in the following diagram:

L VALIDITY

SOUNDNESS & COMPLETENESS

T
��

J−K

CC

oo
σ

// L
��

e

[[

PROVABILITY

Heuristically, tactics T represent (through an interpretation J−K) the constructions

of arguments L that assert (through an ergo e) sequents of a logic and that the

reasoning steps involved are justified (through a synthesizer σ) by the rules of a

sequent calculus L.

By fixing a sequent calculus, we declare a notion of inference for a logic.

This notion of inference justifies a system of tactics if there is a synthesizer. The

following coherence result captures this:

Proposition 20.26. Let L be a sequent calculus; let L= ⟨A,e⟩ be a LAS; and let T

be a tactical system with achievement α . Let J−K be an interpretation of T in A and

let ∝ satisfy the following coherence condition:

eJGK ∝ G
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Let α be an L-synthesizer for T, then the application of a tactic corresponds pre-

cisely to an inference in L — that is, if JτK : JGK 7→ [JG1K, ...,JGnK], then there is an

L-rule witnessing the following:

eJG1K . . . eJGnK
eJGK

π

Proof. By Definition 20.24, if τ : G 7→ ⟨[G1, ...,Gn],π⟩, then JτK : JGK 7→

[JG1K, ...,JGnK]. By the coherence condition: π : [eJG1K, ...,eJGnK] 7→ eJGK. Since

α is a synthesizer, the result follows from Definition 4.4.

Corollary 20.27. Calculus L is sound for L.

Proof. Proposition 20.26 states that every rule in L is admissible for the logic in-

duced by A, which is the soundness condition in Definition 20.23.

In this way, a sequent calculus characterizes inference, and a tactical system

characterizes the construction of arguments. This means the notion of inference

for a logic can be as rough or refined as one desires. For example, one may take

the trivial sequent calculus for a consequence relation, which has the consequence

of the logic as axioms, but then one admits no tactics. Notably, one has no way

of constructing arguments. Though permissible, this situation is quite degenerate.

Instead, one may use some notion of argument to inform what inferences are to be

permitted.

We have thus shown that the tripartite framework captured by tactical proof and

proof-theoretic semantics is coherent in the sense that arguments, sequent calculi,

and tactics have the expected relationship. This framework does not arise from

doxastic considerations of what these things should be but rather from how they are

used in practice. So far, we have been led by a heuristic account and now justify it

with a series of examples drawn from the literature on logic.

20.4.3 Examples of the Framework

We provide a brief survey of how various proof-search activities in the literature are

instances of the framework in this chapter. This survey is far from complete and
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left at a quite high level as it only illustrates the descriptive power of the framework

we have presented — namely, the relationship between proof-theoretic validity of

arguments and inference as witnessed through the Reductive Logic carried by tac-

tical proof. Of course, in addition, there are also the examples of natural deduction

(Example 20.19) dialogue games (Example 20.20) in Section 20.4.1.

Example 20.28 (Focused Systems). The problem of proof-search is handling the

various choices involved, such as inter alia, the choice of a rule to use and the choice

of an instance of that rule. This problem motivates the concept of focused proof-

search, introduced by Andreoli [6], where these things are largely determined. We

review a typical approach for studying focusing — see, for example, Chaudhuri [35,

34] and Chapter:9.

One begins a sequent calculus L for which one wishes to establish the focus-

ing property (i.e., that the class of focused proofs is complete for the logic). One

introduces an augmented version FL, called the focused system, which arises from

enriching the original calculus with control structures and introducing cut. In the

framework of this chapter, we can describe the situation as follows: one has a sys-

tem of tactics T that is validated by L (i.e., one has a synthesizer from T to L) such

that a tactic is interpreted as an FL-proof. The space of arguments contains all FL-

proofs, and the justification operators are given by cut-reduction. This is set up so

that the canonical proofs represent focused L-proofs. ■

Example 20.29 (Hyper-sequent Calculi). Reasoning in substructural and modal

logics is often difficult because they seemingly do not admit analytic sequent calculi

that do not have extra-logical structures (e.g., labels). Many such logics do admit

hyper-sequent calculi; that is, calculi over finite multisets of sequents — see, for

example, Baaz et al. [11] and Ciabattoni et al. [37]. We can use the framework of

this chapter to describe the relationship of hyper-sequent calculi to the logic.

One has a system of tactics T of goals that are hyper-sequents such that the

tactics are interpreted as reductions in the hyper-sequent calculus. These tactics

are valid relative to a notion of achievement defined as follows: a consequence of

the logic achieves a hyper-sequent iff it is among the sequents in the multiset. ■
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Example 20.30 (Analytic Tableaux). Analytic tableaux give a computationally use-

ful paradigm of proof in logic. It has been extensively treated for modal logic

(see, for example, Fitting and Mendelsohn [60]) and has been used to provide a

uniform and modular proof theory for the family of bunched logics (see Docherty

and Pym [47, 44]). Typically, these systems make use of prefixed signed formulas.

The framework of this chapter can be used to describe the relationship between a

tableaux system and a logic.

One has a system of tactics T whose goals are prefix signed formulas and

whose tactics represent expansion rules for the system, and tacticals are sequential

composition. These tactics are interpreted in the space of arguments containing the

tableaux, in which the canonical proofs are closed tableaux, possibly satisfying a

particular expansion scheme. The tactical system is valid relative to a notion of

inference supplied by a relational sequent calculus in the form of Negri [147] and

Chapter 16. ■



Chapter 21

Base-extension semantics for

Intuitionistic Propositional Logic

This chapter presents the base-extension semantics (B-eS) for IPL given by

Sandqvist [183]. It summarizes, and generalizes in a minor way, the work in the

following paper:

Sandqvist, T. Base-extension Semantics for Intuitionistic Sentential

Logic. Logic Journal of the IGPL 23, 5 (2015), 719–731

In Section 21.1, we give a terse but complete definition of the B-eS for IPL.

In Section 21.2, we summarize the completeness proof. Finally, in Section 21.3,

we discuss a modification of the treatment of conjunction that helps explain how

and why the semantics works. This is subtle, as witnessed by a range of incom-

pleteness results — see, for example, Piecha et al. [157, 156, 159], Goldfarb [85],

Sandqvist [181, 182, 184, 183], Stafford [197].

Throughout this section, we fix a denumerable set of atomic propositions A,

and the following conventions: p,q, . . . denote atoms; P,Q, . . . denote finite sets of

atoms; ϕ,ψ,θ , . . . denote formulas; Γ,∆, . . . denote finite sets of formulas.
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21.1 Support in a Base
The B-eS for IPL given by Sandqvist [183] only admits properly second-level

atomic systems — that is, bases are composed of atomic rules of the form

c

[Σ1]
p1 ...

[Σn]
pn

c

in which Σ1,...,Σn are possibly empty sets of atoms. They may be expressed inline as

(Q1 ▷q1, . . . ,Qn ▷qn)⇒ q — note, the axiom case is the special case when the left-

hand side is empty, ⇒ q. Intuitively, ⇒ q means that the atom q may be concluded

whenever, while (Q1 ▷q1, . . . ,Qn ▷qn)⇒ q means that one may derive q from a set

of atoms S if one has derived qi from S assuming Qi for i = 1, ...,n. While this has

already been treated formally in Chapter 20, we shall give an explicit treatment of

the same things here in the restricted setting of second-level systems.

Definition 21.1 (Base). A base is a set of (properly second-level) atomic rules.

We write B,C , . . . to denote bases. We say C is an extension of B if C is a

superset of B, denoted C ⊇ B.

Definition 21.2 (Derivability in a Base). Derivability in a base B is the least rela-

tion ⊢B satisfying the following:

Ref S,q⊢B q.

App If atomic rule (Q1 ▷q1, . . . ,Qn ▷qn) ⇒ q is in B, and S,Qi ⊢B qi for all i =

1, . . . ,n, then S⊢B q.

This forms the base case of the B-eS for IPL:

Definition 21.3 (Sandqvist’s Support in a Base). Sandqvist’s support in a base B is

the least relation ⊩B defined by the clauses of Figure 21.1. A sequent Γ▷ϕ is valid

— denoted Γ ⊩ϕ — iff it is supported in every base,

Γ ⊩ϕ iff Γ ⊩B ϕ for any B
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(At) ⊩B p iff ⊢Bp
(→) ⊩B ϕ → ψ iff ϕ ⊩B ψ

(∧) ⊩B ϕ ∧ψ iff ⊩B ϕ and ⊩B ψ

(∨) ⊩B ϕ ∨ψ iff for any C such that B ⊆ C and any p ∈ A,
if ϕ ⊩C p and ψ ⊩C p, then ⊩C p

(⊥) ⊩B ⊥ iff ⊩B p for any p ∈ A

(Inf) Γ ⊩B ϕ iff for any C such that B ⊆ C ,
if ⊩C γ for any γ ∈ Γ, then ⊩C ϕ

Figure 21.1: Sandqvist’s Support in a Base

Every base is an extension of the empty base (∅), therefore Γ ⊩ϕ iff Γ ⊩∅ ϕ .

Sandqvist [183] showed that this semantics characterizes IPL:

Theorem 21.4 (Sandqvist [183]). Γ⊢ϕ iff Γ ⊩ϕ

We require a small generalization that follows exactly the same proof but with

an appropriate parameter tracked throughout:

Theorem 21.5. Γ⊢NJ∪B ϕ iff Γ ⊩B ϕ

Soundness — that is, Γ⊢NJ∪Bϕ implies Γ ⊩B ϕ — follows from showing

that ⊩NJ∪B respects the rules of NJ∪B in the traditional way; for example, Γ ⊩B

ϕ and ∆ ⊩B ψ implies Γ,∆ ⊩B ϕ ∧ψ . Completeness — that is, Γ ⊩B ϕ implies

Γ⊢NJ∪B ϕ — is more subtle. We present the argument in Section 21.2.

21.2 Completeness of IPL
We require to show that Γ ⊩B ϕ implies that there is an NJ∪B-proof witnessing

Γ⊢NJ∪B ϕ . To this end, we associate to each sub-formula ρ of Γ or ϕ a unique atom

r, and construct a base N such that r behaves in N as ρ behaves in NJ. Moreover,

formulas and their atomizations are semantically equivalent in any extension of N

so that support in N characterizes both validity and provability. When ρ ∈ A, we

take r := ρ , but for complex ρ we choose r to be alien to Γ and ϕ .
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ρ♭ σ ♭

(ρ ∧σ)♭
∧I

♭
(ρ ∧σ)♭

ρ♭ ∧E
♭

(ρ ∧σ)♭

σ ♭ ∧E
♭

ρ♭ (ρ → σ)♭

σ ♭ →E
♭

ρ♭

(ρ ∨σ)♭
∨I

♭ σ ♭

(ρ ∨σ)♭
∨I

♭ (ρ ∨σ)♭
[ρ♭]

p
[σ ♭]

p
p ∨E

♭

[ρ♭]

σ ♭

(ρ → σ)♭
→I

♭ ⊥♭

p EFQ♭

Figure 21.2: Atomic System N

Example 21.6. Suppose ρ := p∧ q is a sub-formula of Γ or ϕ . Associate to it a

fresh atom r. Since the principal connective of ρ is ∧, we require N to contain the

following rules:
p q

r
r
p

r
q

We may write (p∧q)♭ for r so that these rules may be expressed as follows:

p q
(p∧q)♭

(p∧q)♭
p

(p∧q)♭
q

■

Formally, given a judgement Γ ⊩ϕ , to every sub-formula ρ associate a unique

atomic proposition ρ♭ as follows:

- if ρ ̸∈ A, then ρ♭ is an atom that does not occur in Γ or ϕ or B;

- if ρ ∈ A, then ρ♭ = ρ .

By unique we mean that (·)♭ is injective — that is, if ρ ̸= σ , then ρ♭ ̸= σ ♭. The

left-inverse of (·)♭ is (·)♮, and the domain may be extended to the entirety of A by

identity on atoms not in the codomain of (·)♭. Both functions act on sets point-wise

— that is, Σ♭ := {ϕ♭ | ϕ ∈ Σ} and P♮ := {p♮ | p ∈ P}. Relative to (·)♭, let N be the

base containing the rules of Figure 21.2 for any sub-formulas ρ and σ of Γ and ϕ ,

and any p ∈ A.
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Sandqvist [183] establishes three claims that deliver completeness and may be

suitably generalized to the version of the theorem we desire to prove:

– AtComp. Let S ⊆ A and p ∈ A and let B be a base: S ⊩B p iff S⊢B p.

– Flat. For any sub-formula ξ of Γ or ϕ and N ′ ⊇ N : ⊩N ′ ξ ♭ iff ⊩N ′ ξ .

– Nat. Let S ⊆ A and p ∈ A: if S⊢N ∪B p, then S♮⊢N ∪Bp♮.

The first claim is completeness in the atomic case. The second claim is that ξ ♭

and ξ are equivalent in N — that is, ξ ♭ ⊩N ξ and ξ ⊩N ξ ♭. Consequently,

Γ
♭ ⊩N ′ ϕ

♭ iff Γ ⊩N ′ ϕ

The third claim is the simulation statement which allows us to make the final move

from derivability in N to derivability in NJ.

Theorem 21.5 — Completeness. Assume Γ ⊩B ϕ and let N be its bespoke base.

By Flat, Γ♭ ⊩N ∪B ϕ♭. Hence, by AtComp, Γ♭ ⊢N ∪B ϕ♭. Whence, by Nat,

(Γ♭)♮⊢NJ∪B (ϕ♭)♮ — that is, Γ⊢NJ∪B ϕ , as required.

21.3 Support in a Base, revisited
One can, of course, simply mimic model-theoretic semantics for IPL using P-tS

structures — see, for example, Goldfarb [85], and Stafford and Nascimento [198].

However, what is interesting about the B-eS in Sandqvist [183] is the way in which

it is not a representation of the possible world semantics. This is most clearly seen

in (∨), which takes the form of the ‘second-order’ definition of disjunction — that

is, U +V = ∀X ((U → X)→ (V → X)→ X) (see Prawitz [168]).

