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Abstract

Motivation: We are increasingly accumulating complex omics data that capture different aspects of cellular func-
tioning. A key challenge is to untangle their complexity and effectively mine them for new biomedical information.
To decipher this new information, we introduce algorithms based on network embeddings. Such algorithms repre-
sent biological macromolecules as vectors in d-dimensional space, in which topologically similar molecules are
embedded close in space and knowledge is extracted directly by vector operations. Recently, it has been shown that
neural networks used to obtain vectorial representations (embeddings) are implicitly factorizing a mutual informa-
tion matrix, called Positive Pointwise Mutual Information (PPMI) matrix. Thus, we propose the use of the PPMI ma-
trix to represent the human protein—protein interaction (PPl) network and also introduce the graphlet degree vector
PPMI matrix of the PPl network to capture different topological (structural) similarities of the nodes in the molecular
network.

Results: We generate the embeddings by decomposing these matrices with Nonnegative Matrix Tri-Factorization.
We demonstrate that genes that are embedded close in these spaces have similar biological functions, so we can ex-
tract new biomedical knowledge directly by doing linear operations on their embedding vector representations. We
exploit this property to predict new genes participating in protein complexes and to identify new cancer-related
genes based on the cosine similarities between the vector representations of the genes. We validate 80% of our
novel cancer-related gene predictions in the literature and also by patient survival curves that demonstrating that
93.3% of them have a potential clinical relevance as biomarkers of cancer.

Availability and implementation: Code and data are available online at https://gitlab.bsc.es/axenos/embedded-
omics-data-geometry/.

Contact: natasha@bsc.es

Supplementary information: Supplementary data are available at Bioinformatics online.

complexity. For instance, the omics networks have been the input
into data fusion methods that integrate and analyze them collective-
We are flooded with large-scale omics data. They include genomic, ly to uncover the functional information and the molecular mecha-
proteomic, interactomic, metabolomic and other omic data. These nisms of complex diseases that cannot be uncovered from any omic
data capture different aspects of cellular functioning and are typical- data type in isolation from others (Malod-Dognin et al., 2019;
ly_ modeled and analyzed as networks, where the nodes_ represent the Przulj and Malod-Dognin, 2016).

biological macromolecules and the edges the relations between
them. Often, a network is represented with an adjacency matrix, a
square matrix whose elements indicate whether the corresponding
nodes are adjacent.

1 Introduction

1.1 Motivation
Molecular networks have complex wiring patterns (topology) that

With the increasing availability of omics data, it is important to
represent and interpret each molecular network in an informative
way that uncovers new biomedical information hidden in its

©The Author(s) 2021. Published by Oxford University Press.

needs to be ‘untangled’ to extract new biological information. To
analyze these patterns, we rely on various types of clustering meth-
ods followed by enrichment analysis, or on computationally
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intensive machine learning models. Due to the complexity of net-
work topology, methods that map a network in a low-dimensional
space are used as a preprocessing step. For instance, nonlinear
dimensionality reduction techniques, such as Multidimensional
Scaling (MDS) (Chen ez al., 2008), Principal Component Analysis
(PCA), minimum curvilinear embedding (MCE) (Cannistraci et al.,
2013) and Coalescent Embedding (Muscoloni et al., 2017) have
widely been used. These techniques are not designed to embed
objects only in low-dimensional space. They are often called geo-
metric embeddings because in practice, they are used to map a net-
work in a low-dimensional space, usually two or three dimensions,
with a specific underlying geometry: MDS maps a network in
Cartesian space and Coalescent Embedding in hyperbolic space.
However, since the geometry of the embedding space of biological
networks is still an open question, there has been a significant recent
interest in novel methods that are not making any assumptions
about the underlying geometry, or the dimensionality of the space.

Some of these methods are inspired by the advances in the field
of Natural Language Processing (NLP), where words are repre-
sented as vectors in a d-dimensional space (word embeddings)
(Mikolov et al., 2013b) and new knowledge is extracted directly
with linear operations on the vectors in the space. Recent works
extended the word embeddings to generate network embeddings
(Grover and Leskovec, 2016; Perozzi et al., 2014; Tang et al.,
2015a). In network biology, these vector representations of biomed-
ical networks have been used as input into machine learning models
to predict protein functions, drug-disease associations, drug-drug
interactions and protein—protein interactions (PPI) [see Su et al.
(2020) for more details]. Our aim is to generate embeddings of mo-
lecular networks, in a Euclidean space, and to exploit directly the
underlying geometry of the embedded data points to uncover bio-
logical functions and disease mechanisms that are hidden in their
wiring patterns. Importantly, we aim to generate embeddings based
on the Nonnegative Matrix Tri-Factorization (NMTF) method
(Ding et al., 2006) that has successfully been used in the biological
context to analyze large-scale omics data types both in isolation
from each other and collectively (Gligorijevi¢ et al., 2016; Malod-
Dognin et al., 2019; Vitali, 2018; Zitnik ez al., 2013).

1.2 Molecular data analysis and integration with NMTF
NMTF is a matrix factorization technique that was originally pro-
posed for dimensionality reduction and for coclustering due to its
connection with k-means clustering (Wang et al., 2008). NMTF
decomposes an # x m data matrix, A (e.g. the adjacency matrix rep-
resentation of a biological network), representing the relations be-
tween 7 and m elements, into a product of three nonnegative, low-
dimensional matrices, Gk, Skxk, and Pz, , as A = GSPT | where
factor G is the cluster indicator matrix of 7 elements (grouping # ele-
ments into k clusters), factor P is the cluster indicator matrix of m
elements (grouping m elements into k; clusters) and factor S is a
compressed representation of the data matrix, A (relates the clusters
in G to the clusters in P).

