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Momentum scalar triple product as a measure of chirality in electron ionization
dynamics of strongly driven atoms
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We formulate a measure that quantifies chirality in single electron ionization triggered in atoms, which are
achiral systems. We do so in the context of Ar driven by a different type of optical fields that consists of
two noncollinear laser beams giving rise to chirality that varies in space across the focus of the beams. Our
computations account for realistic experimental conditions. To define this measure of chirality, we first find the
sign of the electron final momentum scalar triple product p, - (py X p.) and multiply it with the probability for
an electron to ionize with certain values of the momentum components. Then, we integrate over all values of p,,
Py» Dz- We show this to be a robust measure of chirality in electron ionization triggered by chiral electric fields.
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I. INTRODUCTION

Ultrafast phenomena in chiral molecules triggered by in-
tense, infrared laser pulses are at the forefront of laser-matter
interactions [1-5]. While ultrafast chiral processes can be
studied using high harmonic generation (HHG) [1,6—10], the
underlying recollision mechanism entails that a stronger chiral
response comes at the expense of a greatly suppressed high
harmonic signal [1]. Hence, photoelectron spectroscopy is a
promising route to a robust signal from molecules driven by
intense chiral fields [2,3,5,11-13]. However, the sensitivity
of chiral photoelectron spectroscopy also struggles with the
fact that laser wavelengths are several orders of magnitude
larger than the dimensions of molecules, i.e., the chiralities
of the optical field and the molecule are incommensurate.
Recently, Ayuso et al. proposed a type of optical field which is
chiral on the atomic scale [6] and thereby holds the potential
for unprecedented chiral sensitivity. The chiral field is syn-
thesized by combining two orthogonally polarized two-color
laser fields in a noncollinear geometry as illustrated in Fig. 1.
The noncollinear geometry creates an intensity and ellipticity
grating, and thereby causes the chirality of the laser field
to spatially vary across the focus. Thus, it is a fundamen-
tal challenge for experiments to decipher the signatures of
chirality in the photoelectron spectra from these laser fields.
Here, we provide a roadmap on how to analyze experimental
photoelectron spectra produced from chiral light. To do so, we
perform semiclassical simulations of strong-field ionization
and take into account the focal volume distribution of the de-
gree of light chirality. To understand chiral electron ionization,
we model photoionization of ground state atoms. The latter
have spherical symmetry and are intrinsically achiral systems.
Thus, the chiral response of the escaping electron that is
imprinted on the ionization spectra arises solely from the dy-
namics triggered by the electric field of the laser. To analyze
the resulting photoelectron spectra we identify a measure that
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quantifies chirality in electron ionization dynamics ensuing
from an atom strongly driven by a chiral electric field. We con-
struct this measure using the probability P(py, py, p;) for an
electron to ionize with certain values of the momentum com-
ponents py, p, and p.. Next, we multiply this probability by
the sign of the momentum scalar triple product p; - (py X p;).
Integrating over the whole range of the components of the
momentum, we obtain the following measure of chirality

X = /// sign(py (py X P))P(py, Dy Pz)dpxdpydpz.
(1)

As expected, we find that when performing a cyclic permu-
tation of p., p, and p; in Eq. (1) the measures of chirality
obtained are equivalent. In what follows, we show that X’ is a
robust measure of chiral electron ionization.

II. METHOD

We demonstrate that X measures handedness of electron
ionization in the context of Ar atoms driven by two non-
collinear laser beams, see Fig. 1. Beams 1, 2 propagate on the
x-y plane with wave vectors k;, k, forming an angle o with
the y axis

k; = ksin(a)X + k cos()y,
ky; = —k sin(a)X + k cos(a)y, 2)

where k = 2 /). The electric field of each beam consists of
two orthogonally polarized w and 2w laser fields. The w field
is polarized along the x-y plane and the 2w along the z axis,
while the 2w field has smaller intensity. The resultant electric
field is given by [6]

t 2
E(r, 1) = 2E) exp [—(;) ](Exfc +EJ+ED, )
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FIG. 1. Schematic plot of two noncollinear laser beams, each
consisting of w-2w orthogonally polarized linear fields; w is polar-
ized on the x-y plane and 2w along the z axis. Both beams propagate
towards the atom in the focus region (red-shaded ellipse). The resul-
tant electric field has chirality (square inset) that changes along the x
axis in the focus region.