Proof-theoretically, the clause recalls the elimination rule for the connective

restricted to atomic conclusions,

ϕ ∨ψ
[ϕ]
p

[ψ]
p

p
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This is adumbrated by Dummett [51], but is, perhaps, surprising since the restriction

to atoms is not possible within NJ (e.g., one cannot prove the commutativity of

disjunction). Indeed, all of the clauses in Figure 21.1 may be regarded as taking the

form of the corresponding elimination rules restricted in this way. There is a strong

link between the structures here and those investigated extensively by Ferreira et

al. [55, 56, 57, 58]

One justification for the clauses is the principle of definitional reflection (DR)

(see Hallnäs [92, 93] and Schroeder-Heister [188]):

Whatever follows from all the defining conditions of an assertion also

follows from the assertion itself.

Taking the perspective that the introduction rules are definitions, DR provides an

answer for the way in which the elimination rules follow. Similarly, it justifies that

the clauses for the logical constants take the form of their elimination rules. Note,

we here take the definitional view of the introduction rules for the logical constants

of IPL, and not of bases themselves, thus do not contradict the distinctions made by

Piecha and Schroeder-Heister [194, 158].

Following this observation, an alternative candidate clause for conjunction is

as follows:

(∧∗) ⊨B ϕ ∧ψ iff for any C ⊇ B and any p ∈ A, if ϕ,ψ ⊨C p, then ⊨C p

Definition 21.7. The relation ⊨B is defined by the clauses of Figure 21.1 with (∧∗)

in place of (∧). The judgement Γ ⊨ ϕ obtains iff Γ ⊨B ϕ for every B.

The resulting semantics is sound and complete for IPL:

Theorem 21.8. Γ ⊨ ϕ iff Γ⊢ϕ .

Proof. We require to results which are proved at the end of this chapter. For arbi-

trary base B, and formulas ϕ,ψ,χ ,
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– Monotone∗. If ⊨B ϕ , then ⊨C ϕ for any C ⊇ B.

– AndCut. If ⊨B ϕ ∧ψ and ϕ,ψ ⊨B χ , then ⊨B χ .

The first claim follows easily from (Inf). The second is a generalization of (∧∗); it

follows by induction on the structure of χ — an analogous treatment of disjunction

was given by Sandqvist [183].

By Theorem 21.5, it suffices to show that Γ ⊨ ϕ iff Γ ⊩ϕ . For this it suffices

to show ⊨B θ iff ⊩B θ for arbitrary B and θ . We proceed by induction on the

structure of θ . Since the two relations are defined identically except in the case

when the θ is a conjunction, we restrict attention to this case.

First, we show ⊩B θ1 ∧ θ2 implies ⊨B θ1 ∧ θ2. By (∧∗), the conclusion is

equivalent to the following: for any C ⊇ B and p ∈ A, if θ1,θ2 ⊨C p, then ⊨C p.

Therefore, fix C ⊇ B and p ∈ A such that θ1,θ2 ⊨C p. By (Inf), this entails the

following: if ⊨C θ1 and ⊨C θ2, then ⊨C p. By (∧) on the assumption (i.e., ⊩B

θ1 ∧ θ2), we obtain ⊩B θ1 and ⊩B θ2. Hence, by the induction hypothesis (IH),

⊨B θ1 and ⊨B θ2. Whence, by Monotone∗, ⊨C θ1 and ⊨C θ2. Therefore, ⊨C p. We

have thus shown ⊨B θ1 ∧θ2, as required.

Second, we show ⊨B θ1∧θ2 implies⊩B θ1∧θ2. It is easy to see that θ1,θ2 ⊨B

θi obtains for i = 1,2. Applying AndCut (setting ϕ = θ1, ψ = θ2) once with χ = θ1

and once with χ = θ2 yields ⊨B θ1 and ⊨B θ2. By the IH,⊩B θ1 and⊩B θ2. Hence,

⊩B θ1 ∧θ2, as required.

A curious feature of the new semantics is that the meaning of the context-

former (i.e., the comma) is no longer interpreted as ∧; that is, we define the context-

former as follows:

⊨B Γ,∆ iff ⊨B Γ and ⊨B ∆

This differs from the definition of ∧ in the new semantics. Nonetheless, as shown

in the proof of Theorem 21.8, they are equivalent at every base — that is, ⊨B ϕ,ψ

iff ⊨B ϕ ∧ψ for any B.
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Having defined the context-former, we may express (Inf) as follows:

Γ ⊨B ϕ iff for any C ⊇ B, if ⊨C Γ, then ⊨C ϕ

This illustrates that support in a base of a sequent is the transmission of the support

of the context in a base to support of the formula in a bigger base.

This equivalence of the two semantics yields the following:

Corollary 21.9. For arbitrary base B and formula ϕ , ⊩B ϕ iff, for every X ⊇ B

and every atom p, if ϕ ⊩X p, then ⊩X p.

Proof. Let ⊤ be any formula such that ⊩⊤ — for example, ⊤ := p∧ (p → q)→ q.

We apply the two equivalent definitions of ∧ to the neutrality of ⊤.

⊩B ϕ iff ⊩B ϕ and ⊩B ⊤ (def. of ⊤)

iff ⊩B ϕ ∧⊤ (∧)

iff for any X ⊇ B, for any p ∈ A,ϕ,⊤ ⊩X p implies ⊩B p (∧∗)

iff for any X ⊇ B, for any p ∈ A,ϕ ⊩X p implies ⊩B p (def. of ⊤)

This establishes the desired equivalence.

The significance of this result is that we see that formulas in the B-eS are

precisely characterized by their support of atoms.

It remains to prove the claims Monotone∗ and AndCut in the proof of Theo-

rem 21.8:

Lemma 21.10 (Monotone∗). If Γ ⊨B ϕ , then Γ ⊨C ϕ for any C ⊇ B.

Proof. By (Inf), the conclusion Γ ⊨C ϕ means: for every D ⊇C, if ⊨D γ for every

γ ∈ Γ, then ⊨D ϕ . Since D ⊇ C ⊇ B, this follows by (Inf) on the hypothesis

Γ ⊨B ϕ .

Lemma 21.11 (AndCut). If ⊨B ϕ ∧ψ and ϕ,ψ ⊨B χ , then ⊨B χ .

Proof. We proceed by induction on the structure of χ:
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– χ = p ∈ A. This follows immediately by expanding the hypotheses with (∧)

and (Inf), choosing the atom to be χ .

– χ = χ1 → χ2. By (→), the conclusion is equivalent to σ ⊨B τ . By (Inf), this is

equivalent to the following: for any C ⊇ B, if ⊨C χ1, then ⊨C χ2. Therefore,

fix an arbitrary C ⊇ B such that ⊨C χ1. By the induction hypothesis (IH), it

suffices to show: (1) ⊨C ϕ∧ψ and (2) for any D ⊇C, if ⊨D ϕ and ⊨D ψ , then

⊨D χ2. By Monotone∗ on the first hypothesis we immediately get (1). For

(2), fix an arbitrary base D ⊇ C such that ⊨D ϕ , and ⊨D ψ . By the second

hypothesis, we obtain ⊨D χ1 → χ2 — that is, χ1 ⊨D χ2. Hence, by (Inf)

and Monotone∗ (since D ⊇ B) we have ⊨D χ2, as required.

– χ = χ1 ∧ χ2. By (∧∗), the conclusion is equivalent to the following: for any

C ⊇ B and atomic p, if χ1,χ2 ⊨C p, then ⊨C p. Therefore, fix arbitrary C ⊇ B

and p such that χ1,χ2 ⊨C p. By (Inf), for any D ⊇ C, if ⊨D χ1 and ⊨D χ2,

then ⊨Y p. We require to show ⊨C p. By the IH, it suffices to show the

following: (1) ⊨C ϕ ∧ψ and (2), for any E ⊇ C, if ⊨E ϕ and ⊨E ψ , then

⊨E p. Since B ⊆ C, By Monotone∗ on the first hypothesis we immediately

get (1). For (2), fix an arbitrary base E ⊇C such that ⊨E ϕ and ⊨E ψ . By the

second hypothesis, we obtain ⊨D p, as required.

– χ = χ1 ∨ χ2. By (∨), the conclusion is equivalent to the following: for any

C ⊇ B and atomic p, if χ1 ⊨C p and χ2 ⊨C p, then ⊨C p. Therefore, fix an

arbitrary base C ⊇ B and atomic p such that χ1 ⊨C p and χ2 ⊨C p. By the

IH, it suffices to prove the following: (1) ⊨C ϕ ∧ψ and (2). for any D ⊇C,

if ⊨D ϕ and ⊨D ψ , then ⊨D p. By Monotone∗ on the first hypothesis we

immediately get (1). For (2), fix an arbitrary D ⊇ C such that ⊨D ϕ and

⊨D ψ . Since D ⊇ B, we obtain ⊨D χ1∨χ2 by the second hypothesis. By (∨),

we obtain ⊨D p, as required.

– χ = ⊥. By (⊥), the conclusion is equivalent to the following: ⊨B r for all

atomic r. By the IH, it suffices to prove the following: (1) ⊨B ϕ ∧ψ and (2),

for any C ⊇ B, if ⊨C ϕ and ⊨C ψ , then ⊨C r. By the first hypothesis we have
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(1). For (2), fix an arbitrary C ⊇ B such that ⊨C ϕ and ⊨C ψ . By the second

hypothesis, ⊨C ⊥ obtains. By (⊥), we obtain ⊨C r, as required.

This completes the induction.

This concludes the presentation of the B-eS for IPL by Sandqvist [183]. In

Chapter 22, we show that this B-eS contains the declarative content of the version

of P-tV in Chapter 20.



Chapter 22

From Basic Proof-theoretic Validity

to Base-extension Semantics

What does P-tV tell us about the logical constants? That is, we desire to understand

the following validity judgement relation in terms of the logical constants:

Γ ⊨ ϕ iff there is a valid argument for Γ▷ϕ

By Definition 14.16, the relation factors through a relative validity judgement,

Γ ⊨B ϕ iff there is a B-valid argument for Γ▷ϕ

We desire to explicate this in terms of the logical constants. Such attempts have

been made before — see, for example, Peicha et al. [157]. However, they invariably

give an interpretation of the situation in which Γ ̸= ∅ that is, perhaps, not justified

according to the constructiveness of Definition 20.10. This is where the work in this

chapter departs from the earlier work.

Recall in Chapter 20 that P-tV is the generalization of a more limited notion

of validity introduced by Prawitz [164], which we call basic P-tV. This chapter

concentrates on the declarative content of basic P-tV and shows that it is precisely

Sandqvist’s B-eS for IPL [183]. While restricting attention in this way is somewhat

limited with respect to ideas of P-tS, the completeness of IPL with respect to even

this special case is not yet known.
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First, in Section 22.1, we analyze the constructiveness of basic P-tV and con-

trast it to the classical approach used by Piecha et al. [157, 156, 159]. Second, in

Section 22.2, we demonstrate that the declarative content of basic P-tV is precisely

Sandqvist’s B-eS for IPL [183] (Chapter 21). Finally, in Section 22.3, we discuss

the meaning of negation, which is subtle in P-tS, relative to these results. As in

Chapter 20, we take it that some set of atomic systems is fixed as the notion of base.

It will be restricted as appropriate. For the remainder of this chapter, when we say

P-tV, we mean basic P-tV.

22.1 Proof-theoretic Semantics, Constructively
The universal validity relation is obtained from the relative validity judgement by

quantifying over bases (see Definition 20.10):

Γ ⊨ ϕ iff ∀B, Γ ⊨B ϕ

It remains to characterize ⊨ according to the structure of sequents. By Defini-

tion 20.9, we distinguish the cases of Γ▷ϕ when Γ =∅ and Γ ̸=∅.

For Γ =∅, using Proposition 20.12 (or Definition 20.9), we may characterize

P-tV as in Figure 22.1.

Example 22.1. By Proposition 20.12, A :∅⊩∅ ϕ∧ψ iff A⇝∗ Ā ∈∧I(A1,A2) such

that A1 : ∅ ⊩∅ ϕ and A1 : ∅ ⊩∅ ϕ . Hence, there is a valid argument A witnessing

ϕ ∧ψ iff there are valid argument A1 and A2 witnessing ϕ and ψ , respectively.

This is expressed by the clause-∧ in Figure 22.1. ■

It remains to consider the case Γ ̸= ∅. Using Proposition 20.12 (or Defini-

tion 20.9),

Γ ⊨B ϕ iff ∃A st. ∀C ⊇ B ∀B, if B : ∅ ⊩C Γ, then cut(B,A) : ∅ ⊩C ϕ (†)

That B appears in the judgement for ϕ explains that the arguments that witness the

validity of ϕ are (pointwise) sensitive to the arguments that (hypothetically) witness
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⊨B p iff ⊢Bp

⊨B ϕ ∧ψ iff ⊨B ϕ and ⊨B ψ

⊨B ϕ ∨ψ iff ⊨B ϕ or ⊨B ψ

⊨B ϕ → ψ iff ϕ ⊨B ψ

⊨B ⊥ never

Figure 22.1: Proof-theoretic Validity (empty context)

the validity of Γ. This is subtle. This is a constructive condition on the arguments

witnessing ϕ relative to the arguments witnessing Γ.

Example 22.2. That ϕ∨ψ ⊩∗
∅ ψ∨ϕ obtains is witnessed by the argument A defined

as follows:

ϕ ∨ψ

[ϕ]
ϕ ∨ψ

∨I
[ψ]

ψ ∨ϕ
∨I

ψ ∨ϕ
∨E

That A is valid requires considering an arbitrary base B and argument B such that

B : ∅ ⊩B ϕ ∨ψ . Without loss of generality, take B to be a canonical proof. The

validity of A follows from the assertion cut(B,A) : ∅ ⊩B ϕ ∨ψ . The argument

cut(B,A) is the following:

B
ϕ ∨ψ

[ϕ]
ϕ ∨ψ

∨I
[ψ]

ψ ∨ϕ
∨I

ψ ∨ϕ
∨E

Since B is a canonical proof, it concludes by ∨I, and therefore the immediate sub-

proof C is a B-valid argument for either ϕ or for ψ . Whatever the case, cut(A,B)

reduces to the following, where χ ∈ {ϕ,ψ}:

C
χ

ψ ∨ϕ
∨I

It is important to note that all this work takes place with a hypothetical B, not a

fixed one, that depends on the base B. Hence, what makes A valid depends on a
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case analysis of its hypotheses. ■

To see the constructiveness of (†), contrast it with the following:

Γ ⊨B ϕ iff ∀C ⊇ B, if ⊨C Γ, then ⊨C ϕ (††)

Acquiescing to (††) recovers the B-eS studied by Piecha et al. [157, 156, 159].

