Original research

Genetic complexity of diagnostically unresolved Ehlers-Danlos syndrome

Anthony M Vandersteen, ${ }^{1,2,3}$ Ruwan A Weerakkody © , , ${ }^{3,4,5}$ David A Parry, ${ }^{3}$ Christina Kanonidou, ${ }^{6}$ Daniel J Toddie-Moore, ${ }^{3}$ Jana Vandrovcova, ${ }^{7}$ Rebecca Darlay, ${ }^{8}$ Javier Santoyo-Lopez © , ${ }^{9}$ Alison Meynert, ${ }^{10}$ NIHR BioResource, ${ }^{11}$ Hanadi Kazkaz, ${ }^{12}$ Rodney Grahame ${ }^{12}$ Carole Cummings, ${ }^{13,14}$ Marion Bartlett, ${ }^{13,14}$ Neeti Ghali © , ${ }^{13,14}$ Angela F Brady, ${ }^{1,14}$ F Michael Pope, ${ }^{13,14}$ Fleur S van Dijk, ${ }^{13,14}$ Heather J Cordell, ${ }^{8}$ Timothy J Aitman \oplus^{3}

- Additional supplemental material is published online only. To view, please visit the journal online (http://dx. doi.org/10.1136/jmg-2023109329).

For numbered affiliations see end of article.

Correspondence to

Professor Timothy J Aitman, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK; tim.aitman@ed.ac.uk Dr Anthony M Vandersteen; anthony.vandersteen@dal.ca

Received 10 April 2023
Accepted 18 September 2023
Published Online First 9 October 2023

© Author(s) (or their

 employer(s)) 2024. Re-use permitted under CC BY. Published by BMJ.To cite: Vandersteen AM, Weerakkody RA, Parry DA, et al. J Med Genet 2024;61:232-238.

Abstract

Background The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. Methods Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency $($ MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. Results Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. Conclusions We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways.

WHAT IS ALREADY KNOWN ON THIS TOPIC

\Rightarrow The genetic basis for hypermobile Ehlers-Danlos syndrome (EDS) remains unknown.

WHAT THIS STUDY ADDS

\Rightarrow We report the results of whole exome sequencing for 174 patients with complex, genetically undiagnosed EDS.
\Rightarrow Using rare variant and genetic burden analysis, we identified new clinical diagnoses, variants of uncertain significance close to likely pathogenic classification and multiple novel candidate loci.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

\Rightarrow The study demonstrates the diagnostic utility of whole exome sequencing in diagnostically unresolved, complex EDS and adds to present knowledge of the genetic architecture of the Ehlers-Danlos Syndromes.

INTRODUCTION

The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT) that share key clinical features of generalised joint hypermobility (GJH), skin hyperextensibility and tissue fragility. The 2017 EDS nosology classifies 13 subtypes including primary disorders of collagen structure, processing, folding and crosslinking, disorder of the myomatrix, glycosaminoglycan synthesis, complement pathway and other unknown intracellular processes. ${ }^{1}$ There are several other syndromes with EDS-like features including Loeys-Dietz syndrome (LDS), EhlersDanlos syndrome classic-like-2 (MIM 618000), lysyl hydroxylase 3 deficiency (PLOD3, MIM 612394) and inborn errors of metabolism such as homocystinuria. Newly identified genes that are associated with EDS-like syndromes but awaiting confirmation include ALDH18A1 and EFEMP1. ${ }^{23}$ Diagnostic genetic testing has high clinical utility when a rare EDS type is suspected, differentiating EDS subtypes with varying risks of vascular involvement and inheritance patterns from other EDS-like conditions.

The genetic basis for hypermobile EDS (hEDS) remains unknown, although heterozygous TNXB mutations have been reported in association with features of hEDS in female patients. ${ }^{4}$ GJH is a common population trait: 5% of 14 year olds had a Beighton score $>=6$ in the ALSPAC cohort. ${ }^{5}$ A genomewide association study (GWAS) using self-reported Beighton scores >5 identified 18 loci with p values between 8.7×10^{-7} and 1.1×10^{-12}. ${ }^{6}$ Here, we have used WES and genetic burden analysis to investigate the genetic basis of EDS in patients with diagnostically unresolved, complex EDS.

MATERIALS AND METHODS

Patient recruitment and ethics approval

One hundred seventy-four patients from the national EDS diagnostic service (LNWUH) and specialist EDS rheumatology clinic (UCLH) were recruited. Patients had complex or suspected monogenic EDS, with arterial aneurysm(s) in proband and/or family member(s) and complex and/or severe symptoms. Patients consented to exome sequencing under approved protocols for Mendelian Disease research (Ethics Protocol Reference 11/ LO/0883 (West London Research Ethics Committee)) and the NIHR BioResource project (Cambridgeshire 2 Research Ethics Committee Reference 04/Q0108/44). Patients were clinically categorised using the Villefranche criteria prior to skin biopsy and/or molecular testing. ${ }^{7}$ The cohort comprised classical EDS (cEDS) (4 male/ 16 female), vascular EDS (vEDS) (5 female), hEDS (22 male/ 87 female), kyphoscoliotic EDS (kEDS) (2 male), (online supplemental tables 1-4). Patients not fulfilling the Villefranche criteria for a specific EDS subtype were categorised as HDCT (16 male/ 22 female; online supplemental table 5). At the time of recruitment, diagnostic gene sequencing for EDS-associated genes was available (LNWUH clinic); however, B3GALT6, B4GALT7, C1R, C1S, COL6A1, COL6A2, COL6A3, COL12A1, DSE, PRDM5, ZNF469 and LDS genes were not offered. Patients with confirmed molecular diagnoses of monogenic HTAD or EDS were excluded. Patients reported previously by our research group, who had undergone non-diagnostic panel gene sequencing for EDS and HTAD, were enrolled. ${ }^{8}$

DNA sequencing

DNA extraction was carried out as reported previously. ${ }^{8}$ WES was performed in the Edinburgh Genomics and Cambridge sequencing laboratories.

Variant analysis

WES data were filtered for variants with population frequency $<0.1 \%$ (rare variants) and Combined Annotation Dependent Depletion (CADD) score >15 for further analysis using Varsome and Franklin, and were classified using the ACMG criteria and the Association for Clinical Genomic Science (ACGS) Best Practice Guidelines. ${ }^{9}{ }^{10}$ WES data were also analysed with the exomiser tool using HPO terms in the 2017 EDS nosology. ${ }^{1}$

Genetic burden analysis

WES data (~ 100-fold coverage) were analysed from 128 unrelated EDS cases of Caucasian ancestry together with wholegenome sequence data (2 -fold to 20 -fold coverage) from 248 ALSPAC controls ${ }^{11}$ sequenced as part of the UK10K study. ${ }^{12}$ The software package TASER ${ }^{13}$ was used for burden analysis. This recalls variants in both cases and controls and constructs a test statistic while allowing for systematic differences in read depth (online supplemental method). WES data from 46 individuals of non-Caucasian or unknown ethnicity were excluded from this analysis.

RESULTS

Variants in known EDS, HTAD, GJH associated syndromes and known Mendelian entities with EDS symptomatology were correlated with phenotypic data for each patient. We identified a small number of clearly pathogenic (P) and likely pathogenic (LP) variants.

New diagnoses of EDS and HTAD

We identified 10 diagnostic P or LP variants in genes that are known causes of EDS and HTAD (table 1, online supplemental table 6). Two novel heterozygous pathogenic COL12A1 variants

Table 1 Diagnostic variants meeting the American College of Medical Genetics (ACMG) criteria for pathogenic and likely pathogenic classification

Patient ID	Variant ID	Age (years)	Gender	Clinical diagnosis	Gene/NM	Protein	ACMG classification
33	1	40-49	F	HDCT	TGFB3 NM_003239.4 c. $463 \mathrm{C}>\mathrm{T}$	p.Arg155Trp	LP
34	2	30-39	F	HDCT	COL5A1 NM_000093.4 c.4068G>A	Splice	LP
402	4	30-39	M	hEDS	COL12A1 NM_004370.6 c.5097+1G>A	Splice	LP
479	8	20-29	F	HDCT	$\begin{aligned} & \text { SMAD2 } \\ & \text { NM_001003652.3 } \\ & \text { c. } 842 \text { A }>\text { T } \end{aligned}$	p.Glu281 Val	LP
564	9	20-29	M	HDCT	TGFB2 NM_001135599.3 c. $989 \mathrm{G}>\mathrm{A}$	p.Arg330His	P
755	10	40-49	F	hEDS	$\begin{aligned} & \text { COL12A1 NM_004370.6 } \\ & \text { c. } 8321 G>A \end{aligned}$	p.Gly2774Glu	P
814	14	30-39	F	HDCT	$\begin{aligned} & \text { TGFBR2 NM_001024847.2 } \\ & \text { c.1613T>C } \end{aligned}$	p.Val538Ala	LP
1420	17	0-9	M	HDCT	ALPL NM_000478.6 c. $394 \mathrm{G}>\mathrm{A}$	p.Ala132Thr	P
1484	18	50-59	F	hEDS	$\begin{aligned} & \text { COMP } \\ & \text { NM_000095.3 } \\ & \text { c. } 2048 G>T \end{aligned}$	p.Arg683Leu	LP
1528	19	30-39	M	cEDS	$\begin{aligned} & \text { COL5A1 NM_001278074.1 } \\ & \text { c. } 3397 C>T \end{aligned}$	p.Arg1133Ter	P

[^0]were considered diagnostic. Splice site variant 4 was identified in patient 402 (bilateral congenital hip dislocation): the variant was found in one other individual in gnomAD and had high in silico prediction of pathogenicity (ADA score 0.999). COL12A1 variant 10 resulted in a helical glycine substitution in patient 755 with multiple features suggestive for myopathic EDS (mEDS), including neonatal hypotonia and kyphoscoliosis.

Variant 19 resulted in loss of function in COL5A1 in patient 1528, who had previously declined clinical diagnostic testing (ClinVar ID 280931). Patient 34 with hyperextensible skin, distal joint hypermobility and a carotid artery dissection had an overlapping HDCT/cEDS phenotype and carried the synonymous variant 2 in COL5A1. We had previously classified this as a variant of uncertain significance (VUS). ${ }^{8}{ }^{14}$ The variant impacts the last nucleotide of exon 51 , with high in silico pathogenicity, and we now consider this likely pathogenic (ClinVar ID 212971). This patient also carried a pathogenic variant in ITGB3 (variant 3) (autosomal recessive Lanzmann thrombasthenia MIM 173470), a gene that has been found to be abnormally expressed in skin fibroblasts from patients with hEDS, ${ }^{15}$ and a novel variant in candidate gene PGTER4 (see below).

HDCT patient 814 carried novel LP TGFBR2 variant 14 in the Ser/Thr kinase domain, without known vascular involvement. A recent report of this variant and accompanying functional data support LP classification. ${ }^{16}$ HDCT patient 564 , with pectus carinatum and aortic root dilatation, carried a TGFB2 pathogenic variant 9 (CADD=34). A different variant at the same nucleotide was reported as LP in association with syndromic aortic aneurysm (ClinVar ID 440982). Two patients (patient 33 and patient 479) had complex HDCT phenotypes and LP variants in TGFB3 (variant 1) and SMAD2 (variant 8). hEDS patient 1484 had LP variant 18 in COMP (multiple epiphysial dysplasia type 1, MIM 600310). HDCT patient 1420 had LP variant 17 in ALPL causative for hypophosphatasia (MIM 171760).

VUS in EDS, LDS, HTAD and other syndromic genes with potential for pathogenicity reclassification

Thirty variants met the ACGS criteria where further segregation/functional work may enable reclassification as pathogenic or LP (online supplemental table 7). ${ }^{17}$ Two patients with a clear cEDS phenotype harboured variants in COL5A1 exon/intron 64, which encodes two transcripts in the C-propeptide domain, with alternate splicing in different tissue. ${ }^{18}$ Patient 583 with COL5A1 LoF variant 29 had cEDS major features: skin hyperextensibility, widened atrophic scars, generalised and small joint hypermobility with additional features of hEDS. cEDS patient 806 has a novel variant 35 at position +6 of intron 64 . While a single multi-exon deletion including exon 64 (exons 63i-65i) has been reported as pathogenic, other exon 64 variants remain VUS (https://databases.lovd.nl/shared/genes/COL5A1).
cEDS patient 595 with missense TGFB3 variant 31 (CADD $=25$) had Mitral Valve Prolapse (MVP) and a high arched palate. hEDS patient 107, with a second-degree relative with an aneurysm, carried an ULK4 splice variant 23. Loss of Function (LoF) variants in ULK4 have been reported to increase the risk of aortic thoracic dissection in a single small study. ${ }^{19}$ In syndromes with EDS-like features, patient 1530 (female) had splice variant 45, a VUS* in the UPF3B gene, Lujan syndrome (MIM 309520, intellectual development disorder X linked, associated with Marfanoid habitus). ${ }^{20}$ hEDS patient 107 carried variant 22, a VUS* in KCNH1 (MIM 135500, ZimmermanLaband syndrome), which may have cartilage abnormalities and gingival hyperplasia as associated features. hEDS patient 967
carried variant 36, a VUS* in FLCN1 (MIM 607273, Birt-HoggDube syndrome), associated with recurrent pneumothoraces and an increased risk of renal carcinoma.

We identified variants in genes associated with a skeletal dysplasia phenotype. cEDS patient 1451 had COL9A3 variant 40, a glycine substitution in the triple helical domain (MIM 120270, AD multiple epiphysial dysplasia type 3 with and without proximal myopathy) and also carried two VUS in COL5A1 (online supplemental table 9). cEDS patient 1002 carried a novel cysteine substitution (variant 37) in MAP3K7 (cardiospondylocarpofacial syndrome, MIM 157800) within the protein kinase domain.

We interrogated our data for Mendelian causes of symptomatology associated with EDS. Erythromelalgia is a SCN9A channelopathy associated with abnormal pain sensation and small fibre neuropathy (MIM 133020). We identified a novel SCN9A variant 27, at a transmembrane domain mutation hotspot, in patient 482 with a vEDS-like phenotype with thin skin and tissue fragility.

We identified patients with two or more rare/novel variants, for example, HDCT patient 72, with terminal digital and nail anomalies and a family history of HTAD had missense variant in WNT10A (variant 21, CADD $=30$, odontoonychodermal dysplasia/tooth agenesis MIM 606268)) and a VUS in ROBO4 (aortic valve disease 3 MIM 618496) (online supplemental table 10). Multiple patients in the cohort had complex symptoms, signs and/or family histories, suggesting possible enrichment for patients with more than one rare Mendelian disorder.

Variants of uncertain significance in genes associated with risk of ICA

We identified multiple variants in genes previously reported as associated with risk of intracranial aneurysm (ICA) (online supplemental tables 7; 8). hEDS patient 65 with a femoral artery aneurysm and family history of ICA carried ROBO4 VUS and a second VUS in the fibrinogen-like domain of ANGPTL6. Rare variants in this domain have been reported as associated with familial ICA risk. ${ }^{21}$ Variant 42 (VUS*) in PCNT was found in hEDS patient 1495 who was not known to have a personal or family history of ICA; this variant has been previously reported in familial ICA. ${ }^{22}$

Autosomal recessive disorders

A further eight heterozygous LP/P variants were identified in autosomal recessive EDS genes and other autosomal recessive genes overlapping with EDS symptomatology, ZNF469, LAMA2, ITGB3, ELP1, ADAM22, C1QC and PRSS56 (table 1, online supplemental tables 6; 7; 9-11). Seven heterozygous VUS* were identified in LAMA2, TNFSF11, TONSL, RYR3, SLC2A10 and CANT1. Multiple VUS in ZNF469, PRDM5, DSE, CHST14, ELP1, AEBP1, CCN6, RYR3, DYSF and LAMA2 (data not shown). HDCT patient 620 with an occipital horn syndrome phenotype, and consanguineous parents, was homozygous for a VUS in SDSL (NM_138432.3 c.626C > T, p.Ala209Val) (MIM 618752, severe congenital neutropenia type 8). Phenotypic review did not show haematological abnormalities: these variants were therefore considered unlikely to be causative.

VUS in EDS, HTAD, myopathy and inborn errors of metabolism genes

Additonal VUS were identified in genes associated with EDS, HTAD, myopathy and inborn errors of metabolism (online supplemental tables 7; 9-11). A VUS in BGN was identified in
hEDS patient 1393 (female) with increased arm span to height ratio and talipes, and aortic root dilatation; loss of function mutations in this gene have been reported to result in MeesterLoeys. ${ }^{23}$ A number of patients carried ultrarare variants in genes associated with non-syndromic HTAD (ROBO4, PRKG1, SMAD6, ULK4, MAT2A, SMAD2, MFAP5). HDCT patient 453 with carotid dissection had a 64 bp insertion predicted to result in out of frame/loss of function transcript in PRKG1 ($\mathrm{pLi}=1$). hEDS patient 1629 without known cardiovascular involvement had a novel SMAD6 VUS in the MH1 domain. hEDS patient 1443 had a family history of abdominal aortic aneurysm in maternal relatives and ICA in a paternal relative carried novel VUS in SMAD6. Patient 526 had MVP and a family history of multiple individuals with cardiac valvular disease, with novel VUS in IFIH (CADD=31), in the helicase domain (MIM 606951, Singleton-Merten syndrome, acroosteolysis and aortic valve calcification). ${ }^{24}$ HDCT patient 79 carried EMILIN1 VUS at amino acid residue 28 , close to residue 22 , thought to affect N terminal signal peptide cleavage. ${ }^{25}$ HDCT patient 422, with camptodactyly and Asperger's syndrome, carried a novel VUS, resulting in an in-frame deletion mutation in MED12.

We found a single VUS* variant 43, and multiple VUSs in EDS and Bethlem myopathy genes (online supplemental table 9), HTAD (online supplemental table 10), myopathy, inborn errors of metabolism and dysautonomia genes (online supplemental table 11), many of which are similarly classified in ClinVar. These patients did not have specific clinical features (eg, contractures for Bethlem myopathy, cauliflower ears for Beals syndrome or aggressive periodontal disease for pEDS) which might contribute to ACMG criteria PP4.

EDS gene candidates based on linkage and skin fibroblast gene expression studies
We reviewed our data for germline variants in loci previously reported in a linkage study of a large family with hEDS, which identified LZTS1 as a candidate gene (online supplemental tables $12-16) .{ }^{26} \mathrm{~A}$ single patient with hEDS in our cohort (patient 703) had a LZST1 missense variant, with limited in silico evidence of pathogenicity $(\mathrm{CADD}=23)$. We also identified multiple rare variants (CADD >15) in genes within the reported region of linkage (online supplemental table 12). These included SORBS3 (vinculin binding domain) reported to regulate extracellular matrix (ECM) stiffness in vitro, ${ }^{27}$ ADAM7, ADAM27 (variants in protease domains), multiple variants in the CCAR1 gene (a regulator of cell division) and DOCK5 (mouse model has reduced skeletal muscle, zebrafish has abnormal fast muscle. ${ }^{28}$ In addition, we identified multiple rare variants in genes previously reported in a linkage study of Pelvic Organ Prolapse, ${ }^{29}$ for example, LAMC1, ROBO2 (online supplemental table 13, online supplemental methods).

Gene expression data from skin fibroblasts for patients with hEDS, cEDS and vEDS have been published, suggesting candidacy for several dysregulated genes. ${ }^{153031}$ We identified multiple rare germline variants with CADD >15, in several of these genes (online supplemental methods and online supplemental tables 14-16). These included integrin signalling, innate immune system function, TRAIL and TRAIL receptor genes, reported to affect integrin signalling in the ECM, controlling vascular remodelling. ${ }^{32}$ We identified multiple rare heterozygous variants in HSPG2 (Perlecan) (online supplemental table 15). Homozygous variants in HSPG2 cause AR Schwartz-Jampel syndrome (MIM 142461) via disordered cartilage maintenance, osteonecrosis and endomysial dysfunction via a channelopathy mechanism.

A knock-in HSPG2 mouse model demonstrated disordered acetylcholinesterase endplate morphology with abnormal patch clamp and a fatigability phenotype. ${ }^{33}$ Two POSTN variants were found in FAS1 domains (online supplemental table 16): periostin is reported as contributing to tissue repair after injury via upregulating collagen (I) and multiple other ECM component proteins. ${ }^{34}$

Rare variants in loci associated with GJH/self-reported Beighton score, rotator cuff injury and knee pain GWASs

We identified multiple rare variants with CADD >15 in genes associated ($\mathrm{p}<5 \times 10^{-8}$) with self-measured Beighton score >5 in a published GWAS ${ }^{6}$: These included the PIEZO Type Mechanosensitive Ion Channel Component 1 (PIEZO1) and NEDD4 E3 ubiquitin protein ligase (NEDD4) (online supplemental table 17). PIEZO1 is a mechanotranducer protein, important in the cellular responses to shear stress, maintenance of the vascular endothelium and mechanosensation in chondrocytes and epithelium.35 NEDD4 is a mediator of abnormal fibroblast proliferation in keloid scarring. ${ }^{36}$

HTAD candidate genes

Multiple patients in this cohort had a personal or family history of HTAD, carotid, intracranial and other aneurysmal disease . Careful review of all novel variants with CADD >15 in nonannotated genes revealed a small number of variants with high CADD scores (>20) in candidate genes with published data supporting a role in vascular disease and remodelling (online supplemental table 18). HDCT patient 1625 with a dilated aortic root and megacolon had a novel missense variant 63 , in transforming growth factor beta 1 -induced transcript 1 gene (TGFB1/1). This gene is regulated by TGF beta signalling; mice lacking its homologue, hic5, show deficient smooth muscle cell response to vascular injury (MIM 602353). ${ }^{37}$ This variant at TGFB1/1 Arg 67, neighbours phosphoserine 68, hence may disturb signal transduction. kEDS patient 1396 carried variant 59, a nonsense mutation INO80D (MIM 610169). Homozygous missense variants in INO80D were reported in a single family with aortic hypoplasia, aggressive atherosclerotic disease and periodontal disease, ${ }^{38} \mathrm{pLi}=1$. Patient 34 , with HDCT and carotid artery dissection, harboured variant 50 in prostaglandin E receptor 4 (PTGER4) (MIM 601586). Dysregulated expression of PTGER4 has been reported in abnormal wound healing, regulation of vascular tone and blood pressure, in abdominal and thoracic aortic aneurysm and the regulation of cerebral blood flow. ${ }^{39}$

Reviewing murine and functional studies reported for Marfan syndrome, we identified germline variants in TMBIM1 (MIM 610364), SCUBE3, IRF7, IGFBP2 and TMEM176B and MMP2. ${ }^{40}$ hEDS patient 1491 with kyphosis and a high arched palate carried FBN3 variant 61 in the TGFbeta binding domain, disruption of the equivalent domain in FBN1 cause Marfan syndrome. hEDS patient 1695 had a loss of function variant 64 in NOTCH4, (LOEUF $=0.32$), with livedo reticularis and a maternal aunt with pulmonary artery atresia. This gene is known to affect vascular morphogenesis in mice, but has not been associated with disease in humans. ${ }^{41}$ HDCT patient 446 with carotid dissection carried four variants, including novel variant 54 in NFAT5 (MIM 604708). Osmoregulatory stimulus has previously been found to upregulate NFAT5 expression, resulting in abdominal aortic aneurysm and dysregulated immune function. ${ }^{42}$ Two other NFAT5 variants were also identified, in hEDS patients 1595 and 922 without aneurysms (online supplemental table
19). We identified an hEDS patient 566 with Marfanoid habitus, arterial rupture and collagen fibril irregularity, who carried a novel loss of function variant in the SYAP1 gene (variant 56); a knockout mouse model for this gene has a highly distinctive motor deficit phenotype ${ }^{43}$ (the pLi score is 0.94).

Matrisome genes

We searched for rare variants with CADD >15 in genes known to interact with fibrillar collagen biosynthesis and signalling, chondroitin synthesis and modification (https://reactome.org/ PathwayBrowser) (online supplemental table 19). Collagenases I/II/III (MMP1, 8, 13 and 4) are known regulators of the fibrillar collagens in the ECM. Variant 60 substituted a histidine residue of Zinc binding site in MMP8, which was previously reported in GWAS as associated with premature rupture of the membranes (MIM 120355). The patient had hEDS with a family history of recurrent miscarriage. Heterozygous missense variant 51 in MMP25 (608482) (online supplemental table 18) was identified in a patient with hEDS: this gene is functional in the innate immune system and abnormal expression has been associated with tendinopathy in a mouse model. ${ }^{445}$ We also noted multiple heterozygous VUS in autosomal recessive skeletal dysplasia genes, CANT1, TONSL, OSTM1 (data not shown).

Biallelic pathogenic variants in ADAMTS2 cause dermatosparaxis type EDS. We identified a patient with HDCT (patient 446) with heterozygous Variant 52 in ADAMTS5 and variant 53 in ADAMTS16. Both variants were in the spacer domains, known to regulate aggrecanase activity. Heterozygous missense variants were also identified in ADAMTS20, ADAMTS22, ADAMTS23, ADAMTS28. Pathogenic variants in C1R/C1S cause pEDS, by gain of function on as-yet unidentified targets, ${ }^{46}$ we found multiple rare variants in other (non-annotated) serine proteases (online supplemental table 19).