NMTF is also an intermediate data integration method (Zitnik
and Zupan, 2015) that directly integrates all datasets through the in-
ference of a single joint model. For instance, Gligorijevi¢ et al.
(2016) applied an NMTF framework to integrate heterogeneous
data, including somatic mutation data, molecular networks and
drug chemical data. This enabled them to stratify ovarian cancer
patients based on all data collectively and to predict drugs for repur-
posing that could be used in treatment of the identified patient sub-
groups (Gligorijevi¢ et al., 2016). Subsequently, Vitali (2018) used
NMTF to fuse patient data (i.e. clinical data and somatic mutations)
with gene-pathway and disease-gene associations, gene-gene inter-
actions and disease-pathway relations, to identify patient subgroups
in acute myeloid leukemia. Finally, NMTF has been used to inte-
grate tissue specific molecular interaction networks of PPI, gene
coexpressions (COEX) and genetic interactions into an integrated
model of a cell, iCell (Malod-Dognin et al., 2019). Comparison of
iCells of cancer and control tissues revealed novel cancer-related
genes that could not have been identified by analyzing any tissue
specific network individually (Malod-Dognin et al., 2019).

We investigate if we can further extract additional biological
knowledge by using NMTF methods and in particular from matrix
factor, G, either of a single network, or of a joint model. Each row
of cluster indicator matrix, G, can be interpreted as the vector repre-
sentation of a gene (or equivalently a protein, as a gene product) in
k-dimensional space; motivated by the recent NLP research
described in Section 1.3, as well as by the recent research on net-
work embeddings described in Sections 1.4 and 1.5, we examine if
we can apply simple linear operations on these vector representa-
tions (also called embeddings) of genes to uncover new biomedical
information. To the best of our knowledge, this is the first method
that exploits directly the proximity in the embedding space by doing
simple linear operations to identify cancer genes; recent studies (e.g.
Gumpinger et al., 2020) trained a classifier with the vectorial repre-
sentations of genes to identify cancer-related genes.

1.3 NLP embeddings

In NLP, it has long been known that two words in a similar context
have similar meanings (distributional hypothesis) (Harris, 1954).
Following this observation, Mikolov et al. (2013b) introduced the
word2vec model, which generates continuous representations of
words as vectors in d-dimensional space. Importantly, words that
appear frequently in the same context are placed close in the space.
This method is based on the Skip-Gram architecture, a one-layer
neural network combined with a softmax function, which seeks to
maximize the dot product, @0 - ¢, of vectors @ and ¢, corresponding
to word pairs, (w, ¢), in d-dimensional embedding space that co-
occur in the corpus. However, this architecture is computationally
intractable for a large lexical corpus and therefore has been replaced
by the Skip-Gram with negative sampling (SGNS, for more details
see Mikolov et al. (2013a)).

Importantly, the Skip-Gram model trained on the Google News
corpus enables semantic, context-based, word comparisons (so
called, similarity task) in the embedding space solely by computing
the cosine similarity of their vector representations (Mikolov et al.,
2013b). For instance, Paris and Berlin, both being capital cities,
have similar vector representations and consequently, high cosine
similarity. Also, they demonstrate that word representations learned
by the Skip-Gram model can be meaningfully combined using just
simple vector addition (Mikolov et al., 2013a). This enabled Le and
Mikolov (2014) to define the vector representation of a phrase (sen-
tence) as the average of the vector representations of its constituent
words; more recent works (e.g. Lin et al., 2017; Palangi et al., 2016)
train deep learning models to learn phrase representations, that re-
spect the order of the words in the sentence. The vector representa-
tions of sets of words can then be compared by using simple linear
operations, which allows for analyzing texts beyond the level of
words, revealing semantic similarities between sentences, para-
graphs or even between documents.

1.4 NLP-based network embeddings

Following the success of the Skip-Gram model, various attempts
have been made to generalize it and apply it to networks: Deep Walk
(Perozzi et al., 2014), LINE (Tang et al., 2015a) and node2vec
(Grover and Leskovec, 2016). These methods rely on random walks
to generate sequences of nodes, the equivalent of the lexical corpus,
on which the Skip-Gram architecture can be applied. A network is
embedded in a low-dimensional space in which the similarities be-
tween the nodes are preserved; network nodes are similar either
when they belong to the same neighborhood, or community of the
network (homophily similarity), or when they have similar topo-
logical roles, for instance being hub, or bridge nodes [also called
structural (topological) similarity).

In network biology, the best analogy to homophily similarity is
functional modules of interacting molecules, for instance, protein
complexes of physically interacting proteins. However, function is
not only shared between the proteins that physically interact
(Sharan et al., 2007), or participate in the same functional module,
e.g. in a biological pathway, or in a complex (Chen et al., 2014), but
also between the proteins that have similar local wiring patterns
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(structural similarity in an network, noted above) regardless of their
adjacency in the interaction networks (Milenkovi¢ and Przulj,
2008). The local wiring patterns are usually quantified by measures
that rely on graphlets (small, connected, nonisomorphic and induced
subgraphs) (Przulj et al., 2004). In particular, wiring patterns
around nodes are represented by graphlet degree vectors (GDVs)
and the structural (topological) similarity between two nodes by the
similarity of their GDVs (Milenkovi¢ and Przulj, 2008) (see Sections
2 and 2.2.2). Thus, an important challenge is to generate embed-
dings that locate close in space nodes with similar wiring patterns.