Thus, we distinguish two relations:

– Let ⊨1 denote ⊨ with bases as properly first-level atomic systems and (††) as

the defining condition for Γ ̸=∅.

– Let ⊨2 denote ⊨ with bases as properly second-level atomic systems and (†)

as the defining condition for Γ ̸=∅.

To see that these relations are not the same, consider the validity of Harrop’s Law,

(ϕ →⊥)→ (ψ1 ∨ψ2)

((ϕ →⊥)→ ψ1)∨ ((ϕ →⊥)→ ψ2)

Notably, this is one of the standard examples of a rule that is admissible for IPL but

not derivable.

Example 22.3. Let γ := (a →⊥)→ (b∨c) and θ := ((a →⊥)→ b)∨((a →⊥)→

c). Piecha et al. [157, 156, 159] have shown that γ ⊨1 θ . We show that γ ̸⊨2 θ .

The demonstration merits comparison with the standard rejection of (the formula

translation of) Harrop’s Law in the BHK interpretation of intuitionistic logic.

By definition, γ ⊨2 θ iff γ ⊨2
B θ for arbitrary B. By (†), γ ⊨2

B θ is equivalent

to the following:

∃A st. ∀C ⊇ B ∀B, if B : ∅ ⊩C γ , then cut(B,A) : ∅ ⊩C θ

We argue by contradiction that no such A exists.

Suppose A exists. Without loss of generality, it begins by eliminating the log-

ical structure of γ — that is, it contains one or more sub-proofs of the following
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form, for possibly different χ , where a →⊥ is eventually discharged,

γ (a →⊥)

b∨ c
→E

γ, [b],(a →⊥)
...
χ

γ, [c],(a →⊥)
...
χ

χ

...

∨E

Fix one such χ , call one of its sub-derivations X , and note that it is B-valid. Recall

that except when the principal connective of the conclusion is an implication, B-

valid arguments may be taken to conclude with an introduction rule. Thus, there is

a B-valid argument of the following form:

γ,χ, [(a →⊥)]
...
b

(a →⊥)→ b
→I

γ,χ, [(a →⊥)]
...
c

(a →⊥)→ c
→I

θ
∨I

In particular, there are B-valid arguments,

γ,χ,(a →⊥)
...
b and

γ,χ,(a →⊥)
...
c

Therefore, χ may be replaced by b and c in X . That is, there are B-valid arguments

of the following form:

γ (a →⊥)

b∨ c
→E

γ, [b],(a →⊥)
...
b

γ, [c],(a →⊥)
...
b

b
∨E

γ (a →⊥)

b∨ c
→E

γ, [b],(a →⊥)
...
c

γ, [c],(a →⊥)
...
c

c ∨E
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Since B is arbitrary, let it contain the following rules:

[b]
c
a

[c]
b
a

Hence, we witness the following B-valid arguments, where x,y ∈ {b,c} and x ̸= y:

a →⊥

γ, [y],(a →⊥)
...
x
a

⊥

It follows that γ ∧ (a →⊥) ⊨2
B ⊥. Hence, since (without loss of generality) a

witnessing argument begins by eliminating the logical structure from the context,

b∨ c ⊨2
B ⊥. This is impossible as there is no rule introducing ⊥. We conclude,

therefore, that A does not exist. ■

This shows that accounting for the constructiveness of P-tV results in a differ-

ent entailment relation than previously studied. In the next section, we show that it

exactly corresponds to the Sandqvist’s [183] B-eS for IPL (⊩−) by Sandqvist [183]

(see Chapter 21). Henceforth, ⊨ and ⊨B mean ⊨2 and ⊨2
B, respectively.

22.2 From Satisfaction to Support
We require some technical results for the induction. None of them are surprising as

they reflect standard results in proof theory for IPL, which is the basis of P-tV —

see, for example, Troelstra and Schwichtenberg [207], Negri and von Plato [149],

and Dyckhoff [53, 54].

Proposition 22.4. The following hold for arbitrary ϕ1, ϕ2 ∈ F, sets of formulae Γ,

and bases B:

A) Γ ⊨B ϕ1 ∧ϕ2 iff Γ ⊨B ϕ1 and Γ ⊨B ϕ2

B) Γ ⊨B ϕ1 → ϕ2 iff Γ,ϕ1 ⊨B ϕ2

C) Γ,ϕ1 ∧ϕ2 ⊨B χ iff Γ,ϕ1,ϕ2 ⊨B χ
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D) Γ,ϕ1 ∨ϕ2 ⊨B χ iff Γ,ϕ1 ⊨B χ and Γ,ϕ2 ⊨B χ

All the claims follow from appropriate use of the introduction and elimination

rules. We illustrate c), the others being similar.

Proof of Proposition 22.4 c). By Proposition 20.12, for any C , in the presence of

a C -valid argument for ϕ1, there is a C -valid argument ϕ1 → ϕ2 iff there is a C -

valid argument for ϕ2. Therefore, by Definition 20.9, there is a B-valid argument

witnessing ϕ1,ϕ2,Γ⊩χ iff there is a B-valid argument witnessing ϕ1∧ϕ2,Γ,⊨B χ ,

as required.

Proposition 22.5 (Monotonicity of Bases). If Γ ⊨B χ and C ⊇ B, then Γ ⊨C χ .

Proof. Follows immediately from Definition 20.9 by the monotonicity of derivabil-

ity in a base — that is, ⊢Bp implies ⊢C p for any C ⊇ B.

Proposition 22.6 (Cut). If Γ ⊨B χ and χ,∆ ⊨B ϕ , then Γ,∆ ⊨B ϕ .

Proof. Follows immediately from Definition 20.9 by the composition of witnessing

arguments.

We may prove the main result of the chapter:

Theorem 22.7. Γ ⊨B ϕ iff Γ ⊩B ϕ (Γ ̸=∅)

Proof. The direction Γ ⊩B ϕ implies Γ ⊨B ϕ follows immediately from Theo-

rem 21.5, as NJ∪B-derivations are valid arguments.

It remains to show the other direction; that is, Γ ⊨B ϕ implies Γ ⊩B ϕ . We

identify a sequent Γ ▷ϕ with a multiset of the elements of Γ together with ϕ and

proceed by induction on the multiset ordering induced by the ordering on the size of

formulae (i.e., the number of binary connectives they contain). Recall the following

abbreviation from Chapter 2:

Γ̂ :=
∧

ψ∈Γ

ψ

- BASE CASE. We take Γ and ϕ to be composed of formulas of minimal

weight; that is, Γ∪{ϕ} ⊆ A∪{⊥}. Three cases require distinct consider-

ation:
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- ⊥ ∈ Γ. By ∧-clause, for any C ⊇ B: if ⊩C Γ̂, then ⊩C ⊥; and, if ⊩C ⊥,

then ⊩C p for any p ∈ A. Thus, ⊩C Γ̂ implies ⊩C ϕ . Therefore, Γ ⊩B ϕ .

- ⊥ ̸∈ Γ and ϕ = ⊥. This case is impossible since there is no rule in any

base of in NJ concluding ⊥ without it occurring as a sub-formula of the

premisses.

- ⊥ ̸∈ Γ and ϕ ̸= ⊥. From Γ ⊨B ϕ we infer that, for any C ⊇ B, either

⊢C ϕ or there is an argument A such that A : Γ ⊩C ϕ . By composing

arguments, it follows that, if ⊢C q for q ∈ Γ, then ⊢C ϕ . Hence, ⊩C Γ̂

implies ⊩C ϕ . That is, Γ ⊩B ϕ .

- INDUCTIVE STEP. There is χ ∈ Γ∪{ϕ} such that χ ̸∈ A∪⊥. We distinguish

two cases, χ = ϕ and χ ̸= ϕ .

Let χ = ϕ . We proceed by case analysis on the structure of ϕ:

- ϕ = ϕ1∧ϕ2. By Proposition 22.4, Γ ⊨B ϕ1 and Γ ⊨B ϕ2. By the induc-

tion hypothesis (IH), Γ ⊩B ϕ1 and Γ ⊩B ϕ2. By ∧-clause, Γ ⊩B ϕ1 ∧ϕ2

follows.

- ϕ = ϕ1 ∨ϕ2. By Proposition 22.6 and Proposition 22.5, using the as-

sumption Γ ⊨B ϕ ∨ψ , we have the following: for any C ⊇ B and any

p,

Γ,ϕ ∨ψ ⊨C p implies Γ ⊨C p

By Proposition 22.4,

Γ,ϕ1 ⊨C p and Γ,ϕ2 ⊨C p implies Γ ⊨C p

Using the already established direction of the theorem together with the

IH yields the following: for all C ⊇ B and for all p,

Γ,ϕ1 ⊩C p and Γ,ϕ2 ⊩C p implies Γ ⊩C p

By ∨-clause, Γ ⊩C ϕ1 ∨ϕ2, as required.
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- ϕ = ϕ1 → ϕ2. By Proposition 22.4, Γ ⊨B ϕ1 → ϕ2 implies Γ,ϕ1 ⊨B ϕ2.

By the IH, Γ,ϕ1 ⊩B ϕ2. By the →-clause, Γ ⊨B ϕ1 → ϕ2.

This completes the case analysis.

Let χ ̸= ϕ . It must be that χ ∈ Γ. That is, we have χ,∆ ⊨B ϕ for some set ∆.

We proceed by case analysis on the structure of χ:

- χ = χ1 ∧ χ2. By Proposition 22.4, χ1,χ2,∆ ⊨B ϕ . Hence, by the IH,

χ1,χ2,∆ ⊩B ϕ . Therefore, by Definition 21.3, χ1 ∧χ2,∆ ⊩B ϕ .

- χ = χ1 ∨ χ2. By Proposition 22.4, χ1,∆ ⊨B ϕ and χ2,∆ ⊨B ϕ . Hence,

by the IH, χ1,∆ ⊩B ϕ and χ2,∆ ⊩B ϕ . Therefore, by Theorem 21.5

(using ∨I), we have χ1 ∨χ2,∆ ⊩B ϕ .

- χ = χ1 → χ2. Assume (i) χ1 → χ2,∆ ⊨B ϕ . We require to show, χ1 →

χ2,∆⊩B ϕ . By Definition 21.3, for arbitrary C ⊇ B, also assuming (ii)

χ1 ⊩C χ2, we require to conclude ∆ ⊩C ϕ . By Proposition 22.5, from

(i), infer χ1 → χ2,∆ ⊨C ϕ . By Theorem 21.5, from (ii), infer χ1 ⊨C χ2.

By the →I-rule,it follows that ⊨C χ1 → χ2. By Proposition 22.6, infer

∆ ⊨C ϕ . By the IH, ∆ ⊩C ϕ , as required.

This completes the case analysis on the structure of χ .

This completes the induction.

A corollary is an affirmative answer to Prawitz’s Conjecture for basic P-tV

with bases understood as properly second-level atomic systems. Of course, this is

a minor completeness result as basic P-tV is very limited, but it is missing in the

literature. The techniques used in this chapter may yield a more general account in

the future.

Corollary 22.8 (Conjecture 22.8). Let bases be properly second-level systems,

Γ ⊨ ϕ implies Γ⊢ϕ

Proof. There are two cases to consider: Γ ̸=∅ and Γ =∅.
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Let Γ ̸=∅. We have the following:

Γ ⊨ ϕ implies Γ ⊩∗
∅ ϕ (Figure 22.1)

implies Γ ⊩∅ ϕ (Theorem 22.7)

implies Γ⊢ϕ (Theorem 21.5)

The appeal to Theorem 21.5 requires the condition that bases are properly second-

level atomic systems.

Let Γ =∅. Since it is not the case that ⊨ α for any α ∈ A∪{⊥}, it suffices to

consider ϕ = ψ ◦χ for ◦ ∈ {→,∧,∨}. Define the complexity κ of ϕ as follows:

κ(ϕ) :=



0 if ϕ = ψ → χ

max{κ(ψ),κ(χ)}+1 if ϕ = ψ ∧χ

max{κ(ψ),κ(χ)}+1 if ϕ = ψ ∨χ

We proceed by induction on κ(ϕ).

- BASE CASE. κ = 0. It must be that ϕ = ϕ1 → ϕ2, for some ϕ1 and ϕ2.

Therefore, ϕ ⊨ ϕ2 — see Figure 22.1. Hence, by the case for Γ ̸=∅, conclude

ϕ1 ⊢ϕ2. Applying →I, we have ⊢ϕ1 → ϕ2 — namely, ⊢ϕ — as required.

- INDUCTIVE STEP. κ > 0. Either ϕ = ϕ1 ∧ϕ2 or ϕ = ϕ1 ∨ϕ2, for some ϕ1

and ϕ2. We consider each case separately:

- ∧. Since ⊨ ϕ ∧ψ , both ⊨ ψ and ⊨ ϕ — see Figure 22.1. Therefore,

by the induction hypothesis (IH), ⊢ϕ1 and ⊢ϕ2. Applying ∧I, we have

⊢ϕ ∧ψ — namely, ⊢ϕ — as required.

- ∨. Since ⊨ ϕ1 ∨ϕ2, either ⊨ ϕ1 or ⊨ ϕ2. By the IH, either ⊢ϕ1 or ⊢ϕ2.

Applying ∨I, we have ⊢ϕ1 ∨ϕ2 — namely, ⊢ϕ — as required.

This completes the induction.
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In Section 22.3, we reflect on the position of ex falso quodlibet relative to this

finding.