Integrins, ephrin, ciliopathy, TSPANs, DOCK, circadian rhythm pathways

Within the entire cohort, we noted clusters of variants in genes not currently associated with EDS and in novel genes and pathways with biologically plausible links to EDS, including integrins (ITGA3, ITGB4, ITGA8, ITGAV and ITGB1BP1) (online supplemental table 19). Integrin-collagen interactions are integral to wound healing, inflammation, innate immunity and via TGFBeta signalling and other pathways. ${ }^{47}$ We identified multiple rare variants in ephrins and their receptors (data shown for EPHA8, EFNA1), known to regulate vascular endothelial and corneal proliferation, tissue fibrosis, wound healing and catecholamine
synthesis. ${ }^{48}$ Ciliopathies are generally associated with complex phenotypes; however, variants in IFT88 and NFATC3 were recently reported with bicuspid aortic valve. ${ }^{49}$ We identified two novel variants in these genes. Wound healing is known to be under circadian rhythm control through local and central mechanisms. ${ }^{50}$ We identified a small number of variants in PER1 (MIM 602260), PER2 (MIM 603426) and ZFHX3 (MIM 104155). It is possible that abnormal wound healing seen in patients with EDS is due to the disruption of these control mechanisms. We identified multiple variants in DOCK5 (MIM 616904), in the linked region for hEDS. While it has not yet been annotated as causative of disease in humans, a mouse model has a reduced skeletal muscle phenotype and a zebrafish model has abnormal fast muscle. ${ }^{28}$ We also identified multiple variants in various TSPANS. TSPAN2 regulates TGFB1/SMAD expression in vascular endothelium (MIM 613133).

Genetic burden analysis

In view of the large number of rare variants identified in multiple pathways, a formal burden analysis was carried out to seek statistically significant associations. Burden analysis was carried out using the TASER software ${ }^{13}$ (table 2). While LOC283685 was close to meeting the criteria for significance ($\mathrm{p}=2.34 \mathrm{e}-6$, adjusted $\mathrm{p}=7.41 \mathrm{e}-6$), we identified that the coding sequence of the final exon of GOLGA6L2 transcript ENST00000312015 (Glu308-Ter415), annotated separately in USC GRCh38, probably overlaps the C-terminal sequence of LOC283685 (Glu61-Ter168). The overall burden of rare variants in GOLGA6L2 including this terminal region did not meet significance ($p=2.67 \mathrm{e}-3$, adjusted $\mathrm{p}=4.36 \mathrm{e}-3$). The lack of statistically significant results of this analysis is likely related to the small sample size. A number of the top scoring loci, however, had biological plausibility. The LRTTM4-HSPG (heparan sulfate proteoglycome) complex has been proposed a tetrapartite model for synaptic plasticity involving interactions with the ECM and HSPG has been noted in the vEDS transcriptome. GOLGA6L2 is of unknown function; golgins are a large group of vesicle tethering proteins with tissue-specific effects, other golgins are known to result in reduced bone mineral density and neuromuscular phenotypes (GOLGA2 MIM 602580). ANKFY1 is involved in transport to the Golgi apparatus. ADCY1 (MIM 103072) causes autosomal recessive deafness with abnormalities of circadian rhythm. ${ }^{50}$

DISCUSSION

In this study, we generated WES in 174 patients with several EDS clinical subtypes: cEDS ($\mathrm{n}=20$), vEDS $(\mathrm{n}=5)$, $\operatorname{kEDS}(\mathrm{n}=2)$,

Table 2 Results of genetic burden analysis using TASER methodology, with 128 cases and 248 controls

Gene	Chr (position)	L	M_S	M_st	M_p	New.SB_p	New.STB_p	Adjusted p value
LOC283685	15 (23684612-23685207)	21	7	7	7	2.34E-06	2.34E-06	7.41E-06
OR4C45	11 (48366903-48373999)	14	9	9	9	7.72E-06	7.72E-06	$2.18 \mathrm{E}-05$
KCNJ12	17 (21279699-21323179)	178	36	36	35.5	9.63E-06	9.63E-06	2.67E-05
PSMD2	3 (184017022-184026675)	74	6	6	6	5.65E-05	5.65E-05	1.32E-04
BX648489	20 (25825303-25834657)	18	10	10	10	6.34E-05	6.34E-05	$1.47 \mathrm{E}-04$
ANKFY1	17 (4066665-4167025)	71	8	8	8	6.79E-05	8.15E-05	1.84E-04
FRG1B	20 (29612306-29631629)	50	14	14	14	9.94E-05	9.94E-05	2.21E-04
LRRTM4	2 (76974850-77749502)	47	5	5	5	1.06E-04	1.06E-04	2.34E-04
MLLT10P1	20 (29637584-29638138)	21	20	20	20	$1.41 \mathrm{E}-04$	1.41E-04	3.03E-04
ADCY1	7 (45613739-45703971)	30	1	1	1	$1.81 \mathrm{E}-04$	1.81E-04	$3.80 \mathrm{E}-04$

Adjusted p value, p value after applying genomic control correction (inflation factor $\lambda=1.11$) to the New.STP_p χ^{2} test statistic; L, number of variant sites that are considered 'rare' (alternate allele read count frequency AACF <0.05); M_p, estimated number of SNVs in the dataset; M_s, number of variant sites screened in; M_st, number of variant sites screened in and passing threshold AACF $>1 /(2 n)$, where $n=128+248$ (the cohort size); New.SB_p, p value of the 'New-SB' test (based on M_s); New.STP_p, p value of the 'New-STB' test (based on M_st).
(hEDS $\mathrm{n}=109$) and $\operatorname{HDCT}(\mathrm{n}=38)$ from two specialised clinical EDS services. Patients underwent extensive clinical diagnostic and research testing for known EDS/HTAD genes prior to being recruited into this study. Those with a confirmed genetic diagnosis in the clinical laboratory or in our previous research study were excluded. ${ }^{8}$ Ten patients previously without a genetic diagnosis were given a new diagnosis: two patients were diagnosed with mEDS, two with cEDS and four with LDS. The pathogenic and LP variants in these patients were subsequently confirmed in the clinical diagnostic laboratory. A molecular diagnosis may be important for clinical management and may facilitate assessment of vascular risk. Although many of the pathogenic (P) and likely pathogenic (LP) variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS.

We also identified a number of high priority VUS in genes for EDS ($\mathrm{n}=3$), LDS/ HTAD ($\mathrm{n}=3$), Lujan syndrome ($\mathrm{n}=1$), Birt-Hogg-Dube syndrome ($n=1$), skeletal dysplasia and bone metabolism ($n=4$), erythromyalgia ($n=1$) with compelling supporting clinical and in silico criteria for pathogenicity, according to ACGS criteria, segregation and functional work may enable reclassification to LP. These findings reflect the overlap between the clinical features of EDS, LDS, HTAD and Mendelian disorders associated with EDS symptomatology. Further, a small number of patients were identified as carrying more than one such variant, suggestive of two separate Mendelian disorders, which may explain the complex phenotypes observed in these patients.

We identified single patients with novel variants with CADD >15 in genes not previously reported as associated with a Mendelian phenotype (PGTER4, TGFB1/1, INO8D, SYAP1), with biological plausibility based on published in vitro and animal models of vascular disease and EDS phenotypes. A large number of rare variants with CADD >15 were identified in genes previously identified in EDS GWAS and transcriptome studies (eg, HSPG2, PIEZO1, COL27A1). We note that these included a number of genes reported as causes of autosomal recessive skeletal dysplasia and other pathways implicated in the repair and maintenance of the ECM: Integrins, Ephrins and DOCK genes.

While a formal burden analysis did not identify any genomewide statistically significant associations, several plausible candidate loci were identified that will benefit from further investigation.

One limitation of this study was the inability to identify chromosomal CNVs, which are implicated in HTAD, TNXB and familial mast cell disorders, leading to potential underascertainment of these abnormalities in this cohort. ${ }^{4}$ Finally, the occurrence of GJH as a normal trait and unknown prevalence of symptomatic hypermobility/hypermobility spectrum disorders (HSD) and hEDS presents a challenge to assessment of the expected prevalence of rare variants in relation to disease. ${ }^{5}$

CONCLUSIONS

We report WES analysis for a large cohort of patients with complex and unresolved EDS phenotypes to have undergone deep phenotyping and WES. This study suggests that large panel-based sequencing and WES will have clinical utility in patients with complex presentations that are unresolved by clinical examination and EDS panel gene sequencing, by making new molecular diagnoses for rare Mendelian disorders that had not been previously suspected in earlier detailed investigation. In addition, multiple heterozygous variants were identified in
genes associated with skeletal dysplasia, myopathy and integrins, although these are not as yet proven to be causative for EDS. A smaller number of variants in non-annotated genes with biological plausibility were also identified. Our results are consistent with the complex genetic architecture of EDS and have suggested a number of novel hEDS and HTAD candidate genes and pathways that are worthy of further investigation.

Author affiliations

${ }^{1}$ Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
${ }^{2}$ Faculty of Medicine, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
${ }^{3}$ Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
${ }^{4}$ Institute of Clinical Sciences, Imperial College London, London, UK
${ }^{5}$ Department of Vascular Surgery, Royal Free Hospital, London, UK
${ }^{6}$ Department of Clinical Biochemistry, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
${ }^{7}$ Department of Neuromuscular Diseases, UCL Queen Street Institute of Neurology, University College London, London, UK
${ }^{8}$ Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
${ }^{9}$ Edinburgh Genomics, University of Edinburgh, Edinburgh, UK
${ }^{10}$ MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
${ }^{11}$ Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
${ }^{12}$ Department of Rheumatology, University College London Hospitals NHS
Foundation Trust, London, UK
${ }^{13}$ Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
${ }^{14}$ Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK

Twitter Ruwan A Weerakkody @rweerakk
Acknowledgements The study was supported by the National Institute for Health Research England (NIHR) for the NIHR BioResource project (grant number RG65966). We thank NIHR BioResource volunteers for their participation, and gratefully acknowledge NIHR BioResource Centres, NHS Trusts and staff for their contribution. We thank the National Institute for Health and Care Research, NHS Blood and Transplant, and Health Data Research UK as part of the Digital Innovation Hub Programme. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. We acknowledge Julie Leary and Cherida Watkins (NWLH) for their assistance with recruitment and administrative support. This study also makes use of data generated by the UK10K Consortium, derived from samples from ALSPAC; a full list of the investigators who contributed to the generation of this data is available from www. UK10K.org. Funding for the UK10K was provided by the Wellcome Trust under award WT091310.

Collaborators We acknowledge collaborator support from Willem Ouwehand and Kathy Stirrups.
Contributors The study was designed by RAW, TJA, JV and AMV. Patients were clinically ascertained at the EDS diagnostic service (AMV, FMP, NG, AFB, CC, MB) and at the UCLH hypermobility clinic (HK, RG). DNA extraction and sequencing was completed at Imperial College and in Edinburgh (RAW, JS-L) and the NIHR in Cambridge (NIHR BioResource). WES filtering and data analysis was carried out by DAP, JV, AMV, DJT-M and AM, phenotype summary and review by AMV, CK, RAW, DJT-M, FMP and FSvD; TASER analysis by RD and HJC. The paper was written by AMV and TJA. TJA acts as guarantor.
Funding The study was supported by NIHR grant RG65966 and Wellcome Trust grant UK10K WT091310 for BRIDGE-EDS; and Wellcome Trust Clinical Fellowship (WCMA_P43883) to RAW.
Competing interests TA is co-founder and director of the company BioCaptiva. There are no other competing interests.
Patient consent for publication Not applicable.
Ethics approval This study involves human participants and was approved by the West London Research Ethics Committee, Reference 11/L0/0883, Cambridgeshire 2 Research Ethics Committee, Reference 04/Q0108/44. Participants gave informed consent to participate in the study before taking part.
Provenance and peer review Not commissioned; externally peer reviewed.
Data availability statement Data are available on reasonable request.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those
J Med Genet: first published as 10.1136/jmg-2023-109329 on 9 October 2023. Downloaded from http://jmg.bmj.com/ on February 24, 2024 at UCL Library Services. Protected by copyright.
\qquad
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.
Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/ licenses/by/4.0/.

ORCID iDs

Ruwan A Weerakkody http://orcid.org/0000-0002-6717-7383
Javier Santoyo-Lopez http://orcid.org/0000-0003-1988-5059
Neeti Ghali http://orcid.org/0000-0003-2847-1376
Timothy J Aitman http://orcid.org/0000-0002-7875-4502

REFERENCES

1 Malfait F, Francomano C, Byers P, et al. The 2017 International classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet 2017;175:8-26.
2 Alazami AM, Al-Qattan SM, Faqeih E, et al. Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue. Hum Genet 2016;135:525-40.
3 Driver SGW, Jackson MR, Richter K, et al. Biallelic variants in Efemp1 in a man with a pronounced connective tissue phenotype. Eur J Hum Genet 2020;28:445-52.
4 Zweers MC, Bristow J, Steijlen PM, et al. Haploinsufficiency of TNXB is associated with Hypermobility type of Ehlers-Danlos syndrome. Am J Hum Genet 2003;73:214-7.
5 Tobias JH, Deere K, Palmer S, et al. Joint Hypermobility is a risk factor for musculoskeletal pain during adolescence: findings of a prospective cohort study. Arthritis Rheum 2013;65:1107-15.
6 Pickrell JK, Berisa T, Liu JZ, et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet 2016;48:709-17.
7 Beighton P, Paepe A, Steinmann B, et al. n.d. Ehlers-Danlos syndromes: revised Nosology, Villefranche,447 1997. Ehlers-Danlos national foundation (USA) and EhlersDanlos support group (UK). Am J Med Genet:31-7.
8 Weerakkody RA, Vandrovcova J, Kanonidou C, et al. Targeted next-generation sequencing makes new molecular diagnoses and expands genotype-phenotype relationship in Ehlers-Danlos syndrome. Genet Med 2016;18:1119-27.
9 Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical Genetics and Genomics and the Association for molecular pathology. Genet Med 2015;17:405-24.
10 Kopanos C, Tsiolkas V, Kouris A, et al. Varsome: the human Genomic variant search engine. Bioinformatics 2019;35:1978-80.
11 Boyd A, Golding J, Macleod J, et al. Cohort profile: the 'children of the 90S'--The index offspring of the Avon longitudinal study of parents and children. Int J Epidemiol 2013;42:111-27.
12 UK10K Consortium, Walter K, Min JL, et al. The Uk10K project identifies rare variants in health and disease. Nature 2015;526:82-90.
13 Hu Y-J, Liao P, Johnston HR, et al. Testing rare-variant Association without calling Genotypes allows for systematic differences in sequencing between cases and controls. PLoS Genet 2016;12:e1006040.
14 Angwin C, Brady AF, Colombi M, et al. Absence of collagen flowers on electron microscopy and identification of (likely) pathogenic Col5A1 variants in two patients. Genes (Basel) 2019;10:762.
15 Zoppi N, Chiarelli N, Binetti S, et al. Dermal fibroblast-to-Myofibroblast transition sustained by Avß3 integrin-ILK-Snail1/slug signaling is a common feature for Hypermobile Ehlers-Danlos syndrome and Hypermobility spectrum disorders. Biochim Biophys Acta Mol Basis Dis 2018;1864(4 Pt A):1010-23.
16 Luo X, Deng S, Jiang Y, et al. Identification of a pathogenic Tgfbr2 variant in a patient with Loeys-Dietz syndrome. Front Genet 2020;11:479.
17 Ellard S, Baple EL, Callaway A, et al. ACGS best practice guidelines for variant classification in rare disease. 2020. Available: https://www.acgs.uk.com/media/11631/ uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf
18 Mitchell AL, Judis LM, Schwarze U, et al. Characterization of tissue-specific and developmentally regulated alternative splicing of Exon 64 in the Col5A1 gene. Connect Tissue Res 2012;53:267-76.
19 Guo D-C, Grove ML, Prakash SK, et al. Genetic variants in Lrp1 and Ulk4 are associated with acute aortic Dissections. Am J Hum Genet 2016;99:762-9.
20 Tejada MI, Villate O, Ibarluzea N, et al. Molecular and clinical characterization of a novel nonsense variant in Exon 1 of the Upf3B gene found in a large Spanish Basque family (Mrx82). Front Genet 2019;10:1074.
21 Hostettler IC, O'Callaghan B, Bugiardini E, et al. Angpt|6 genetic variants are an underlying cause of familial intracranial aneurysms. Neurology 2021;96:e947-55.

22 Lorenzo-Betancor O, Blackburn PR, Edwards E, et al. PCNT point mutations and familial intracranial aneurysms. Neurology 2018;91:e2170-81.
23 Meester JAN, Vandeweyer G, Pintelon I, et al. Loss-of-function mutations in the Xlinked Biglycan gene cause a severe Syndromic form of Thoracic aortic aneurysms and Dissections. Genet Med 2017;19:386-95.
24 Takeichi T, Katayama C, Tanaka T, et al. A novel Ifih1 Mutation in the Pincer domain underlies the clinical features of both Aicardi-Goutieres and Singleton-Merten syndromes in a single patient. Br J Dermatol 2018;178:e111-3.
25 Capuano A, Bucciotti F, Farwell KD, et al. Diagnostic Exome sequencing identifies a novel gene, Emilin1, associated with Autosomal-dominant hereditary connective tissue disease. Hum Mutat 2016;37:84-97.
26 Syx D, Symoens S, Steyaert W, et al. Ehlers-Danlos syndrome, Hypermobility type, is linked to Chromosome 8P22-8P21.1 in an extended Belgian family. Dis Markers 2015;2015:828970.
27 Hino N, Ichikawa T, Kimura Y, et al. An Amphipathic Helix of Vinexin alpha is necessary for a substrate stiffness-dependent conformational change in Vinculin. J Cell Sci 2019;132:jcs217349.
28 Benson CE, Southgate L. The DOCK protein family in vascular development and disease. Angiogenesis 2021;24:417-33.
29 Nikolova G, Lee H, Berkovitz S, et al. Sequence variant in the laminin Gamma1 (Lamc1) gene associated with familial pelvic organ Prolapse. Hum Genet 2007;120:847-56.
30 Chiarelli N, Carini G, Zoppi N, et al. Molecular insights in the pathogenesis of classical Ehlers-Danlos syndrome from Transcriptome-wide expression profiling of patients' skin fibroblasts. PLoS One 2019;14:e0211647.
31 Chiarelli N, Carini G, Zoppi N, et al. Transcriptome analysis of skin fibroblasts with dominant negative Col3A1 mutations provides molecular insights into the Etiopathology of vascular Ehlers-Danlos syndrome. PLoS One 2018;13:e0191220.
32 Patil MS, Cartland SP, Kavurma MM. TRAIL signals, extracellular matrix and vessel remodelling. Vasc Biol 2020;2:R73-84.
33 Stum M, Girard E, Bangratz M, et al. Evidence of a dosage effect and a physiological Endplate acetylcholinesterase deficiency in the first Mouse models mimicking Schwartz-Jampel syndrome Neuromyotonia. Hum Mol Genet 2008;17:3166-79.
34 Kudo A, Kii I. Periostin function in communication with extracellular Matrices. J Cell Commun Signal 2018;12:301-8.
35 Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol 2017;18:771-83.
36 Chung S, Nakashima M, Zembutsu H, et al. Possible involvement of Nedd4 in Keloid formation; its critical role in fibroblast proliferation and collagen production. Proc Jpn Acad Ser B Phys Biol Sci 2011;87:563-73.
37 Kim-Kaneyama J, Wachi N, Sata M, et al. Hic-5, an Adaptor protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Biochemical and Biophysical Research Communications 2008;376:682-7.
38 Shameer K, Klee EW, Dalenberg AK, et al. Whole Exome sequencing Implicates an Ino80D Mutation in a syndrome of aortic hypoplasia, premature Atherosclerosis, and arterial stiffness. Circ Cardiovasc Genet 2014;7:607-14.
39 Gilman KE, Limesand KH. The complex role of prostaglandin E2-EP receptor signaling in wound healing. Am J Physiol Regul Integr Comp Physiol 2021;320:R287-96.
40 Bhushan R, Altinbas L, Jäger M, et al. An integrative systems approach identifies novel candidates in Marfan syndrome-related pathophysiology. J Cell Mol Med 2019;23:2526-35.
41 Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascular Morphogenesis in mice. Genes Dev 2000;14:1343-52.
42 Scherer C, Pfisterer L, Wagner AH, et al. Arterial wall stress controls Nfat5 activity in vascular smooth muscle cells. J Am Heart Assoc 2014;3:e000626.
43 von Collenberg CR, Schmitt D, Rülicke T, et al. An essential role of the Mouse Synapseassociated protein Syap1 in circuits for spontaneous motor activity and Rotarod balance. Biol Open 2019;8.
44 Trella KJ, Li J, Stylianou E, et al. Genome-wide analysis identifies differential promoter methylation of Leprel2, Foxf1, Mmp25, Igfbp6, and Peg12 in murine Tendinopathy. J Orthop Res 2017;35:947-55.
45 Soria-Valles C, Gutiérrez-Fernández A, Osorio FG, et al. MMP-25 Metalloprotease regulates innate immune response through NF-kappaB signaling. I Immunol 2016;197:296-302.
46 Kapferer-Seebacher I, Pepin M, Werner R, et al. Periodontal Ehlers-Danlos syndrome is caused by mutations in C1R and C1S, which Encode Subcomponents C1R and C1S of complement. Am J Hum Genet 2016;99:1005-14.
47 Zeltz C, Gullberg D. The integrin-collagen connection - a glue for tissue repair? J Cell Sci 2016;129:1284.
48 Wu B, Rockel JS, Lagares D, et al. Ephrins and Eph receptor signaling in tissue repair and fibrosis. Curr Rheumatol Rep 2019;21:23.
49 Toomer KA, Fulmer D, Guo L, et al. A role for primary cilia in aortic valve development and disease. Dev Dyn 2017;246:625-34.
50 Chang J, Garva R, Pickard A, et al. Circadian control of the Secretory pathway maintains collagen homeostasis. Nat Cell Biol 2020;22:74-86.

Genetic Complexity of Diagnostically Unresolved Ehlers-Danlos Syndrome

Anthony Vandersteen ${ }^{1,2}$, Ruwan A. Weerakkody ${ }^{2,3}$, David Parry ${ }^{2}$, Christina Kanonidou ${ }^{4}$, Daniel J. ToddieMoore ${ }^{2}$, Jana Vandrovcova ${ }^{5}$, Rebecca Darlay ${ }^{6}$, Javier Santoyo-Lopez ${ }^{7}$, Alison Meynert ${ }^{8}$, NIHR BioResource ${ }^{9}$, Hanadi Kazkaz ${ }^{10}$, Rodney Grahame ${ }^{10}$, Carole Cummings ${ }^{11}$, Marion Bartlett ${ }^{11}$, Neeti Ghali ${ }^{11}$, Angela F. Brady ${ }^{11}$, F. Michael Pope ${ }^{11}$, Fleur S. Van Dijk ${ }^{11}$, Heather J. Cordell ${ }^{6}$, Timothy J. Aitman ${ }^{2}$.

Supplementary Methods

Whole exome sequencing and variant analysis

Genomic DNA from 89 individuals was processed using the SureSelectXT2 Human All Exon V5 capture kit (Agilent) and sequenced with 75 base paired-end reads on a HiSeq 4000 (Illumina) and from 85 samples with 100 base paired-end reads on a HiSeq 2500 (Illumina). Raw sequence data will be made available on reasonable request to the study's data access committee, chaired by TJA.

FASTQs were aligned to the human genome reference (GRCh37) using bwa mem (0.7.12). Alignments were post-processed using Picard (v2.1.1) for identification of duplicate reads and the Genome Analysis ToolKit (GATK, 3.5-0-g36282e4) for indel realignment and base recalibration. Genotype likelihoods for each sample were calculated using the GATK HaplotypeCaller and resulting GVCF files were called jointly using GATK's GenotypeGVCFs function. Functional annotations were added using Ensembl's Variant Effect Predictor (v90). VASE (v0.1, https://github.com/david-a-parry/vase) was used to perform dominant and recessive segregation filtering of variants. Variants with a frequency greater than 0.1% (for dominant filtering) or 0.5 \% (for recessive filtering) in gnomAD or dbSNP150 or those not annotated as either high or moderate impact variants or as splice region variants were removed. Splice region variants not overlapping the canonical +/-2 donor/acceptor intron positions were only retained if they had an ada score and rf score from dbscSNV (https://doi.org/10.1093/nar/gku1206) of 0.8 or higher. Genotype calls were filtered if PHRED scale genotype quality scores were below 20, based on fewer than 5 reads or if the ratio of variant reads compared to total depth was below 0.25 .

Additionally, variants were processed using the G2P plugin for VEP (https://www.ebi.ac.uk/gene2phenotype/g2p vep plugin) and the Genomics England Panel App (Ehlers-Danlos Syndrome(https://panelapp.genomicsengland.co.uk/api/v1/panels/53/?version=2.0).

A further 'exomiser' based analysis using all the HPO terms currently identified as clinical criteria in the 2017 EDS nosology ${ }^{1}$. Variants were reviewed for known EDS genes ${ }^{1}$, mendelian disorders with EDS features or symptoms, HTAD ${ }^{2}$, genes abnormally expressed in skin fibroblast from patients with vEDS, cEDS and hEDS ${ }^{3-5}$. Variant calls were searched for genes associated with the previously linked region for hEDS reported by Syx et al ${ }^{6}$, pelvic organ prolapse ${ }^{7}$, genome wide association studies for GJH, knee pain, rotator cuff injury and pelvic organ prolapse (https://www.ebi.ac.uk/gwas/) ${ }^{89}$.