1.5 Network embeddings as matrix factorization
Interestingly, Levy and Goldberg (2014) showed that the SGNS is
implicitly factorizing a word-context matrix, called PPMI (Church
and Hanks, 1990) (for details, see Section 2.2), whose cells quantify
how frequently two words coappear in a lexical corpus, shifted by a
global constant. Subsequently, Qiu et al. (2018) showed that the
Skip-Gram-based network embeddings are also implicitly factoriz-
ing a random-walk-based mutual information matrix, M (a diffusion
on the original network). They presented a closed formula to ap-
proximate matrix M and they generated the embedding space by
applying Singular Value Decomposition (SVD) on this matrix M.
Thus, in both cases (words and networks), the Skip-Gram-based
embeddings are approximating the exact factorization of the mutual
information matrix.

In the field of NLP, they use the neural networks-based embed-
dings rather than to explicitly factorize the PPMI matrix due to its
size. For instance, the size of the widely used Google News corpus is
1 million words and thus the exact factorization of the correspond-
ing 1 million times 1 million PPMI matrix is computational intract-
able [time complexity of SVD is O(7)]. On the other hand, the size
of the PPMI matrix of the Homo sapiens PPI network is roughly
17000 rows times 17000 columns, which makes its decomposi-
tions, either with SVD, or NMTF [time complexity of NMTF is
O(n?)], still feasible.

This motivates us to investigate whether the equivalent proper-
ties of word embeddings (outlined in Section 1.3) also hold for mo-
lecular networks if we decompose either their PPMI matrix, or their
adjacency matrix representation with our NMTF-based framework.

1.6 Contributions

We motivate the use of the PPMI matrix to represent the human PPI
network and we introduce the GDV PPMI matrix (see Section 2.2.3) to
capture the structural (topological) similarities of network nodes. We
demonstrate that genes that are close in the embedding space, generated
by the decompositions of the PPMI matrix, or the GDV PPMI matrix,
with the NMTF framework, have similar biological functions. We do
this by computing the percentage of enriched genes (see Section 2.4) in
the clusterings that are obtained for each of the PPMI, GDV PPMI and
the adjacency matrix factorizations of the human PPI network. In add-
ition, we show that the PPMI decomposition captures more biological
information in terms of enriched genes and clusters compared to the
corresponding adjacency matrix decomposition.

Following the approach of Le and Mikolov (2014), we define the
vector representation of biological entities (e.g. protein complexes,
biological pathways) in the embedding space as the average of the
vector representations of their constituent genes. To exploit the spa-
tial closeness of functionally similar genes, we perform simple linear
operations of their vector representations in the embedding space
(e.g. cosine similarity between the vector representations of genes)
to predict protein complex memberships and to identify new cancer
genes. We demonstrate that in both cases, our simple functional pre-
diction method that is based on proximity in the embedding space
leads to higher prediction accuracy than the Support Vector
Machine (SVM) classifier. Thus, the embedding space is functionally
organized and we can extract biological knowledge directly with lin-
ear vector operations.

By doing simple linear operations, we identify cancer genes with
~90% prediction accuracy in the space generated by the NMTF-
based decomposition of our newly defined GDV PPMI matrix. In

addition, we further demonstrate the importance of our method by
predicting novel cancer-related genes. We find literature evidence
that 80% (12/15) of our top 15 predictions are cancer-related and
that 93.3% (14/15) of our newly identified genes have a potential
clinical relevance as biomarkers of cancer, supported by significant
associations with patient survival (TCGA projects; The Cancer
Genome Atlas, http://cancergenome.nih.gov/abouttcga).

2 Data and methods

2.1 Datasets

We collected the human experimentally validated PPI dataset, con-
sisting of 16781 genes (or equivalently, proteins), from BioGrid
(version 3.5.179) (Oughtred et al., 2019). For each gene (or equiva-
lently, protein, as a gene product) in the network, we collected the
most specific (i.e. the annotations are not back-propagated to its
ancestors in the Gene Ontology tree) experimentally validated
Biological Process (BP) annotations present in the Gene Ontology
(Ashburner et al., 2000), from the NCBI’s database (downloaded on
October 8, 2019). Additionally, we downloaded human protein
complexes from CORUM (version 3.0) (Giurgiu et al., 2019).
Finally, we collected the set of all known cancer-driver genes, as
well as the set of 283 high confidence cancer-driver genes of 12
tumors (Tamborero et al., 2013) from IntOGen (Release date
November 12, 2019) (Gonzalez-Perez et al., 2013).

2.2 Representation of molecular networks

In this section, we present the representation of word relations by
the PPMI matrix in NLP and its adoption to node relations in a net-
work. Additionally, we present the GDV similarity matrix that cap-
tures the topological similarities of nodes in a network. Based on the
GDV similarity matrix, we define our new GDV PPMI matrix.

2.2.1 PPMI
In a lexical corpus (e.g. a passage or a document), the association be-
tween words is encoded by the PPMI matrix, whose rows and col-
umns represent words and the cells quantify if two words co-occur
more frequently than expected at random assuming they are
independent.

Formally, for two words, w and ¢, PPMI is defined as

PPMI(w,c) = max(O7 log (w,0) x|C ‘Cl>, (1)
wXc
where |C]| is the size of the corpus, (w, ¢) is the number of times the
two words co-occur in the corpus and w and ¢ are the numbers of
times the words w and ¢ occur in the corpus, respectively.