o

=)
-

where
2
Ey/y = exp [_<w£0> ]fx/y(x)cos [e(y, )],
2p 2
E, = exp [—(—) }fz(x) cos [A(y, 1)], 4)
Wo
and
fx(x) = COS(O{)COS |:k SIH((X))C + ¢ _ ¢w:|’
fy(x) = sin(a) sin |:k sin(o)x + 3 5 ¢w]
f:(x) = rycos [2k sin(a)x + (¢§w . ¢12w)]’
g0y, t) = kcos(a)y — wt — %J—_;(p(lu’
h(y,t) = 2k cos(a)y — 2wt — ($3° + ¢7°). 5)

We note that 7 =25 fs and 74/21In(2) is the full width at
half maximum of the pulse duration in intensity, while Ey is
the field strength corresponding to intensity 5 x 10> W/cm?.
Also, p is the radial distance to the propagation axis of each
laser beam. Since « is small, 5°, it follows that p ~ +/x2 + z2.
Moreover, wy = 8.49 um is the beam waist of the w laser
field, and ré is the intensity ratio of 1/100 of the 2w versus
the w field. Finally, the wavelength A of the w field is taken
equal to 800 nm. It was previously shown [6] that the resultant
electric field is globally chiral if the relative phases of the

(@) Casel Case 2 Case 3

w and 2w laser fields in beams 1 and 2, i.e. ¢12‘” — ¢y and
¢§“’ — ¢%, satisfy the following condition:
(617 — ¢7) — (3 — 95) = ——l—nn withn € Z, (6)

while the resultant electric field is globally achiral when
(67" = 1) — (62" — ¢3) = n, @)

We compute X for Ar driven by one of six different re-
sultant electric fields corresponding to six different synthetic
pulses. For simplicity, we refer to each resultant electric field
of a synthetic pulse as electric field. Each of the six fields,
cases 1-6, corresponds to a different combination of ¢ — ¢¢
and ¢3° — ¢ for beams 1 and 2, respectively, see Fig. 2(a).
Using Eq. (6) and Eq. (7), we select four globally chiral fields,
cases 1, 2, 4, 5, and two globally achiral fields, cases 3, 6,
see Fig. 2. In Fig. 2(b), we show that the electric fields which
are globally chiral maintain the same handedness along the x
axis in the focus region. That is, E,/E, and E,, while keeping
¥zt constant, change sign at the same points in space x. As
a result, electric fields 1 and 4 have the same (+) chirality
and electric fields 2 and 5 have the same (—) chirality, see
Fig. 2(b). Hence, the pairs of electric fields (1, 2) and (4, 5)
have opposite chirality. For the globally achiral fields, cases
3 and 6, we find that E,/E, and E; change sign at different
points in space x, Fig. 2(b). Hence, the chirality of electric
fields 3 and 6 flips sign along the x axis in the focus region,
i.e., there is no overall chirality.

A robust measure of chirality X should have opposite
sign for chiral fields of opposite chirality. In this work, the
results are presented using the coordinate system defined by
the x axis, which is the axis where the electric fields exhibit
handedness, and the y axis, which is the propagation axis. In
this reference frame, we find that the X computed from the
electron momentum distribution ensuing from each electric
field of cases 1-6 has opposite values for opposite chirality
fields (1, 2) and (4, 5), while it is zero for achiral fields 3 and
6. We find that another measure of chirality can be obtained
when X is computed using the difference of the normalized
electron momenta distributions obtained from two electric
fields. Here, we refer to this measure as X'd. For instance,
considering cases 1-3, we find that Xd computed using chiral
field 1 and achiral field 3 has opposite sign from X'd computed
using the opposite chirality field 2 and achiral field 3. Hence,
the results presented in this work hold true for this natural

withn € Z.
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FIG. 2. (a) Schematic plots of six combinations of two noncollinear beams; (b) change of sign of E,/E (black) and E, (blue) along the x

axis in the focus region, at y = z = 0, r = T'/50. For each case, above beams 1 and 2, we denote ¢12“’

— ¢ and ¢p2° — ¢% from left to right.
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reference frame we employ in this work. Such natural frames
have been employed in previous studies of circular dichroism
or of magnetic field effects on double ionization due to recol-
lision. In this latter cases, the propagation axis is an axis that
plays a pivotal role in identifying asymmetries in ionization
observables [14].

