
1 

 

Modelling Travel Time Anticipation  

Under Rational Inattention and Endogenous Information Constraints 

 

Dimitrios Pappelis*1, Emmanouil Chaniotakis2, Tim Hillel3, Maria Kamargianni4 

 
1 Research Assistant, BSEER Energy Institute, University College London, UK, WC1H0NN 

2 Lecturer, BSEER Energy Institute, University College London, UK, WC1H0NN 

3 Lecturer, Civil Engineering, University College London, UK, WC1H0NN 

4 Professor, BSEER Energy Institute, University College London, UK, WC1H0NN 

 

SHORT SUMMARY 

Transportation research has been traditionally grounded on the economic theory of Rational 

Expectations, assuming that individuals are fully informed, optimizing, and self-interested 

decision makers. However, this assumption fails to sufficiently explain the inertia that 

characterizes travellers’ behaviour in face of uncertainty.  In recent years, there has been a rising 

interest in the theory of Rational Inattention, arguing that individuals choose to make seemingly 

suboptimal choices due to the cost of acquiring and processing available information. In this 

paper, we present a continuous quadratic Rational Inattention model of travel time anticipation. 

We showcase that its properties satisfy behavioural hypotheses derived from data collected 

through a case study in the city of Turin on within-day travel re-evaluation. We conduct 

simulation experiments and propose an alternative 2-stage framework for enhancing existing 

neoclassical travel behaviour models, indicating potential biases and discrepancies in the 

forecasted market shares, specifically with regards to rare travel time occurrences.  
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1. INTRODUCTION 

Transportation planning and policy making rely on models to predict and explain the behavior of 

travellers. Traditionally, research on this front has been based on the economic theory of Rational 
Expectations, assuming that individuals are fully informed, optimizing, and self-interested 

decision makers.  However, this assumption fails to sufficiently explain the resistance to change 

that characterizes travellers’ behaviour in face of uncertainty.  In recent years, there has been a 
rising interest in the Rational Inattention (RI) theory, originally developed by Christopher Sims 

(2003). The argument is that individuals consciously choose to make seemingly suboptimal 

choices due to the cost of acquiring and processing available information. In recent years, Matejka 

and McKay (2015) expanded the theory for discrete choice under imperfect information and 

cognitive capacity constraints. As such, RI has emerged as a compelling and neat framework for 

further understanding the behavior of decision makers in complex and dynamic environments. 

 

In the context of transport modelling, Rational Inattention is still relatively unexplored. Fosgerau 

et al. (2019) and Jiang et al. (2020) defined the problems of route and departure time choice under 



2 

 

RI and provided simulation findings. Fosgerau et al. (2020) established the general equivalence 

between discrete choice and RI models, providing an alternate point of view in the interpretation 

of typical RUM models. From an application perspective, Habib (2022) investigated empirical 

use-cases and focused on estimable specifications of discrete choice RI models. 

 

In this paper, we present a continuous-quadratic RI model of travel time anticipation. We 

showcase that its properties satisfy our behavioural hypotheses derived from data collected from 

a case study in the city of Turin on within-day travel demand shift choices. We proceed to assess 

the model capabilities through numerical experiments and then propose a 2-stage framework for 

enhancing existing neoclassical models of travel behaviour, given the open challenges associated 

with data collection for RI phenomena. We indicate how ignorance of the priors and information 

capacity constraints could lead to potential biases and discrepancies in the forecasted market 

shares, especially with regards to rare travel time occurrences. 

2. METHODOLOGY 

Data Collection 

The motivation of this paper originates in the investigation of within-day re-evaluation and day-

to-day learning as described by Pappelis et al. (2022). In that study, a joint Revealed Preference 

and Stated Preference (RP-SP) experiment was applied to collect "pseudo" panel data on within-

day demand shift choices. The primary objective was to investigate individuals' adaptation 

strategies when faced with travel time fluctuations on their habitual schedule, and how the 

accumulated experience affects their future actions. Participants, whose travel patterns were 

initially recorded using a smartphone tracking application, were provided with travel information 

for an upcoming habitual trip, either during an activity or en-route to their destination. Given this 

information, they were asked to record their response in the form of an adaptation strategy. The 

strategy could involve modifying trip characteristics such as departure time, mode, or route, or 

changing the target activity through replacement or cancellation. At the end of each day, 

participants updated their anticipation of travel time for the following day based on accumulated 

experience and reported whether they would consider long-term adjustments to their habitual 

schedule.  