The Skip-Gram-based network embeddings that rely on random
walks, such as DeepWalk (Perozzi et al., 2014), LINE (Tang et al.,
2015a), PTE (Tang et al., 2015b) and node2vec (Grover and
Leskovec, 2016), are implicitly factorizing the random-walk-based
mutual information matrix, M (Qiu et al., 2018). This matrix is
equivalent to the PPMI matrix on networks, as its cells quantify how
frequently two nodes, i and j, of the network co-occur in a random
walk. Formally, each entry, M, is the logarithm of the average
probability that node i randomly walks to node j in a fixed number
of steps.

In our analysis, we implement the DeepWalk closed formula to
compute the PPMI matrix of molecular networks because it is sim-
pler and computationally more efficient. Additionally, we use it to
compare our NMTF-based decompositions directly with NetMF
method (Qiu et al., 2018) in which DeepWalk closed formula is
decomposed with SVD. The closed formula is defined as

log (vol(G) (%i (D]A)’> D1> —logb, (2)
r=1

where vol(G) =37, 5 Ajj, A is the adjacency matrix of the net-
work, D is the diagonal matrix of degrees of the given network,
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T=10 is the length of the random walks and b is the negative sam-
pling in Skip-Gram.

2.2.2 GDV similarity
The most sensitive measures to capture topological similarities in
networks are based on graphlets (Yaveroglu et al., 2014). Graphlets
have extensively been used for measuring the topological similarities
between nodes in biological networks (Milenkovi¢ and Przulj,
2008), as well as the building blocks for network alignments
(GRAAL family, e.g. Malod-Dognin and Przulj, 2015). They are
defined as connected, nonisomorphic, induced subgraphs of large
networks (Przulj et al., 2004). Different topological positions within
graphlets are characterized by different symmetry groups of nodes,
called automorphism orbits (Przulj, 2007). Orbits are used to gener-
alize the notion of node degree: the graphlet degrees of a node are
the numbers of times a node is found at each orbit position.
Yaveroglu et al. (2014) showed that between the orbits, there exist
redundancies, as well as dependencies, and proposed a set of 11 non-
redundant orbits of 2- to 4-node graphlets (see Supplementary Fig.
S1). Thus, each node in the network has its 11-dimensional vector
called GDV, that captures the 11 nonredundant graphlet degrees of
the node.

To quantify the topological similarity between two nodes, # and
v, we compare their GDV vectors using the GDV distance which is
computed as follows. Given the GDV vectors, x and y, the distance
between their ith coordinate is defined as

log(x; +1) —log(y; + 1)

log(max{x;,yi} +2) ’ (3)

Disti(x,y) = w; x

where w; is the weight of orbit 7 that accounts for dependencies be-
tween the orbits [see details in Milenkovi¢ and Przulj (2008)]. The
log-scale is used to control the different orders of magnitude be-
tween orbit counts.

Then, GDV distance is defined as

11 .
GDV Dist(u,v) = 2i=1 Disti(x,)

23:11 Wi

GDVDist values range from 0 to 1. When two nodes have identi-
cal GDVs, their distance is equal to 0. To transform distance to simi-
larity, we apply a linear transformation: 1 — GDVDist(u,v). The
pairwise GDV similarities of all nodes in a network are represented
in the GDV similarity matrix.

(4)

2.2.3 GDV PPMI

Structural similarities between nodes (proteins) in a PPI network, as
quantified by graphlet-based measures, have been shown to be
related to their biological functions (Davis ez al., 2015). For in-
stance, Milenkovi¢ and Przulj (2008) used the GDV similarity ma-
trix to classify proteins into complexes based on their GDV vector
similarities. We apply the same methodology to compute the GDV
similarities of cancer-driver genes (collected from IntOGen) and we
observe that they are statistically significantly different from the
other ones (see Section 3.3). This motivates us to introduce the GDV
PPMI-based embeddings, which preserve the structural similarities
of nodes. In particular, we apply the PPMI closed formula (see equa-
tion 2) to the GDV similarity matrix and we obtain the GDV PPMI
matrix. We generate embeddings by decomposing the GDV PPMI
matrix with the NMTF framework, or with the SVD.

2.3 Matrix factorization techniques

In this section, we present the matrix factorization techniques that
we use to decompose three different representations of molecular
networks: adjacency matrix, PPMI matrix and GDV PPMI matrix.
First, we present the SVD-based decomposition, which is used to
generate network embeddings by explicitly factorizing the random-
walk-based PPMI matrix of a network, and then our NMTF-based
decomposition.

2.3.1SVD

SVD is a matrix factorization technique from linear algebra that fac-
torizes matrix, M, into the product of three matrices as: M =
UZVT, where U and V are orthonormal and X is a diagonal matrix
with nonnegative real numbers in the diagonal. The diagonal entries
of X are known as the singular values of M and are in descending
order. Note that U and V can have negative entries, which is the
main difference between the SVD and the NMTF framework.

Let X be the diagonal matrix formed by the top d singular val-
ues. Then matrix UyX,; represents the vector embeddings in d-di-
mensional space. Levy and Goldberg (2014) empirically proved that
a symmetric variant of the SVD-based embedding space, Uyv/Zy, is
better for word similarity tasks and achieves solutions that are at
least as good as the SGNS’s solutions. Subsequently, Qiu et al.
(2018) used this variation to generate the embedding space from the
factorization of the DeepWalk closed formula. Following these
observations, we use this variation to generate the SVD-based
embeddings and we compare the performance (results) of our
NMTEF-based embeddings with them in similarity tasks.

2.3.2 Orthonormal NMTF

Given an input matrix, X, our orthonormal NMTF (ONMTEF)
framework decomposes it into three nonnegative matrix factors, G,
S and PT, as X ~ GSPT, where G contains the vector representa-
tions of the entities of X in the embedding space, S is a compressed
representation of network X and PT is the orthonormal basis of the
embedding space. Importantly, the orthonormality constraint
(PTP =1I) leads to independent, nonambiguous directions in the
embedding space.