We treat single electron ionization of driven Ar by em-
ploying a three-dimensional semiclassical model. The only
approximation is the initial state. One electron tunnel ion-
izes through the field-lowered Coulomb-barrier at time #,.
To compute the tunnel-ionization rate, we employ the quan-
tum mechanical Ammosov-Delone-Krainov formula [15,16].
Using this rate, we select #y in the time interval [—27,27].
We use parabolic coordinates to obtain the exit point of the
tunneling electron along the laser-field direction [17]. We
set the electron momentum along the laser field equal to
zero, while we obtain the transverse momentum by a Gaus-
sian distribution [15,16]. The microcanonical distribution is
employed to describe the initial state of the initially bound
electron [18].

Next, we specify at the tunnel-ionization time #, the initial
conditions for both electrons. Using the three-body Hamil-
tonian of the two electrons with the nucleus kept fixed, we
propagate classically in time the position and momentum of
each electron. All Coulomb forces and the interaction of each
electron with the electric field in Eq. (3) are fully accounted
for with no approximation. To account for the Coulomb singu-
larity, we employ regularized coordinates [19]. Here, we use
atomic units.

Previous successes of this model include identifying the
mechanism underlying the fingerlike structure in the cor-
related electron momenta for He driven by 800 nm laser
fields [20], see also [21-23]. Moreover, we investigated the
direct versus the delayed pathway of nonsequential double
ionization for He driven by a 400 nm, long duration laser
pulse and achieved excellent agreement with fully ab initio
quantum mechanical calculations [24]. Also, for low inten-
sities, we have identified a mechanism of double ionization,
namely, slingshot non-sequential double ionization [25]. In
addition, for several observables of nonsequential double ion-
ization, our results have good agreement with experimental
results for Ar when driven by near-single-cycle laser pulses at
800 nm [26].

Next, we describe how we obtain the electron ionization
spectra of Ar for each of the six synthetic pulses (cases
1-6). For simplicity, for each case, we set ¢3 = 0. Since
only the differences ¢7 — ¢ and ¢p3° — ¢% are important,
there is no loss of generality. Moreover, for each of the six
synthetic pulses, we simulate realistic conditions in a Cold
Target Recoil Ion Momentum Spectroscopy (COLTRIMS) or
Velocity Map Imaging (VMI) experiment where Ar atoms are
at different positions along the x axis in the focus region. To
do so, we select 101 equally spaced values of the phase ¢{’
in the interval [0, 27r). That is, we perform our calculations
for each position of the nucleus, i.e., each phase ¢{". For
each ¢{, we register the single ionization events and obtain
the electron ionization spectra. Next, we average over all
¢{ values and obtain the electron spectra P(py, py, p;) using
at least 107 singly ionizing trajectories. For each synthetic
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FIG. 3. Probability distribution P(py, p,, p,) for the electron to
ionize with both momentum p, and the product pyp,, for electric
fields 1, 2, 3, respectively. The sign in each quadrant corresponds to
the sign of p, - (p, x p) in this quadrant.

pulse, cases 1-6, the resulting electron spectra are normalized
to one.