Database searches and variant assessment

Mendelian Disorders: Dominant and autosomal recessive variant datasets were searched using OMIM annotations. Variants with CADD score >15 were selected for further review to assess for the updated ACMG criteria for pathogenicity ${ }^{10-13}$ using the annotation tool Varsome ${ }^{14}$: (https://varsome.com/) and Franklin by Genoox (https://franklin.genoox.com). This included ClinVar reports, functional annotation, previous published reports of specific variants, occurrence of the variant in a specific protein domain and reported allele frequency (https://gnomad.broadinstitute.org/).

A specific search for variants in EDS genes from the 2017 nosology ${ }^{1}$ was completed: classical EDS (cEDS): COL5A1, COL5A2, COL1A1, classical like EDS (cIEDS): TNXB, cardiac valvular EDS (cvEDS): COL1A2, vascular EDS (vEDS): COL3A1, COL1A1, dermatosparaxis EDS (dEDS): ADAMTS2, kyphoscoliotic EDS (kEDS): PLOD1, FKBP14, Brittle Cornea Syndrome (BCS): PRDM5, ZNF469, spondylodysplastic EDS (spEDS): B4GALT7, B3GALT6, SLC39A13, Musculocontractural EDS (mcEDS): CHST14, DSE, myopathic EDS (mEDS): COL12A1, periodontal EDS (pEDS):C1R, C1S.

Further searches were completed for rare variants in disorders associated with EDS like phenotypes: including Ehlers-Danlos syndrome classic-like-2: AEBP1, Bethlem myopathy: COL6A1, COL6A2, COL6A3 and Zimmerman-Laband Syndrome: KCNH1, ATP6V1B2, KCCN3.

We searched for rare variants in Mendelian disorders associated with EDS symptomatology, including dysautonomia: SPTLC1, WNK1 and IBKAP, familial mast cell disorders, TPSAB1, KIT and erythermalgia SCN9A.

We searched for rare variants in Mendelian disorders with multisystem manifestations which are rarely associated with aneurysm: Neurofibromatosis type I (MIM 613113) NF1, Tuberous Sclerosis (MIM 191100) TSC1, TSC2, Birt-Hogg-Dube syndrome (MIM 135150) FLCN and Singleton Merten Syndrome (MIM 182250) IFIH1, DDX58.

We completed a review of rare variants in genes causative for Inborn errors of metabolism with features of hereditary disorders of connective tissue, these may be underdiagnosed: homocystinuria: CBS, Wilson disease: ATP7B, Occipital horn syndrome/ Menke's disease: ATP7A and hypophosphatasia: ALPL.

We searched for HTAD genes using the ClinGen criteria ${ }^{2}$ (https://clinicalgenome.org/docs/clinical-validity-of-genes-for-heritable-thoracic-aortic-aneurysm-and-dissection/ for genes strongly associated with HTAD: ACTA2, COL3A1, FBN1, MYH11, MYLK, SMAD3, TGFB2, TGFBR1, and TGFBR2. Potentially diagnostic: EFEMP2, ELN, FBN2, FLNA, NOTCH1, SLC2A10, SMAD4, and SKI. Gene with limited evidence of causality: COL4A5, CBS, PKD1, and PKD2, genes with no evidence/ experimental data only for causality: ACVRL1, ADAMTS10, B3GAT3, COL1A1, COL1A2, COL4A1, COL5A1, COL5A2, COL9A1, COL9A2, COL11A1, COL18A1, EMILIN1, ENG, GATA5, GJA1, JAG1, MED12, PLOD1, PLOD3, SMAD6, UPF3B, and VCAN. Newly identified genes: BGN, FOXE3, HCN4, MAT2A, MFAP5, SMAD2, and TGFB3.

Mendelian Disorders awaiting confirmation: We searched for rare variants in Mendelian entities with EDS like features, awaiting confirmation with autosomal recessive inheritance: PLOD3, ALDH18A1, ATP6V0D2, ATP6V1E1, CAPN3, GORAB, OBSL1, IFT122, PLP1, SPARC and EFEMP ${ }^{1516}$.

Similarly, we searched for Mendelian entities with EDS-like features awaiting confirmation: autosomal dominant connective tissue disorder with peripheral neuropathy: EMILIN1, cardiospondylocarpofacial syndrome: MAP3K7, multisystem connective tissue disorder: LAMA5, nemaline myopathy RYR3.

We searched for rare variants in genes reported in association with risk of intracranial aneurysm ${ }^{17}$ (family studies reviewed in PMID: 32367296): ADAMTS15, ANGPTL6, ARGHGEF16, LOXL2, PCNT, RNF213, THSD1, TMEM132B, NEK4, EDIL3, EDNRB, DNAH9 and GGA3.

Genes reported as abnormally expressed in EDS linkage studies: We searched for rare variants in genes within the linked region for hEDS ${ }^{6}$: BMP1, CNOT7, CSGALNACT1, LOXL2, LPL, SLC39A14, HR, NPM2, DOCK5, ADAMDEC1, ADAM7, GNRH1, STC1, ADAM28, FGF17, SORBS3, NKX3-1, SFTPC, NEFL, FGF20, ADAM28, FGL1, ASAH1 PDLIM2, CCAR2 LZTS1 NKX2-6, NAT1, DOK2, TNFRSF1OB DMTN, EGF17, KTCD9, NPM2, PDLIM2, ENTPP4, SLC18A1, SFTPC, ATP6V1B2, PDGFRL, PCM1, PFLIM2, TNFRSF10D, GFRA2, NEFM, SLC7A1, BIN3, POLR3D, VSP37A, C8orf20.

Genes reported as abnormally expressed in skin fibroblast studies: We searched for rare variants (germline) with CADD>15 in genes abnormally expressed in skin fibroblasts from cEDS patients ${ }^{4}$: SPP1, POSTN, EDIL3, PAPPA, IGFBP2, C3, DNAJB7, CCPG1, ATG10, SVIP, ALG13, VIPAS39, HIF4A, CDKN1A, CCNE2, ASF1B, CLSPN, DTL, DDIAS.

We searched for rare variants (germline) with CADD>15 in genes abnormally expressed in skin fibroblasts from vEDS patients with confirmed COL3A1 mutations ${ }^{5}$: FBN2, TNFAIP6, PTCH2, HIST1H4L, ITGA3, HSPG2, MMP24, EDNRA, LOXL3, P4HA2, P4HA3.

We searched for rare variants (germline) with CADD>15 in genes abnormally expressed in skin fibroblasts from hEDS patients ${ }^{3}$: CDH11, MMP9, CCN1, CCN2, ITGB3, ILK, PINCH, PARVA, PARVB, PARVG, PXN, AKT1, AKT2, AKT3, GSK3国, NFKB1, CDH1, MMP 2, SNAI1, SNAI2.

Genes reported as associated with features of EDS in GWAS: We reviewed our data for rare variants ($\mathrm{MAF}<0.1 \%$ and CADD>15) in GWAS Loci for one of the diagnostic criteria for hEDS: self-reported Beighton score >5 with $\mathrm{P}<5 \times 10^{-88}$: STON1, (MIM 605357), EFEMP1 (MIM 601548, Doyne honeycomb degeneration of retina \#126600), C2orf54 (Not annotated), ABI3BP (MIM 606279), VCAN (MIM 118661, Wagner syndrome \#143200), NOTCH4 (MIM 164951), XKR6 (Not annotated), NEDD4 (MIM 602278), PIEZO1 (MIM 611184, Dehydrated hereditary stomatocytosis with or without pseudohyperkalemia and/or perinatal edema \#3194380, Lymphoedema (AR, LoF).

We reviewed our data for rare variants (MAF<0.1\% and CADD>15) in GWAS Loci for pelvic organ prolapse with $\mathrm{P}<5 \times 10^{-8} 9$: WNT4, GDF7, EFEMP1, FAT4, IMPDH1, TBX5, SALL1.

We reviewed our data for rare variants (MAF<0.1\% and CADD>15) in GWAS Loci for knee pain and rotator cuff injury associated loci (https://www.ebi.ac.uk/gwas/), with P < 5×10^{-8} : COL27A1 (MIM 608461, Steel syndrome), GDF5 (MIM 601146, multiple phenotypes), DENND2C, SASH1, ESRRB, FGFR1, TNC and DEFB1. Assessment of Candidate genes: We reviewed our data for rare variants expected to result in loss of function, identifying genes with OMIM annotation. For non-annotated genes we reviewed the probability of loss of function intolerance scores (pLi) and biological plausibility, looking for published evidence of expression or impact on the extracellular matrix, collagen synthesis or function, aneurysm formation in human tissue studies and reported EDS or HTAD like phenotypes in animal models https://www.alliancegenome.org/. Similarly, we reviewed our data for novel missense, splice and synonymous variants (gnomAD frequency $=0$). Variants with high CADD scores (>20) were selected for further review as above. The entire dataset were reviewed for the same or further rare variants in the same gene.

Genetic burden analysis

Analysis of sequence data where there are systemic differences in coverage between cases and controls typically leads to inflated type I errors, but discarding those samples with insufficient read depth can result in a loss of power. TASER is a program for testing association using sequencing reads without calling genotypes, which is robust to a wide range of differential sequencing qualities between cases and controls. TASER uses the total number of reads mapped to a variant, and the number carrying the minor allele, to calculate a score statistic at each position in a gene of interest, thus providing an assessment of the association of each individual variant with the disease phenotype. A burden statistic is then calculated for each gene as the sum of the score statistics for each of the variants within that gene, allowing identification of genes that have a higher or lower accumulation of rare variants in the cases than might be expected, compared to controls. A bootstrap procedure is used for assessing the significance of the burden statistic. TASER includes a screening procedure to screen-in loci based on allele counts (not on assigned genotypes) where: 1) Alternate allele read count frequency (AACF) in the entire cohort < 0.05 (can be adjusted if required); 2) AACF is not less than $1 /(2 n)$ where n is the sample size of the overall cohort tested ${ }^{18}$.

For each of the sequences, we split the DNA sequence into non-overlapping exons, where the gene was the unit of the burden test, in genomic order. Each chromosome was split into 100 gene "processing" blocks based on the GRCh37, resulting in the analysis of 16560 genes in 240 blocks. Only bases called with a quality score >30 were added to the read count at each position within each exon, and only if the resultant read depth was greater than 2. The upper MAF limit for analysis was set at 0.05 in the base population. The top scoring loci from this analysis are shown in Table 2. Since analysis of rare variant burden was performed in 16560 genes, a p value of $0.05 / 16560=3 \times 10^{-6}$ would be considered genomewide evidence for statistical significance. Examination of QQ plots from the overall set of $16560 \chi^{2}$ test statistics derived from the bootstrap p values showed a slight inflation (genomic control inflation factor $\lambda=1.11$) so we adjusted the p values by dividing the χ^{2} test statistics by 1.11 and recalculating the implied p values.

References

1. Malfait F, Francomano C, Byers P, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet 2017;175(1):8-26. doi: 10.1002/ajmg.c. 31552
2. Renard M, Francis C, Ghosh R, et al. Clinical Validity of Genes for Heritable Thoracic Aortic Aneurysm and Dissection. J Am Coll Cardiol 2018;72(6):605-15. doi: 10.1016/j.jacc.2018.04.089
3. Zoppi N, Chiarelli N, Binetti S, et al. Dermal fibroblast-to-myofibroblast transition sustained by alphavss3 integrin-ILK-Snail1/Slug signaling is a common feature for hypermobile Ehlers-Danlos syndrome and hypermobility spectrum disorders. Biochim Biophys Acta Mol Basis Dis 2018;1864(4 Pt A):1010-23. doi: 10.1016/j.bbadis.2018.01.005 [published Online First: 20180105]
4. Chiarelli N, Carini G, Zoppi N, et al. Molecular insights in the pathogenesis of classical Ehlers-Danlos syndrome from transcriptome-wide expression profiling of patients' skin fibroblasts. PLoS One 2019;14(2):e0211647. doi: 10.1371/journal.pone. 0211647 [published Online First: 20190204]
5. Chiarelli N, Carini G, Zoppi N, et al. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome. PLoS One 2018;13(1):e0191220. doi: 10.1371/journal.pone. 0191220 [published Online First: 20180118]
6. Syx D, Symoens S, Steyaert W, et al. Ehlers-Danlos Syndrome, Hypermobility Type, Is Linked to Chromosome 8p22-8p21.1 in an Extended Belgian Family. Dis Markers 2015;2015:828970. doi: 10.1155/2015/828970 [published Online First: 20151004]
7. Nikolova G, Lee H, Berkovitz S, et al. Sequence variant in the laminin gamma1 (LAMC1) gene associated with familial pelvic organ prolapse. Hum Genet 2007;120(6):847-56. doi: 10.1007/s00439-006-0267-1 [published Online First: 20061005]
8. Pickrell JK, Berisa T, Liu JZ, et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet 2016;48(7):709-17. doi: 10.1038/ng. 3570 [published Online First: 20160516]
9. Olafsdottir T, Thorleifsson G, Sulem P, et al. Genome-wide association identifies seven loci for pelvic organ prolapse in Iceland and the UK Biobank. Commun Biol 2020;3(1):129. doi: 10.1038/s42003-020-0857-9 [published Online First: 20200317]
10. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17(5):405-24. doi: 10.1038/gim. 2015.30 [published Online First: 20150305]
11. Abou Tayoun AN, Pesaran T, DiStefano MT, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat 2018;39(11):1517-24. doi: 10.1002/humu. 23626 [published Online First: 20180907]
12. Brnich SE, Abou Tayoun AN, Couch FJ, et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med 2019;12(1):3. doi: 10.1186/s13073-019-0690-2 [published Online First: 20191231]
13. Pejaver V, Byrne AB, Feng BJ, et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am J Hum Genet 2022;109(12):2163-77. doi: 10.1016/j.ajhg.2022.10.013 [published Online First: 20221121]
14. Kopanos C, Tsiolkas V, Kouris A, et al. VarSome: the human genomic variant search engine. Bioinformatics 2019;35(11):1978-80. doi: 10.1093/bioinformatics/bty897
15. Alazami AM, Al-Qattan SM, Faqeih E, et al. Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue. Hum Genet 2016;135(5):525-40. doi: 10.1007/s00439-016-1660-z [published Online First: 20160329]
16. Driver SGW, Jackson MR, Richter K, et al. Biallelic variants in EFEMP1 in a man with a pronounced connective tissue phenotype. Eur J Hum Genet 2020;28(4):445-52. doi: 10.1038/s41431-019-0546-7 [published Online First: 20191202]
17. Sauvigny T, Alawi M, Krause L, et al. Exome sequencing in 38 patients with intracranial aneurysms and subarachnoid hemorrhage. J Neurol 2020;267(9):2533-45. doi: 10.1007/s00415-020-09865-6 [published Online First: 20200504]
18. Hu YJ, Liao P, Johnston HR, et al. Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls. PLoS Genet 2016;12(5):e1006040. doi: 10.1371/journal.pgen. 1006040 [published Online First: 20160506]

Patient ID	Age	Sex	Beighton Score	cEDS Major criteria Minor criteria	vEDS Major criteria Minor criteria	hEDS Major criteria Minor criteria	kEDS Major criteria Minor criteria	Vascular/cardiac complications	Family History
75	30-39	F	8	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$	$\begin{array}{\|} - \\ \mathrm{n}, \mathrm{q} \end{array}$	$\begin{array}{\|l\|l} \mathrm{H}, \mathrm{I} \\ \mathrm{t}, \mathrm{u} \\ \hline \end{array}$	-	vv	Father: GJH 2 Sisters: GJH
136	60-69	F	-	$\begin{array}{\|l} \mathrm{A}, \mathrm{C} \\ \mathrm{a}, \mathrm{i} \\ \hline \end{array}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \\ & \hline \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline \text { Daughter, } \\ \text { Grandson: cEDS } \end{array}$
383	20-29	F	7	$\begin{array}{\|l\|l} \hline \mathrm{A}, \mathrm{C} \\ \mathrm{~d}, \mathrm{i} \end{array}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{u} \end{aligned}$	-	-	Mother: GJH, SCAD Maternal grandmother: GJH Sister: MVP Others: ICA.
396	50-59	F	-	$\begin{array}{\|l} \mathrm{A}, \mathrm{C} \\ \mathrm{a} \end{array}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	J	Aneurysm (subclavian artery)	Daughter: GJH, MVP
409	40-49	F	-	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{e} \\ & \hline \end{aligned}$	-	$\begin{array}{\|l\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \hline \end{array}$	-	Aor	Son: GJH, Dev delay, AoR, Daughter: AoR
431	30-39	F	7	$\begin{aligned} & c_{1} \\ & d, g, i \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 9 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \\ \\ \hline \end{array}$	15	-	Mother: GJH
534	30-39	F	9	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C} \\ & \mathrm{f}, \mathrm{~g}, \mathrm{i} \end{aligned}$	F	$\begin{array}{\|l\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{u} \end{array}$	-	-	Father: JHM Mother: GJH Children: GJH
583	10-19	F	8	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{~g}, \mathrm{i} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$	J	-	Father. Sister, Paternal uncle Paternal grandmother: cEDS
595	30-39	M	6	$\begin{array}{\|l} \mathrm{A}, \mathrm{C} \\ \mathrm{a}, \mathrm{~d}, \mathrm{~g} \end{array}$	$\overline{\bar{k}_{1, q}}$	H, I	-	MVR	Father: TS Mother: Keratoconus Sister: Ischemic stroke
611	30-39	M	7	$\widehat{A, C}$	${ }^{-}$	$\begin{array}{\|l\|l} \hline \mathrm{H}, \mathrm{I} \\ u \\ \hline \end{array}$	${ }^{-}$	-	Daughter: hEDS
653	20-29	F	9	$\begin{array}{\|c} \mathrm{A}, \mathrm{C} \\ \mathrm{a}, \mathrm{e}, \mathrm{i} \end{array}$	-	$\begin{array}{r} \mathrm{H}, \mathrm{I} \\ \mathrm{~s}, \mathrm{t}, \mathrm{u} \\ \hline \end{array}$	-	-	Mother, Brother Maternal aunt, Maternal cousin : GJH
717	20-29	F	8	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{a}, \mathrm{~d}, \mathrm{f} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \\ & \hline \end{aligned}$	-	-	Father: GJH
718	30-39	F	5	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a}, \mathrm{~d} \end{aligned}$	$\overline{D, G}$	$\begin{array}{\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{u} \end{array}$	-	-	Father: 3 paternal aunts: Brother SVT. Mother: GJH Children: GJH
803	20-29	F	8	$\begin{array}{\|l\|} \hline \mathrm{A}, \mathrm{C} \\ \mathrm{~d} \\ \hline \end{array}$	${ }^{-}$	$\begin{array}{\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{~s}, \mathrm{U} \\ \hline \end{array}$	j	-	Son: GJH
806	10-19	M	-	$\begin{array}{\|l\|l\|} \hline B, C \\ e, i \end{array}$	${ }^{-}$	$\begin{array}{\|l\|l} \hline \mathrm{H} \\ \mathrm{u} \\ \hline \end{array}$	1	-	Mother: GJH, Brother: GJH
1002	50-59	F	7	$\overline{A, C}$ d, i	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{u} \\ & \hline \end{aligned}$	-	-	Mother: mitochondrial myopathy Father: GJH
1365	20-29	F	9	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{i} \end{aligned}$	$\overline{-}$	$\begin{array}{\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{~s}, \mathrm{u} \end{array}$			Mother: GJH Father: GJH, HS
1451	10-19	F	9	A,C $\mid \mathrm{d}, \mathrm{~g}, \mathrm{i}$	-	$\mathrm{H}_{\mathrm{H}, \mathrm{I}}$	-	-	Father: TS, Bru, AAANOS, AoR, classical EDS phenotype with cauliflower fibres on EM; Paternal grandmother: TS, Bru Paternal Great grandfather: TS, Bru, AAA
1524	50-59	F	3	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g} \end{aligned}$	D_{D}	$\begin{array}{\|l\|l\|} \hline \mathrm{H}, 1 \\ \hline \end{array}$		-	Mother: GJH, intestinal rupture
1528	30-39	M	-	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{~g} \end{aligned}$	$\overline{\bar{x}_{1, q}}$	$\begin{array}{\|l\|l\|} \hline \mathrm{n}, \mathrm{I} \\ \mathrm{~s}, \mathrm{u} \end{array}$	${ }^{-}$	-	Son: Fragile skin, GJH

Key: EDS Diagnostic Criteria (Villefranche 1997)
cEDS Major: A. Hyperextensible skin; B. Atrophic scars; C. Joint Hypermobility.
cEDS Minor: a. Smooth, velvety skin; b. Molluscoid pseudotumors; c. Subcutaneous spheroids; d. Complications of joint hypermobility (e.g., sprains, dislocations/subluxations, pes planus);
e. Muscle hypotonia, Delayed gross motor development; f. Easy bruising; g. Manifestations of tissue extensibility and fragility (e.g., hiatal hernia, anal prolapse in childhood, cervical insufficiency);
h. Surgical complications (postoperative hemias); i. Positive family history.
vEDS Major: D. Thin translucent skin; E. Intestinal/ Arterial/ Uterine fragility and/or rupture; F. Extensive bruising; G. Characteristic Facial appearance.
vEDS Minor: j. Acrogeria; k. Hypermobility of small joints; I. Tendon and muscle rupture; m. Talipes equinovarus (clubfoot); n. Early-onset varicose veins;
o. Arteriovenous, carotid-cavemous sinus fistula; Positive family history, sudden death in (a) close relative(s).p. Pneumothorax/pneumohemothorax; q. Gingival recession; r.
heDS Major: H. Generalised Joint Hypermobility; I. skin involvement.
hEDS Minor: s. Recurring joint dislocations; t. Chronic joint/limb pain; u. Positive family history
kEDS Major: J. GJH; K. Severe muscle hypotonia at bitth; L. Scoliosis at birth progressive; M. Scleral fragility and rupture of the ocular globe.
kEDS Minor: v. Tissue fragility, including atrophic scars; w. Easy bruising; x. Arterial rupture; y. Marfanoid habitus; z. Microcornea; aa. Radiologically considerable osteopenia; bb. Family history, i.e., affected sibs.
Abbreviations (alphabetical order): Abdominal Aortic aneurysm (AAA), Aortic aneurysm - NOS (AA-NOS), Aortic root dilatation (AoR), Blue sclera (BS), Bruising (Bru), Camptodactyly (Camp),
Congenital bilateral hip dislocation (CHD), Constipation (Con), Deafness (D), Disproportionate Tall stature (TS), Fatigue (Ftg), Gastroesophageal reflux (GORD), Hallux valgus (HV), Hip dysplasia (HD), Hyperextensible skin (HS),
intracranial aneurysm (ICA), Kyphosis (Kyph), Mitral Valve Prolapse (MVP), Mitral Valve Regurgitation (MVR), Myopia (My), Osteopenia (OP), Pectus excavatum (PE), Pelvic girdle muscle weakness (PGMW),
Periodontitis (Pd), Pes planus (PP), Premature osteoarthritis (Poa), Retinal Detachment (RD), Scoliosis (Sco), Soft velvety skin (SS), Striae (Str), Thin Skin (TS), Thoracic Aortic aneurysm (TAA), Urinary incontinence (UI), Joint Hypermobility (JHM), Varicose veins (VV)

Supplementary Table 2. Phenotypic data for vEDS Patients.

Patient ID	Age	Sex	Beighton score	cEDS Major criteria Minor criteria	vEDS Major criteria Minor criteria	hEDS Major criteria Minor criteria	kEDS Major criteria Minor criteria	Vascular/cardi ac complications	Family History
44	30-39	F	5	$\begin{aligned} & \mathrm{C} \\ & \mathrm{a}, \mathrm{~d} \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{G} \\ \mathrm{q} \end{array}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{u} \end{aligned}$	-	-	Mother: GJH, OP
372	40-49	F	-	$\begin{aligned} & \mathrm{B} \\ & \mathrm{f} \end{aligned}$	$\begin{aligned} & \mathrm{D}, \mathrm{~F} \\ & \mathrm{j}, \mathrm{n} \end{aligned}$	$\overline{-}$	$\left.\right\|_{-} ^{-}$	VV	Father: TS, D Sister: D Brother: D.
482	20-29	F	6	$\begin{aligned} & C \\ & d, g, h, i \end{aligned}$	D	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$	$\left.\right\|_{-} ^{-}$	-	Mother GJH Father GJH, SS Full Sister: GJH Full brother: GJH, HS Half-sister (mother's side): GJH, TS Half sister (father's side), GJH, HS Half brother (father's side): GJH, HS Maternal aunt: Subarachnoid haemorrhage
798	20-29	F	5	$\begin{aligned} & \text { C } \\ & d, f, i \end{aligned}$	$\begin{aligned} & \mathrm{D}, \mathrm{E} \\ & \mathrm{k} \end{aligned}$	H	$\left.\right\|_{-} ^{-}$	Cavernous hemangioma	Father: GJH, Soft Skin Brother: GJH Paternal aunts: GJH Paternal uncle: GJH
1346	30-39	F	4	A, C d	D, E, G	H, I		Scoliosis	FHx (paternal side): ventricular tachycardia, Atrial fibrillation

EDS Diagnostic Criteria and Abbreviations as per lists in Supplementary Table 1.