The decomposition is done by solving the following ONMTEF:

ming sps0|X — GSPT|2, PTP =1 (5)

,where F denotes the Frobenius Norm.

This optimization problem is NP-hard, thus to solve it we use a
fixed point method that starts from an initial solution and iteratively
uses the multiplicative update rules (Ding et al., 2006), derived from
the Karush-Kuhn-Tucker conditions, to converge toward a locally
optimal solution (see Supplementary, NMTF multiplicative update
rules).

2.4 Vector operations in the embedding space

Gu et al. (2017) showed that the embedding spaces generated by
random-walk-based embedding algorithms are metric spaces with
inner product; these spaces are generalizations of Euclidean spaces
(in which the inner product is the dot product) to vector spaces of
any (possibly infinite) dimension. Hence, in the embedding space we
can compare two genes (proteins) by computing the cosine similarity
of their vector representations.

Recall that in NLP, the embedding of a sentence can be defined
as the average of the embedding vectors of its constituent words (Le
and Mikolov, 2014). Equivalently, we propose that the embedding
of a protein complex, or of a biological pathway, can be defined by
the proteins that participate in it. Thus, we define the vector repre-
sentation of a molecular machine, X (e.g. a protein complex), in the
embedding space, as the average of the vector representations of its
constituent genes

szexii

X= len(X) ’

(6)
where x; is the vector representation of each constituent gene in the

embedding space, and len(X) is the number of proteins in the consti-
tuting molecular machine, X.

2.5 Predictions based on vector linear operations

We demonstrate, based on the enrichment analysis (see Section 3.1),
that the proximity of genes in the embedding space of the human
PPI network, for all methods, is characterized by similarity in their
function. However, since all the tested embedding methods are
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heuristics (i.e. the problems we are addressing here are mathematic-
ally provably impossible to solve exactly on large datasets, so our
only way of solving them is by using approximate methods, called
heuristics), they are bound to achieve varying performances depend-
ing on the task. Thus, we do not use the enrichment analysis result
as a preprocessing step to prioritize, or select methods for the rest of
our experiments. We exploit the functional organization of the
embedded data points to assign proteins to complexes and to iden-
tify cancer-related genes by doing vector operations in the embed-
ding space.

To assess the quality of the predictions for the protein complexes
(collected from CORUM), we keep the complexes with minimum
size of 4 to avoid having protein complexes with two elements after
the creation of the training/test set. We create the test set (consisting
of about 20% of the proteins) by randomly selecting one protein
from each complex. The rest of the proteins from the complexes are
used as the training set to generate the embedding of each protein
complex as the average of the vector representations of its constitu-
ent proteins (see Section 2.4). Then, we compute the cosine similar-
ity between the vectors corresponding to the proteins of the test set
and the vectors corresponding to the complexes (obtained from the
training set as described above) and we assign the proteins to the
complex with the maximum cosine similarity.

For the cancer-driver genes, we separate the proteins of the PPI
network into cancer drivers (283 high confidence cancer drivers)
(Tamborero et al., 2013) and the background genes (those that have
no evidence in the dataset of being drivers). To assess whether our
method identifies correctly cancer-driver genes, we perform 5-fold
cross-validation. We split the cancer-driver genes in training/test sets
and we use the training set to generate the average embedding of the
cancer-driver genes. Then we identify the genes as cancer-drivers, if
their cosine distance from the embedding of cancer-driver genes is
smaller than their cosine distance from the embedding of back-
ground genes.

To predict novel cancer-related genes, we use all the known
driver genes to generate the embedding of the cancer-driver genes as
described in Section 2.4 and we rank the background genes in the
ascending order based on their cosine distance from the average
embedding of cancer drivers. The one with the smallest cosine dis-
tance (the highest cosine similarity) is the most likely to be cancer
related.

To systematically evaluate the predictive performance of our ap-
proach, we repeat the train/test process, for the protein complexes
and the cancer-driver genes, 20 times and we compute the average
percentage of correct predictions (accuracy). As a baseline for com-
parison with our function assignment strategy (membership in a pro-
tein complex, or being cancer-related) we use the SVM, a state-of-
the-art binary classifier for vectorial data that has recently been used
to predict cancer-related genes (Gumpinger et al., 2020), or protein
function, which is a multiclass classification problem in the embed-
ding space (Cho et al., 2016; Gligorijevi¢ et al., 2018). Similar to
these approaches, in the case of the protein complexes, a multiclass
classification problem, we are using the One-versus-One heuristic
method to apply the SVM. Namely, for each class (protein complex)
from the training set, an SVM classifier is trained (we used the
standard Radial Basis Function kernel), and for each protein, a
probability of belonging to each class (protein complex) is com-
puted. Then, each protein is assigned to the class (protein complex)
with the highest corresponding probability.

3 Results

In this section, we compare the NMTF-based embeddings obtained
from factorizing the PPMI matrix (NMTF PPMI), the adjacency ma-
trix (NMTF Adj) and the GDV PPMI matrix (NMTF GDV PPMI)
with the SVD embeddings. Testing the behavior of the nonlinear
dimensionality reduction techniques (e.g. PCA, IsoMap, MCE, etc.)
in higher dimensions remains an open question for a future study.
The number of dimensions, d, is the key parameter for the embed-
dings. In NLP, it is thought to be in the range between 100 and 300
(Pennington et al., 2014). In this paper, we use d in range 50-400

with step size of 50, to demonstrate that regardless of the dimension,
the embedding space of the human PPI network is functionally
organized. As an initial dimension, we select 50, which is already far
below the number of about 100 that we obtained by the rule of
thumb (d = /%, where # is the number of nodes in the network).
Importantly, too few dimensions may lead to a severe loss of infor-
mation, since in that case a highly-dimensional object would be
compressed in too few dimensions that may not capture its main fea-
tures (e.g. a three-dimensional cone projected in two-dimensional
space could be a disk, or a triangle, or another kind of a two-dimen-
sional object). Finally, our results indicate that the method works
better at a high number of dimensions, as expected (250-300 dimen-
sions, see Fig. 1).