22.3 Ex Falso Quodlibet?

There is an apparent mismatch between the treatment of ⊥ for ⊨ and for ⊩— that

is,

⊨B ⊥ never

but

⊩B ⊥ iff ⊩B p for every p ∈ A

This is possible as Theorem 22.7 only applies for Γ ̸=∅. It illustrates that ⊨B and

⊩B do not coincide otherwise; indeed, the latter may be interpreted as the former

under the assumption of some hypothesis — see Example 22.3 for how under certain

assumptions one could conclude bottom. We briefly analyze this situation and what

it says about P-tV. Indeed, the meaning of negation is a subtle issue in P-tS — see,

for example, Kürbis [126].

Heuristically, the reason is that satisfaction is bivalent while support is con-

structive. This is exposed through the ex falso quodlibet rule (henceforth, EFQ),

⊥
ϕ

⊥E

Despite not being constructive, EFQ makes sense from the perspective of P-tV. As-

suming a B-valid argument of the hypotheses, one must be able to construct an

B-valid argument for the conclusion, whether such arguments exist or not. For

example, if one has B-valid arguments for ϕ ∨ψ and ¬ϕ , then one must have a

B-valid argument for ψ . As above, we reason by definitional reflection, which is

captured by the following construction:

D1
ϕ ∨ψ

[ϕ]
D2¬ϕ

⊥
→I

ψ
EFQ [ψ]

ψ
∨E
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Here EFQ captures the contradiction at the meta-level, which is classical and there-

fore has no problem with EFQ, between assuming simultaneously that there is a

B-valid argument for ϕ and that there is not. This explains why EFQ is appropriate

as a rule in NJ according to P-tV, and it indicates that the semantics is fundamentally

based on hypothetical reasoning — see Schroeder-Heister [192].

Nonetheless, something is not quite right about the current setup. Like EFQ,

the disjunctive syllogism used above is non-constructive, yet it is part of construc-

tive reasoning. Bennett has defended its position within constructive logic [17], but

in terms of reasoning, it leaves something to be desired. Tennant [204] provides a

pertinent and compelling reflection on EFQ:

In general, a proof of Ψ from ∆ is suasively appropriate only if a person

who believes ∆ can reasonably decide, on the basis of the proof, to be-

lieve Ψ. But if the proof shows his belief set ∆ to be inconsistent “on the

way to proving” Ψ from ∆, then the reasonable reaction is to suspend

belief in ∆ rather than acquiesce in the doxatic inflation administered

by the absurdity rule.

This warrants replacing EFQ by something more ‘suasively appropriate’ to handle

reasoning such as disjunctive syllogism. For example, we may take the liberaliza-

tion of ∨E by Tennant [204, 205] as a rule of inference; that is, the figure

ϕ ∨ψ

[ϕ]
⊥/χ

[ψ]
⊥/χ

χ

which is understood as saying that if both subordinate conclusions are of the same

form, then the rule behaves as usual, but if precisely one of them is ⊥, then one

brings down the other as the main conclusion of the inference. Taking this rule

leads to Core Logic introduced by Tennant [205], perhaps suggesting that, to the

extent that P-tS concerns suasive content, Core Logic is a valuable logic to study.



Chapter 23

Definite Formulae,

Negation-as-Failure, and the

Base-extension Semantics for

Intuitionistic Propositional Logic

There is an intuitive encoding of atomic rules as formulae; more precisely, as def-

inite formulae in the sense of Chapter 2. Under this encoding, atomic systems live

within the hereditary Harrop fragment of IPL. The latter has a simple operational

reading via proof-search for uniform proofs (see Chapter 2) that enables a proof-

theoretic denotational semantics — the least fixed point construction. We use this

well-understood phenomenon to deliver the completeness of IPL with respect to

Sandqvist’s B-eS [183] — see Chapter 21. This chapter is based on the following

paper:

Gheorghiu, A. V., and Pym, D. J. Definite Formulae, Negation-as-

Failure, and the Base-extension Semantics of Intuitionistic Proposi-

tional Logic. Bulletin of the Section of Logic (2023)

The essential idea of the proof does not change, only the techniques involved. In-

deed, one may already view the completeness proof by Sandqvist [183] (Chapter 21)

as proceeding through LP — namely, the proof-theoretic approach by Schroeder-

Heister and Hallnäs [94, 95] using higher-level rules.
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The point of studying the B-eS for IPL in terms of definite formulae is that

it enables an interpretation of negation in terms of the negation-as-failure (NAF)

protocol — the denial of a formula is the failure to find a proof of it. This is valuable

as negation is a subtle issue in P-tS — see, for example, Kürbis [126].

23.1 Atomic Systems vs. Programs
Intuitively, atomic systems are definitional in precisely the same way as programs

in the hereditary Harrop fragment of IPL are definitional. To illustrate this, we must

systematically move between them, which we do by encoding atomic systems as

programs.

Let ⌊−⌋ be as follows:

- The encoding of a zeroth-level rule is as follows:

⌊
c

⌋
:= c

- The encoding of a first-level rule is as follows:

⌊ p1 . . . pn
c

⌋
:= (p1 ∧ . . .∧pn)→ c

- The encoding of an nth-level rule is as follows:⌊
[Σ1]
p1 . . .

[Σn]
pn

c

⌋
:=

(
(⌊Σ1⌋ → p1) ∧ . . . ∧ (⌊Σn⌋ → pn)

)
→ c

For example, apply ⌊−⌋ to the (→I)
♭-rule in Figure 21.2 yields the following:

(ϕ♭ → ψ
♭)→ (ϕ → ψ)♭

The hierarchy of atomic system provided by Definition 20.1 precisely corre-

sponds to the inductive depth of the grammar for hereditary Harrop formulae —
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that is, if A is an n-th level atomic system, then

⊢A p iff ⌊A ⌋ ⊢ p

Therefore, we may suppress the encoding function and henceforth use atomic sys-

tems and programs interchangeably — that is, we may write A ⊢ p to denote

⌊A ⌋ ⊢ p.

Of course, for the B-eS for IPL in Chapter 21, we are limited to properly

second-level atomic systems, but the grammar of definite clauses can handle con-

siderably more.

Formally, to say that bases are definitional in the sense of programs, we mean

the following:

⊩B ϕ iff N ∪B ⊢ ϕ
♭ (∗)

Here N contains rules governing ϕ when the formula is complex — that is, ϕ is a

sub-formula of a sequent Γ▷ γ which generates N — and arbitrary otherwise.

It is important that we use ϕ♭ rather than ϕ in (∗). It is certainly not the

case that bases behave exactly as contexts; that is, we do not have the following

equivalence:

⊩B ϕ iff B ⊢ ϕ (∗∗)

That this generalization fails is shown by the following counter-example:

Example 23.1. Consider the following formula:

ϕ := (a → b∨ c)→
(
(a → b)∨ (a → c)

)
The formula ϕ is not a consequence of IPL; hence, by completeness of IPL with

respect to the B-eS we have ⊩B (a → b∨ c) and ̸⊩B (a → b)∨ (a → c), for some

B. However, assuming (∗∗), the second judgment obtains whenever the the first

obtains — that is, ⊩B (a → b∨ c) implies ⊩B (a → b)∨ (a → c), for any B! The
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following computation in hHLP witnesses this:

⊩B a → b∨ c implies B ⊢ a → b∨ c (∗∗)

implies B∪{a} ⊢ b∨ c (LOAD)

implies B∪{a} ⊢ b or B∪{a} ⊢ c (OR)

implies B ⊢ a → b or B ⊢ a → c (LOAD)

implies B ⊢ (a → b)∨ (a → c) (OR)

implies ⊩B (a → b)∨ (a → c) (∗∗)

That LOAD and OR may be used invertibly is justified by case-analysis on the struc-

ture of the goal formula with respect to the operational semantics (Figure 2.4) — it

can also be seen by Lemma 8.15. ■

To see how (∗) works in contrast to the failure of (∗∗), it is instructive to

consider an example that explicitly uses the proof-search for the definite formulae

as a meta-calculus for derivability in a base.

Example 23.2. By Theorem 21.5, we have ⊩∅ a∨ b → b∨ a. That N ⊢ (a∨ b →

b∨ a)♭ indeed obtains is witnessed by the following computation:

N ,(a∨b)♭ ⊢ (a∨b)♭
⇑ IN

Ra Rb

N ,(a∨b)♭ ⊢ (a∨b)♭∧ (a → (b∨ a)♭)∧ (b → (b∨ a)♭)
⇑ AND

N ,(a∨b)♭ ⊢ (b∨ a)♭
⇑ CLAUSE(∨E)

♭

N ,(a∨b)♭ ⊢ (b∨ a)♭
⇑ LOAD

N ⊢ (a∨b → b∨ a)♭
⇑ CLAUSE(→I)

♭

in which Rx for x ∈ {a,b} is

N ,(b∨ a)♭,x ⊢ x
⇑ IN

N ,(b∨ a)♭,x ⊢ (b∨ a)♭
⇑ CLAUSE(∨I)

♭

N ,(b∨ a)♭ ⊢ x → (b∨ a)♭
⇑ LOAD

■

In the next section, we use the relationship between atomic systems and pro-
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grams to prove the completeness of IPL with respect to the B-eS.

23.2 Completeness of IPL via Logic Programming
We may prove the completeness of IPL with respect to the B-eS by passing through

hHLP as follows:

T ω I⊥,N ⊨ ϕ♭ oo //N ⊢ ϕ♭

��
⊩N ϕ

OO

⊢ ϕ

The diagram requires three claims, the middle of which is Lemma 8.15. The other

two are Lemma 23.3 and Lemma 23.4 (below), respectively, reading in the direction

of the arrows.

The intuition of the completeness argument is two-fold: firstly, that N is to

ϕ♭ as NJ is to ϕ; secondly, the use of a rule in a base corresponds to the use of a

clause in the corresponding program; thirdly, execution in N corresponds to proof(-

search) in NJ. In this setup, the T ω construction captures the construction of a proof:

the application of a rule corresponds to a use of T , and the iterative application of

rules corresponds to the iterative application of T — that is, to T ω .

It remains to prove the claims and completeness. Fix a sequent Γ ▷ϕ and let

−♭ and N be constructed as in Chapter 21 for this sequent. Let ∆ be an arbitrary

set of sub-formulae of the sequent and ψ an arbitrary subformula of the sequent.

Proposition 23.3 (Emulation). If ⊩N ψ , then T ω I⊥,N ⊨ ψ♭.

Proof. We prove a stronger proposition: for any N ′ ⊇ N , if ⊩N ′ ψ , then

T ω I⊥,N ′ ⊨ ψ♭. We proceed by induction on support in a base according to the

various cases of Figure 21.1. For the sake of economy, we combine the clauses ⇒

and →.

- ψ ∈ A. Note ψ♭ = ψ , by definition. Therefore, if ⊩N ′ ψ , then ⊢N ′ ψ , but

this is precisely emulated by application of T . Hence, T ω I⊥,N ′ ⊩ ψ .

- ψ = ⊥. If ⊩N ′ ⊥, then ⊩N ′ p, for every p ∈ A. By the induction hypothesis

(IH), T ω I⊥,N ′ ⊩ p for every p ∈ A. It follows that T ω I⊥,N ′ ⊩⊥♭.
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- ψ := ψ1 ∧ψ2. By the ∧-clause for support, ⊩N ′ ψ1 and ⊩N ′ ψ2. Hence, by

the IH, T ω I⊥,N ′ ⊩ ψ♭
1 and T ω I⊥,N ′ ⊩ ψ♭

2. By ∧-clause for satisfaction,

T ω I⊥,N ′ ⊩ ψ♭
1 ∧ψ♭

2. The result follows by ∧I
♭-schema.

- ψ := ψ1 ∨ψ2. By Lemma Flat (in proof of Theorem 21.5), ψ1 ⊩N ′ ψ♭
1 and

ψ2 ⊩N ′ ψ♭
2. By the ∨I-scheme in N ′, both ψ♭

1 ⊩( ψ1 ∨ψ2)
♭ and ψ♭

2 ⊩( ψ1 ∨

ψ2)
♭. Therefore, by ⇒-clause for support, we have ψ1 ⊩N ′ (ψ1 ∨ψ2)

♭ and

ψ2 ⊩N ′ (ψ1 ∨ψ2)
♭. Using the ∨-clause for support on the assumption ⊩N ′

ψ1 ∨ψ2 with these results means that ⊩N ′ (ψ1 ∨ψ2)
♭. That is, T ω ,N ′ ⊩

(ψ1 ∨ψ2)
♭, as required.

- ψ := ψ1 → ψ2. By the →-clause for satisfaction, ψ1 ⊩N ′ ψ2. So, by the

⇒-clause for satisfaction, ⊩N ′′ ψ1 implies ⊩N ′′ ψ2 for any N ′′ ⊇ N ′. Let

N ′′ := N ′ ∪ {ψ♭
1}. Since ⊩N ′,ψ♭

1
ψ♭

2, by Lemma Flat (in proof of The-

orem 21.5), we have ⊩N ′,ψ♭
1

ψ2, hence we infer ⊩N ′,ψ♭
1

ψ2. By the IH,

T ω I⊥,N ′∪{ψ♭
1} ⊩ ψ♭

2. Hence, T ω I⊥,N ′ ⊩ ψ♭
1 → ψ♭

2. By the →I
♭-scheme,

T ω I⊥N ′ ⊩ (ψ1 → ψ2)
♭, as required.

This completes the induction.

Proposition 23.4 (Simulation). If N ∪∆♭ ⊢ ψ♭, then ∆ ⊢ ψ .

Proof. We proceed by induction on the length of execution. Intuitively, the exe-

cution of N ∪∆♭ ⊢ ψ♭ simulates the reductive construction of a proof of ψ from

∆ in NJ — that is, a proof-search. We proceed by induction on the length of the

execution.

BASE CASE: It must be that ψ ∈ ∆, so ∆ ⊢ ψ is immediate.

INDUCTIVE STEP: By construction of N , the execution concludes by

CLAUSE applied to a definite clause ρ simulating a rule r∈NJ; that is, N ∪∆♭ ⊢ψ♭
i

for ψi such that ψ♭
1 ∧ ....∧ψ♭

n → ψ♭. By the induction hypothesis (IH), ∆ ⊢ ψi for

1 ≤ i ≤ n. It follows that ∆ ⊢ ψ by applying r ∈ NJ.