 

The described experiment allowed for the exploration of individuals' responses to travel time 

fluctuations and the implications on their future travel behavior. It was applied in the metropolitan 

area of Turin (IT) between February and April 2022, as part of a wider travel demand survey. 

Recruited individuals formed a stratified sample of the travel survey participants, which is 

representative of the population in the Turin region (a survey company was hired for recruitment). 

The RP data collection was performed using a smartphone-based travel survey tool, the 

MobyApp. The habitual activity and travel patterns were tracked from the application in the form 

of travel diaries over the course of 7 days.  In total, 365 individuals accessed the experiment and 

351 of them completed it, resulting in 702 tracked trips and 4212 observations.  

 

The dataset revealed some interesting behavioural findings with regards to inertia effects of travel 

behaviour and the concept of false certainty adoption. For instance, Figure 1 displays the number 

of trips categorized by re-evaluation strategy, based on the daily fluctuations in travel time. The 

level of fluctuation is determined by the travel factor parameter, which is multiplied by the 

habitual travel time for a specific trip of the participant in each scenario. The analysis shows that 

for medium levels of travel time fluctuation, the dominant re-evaluation strategy is 'No change,' 

suggesting that many individuals may prefer to stick with their habitual option rather than make 
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changes, even if from a utility maximization perspective this can be seen as “irrational”. This 

finding aligns with the concept of resistance to change, a heterogeneous factor across the 

population. As travel time increases, schedule constraints and conflicts may increase stress, 

leading individuals to consider changing their travel plans (such as adjusting departure time, 

mode, or route). For extreme levels of travel time fluctuation, we observe the highest likelihood 

of cancellation or replacement of the activity. 

 

 

Figure 1 Resistance to change for different levels of travel time fluctuation 

It is also important to study how the prior expectation of travel time evolves with accumulated 

experience. Figure 2 depicts the participants’ scaled anticipated travel time after each day, against 

the 2-day and 3-day moving average of different travel time orders used throughout the 

experiment. We observe significant sluggishness and inertia in the travel time anticipation of the 

participants, being influenced from their prior beliefs and experience. While Rational 

Expectations theory would imply that external stimuli would cause stronger and fast responses, 

we observe much milder adaptations and a “magnet effect” towards the reference level of travel 

time. 
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Figure 2 Inertia and sluggishness in travel time anticipation  

Modelling Framework 

Based on these behavioural observations, we proceed to define the travel anticipation problem as 

a static model of choice under Rational Inattention (Mackowiak et al., 2021). Consider an agent 

who plans to perform a daily trip and receives an information signal 𝑠, in order to set her travel 

time anticipation 𝑎, subject to unknown network conditions 𝑡. Let the utility have the following 

log-quadratic form, 

 

𝑈(𝑎, 𝑡) = −𝑏(𝑎 − 𝑡)2 

 

The agent is tracking the unknown random state of the network, which under perfect information 

would be equal to her anticipation. Naturally, this would allow the agent to construct her 

subsequent travel plans most accurately (e.g., departure time, mode, route). However, as the true 

travel time is infeasible to observe constantly and travel information comes at a perceptual cost, 

the agent chooses to receive noisy information that determines the posterior beliefs that she may 

hold. The utility parameter 𝑏 is a scaler, which can account for agent’s heterogeneity with regards 

to traffic information seeking. Under the general quadratic form, we assume that over or under-

estimation of travel time incurs equal losses. In many cases, delayed arrivals might incur costlier 

losses, so it is worth studying different variants of the utility function going forward. The objective 

of the agent is to maximize the expectation of her utility less the cost of information C(f), which 

is a function of the information strategy, 

 

𝑚𝑎𝑥
𝑓

∫𝑈(𝑎, 𝑡)𝑓(𝑎, 𝑡)𝑑𝑡𝑑𝑎 − 𝐶(𝑓) (1) 