3.1 Enrichment analysis in the embedding space

We investigate if genes with similar functions are located close in the
embedding space. We do this by clustering genes in the embedding
space generated by the decompositions of three matrices representa-
tions (adjacency matrix, PPMI matrix and GDV PPMI matrix) of
the PPI network and by computing the enrichment of these clusters
in Gene Ontology Biological Process (GO BP) term annotations (see
Supplementary, Enrichment Analysis).

For the human PPI network, the NMTF PPMI decomposition
substantially outperforms the NMTF Adj decomposition and the
NMTF GDV PPMI decomposition in both the percentage of the
enriched clusters and the percentage of the enriched genes in the
clusters, as presented in Figure 1A and B, respectively. The NMTF
and SVD PPMI decompositions produce percentages of enriched
clusters and enriched genes in the clusters that are consistently above
90% and 45%, respectively. This demonstrates that the embedding
of the PPMI matrix can capture more biological information than
the embedding of the GDV PPMI or the adjacency matrix represen-
tation of the human PPI network. This result can be attributed to
the fact that PPMI matrix decompositions group close in the embed-
ding space nodes from the same neighborhood of the network and
neighborhood membership information has been widely used to pre-
dict protein function (Vazquez et al., 2003). On the other hand,
GDV PPMI decompositions locate close in the embedding space
nodes with similar wiring patterns (topological roles) in the net-
works. Interestingly, the percentages of the enriched genes and clus-
ters in the embedding spaces generated by the NMTF-based
decomposition of the adjacency and the GDV PPMI matrices are
similar, but they capture different biological information in terms of
enriched GO BP terms (on average 0.45 Overlap Coefficient, see
Supplementary Table S1). This verify that topological similarity is
complementary to network neighborhoods in uncovering functional
information [first noticed by Milenkovi¢ and Przulj (2008)].

To further demonstrate the importance of the PPMI matrix rep-
resentation of the human PPI network, we compare the percentage
of the enriched genes and clusters in the embedding spaces generated
by the NMTF-based decompositions of the GDV PPMI matrix and
the GDV similarity matrix (NMTF GDV). As presented in
Supplementary Figures S1 and S2, the NMTF GDV PPMI decompo-
sitions consistently outperform the NMTF GDV decompositions in
both the percentage of the enriched genes and clusters, at least by
15%. Thus, in the rest of the analysis, we present only the results of
the GDV PPMI matrix decompositions with the SVD and with the
NMTF-based framework.

Comparing the NMTF PPMI with the SVD PPMI embedding,
we observe that the percentages of the enriched clusters and genes
are similar for the two methods and are high (above 90% and 45%
for enriched clusters and genes, respectively). However, across the
embedding dimensions they capture different biological information
in terms of enriched GO BP terms; on average they share 3000
enriched GO BP terms and each of them has 1000 unique enriched
GO BP terms (see Supplementary Table S2). This demonstrates that
different geometries, as SVD allows for negative values and NMTF
does not, lead to different functional organization of the embedding
space. Finally, when we decompose the GDV PPMI matrix with our
NMTF-based approach, we observe much higher percentages of
enriched genes and clusters compared to the SVD-based GDV PPMI
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Fig. 1. Functional coherence of the embedding spaces. For each dimension (x axis), the percentage of clusters (y axis, panel A) with at least one GO BP function enriched and
the percentage of enriched genes (y axis, panel B) in the clusters that are obtained in the embedding space generated by each of the NMTF PPMI decomposition (blue), SVD
PPMI decomposition (red), NMTF Adj decomposition (purple), SVD GDV PPMI decomposition (green) and NMTF GDV PPMI decomposition (cyan)

decomposition. This confirms the utility of our NMTF-based frame-
work to uncover the functional information encoded in the topology
of the PPI network data better than the competing methods.

To demonstrate that our methodology uncovers the functional
relationships between the genes based on their wiring patterns in
biological networks, we repeat 15 times the aforementioned enrich-
ment analysis in perturbed networks: we randomly shuffle the nodes
in the adjacency matrix, in the PPMI matrix and the GDV PPMI ma-
trix. As illustrated in Supplementary Figure S6, the average percent-
age of clusters (panel A) with at least one GO BP function enriched
and the average percentage of enriched genes (panel B) in the clus-
ters in the perturbed networks are much lower than in the data net-
works. Thus, the observed functional organization in the embedding
space cannot be observed in the perturbed networks.

In addition, the embeddings obtained by the NMTF-based
decompositions of the PPMI matrix, as well as of the GDV PPMI
matrix of the human PPI network, compared to the SVD-based
decompositions, uncover more enriched clusters and more enriched
genes in the obtained clusters. Also, the number and types of
enriched GO-terms obtained by the two methods are different.
Namely, more functional information and of a different kind (in GO
BP terns) is obtained by our NMTF-based embeddings. Finally,
NMTF also allows for designing advanced data fusion frameworks
(e.g. see Gligorijevi¢ et al., 2016; Malod-Dognin et al., 2019) that
cannot be designed by SVD. Utilizing such data fusions to introduce
fused embedding spaces of molecular omics data is a subject of fu-
ture work.