Patient ID	Age	Sex	Beighton score	cEDS Major criteria Minor criteria	vEDS Major criteria Minor criteria	heDs Major criteria Minor criteria	kEDS Major criteria Minor criteria	Other features	Vascular/ cardiac complications	GI Symp	Dys- Autonomia	Family History
61	30-39	F	-	${ }^{\text {c }}$	-	${ }_{-}^{\mathrm{H}}$	-	-	-	-	-	Son: hEDS Sister: hEDS, COL3A1:VUS
65	60-69	F	3	${ }^{\text {c }}$	E	H	-		$\begin{aligned} & \text { Aneurysm, } \\ & \text { NOS } \end{aligned}$	-	+	Mother: ICA Paternal grandmother: Cerebral Hemorrhage Paternal uncle: Cerebral Hemorrhage
70	10-19	M	4	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{i} \end{aligned}$	-	$\begin{array}{\|l\|l} \hline \mathrm{H} \\ \mathrm{t}, \mathrm{u} \end{array}$	-	$\begin{array}{\|l} \hline \begin{array}{l} \text { ejection } \\ \text { systolic click } \end{array} \end{array}$	-	-	-	Mother: hEDS Maternal grandmother: OA, GJH, Umbilical hernia
74	50-59	F	-	c	$\overline{q, r}$	$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{t} \\ \hline \end{array}$	-	Str	-	-		Brother: PXE Mother: AA-NOS, Bru,VV
100	50-59	F	7	$\begin{array}{\|l\|} \hline \mathrm{A}, \mathrm{C} \\ i \\ \hline \end{array}$	E	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \\ & \hline \end{aligned}$	-	-	ICA	-	-	$\begin{array}{\|l} \hline \text { Brother: GJH } \\ \text { Daughter: GJH } \end{array}$
107	40-49	M	${ }^{4}$	-	E	H,I	-	-	-	-	-	Paternal grandfather: AA NOS Sister: hEDS Paternal cousin 1: TAD. Paternal cousin 2: AoR.
191	30-39	F	3	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d} \end{aligned}$	$\overline{\mathrm{n}}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$	-	MVP	-	-	-	Mother: GJH Daughter: GJH Son: GJH, GORD
374	50-59	M		$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d} \end{aligned}$	-	$\left\lvert\, \begin{aligned} & \mathrm{H} \\ & \mathrm{t} \end{aligned}\right.$	-	$\begin{array}{\|l\|} \hline \text { MVP } \\ \text { aortic } \\ \text { valve surgery } \end{array}$	-		-	N/A
385	30-39	F	-	$\begin{aligned} & \mathrm{c} \\ & \mathrm{f} \end{aligned}$	$\overline{{ }_{r}}$	${ }_{-}^{\mathrm{H}, \mathrm{I}}$	-	MVP	-	-	+	Father: ICA Paternal grandmother: ICA, AAA
395	50-59	M	-	$\begin{array}{\|l\|} \hline \mathrm{A}, \mathrm{C} \\ \mathrm{a}, \mathrm{i} \end{array}$	-	$\begin{array}{\|l\|l} \hline \text { H,I } \\ u \\ \hline \end{array}$	-	-	-	-	-	Daughter: MVP, GJH, SS, HS, BS
397	20-29	F	-	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{a}, \mathrm{~d} \end{aligned}$	-	$\begin{array}{\|l\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \hline \end{array}$	-	MVP	-	+	-	Mother: cEDS/ hEDS overlap Father: hEDS
402	30-39	M	6	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$		$\begin{array}{\|l\|l} \hline \mathrm{H}, \mathrm{I} \\ u \end{array}$	-	-	-	-	-	Father: GJH, TS Sister: Knee dislocation, GJH, Heart murmur
404	40-49	M	9	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{a}, \mathrm{~d}, \mathrm{f}, \mathrm{i} \end{aligned}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	-	-	-	-	-	Mother: GJH Father: GJH Paternal grandmother: AA-NOS Paternal grandfather: AA- NOS Daughter: hEDS
428	60-69	F	-	$\begin{array}{\|l\|} \hline \mathrm{B}, \mathrm{C} \\ \mathrm{a}, \mathrm{f}, \mathrm{~g} \end{array}$	$\begin{aligned} & \hline \mathrm{D,F} \\ & \mathrm{a} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \\ & \hline \end{aligned}$	$\overline{\bar{v}^{\prime}}$	Poa		-	-	Daughter: hEDS
475	30-39	F	7	${ }_{\mathrm{a}, \mathrm{~d}, \mathrm{~g}, \mathrm{i}}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$			-	-	+	$\begin{aligned} & \text { Daughter: PP, GH } \\ & \text { Son 1: GH, IF } \\ & \text { Son 2: GHH, Ftg } \\ & \hline \end{aligned}$
495	40-49	F	${ }^{6}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d}, \mathrm{~g}, \mathrm{i} \end{aligned}$	$\overline{-}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$		PGMW OP Bradycardia	-	-	-	Daughter: PGMW, UI Mother: PGMW, UI Sister 1: PGMW Sister 2: PGMW, VV. Sister's 2 children: GJH Maternal aunt: PGMW, UII, VV
536	40-49	M	1	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$	$\begin{array}{\|l\|} \hline D \\ \text { p.r } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ u \\ \hline \end{array}$		Dilated cardiomyopath		-	-	-
560	20-29	F	5	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$		$\begin{array}{\|l\|l} \hline \text { H,I } \\ u \end{array}$	-	-	-	+	-	Mother: hEDS Sister: hEDS, Filamin A gene mutation in exon 48 (de novo) Maternal Grandmother: GJH
566	60-69	M	4	A, C	E	$\begin{array}{\|l\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \hline \end{array}$	$\begin{aligned} & j_{x, y, \text { a }} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { OP } \\ \mathrm{Vv} \end{array}$	-	-	-	Father: TS, My Mother: My
584	20-29	F	-	$\overline{A, C}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$		PE	-	-	-	Son 1: hEDS, TS, oneumothorax Son 2: GJH, Hyperextensible skin, PE
612	30-39	F	7	$\begin{aligned} & \hline \mathrm{c} \\ & i \\ & \hline \end{aligned}$	I-	$\begin{array}{\|l\|l} \hline \mathrm{H} \\ \mathrm{u} \end{array}$		-	-	-	-	Daughter: hEDS
621	20-29	F	6	${ }^{\text {A, B }}$	${ }^{-}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$	-	Palpitations	-	+	-	Mother: GJH, Maternal aunt: GJH, Sister (identical twin): GJH
630	30-39	F	7	$\bar{l} \begin{aligned} & \mathrm{c} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{~g} \end{aligned}$	-	$\begin{array}{\|l\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{t}, \mathrm{u} \end{array}$	$\overline{\mathrm{y}}$	PGMW MVR, Aortic regurgitation; Tricuspid regurgitation	-	+	-	Father: GJH, TS Paternal grandfather: GJH, TS Paternal great grandfather: GJH, TS
638	40-49	F	-			$\begin{aligned} & \hline \begin{array}{l} H, 1 \\ s, t, u \\ \hline \end{array} \\ & \hline \end{aligned}$			-	-	+	Sister: hEDS Father: TS
650	30-39	F	7	c	$\bar{\circ}$	+		Livedo reticularis		+	-	FHx of GJH Maternal aunt: Pulmonary artery atresia

669	20-29	F	7	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{~g}, \mathrm{i} \end{aligned}$	E	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{u} \end{aligned}$	-	PMGW	-	-	-	Mother: PGMW Sister: GJH, PGMW Daughter: hEDS
670	30-39	F	8	$\begin{aligned} & \mathrm{B}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \end{aligned}$	D	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & u \end{aligned}$	-	PMGW	-	-	-	Mother: PGMW, GH Father: SS, Dupuytren's contracture Daughter: Goldenhaar syndrome, GJH Son: GJH, Cleft palate
673	50-59	м	3	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~g} \end{aligned}$	D	$\begin{aligned} & \mathrm{H} \\ & \mathrm{u} \end{aligned}$	${ }_{-}^{-}$	-	AoR	-	-	$\begin{array}{\|l} \hline \begin{array}{l} \text { Son: GJH } \\ \text { Sister: GJH } \end{array} \end{array}$
681	50-59	F	-	${ }^{\mathrm{A}, \mathrm{C}}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$	$\begin{aligned} & \mathrm{J}, L \\ & v, y \end{aligned}$	$\begin{aligned} & \hline \text { TS } \\ & \text { PGMW } \end{aligned}$	-	+	-	Mother: GJH Father: Aortic aneurysm
682	40-49	F	6	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~g}, \mathrm{i} \end{aligned}$	E	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$		Pd	-	+	-	Mother: $\mathrm{GJH}, \mathrm{Pd}$ Father: GJH, Pd Brother: GJH, Pd Sister: GJH, Pd Maternal aunt: GJH, Pd
703	10-19	F	-	${ }_{-}^{\text {c }}$	-	$\begin{array}{\|l\|l} \hline \mathrm{H} \\ \mathrm{t}, \mathrm{u} \\ \hline \end{array}$	-	-	-	-	-	-
755	40-49	F	4	$\begin{array}{\|l\|} \hline \mathrm{A}, \mathrm{C} \\ \mathrm{~d}, \mathrm{e} \\ \hline \end{array}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & u \\ & \hline \end{aligned}$	${ }_{-}^{\text {J,K }}$	-	-	+	-	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Father: TS } \\ \text { 2 daughters: GJH, CHD } \end{array} \\ \hline \end{array}$
761	20-29	M	6	$\begin{aligned} & \mathrm{B}, \mathrm{c} \\ & \mathrm{~d}, \mathrm{f} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$	jo	$\begin{array}{\|l} \hline \text { tall } \\ \text { stature } \\ \text { tibial bowing } \\ \text { Sco } \\ \hline \end{array}$	-	-	+	Mother: GJH, Maternal cousins: GJH
769	20-29	F	3	$\begin{aligned} & \hline c \\ & d, g \end{aligned}$		$\mathrm{l}_{\mathrm{s}, \mathrm{t}, \mathrm{u}}$		brachydactyly	-	+	-	Mother: GJH Maternal mother: GJH Maternal grandmother: GJH Maternal great grandmother: GJH Maternal aunt: GJH Father: GJH, brachydactyly Paternal grandmother: OA, OP
778	20-29	F	7	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$		Palpitations	-	+	+	Mother: GJH, Cerebral Hemorrhage Maternal grandmother: GJH Children: GJH
781	40-49	F	5	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{f} \end{aligned}$	E	$\left.\right\|_{\mathrm{t}, \mathrm{u}} ^{\mathrm{H}, \mathrm{I}}$		-	${ }^{\text {ICA }}$	*	-	Father: GJH, Hyperextensible skin Paternal grandmother: GJH, Hyperextensible skin Children: GJH Grandson: GJH
884	10-19	м	9	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{e}, \mathrm{f} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	$\left.\right\|_{\mathrm{w}} ^{j}$	-	-	+	+	Mother: hEDS, BS Half-sister: hEDS, BS Maternal grandmother: heDS, BS, IF Uncle: hEDS, BS
886	30-39	F	${ }^{6}$	$\begin{aligned} & \mathrm{c} \\ & - \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{H} \\ & u \end{aligned}$	-	-	-	-	-	Son: hEDS, BS, GORD Daughter: hEDS, BS Mother: hEDS, BS, IF Brother: hEDS, BS
922	30-39	F	6	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{f} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{E} \\ \mathrm{k} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	-	-	-	-	-	Brother: GJH, TS, PE
967	10-19	F	8	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a}, \mathrm{~d}, \mathrm{f}, \mathrm{i} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{u} \end{aligned}$	-	-	-	+	-	Mother: GJH, PGMW Maternal grandmother: PGMW Maternal aunt: GJH, PGMW
1263	30-39	F	5	$\begin{array}{\|l\|} \hline \mathrm{c} \\ \mathrm{~d}, \mathrm{f} \end{array}$	$\begin{array}{\|l\|} \hline D \\ n, r \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & u \\ & \hline \end{aligned}$	-	-	-	-	-	-
1289	10-19	F	9	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{a}, \mathrm{~d} \\ & \hline \end{aligned}$	D	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{u} \\ & \hline \end{aligned}$	$\begin{aligned} & j \\ & y \\ & \hline \end{aligned}$	-	-	-	Raynaud disease_OMI	Mother: GJH Maternal cousin: GJH
1337	40-49	F	5	$\begin{array}{\|l} \hline \mathrm{c} \\ \mathrm{~d} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline E \\ \hline \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathrm{H} \\ u \\ \hline \end{array}$		-	$\begin{aligned} & \text { Carotid artery } \\ & \text { dissection } \end{aligned}$	+	-	$\begin{array}{\|l\|} \hline \text { Mother: GJH } \\ \text { Sister: GJH, CHD } \\ \hline \end{array}$
1341	30-39	F	8	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$	D	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$		-	-	-	-	Father: Shoulder subluxation Brother: Shoulder subluxation Sister: Shoulder subluxation Maternal grandfather: VV Maternal uncle: GJH, VV, MVP Maternal aunt: VV
1344	40-49	F	-	$\begin{array}{\|l\|} \hline A, C \\ a, d, h, i \end{array}$	-	$\begin{array}{\|l} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{~s} \\ \hline \end{array}$	-	OP	-	-		Father: GJH
1393	0-9	F	5	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~d}, \mathrm{e}, \mathrm{i} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$		-	+	-	-	Mother: JHM, HS Father: JHM, TS, marfanoid Brother: JHM, SS. Multiple maternal relatives with GJH
1397	0-9	F	5	$\begin{array}{\|l} \hline \mathrm{c} \\ \hline \end{array}$	-	$\begin{array}{\|l\|l} \hline \mathrm{H} \\ \mathrm{u} \end{array}$		-	-	-	-	Mother: hEDS Brother: hEDS
1399	30-39	F	${ }^{4}$	$\begin{array}{\|l} \hline \mathrm{c} \\ \mathrm{~d} \end{array}$	I_{-}^{-}	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~s}, \mathrm{u} \end{aligned}$		-	-	+	-	Son: hEDS Daughter: hEDS

1403	40-49	M	7	$\begin{aligned} & c \\ & a, d \end{aligned}$	E	$\left.\right\|_{\text {H,I }}$	$\left.\right\|_{\text {x, }}{ }^{\text {y }}$	-	SaH AoR	-	-	Brothers: TS Maternal uncle: PE Son: PE
1421	10-19	M	7	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a} \end{aligned}$	-	H,I u	-	-	-	-	-	Mother: hEDS Maternal grandfather: Abnormality of bladder, GJH
1422	40-49	F	-	A, C	-	H, I	${ }^{w}$	sco	-	+	-	Father: Abnormality of bladder, GJH Son: hEDS
1424	0-9	F	9	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{e} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & u \end{aligned}$	-	PE	-	+	-	Mother: GJH Father: GJH
1425	20-29	F	-	${ }^{\text {c }}$	-	H	-	-	-	+	+	Mother: GJH Father: GJH
1431	30-39	F	3	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{~g} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{u} \end{aligned}$	-	CHD	renal pelvis \|bleed	-	+	Father: TS, Kyph, My, RD Paternal uncle: My, RD Paternal aunt: My, RD Brother: My, RD Paternal cousin: Sudden cardiac death Paternal relative: Sudden cardiac death, GJH
1437	40-49	F	8	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline E \\ -c \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	-	-	-	+	-	$\begin{aligned} & \text { Father: GJH } \\ & \text { Son: GJH } \end{aligned}$
1438	10-19	M	5	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{f} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \hline \\ & \hline \end{aligned}$		TS	-	Con	-	Mother: GJH, Arthralgia, Dysautonomia Brother: hEDS
1439	10-19	M	7	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{f}, \mathrm{~g} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \hline \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \mathrm{s}, \mathrm{bb} \\ \hline \end{array}$	-	-	-	-	Mother: GJH, Arthralgia, Dysautonomia Brother: hEDS
1443	20-29	F	${ }^{6}$	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{~d}, \mathrm{e} \end{aligned}$	-	$\mathrm{H}_{\mathrm{t}}^{\mathrm{H}}$	-	-	-	+	+	Paternal grandmother: AAA Maternal grandfather: ICA
1444	30-39	F	${ }^{6}$	-	-	${ }_{-}^{+}$	-	-	-	+	+	Cousin: GJH
1450	30-39	F	-	$\begin{array}{\|l\|} \hline B, C \\ \hline \end{array}$	-		-	str	-	-	-	Mother: GJH, recurrent miscarriage Sister: GJH
1455	50-59	M	${ }^{6}$	A, C	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	-	$\begin{array}{\|l} \hline \begin{array}{l} \text { tall } \\ \text { stature } \\ \text { OP } \\ \text { aortic ejection } \\ \text { click } \end{array} \\ \hline \end{array}$	vv	-	-	Daughter: GJH, TS
1461	30-39	F	5	c	-			-	-	-	+	Maternal grandfather: AAA; TS Nieces from both paternal and maternal side: GJH
1462	20-29	F	8	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a}, \mathrm{~d}, \mathrm{f} \end{aligned}$		$\begin{array}{\|l} \mathrm{H} \\ \mathrm{t} \\ \hline \end{array}$	$\int_{\mathrm{w}, \text { aa }}^{\mathrm{J}}$	$\begin{array}{\|l\|} \hline \mathrm{PE} \\ \mathrm{OP} \\ \hline \end{array}$	-	+	+	$\begin{aligned} & \hline \text { Mother: GJH, PP, } \\ & \text { Dysautonomia } \\ & \text { Sister: Arthralgia } \end{aligned}$
1464	70-79	F	-	c	-	H	-	-	-	-	-	-
1477	20-29	M	7	$\begin{aligned} & c \\ & c_{d, i} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$	-	-	-		-	Brother: GJH
1482	50-59	F	5	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d} \end{aligned}$	D	$\begin{aligned} & \mathrm{H}_{\mathrm{s}, \mathrm{I}} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$		$\begin{aligned} & \hline \text { tall } \\ & \text { stature } \end{aligned}$	-	-	-	$\begin{array}{\|l} \hline \text { Father: HTAD age 69 } \\ \text { Mother: GH, Raynaud } \\ \text { disease } \\ \text { Daughter: GHH } \\ \text { Paternal uncle's } \\ \text { daughter: Knee } \\ \text { dislocation } \\ \hline \end{array}$
1484	50-59	F	${ }^{4}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d}, \mathrm{~h} \end{aligned}$	-	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$		-	vv	-	-	Mother: VV Father: VV Sisters: V V Sons: pain susceptibility, GJH Daughter: pain susceptibility
1491	20-29	F	6	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d}, \mathrm{f} \end{aligned}$	-	$\begin{array}{\|l\|} \hline H \\ t \\ \hline \end{array}$	$\overline{\bar{I}_{y}}$	-	-	-	-	-
1495	20-29	F	8	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{~d} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{t}, \mathrm{u} \\ & \hline \end{aligned}$	-	$\begin{array}{\|l\|} \hline \text { flexion } \\ \text { contractures } \end{array}$	-	-	+	$\begin{aligned} & \text { Father: spina bifida } \\ & \text { Mother: GJH } \\ & \hline \end{aligned}$
1498	40-49	M	-	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{i}^{2} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{y}, \mathrm{bb} \end{aligned}$	$\begin{aligned} & \hline \text { tall } \\ & \text { stature } \end{aligned}$	-	-	-	Mother: GJH Daughter: hEDS
1499	10-19	F	5	${ }_{\text {i }}{ }^{\text {, }}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$	$\begin{aligned} & \mathrm{J}, \mathrm{~L} \\ & \mathrm{y}, \mathrm{bb} \end{aligned}$	-	-	+	+	Father: GH, Sco
1500	20-29	F	4	$\begin{aligned} & \begin{array}{l} B, C \\ d, e, f \end{array} \\ & \hline \end{aligned}$	E	$\begin{array}{\|l\|l} \mathrm{H} \\ \mathrm{u} \end{array}$	-	-	SaH		-	Mother: GJH
1502	10-19	F	8	$\begin{aligned} & \mid \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{e}, \mathrm{f} \end{aligned}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$	$\left.\right\|^{-}$	$\begin{aligned} & \text { umbilical } \\ & \text { hemia } \end{aligned}$	Epistaxis	-	+	 Mother: Epistaxis, GJH, PGMW Maternal aunt: Epistaxis Maternal great- grandmother: Cerebral Hemorrhage Father: TS, Hyperextensible skin Brother: GJH
1507	30-39	M	-	$\begin{array}{\|l\|} \hline B, C \\ a, f, g \end{array}$	-	$\begin{array}{\|l\|l\|} \hline \mathrm{H}, \mathrm{I} \\ u \end{array}$	-	MVP TS OP Sco	-	-	-	Mother: GJH Sister: GJH

1511	10-19	M	6	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$	--	$\mathrm{H}_{\mathrm{H}, \mathrm{I}}$	-	-	-	+	--	Mother: GJH Maternal grandfather: GJH Brother: hEDS Sister: GJH
1526	30-39	F	3	$\begin{aligned} & \mathrm{c} \\ & \mathrm{f}, \mathrm{~g} \end{aligned}$	-	$\begin{aligned} & \mathrm{H} \\ & u \end{aligned}$	-	-	-	+	-	Mother: VV, PGMW Brother: GJH Son: hEDS Cousins (maternal side): hEDS
1527	10-19	M	3	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{~d}, \mathrm{f} \end{aligned}$	-	$\begin{aligned} & \mathrm{H} \\ & u \end{aligned}$	-	-	-	-	+	Mother: hEDS Maternal grandmother: VV, PGMW Maternal uncle: GJH
1530	10-19	F	6	$\overline{\mathrm{g}}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u}^{\prime} \end{aligned}$			-	-	-	$\begin{array}{\|l\|} \hline \text { Mother: Str } \\ \text { Father: Str, GJH } \\ \text { Brother: Str } \\ \hline \end{array}$
1579	50-59	F	6	$\begin{array}{\|l\|} \hline c \\ d, f \\ \hline \end{array}$	-	$\begin{array}{\|l\|l} \hline \mathrm{H} \\ \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{array}$	-	PGMW	-	+	-	$\begin{aligned} & \text { Father: AAA } \\ & \text { Son: }+ \\ & \hline \end{aligned}$
1580	30-39	F	-	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$	-	-	-	-	-	Mother: GJH
1581	40-49	F	7	$\begin{aligned} & \mathrm{c} \\ & \mathrm{f} \end{aligned}$	-	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{H} \\ \mathrm{u} \end{array} \\ \hline \end{array}$	-	-	-	-	-	-
1582	50-59	F	7	$\begin{array}{\|l\|} \hline \mathrm{c} \\ \mathrm{~d}, \mathrm{e}, \mathrm{f} \end{array}$	-	$\begin{array}{\|l\|l} \hline \mathrm{H}, \mathrm{l} \\ \mathrm{t}, \mathrm{u} \\ \hline \end{array}$	-	-	-	-	+	Son: hEDS
1595	10-19	F	7	$\begin{aligned} & \text { c } \\ & \text { a } \end{aligned}$	-	$\begin{array}{\|l\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{u} \end{array}$	-	-	-	-	-	Mother: hEDS Sister: GJH Maternal aunt: GJH
1596	50-59	F	-	c		$\left.\right\|_{\mathrm{t}, \mathrm{u}} ^{\mathrm{H}}$		-	-	+	+	$\begin{aligned} & \hline \text { Sister: GJH, } \\ & \text { Hyperextensible skin } \\ & \text { Daughters: hEDS } \\ & \hline \end{aligned}$
1600	20-29	F	8	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d}, \mathrm{f} \end{aligned}$		$\left\lvert\, \begin{aligned} & \mathrm{H} \\ & \mathrm{t}, \mathrm{u} \end{aligned}\right.$		$\begin{array}{\|l\|l\|} \hline \text { Pp } \\ \text { Sco } \end{array}$	-	+	+	Father: GJH Sister: GJH Paternal grandfather: GJH Paternal uncles: GJH Paternal cousin: GJH
1603	30-39	F	6	$\begin{aligned} & \mathrm{c} \\ & \mathrm{f} \end{aligned}$	-	$\begin{array}{\|l\|l} \hline \mathrm{H} \\ \mathrm{t}, \mathrm{u} \\ \hline \end{array}$	-	-	-	+	+	$\begin{aligned} & \text { Paternal grandmother: } \\ & \text { GJH } \\ & \hline \end{aligned}$
1605	30-39	F	4	-	-	$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{t} \\ \hline \end{array}$	-	-	-	-	+	N/A
1607	40-49	F	6	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d}, \mathrm{f} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{l} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$	-	-	-	+	-	Son: hEDS
1609	30-39	F	8	$\begin{aligned} & \text { c } \\ & \hline \end{aligned}$	-	$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{t} \\ \hline \end{array}$	-	-	-	$\begin{aligned} & +, \text { Crohn's } \\ & \text { disease } \end{aligned}$	-	-
1613	50-59	F	5	$\begin{array}{\|l\|} \hline c \\ a, ~ d \\ \hline \end{array}$	-	$\begin{array}{\|l\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{~s}, \mathrm{t} \\ \hline \end{array}$	-	PP	-	-	-	-
1616	20-29	F	7	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{l} \\ & \mathrm{~s}, \mathrm{t} \end{aligned}$		PP	-	-	-	-
1618	30-39	F	8	$\begin{array}{\|l\|} \hline c \\ d, g \\ \hline \end{array}$	-	$\begin{array}{\|l\|l} \hline \mathrm{H} \\ \mathrm{t} \\ \hline \end{array}$	-	-	-	-	-	-
1620	20-29	M	${ }^{6}$	$\begin{aligned} & c \\ & c_{d, f} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{l} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$	-					
1626	10-19	F	8	$\begin{array}{\|l} \hline \mathrm{c} \\ \mathrm{~d} \\ \hline \end{array}$	-	$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{u} \\ \hline \end{array}$	-	-	-	+	-	-
1629	30-39	F	5	$\begin{aligned} & \hline \begin{array}{l} c \\ d, f \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} -\bar{n} \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} H, 1 \\ s, t, u \end{array} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { PGMW } \\ & \text { Str } \\ & \hline \end{aligned}$	-	+	+	$\begin{aligned} & \text { Sister: hEDS } \\ & \text { Son: GJH } \\ & \hline \end{aligned}$
1630	30-39	F	8	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{a}, \mathrm{~d} \\ & \hline \end{aligned}$	-	$\begin{array}{\|l} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{t} \\ \hline \end{array}$	-	-	-	+	-	-
1641	30-39	F	7	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d} \end{aligned}$	-	$\begin{array}{\|l} \mathrm{H} \\ u \\ \hline \end{array}$		PP	-	-	-	-
1642	20-29	F	-	c	-	$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{t} \\ \hline \end{array}$	I-	-	-	-	-	-
1656	20-29	F	7	$\begin{aligned} & c \\ & c \\ & d, f \end{aligned}$	-	$\begin{array}{\|l\|} \hline \mathrm{H} \\ \hline \end{array}$	-	-	-	-	+	-
1665	30-39	F	8	$\begin{array}{\|l\|} \hline \mathrm{c} \\ \mathrm{a}, \mathrm{~d}, \mathrm{f} \end{array}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$	${ }^{-}$	sco	-	+	+	$\begin{aligned} & \text { Maternal grandmother: } \\ & \text { GJH } \\ & \text { Nice: GJH } \\ & \hline \end{aligned}$
1666	10-19	F	8	$\begin{array}{\|l} \hline \mathrm{c} \\ \hline \end{array}$	-	$\begin{array}{\|l\|l\|} \hline \mathrm{H} \\ \mathrm{t} \\ \hline \end{array}$		-	-	+		-
1669	30-39	F	8	$\begin{array}{\|l} \hline \mathrm{c} \\ \mathrm{~d} \\ \hline \end{array}$		$\begin{aligned} & \mathrm{H}, \mathrm{l} \\ & \mathrm{~s}, \mathrm{t} \\ & \hline \end{aligned}$		PP	-	-	+	-
1681	40-49	F	7	$\begin{aligned} & \mathrm{c} \\ & \mathrm{c}, \mathrm{~d}, \mathrm{f} \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \mathrm{H}, \mathrm{I} \\ \mathrm{t} \\ \hline \end{array}$		-	-	+	+	-
1682	30-39	F	8	$\begin{array}{\|l\|} \hline \text { c } \\ \text { d } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{t} \\ \hline \end{array}$		-	-	+	+	-
1695	20-29	F	8	$\begin{aligned} & \mathrm{c} \\ & \mathrm{f} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & u^{2} \\ & \hline \end{aligned}$		-	-	+	+	Mother: GJH
1714	40-49	F	5	$\begin{aligned} & \hline \mathrm{c} \\ & \hline \\ & \hline \end{aligned}$	-	$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{t} \\ \hline \end{array}$		CHD	-	+	+	-
1717	40-49	F	7	$\begin{array}{\|l} \hline \mathrm{c} \\ \mathrm{~d} \\ \hline \end{array}$	-	$\begin{array}{\|l\|} \hline H \\ t \\ \hline \end{array}$	-	Palpitations	-	+	-	-
1743	20-29	F	7	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{~d}, \mathrm{f} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s} \end{aligned}$	-	Kyph	-	+	-	-

EDS Diagnostic Criteria and Abbreviations as per lists in Supplementary Table 1.