III. RESULTS

First, we illustrate the measure of chirality A" that is com-
puted separately for each electric field in cases 1-3. To do
so, we plot in Fig. 3 the probability distribution P(py, py, p;)
for an electron to singly ionize with both momentum p, and
the product p,p, for the globally chiral fields 1, 2 and the
globally achiral field 3. In each quadrant, we assign the sign
resulting from the scalar triple product p; - (py, x p;). We
multiply this sign by the distribution P(py, py, p;) and sum up
over all four quadrants to obtain X, defined in Eq. (1). We find
X to be equal to 1.8 x 1072, —1.9 x 1072, —0.1 x 1072 for
electric fields 1, 2, 3, respectively. Indeed, a close inspection
of Fig. 3 for case 1 reveals that the probability distribution of
the electron momentum p, and p,p. has two lobes with one
corresponding to p, > 0 and shifted towards positive values
of p,p, and another one corresponding to p, < 0 and shifted
towards negative values of p,p.. For case 2, the two lobes are
reflected with respect to the pyp., consistent with the opposite
chirality of fields 1 and 2. Hence, the probability distribution
has larger values for case 1 at the first and third quadrants,
where p, - (p, x p;) has a + sign, while for case 2 at the sec-
ond and fourth quadrants, where p; - (p, X p;) has a — sign.
It follows that X has a positive (negative) value when Ar is
driven by synthetic pulse 1 (2). Also, |X'| is roughly the same
for cases 1 and 2. The small offset is due to the statistical error
introduced in our computations from the restricted number of
single ionization events. This is also supported by X being
equal to —0.1 x 1072, instead of zero, when Ar is driven by
the achiral field 3.

Next, we illustrate the measure of chirality X'd that is
computed using the difference of the normalized electron
momenta distributions of two electric fields

Xd = /// sign(py - (py x P )P (py, Dy pz)dpxdpydpZ7

P™"(py, py, P2) = P"(px, Py, P2) — P"(Px, Py, P2),
)

and P™/P" is the probability distribution P(py, py, p;) ob-
tained for each of the electric fields 1-6, i.e., m = 1-6
and n = 1-6. In Figs. 4(al)—4(a3), we plot the probability
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FIG. 4. Probability distribution P"™"(p,, py, p.). The m,n indexes
are 1, 2 for Case 1 and Case 2, 1, 3 for Case 1 and Case 3, 2, 3 for
Case 2 and Case 3, 4, 5 for Case 4 and Case 5, 4, 6 for Case 4 and
Case 6 and 5,6 for Case 5 and Case 6. The sign in each quadrant
corresponds to the sign of p, - (p, x p.) in this quadrant.

distribution P™"(py, py, p;) for the pair of opposite chirality
electric fields (1, 2), i.e., Case 1 — Case 2 [Fig. 4(al)], and for
the pairs of chiral-achiral electric fields (1, 3) and (2, 3), i.e.,
Case 1 — Case 3 [Fig. 4(a2)] and Case 2 — Case 3 [Fig. 4(a3)].
In each quadrant, we assign the sign resulting from the scalar
triple product p, - (py X p;). The yellow (blue) color denotes
positive (negative) values of P™"(py, py, p;), corresponding
to the electron being more (less) probable to ionize with both
momentum p, and the product p,p, due to pulse m rather than
pulse n. Next, in each quadrant, we multiply the positive or
negative values of the distribution (yellow/blue) with the +
sign of p, - (p, X p;) and finally sum up. It easily follows that
the measure of chirality X'd is larger and positive (3.7 x 1072)
for the pair of opposite chirality fields (1, 2), see Fig. 4(al).

Also, Xd is positive (1.9 x 1072) for the pair of electric fields
(1, 3) and negative (—1.8 x 1072) for the pair (2, 3). Indeed,
a close inspection of Fig. 4(a2) and Fig. 4(a3) shows that the
probability distribution for Case 1 — Case 3 has mainly two
spots in the third (yellow) and fourth (blue) quadrants while it
is reflected with respect to the p, p, axis for Case 2 — Case 3.
We note that 1.9 x 1072 — 1.8 x 1072 is roughly zero, since
pulses 1 and 2 have opposite chirality. Similar results are
obtained when considering the chiral fields 4,5 and achiral
field 6, see Figs. 4(b1)—4(b3).

IV. CONCLUSIONS

In conclusion, we identify a measure of chirality in electron
ionization triggered in atoms driven by synthetic pulses. These
pulses can create electric fields which are globally chiral or
achiral along the focus region. We define this measure by
multiplying the sign of the electron final momentum scalar
triple product p, - (p, x p;) with the probability for an elec-
tron to ionize with certain values of the electron momentum
components. Finally, we integrate over all values of the elec-
tron momentum components. This robust measure of chirality
is demonstrated using the most appropriate reference frame.
Choosing such frames has been a common practice in previ-
ous studies of circular dichroism and magnetic field effects.
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