3.2 Protein complex membership predictions

In the previous section, we demonstrate that proximity in the
embedding space means similarity in biological function. Based on
that, we investigate whether we can make predictions in the embed-
ding space for protein complex membership by using the cosine
similarity of the embedding vectors of genes (see Section 2.5). As a
baseline for comparison with our prediction strategy we use the
SVM classifier to assign proteins to complexes.

Protein complexes are functional modules of proteins that phys-
ically interact and are represented by locally dense neighborhoods
(subgraphs) in the PPI network. Thus, as presented in Figure 2A, the
decompositions of the neighborhood-based representations of the
human PPI network (adjacency and PPMI matrix) are resulting in
higher prediction accuracies. In particular, the PPMI matrix decom-
positions, either with the SVD, or with the NMTF framework, lead
to the highest prediction accuracies, varying from 70% to 78 % and
from 60% to 75%, respectively. Importantly, for all methods, our
prediction strategy, that is based on proximity in the embedding
space, is performing slightly better than the SVM on predicting

protein complex membership. This demonstrates that we can extract
directly and precisely the functional knowledge from the embedding
space with simple vector operations.

On the other hand, GDV PPMI decompositions are performing
poorly on this task. Since protein complexes are dense regions of PPI
networks, we hypothesize that these decompositions identify pro-
teins that participate in complexes, but without determining the
exact complex to which they belong. We verify this by transforming
the problem into a binary classification task in which we assess the
capability of the methods to separate proteins that participate in
complexes from those that do not. In this setting, the GDV PPMI
matrix decompositions outperform the other methods: the NMTF
decomposition of the GDV PPMI matrix has the highest prediction
accuracy (based on our prediction strategy) that varies between
92% and 98% across the embedding dimensions (see
Supplementary Fig. S3). The decompositions of the other matrices
lead to predictors with at most 79% accuracy.

To conclude, if the task is to identify proteins that participate in
complexes, the decomposition of the GDV PPMI matrix with the
NMTF framework outperforms all other methods. However, when
we aim to identify the specific complex in which a protein partici-
pates, the PPMI matrix decompositions are resulting in higher pre-
diction accuracies. To sum up, our simple function prediction
strategy, based on proximity in the embedding space, is performing
better than the SVM classifier with few exceptions when we formu-
late the protein complex membership prediction as a binary classifi-
cation task (see Supplementary Fig. $4).

3.3 Cancer gene predictions

To exploit further the uncovered spatial closeness of functionally
similar genes in the embedding space (see Section 3.1), we apply a
proximity-based functional prediction strategy, measured by the co-
sine distance between the vector representations of genes, to identify
new cancer genes (see Section 2.5). We assess the prediction accur-
acy of our method by comparing it with the accuracy of the SVM
classifier.

As illustrated in Figure 2B, the GDV PPMI decompositions out-
perform the other methods. Namely, the NMTF-based decompos-
ition of the GDV PPMI matrix, with the proximity-based prediction
strategy, has the highest prediction accuracy that varies between
89% and 95% across the embedding dimensions. It is followed by
the proximity-based prediction strategy applied in the SVD GDV
PPMI space, with prediction accuracy that is between 87% and
89%. For the rest of the matrices, the best results are obtained when
we apply the proximity-based prediction strategy in the embedding
space generated by either the SVD, or the NMTF decomposition of
the PPMI matrix with prediction accuracy of at most 70% (above
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Fig. 2. Evaluation of predictions in the embedding space based on linear operations. For each dimension (x axis), the accuracy (y axis) of the predictions that are obtained in
the embedding space generated by the SVD PPMI decomposition (red), the NMTF PPMI decomposition (blue), the NMTF Adj decomposition (purple), the SVD GDV PPMI
decomposition (green) and the NMTF GDV PPMI decomposition (cyan). The lines show the accuracy of the cosine assignment strategy and the dashed lines the accuracy of
the SVM predictions. (A) The accuracy of protein complex membership predictions. (B) The accuracy of cancer-driver genes predictions

200 dimensions). Thus, the GDV PPMI decompositions with the
proximity-based function prediction strategy result in higher predic-
tion accuracies by at least 15% than the competitive methods.

To further investigate the reasons for graphlet-based methods
outperforming others for identifying cancer-related genes, while dir-
ect neighborhood-based methods working better for uncovering pre-
cise protein complex membership, we compute the GDVs of the
genes (feature vectors that capture the local wiring patterns around
nodes in a network according to their participation in orbits of
graphlets, for more details see Sections 2 and 2.2.2), the building
blocks of the GDV PPMI matrix. As illustrated in Supplementary
Figure S5, the average GDV counts for each of the 15 orbits are in
log-scale, GDVs distinguish the cancer-driver genes (all known driv-
ers from IntOGen) from the background genes. Note that when we
compare the GDVs of different gene sets what is important is not
the difference in the shape of the curves in Supplementary Figure S5
(which are in log-scale), but in the magnitude of each orbit count.
We further verify this difference by computing the Mann-Whitney
U test (with significance level of 0.01) for each pair of orbits and for
all of these the differences are statistically significant (P-values ~0,
see Supplementary Table S3).

Thus, graphlet-based methods work better than competitive
methods for identifying cancer-related genes. This is because in can-
cer, the PPI network is rewired in a very intricate way that only
graphlets, as the most precise measures of network wiring patterns,
can detect. On the other hand, direct neighborhood-based methods
work better for protein complex memberships prediction, possibly
because of the human biases present in the PPI network data: protein
complexes are represented by using spoke, or matrix models (Hakes
et al., 2007) and hence are just densely connected regions of PPI
networks.