Supplementary Table 4. Phenotypic data for kEDS Patients.

Patient ID	Age	Sex	Beighton score	cEDS Major criteria Minor criteria	vEDS Major criteria Minor criteria	hEDS Major criteria Minor criteria	kEDS Major criteria Minor criteria	$\begin{aligned} & \text { Other } \\ & \text { features } \end{aligned}$	Vascular/cardiac complications	Family History
821	0-9	M	-	\bar{c} e	-	H	J, K, L bb	pectus carinatum	-	Brother: Kyphosis, GJH, gross motor delay
1396	0-9	M	7	C e, f	${ }^{-}$	H u		umbilical hernia cutis laxa talipes valgus	-	Mother, Sister: hEDS

EDS Diagnostic Criteria and Abbreviations as per lists in Supplementary Table 1.

Supplementary Table 5. Phenotypic data for HDCT Patients.

Patient ID	Age	Sex	Beighton score	cEDS Major criteria Minor criteria		hEDS Major criteria Minor criteria	kEDS Major criteria Minor criteria	Other features	Vascular Complications	Family History
33	40-49	F	9	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{a}, \mathrm{~d}, \mathrm{f} \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{u} \end{aligned}$	$\begin{aligned} & \mathrm{s}, \mathrm{x}, \mathrm{y} \end{aligned}$	-	Carotid artery dissection	Son: GJH Father: GJH Paternal grandmother: GJH Maternal aunt: Cerebral Hemorrhage
34	30-39	F	3	$\begin{aligned} & \mathrm{A}, \mathrm{C}, \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$	E	H, I	-	-	Carotid dissection	Mother: HS Maternal grandfather: HS Father: HV Paternal grandmother: HV, GJH
35	30-39	F	-	$\begin{aligned} & B, C \\ & a, f \end{aligned}$	$\begin{aligned} & \mathrm{D}, \mathrm{E} \\ & \mathrm{k}, \mathrm{n}, \mathrm{r} \end{aligned}$	H	-	IF	-	Mother: peizogenic papules Maternal grandfather: peizogenic papules, Cerebral Hemorrhage
45	50-59	F	5	$\begin{aligned} & \mathrm{c} \\ & \hline \end{aligned}$	E	$\begin{aligned} & \mathrm{H} \\ & \mathrm{u} \end{aligned}$	-	Pectus, Kyph	Carotid artery dissection	Mother: GJH Brother: GJH 2 children: GJH
60	40-49	M	0	A	$\begin{aligned} & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & u \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	-	Carotid artery dissection	Son: GJH
72	50-59	M	-	A, C	$\begin{array}{\|l\|} \hline \mathrm{E} \\ \mathrm{j}, \mathrm{r} \end{array}$	-	-	PP, Str Aplasia/Hypop lasia of fingers	-	Brother: HTAD Father: AAA (in his late 90s) Mother: HTAD (in her early 70s)
73	10-19	M	5	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{f} \end{aligned}$	D, j, r	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{w}, \mathrm{bb} \end{aligned}$	-	Carotid artery stenosis	
79	40-49	M	7	$\begin{aligned} & - \\ & \mathrm{e}, \mathrm{i} \end{aligned}$		-	-	$\begin{aligned} & \text { PGMW, OP, } \\ & \text { HV } \end{aligned}$	Aneurysm	Father: GJH Paternal grandmother: GJH
99	60-69	M	0	$\begin{aligned} & \mathrm{A} \\ & \mathrm{a}, \mathrm{~d} \end{aligned}$	E	1	-	Bru, Kyph	Carotid artery dissection	-
422	0-9	F	6	$\begin{aligned} & \mathrm{c} \\ & \mathrm{f} \end{aligned}$	$\begin{aligned} & \mathrm{D}, \mathrm{~F} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	${ }^{1}$	-	-	Mother: GJH Father: Str Brother 1: JHM, Camp Brother 2: JHM, Camp, TS, Bru, Inguinal hernia Paternal grandfather: AAA
423	0-9	M	8	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{a}, \mathrm{~d} \end{aligned}$	q, r	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{v}, \mathrm{bb} \end{aligned}$			Mother: GJH Father: Str Sister: GJH, TS, AoR, Camp Brother: GJH, Camp, Bru, Inguinal hernia Paternal grandfather: Aortic aneurysm; TS
446	40-49	M	4	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{E} \\ \mathrm{f} \end{array}$	$\begin{aligned} & 1 \\ & u \end{aligned}$		-	Carotid artery dissection	Daughter 1: GJH Daughter 2: GJH
453	40-49	F	4	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{a} \\ & \hline \end{aligned}$	E	-	-	OP	Carotid artery dissection	Mother: Bru
474	60-69	F	0	$\begin{array}{\|l} - \\ \mathrm{d}, \mathrm{f} \\ \hline \end{array}$	D, E n			Triangular face, Microretrognat hia, High-	Epidural haemorrhage, VV	-
479	20-29	F	6	$\begin{array}{l\|l} \hline \mathrm{A}, \mathrm{C} \\ \mathrm{e}, \mathrm{f}, \mathrm{~g} \end{array}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & \mathrm{J}, \mathrm{~K} \\ & \mathrm{w} \end{aligned}$	PGMW	-	Mother: POA Maternal grandmother: MVR Maternal greatgrandmother: Cerebral Hemorrhage

505	10-19	F	-	- ${ }^{-}$	--	U ${ }_{\text {H }}$	-	Non- epidermolytic palmoplantar keratoderma	-	Mother: hEDS, PGMW Maternal grandmother, Maternal aunt 1: PGMW Maternal aunt 2: PGMW, VV Maternal aunt's 2 children, GJH
526	50-59	F	7	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a}, \mathrm{~d} \end{aligned}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & - \end{aligned}$	-	Lumbar scoliosis, Spondy lolithesi s, HV, Inflammatory arthropathy	${ }^{-}$	Daughter: GJH, MVP Maternal grandmother: Abnormal heart valve Maternal cousin: urinary incontinence Sister's daughter: Urinary incontinence, GJH
531	60-69	F	-	c	${ }_{-}^{-}$			-	-	Father: GJH, Nonepidermolytic palmoplantar keratoderma Sister GJH, Nonepidermolytic palmoplantar keratoderma, Dissecting aortic aneurysm Daughter: Nonepidermolytic palmoplantar keratoderma Maternal grandmother: GJH
532	40-49	M	2	-	F		$-$	-	HTAD	-
538	30-39	F	8	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{a}, \mathrm{~d} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u}, \\ & \hline \end{aligned}$	-	$\begin{array}{\|l\|} \hline \text { FLNA de novo } \\ \text { mutn } \\ \hline \end{array}$	HTAD	Mother: GJH Sister (pt 560): GJH
564	20-29	M	8	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{a}, \mathrm{~d}, \mathrm{~g} \end{aligned}$	${ }_{-}^{-}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	$-$	-	AoR	Father: hypertrophic obstructive cardiomyopathy Mother: GJH Brother: hypertrophic obstructive cardiomyopathy
567	50-59	M	4	$\begin{array}{\|l} \hline \mathrm{B} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathrm{E} \\ \hline \end{array}$	I	-	OP	Aneurysm; (ilio femoral artery)	-
620	20-29	F	5	$\begin{aligned} & \text { C } \\ & a, d, e, f, i \end{aligned}$		$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$	$\begin{aligned} & \mathrm{J}, \mathrm{~K} \\ & \mathrm{w}, \mathrm{y}, \mathrm{bb} \end{aligned}$	Sco, Higharched palate;	-	Mother: GJH Brother: Occipital horn syndrome, GJH, Kyph
635	40-49	F	7	$\begin{aligned} & \hline c \\ & a, i \end{aligned}$	$\begin{array}{\|} - \\ - \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$		Kyph, CHD, High-arched palate	-	Daughter: GJH, Spastic diplegia Bru, TS Son: GJH, Bru
651	20-29	F	-	c d	$\begin{aligned} & \mathrm{D} \\ & \mathrm{n}, \mathrm{r} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$		-	vv	Mother: Carotid artery aneurysm; VV, TS, GJH
707	10-19	M	1	$\begin{aligned} & - \\ & \mathrm{a}, \mathrm{~d}, \mathrm{e} \end{aligned}$	i-	$l_{\mathrm{s}, \mathrm{t}, \mathrm{u}}$	-	Poa	AoR	Sister: GJH,SS grandmother: GJH Paternal aunt: GJH Paternal grandmother: Bru
768	50-59	M	3	c				Micrognathia, High-arched palate; Kyp, PP	Aortic dissection, (infrarenal), Aneurysm	-
777	20-29	F	7	C	D	$\overline{-}_{\mathrm{t}, \mathrm{u}}$		OP	-	Mother: Cerebral aneurysm Maternal greatgrandmother: Cerebral aneurysm
800	60-69	F	8	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~d}, \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	PE, Hypodontia	-	-

810	10-19	M	8	$\begin{aligned} & \mathrm{A}, \mathrm{C} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{u} \end{aligned}$	$\begin{aligned} & \mathrm{J}, \mathrm{~K} \\ & \mathrm{y}, \mathrm{aa} \end{aligned}$	HV	-	Mother: GJH Father: GJH Brother: GJH Brother's daughters: GJH
814	30-39	F	8	$\begin{aligned} & \mathrm{B}, \mathrm{C} \\ & \mathrm{~d} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{n}, \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$	${ }^{j} \mathrm{v}$	PP, HP. PGMW, HD	-	Father: Pectus carinatum, GJH Paternal grandmother: GJH Mother: GJH Maternal aunt: GJH Sister 1: HTAD Sister 2: GJH, TS, Bru, Sco
1387	50-59	M	-	A	IE	1	-	OP	-	Mother: Cerebral Haemorrhage, Fibromuscular dysplasia
1394	20-29	M	4	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C} \\ & \mathrm{~g}, \mathrm{i} \end{aligned}$	-	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	-	Talipes Increased armspan to height ratio	-	Mother: hEDS Father: GJH, TS Sister: GJH,SS Maternal grandmother: GJH Maternal grandfather: GJH
1420	0-9	M	-	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~d} \end{aligned}$	-	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~s}, \mathrm{t} \end{aligned}$	${ }_{-}^{-}$		-	-
1503	0-9	F	8	$\begin{aligned} & \mathrm{c} \\ & \mathrm{e}, \mathrm{f} \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{t}, \mathrm{u} \end{aligned}$		-	-	Mother: GJH, SS Maternal grandmother: GJH, Subarachnoid haemorrhage Maternal uncle: GJH Brother: GJH
1504	40-49	F	-	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a}, \mathrm{f} \end{aligned}$	$\begin{aligned} & \mathrm{D}, \mathrm{~F} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{u} \end{aligned}$	-	-	-	Sister: GJH Children: GJH
1625	60-69	F	-	$\begin{aligned} & - \\ & \mathrm{g} \end{aligned}$	$\begin{aligned} & - \\ & r \end{aligned}$	$\begin{aligned} & - \\ & \mathrm{t} \\ & \hline \end{aligned}$	-	-	AoR	-
1688	30-39	F	6	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{~d}, \mathrm{f} \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & \mathrm{H}, \mathrm{I} \\ & \mathrm{~s}, \mathrm{t}, \mathrm{u} \end{aligned}$		-	Subarachnoid haemorrhage	Brother: hEDS
1744	30-39	F	7	-	\|-	-	-	Osteochondriti s dessicans of ankles	-	Father: GJH Mother, Maternal grandmother: SaH

[^1]| Patient ID | Variant ID | Age | Sex | Clinical Diagnosis | Beighton score | Villefranche
 Criteria
 Major | $\left\|\begin{array}{c} \text { Aortic \& Other } \\ \text { Vascular } \\ \text { involvement } \end{array}\right\|$ | $\begin{array}{\|c\|} \hline \text { Auto. Dom } \\ \text { Family History } \end{array}$ | Skin Biopsy | $\begin{aligned} & \text { Gene } \\ & \text { NM } \end{aligned}$ | Protein | Rs ID
 ClinVar ID (classification) | gnomad
 allele frequency | CADD
 DANN | ACMGclassification
 (See footnote)ACMG criteria |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | Minor | | | | | | | | | |
| 33 | 1 | 40-49 | F | ноСт | 9 | $\left.\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{E}, \mathrm{H}, \mathrm{I}, \mathrm{~J}_{\mathrm{a}}^{\mathrm{a}, \mathrm{~d}, \mathrm{f}, \mathrm{n}, \mathrm{~s}, \mathrm{u}, \mathrm{w},} \\ & \mathrm{x}, \mathrm{y} \end{aligned} \right\rvert\,$ | MVR Carotid dissection | + | normal | TGFB3
 NM_003239.4
 c. $463 C>T$ | p. Arg 155Trp | rs868258653
 543955
 (LP/VUS) | 0 | $\begin{array}{\|c} 33 \\ 0.999 \end{array}$ | $\begin{aligned} & \hline \text { LP } \\ & \text { PM2, PP5 } \\ & \hline \text { PP3 (Supp) } \\ & \hline \end{aligned}$ |
| 34 | 2 | 30-39 | F | HDCT | 3 | | $\begin{aligned} & \text { Carotid artery } \\ & \text { dissection } \end{aligned}$ | ${ }^{+}$ | normal | COL5A1 NM_000093.4 c.4068G>A | Splice | 1000751 (VUS) | ${ }^{0}$ | $\begin{array}{\|l\|} \hline 14.8 \\ 0.808 \end{array}$ | $\begin{aligned} & \hline \text { LP } \\ & \text { PM2, PP5 } \\ & \text { PP3 (Supp) } \end{aligned}$ |
| 34 | 3 | 30-39 | F | HDCT | 3 | | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Carotid artery } \\ \text { dissection } \end{array} \\ \hline \end{array}$ | + | normal | ITGB3
 NM_000212.3
 c.5650T | p.Pro1895er | rs958609406 812735 (P) | 0.0000119 | $\begin{array}{\|l\|} \hline 28.9 \\ 0.999 \end{array}$ | P PP1, PS3 PS4, PP5 PP3 (S) PM2, PP2 |
| 402 | 4 | 30-39 | M | hEDS Marfanoid | 6 | $\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I} \\ & \mathrm{~d}, \mathrm{i}, \mathrm{u} \end{aligned}$ | - | + | normal | COL12A1
 NM_004370.6
 c.5097+16>A | Splice | - | 0.0000119 | $\begin{aligned} & 25.2 \\ & 0.992 \end{aligned}$ | $\begin{aligned} & \hline \text { LP } \\ & \text { PVS1, PM2 } \end{aligned}$ |
| 479 | 8 | 20-29 | F | HDCT | 6 | $\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I}, \mathrm{~J}, \mathrm{~K} \\ & \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{t}, \mathrm{w} \end{aligned}$ | - | + | normal | SMAD2
 NM_00100365
 2.3
 c.842A>T | p.Glu281Val | - | 0 | $\begin{gathered} 33 \\ 0.994 \end{gathered}$ | |
| 564 | 9 | 20-29 | M | HDCT | 8 | $\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I} \\ & \mathrm{a}, \mathrm{~d}, \mathrm{~g}, \mathrm{u} \end{aligned}$ | $\begin{array}{\|l} \hline \text { Aortic } \\ \text { dilatation } \end{array}$ | Biparental | $\begin{array}{\|l} \hline \text { abnormal } \\ \text { packing } \end{array}$ | TGFB2 NM_00113559 9.3 c.989G>A | p. Arg330His | rs1553303213 440982 (LP) | 0 | $\begin{array}{\|l} 34 \\ 0.999 \end{array}$ | P PM2, PM5 PM1, PP5 |
| 755 | 10 | 40-49 | F | neds | 4 | $\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I}, \mathrm{~J}, \mathrm{~K} \\ & \mathrm{~d}, \mathrm{e} \\ & \hline \end{aligned}$ | - | + | normal | COL12A1
 NM_004370.6
 c.8321G>A | p. G1y2774G1u | - | 0 | $\begin{array}{\|l\|} \hline 25.7 \\ 0.997 \\ \hline \end{array}$ | p
 PM2, PP3 (S) |
| 814 | ${ }^{14}$ | 30-39 | F | HDCT | 8 | $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{H}, \mathrm{J}$ $\mathrm{d}, \mathrm{n}, \mathrm{r}, \mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}$ | - | Biparental | $\begin{array}{\|l\|l\|} \hline \text { abnormal } \\ \text { packing } \end{array}$ | TGFBR2 NM_00102484 7.2 c.1613T>C | p.Val538Ala | - | ${ }^{0}$ | $\begin{aligned} & 26.3 \\ & 0.998 \end{aligned}$ | LP PM1, PM2 PP2 PS3 (ref 16) |
| 1420 | ${ }^{17}$ | 0-9 | M | HDCT | - | $\overline{\mathrm{c}, \mathrm{H}} \mathrm{d,s,t}$ | - | - | - | ALPL
 NM_000478. 6
 c. $3946 \times \mathrm{A}$ | p.Ala 132Thr | ${ }_{-}^{\text {1575771793 }}$ | 0.000004 | $\begin{aligned} & 33 \\ & 0.999 \end{aligned}$ | P PM1, PP2 PM2, PM5 PP3 (Sup) PP5 |
| 1484 | 18 | 50-59 | F | neds | 4 | c, H $\mathrm{d}, \mathrm{h}, \mathrm{s}, \mathrm{t}, \mathrm{u}$ | | | - | COMP
 NM_000095.3
 c. 2048 C | p.arg683Leu | r5565459602 | 0.0000239 | $\begin{aligned} & 34 \\ & 0.999 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{LP} \\ & \text { PM2, PP2 } \\ & \hline \mathrm{PP3} \text { (S) } \\ & \hline \end{aligned}$ |
| 1528 | 19 | 30-39 | M | cEDS | - | $\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{~g}, \mathrm{kq}, \mathrm{~s}, \mathrm{u} \end{aligned}$ | | - | - | COLLA1
 NM_00127807
 4.1
 c.3397OT | p.Arg1133Ter | rs886042045 280931 (P) | ${ }^{0}$ | $\begin{aligned} & 4_{0.998}^{41} \\ & 0.0 \end{aligned}$ | P
 PVS1, PP5
 PM2 |