For example, if the execution concludes by CLAUSE applied to the clause for
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∧-introduction (i.e., ψ♭∧ψ♭ → (ψ ∧ψ)♭), then the trace is as follows:

...
N ∪∆♭ ⊢ ψ♭

...
N ∪∆♭ ⊢ ψ♭

N ∪∆♭ ⊢ ψ♭∧ψ♭

N ∪∆♭ ⊢ (ψ ∧ψ)♭

By the induction hypothesis, we have proofs witnessing ∆ ⊢ ψ and ∆ ⊢ ψ , and by

∧-introduction:
...

ψ

...
ψ

ψ ∧ψ

This completes the induction.

Following the diagram, we have the completeness of IPL with respect to the

B-eS:

Proof. Theorem 21.5 — Completeness. We require to show that ⊩ϕ implies ⊩N ϕ

for arbitrary ϕ . To this end, assume ⊩ϕ . Let N be the natural base generated by

ϕ . By definition, from the assumption, we have ⊩N ϕ . Hence, by Lemma 23.3, it

follows that T ω I⊥,N ⊩ ϕ♭. Whence, by Lemma 8.15, we obtain N ⊢ ϕ♭. Thus,

by Lemma 23.4, ⊢ ϕ , as required.

The following section discusses how reductive logic delivers the completeness

proof above and the essential role played by both proofs and refutations.

23.3 Negation-as-Failure
A reduction in a proof system is constructed co-recursively by applying the rules

of inference backwards. Even though each step corresponds to the application of a

rule, the reduction can fail to be a proof as the computation arrives at an irreducible

sequent that is not an instance of an axiom in the logic. For example, in hHLP, one

may compute the following:

p▷q
p▷p∨q ⇑ OR

∅▷p → (p∨q)
⇑ Load
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This reduction fails to be a proof, despite every step being a valid inference, since

p▷q is not an instance of IN. In reductive logic, such failed attempts at constructing

proofs are not meaningless: Pym and Ritter [173] have provided a semantics of

the reductive logic of IPL in which such reductions are given meaning by using

hypothetical rules — that is, the construction would succeed in the presence of the

following rule:
p
q

The categorical treatment of this semantics has them as indeterminates in a polyno-

mial category — this adumbrates current work by Pym et al. [175], who have shown

that the B-eS is entirely natural from the perspective of categorical logic. The use of

such additional rules to give semantics to constructions that are not proofs directly

corresponds to the use of atomic systems in the B-eS for IPL; for example, let A

be the atomic system containing the rule above, then the judgement p⊩A q obtains.

This suggests a close relationship between B-eS and reductive logic, which mani-

fests with the operational reading of definite clauses and their relationship to atomic

rules in Section 23.1.

Within P-tS, negation is a subtle issue — see Kürbis [126]. We may use the

perspective of LP developed herein to review the meaning of absurdity (⊥).

There is no introduction rule for ⊥ in NJ. One may not construct a proof of

absurdity without it already being, in some sense, assumed; for example, ϕ,ϕ →

⊥ ⊢ ⊥ obtains because the context {ϕ,ϕ →⊥} is already, in some sense, absurd.

We may use LP to understand what that sense is. To simplify matters, observe that

the judgement Γ ⊢ ⊥ is equivalent to ⊢ ϕ → ⊥ for some formula ϕ . Therefore,

we may restrict attention to negations of this kind to understand the meaning of

absurdity.

By Theorem 21.5 (Soundness) and Lemma 23.4 (Simulation), we see that the

converse of Theorem 23.3 holds. Therefore,

⊩¬ ϕ iff T ω I⊥,N ⊢ (¬ϕ)♭
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Unfolding the semantics, this is equivalent to T ω I⊥,N ∪ {ϕ♭} ⊢ ⊥♭. Thus, the

sense in which ϕ is absurd is that its interpretation under T ω I⊥ contains absurdity;

that is, ϕ is absurd iff ⊥♭ ∈ T ω I⊥(ϕ). What does this tell us about the meaning of

¬ϕ? Since there s no proof of ⊥♭, we have that the meaning of ¬ϕ is that there is

no proof of (ϕ)♭ in N . This is the negation-as-failure principle. How does it yield

the clause for ⊥ in Figure 21.1?

Passing through (∗) in Section 23.1,

⊩B ⊥ iff N ∪B ⊢ ⊥♭

Since there is no introduction rule for ⊥♭ in N , it must be that B derives it. Thus,

there is rule in B of the following form:

[Σ1]
p1 ...

[Σn]
pn

⊥♭

To simplify matters, we introduce alien q and q̄ as ‘conjunctions’ of some subset

q1, ...,qk and qk+1, ...,qn of p1, ...,pn in the inferentialist sense. That is, we introduce

the following, where Πi = Σ j iff qi = pi for i, j ∈ {1, ...,n}:

[Π1]
q1 ...

[Πn]
qn

q

[Πk+1]
qk+1 ...

[Πn]
qn

q̄

Doing this allows us to replace the above rule with the following:

q q̄
⊥♭

In this case, the inferential behaviour of q and q̄ is that they are contradictory propo-

sitions; that is, together they infer absurdity.

What is significant from this analysis is that the semantics of ⊥ requires us

to observe that there is no proof of it and thus extend the space with proofs of

contradictory q and q̄. If they are proved in B, then one has proved absurdity; if B



23.3. Negation-as-Failure 285

has proved absurdity, then one has proofs for each of these. The subtlety is that since

we do not have negation explicit in our atoms, we only admit the principle that some

atoms are contradictory. If we prove all atoms, then we prove these contradictory

atoms; if we prove these contradictory atoms, then we have proved absurdity. This

justifies the clause for ⊥,

⊩B ⊥ iff ⊩B p for any p ∈ A

Piecha and Schroeder-Heister [194, 158] have argued that there are two views

on atomic systems: knowledge and definitional. This becomes clear according to

various ways in which a program may be regarded in LP. The negation-as-failure

protocol uses the definitional perspective; its analogue in terms of knowledge is the

closed-world assumption. In this case, a knowledge base treats everything that is not

known to be valid as invalid. There is significant literature about the closed-world

assumption that may be useful for understanding P-tS and what it tells us about

reasoning — see, for example, Clark [40], Reiter [177], and Kowalski [121, 118],

and Harland [96, 97].
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Conclusion to Part III

Proof-theoretic semantics (P-tS) is disciplin in which the central notion in terms of

which meanings are assigned to certain expressions of our language, in particular

to logical constants, is that of proof — understood as objects denoting collections

of acceptable inferences from accepted premisses — rather than truth. This is sub-

tle. It is not that one desires a proof system that precisely characterizes a logic of

interest, but rather that one desires to define aspects of the logic in terms of proofs

and provability. Therefore, importantly, as Schroeder-Heister [191] observes, since

no formal system is fixed (only notions of inference), the relationship between se-

mantics and provability remains the same as it has always been: soundness and

completeness are desirable features of formal systems with respect to the seman-

tics. What differs is that proofs serve the role of truth in model-theoretic semantics.

The semantic paradigm supporting P-tS is inferentialism — the view that meaning

(or validity) arises from rules of inference (see Brandom [26]).

Chapter 20 presents three version of proof-theoretic validity (P-tV) in the

Dummett-Prawitz tradition: first, it gives a basic P-tV that applied only to NJ-

derivations; second, it gives a general version of P-tV (following Schroeder-

Heister [190]); third it gives an abstract version of P-tV relative to the theory of

tactical proof. The basic and general versions are close to the BHK interpretation

of IPL and to the semantics of reductions by Pym and Ritter [173]. In particular,

the use of atomic systems to give validity to unfinished reduction, in the sense that

there are unproved statements in P-tV, is symmetric to the use of indiscernible to



287

complete reductions in the work on Reductive Logic. This suggests that versions

of P-tV are the appropriate way of giving semantics to reductions in various formal

systems, which is justified by the abstract version of P-tV relative to the theory of

tactical proof.

Chapter 21 presents the base-extension semantics (B-eS) of intuitionistic

propositional logic (IPL) by Sandqvist [183]. This is a semantics of IPL in terms

of proofs. The chapter is only background. It is a subtle subject, however, as the

literature on P-tV contains numerous incompleteness results for various intuitive

notions of B-eS with respect to intuitionistic logics — see, for example, Piecha et

al. [157, 156, 159], Goldfarb [85], Sandqvist [181, 182, 184, 183], Stafford [197].

Chapter 22 demonstrates that the B-eS for IPL in Chapter 21 is the declarative

counterpart to the basic P-tV in Chapter 20. It is not as simple as observing that

the inductive validity conditions of the version of P-tV amounts to the unfolding of

the B-eS. One has to account for the constructiveness of P-tV wherein the validity

of an argument with open assumptions depends on how the open assumptions are

validated. This is subtle, but it explains the clause for disjunction in the B-eS of IPL,

which is distinctive since it takes the form of the elimination rule for disjunction. A

corollary is an affirmative answer to Prawitz’s Conjecture for basic P-tV.

Chapter 23 studies the B-eS for IPL in terms of the operational reading of

definite formulae given by Miller et al. [139, 140]. Importantly, this operational

reading is in terms of proof-search; that is, it is a reading that takes place from the

point of view of Reductive Logic. The main idea of the chapter is that atomic sys-

tems — that is, bases — may be canonically read as collections of definite formulae,

which is adumbrated by Hallnäs and Schroeder-Heister [94, 95]. Accordingly, the

chapter presents proof of the completeness of the B-eS for IPL in terms of the un-

folding of the operational semantics of definite formulae. This perspective enables

the meaning of negation, which is a subtle issue in P-tS (see K urbis [126]) to be

given in terms of the negation-as-failure (NAF) protocol, which is a long-standing

and well-developed approach to it in various areas of Reductive Logic such as logic

programming.
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Overall, we have presented P-tS as an approach to semantics that arises natu-

rally from Reductive Logic. In contrast to model-theoretic semantics (M-tS), P-tS

has received relatively little mathematical development, rendering these investiga-

tions limited to IPL. Nonetheless, the major themes and ideas can be applied to

other logics — for example, there is no moral limitation, though there are several

technical challenges, in giving a P-tS of BI. This suggests a future general approach

to the semantics of logics and constructions in Reductive Logic. Moreover, there is

an opportunity to relate P-tS to other semantics paradigm through Reductive Logic.

For example, the handling of M-tS in Part II in terms of correctness conditions on

constructions in calculi for a meta-logic is intuitively related. Finally, one expects

the application, the purpose, of P-tS (beyond philosophical considerations) to give

a mathematical account of reasoning in practice. This remains to be done but is

a problem of Reductive Logic as this is the paradigm through which one typically

solves problems using formal representations.



Chapter 25

General Conclusion

This monograph investigates the interplay between semantics and proof from the

perspective of Reductive Logic. It comprises three parts, each of which has its

conclusion. Therefore, we do not discuss the details of their contributions here but

rather present the overall picture this monograph delivers.

Reductive Logic is the approach to logic in which one begins with a putative

conclusion and uses inference rules backward to derive sufficient premisses for that

conclusion. This stands in contrast to the traditional approach to logic known as

Deductive Logic, in which one begins with established premisses and derives con-

clusions using inference rules. The interest in Reductive Logic stems from the fact

that it is the approach to logic used for practical reasoning problems. That is, while

Deductive Logic describes the valid forms of inference, Reductive Logic explains

how they are used during problem-solving. This is justified in Chapter 1. One de-

sires to investigate the interplay between semantics and proof from this perspective

to understand how they inform each other by understanding whence they come; for

example, in Chapter 17, we show that the exploration of the proof-search space

for IPL, suitably encoded within FOL, is the same as the unfolding of the logic’s

traditional semantics by Kripke [125]. Thus, one can derive one from the other.

For Part I and Part II, semantics is understood in terms of the model-theoretic

reading of consequence given by Tarski [201, 203]. Briefly, it proceeds by inter-

preting propositions within algebraic structures and expressing logical constants in

terms of the dynamics of elements of the algebraic structures. The central result
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is soundness and completeness, which shows that a collection of algebraic struc-

tures, under a certain interpretation, capture a logic — or, reciprocally, that a logic

correctly describes properties of the algebraic structures in which one is interested.

This is the dominant approach to meaning in logic, and it is both intuitive and valu-

able for deploying logic in practical reasoning problems.

While Part I largely considers the proof theory of BI, concentrating on ques-

tions about proof-search, it culminates by encoding the model-theoretic semantics

of BI proof-theoretically and thereby delivers a novel approach to soundness and

completeness that bypasses term- and counter-model constructions. The underlying

idea is that one can relate proof in a logic of interest to the logic’s model-theoretic

semantics through proof-search in FOL. This inspires Part II, in which these ideas

are developed.

Part II introduces a paradigm of proof systems called alegbraic constraint sys-

tem (ACSs). These systems give a systematic account of how proof in one logic

may be expressed in terms of proofs in another logic together with algebraic con-

straints. The method generalizes earlier work by Harland and Pym [99, 98], who

developed the resource-distribution via Boolean constraints to study proof-search

in sub-structural logics. Therefore, there are two primary uses for ACSs: first, to

study proof-search, and second, to study semantics in Reductive Logic. The first

use is not developed in any generality within this monograph. Instead, the mono-

graph concentrates on the second use and indeed provides a general account of the

aforementioned method to soundness and completeness employed for BI in Part I.

Moreover, their combined use delivers Chapter 17, mentioned above as illustrating

the thesis of this monograph — namely, that through the lens of Reductive Logic,

one can see explicitly how semantics and proof inform each other.

Part III departs from model-theoretic semantics and instead studies proof-

theoretic semantics. There has been some work relating the two paradigms of

meaning — see, for example, Goldfarb [85] — but further investigations are re-

quired. This field is closely related to other work in Reductive Logic but was de-

veloped separately and independently. Therefore, in contrast to the treatment of
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model-theoretic semantics in Part I and Part II, this part is not about relating proof-

theoretic semantics and proof-search but instead studies the field. The significant

contributions are to relate the dominant branches — proof-theoretic validity, in the

Dummett-Prawitz tradition and base-extension semantics — and to give an account

of negation in terms of the negation-as-failure protocol.