3.4 Novel cancer gene predictions
As presented above, our proximity-based cancer gene predictions,
measured by the cosine distance between the vectors corresponding
to genes in the NMTF GDV PPMI embedding space, outperform the
other methods with accuracy ~95% for d=200 and d=300 (see
Fig. 2B). To further demonstrate the utility of our approach, we pre-
dict novel cancer-related genes and we validate them in the litera-
ture. We select d=200 as the optimal dimension to make novel
predictions, because in this dimension we have a higher percentage
of enriched genes than for d =300 (see Fig. 1B).

For this dimension, we compute the average embedding of the
cancer-driver genes (see Section 2.5) and we rank the genes that are

currently not known to be drivers, in the ascending order based on
their cosine distance from the average embedding of cancer drivers.
The one with the smallest cosine distance (the highest cosine similar-
ity) is the most likely to be cancer related. The top 15 of our pre-
dicted cancer-related genes are presented in Table 1. For 12 of our
top 15 predictions (80%) there exist a relevant publication for their
potential role in cancer (Table 1, ‘literature evidence’ column).
Interestingly, DHX37, which is not verified in the literature, has re-
cently been characterized as a potential target of immunotherapy in
mice (Alfei et al., 2019). To further assess the relevance of our pre-
dictions, we use the patient survival curves (collected from The
Cancer Genome Atlas project). We find that 14 of our 15 predicted
genes (93.3%) have significant association with patient survival and
thus potential clinical relevance as biomarkers of cancer (Table 1,
the last column). To verify that this high number of predicted genes
(14 out of 15) has associations with patient survival curves, we ran-
domly sample 15 genes 1000 times. Our predictions are statistically
significant with P-value=0.001, since only one of these 1000
randomized experiments achieved an equal or higher number of
genes associated with survival curves. We conclude that our pre-
dicted genes may be related to cancer, potentially being biomarkers.

The high-validation rates that we obtained further demonstrate
the suitability of the GDV PPMI decomposition to capture function-
al information and predict disease-related genes and biomarkers.
Biological validations and explanations of the underlying functional
mechanisms are subjects of future research.

4 Conclusion

We introduce the GDV PPMI matrix and the PPMI matrix represen-
tation of the human PPI network. We demonstrate that the embed-
dings obtained by decompositions of the PPMI matrix of the human
PPI network capture more functional information, in terms of
enriched genes and clusters, compared to embeddings obtained by
adjacency matrix decompositions. Importantly, we show that the
embeddings of the human PPI network obtained by the decomposi-
tions of the PPMI and the GDV PPMI matrices locate close in the
embedding space the genes that have similar biological functions.
These spaces are functionally organized and hence we can extract
new functional knowledge directly by comparing the vector repre-
sentations of genes and doing linear operations on these vectors.

By exploiting this property, we assign proteins to complexes and
we identify cancer genes based on the cosine similarities between the
vector representations of the constituent genes. For the first task, we
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Table 1. The top 15 of our cancer-related gene predictions (column genes), based on their cosine closeness (column cos distance) from the

average embedding vector of cancer-driver genes

Genes Cos distance Literature evidence Survival curves (P-value)
1 FAM110B 0.1427 dbSNP Pancreatic cancer (0.00014)
2 PLEKHA7 0.1447 doi: 10.1186/s13046-018-0796-1 Renal cancer (1.9e—15)
3 FGB 0.1447 PMID: 11460495 Renal cancer (0.000057)
4 UTP20 0.1457 COSMIC DB Renal cancer (0.00089)
5 ZDHHC17 0.1461 PMID: 30232163 Renal cancer (0.000071)
6 PEX19 0.1462 Renal cancer (0.000029)
7 PTBP3 0.1465 doi: 10.1186/s13046-019-1312-y Renal cancer (0.00025)
8 LGALSS 0.1470 PMID: 14758080 Lung cancer (0.00094)
9 PRMT6 0.1477 PMID: 29262320 Endometrial cancer (0.00031)
10 MED18 0.1478 Cancer Cell Metabolism Gene DB Endometrial cancer (0.00039)
11 VIPR2 0.1479 PMID: 21769421 —
12 VAC14 0.1486 Cervical cancer (0.000083)
13 DHX37 0.1488 Liver cancer (9.5e—10)
14 MED25 0.1489 doi: 10.1007/s12253-016-0092-3 Head and neck cancer (0.00099)
15 TUFT1 0.1491 PMID: 29088838 Endometrial cancer (0.00048)

Note: Genes in bold either have literature support for their role in cancer (column literature evidence) or show statistically significantly different patient survival

curves [column survival curves (P-value)].

show that the decompositions of the PPMI matrix have the highest
prediction accuracy among all tested methods. For the cancer gene
predictions, the decompositions of our newly defined GDV PPMI
matrix lead to the highest prediction accuracies (at least 89%).
Finally, we further demonstrate the importance of the GDV PPMI
embeddings by predicting 15 novel cancer-related genes, validating
80% of our predictions in the literature and 93.3% having associ-
ation with patient survival and hence potentially a clinical relevance
as biomarkers of cancer.

In our analysis, we show the importance of molecular network
embeddings that preserve either the structural, or the homophily
similarities of genes. A key question for future research is how to
benefit from both types of similarities simultaneously, which may re-
veal new functional knowledge. Finally, the proposed methodology
can be generalized and applied to any discipline that uses network
representations, including physics, social sciences and economy.
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