 

The joint probability f(𝑎, 𝑡) is sufficient to describe the choice of information and action, as they 

are derived such that no two signals lead to the same action. Otherwise, the agent would be 

wasting attentional resources by distinguishing between signals that do not directly affect their 

actions. As a result, it is possible to make a one-to-one association between the signal and action 
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and analyse the relationship between attention, allocation, information acquisition, and decision-

making in a unified framework. The objective function (1) is maximized subject to the following 

constraints, 

∫𝑓(𝑎, 𝑡)𝑑𝑎 = 𝑔(𝑡),  ∀𝑡 (2) 

 

The prior belief of the agent is described by the pdf 𝑔(𝑡). Constraint (2) ensures the consistency 

of the prior and posterior beliefs of the agent under Bayesian rationality. 

 

𝐶(𝑓) = 𝜆 ⋅ 𝐼(𝑎; 𝑡) = 𝜆 ⋅ [𝐻[𝑔(𝑡)] − 𝐸[𝐻[𝑡|𝑎]] (3) 

 

The cost function (3) is defined in terms of the mutual information between the agent’s 

anticipation and the actual travel time. It is based on the difference between the entropy of the 

prior distribution of travel times and the conditional entropy of the distribution of travel times 

given the agent’s prediction. The parameter λ typically referred to as the “attention cost” or 

“information cost” reflects the required effort of acquiring and processing the information.  

 

𝐻[𝑔(𝑡)] = −∫𝑔(𝑡)𝑙𝑜𝑔  𝑔(𝑡)𝑑𝑡 (4) 

 

Entropy (4) is quantified using Shannon's definition, which measures the amount of information 

present in the probability distribution of travel time. The cost function penalizes travel time 

predictions that require more attention to achieve a specific level of accuracy. By minimizing the 

difference between the prior and conditional entropy based on the prediction, the cost function 

encourages accurate predictions that require less attention. The solution to the agent's problem for 

an unknown network state t has a probabilistic logit form. The solution of the agent’s problem for 

an unknown state of the network t is has the following probabilistic logit form. 

 

𝑓(𝑎|𝑡) =
𝑝(𝑎)𝑒𝑈(𝑎,𝑡)/𝜆

∫ 𝑝(𝑧)𝑒𝑈(𝑧,𝑡)/𝜆
 

𝑧
𝑑𝑧

 

 

In most cases, RI problems do require numerical solution methods. A well-studied exception is 

the case of quadratic utility, Gaussian prior uncertainty, and an unbounded action space, where 

Gaussian signals are optimal Interestingly, for a bounded or truncated action space, the solution 

of the continuous problem is discrete, indicating that the agent contemplates only specific levels 

for a given choice, a phenomenon commonly observed in the stickiness of product prices. In the 

context of travel time, this would imply that travellers choose from a finite set of levels when 

updating their anticipation and might, for instance, set a regular departure time and standard 

“safety” departure when expecting a range of potential delays.  

3. RESULTS AND DISCUSSION 

The collection of data for the practical estimation of RI models is challenging, mainly because 

the concept of cognitive capacity constraints is abstract and difficult to measure. In the context of 

travel time anticipation and travel behavior, an ideal dataset would need to capture multiple 

factors simultaneously, including the agent's beliefs (i.e., their prior perception of the probability 

distribution of travel times), the world (i.e., network conditions such as travel time), attention 

allocation (i.e., the choice of signal or level of information), and action (i.e., the agent's choice).  

The design of such sophisticated experiments is an ongoing task in economics research. In 

absence of this complete dataset, we proceed to perform numerical experiments on the travel time 

anticipation model and then propose a 2-stage approach to enhance traditional neoclassical 

models of travel behaviour. 
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Numerical Experiment 

To assess and showcase the properties of the modelling framework, we perform numerical 

experiments that justify our behavioural hypotheses derived from the data analysis. A triangular 

prior distribution is assumed for the agents’ belief, a common approach in related studies (Figure 

1).  