Ultimately, this monograph illustrates that there are deep connections between

semantics and proof and that they can be witnessed through Reductive Logic. Nev-

ertheless, it is an investigation rather than a complete theory. While the monograph

contains several contributions to logic across mathematics, informatics, and philos-

ophy, its fundamental contribution is demonstrating the viability and merit of study-

ing semantics from Reductive Logic and giving methods, techniques, and tools for

a systematic theory to be developed.
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Gödel Logics — A Survey. Journal of Logic and Computation 13, 6 (2003),

835–861.

[12] Baldoni, M. Normal Multimodal Logics: Automatic Deduction and Logic

Programming Extension. PhD thesis, Università degli Studi di Torino, 1998.
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[155] Pfenning, F., and Schürmann, C. System description: Twelf — a meta-logical

framework for deductive systems. In Automated Deduction — CADE-16

(1999), pp. 202–206.

[156] Piecha, T. Completeness in Proof-theoretic Semantics. In Advances in Proof-

theoretic Semantics. Springer, 2016, pp. 231–251.

[157] Piecha, T., de Campos Sanz, W., and Schroeder-Heister, P. Failure of Com-

pleteness in Proof-theoretic Semantics. Journal of Philosophical Logic 44, 3

(2015), 321–335.

[158] Piecha, T., and Schroeder-Heister, P. The Definitional View of Atomic Sys-

tems in Proof-theoretic Semantics. In The Logica Yearbook 2016. College

Publications London, 2017, pp. 185–200.

[159] Piecha, T., and Schroeder-Heister, P. Incompleteness of Intuitionistic Propo-

sitional Logic with Respect to Proof-theoretic Semantics. Studia Logica 107,

1 (2019), 233–246.

[160] Pitts, A. M. Nominal Logic, a First Order Theory of Names and Binding.

Information and Computation 186, 2 (2003), 165–193.

[161] Plaisted, D. A., and Zhu, Y. The Efficiency of Theorem Proving Strategies.

Springer, 1997.



Bibliography 307

[162] Polya, G. How to solve it. Princeton university press, 1945.

[163] Popper, K. R. Logic Without Assumptions. In Proceedings of the Aristotelian

Society (1946), vol. 47, Oxford University Press, pp. 251–292.

[164] Prawitz, D. Ideas and Results in Proof Theory. In Studies in Logic and the

Foundations of Mathematics, vol. 63. Elsevier, 1971, pp. 235–307.

[165] Prawitz, D. The philosophical position of proof theory. In Contemporary

Philosophy in Scandinavia, R. E. Olson and A. M. Paul, Eds. John Hopkins

Press, 1972, pp. 123–134.

[166] Prawitz, D. Towards a Foundation of a General Proof Theory. In Studies in

Logic and the Foundations of Mathematics, vol. 74. Elsevier, 1973, pp. 225–

250.

[167] Prawitz, D. On the idea of a general proof theory. Synthese 27, 1/2 (1974),

63–77.

[168] Prawitz, D. Natural Deduction: A Proof-theoretical Study. Courier Dover

Publications, 2006 [1965].

[169] Prawitz, D. An approach to general proof theory and a conjecture of a kind

of completeness of intuitionistic logic revisited. Advances in Natural Deduc-

tion: A Celebration of Dag Prawitz’s Work (2014), 269–279.

[170] Pym, D. J. Errata and Remarks for ‘The Semantics and Proof Theory of

the Logic of Bunched Implications’. http://www.cantab.net/users/

david.pym/BI-monograph-errata.pdf.

[171] Pym, D. J. The Semantics and Proof Theory of the Logic of Bunched Impli-

cations, vol. 26 of Applied Logic Series. Springer, 01 2002.

[172] Pym, D. J., O’Hearn, P. W., and Yang, H. Possible Worlds and Resources:

The Semantics of BI. Theoretical Computer Science 315, 1 (2004), 257–305.

http://www.cantab.net/users/david.pym/BI-monograph-errata.pdf
http://www.cantab.net/users/david.pym/BI-monograph-errata.pdf


Bibliography 308

[173] Pym, D. J., and Ritter, E. Reductive Logic and Proof-search: Proof theory,

Semantics, and Control, vol. 45 of Oxford Logic Guides. Clarendon Press,

2004.

[174] Pym, D. J., and Ritter, E. A Games Semantics for Reductive Logic and

Proof-search. In Games for Logic and Programming Languages — GaLoP

(2005), pp. 107–123.

[175] Pym, D. J., Ritter, E., and Robinson, E. Proof-theoretic Semantics in Sheaves

(Extended Abstract). In Proceedings of the Eleventh Scandinavian Logic

Symposium — SLSS 11 (2022).

[176] Read, S. Relevant Logic. Basil Blackwell, 1988.

[177] Reiter, R. On closed world data bases. In Readings in artificial intelligence.

Elsevier, 1981, pp. 119–140.

[178] Routley, R., and Meyer, R. The Semantics of Entailment. In Studies in Logic

and the Foundations of Mathematics, vol. 68. Elsevier, 1973, pp. 199–243.

[179] Rumfitt, I. ‘Yes and No’. Mind 109 (2000), 781–823.

[180] Russo, A. M. Modal Logics as Labelled Deductive Systems. PhD thesis,

Imperial College London, 1996.

[181] Sandqvist, T. An Inferentialist Interpretation of Classical Logic. PhD thesis,

Uppsala University, 2005.

[182] Sandqvist, T. Classical Logic without Bivalence. Analysis 69, 2 (2009),

211–218.

[183] Sandqvist, T. Base-extension Semantics for Intuitionistic Sentential Logic.

Logic Journal of the IGPL 23, 5 (2015), 719–731.

[184] Sandqvist, T. Hypothesis-discharging Rules in Atomic Bases. In Dag

Prawitz on Proofs and Meaning. Springer, 2015, pp. 313–328.



Bibliography 309

[185] Schopenhauer, A. The Art of Always Being Right. Gibson Square, 2009

[1891]. Edited by A. C. Grayling.

[186] Schroeder-Heister, P. Structural Frameworks with Higher-Level Rules:

Philosophical Investigations on the Foundations of Formal Reasoning. Tech.

rep., University of Konstanz, 1987. Habilitationsschrift.

[187] Schroeder-Heister, P. Structural frameworks, substructural logics, and

the role of elimination inferences. In Logical Frameworks, G. Huet and

G. Plotkin, Eds. Cambridge University Press, 1991, p. 385–403.

[188] Schroeder-Heister, P. Rules of Definitional Reflection. In Logic in Computer

Science — LICS (1993), IEEE, pp. 222–232.

[189] Schroeder-Heister, P. Begründungsrationalität und logik. In Homo Sapiens

und Homo Faber: Epistemische und technische Rationalität in Antike und

Gegenwart, G. Wolters and M. Carrier, Eds. De Gruyter, 2005, pp. 285–296.

Festschrift für Jürgen Mittelstraß.

[190] Schroeder-Heister, P. Validity Concepts in Proof-theoretic Semantics. Syn-

these 148 (2006), 525–571.

[191] Schroeder-Heister, P. Proof-Theoretic versus Model-Theoretic Consequence.

In The Logica Yearbook 2007, M. Pelis, Ed. Filosofia, 2008.

[192] Schroeder-Heister, P. The Categorical and the Hypothetical: A Critique of

Some Fundamental Assumptions of Standard Semantics. Synthese 187, 3

(2012), 925–942.

[193] Schroeder-Heister, P. Proof-Theoretic Semantics. In The Stanford Encyclo-

pedia of Philosophy, E. N. Zalta, Ed., Spring 2018 ed. Metaphysics Research

Lab, Stanford University, 2018.

[194] Schroeder-Heister, P., and Piecha, T. Atomic Systems in Proof-Theoretic

Semantics: Two Approaches. In Epistemology, Knowledge and the Impact of



Bibliography 310
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Appendix A

Coalgebra

Endofunctors on the category of sets and functions are a suitable mathematical

framework for an abstract notion of structure, and throughout we will use the word

functor exclusively for such mappings. We may suppress the composition symbol

and simply write GF for the mapping which first applies F and then applies G;

similarly, we may write FX for the application of functor F on a set X .

There are numerous functors used throughout mathematics and computer sci-

ence, for example elements of the flat polynomial functors,

F ::= I | KA | F ×F | F +F

Here I is the identity functor (i.e., the mapping fixing both objects and functions);

KA is the constant functor for a given set A, which is defined by mapping any set to

the set A and any arrow to the identity function on A; F ×G is the cartesian product

of F and G; and, F +G is the disjoint union of F and G.

Occasionally one can transform one functor into another uniformly. That is,

one can make the transformation componentwise, so that the actions on sets and

function cohere.

Definition A.1 (Natural Transformation). A collection of functions indexed by sets

n := (nX) is a natural transformation between functors F and G if and only if



314

nX : FX →GX and if f : X → Y then then the following diagram commutes:

FX
nX //

F( f )
��

GX

G( f )
��

F(Y ) nY
// G(Y )

Every functor F admits at least one natural transformation called the identity:

iX := IFX , where IFX is the identify function on FX . As an abuse of notation, we

use the notation of function types when speaking about natural transformation; that

is, we may write n : F → G to denote that n is a natural transformation between F

and G.

There are two particularly well-behaved classes of functors, called monads

and comonads, that are useful abstractions of data-type and behaviour-type when

modelling computation.

Definition A.2 (Monad and Comonad). Let T be a functor. It is a (co)monad if

there are natural transformations u : I → T and m : T 2 →T (resp. u : T → I and

m : T → T 2) satisfying the following commutative diagrams:

(T T T )X
T mX //

mT X
��

(T T )X

mX
��

(T T )X mX
// T X

resp.

(T T T )X oo
T mX

OO
mT X

(T T )X
OO
mX

(T T )X oo mX
T X


T X

uT X //

T uX
��

I

%%

(T T )X

mX
��

(T T )X mX
// T X

resp.

T X oo
uT X

OO

T uX

ee
I

(T T )X
OO
mX

(T T )X oo mX
T X


The natural transformations u and m are often called the (co)unit and

(co)multiplication of the (co)monad. There is an abundance of examples of mon-

ads; for example, the powerset functor P , which takes sets to their powersets and

functions to their direct image fuctions, is a monad whose unit is the singleton func-

tion and whose multiplication is the union operator. Simple examples of comonads
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are less common. However, since they are used to define behaviour-type, modelling

operational semantics will involve defining one: the proof-search comonad.

Under relatively mild conditions, there is a canonical way to construct a

(co)monad from a functor: the (co)free construction. Heuristically, this is the indef-

inite application of the functor structure until a fixed-point is reached. The cofree

construction is analogous.

Example A.3. Consider the functor FA : X 7→ nil+A×X, where nil is the emptyset.

One can generate the least fixed point LA for FA by the ω-chain in the following

diagram:

nil−→ nil+A×nil−→ nil+A× (nil+A×nil)−→ ...

The arrows are inductively defined by extending with the unique function out of the

emptyset. The mapping A 7→ LA defines the free functor LA, which can be under-

stood as structuring elements of A as lists (identified with products). It is a monad

whose unit is the single-element list constructor a 7→ a :: (nil :: nil...) and whose

multiplication concatenation. ■

Given a space structured by a functor F , one can define actions which respect

the structure. There are two directions: either one wants the domain to be structured,

in which case one has an F-algebra, or the codomain, in which case one has a F-

coalgebra. When structure represents a data-type (resp. a behaviour-type) given

by a (co)monad, one may add extra conditions on the (co)algebra that make it a

co(module). These functions are used to give abstract models of data and behaviour.

Definition A.4 (Algebra and Coalgebra). Let T be a functor, then a function

α : T X →X is called an T -algebra and any function β : X →T X is a T -coalgebra.

If ⟨T ,u,m⟩ is a monad (resp. comonad), then α (resp. β ) is a module (resp. co-

module) when the following diagrams commute:
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X
uX //

iX !!

T X

α

��
X

resp.
X oo

uX
aa

iX

T XOO
α

X


T T X T α //

mA
��

T X

α

��
T X

α
// X

resp.

T T X oo T α

OO

mA

T XOO
α

T X oo
α

X


The abstract modelling of operational semantics witnesses both the use of al-

gebra and coalgebra: the former for specifying the constructs, and the latter for

specifying the transitions. In the best case the two structures cohere, captured math-

ematically by the mediation of a natural transformation called a distributive law, and

form a bialgebra.

Definition A.5 (Distributive Law). A distributive law for a functor G over a functor

F is a natural transformation ∂ : GF →FG.

Definition A.6 (Bialgebra). Let ∂ : GF → FG be a distributive law, and let α :

GX → X be an algebra and β : X →FX be a coalgebra. The triple (X ,α,β ) is a

∂ -bialgebra when the following diagram commutes:

GX

Gβ

��

α // X
β // FX

GFX
∂X

// FGX

Fα

OO

There are additional coherence condition which may be applied for when one

has a monad or a comonad structure.

In Turi’s and Plotkin’s bialgebraic models of operational semantics [209], the

algebra supplies the structure of the syntax and the coalgebra supplies the behaviour

of execution, and under relatively mild conditions (i.e. the coalgebra structure pre-

serves weak pullbacks) forms are even a full abstractions (with respect to bisimula-

tion).



Appendix B

What is a Valid Argument?

The central subject of logic is consequence — that is, a judgement that says that a

proposition follows logically from a theory (a collection of propositions). Tradition-

ally, consequence is explained truth-theoretically: a proposition is a consequence of

a theory if and only if the proposition holds whenever the theory holds —see Tarski

[201, 202]. This perspective gives rise to model-theoretic semantics, which con-

cerns explicating what it means to ‘hold’ using abstract mathematical structures.

The subject of proof theory, which concerns mathematical objects with static and

dynamic structure that witness consequence, is relegated to a technology for estab-

lishing consequence — that is, for understanding when consequence judgements

obtain rather than what they are. This essay concerns an alternative inferential

(or proof-theoretic) reading of consequence in which a proposition follows from

a theory if and only if the proposition is yielded by the suasive potential of that

theory. Rather than considering models in which propositions hold, one considers

systems of rules of inference that support propositions — that is, systems of rules

that capture the suasive potential of the propositions. These systems of rules are

called bases. The inferential reading of consequence is as follows: a proposition

is consequence of a theory if and only if the proposition is supported by any base

supporting the theory. In the process of the analysis, the essay recovers various log-

ics — in particular, minimal, intuitionistic, classical, and core logic — according

to naturally arising design choices on the ‘suasive potential’ of propositions; and it

also recovers proof-theoretic validity in the Dummett-Prawitz tradition — see, for
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example Schroeder-Heister [190] — as an answer to how suasive potential delivers

consequence.