Supplemental Table 6, 7 Keys:
Clinical Diagnosis: expert clinical diagnosis based on history and examination, prior to any diagnostic genetic testing.
Vascular involvement: as stated: -= no known vascular aneurysm/dissection or aortic root dilatation.
Autosomal Dominant Family History: $+=$ one or more affected individual on either side of the family, biparental = family history of GJH or related phenotypes in both sides of the family.
Skin Biopsy: 3 mm punch biopsies were taken from the upper inner arm, with expert review of light microscopy (H\&E and elastin van Geisen) and ultrastructural analysis (FMP and Prof. David Ferguson, Univ. of Oxford).
EDS Diagnostic Criteria as per list in Supplementary Table 1.
ACMG criteria as per Richards et $a l$. (9): $P=$ pathogenic, $L P=$ likely pathogenic, VUS $/ L P=$ variant of uncertain significance close to criteria for $L P$ c cassification, VUS = variant of uncertains significance, $L B=$ likely benign, $B=$ benign. Indivicual criteria ((9), , $a b l e ~ 3)$
VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance (Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020. pdf).
Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PatientID \& VariantID \& Age \& Sex \& Clinical Diagnosis \& Beighton score \& \begin{tabular}{l}
Villefranche \\
Criteria \\
Major \\
Minor
\end{tabular} \& \[
\begin{gathered}
\text { Aortic \& Other } \\
\text { Vascular } \\
\text { involvement }
\end{gathered}
\] \& \[
\text { ' } \begin{gathered}
\text { Auto. Dom. } \\
\text { Family History }
\end{gathered}
\] \& Skin Biopsy \& Gene. NM \& Protein \& \begin{tabular}{l}
RsID \\
ClinVar ID
\end{tabular} \& \begin{tabular}{l}
gnomad \\
allele frequency
\end{tabular} \& \begin{tabular}{l}
CADD \\
DANN
\end{tabular} \& \begin{tabular}{l}
ACMG classification (See footnote) \\
ACMG criteria
\end{tabular} \\
\hline 45 \& 20 \& 50-59 \& \({ }^{\text {F }}\) \& HоСт \& 5 \& C, E, H \& \[
\begin{aligned}
\& \hline \begin{array}{l}
\text { Carotid } \\
\text { dissection }
\end{array}
\end{aligned}
\] \& \({ }^{+}\) \& \[
\begin{aligned}
\& \text { abnormal } \\
\& \text { packing }
\end{aligned}
\] \& \begin{tabular}{l|l|}
\hline VCAN \\
ENST0000026 \\
5077.3 \\
c.10063+2dup
\end{tabular} \& ? \& \& \({ }^{0}\) \& 25.2 \& \[
\begin{aligned}
\& \hline \text { VUS* } \\
\& \text { PM2 } \\
\& \text { PVS1 (M) } \\
\& \hline
\end{aligned}
\] \\
\hline 72 \& \({ }^{21}\) \& 50.59 \& M \& ност \& - \& \[
\begin{array}{|l|}
\hline \mathrm{A}, \mathrm{C}, \mathrm{E} \\
\\
\mathrm{j}, \mathrm{r} \\
\text { finger aplasia } \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \text { Femoral artery } \\
\& \begin{array}{l}
\text { aneurysm, FHx } \\
\text { HTAD }
\end{array}
\end{aligned}
\] \& + \& - \& WNT10A
NM_025216.3
c.443C \(>\) T \& p.Ala 148 Val \& rs373695499
899013 (VUS) \& 0.0000199 \& \[
\begin{aligned}
\& 29.9 \\
\& 0.999
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { VUS* } \\
\& \text { PM2 } \\
\& \text { PP3 (M) }
\end{aligned}
\] \\
\hline 107 \& 22 \& 40-49 \& M \& neds \& 4 \& \[
\underbrace{\mathrm{E}, \mathrm{H}, \mathrm{I}}_{r, u}
\] \& FHX Aneurrsm \& + \& nomal \& KCNH1
NM_172362.3
c.1036A>G \& \[
\begin{aligned}
\& \text { p.lle346Val } \\
\& \text { (exomiser) }
\end{aligned}
\] \& - \& 0 \& 0.998 \& VUS*
PM2, PP2
PP3 (Supp) \\
\hline 107 \& \({ }^{23}\) \& 40-49 \& M \& neds \& \({ }^{4}\) \& \& FHxaneurrsm \& + \& normal \& ULK4
NM_017886.4
c.2979-1G>T \& ? \& - \& 0 \& \[
\begin{array}{|l|}
\hline 26.7 \\
0.994
\end{array}
\] \& \[
\begin{aligned}
\& \text { VUS* }^{*} \\
\& \text { PM2 }
\end{aligned}
\] \\
\hline 474 \& \({ }^{24}\) \& 60-69 \& F \& HDCT \& 0 \& \(\mathrm{D}^{\mathrm{D}, \mathrm{E}}\) \& Epidural haemorrhage \& - \& abnomal \& NEDD4L
NM_0011449
67.3
c.2425G>A \& p.Asp809Asn
HECT domain \& rs868820698
956262 (VUS) \& \& \[
\begin{array}{|l}
26.3 \\
0.998
\end{array}
\] \& VUS*
PM2
PP3 (Supp)
PP2 \\
\hline 475 \& 25 \& 30-39 \& F \& neds \& 7 \& H, I
\(\mathrm{a}, \mathrm{d}, \mathrm{g}, \mathrm{i}, \mathrm{u}\), \& - \& \({ }^{+}\) \& normal \& \begin{tabular}{l}
\\
\hline PlEZO2 \\
NM_02068.3 \\
c.713T>G
\end{tabular} \& p.leu238Tp \& \[
\begin{array}{|l|}
\hline \text { rs927091191 } \\
\text { 427172 } \\
\text { (VUS) } \\
\hline
\end{array}
\] \& 0.000142 \& \[
\begin{aligned}
\& 27.4 \\
\& 0.834
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline \text { VUS* } \\
\\
\text { PM2 } \\
\hline \text { PP2 } \\
\hline
\end{array}
\] \\
\hline 479 \& 26 \& 20-29 \& F \& HDCT \& \({ }^{6}\) \& \[
\begin{aligned}
\& \mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I}, \mathrm{~J}, \mathrm{~K} \\
\& \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{t}, \mathrm{w}
\end{aligned}
\] \& - \& + \& nomal \& PlEZO1
ENSTOOOOO3O
1015.9
C.2492OT \& \begin{tabular}{l}
p.Ser831Leu \\
\begin{tabular}{l}
Transmembra \\
ne domain \\
(helical)
\end{tabular} \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \text { rs1471934686 } \\
\& 829803 \\
\& \text { (VUS/LP) }
\end{aligned}
\] \& 0.000013 \& \[
\begin{aligned}
\& 32 \\
\& 0.999
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { VUS* } \\
\& \text { PM2 } \\
\& \text { PP5 (S) }
\end{aligned}
\] \\
\hline 482 \& 27 \& 20-29 \& F \& vEDS \& \({ }^{6}\) \& \[
\begin{aligned}
\& \mathrm{c}, \mathrm{D}, \mathrm{H}, \mathrm{I} \\
\& \mathrm{~d}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}, \mathrm{t}, \mathrm{u}
\end{aligned}
\] \& - \& Biparental \& normal \& SCN9A
NM_002977.3
c.39300¢G \& p.lle 1310 Met \& \({ }^{\text {I200947663 }}\) \& 0 \& \[
\begin{aligned}
\& 26.2 \\
\& 0.998
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { VUS* } \\
\& \text { PM2 } \\
\& \text { PP3 (M) } \\
\& \hline
\end{aligned}
\] \\
\hline 583 \& 29 \& 10-19 \& F \& cEDS \& 8 \& \begin{tabular}{l}
A, B, C, H, I, \\
d, f, g, i, s, t, u
\end{tabular} \& - \& \({ }^{+}\) \& Small number Cauliflower fibrils \& COL5A1
NM_0012780
74.1c.5130du
pG \& p.Ser1711Valf
sTer67
(exomiser) \& 15779189580 \& 0.0000166 \& 0.957 \& \begin{tabular}{l}
VUS* \\
\\
\\
\begin{tabular}{l}
PVS1 \\
(Exon 64) \\
PM2
\end{tabular} \\
\hline
\end{tabular} \\
\hline \({ }^{595}\) \& \({ }^{31}\) \& \(\left.\right|^{30-19}\) \& \({ }^{M}\) \& \({ }^{\text {cebs }}\) \& \({ }^{6}\) \& \[
\begin{aligned}
\& \mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I} \\
\& \mathrm{a}, \mathrm{~d}, \mathrm{~g}, \mathrm{k}, \mathrm{q} \\
\& \hline
\end{aligned}
\] \& MVR \& \({ }^{+}\) \& nomal \& \begin{tabular}{l}
TGFB3 \\
NM_003239.4 \\
c.128T>C \\
\hline
\end{tabular} \& \({ }^{\text {p.lle43Thr }}\) \& \(\underbrace{15765490133}\) \& \({ }^{0.00000398}\) \& \({ }^{25}\) \& \[
\begin{aligned}
\& \hline \text { VUS* } \\
\& \\
\& \text { PM2 } \\
\& \text { PP3 (Supp) }
\end{aligned}
\] \\
\hline 806 \& 35 \& 10-19 \& M \& cEDS \& - \& \[
\sum_{\mathrm{e}, \mathrm{I}, \mathrm{u}}^{\mathrm{B}, \mathrm{C}, \mathrm{H}, \mathrm{~J}}
\] \& \& + \& nomal \& COLLA1_
NM_000093.5
c.5136+151_5
\(136+164 d e l\) \& ? \& rs762698019 \& 0 \& 0.957 \& \[
\begin{aligned}
\& \text { Vus** } \\
\& \hline \text { (Intron 64) } \\
\& \hline \text { PM2 } \\
\& \hline
\end{aligned}
\] \\
\hline 967 \& 36 \& 10-19 \& F \& neds \& \({ }^{8}\) \& \(\mathrm{c}, \mathrm{H}, \mathrm{I}\)
\(\mathrm{a}, \mathrm{d}, \mathrm{f}, \mathrm{i}, \mathrm{s}, \mathrm{u}\) \& \& + \& - \& FLCN
NM_144997.7
c.716G>A \& p.Arg23 His \& rs753948488
253233 (VUS) \& 0.0000278 \& \[
\begin{array}{|l}
\hline 0.999 \\
\hline
\end{array}
\] \& VUS*
PM2, PM5
PP3 (M) \\
\hline 1002 \& 37 \& 50-59 \& \({ }^{\text {F }}\) \& cEDS \& 7 \& \[
\begin{gathered}
\mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I} \\
\mathrm{~d}, \mathrm{i}, \mathrm{~s}, \mathrm{u}
\end{gathered}
\] \& - \& + \& \[
\begin{aligned}
\& \text { Irregular } \\
\& \text { collagen } \\
\& \text { fibrils }
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline \text { MAP3K7 } \\
\text { NM_145331.3 } \\
\text { c. } 820 \text { C }>T
\end{array}
\] \& p.Arg274Cys \& \({ }^{-}\) \& 0 \& \begin{tabular}{l}
35 \\
0.999
\end{tabular} \& VUS*

PM2
PM2 (Supp)
PP5

\hline ${ }^{1421}$ \& 39 \& 10-19 \& M \& neDs \& ${ }^{7}$ \& \[
\int_{\mathrm{a}, \mathrm{u}}^{\mathrm{c}, \mathrm{H}, \mathrm{I}}

\] \& - \& ${ }^{+}$ \& - \& | |
| :--- |
| PIEZO2 |
| NM_02068.3 |
| c.6053A>G | \& p.Tyr2018Cys \& ris772793550 \& 0.000284 \& \[

$$
\begin{aligned}
& 23.1 \\
& 0.927
\end{aligned}
$$

\] \& | VUS* |
| :--- |
| |
| PM2 |
| PP2 |
| PP3 (Supp) |

\hline 1451 \& 40 \& 10-19 \& ${ }^{\text {F }}$ \& cEDS \& ${ }^{9}$ \& \[
\int_{\mathrm{d}, \mathrm{~g}, \mathrm{i}, \mathrm{t}}^{\mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I}}

\] \& fhx aneursm \& ${ }^{+}$ \& - \& \[

$$
\begin{aligned}
& \text { COLQA3 } \\
& \text { NM_001853.4 } \\
& \text { C.130G>A }
\end{aligned}
$$

\] \& p.Gly44ser \& \[

\left\lvert\, $$
\begin{array}{|c}
\mid 1570649938 \\
\hline
\end{array}
$$\right.

\] \& 0.0000495 \& \[

$$
\begin{aligned}
& 23.5 \\
& 0.976
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathrm{VUS}^{*} \\
& \\
& \mathrm{PM2} \text { (m) } \\
& \hline \mathrm{PP3}(\mathrm{M}) \\
& \hline
\end{aligned}
$$
\]

\hline 1495 \& 42 \& 20-29 \& F \& neds \& 7 \& \[
\int_{\mathrm{d}, \mathrm{t}, \mathrm{u}}^{\mathrm{c}, \mathrm{H}, \mathrm{I}}

\] \& - \& + \& - \& | PCNT |
| :--- |
| NM_006031.6 |
| c. 81820 OT | \& p.AFg2728Cys \& \[

$$
\begin{array}{|l|}
\hline \text { r5762890408 } \\
\hline
\end{array}
$$

\] \& 0.0000399 \& \[

\int_{0.999}^{35}

\] \& \[

$$
\begin{array}{|l}
\hline \mathrm{VUS} * \\
\\
\text { PM2 } \\
\hline \text { PP5 } \\
\hline
\end{array}
$$
\]

\hline 1498 \& ${ }^{43}$ \& 40-49 \& M \& neds \& - \& $\mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I}, \mathrm{J}$
$\mathrm{i}, \mathrm{u}, \mathrm{y}, \mathrm{bb}$ \& - \& + \& - \& COL6A3
NM_004369.3
c.2042T>G \& p.Val681Gly \& rs753741086

938432 (VUS) \& 0.00000398 \& $$
\begin{array}{|c|}
\hline 22.9 \\
0.998 \\
\hline
\end{array}
$$ \& VUS*

PM2
PP3 (Supp)

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

1530	45	10-19	F	heDs	${ }^{6}$	$\int_{\mathrm{g}, \mathrm{u}}^{\mathrm{H}, \mathrm{I}}$	-	Biparental	-	UPF3B NM_080632.3 c.263+2delT	?	rs118945278	0.0000593	${ }^{25.2}$	VUS* PVS1 (VS)
1607	47	40-49	F	hEDS	6	$\begin{aligned} & \hline \mathrm{C}, \mathrm{H}, \mathrm{I} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{t}, \mathrm{u} \\ & \mathrm{GI} \text { dysfunction } \end{aligned}$		+		SPTLC1 NM_006415.4 c.287del	$\begin{array}{\|l\|} \hline \text { p.Asn96Metfs } \\ \text { Ter6 } \end{array}$	\mid	0	$\left.\right\|^{32}$	$\begin{aligned} & \text { VUS* } \\ & \text { PM2 } \end{aligned}$
1620	48	20-29	M	hEDS	6	$\begin{aligned} & \mathrm{c}, \mathrm{H}, \mathrm{I} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{t}, \mathrm{u} \end{aligned}$	-	+		PIEZO2 NM_022068.3 c. $716<>$ T	p.Pro239Leu	rs776926434 1050407 (VUS)	0.0000071	34 0.973	VUS* PM2 PP2 PP3 (M)
1714	49	40-49	F	hEDS	5	$\begin{array}{\|c} \hline \mathrm{c}, \mathrm{H} \\ \hline \mathrm{t}, \\ \hline \end{array}$	-	-		MAT2A NM_005911.6 c.553A>G	p.Thr185Ala	-	0	25 0.998	VUS* PM2 PP3 (M) PP2

$A C M G$ criteria as per Richards etal. (9): $P=$ pathogenic, $L P=$ likely pathogenic, $V U S / L P=$ variant of uncertain significance close to criteria for $L P$ classification, VUS $=$ variant of uncertain significance, $L B=$ likely benign, $B=$ benign. Individual criteria ((9), Table 3)
VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance (Figure 6 of https://www. acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020. pdf). .
Segregation analysis, re-evaluation for specific phenotypic features and/or furthe
EDS Diagnostic Criteria and Abbreviations as per lists in Supplementary Table 1 .

Supplementary Table 8. Rare variants, (CADD>15), in genes associated with familial intracranial aneurysm and loci associated with an increased risk of intracranial

Patient ID	Clinical Diagnosis	Gene NM	Protein	CADD	gnomAD allele frequency	Exon or intron number / total number of exons	ClinVar ID (classification)	Rs ID	ACMG classification (See footnote)	Intracranial Aneurysm	Other vascular Involvement
34	HDCT	TMEM132B NM_052907.3 c.767G>A	p.Arg256GIn	23.3	0.000104	2/9	-	rs377588294	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \\ & \hline \end{aligned}$	-	-
54	hEDS	DNAH9 NM_001372.4 c. $11678 \mathrm{C}>$ T	p.Ser3893Leu	24	0	61/69	-	rs761550523	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$	+	+
65	hEDS	ANGPTL6 NM_031917.2 c.1208G>A	$\begin{aligned} & \hline \text { p.Arg403Gln } \\ & \text { Fibrinogen like } \end{aligned}$	28.7	0	5/6	-	-	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \\ & \hline \end{aligned}$	FHxICA	-
65	hEDS	HSPG2 NM_005529.7 c. $2633 G>A$	p.Arg878His	26.2	0.000236	21/97	$\begin{aligned} & 875716 \\ & \text { (VUS) } \end{aligned}$	rs149479865	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \\ & \hline \end{aligned}$	ICA + FHxICA	-
70,884	hEDS	ARHGEF17 NM_014786.4 c. $5651 G>C$	p.Cys1884Ser	22.6	0.000127	19/21	-	rs199726713	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$	-	-
79	HDCT	DNAH9 NM_001372.4 c.5644G>A	p.Asp1882Asn	31	0.0000398	27/69	-	rs371105048	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$	-	Aneurysm, NOS
99	HDCT	ARHGEF17 NM_014786.4 c. $626 G>A$	p.Arg209His	28.1	0	1/21	-	-	VUS PM2 BP4 (Supp)	-	carotid dissection
100	hEDS	STARD13 NM_178006.4 c.2888C $>$ A	p. Pro963His	28.2	0	12/14	-	rs1261673521	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$	+	-
422,423	HDCT	ADAMTS15 NM_139055.3 c.263T>A	p.Leu88His	17.1	0	1/8	-	-	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$	-	FHx sudden death
453	HDCT	RNF213 NM_00125607 1.3 c. 9178 T>A	p.Phe30601le	23.3	0	29/68	-	-	VUS PM2	-	carotid dissection
755	hEDS	TMEM132B NM_052907.3 c. $1862 \mathrm{C}>\mathrm{A}$	p.Thr621Asn	25.4	0.0000121	7/9	$\begin{aligned} & 875716 \\ & \text { (VUS) } \end{aligned}$	rs776596875	VUS PM2 BP4 (Supp)	-	-
777	HDCT	ARHGEF11 NM_198236.3 c. $1019 \mathrm{C}>$ T	p. Pro340Leu	22.7	0.00000796	12/14	-	rs1391083996	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$	ICA	-
1002,1003	cEDS	RNF213 NM_00125607 1.3 c. $1669 G>T$	p.Glu557Ter	35	0.00000398	9/68	-	rs755262916	VUS PM2	-	-
1424	hEDS	THSD1 NM_018676.4 c. $1858 \subset>$ T 	p. Pro620Ser	22.7	0.00000398	5/5	-	rs1188780320	VUS PM2 BP4 (Supp)	FHx (SDR)	-
1665	hEDS	RNF213 NM_00125607 1.3 c. $12496 \mathrm{G}>\mathrm{A}$	p.Asp4166Asn	25.9	0.00033	47/68	-	rs148157068	VUS PM2, BP2	-	-

ACMG criteria as per Richards et al. (9): $P=$ pathogenic, $L P=$ likely pathogenic, VUS/LP = variant of uncertain significance close to criteria for LP classification, VUS = variant of uncertain significance,
$L B=$ likely benign, $B=$ benign. Individual criteria ((9), Table 3)
VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance
(Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf).
Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria.

Supplementary Table 9. Rare variants of uncertain significance, (CADD> 15), in genes associated with EDS (1), as per gene list in Supplementary Methods.

Patient ID	Clinical Diagnosis	Gene NM	Protein	CADD	gnomAD allele frequency	Exon or intron number / total number of exons	ClinVar (Classificatio n)	Rs ID	DANN	ACMG Classification (See footnote)
60	HDCT	COL6A1 NM_001848.2 c. $2821 \mathrm{C}>$ T COL	p.Leu941Phe	23.5	0.000133	35/35	196948 (VUS/ LB)	rs147882179	0.994	VUS PM2, BP6
73	HDCT	$\begin{array}{\|l\|} \hline \text { COL6A1 } \\ \text { NM_001848.2 } \\ \text { c.1315C>T } \end{array}$	p.Arg439Trp	29.8	0.0000309	19/35	$\begin{aligned} & \hline 662422 \\ & \text { (VUS) } \end{aligned}$	rs368239109	0.991	VUS PM2, BP6
372	vEDS	COL6A1 NM_001848.2 c. $2873 \mathrm{C}>\mathrm{A}$	p.Ala958Asp	24.4	0.0000931	35/35	$\begin{aligned} & 284877 \\ & \text { (LB/ VUS) } \end{aligned}$	rs763228065	0.997	VUS PM2, BP6
385	hEDS	$\begin{array}{\|l\|} \hline \text { C1R } \\ \text { NM_001733.7 } \\ \text { c.1286G>A } \\ \hline \end{array}$	p.Cys377Tyr	-	0	8/9	-	-	0.999	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
428	hEDS	COL6A3 NM_004369.3 c. $3878 \mathrm{~A}>\mathrm{G}$	p.Asp1293Gly	22.6	0	9/44	-	rs1222267030	0.998	$\begin{array}{\|l\|} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
482	vEDS	$\begin{array}{\|l\|} \hline \text { COL6A3 } \\ \text { NM_004369.3 } \\ \text { c.3923G>A } \\ \hline \end{array}$	p. Arg1308Gln	15.42	0.995	9/44	$\begin{aligned} & 199093 \\ & \text { (VUS) } \end{aligned}$	rs774461787	0.995	VUS PM2, BP6
495	hEDS	$\begin{array}{\|l\|} \hline \text { COL5A1 } \\ \text { NM_000093.5 } \\ \text { c. } 3852+5 \mathrm{G}>\mathrm{T} \end{array}$	Splice	-	0	48/65	-	rs763999542	0.733	VUS PM2 PP3 (Supp)
536	hEDS	$\begin{array}{\|l\|} \hline \text { COL12A1 } \\ \text { NM_004370.6 } \\ \text { c.1906A>G } \\ \hline \end{array}$	p.Lys636Glu	14.72	0.0000163	11/66	-	rs754916465	0.991	VUS PM2 BP4 (Supp)
566	hEDS	COL6A2 NM_001849.3 c. $2558 \mathrm{G}>$ T CO	p.Arg853Leu	22.1	0	28/28	-	-	0.961	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
620	HDCT	COL12A1 NM_004370.6 c. $6724+5 \mathrm{G}>\mathrm{A}$	Splice	20.1	0.00000405	41/65	-	rs746208956	0.966	VUS PM2 PP3 (Supp)
635	HDCT	COL6A1 NM_001848.2 c. $3053 A>G$ COL	p. His1018Arg	17.8	0.00000402	35/35	-	rs1310931207	0.967	$\begin{array}{\|l\|} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
651	HDCT	$\begin{array}{\|l} \hline \text { COL6A3 } \\ \text { NM_004369.3 } \\ \text { c. } 8377 \mathrm{G}>\mathrm{A} \end{array}$	p.Val27931le	19.41	0.0000159	38/44	$\begin{aligned} & \hline 500364 \\ & \text { (VUS) } \end{aligned}$	rs569907876	0.937	VUS PM2, BP6
768	HDCT	COL6A3 NM_004369.3 c. $8377 \mathrm{G}>\mathrm{A}$	p.Val27931le	19.41	0.0000159	38/44	$\begin{aligned} & \begin{array}{l} 500364 \\ \text { (Vus) } \end{array} \end{aligned}$	rs569907876	0.937	
803	cEDS	$\begin{array}{\|l\|} \hline \text { COL6A2 } \\ \text { NM_001849.3 } \\ \text { c.1829G>A } \\ \hline \end{array}$	p. Arg610His	23	0.0000519	25/28	$\begin{array}{\|l} \hline 896443 \\ \text { (LB/ VUS) } \end{array}$	rs758550765	0.996	VUS PM2, BP6
806	cEDS	COL6A3 NM_004369.3 c. $3754 \mathrm{C}>$ T	p.Arg1252Cys	24.6	0.000124	9/44	$\begin{aligned} & 285636 \\ & \text { (VUS) } \end{aligned}$	rs563530370	0.999	$\begin{array}{\|l\|} \hline \text { VUS } \\ \text { PM2, BP6 } \\ \text { PP3 (M) } \end{array}$
821	kEDS	$\begin{array}{\|l} \hline \text { COL6A3 } \\ \text { NM_004369.3 } \\ \text { c.4510C>T } \end{array}$	p.Arg1504Trp	24.2	0.000434	9/43	166943 (VUS)	rs144223596	0.997	VUS PM2, BP6

1397	hEDS	COL1A1 NM_000088.4 c. $3754 \mathrm{C}>$ T	p.Arg1252Cys	26.3	0.000012	48/51	1037654 (VUS)	rs781614679	0.998	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \\ & \text { PP2 } \\ & \text { PP3 (Supp) } \\ & \text { BP6 } \\ & \hline \end{aligned}$
1421	hEDS	$\begin{array}{\|l\|} \hline \text { C1R } \\ \text { NM_001733.7 } \\ \\ \text { C. } 419 \mathrm{C}>\text { T } \\ \hline \end{array}$	p.Ala140Val	29.5	0.000135	3/11	-	rs200539827	0.999	VUS PM2 PP3 (Supp)
1451	cEDS	COL5A1 NM_000093.5 c.3013A>G	p.Thr1005Ala	18.24	0	39/66	$\begin{aligned} & 212954 \\ & \text { (Vus) } \end{aligned}$	-	0.943	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
1451	cEDS	COL5A1 NM_000093.5 c.3874G>A	p.Glu1292Lys	21.7	0	49/66	$\begin{aligned} & 955996 \\ & \text { (Vus) } \end{aligned}$	-	0.993	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
1502	hEDS	$\begin{array}{\|l\|} \hline \text { C1R } \\ \text { NM_001733.7 } \\ \text { c.158G>T } \end{array}$	p. Gly 52 Val	32	0.00000408	2/11	-	rs1181587267	0.998	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
1528	cEDS	COL1A1 NM_000088.4 $\text { c. } 1200+5 \mathrm{G}>\mathrm{A}$	Splice	21	0.00004501	18/50	$\begin{aligned} & 566740 \\ & \text { (VUS) } \end{aligned}$	rs374322003	0.98	VUS PM2 PP3 (Supp)
1581	hEDS	COL5A2 NM_000393.5 c. $4085 \mathrm{~A}>\mathrm{G}$	p.Tyr1362Cys	24	0.0000279	52/54	573793 (VUS)	rs141206016	0.989	VUS PM2 PP3 (Supp)
1600	hEDS	$\begin{array}{\|l\|} \hline \text { COL6A3 } \\ \text { NM_004369.3 } \\ \text { c. } 7133 \mathrm{C}>\mathrm{G} \end{array}$	p.Ala2378Gly	15.19	0	34/44	-	-	0.843	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \\ & \hline \end{aligned}$
1604	hEDS	$\begin{array}{\|l\|} \hline \text { COL6A2 } \\ \text { NM_001849.4 } \\ \text { c.1336G>A } \\ \hline \end{array}$	p.Asp446Asn	24.8	0.000418	16/28	$\begin{aligned} & \hline 194621 \\ & \text { (B/LB/VUS) } \end{aligned}$	rs535007570	0.993	$\begin{aligned} & \hline \mathrm{VUS} \\ & \mathrm{BP6} \\ & \hline \end{aligned}$
1642	hEDS	COL6A3 NM_004369.3 c.7670T>A	p.lle2557Asn	22.1	0.0000239	41/44	$\begin{aligned} & 577635 \\ & \text { (VUS) } \end{aligned}$	-	0.932	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$

Key: ACMG criteria as per Richards et al. ref 9: $P=$ pathogenic, $L P=$ likely pathogenic, $V U S / L P=$ variant of uncertain significance close to criteria for LP classification, VUS $=$ variant of uncertain significance, $L B=$ likely benign, $B=$ benign. Individual criteria ((9), Table 3)

VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance
(Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf).

Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria.

Supplementary Table 10. Rare variants of uncertain significance (CADD> 15) in genes associated with HTAD as per gene list in Supplementary Methods.