 

 

Figure 3 Triangular prior anticipation of trip travel time distribution 

We then proceed to solve the RI problem (Eq.1-4) for two different levels of the marginal cost of 

information λ. The optimization problem was solved using the GAP-SQP geometric algorithm 

proposed by Armenter et al. (2021). Figure 2 presents the joint probability of anticipated travel 

times, as well as the conditional probability of the non-zero solutions (discrete choice set). It is 

apparent that the responsiveness of an action to a given state can be increased by altering the 

stakes or reducing the cost of information. When the stakes are high or the cost of information is 

low, individuals are more motivated to make accurate predictions of the travel time and allocate 

their attention accordingly, thus the plurality in possible actions. This increased attention leads to 

greater responsiveness of the action to the state, as individuals are more likely to adjust based on 

the information available to them. On the contrary, for lower stakes or high values of the 

information constraints, the agent might only consider few alternatives and apply them over a 

range of states of the network. 
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Figure 4 Simulated joint and conditional probabilities for higher (λ=0.03, left) and lower (λ=0.005, right) 

values of marginal information cost 

Empirical Findings 

The theory of Rational Inattention and the endogenous processing of information raise important 

questions about what traditional empirical methods, such as controlled experiments, capture in a 

transportation setting. This is particularly relevant for travel re-evaluation behavior, where it is 

most often assumed that individuals are fully aware and process all available advanced 

information. Furthermore, in a revealed preference setting, such effects might already be captured 

in the data, thus there is a need to not only disentangle preferences, but also consider their 

equilibrium relationships with the supply side.  

 

Given these open research challenges, we extend the travel re-evaluation framework developed 

by Pappelis et al. (2022). At this point, it is important to clarify that -in this context of RI- we are 

not referring to the cognitive constraints of the participant with regards to the experiment setting 

and attributes, which is also important to be controlled, but with the inattention to information 

(e.g., journey planners, radio) that would be observed in the transition to a real-world setting. 

Figure 5 illustrates a two-stage sequential framework for incorporating RI effects in the demand 

shift models. In the first stage, we utilize the continuous RI model to solve for travel time 

anticipation. In the second stage, we use the output of the RI model as a more realistic depiction 

of travel time when simulating dynamic demand shift decisions. 
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Figure 5 Sequential approach for incorporating travel time anticipation under RI 

 
The model selected for the evaluation of the framework is the static Mixed Nested Logit, which 

was designed to generate the probability of specific adaptation strategies being selected, when 

faced with travel time fluctuation during a habitually performed trip. The nesting structure and 

the alternatives of the travel re-evaluation model are depicted in Figure 6 (see full paper for 

complete specification). 

 

 

Figure 6 Demand shift model choice alternatives and nesting structure (Pappelis et al., 2022) 

Applying the 2-stage framework, we proceed to perform sensitivity analysis on the information 

cost parameter λ of the travel time variable, maintaining the assumption of the triangular 

distribution, and then comparing the simulated market shares for different ranges of the travel 

time distribution. We observe that for severe delays (travel factor >2.5), the Rational Expectations 

model might overestimate the aggregate response of the travellers, especially when it comes to 

cancellation of a given trip. Comparing it to the extreme case of a marginal information cost above 

the threshold of any signal acquisition, a significant discrepancy of over 20% can be observed in 

the market share of the “Habit” alternative.  On the contrary, for lower levels of travel time 

fluctuation (travel factor <1.5), the Rational Inattentive agent might falsely overreact due to false 

signals, when she would be better off following her habitual schedule. Such discrepancies indicate 

the importance of measuring and accounting for the prior beliefs, the information processing 

constraints and marginal cost of information λ in travel behaviour modelling and forecasting. 
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Figure 7 Forecasted shares for different levels of marginal information cost and travel time fluctuation 

4. CONCLUSION 

In conclusion, our paper highlights the potential benefits of incorporating Rational Inattention 

theory into transportation modelling and travel time anticipation in particular. Future steps include 

the extension of the framework to a dynamic setting, allowing for individuals to acquire 

informative signals which can also be used as predictors of future actions. Finally, the relevance 

and applicability of the RI theory in transportation needs to be further examined through the 

design of sophisticated data collection experiments. 
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