A proposition is a complete idea. For example, ‘Tammy is a vixen’ is a propo-

sition, and so is ‘ “Tammy is a vixen” is a proposition.’ The details of the form and

nature of propositions are not important here. A collection of propositions consti-

tutes a theory. They are used in intellectual activities to explain, characterize, or

define; for example, the theory of general relativity (GR) explains that space and

time morph according to energy and mass.

To better understand the idea of consequence in logic, it is instructive to briefly

consider its deployment in theoretical work. After a theory has been proposed, one

tests it by considering its consequences. Suppose a proposition ϕ is a consequence

of a theory Γ: if ϕ is acceptable, then ϕ is evidence for Γ; but, if ϕ is unacceptable,

then ϕ is evidence against Γ.

For example, Newton’s theory of gravity postulates the existence of a planet

Vulcan somewhere between Mercury and the Sun. However, despite efforts to find

it, Vulcan has never been observed, rendering its existence an unacceptable propo-

sition. Therefore, it is evidence against the theory as an accurate explanation of

gravity. Meanwhile, it follows from GR that light is subject to gravity and, there-

fore, that its path bends around massive objects. Hence, if GR were a correct ex-

planation of the world, the position of stars near the Sun would shift during a solar

eclipse in South America in 1919. The phenomenon was indeed observed by British

expeditions, yielding evidence for GR.

The same principle applies in settings that are not phenomenological such as

mathematics and philosophy. For example, utilitarianism is the theory that the

morality is determined by optimizing a utility function, typically with respect to

harm caused. A consequence of (certain forms of) utilitarianism is that a surgeon

should kill a healthy person to save five unhealthy ones — see [206]. If one be-

lieves such an action is immoral, then the conclusion represents evidence against

(this form of) utilitarianism as an explanation of morality.

Evidently, understanding consequence is essential to all forms of intellectual
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work. What does it actually mean? A model is an abstract mathematical structure in

which propositions can be interpreted. In the standard reading given by Tarski [201,

202], a proposition ϕ is a consequence of a theory Γ — denoted Γ⊢ ϕ — if and only

if every model of Γ is also a model of ϕ . This reading is the traditional and dominant

approach to logic, with widespread application in mathematics, informatics, and

philosophy. This essay considers an alternate reading of consequence Γ ⊢ ϕ in

which on arrives at ϕ by reasoning from Γ. The term ‘entailed’ is used in place of

‘consequence’ to distinguish the inferential and model-theoretic readings.

In the reading given Tennant [204], a proposition ϕ is entailed by a theory Γ —

denoted Γ ⊨ ϕ — if and only if there is a valid argument for ϕ from Γ. Hence, the

central question of the essay is, ‘What is a valid argument?’ Of course, entailment

and consequence (in the traditional reading) are certainly related: if ϕ is entailed

by Γ, but ϕ is not a consequence of Γ (i.e., ϕ is not the case whenever Γ is the

case), the reasoning must surely be faulty! Hence, that ϕ is a consequence of Γ

in the traditional sense is a necessary condition for ϕ to be entailed by Γ — cf.

the approach to arguments satirized by Schopenhauer [185]. The reasoning power

afforded by a proposition is its suasive potential, which requires analysis to answer

the central question.

Intuitively, an argument comprises individual reasoning steps called inferences.

This suggests a quick answer to the central question of the essay:

An argument is valid if and only if it is comprised of accepted infer-

ences.

What determines what the accepted inferences are? This problem bridges the gap

between the central question on the validity of arguments and the objects to which

they pertain — namely, propositions.

An inference is warranted by a rule. This choice of form of rules fixed here is

arbitrary to enable some concrete analysis — Piecha and Schroeder-Heister [194]

have analyzed various possible choices according to philosophical and mathemati-
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cal desiderata. In this essay, a rule is defined by a rule figure,

[Γ1]
P1 ...

[Γn]
Pn

C

— C,P1, ...,Pn are propositions, and Γ1,...,Γn are theories. Note, the rule is taken as

written and not closed under substitution; that is, it applies to the particular propo-

sitions stated in the rule figure. The proposition C is called the conclusion of the

rule, the propositions P1,...,Pn are the premisses of the rule, and the theories Γ1,...,Γn

are the hypotheses of rule. A rule may contain no hypotheses (i.e., Γ1,...,Γn may be

empty). Moreover, it may have no premisses, in which case the rule is an axiom that

allows one to assert the conclusion,

C

The following is an example of a rule:

John is a man John is unmarried
John is a bachelor

An inference concluding a proposition C from some given propositions

P1, ...,Pn may be denoted by a horizontal line adorned with ⇓ with the P1, ...,Pn

above it and C below,
P1 ... Pn

C ⇓

A rule warrants an inference from the premisses to the conclusion whenever the

premisses have been established relative to their hypotheses. That is, the rule

[Γ1]
P1 ...

[Γn]
Pn

C

justifies the inference above if one has valid arguments for Pi from Γi for i = 1, ...,n.

An argument completely regulated by some rules is a proof relative to those rules.



321

For example, relative to the rules

John is a man John is unmarried
John is a bachelor John is a man John is unmarried

one has the following proof:

John is unmarried ⇓ John is male ⇓
John is a bachelor ⇓

A declared collection of rules is called a base — a basis of reasoning. This

refines the analysis of a valid argument to valid argument relative to a base. That a

theory Γ entails ϕ in the base B is denoted Γ ⊨B ϕ .

Typically, rules are not explicitly provided, but implicit in the meaning of the

propositions involved. For example, the proposition ‘Tammy is a vixen’ may be

inferred from the propositions ‘Tammy is female’ and ‘Tammy is a fox’ because of

their meaning. As far as this essay is concerned, the meaning of a proposition is its

inferential behaviour. For example, ‘Tammy is a vixen’ may be defined by the fact

that is inferred from ‘Tammy is female’ and ‘Tammy is a fox,’

Tammy is female Tammy is a fox
Tammy is a vixen

That the meaning of a proposition is determined by its inferential behaviour is

known as inferentialism — see Brandom [26] — which is a particular instantiation

of the ‘meaning as use’ principle advanced by Wittgenstein [215].

The scope of inferential behaviours expressible is determined by the form of

rules admitted. In short, a inferential behaviour is described by a rule schema,

which has the form of a rule but not particular content —- that is, does not pertain

to any particular propositions. In other words, a rule schema defines a logical struc-

ture such that if a proposition has that logical structure its inferential behaviour is

given by the defining rule schema. This is illustrated presently. Significantly, this

approach to logical structure departs from the traditional one; in particular, it is not
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that logical structures provide a grammar of propositions — see, for example, van

Dalen [211] — but instead they are used to describe the meaning of propositions

(on inferentialism).

A rule schema is presented as a rule figure with the propositions replaced by

meta-variables. For example, the following is a rule schema:

ϕ ψ

ϕ ∧ψ

The logical structure (∧) defined by this schema is called conjunction. The above

analysis of the proposition ‘Tammy is a vixen’ amounts to saying that the propo-

sition is a conjunction of ‘Tammy is female’ and ‘Tammy is a fox’ — hence, its

inferential behaviour is described by the rule schema for conjunction. This is unlike

the situation for ‘John is a bachelor’ above as there the rules were explicit while here

they are implicit in the meaning (on inferentialism) of the proposition. Notably, a

proposition can only have one logical structure — namely, the one defined by all

the rule schemas describing its meaning (on infernetialism).

A proposition that has a logical structure is a complex proposition, and a propo-

sition that does not have a logical structure is an atomic proposition. Henceforth, the

term formula may be used to denote a proposition that is either complex or atomic.

Since the inferential behaviour of a complex proposition is entirely determined by

its logical structure, if it were to appear in a base then its meaning would become

garbled, so that inference warranted by its intended logical structure is not longer

permitted (i.e., invalid). For example, suppose that one were to declare by fiat the

following rule:
John is a bachelor
Tammy is a vixen

The meaning (on inferentialism) of ‘Tammy is a vixen’ has thus changed; that is, it

is no longer a conjunction of ‘Tammy is female’ and ‘Tammy is a fox’. Hence, the

inferential behaviour afforded it by that logical structure is not longer applicable

and, therefore, such inferences are no longer acceptable. To guard against such

semantic disestablishment, the propositions occurring bases must henceforth all be



323

atomic. Of course, an atomic proposition can behave in a particular base precisely

as a formula behaves according to its logical structure — this is elaborated upon

later because it requires first explicating precisely what it means for a rule schema

to define a logical structure.

This approach to logical structure departs from the traditional presentation of

logic in which logical structures are used to define a class of propositions rather

than define inferential behaviour — see, for example, van Dalen [211]. That is, in

this essay propositions as conceptionally prior to logical structure. That is not to

say that this essay contradicts the traditional approach, rather that it explicates the

relationship between ‘logic’ and ‘thought.’ This is adumbrated by Popper [163] —

see Binder et al. [21]. The distinction manifests in the handling of the deployment

of ‘elimination’ rule schemas below in the analysis of valid arguments.

The format of rules fixed above allows only three dimensions to inferential be-

haviour: justification from rules with multiple premisses, justification from multi-

ple rules, justification from rules with hypotheses. These are captured by the logical

structure of conjunction, disjunction, and implication, respectively. The conjunction

ϕ ∧ψ of formulae ϕ and ψ and has already been defined — it concerns inference

from multiple premisses. The disjunction ϕ ∨ψ of formulae ϕ and ψ concerns

inference from multiple rules; it is defined by the following rule schemas:

ϕ

ϕ ∨ψ

ψ

ϕ ∨ψ

For example, ‘It is raining or the King is dead’ is the disjunction R∨K in which R

is ‘It is raining,’ and K is ‘The King is dead.’ The implication ϕ → ψ of ϕ to ψ

concerns inference from hypotheses; it is defined by the following rule schema:

[ϕ]
ψ

ϕ → ψ

For example, ‘If it rains, then the harvest will be ruined’ is the implication R → H

in which R is as above, and H is ‘The harvest is ruined.’
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Since these logical structures describe all the components of the justification of

inferences, as afforded by the forms of rule schemas in this essay, all other logical

structures can be expressed in terms of them. That is, conjunction, disjunction,

and implication collectively express all the inferential behaviours a proposition may

have. For example, suppose a logical structure ◦ is determined by the following

rules:

ϕ1
[ϕ3,ϕ4]

ϕ2

◦(ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)

ϕ5

◦(ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)

This is already captured since ◦(ϕ1,ϕ2,ϕ3,ϕ4,ϕ5) has the same inferential be-

haviour as (ϕ1 ∧ ((ϕ3 ∧ϕ4)→ ϕ2))∨ϕ5.

The analysis of logical structures so far explains when a complex proposition

may be inferred, but not what may be inferred from it. This is important as complex

propositions may appear in the theory from which one is arguing. Surely, from the

proposition ‘Tammy is a vixen’, one should be able to infer ‘Tammy is female’ and

‘Tammy is a fox’ precisely by its meaning. The justification is that the latter are

implicit in the assertion of the former because it is defined by them having been

established. In general, in saying that a rule schema defines a logical structure

means that the suasive potential of a complex proposition with that logical structure

is the same as that of the premisses of the rule schema. Halläs and Schroeder-

Heister [92, 188] have called this principle of definitional reflection (DR):

Whatever follows from all the defining conditions of an assertion also

follows from the assertion itself

This determines how complex propositions appearing as assumptions behave.

According to DR, if a proposition χ is inferred from ϕ and ψ , then it is also

inferred from ϕ ∧ψ — that is, DR justifies the following elimination rule schema:

ϕ ∧ψ
[ϕ,ψ]

χ

χ

Since the argument for χ proceeds from the hypotheses ϕ and ψ only, this rule
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schema has the same expressive power as the following:

ϕ ∧ψ

ϕ

ϕ ∧ψ

ψ

This recovers the intuition on ‘Tammy is a vixen’ above. Analogously, one has the

following elimination rule schemas for disjunction and implication:

ϕ ∨ψ
[ϕ]
χ

[ψ]
χ

χ

ϕ → ψ ϕ

ψ

Indeed, DR enables an explicit characterization of suasive potential. A base

B supports a proposition ϕ when it has the suasive potential of ϕ — denoted ⊩B

ϕ . This means that whatever may inferred from ϕ admits a valid argument in B.

According to DR, support satisfies the following conditions:

⊩B P if and only if the proposition P is atomic and provable in B

⊩B ϕ ∧ψ if and only if for any C extending B and formula χ ,

if ϕ,ψ ⊩C χ , then ⊩C χ

⊩B ϕ ∨ψ if and only if for any C extending B and formula χ ,

if ϕ,⊩C χ and ψ,⊩C χ , then ⊩C χ

⊩B ϕ → ψ if and only if ϕ ⊨B ψ

Intuitively, a proposition is entailed by a theory in a particular base if and only if it is

entailed in any base in which the propositions comprising the theory are supported

— that is, for non-empty Γ,

Γ ⊨B ϕ if and only if for any C extending B,

if ⊩C ψ for any ψ in Γ, then ⊨C ϕ .

For example, the proposition ‘Socrates is mortal’ is entailed from a theory con-

taining the propositions ‘Socrates is a man’ and ‘All men are mortal’ in any base
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containing the following rule

Scorates is a man All men are mortal
Socrates is mortal

because any base supporting the theory (i.e., admitting proofs of the propositions

comprising the theory) admits a proof of the desired proposition.

Let an argument be open if it proceeds from assumptions (i.e., unjustified

propositions), and closed otherwise. For example, the argument

John is a man John is unmarried
John is a bachelor ⇓

is open, but the argument

John is a man ⇓ John is unmarried ⇓
John is a bachelor ⇓

is closed. The above statement on support amounts to the following condition on

the validity of arguments:

An open argument A is B-valid if and only if, for any C extending

B, any result of supplying C -valid arguments for the assumptions of

A yields an overall C -valid argument.