Patient ID	Clinical Diagnosis	Gene NM	Protein	CADD	gnomAD allele frequency	Exon or intron number / total number of exons	ClinVar ID. classification	Rs ID	DANN	ACMG classification (See footnote)	Vascular Involvement
65	hEDS	$\begin{array}{\|l\|} \hline \text { ROBO4 } \\ \text { NM_019055.6 } \\ \text { c.1475G>A } \end{array}$	p.Arg 492Gln	29.8	0.0000243	9/18	-	rs777639467	0.999	VUS PM2	femoral artery aneurysm
72	HDCT	$\begin{array}{\|l\|} \hline \text { ROBO4 } \\ \text { NM_019055.6 } \\ \text { c.713T>C } \\ \hline \end{array}$	p.Leu238Pro	18.22	0.00000398	5/18	-	rs1446614640	0.966	VUS PM2	FHx HTAD
372	vEDS	$\begin{array}{\|l\|} \hline \text { SMAD3 } \\ \text { NM_005902.4 } \\ \text { c. } 207-3 C>A \end{array}$	Splice	17.52	0.0000119	Int 1/8	580639 (VUS)	rs757772685	0.967	VUS PM2 PP3 (Supp)	N
428	hEDS	$\begin{array}{\|l\|} \hline \text { FBN2 } \\ \text { NM_001999.4 } \\ \text { c. } 3686 \mathrm{C}>\mathrm{A} \end{array}$	p.Pro1229His	-	0.00000796	26/65	-	rs151192448	0.993	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$	N
453	HDCT	PRKG1 NM_006258.4 c.1427_1428in sTACTAACACT TTTGTA TCAACGTTTAA GTTAGAC AATACTTGTGC AAACTCT	p.Arg477Thrfs Ter31	35	0	13/18	-	-	-	VUS	carotid artery dissection
475	hEDS	TGFBR1 NM_004612.4 c.214A>T	p.Ile72Leu	12.24	0.000199	2/9	$\begin{aligned} & 178136 \\ & \text { (VUS/LB) } \end{aligned}$	rs111513627	0.976	VUS PM2, PP2 BP6	N
534	cEDS	FBN2 NM_001999.4 c.2536G>A	p.Glu846Lys	28.8	0.000135	25/71	$\begin{aligned} & 213392 \\ & \text { (LB/VUS) } \end{aligned}$	rs375666281	-	VUS PM2, BP6	N
538	hEDS	FLNA NM_00111055 6.2 c. 7813 del	p.Leu2605Trpf sTer2	35	0	48/48	-	-	-	P, reported PMID: 23032111	AoR
560,538	HDCT (538), hEDS (560)	PRKG1 NM_006258.4 c.980C>A	p.Thr327Asn	22.8	0.0000279	8/18	$\begin{aligned} & 520129 \\ & \text { (VUS) } \\ & \hline \end{aligned}$	rs138485549	0.989	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$	N
611	cEDS	$\begin{array}{\|l\|} \hline \text { FBN2 } \\ \text { NM_001999.4 } \\ \text { c.4328A>T } \\ \hline \end{array}$	p.Asp1443Val	34	0.0000875	39/71	$\begin{aligned} & 411817 \\ & \text { (VUS/LB) } \end{aligned}$	rs751400994	0.999	VUS PM2, PP3 (M) BP6	N
638	hEDS	NOTCH1 NM_017617.5 c. $2935 \mathrm{C}>$ T	p.His979Tyr	24.1	0.00000402	18/37	-	rs1380298048	0.997	VUS $\begin{aligned} & \text { PM2, PP2 } \\ & \text { BP6 } \end{aligned}$	N
651	HDCT	$\begin{aligned} & \hline \text { MYLK } \\ & \text { NM_053025.3 } \\ & \text { c.571C>G } \end{aligned}$	p. Gln191Glu	19.02	0	7/34	$\begin{aligned} & 198605 \\ & \text { (VUS) } \\ & \hline \end{aligned}$	rs794727880	0.59	VUS PM2 BP4 (Supp)	fhx AoR
681	hEDS	$\begin{array}{\|l\|} \hline \text { TGFBR2 } \\ \text { NM_003242.6 } \\ \text { c.95-7T>C } \end{array}$?	-	0.0000083	Int 1/6	-	rs1386890539	0.873	VUS PM2 BP4 (Supp)	fhx aneurysm
755	hEDS	NOTCH1 NM_017617.5 c.1843G>A	p.Gly615Arg	28.4	0.00000818	11/34	576931 (VUS/LB)	rs764942073	0.999	VUS PM2, PP3 (M) PP2, BP6	N
798	vEDS	$\begin{array}{\|l\|} \hline \text { MYLK } \\ \text { NM_053025.3 } \\ \text { c.5477C>T } \\ \hline \end{array}$	p.Ala1826Val	26.9	0.000291	33/34	$\begin{aligned} & 252775 \\ & \text { (LB/VUS) } \end{aligned}$	rs147187907	0.999	VUS PM2, BP6	cavernoma
1393	hEDS	BGN NM_001711.6 c.1000G>A	p. Gly334Ser	33	0	8/8	-	rs1209725855	0.999	VMU	AoR

$\begin{aligned} & 1399 \\ & \$ 1397 \end{aligned}$	hEDS	ELN NM_000501.4 c.1543G>A	p.Val515Met	16.95	0.0000437	11/33	$\begin{aligned} & 1008316 \\ & \\ & \hline \text { (VUS) } \\ & \hline \end{aligned}$	rs376258672	0.946	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \\ & \text { BP4 (Supp) } \\ & \hline \end{aligned}$	N
1403	hEDS	TGFB2 NM_00113559 9.3c.727G>T	p.Asp243Tyr	29.3	0	4/8	-	-	0.996	$\begin{array}{\|l\|} \hline \text { VUS } \\ \\ \text { PM2 } \\ \text { PP3 (Supp) } \end{array}$	$\begin{aligned} & \hline \text { AoR } \\ & \text { ICA } \end{aligned}$
1421	hEDS	MFAP5 NM_002403.4 c.383G>A	p.Arg128His	32	0.00000796	8/9	-	rs373562256	0.999	vUS PM2 (M)	N
1443	hEDS	SMAD6 NM_005585.5 c.872T>C	p.Leu291Pro splice -3 .	24.9	0.00000398	2/4	-	rs768096418	0.999	VUS PM2	fhx aneurysm
1600	hEDS	MYH11 NM_00104011 4.1 c. $3895 \mathrm{G}>$ A	p.Val12991le	25.4	0.0000358	30/42	$\begin{aligned} & \hline 547546 \\ & \text { (VUS/LB) } \\ & \hline \end{aligned}$	rs151058774	0.996	vUS PM2, BP6	N
1607	hEDS	$\begin{array}{\|l\|} \hline \text { FBN1 } \\ \text { NM_000138.4 } \\ \\ \text { c.6819G>A } \\ \hline \end{array}$	p.Met22731le	21.8	0.0000279	56/66	$\begin{aligned} & \hline 450683 \\ & \text { (LB/NUS) } \\ & \hline \end{aligned}$	rs778027769	0.975	VUS PM2, PP2 BP6	N
1629	hEDS	SMAD6 NM_005585.5 c.475CAA	p.Arg159Ser MH1 domain	14.29	-	1/4	-	-	0.995	vus PM2	N

[^2]Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria.

Supplementary Table 11. Rare variants, (CADD> 15), in genes associated with syndromes with EDS associated features and Mendelian disorders with EDS

Patient ID	Clinical Diagnosis	Gene NM	Protein	CADD	gnomAD allele frequency	Exon or intron number / total number of exons	ClinVar ID classification	Rs ID	DANN	Vascular Involvement	ACMG classification (See footnote)
75	cEDS	$\begin{array}{\|l\|} \hline \text { PIEZO2 } \\ \text { NM_022068.3 } \\ \text { c.3236A>G } \\ \hline \end{array}$	p.Tyr1079Cys	26.2	0.00027	22/52	$\begin{aligned} & 430213 \\ & \text { (VUS) } \end{aligned}$	rs192225494	0.980	-	VUS PM2, PP2
79	HDCT	$\begin{array}{\|l\|} \hline \text { EMILIN } \\ \text { NM_007046.3 } \\ \text { c. } 82 \mathrm{G}>\mathrm{A} \\ \hline \end{array}$	p. Gly 28Ser	25.6	0	1/8	-	rs1174686741	0.998	aneurysm	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
107	hEDS	IFIH1 NM_022168.4 c.2242G>A	p. Gly 748 Arg	-	0.0000119	11/16	$\begin{aligned} & 1428095 \\ & \text { (VUS) } \\ & \hline \end{aligned}$	rs764553894	0.999	fhx aneurysm	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
385	hEDS	LAMA5 NM_005560.6 c.2623C>A	p.Arg875Ser Domain 4b	28.9	0.00000416	22/80	-	rs371962250	0.997		VUS PM2 BP4 (Supp)
396	cEDS	SCN9A NM_002977.3 c. $2102 \mathrm{C}>\mathrm{G}$	p. Pro701Arg	23.5	0.00000485	14/27	$\begin{array}{\|l\|} \hline 376819 \\ \text { (VUS) } \\ \hline \end{array}$	rs867106113	0.995	subclavian artery	VUS PM2 PP3 (Supp)
396	cEDS	ATP7A NM_000052.7 c.3790A>G	p.lle1264Val	19.5	0	19/23	$\begin{aligned} & 573762 \\ & \text { (vus) } \end{aligned}$	rs782323741	0.996	subclavian artery	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
397	hEDS	KCNH1 NM_172362.3 c. $2762 \mathrm{C}>\mathrm{A}$	p.Thr921Lys	16.5	0	11/11	-	-	0.97	-	VUS PM2, PP2
422	HDCT	MED12 NM_005120.3 c.6201_6227d el	p. GIn2068-Gln 2076del In frame Deletion	19.11	0	42/45	${ }^{-}$	-	${ }^{-}$	-	VUS PM2, BP3
475	hEDS	SYNE1 NM_182961.4 c.18193C>T	p.Arg6065Trp	35	0.0000398	96/146	vus	rs200209279	0.999	-	VUS PM2, BP6
505	HDCT	EMILIN NM_007046.4 c. 1877 PT>A	p.Leu626GIn	26.2	0	4/8	${ }^{-}$	-	0.996	${ }^{-}$	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
526	HDCT	IFIH1 NM_022168.4 c.2962G>A	p.Val9881le	31	0	16/16	$\begin{aligned} & 574103 \\ & \text { (VUS) } \end{aligned}$	rs74162090	0.998	fhx MVP, aortic valve dis.	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
620	HDCT	SDSL NM_138342.4 c. $626 \mathrm{C}>$ T Homozygous	p.Ala209Val	23	0.001 (0 homozy)	7/9	-	rs144688002	0.998	-	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
635	HDCT	SYNE1 NM_182961.4 c.19730G>A	p.Arg6577GIn	32	0.000346	107/146	288606 (LB/VUS)	rs150387338	0.999	-	VUS/ LB BS2, BP6
718	cEDS	EMILIN NM_007046.4 c. 21160 T	p.Arg706Cys	26.2	0.0000119	4/8	-	rs747249536	0.999	${ }^{-}$	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
768	HDCT	IFIH1 NM_022168.4 c. 17830 T	p.Arg595Cys	26.6	0.0000165	10/16	-	rs191839015	0.997	infrarenal aortic dissection	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
777	HDCT	MYH2 NM_00110011 2.1 c. $1115 \mathrm{G}>\mathrm{A}$	p.Arg372His	35	0.0000119	12/40	-	rs750569547	0.999	FHxICA	vus PM2, PP3 (M)
806	cEDS	ACAN NM_013227.3 c.7204C>T	p.Arg2402Cys	34	0.0000161	17/19	$\begin{aligned} & 1493820 \\ & \text { (VUS) } \\ & \hline \end{aligned}$	rs751606366	0.999	-	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
1464,1620	hEDS	LAMA5 NM_005560.6 c.3964G>A	p.Gly1322Ser Domain 4b	32	0.000324	31/80	-	rs150741810	0.999	-	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$

1526	hEDS	WNK1 NM_213655.4 c. $3188 \mathrm{C}>$ T	p.Ser1063Leu	16.8	0	9/28	-	-	0.996	-	vus PM2 (m) BP4 (Supp)
1528	cEDS	WNK1 NM_00118498 5.1 c. $3815 \mathrm{G}>\mathrm{T}$	p.Gly1272Val	23.5	0.00000795	12/28	-	rs750516612	0.697	-	$\begin{array}{\|l} \hline \text { VUS } \\ \\ \text { PM2, BP6 } \\ \hline \end{array}$
1530	hEDS	$\begin{array}{\|l\|} \hline \text { KIT } \\ \text { NM_000222.3 } \\ \text { c. } 867 \mathrm{G}>\mathrm{A} \end{array}$	p.Met2891le	22.1	0	5/21	-	-	0.993	-	vus PM2 BP4 (Supp)
1596	hEDS	SYNE1 NM_182961.4 c. 18679C>T	p.Arg6227Trp	34	0.0000517	99/146	$\begin{aligned} & 284132 \\ & (\text { VUS }) \end{aligned}$	rs201873107	0.999	-	VUS PM2, BP6
1605	hEDS	LAMA5 NM_005560.6 c. $2248 \mathrm{G}>\mathrm{A}$	p.Val750Met laminin EGF disulfide	27.6	0.000112	18/80	$\begin{aligned} & 2077900 \\ & \text { (VUS) } \end{aligned}$	rs201119098	0.999	-	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$

ACMG criteria as per Richards et al. ref 9: $P=$ pathogenic, $L P=$ likely pathogenic, VUS/LP = variant of uncertain significance close to criteria for LP classification, VUS = variant of uncertain significance, $L B=$ likely benign, $B=$ benign

VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance (Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf).

Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria

Patient ID	Clinical Diagnosis	Rsid	$\begin{aligned} & \text { CADD } \\ & \text { DANN } \end{aligned}$	Current Gene annotation	Gene	Exon or intron number / total number of exons	HGVSc	HGVSp	gnomAD allele frequency	ACMG classification (See footnote)
60	HDCT	rs376054888	$\begin{aligned} & 25.5 \\ & 0.997 \end{aligned}$	a)	FGL1	6/10	$\begin{array}{\|l\|} \hline \text { ENST0000039 } \\ 8056.2 \mathrm{c} .284 \mathrm{G} \\ >\mathrm{C} \\ \hline \end{array}$	ENSP00000381	0.00007318	
65	heds	rs150106411	$\begin{aligned} & 21.5 \\ & 0.983 \end{aligned}$	a)	POLR3D	6/8	$\begin{array}{\|l\|} \hline \text { ENST0000039 } \\ 7802.4 \mathrm{c} .671 \mathrm{G} \\ >\mathrm{A} \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000038 } \\ \text { O904.3 } \\ \text { p.Arg224GIn } \end{array}$	0	
65	heds	rs150161793	$\begin{aligned} & 15 \\ & 0.989 \end{aligned}$	b)	BMP1	18/20	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO30 } \\ 6385.5 c .2446 \mathrm{C} \\ >G \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000030 } \\ 5714.5 \\ \text { p.Pro816Ala } \end{array}$	0.0001382	$\begin{array}{\|c} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
73	HDCT	-	26.6	a)	CCAR2	17/20	ENST0000030 $8511.4 \mathrm{c} .2220+$ $1 \mathrm{G}>\mathrm{A}$	splice variant	0	
74	heds	rs760116990	34	a)	NPM2	5/9	$\begin{array}{\|l\|} \hline \text { ENST0000039 } \\ \text { 7940.1c.302_3 } \\ \text { 03del } \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000038 } \\ 1032.1 \\ \text { p.Pro101Argfs } \\ \text { Ter21 } \\ \text { pLi }=0 \\ \hline \end{array}$	0.00006498	
107	heds	-	$\begin{gathered} 23.6 \\ 0.996 \end{gathered}$	a)	PCM1	9/39	$\begin{array}{\|l\|} \hline \text { ENST0000032 } \\ 5083.8 c .1268 \\ \text { A>G } \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000032 } \\ 7077.8 \\ \text { p. Gln423Arg } \end{array}$	0	
136	cEDS	rs61756237	$\begin{gathered} 14.37 \\ 0.975 \end{gathered}$	c)	TNFRSF10B	9/9	$\begin{array}{\|l\|} \hline \text { ENSTO000027 } \\ 6431.4 c .1127 C \\ >T \end{array}$	$\begin{aligned} & \text { ENSP0000027 } \\ & 6431.4 \\ & \text { p.Ala376Val } \end{aligned}$	0.0001584	VUS PM2
191	heds	rs35294054	$\text { \| } 34$ 0.999	a)	PDGFRL	4/7	$\begin{array}{\|l\|} \hline \text { ENSTO000054 } \\ 1323.1 \mathrm{c} .3700 \\ \hline \mathrm{~T} \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000044 } \\ 4211.1 \\ \text { p.Arg124Cys } \end{array}$	0.0002507	
383	cEDS	-	$\begin{gathered} 29.9 \\ 0.998 \end{gathered}$	a)	PCM1	31/39	$\begin{aligned} & \hline \text { ENST0000032 } \\ & 5083.8 c .5012 \\ & \text { A>G } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ENSP0000032 } \\ \text { 7077.8 } \\ \text { p.Asp1671Gly } \end{array}$	0	
396	cEDS	-	$\begin{gathered} 24.6 \\ 0.998 \\ \hline \end{gathered}$	a)	ADAM7	10/22	$\begin{aligned} & \hline \text { ENST0000017 } \\ & 5238.6 \mathrm{c} .905 \mathrm{G} \\ & >C \end{aligned}$	$\begin{aligned} & \hline \text { ENSP0000017 } \\ & 5238.5 \\ & \text { p. Gly302Ala } \end{aligned}$	0	
397	heds	-	$\begin{gathered} 24.6 \\ 0.998 \end{gathered}$	a)	ADAM 7	10/22	$\begin{array}{\|l\|} \hline \text { ENST0000017 } \\ 5238.6 c .905 \mathrm{G} \\ >C \end{array}$	$\begin{aligned} & \hline \text { ENSP0000017 } \\ & 5238.5 \\ & \text { p. Gly } 302 \mathrm{Ala} \end{aligned}$	0	
564	HDCT	-	$\begin{gathered} 29.4 \\ 0.984 \end{gathered}$	a)	PCM1	27/39	$\begin{aligned} & \text { ENST0000032 } \\ & 5083.8 c .4523 \\ & A>C \end{aligned}$	ENSP0000032 7077.8 p.Asp1508Ala	0	
583	cEDS	-	$\begin{gathered} 14.82 \\ 0.818 \\ \hline \end{gathered}$	a)	DOCK5	2/52	$\begin{array}{\|l\|} \hline \text { ENST0000027 } \\ 6440.7 \mathrm{c} .58 \mathrm{~A}> \\ \mathrm{G} \end{array}$	$\begin{aligned} & \hline \text { ENSP0000027 } \\ & 6440.7 \\ & \text { p.Asn20Asp } \end{aligned}$	0	
583	cEDS	rs762023686	$\begin{aligned} & \hline 34 \\ & 0.999 \\ & \hline \end{aligned}$	a)	SORBS3	18/21	$\begin{array}{\|l\|} \hline \text { ENST0000024 } \\ \text { O123.7c. } 1496 \mathrm{C} \\ >\mathrm{T} \end{array}$	$\begin{aligned} & \text { ENSP0000024 } \\ & 0123.7 \\ & \text { p.Thr499Met } \end{aligned}$	0.00001229	
595	cEDS	rs201363003	$\begin{gathered} 20.7 \\ 0.998 \end{gathered}$	a)	CCAR2	13/21	ENST0000030 8511.4 c .1535 G>A	ENSP0000031 0670.4 p.Arg512His	0.00004874	
650	heds	rs748585448	$\begin{aligned} & \hline 33 \\ & 0.996 \\ & \hline \end{aligned}$	a)	PDLIM2	3/10	$\begin{array}{\|l\|} \hline \text { ENST0000030 } \\ 8354.7 c .979 \subset \\ \hline T \end{array}$	$\begin{aligned} & \text { ENSP0000031 } \\ & 2634.7 \\ & \text { p.Arg327Trp } \end{aligned}$	0.00003242	
673	hEDS	rs376663203	$\begin{gathered} 28.2 \\ 0.998 \end{gathered}$	a)	DOCK5	7/52	$\begin{array}{\|l\|} \hline \text { ENST0000027 } \\ 6440.7 c .485 \mathrm{~A} \\ >\mathrm{G} \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000027 } \\ 6440.7 \\ \text { p.Asp162Gly } \end{array}$	0.00007929	
703	heds	rs150225368	$\begin{array}{\|c\|} \hline 22.8 \\ 0.997 \\ \hline \end{array}$	a)	LZTS1	4/4	ENST0000038 1569.1c. 1483 G>A	$\begin{array}{\|l\|} \hline \text { ENSP0000037 } \\ \text { 0981.1 } \\ \text { p.Glu495Lys } \end{array}$	0.0005212	
707	HDCT	rs769203969	$\begin{gathered} 16.53 \\ 0.956 \\ \hline \end{gathered}$	a)	PCM1	3/39	ENST0000032 $5083.8 \mathrm{c} .32 \mathrm{G}>$ T	$\begin{array}{\|l\|} \hline \text { ENSP0000032 } \\ 7077.8 \\ \text { p. Gly11Val } \end{array}$	0.00002043	

718	cEDS	rs143724214	$\begin{gathered} 14.58 \\ 0.892 \end{gathered}$	b), c)	SLC39A14	3/9	ENSTOOOOO35 $9741.5 c .395 c$	$\begin{aligned} & \text { ENSP0000035 } \\ & 2779.5 \\ & \text { p.Ser132Leu } \end{aligned}$	0.00013	VUS PM2 BP4 (Supp)
769	heds	-	$\begin{gathered} 24.5 \\ 0.999 \end{gathered}$	a)	ADAM28	9/23	$\begin{aligned} & \begin{array}{l} \text { ENST0000026 } \\ 5769.4 c .737 \mathrm{~A} \\ >\mathrm{C} \end{array} \end{aligned}$	$\begin{aligned} & \hline \text { ENSP0000026 } \\ & 5769.4 \\ & \text { p.Asn246Ser } \end{aligned}$	0	
798	vEDS	rs746383239	$\begin{gathered} 24.7 \\ 0.996 \end{gathered}$	b)	CSGALNACT1	5/10	$\begin{aligned} & \hline \text { ENST0000045 } \\ & 4498.2 c .845 \mathrm{~A} \\ & >c \end{aligned}$	$\begin{aligned} & \text { ENSP0000041 } \\ & 1816.2 \\ & \text { p.Asn282Thr } \end{aligned}$	0.00002437	$\begin{array}{\|c} \hline \text { VUS } \\ \text { PM2 } \end{array}$
821	kEDS	-	$\begin{gathered} 14.77 \\ 0.826 \\ \hline \end{gathered}$	c)	SFTPC	4/6	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO31 } \\ 8561.3 c .4260 \\ \text { A } \end{array}$	$\begin{aligned} & \text { ENSP0000031 } \\ & 6152.3 \\ & \text { p. His142GIn } \end{aligned}$	0	$\begin{array}{\|c} \hline \text { VUS } \\ \text { PM2 } \end{array}$
1346	vEDS	rs760460873	$\begin{gathered} 17.35 \\ 0.995 \end{gathered}$	a)	DOCK5	8/52	$\begin{aligned} & \hline \text { ENST0000027 } \\ & 6440.7 \mathrm{c} .649 \mathrm{~A} \\ & >\mathrm{PG} \end{aligned}$	$\begin{aligned} & \hline \text { ENSP0000027 } \\ & 6440.7 \\ & \text { p.Ser217Gly } \end{aligned}$	0.000008135	
1464	hEDS	rs369514263	$\begin{array}{r} 17.1 \\ 0.987 \end{array}$	a)	FGL1	5/10	$\begin{aligned} & \hline \text { ENST0000039 } \\ & 8056.2 c .82 C> \\ & G \end{aligned}$	$\begin{aligned} & \hline \text { ENSP0000038 } \\ & 1133.2 \\ & \text { p. Gln28Glu } \end{aligned}$	0.00002849	
1484	hEDS	-	$\begin{gathered} 26.3 \\ 0.997 \\ \hline \end{gathered}$	a)	FGF17	3/5	ENSTOOOOO35 $9441.3 c .2110$ \top	$\begin{aligned} & \text { ENSP0000035 } \\ & 2414.3 \\ & \text { p.Arg71Cys } \end{aligned}$	0	
1498	hEDS	rs758593640	$\begin{aligned} & 35 \\ & 0.999 \end{aligned}$	a)	CCAR2	18/21	ENST0000030 $8511.4 c .2269 \mathrm{C}$ $>$ >	$\begin{aligned} & \text { ENSP0000031 } \\ & 0670.4 \\ & \text { p.Arg757Trp } \end{aligned}$	0.000008122	
1499	hEDS	rs758593640	$\begin{aligned} & \hline 35 \\ & 0.999 \end{aligned}$	a)	CCAR2	18/21	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO30 } \\ 8511.4 c .2269 \mathrm{c} \\ >T \end{array}$	$\begin{aligned} & \text { ENSP0000031 } \\ & \text { 0670.4 } \\ & \text { p.Arg757Trp } \end{aligned}$	0.000008122	
1504	HDCT	rs771448146	$\begin{array}{\|c\|} \hline 18.04 \\ \\ \hline 0.968 \\ \hline \end{array}$	a)	PCM1	31/39	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO32 } \\ 5083.8 c .5132 C \\ >A \end{array}$	$\begin{aligned} & \text { ENSP0000032 } \\ & 7077.8 \\ & \text { p.Thr1711Asn } \end{aligned}$	0	
1524	cEDS	rs774318933	$\begin{aligned} & 25.5 \\ & 0.998 \\ & \hline \end{aligned}$	a)	PDGFRL	7/7	$\begin{array}{\|l\|} \hline \text { ENSTO000054 } \\ \text { 1323.1c.1004c } \\ >T \end{array}$	$\begin{aligned} & \text { ENSP0000044 } \\ & 4211.1 \\ & \text { p.Thr335Met } \end{aligned}$	0.00001219	
1528	cEDS	rs749514722	$\begin{gathered} 14.15 \\ 0.915 \\ \hline \end{gathered}$	a)	ADAM7	12/22	$\begin{aligned} & \hline \text { ENST0000017 } \\ & 5238.6 c .1156 \\ & \text { A>C } \end{aligned}$	$\begin{aligned} & \text { ENSP0000017 } \\ & 5238.5 \\ & \text { p.Lys } 386 \mathrm{GIn} \end{aligned}$	0.000004076	
1582	hEDS	rs374187681	$\begin{gathered} 17.51 \\ 0.998 \end{gathered}$	c)	ASAH1	10/14	$\begin{aligned} & \hline \text { ENST0000038 } \\ & \text { 1733.4: } \\ & \text { c.766A>C } \end{aligned}$	$\begin{aligned} & \text { ENSP0000037 } \\ & \text { 1152.4 } \\ & \text { p.Ile256Leu } \end{aligned}$	0.00006906	$\begin{array}{\|l} \hline \text { VUS } \\ \\ \text { PM2 } \\ \hline \text { PP2 } \end{array}$
1582	hEDS	rs145928227	$\begin{array}{\|c\|} \hline 23.5 \\ 0.994 \\ \hline \end{array}$	a)	CCAR2	12/21	$\begin{aligned} & \hline \text { ENST0000030 } \\ & 8511.4 c .1235 \\ & \text { A>T } \end{aligned}$	$\begin{aligned} & \text { ENSP0000031 } \\ & 0670.4 \\ & \text { p.Gln412Leu } \end{aligned}$	0.00002847	
1616	hEDS	-	$\begin{gathered} 13.44 \\ 0.991 \end{gathered}$	b)	CSGALNACT1	10/10	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO45 } \\ \text { 4498.2:c. } 1548 \\ \text { A>G } \end{array}$	$\begin{aligned} & \hline \text { ENSP0000041 } \\ & 1816.2 \\ & \text { p.lle516Met } \end{aligned}$	0.00001218	$\begin{array}{\|c} \hline \text { VUS } \\ \\ \text { PM2 } \end{array}$
1630	hEDS	rs78484373	$\begin{gathered} 15.81 \\ \\ 0.891 \end{gathered}$	a)	FGL1	5/10	$\begin{aligned} & \text { ENST0000039 } \\ & 8056.2 \mathrm{c} .113 \mathrm{G} \\ & >\mathrm{A} \end{aligned}$	$\begin{aligned} & \hline \text { ENSP0000038 } \\ & 1133.2 \\ & \text { p.Arg38His } \end{aligned}$	0.00003658	
1665	hEDS	rs149782492	$\begin{gathered} 27.4 \\ 0.999 \end{gathered}$	a)	SORBS3	18/21	ENST0000024 $0123.7 c .1549 \mathrm{C}$ $>\mathrm{T}$	$\begin{aligned} & \text { ENSP0000024 } \\ & 0123.7 \\ & \text { p.Arg517Trp } \end{aligned}$	0.00006939	