It is now possible to explicate under what conditions an atomic proposition

behaves as though it has a logical structure. This occurs whenever one is in a base

containing rules for the atomic proposition that mimic the introduction and elimi-

nation rules of the logical structure. For example, the atomic proposition ‘Tammy

is a female fox’ behaves in the following base precisely as ‘Tammy is a vixen’ does

according to its logical structure:

Tammy is female Tammy is a fox
Tammy is a female fox

Tammy is a female fox
Tammy is female

Tammy is a female fox
Tammy is a fox
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That is, for any argument in this base (or any extension of this base), any occurrence

of ‘Tammy is a vixen’ may be substituted for ‘Tammy is a female fox’ without

affecting the validity of the argument.

To summarize, propositions may have a logical structure, according to which

they have certain inferential behaviours. These are complex propositions. A log-

ical structure is understood as being defined by a rule schema. Initially, such rule

schemas describe under what conditions the complex propositions may be asserted;

for example, having established the propositions ‘Tammy is female’ and ‘Tammy

is a fox’ one may infer ‘Tammy is a vixen’ on the understanding that the latter is

a conjunction of the former. Since these rule schemas describe how the complex

proposition may be inferred, they are called introduction rules. That the introduc-

tion rule schemas define logical structure invokes DR. Importantly, DR explains

what may be inferred from complex propositions according to their logical struc-

ture — that is, it defines their suasive potential. For example, having established

the proposition ‘Tammy is a vixen’ one should be able to infer the propositions

‘Tammy is female’ and ‘Tammy is a fox’ for the former is defined by the latter

being established. This behaviour is guaranteed by acquiescing to additional rules

that warrant inferences from complex propositions. Since these rules describe what

may be inferred from a complex proposition, they are called elimination rules.

A collection of logical structures is called a logic. The introduction rule

schemas closed under DR (e.g., together with their corresponding elimination rule

schemas) above comprise minimal logic — see Johansson [110].

The analysis of inference so far only concerned the assertion of propositions;

for example, under what conditions one may assert ‘John is a bachelor’ or ‘Tammy

is a vixen’ or ‘Socrates is mortal’. However, following Frege [62] — see also Geach

and Black [75] — one may distinguish between the content of a speech act (i.e., the

occurrence of a proposition) and its force: for example, ‘It is raining’ and ‘Is it

raining?’ share a content but differ in their forces. The force dual to assertion

is denial, which merits consideration. Recall, in the myth, Odysseus tricks the

cyclops Polyphemus into believing that his name is ‘Nobody,’ so that, when blinded
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by the hero and his men, the monster exclaims: ‘Nobody is killing me!’ The other

cyclopes, who misunderstood the force of his cry, provide no aid for their fellow

monster.

The traditional account of denial advanced by Frege (ibid.) — and Geach [76]

states that denying a proposition ϕ is to assert its negation ¬ϕ — for example,

denying ‘Tammy is a vixen’ is the same as asserting ‘Tammy is not a vixen’. That

¬ϕ is a negation of ϕ can be interpreted in two ways:

- Weak. For any theory, if ϕ is a consequence of the theory, then ¬ϕ is not

a consequence of that theory; and conversely, if ¬ϕ is a consequence of the

theory, then ϕ is not a consequence of the theory.

- Strong. For any theory, precisely one of ϕ and ¬ϕ is a consequence.

Of course, the strong reading of negation implies the condition defining the weak

reading, justifying the taxonomy. Of course, if one assumed both ϕ and ¬ϕ , one

has an absurd situation according to the weak reading. Hence, ¬ϕ has the logical

structure ϕ →⊥ in which ⊥ is the proposition, ‘The assumptions of this argument

are absurd!’ More precisely, ⊥ is any proposition asserting that some contradictory

propositions have been asserted. The strong reading of negation also warrants the

following rule known as tertium non datur (TND):

ϕ ∨¬ϕ

This reading of denial suggests the disjunctive syllogism, ϕ ∨ψ,¬ψ ⊨B ϕ —

for example, if the proposition ‘Tammy is either a fox or a woman’ is asserted, but

the proposition ‘Tammy is a woman’ is denied at the same time, then one may assert

the proposition ‘Tammy is a fox’. The justification is that ϕ ∨ψ means that either

ϕ or ψ has been established, so if it cannot have been ψ (because ¬ψ has been

established), then it must have been ϕ . Of course, by the use of the introduction

rule for disjunction, this suggests the following behaviour ψ,¬ψ ⊨B ϕ . Since ¬ϕ

has the logical structure ϕ → ⊥ this justifies the following rule know as ex falso
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quodlibet (EFQ) — from absurdity, anything:

⊥
ϕ

That EFQ enables the disjunctive syllogism is witnessed by the following:

ϕ ∨ψ [ϕ]

[ψ] ¬ψ

⊥ ⇓
ϕ

⇓
ϕ

⇓

One may think of ⊥ as a logical structure which has the elimination rule schema

of EFQ but for which there is no defining introduction rule schema. This stands in

contrast with the other logical structures.

Gentzen [200] showed that minimal logic with EFQ is intuitionistic propo-

sitional logic (IPL), while minimal logic with EFQ and TND is classical proposi-

tional logic (CPL). That EFQ describes the suasive content of ⊥ yields the following

condition on support:

⊨B ⊥ if and only if ⊨B χ for any formula χ

Following Sandqvist [183], Gheorghiu et al. [78] proved that a support judgement

satisfying all of the above conditions characterizes IPL in the following sense: there

is a derivation for ϕ in IPL — that is, an argument entirely regulated by inferences

warranted by the introduction and elimination rule schemas of IPL — if and only

if ϕ is supported in the empty base. The idea that atomic propositions behave in a

particular base as complex propositions do according to their logical structures is

key in delivering the result.

Despite being well-motivated, this account of denial leaves something to be

desired. In particular, it is subject to the Regicide Paradox — see Bennett [17]:

One evening, a man consults the oracle, who declares, ‘Either there will be rain

this month, or the King will die!’ (R∨K). On his way home, he visits his farmer

friend to relay the portentous news. The farmer is concerned by the prophecy and
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reminds the man of the well-known fact: ‘If there is rain this month, then the harvest

will be ruined!’ (R → H). The man leaves to go home before it gets too late, but

makes sure to pass by the temple to make a small offering, as is customary. At the

temple, he relays his concerns to the priest, who is infallible on religious matters.

The priest warns him, ‘If the harvest is ruined, then the sky gods will be angry!’

(H → S). When the man returns home, he tells his wife all about his day. She

observes that since raining will make the sky gods angry, ‘Either the sky gods will

be angry or the King will die!’ (S∨K) — presumably reasoning as follows:

R∨K

[R] R → H
H ⇓ H → S

S ⇓
S∨K ⇓

[K]

S∨K ⇓
S∨K ⇓

After a sleepless night worried about this dilemma, the man returns to the priest

for guidance. The priest tells him that if he sacrifices a goat, then ‘The sky gods

will not be angry’ (¬S). The man is relieved and quickly organizes the sacrifice.

At precisely the moment that the goat is killed, the sky breaks open: it begins to

rain... Lo! The oracle’s prophecy has come true — that is, ‘It is raining’ (R) is true

, and therefore ‘It is raining or the King will die’ (R∨K) is true. Thus, by the man’s

wife’s reasoning (contingent on R∨K), either the sky gods will be angry, or the

King will die (S∨K). Alas! The man accuses himself of regicide: in appeasing the

gods, he has forced the hands of fate since, by the disjunctive syllogism, the King

must die — that is,
S∨K ¬S

K ⇓

Does it make sense for the man’s action to lead to the King dying? It is not

the strength of the Oracle’s prophecy, which apparently ties the King’s destiny to

the weather, that forces the hands of fate. The problem is that the story concerns

a contradictory collection of propositions R, R → H, H → S, ¬S. Hence, by EFQ,

anything can be inferred. Indeed, K may equally have been the proposition ‘The

King is immortal.’ The moral of the story is that negation and denial are subtle.
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Recall that ⊥ is not like the other logical structures but rather like a punctua-

tion mark denoting that the argument has absurd assumptions. Accordingly, Ten-

nant [204] provides a compelling reflection on EFQ:

In general, a proof of Ψ from ∆ is suasively appropriate only if a person

who believes ∆ can reasonably decide, on the basis of the proof, to be-

lieve Ψ. But if the proof shows his belief set ∆ to be inconsistent “on the

way to proving” Ψ from ∆, then the reasonable reaction is to suspend

belief in ∆ rather than acquiesce in the doxastic inflation administered

by the absurdity rule [EFQ].

This reveals that it is, perhaps, a mistake to reason forward from something that

has been observed to be contradictory, which is implicit in the justification of EFQ

above. Tennant (ibid.) suggests the following rules to more closely resemble the

idea behind the disjunctive syllogism:

ϕ ∨ψ

[ϕ]
⊥

[ψ]
χ

χ

ϕ ∨ψ
[ϕ]
χ

[ψ]
⊥

χ

Indeed, this says that if ϕ (resp. ψ) is shown to be absurd, then it cannot have

been the reason that ϕ ∨ψ obtained, so the reason must be ψ (resp. ϕ); thus (by

DR), whatever follows from ψ (resp. ϕ) follows from ϕ ∨ψ . This is precisely the

justification of the disjunctive syllogism above. Replacing EFQ by these rules in

IPL and CPL yields intuitionistic core logic and classical core logic, respectively

—see Tennant [205].

Other treatments of denial differ from the traditional view presented above

— see Kürbis [126]. For example, there is the bilateralist approach advanced by

Rumfitt [179] in which assertion and denial are both primitive concepts. Similarly,

other readings of negation exist; in particular, Berto et al. [18] have suggested that

negation is properly thought of as a modality, which is consistent with the idea of

denial as the force of a speech act. These choices are details in the general analysis

of reasoning that this essay concerns and are left behind to proceed with the thesis.
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Recall that arguments are valid when they are regulated by accepted infer-

ences. Those inferences are determined by rules, which may be given explicitly in a

base or implicitly in the logical structure of the propositions involved. However, an

undesirable behaviour has been introduced by admitting elimination rules for com-

plex propositions. Recall that the intended use of the elimination is only when the

proposition occurs as a hypothesis or in the theory, but such a restriction has yet to

be mandated. For example, consider the following argument:

Tammy is female Tammy is a fox
Tammy is a vixen ⇓

Tammy is a fox ⇓

The proposition ‘Tammy is a vixen’ is spurious because the suasive content of the

elimination rule has already been given, ipso facto, in the proposition being estab-

lished by an introduction rule. The purpose of the elimination rule is to satisfy the

definitionality of the corresponding introduction rule according to DR. Therefore,

they apply only when the propositions they concern appear as assumptions, and not

in general. Hence, though the argument is regulated by accepted inferences, its va-

lidity comes from the fact that it represents a direct argument that encapsulates its

actual suasive content.

An argument is indirect if it has a proposition in it that is concluded by an

instance of an introduction rule schema and then appears in the corresponding elim-

ination rule schema; otherwise, it is direct. The intended use of elimination rules

described above amounts to the following principle:

An indirect argument is valid in a base B if it represents a direct argu-

ment in the base B

The significance is that it avoids detours (i.e., inferences devoid of suasive content);

for example, ϕ,ψ,ψ → χ ⊨B χ is witnessed by the following:

ϕ

ψ → χ ψ

χ
⇓

ϕ ∧χ
⇓

χ
⇓
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The conjunction is a detour because it is eliminated after having been introduced

according to its logical structure. It may be removed without loss of suasive content

to yield the following direct argument:

ψ → χ ψ

χ
⇓

When does one argument represent another? One may impose various condi-

tions, but they are not the subject of this essay. Instead, take some set of operator

J to be fixed, allowing one to map arguments to others, such that when a mapping

takes place, the source ‘represents’ the target. For example, Prawitz [168] provides

a collection of ‘reductions’ that remove detours in the above sense (i.e., when an

elimination rule is applied to a complex proposition asserted by an introduction

rule).

The ideas presented so far comprise an inductive definition of valid argument.

Let B be a base and J a collection of operators on arguments. An argument A is

(B,J )-valid if and only if it satisfies one of the following:

- the argument A is a proof in B

- the argument A is closed and reduces according to J to a direct (B,J )-valid

argument

- the argument A is open with assumptions P1, ...,Pn and, for any C extend-

ing B, the result of composing A with arbitrary (C ,J )-valid arguments

A1,...,An for P1, ...,Pn, respectively, results in a (C ,J )-valid argument.

The definition of valid was first given by Dummett [51], based on the technical

achievements and ideas of Prawitz [168, 164], and is thus known as the Dummett-

Prawitz proof-theoretic validity — see Schroeder-Heister [190]. Significantly, re-

stricting attention to IPL, Prawitz [166] has conjectured the following: if there is a

valid argument for ϕ from Γ in an arbitrary base (relative to some notion of reduc-

tion), then there is a derivation of γ → ϕ in IPL, where γ is the conjunction of all

the propositions in Γ. This remains an open problem.
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This essay concerns the question ‘What is a valid argument?’ and presents it

as a foundation of logic. The typical logics of interest — IPL and CPL — are de-

rived according to principled design choices. Significantly, this essay differs from

the traditional approach to logic in that logical structures (e.g., conjunction, dis-

junction, implication, absurdity) are understood as meta-level expressions of the

inferential behaviour of propositions instead of grammatical constructions. The

main idea is that logical structures are determined by stating that a proposition is

‘defined’ according to a certain inferential behaviour — that is, its functions in

inferences — thereby setting this approach in the philosophical paradigm of infer-

entialism. The analysis of this essay recovers proof-theoretic validity in Dummett-

Prawtiz tradition. It also explicates how the base-extension semantics for IPL given

by Sandqvist [183] naturally arises according to the central question. While only

a limited selection of logics are treated, this results from the limited form of rules

chosen. Indeed, if the notion of the rule were generalized, one could analogously

recover modal, substructural, first-, second-, and higher-order logics. The overall

thesis is that the validity of arguments is the underlying question of logic, so logic

may properly be called the study of reasoning.
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