Current gene annotation:
a) Germline variants in this gene not currently associated with Mendelian disorder
b) Germline variants in this gene associated with disorder of bone metabolism or skeletal dysplasia
c) Germline variants in this gene associated with non-EDS / HTAD phenotype

ACMG classification as per Richards et al. (9): $P=$ pathogenic, $L P=$ likely pathogenic, $=$ variant of uncertain significance close to criteria for LP classification, VUS = variant of uncertain significance,
$L B=$ likely benign, $B=$ benign.
VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance
(Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020. pdf).

Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria

Supplementary Table 13. Rare germline variants (CADD>15) in genes previously published in a linkage study (29) and genome wide association studies associated with, ($p 5 \times 10-8$), pelvic organ prolapse (PMID: 32184442), knee pain and rotator cuff injury (https://www.ebi.ac.uk/gwas/)

Patient ID	Clinical Diagnosis	Current Gene annotation	Gene	HGVSc	HGVSp	CADD	Rs ID	```Exon or Intron ```	gnomAD allele frequency	ACMG Classification (See footnote)
79	HDCT	c)	LAMC2	$\begin{aligned} & \hline \text { ENST0000026 } \\ & 4144.4 \\ & \\ & \text { c. } 1669 T>C \end{aligned}$	$\begin{aligned} & \hline \text { ENSP0000026 } \\ & 4144.4 \\ & \text { p.Tyr557His } \\ & \hline \end{aligned}$	24	-	11/23	0	vUS PM2 PP3 (Supp)
100	hEDS	a)	HAS1	ENSTOO00022 2115.1 c. $874 \mathrm{G}>\mathrm{A}$	$\begin{array}{\|l\|} \hline \text { ENSP0000022 } \\ \text { 2115.1 } \\ \text { p.Glu292Lys } \end{array}$	33	-	3/5	0	
136	cEDS	c)	TBX5	ENST0000031 0346.4 c. $1203 \mathrm{G}>\mathrm{T}$	$\begin{aligned} & \hline \text { ENSP0000030 } \\ & 9913.4 \\ & \text { p.Trp401Cys } \\ & \hline \end{aligned}$	33	rs377649723	9/9	0.00001221	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
383	cEDS	a)	HAS1	ENSTOOOOO22 2115.1 c. $1679 \mathrm{G}>\mathrm{A}$	$\begin{aligned} & \hline \text { ENSP0000022 } \\ & 2115.1 \\ & \text { p. Trp560Ter } \end{aligned}$	40	rs200444967	5/5	0.0001912	
428	hEDS	c)	FAT4	$\begin{array}{\|l\|} \hline \text { ENST0000039 } \\ 4329.3 \\ \text { c. } 11147 \mathrm{G}>\mathrm{A} \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000037 } \\ \text { 7862.3 } \\ \text { p.Arg3716His } \\ \hline \end{array}$	21.9	rs139635339	9/17	0.00013	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
474	HDCT	c)	LAMC2	ENST0000026 4144.4 c. $1105 \mathrm{C}>$ T	$\begin{array}{\|l\|} \hline \text { ENSP0000026 } \\ 4144.4 \\ \text { p.Arg369Cys } \\ \hline \end{array}$	34	rs552102778	9/23	0.0000008122	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
495, 505	hEDS (495), HDCT (505)	c)	ROBO2	$\begin{array}{\|l\|} \hline \text { ENST0000048 } \\ 7694.3 \\ \\ \text { c. } 2066 \mathrm{G}>\mathrm{A} \\ \hline \end{array}$	$\begin{aligned} & \text { ENSP0000041 } \\ & 7335.2 \\ & \text { p.Arg689His } \\ & \hline \end{aligned}$	34	rs376737394	15/27	0.0001099	VUS PM2 PP3 (Supp)
560	hEDS	c)	LAMC3	ENSTO000036 1069.4 c. $236 C>$ T	ENSP0000035 4360.4 p.Ala79Val	27.2	$\begin{aligned} & \text { rs186188737;r } \\ & \text { s772194826 } \end{aligned}$	1/28	0.00009384	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
566	hEDS	c)	TBX5	$\begin{aligned} & \text { ENSTOO00031 } \\ & 0346.4 \\ & \text { c. } 330 C>G \end{aligned}$	$\begin{aligned} & \hline \text { ENSPO000030 } \\ & 9913.4 \\ & \text { p.Asp110Glu } \\ & \hline \end{aligned}$	24.5	-	4/9	0	VUS PM2 PP3 (Supp)
630	hEDS	c)	LAMC3	$\begin{aligned} & \text { ENSTOO00036 } \\ & 1069.4 \\ & \text { c. } 449 \mathrm{G}>\mathrm{A} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ENSPO000035 } \\ & 4360.4 \\ & \text { p.Arg150His } \\ & \hline \end{aligned}$	31	rs774775769	2/28	0.00001224	VUS PM2 PP3 (M)
967	hEDS	c)	FAT4	ENSTO000039 4329.3 c. 10063 A>G	ENSP0000037 7862.3 p.lle3355Val	22.5	-	9/17	0	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
1263	hEDS	c)	SALL1	$\begin{aligned} & \hline \text { ENST0000025 } \\ & 1020.4 \\ & \\ & \text { c. 2920T>C } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { ENSP0000025 } \\ & 1020.4 \\ & \text { p.Ser974Pro } \\ & \hline \end{aligned}$	20.6	rs144429956	2/3	0.00002034	VUS PM2 PP3 (Supp)
1393	hEDS	c)	LAMC3	$\begin{aligned} & \text { ENST0000036 } \\ & 1069.4 \\ & \\ & \text { c. } 1682 \mathrm{C}>\text { T } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { ENSP0000035 } \\ 4360.4 \\ \text { p.Thr5611le } \end{array}$	22.1	rs199701268	10/28	0	VUS PM2 BP4 (Supp)
1403	hEDS	c)	LAMC2	$\begin{array}{\|l\|} \hline \text { ENST0000026 } \\ 4144.4 \\ \text { c. } 1079 T>C \end{array}$	ENSP0000026 4144.4 p.lle360Thr	25.7	-	9/23	0	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
1421	hEDS	a)	Ноокз	ENST0000030 7602.4 c. $1945 A>T$	ENSP0000030 5699.3 p.Lys649Ter	48	-	21/22	0	
1450	hEDS	a)	HAS1	ENST0000022 2115.1 c. $1679 G>A$	$\begin{array}{\|l\|} \hline \text { ENSP0000022 } \\ 2115.1 \\ \text { p.Trp560Ter } \end{array}$	40	rs200444967	5/5	0.0001912	

1495	hEDS	c)	TBX5	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO31 } \\ 0346.4 \\ \text { c. } 113 C>G \end{array}$	ENSP0000030 9913.4 p.Ser38Cys	25.6	-	2/9	0	$\begin{array}{\|l\|} \hline \text { VUS } \\ \text { PM2 } \end{array}$
1626	hEDS	c)	SALL1	$\begin{aligned} & \text { ENSTO000025 } \\ & 1020.4 \\ & \\ & \text { c. } 1673 C>\text { T } \end{aligned}$	$\begin{aligned} & \text { ENSP0000025 } \\ & 1020.4 \\ & \text { p.Pro558Leu } \end{aligned}$	20.2	-	2/3	0	VUS PM2 BP4 (Supp)
1642	hEDS	a)	LAMC1	$\begin{array}{\|l\|} \hline \text { ENST0000025 } \\ 8341.4 \\ \text { c. } 4729 C>T \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000025 } \\ 8341.3 \\ \text { p.Arg1577Ter } \end{array}$	37	rs1031794706	28/28	0	
1642	hEDS	a)	ADAM33	$\begin{array}{\|l\|} \hline \text { ENSTOOOOOO35 } \\ 6518.2 \\ \text { c. } 706 C>T \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSPOOOOOO34 } \\ 8912.2 \\ \text { p.Arg236Cys } \end{array}$	34	rs750423431	8/22	0.000004061	

Current gene annotation:
a) Germline variants in this gene not currently associated with Mendelian disorder
b) Germline variants in this gene associated with disorder of bone metabolism or skeletal dysplasia
c) Germline variants in this gene associated with non-EDS / HTAD phenotype

ACMG classification as per Richards et al. (9): $P=$ pathogenic, $L P=$ likely pathogenic, = variant of uncertain significance close to criteria for LP classification, VUS = variant of uncertain significance, $\mathrm{LB}=$ likely benign, $\mathrm{B}=$ benign.

VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance
(Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf).

Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria

PatientID	Clinical Diagnosis	Rs ID	CADD/ DANN		Gene	Exon or intron / total number of exons	HGVSc	HGVSp Domain	gnomAD allele frequency	ACMG classification (See footnote)
34	HDCT	15752525603	$\begin{gathered} \hline 10.24 \\ 0.868 \end{gathered}$	c)	ITGB3	1/15	ENST0000055 9488.1 c. 160 T	ENSP0000045 2786.1 p.Arg6Trp Signal Peptide	0.0002439	$\begin{array}{\|l\|l} \hline \text { VUS } \\ \\ \text { PM2 } \\ \text { PP2 } \\ \text { BP4 (Supp) } \\ \hline \end{array}$
45	HDCT	15781077349	$\begin{array}{\|c\|} \hline 22.5 \\ 0.995 \end{array}$	a)	ILKAP	7/12	$\begin{array}{\|l\|} \hline \text { ENST0000025 } \\ 4654.3 \\ \text { c. } 571 C>A \end{array}$	ENSP0000025 4654.3 p.Leu1911le Metal ion binding, pLi=0.98	0.00002437	
61	heds	rs370293437	$\begin{array}{\|l} \hline 27 \\ 0.999 \end{array}$	a)	C1QtNf9b	1/3	$\begin{array}{\|l\|} \hline \text { ENST0000038 } \\ 2137.3 \\ \text { c. } 139 \mathrm{G}>\mathrm{A} \end{array}$	ENSP0000037 1572.3 p. Gly47Arg Collagen like	0.00001629	
75	cEDS	rs140610274	$\begin{array}{\|c\|} \hline 29.5 \\ 0.998 \end{array}$	c)	TNFAIP3	8/9	ENST0000023 7289.4 c. $2036 T>C$	ENSP0000023 7289.4 p.Ile679Thr NFKB regulator	0.00009745	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
385	heds	rs150777320	$\begin{array}{\|c} \hline 23.1 \\ 0.989 \end{array}$	b)	TNFRSF11B	2/5	$\begin{aligned} & \text { ENST0000029 } \\ & 7350.4 \\ & \text { c. } 104 C>A \end{aligned}$	ENSP0000029 7350.4 p.Thr35Asn Repeat region	0.0001422	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \\ \text { BS2 } \\ \hline \end{array}$
395	heDs	15747279227	$\begin{array}{\|c\|} \hline 21.3 \\ 0.991 \end{array}$	a)	TNFRSF10A	4/10	$\begin{array}{\|l\|} \hline \text { ENST0000022 } \\ 1132.3 \\ \text { c. } 614 \mathrm{G}>\mathrm{T} \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000022 } \\ 1132.3 \\ \text { p.Arg205Leu } \\ \\ \text { Repeat region } \\ \hline \end{array}$	0.00002031	
395	heds	15747279227	$\begin{array}{\|c\|} \hline 21.3 \\ 0.991 \end{array}$	a)	TNFRSF 10A	4/10	ENST0000022 1132.3 c. $614 \mathrm{G}>\mathrm{T}$	$\begin{array}{\|l\|} \hline \text { ENSP0000022 } \\ 1132.3 \\ \text { p.Arg205Leu, } \\ \\ \text { Repeat region } \end{array}$	0.00002031	
397	heds	15747279227	$\begin{gathered} 21.3 \\ 0.991 \end{gathered}$	a)	TNFRSF 10 A	4/10	ENSTO000022 1132.3 c.614G>T	ENSP0000022 1132.3 p.Arg205Leu Repeat region	0.00002031	
428	heds	15773639782	$\begin{array}{\|c\|} \hline 24.6 \\ 0.999 \end{array}$	a)	TNFAIP8L3	3/3	ENSTOOOOO32 7536.5 c.347C>T	ENSP0000032 8016. 5p.Ala116Val phosphoinositi de binding	0.00004613	
${ }^{431}$	cEDS	-	$\begin{gathered} 14.65 \\ 0.986 \end{gathered}$	a)	TNFSF10	1/5	$\begin{array}{\|l\|} \hline \text { ENST0000024 } \\ 1261.2 \\ \text { c. } 89 \mathrm{G}>\mathrm{A} \end{array}$	ENSP0000024 1261.2 p. Cys30Tyr helical	0	
534	cEDS	-	$\begin{array}{\|c\|} \hline 27.7 \\ 0.998 \end{array}$	c)	NFKB1	16/24	ENST0000022 6574.4 c. $1678 \mathrm{G}>\mathrm{A}$	ENSP0000022 6574.4 p.Val560Met ANK1 CFLAR	0	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \\ & \text { PP2 (Supp) } \end{aligned}$
564	HDCT	rs202134968	$\begin{aligned} & \hline 25.2 \\ & 0.998 \end{aligned}$	a)	GSK3B	2/12	$\begin{array}{\|l\|} \hline \text { ENST0000031 } \\ 6626.5 \\ \text { c.233C>T } \end{array}$	ENSP0000032 4806.5 p.Ser78Leu Kinase	0.00001659	
768	HDCT	-	$\begin{array}{\|c\|} \hline 25.5 \\ 0.998 \end{array}$	a)	SNAI3	3/3	$\begin{array}{\|l\|} \hline \text { ENST0000033 } \\ 2281.5 \\ \text { c. } 764 \mathrm{~A}>\mathrm{G} \end{array}$	ENSP0000032 7968.5 p. His255Arg Zinc Finger	0	
769	heds	15755736608	32 0.999	a)	TNFAIP8	2/2	ENST0000050 4771.2 c. $133 \mathrm{G}>\mathrm{A}$	ENSP0000042 2245.1 p.Asp45Asn	0.00001308	
777	HDCT	15766761788	$\begin{gathered} 14.59 \\ 0.970 \end{gathered}$	a)	C1QTNF2	2/3	$\begin{array}{\|l\|} \hline \text { ENST0000039 } \\ 3975.3 \\ \text { c. } 359 \mathrm{G}>\mathrm{A} \end{array}$	ENSP0000037 7545.3 p.Arg120GIn collagen like	0.00004914	
798	vEDS	-	24	a)	TNFRSF25	7/10	ENST0000037 7782.3 c.720del	$\begin{array}{\|l\|} \hline \text { ENSPO000036 } \\ 7013.3 \\ \text { p. Lys240Asnfs } \\ \text { Ter14 } \end{array}$	0	

1002	cEDS	rs373918716	$\begin{gathered} 23.5 \\ 0.978 \end{gathered}$	a)	TNFAIP8L3	3/3	ENST0000032 7536.5 c.613A>C	ENSP0000032 8016.5 p.Met205Leu phosphoinositi de binding	0.00003657	
1341	hEDS	-	$\begin{aligned} & 27.1 \\ & 0.996 \end{aligned}$	${ }^{\text {a) }}$	C1QTNF4	2/2	$\begin{array}{\|l\|} \hline \text { ENSTO000030 } \\ 2514.3 \\ \text { c. } 886 \mathrm{G}>\mathrm{T} \end{array}$	$\begin{aligned} & \hline \text { ENSP0000030 } \\ & 2274.3 \\ & \text { p.Ala296Ser } \\ & \\ & \text { C1Q2 domain } \end{aligned}$	0.00001374	
1344	heds	-	$\begin{aligned} & 27.1 \\ & 0.996 \end{aligned}$	a)	$\overline{\text { C1QTNF4 }}$	2/2	ENST0000030 2514.3 c. $886 \mathrm{G}>\mathrm{T}$	$\begin{aligned} & \hline \text { ENSP0000030 } \\ & 2274.3 \\ & \text { p.Ala296Ser } \\ & \\ & \text { C1Q domain } \end{aligned}$	0.00001374	
1346	vEDS	rs776818049	$\begin{gathered} 26.5 \\ 0.993 \end{gathered}$	a)	C1QTNF2	2/3	$\begin{array}{\|l\|} \hline \text { ENST0000039 } \\ 3975.3 \\ \text { c. } 271 \mathrm{G}>\mathrm{A} \end{array}$	$\begin{array}{\|l} \hline \text { ENSP0000037 } \\ 7545.3 \\ \text { p. Gly91Ser } \\ \text { helical } \end{array}$	0.00001315	
1397	heds	-	$\begin{aligned} & 24.9 \\ & 0.996 \end{aligned}$	${ }^{\text {a) }}$	ITGBL1	2/11	ENST0000037 6180.3 c.154C>G	$\begin{aligned} & \hline \text { ENSP0000036 } \\ & 5351.3 \\ & \text { p.Arg52Gly } \\ & \\ & \text { Repeat region } \end{aligned}$	0	
1498	heds	r5766972313	$\begin{aligned} & 24.9 \\ & 0.992 \end{aligned}$	c)	$\begin{aligned} & \text { C1QTNF5 } \\ & \text { LORD } \end{aligned}$	14/15	$\begin{array}{\|l\|} \hline \text { NM_00127843 } \\ 1.2 \\ \text { c. } 6 \mathrm{G} \times \mathrm{C} \end{array}$	ENSP0000040 2389.2 p.Arg2Ser signal peptide	0.000007461	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
1502	hEDS	rs139306246	$\begin{array}{\|c} \hline 22.7 \\ 0.996 \end{array}$	a)	ILKAP	12/12	$\begin{array}{\|l\|} \hline \text { ENSTO000025 } \\ 4654.3 \\ \text { c. } 1166 \mathrm{G}>\mathrm{A} \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000025 } \\ 4654.3 \\ \text { p. Arg3 } \\ 89 G \ln \\ \hline \end{array}$	0.00004088	
1511	hEDS	-	$\begin{aligned} & 24.4 \\ & 0.998 \end{aligned}$	b)	TNFRSF11B	3/5	$\begin{array}{\|l\|} \hline \text { ENST0000029 } \\ 7350.4 \\ \text { c. } 401 \mathrm{G}>\mathrm{C} \end{array}$	ENSP0000029 7350.4 p.Gly 134Ala, ? LOEUF $=0.5$	0	$\begin{array}{\|l\|} \hline \text { VUS } \\ \\ \text { PM2 } \\ \text { PP3 (Supp) } \end{array}$
1527	heds	r5781311887	$\begin{aligned} & 24.7 \\ & 0.999 \end{aligned}$	a)	AKTIP	6/10	ENST0000039 4657.7 c. $415 \mathrm{C}>$ T	ENSP0000037 8152.6 p.Arg139Cys, ADA 0.992	${ }^{0.00002851}$	
1527	hEDS	${ }^{\text {rs781311887 }}$	$\begin{aligned} & 24.7 \\ & 0.999 \end{aligned}$	a)	AKTIP	6/10	ENST0000039 4657.7 c.415C>T	$\begin{aligned} & \hline \text { ENSP0000037 } \\ & 8152.6 \\ & \text { p.Arg139Cys, } \\ & \text { ADA } 0.992 \\ & \hline \end{aligned}$	${ }^{0.00002851}$	
1603	hEDS	rs376335031	23.8	a)	TNFAIP8	2/2	ENST0000050 4771.2 c.107A>G	ENSP0000042 2245.1 p.Lys36Arg	${ }^{0}$	
1603	heds	rs376335031	$\begin{array}{\|c} \hline 23.8 \\ 0.999 \end{array}$	a)	TNFAIP8	2/2	ENST0000050 4771.2 c. $107 \mathrm{~A}>\mathrm{G}$	$\begin{aligned} & \hline \text { ENSP0000042 } \\ & \text { 2245.1 } \\ & \text { p.Lys36Arg, } \end{aligned}$	0.0001135	
1609	heDs	-	$\begin{aligned} & 23.1 \\ & 0.998 \end{aligned}$	c)	AKT3	4/14	ENST0000036 6539.1 c.259T>C	ENSP0000035 5497.1 p.Phe87Leu PH	0	$\begin{array}{\|l\|} \hline \text { VUS } \\ \\ \text { PM2 } \\ \text { PP3 (Supp) } \end{array}$
1629	heds	-	18.38	a)	tNFRSF10A	6/10	$\begin{array}{\|l\|} \hline \text { ENST0000022 } \\ 1132.3 \\ \text { c.742_743del } \\ \hline \end{array}$	ENSP0000022 1132.3 p.Leu248Glyfs Ter44 pli=0, LOEUF = 1.6	0	
1669	hEDS	rs377409471	$\begin{aligned} & 24.9 \\ & 0.999 \end{aligned}$	a)	PARVG	11/14	ENST0000044 4313.3 c. $677 \mathrm{G}>\mathrm{A}$	ENSP0000039 1583.2 p.Arg226His CH2	0.000004061	
1682	heds	${ }^{\text {rs } 143172535 ~}$	$\begin{gathered} 17.17 \\ 0.928 \end{gathered}$	a)	TNFRSF25	7/10	$\begin{array}{\|l\|} \hline \text { ENST0000037 } \\ 7782.3 \\ \text { c. } 626 T>C \end{array}$	ENSP0000036 7013.3 p.Val209Ala Helical transmembran e domain, LOEUF $=0.6$	0.00002969	

[^3]b) Germline variants in this gene associated with disorder of bone metabolism or skeletal dysplasia
c) Germline variants in this gene associated with non-EDS / HTAD phenotype

ACMG classification as per Richards et al. (9): $P=$ pathogenic, $L P=$ likely pathogenic, $=$ variant of uncertain significance close to criteria for $L P$ classification
VUS $=$ variant of uncertain significance, $L B=$ likely benign, $B=$ benign.

VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance
(Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf)
Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria.

Supplementary Table 15. Rare germline variants (CADD> 15) in genes previously published as abnormally expressed in skin fibroblasts from vEDS patients (31),

Patient ID	Clinical Diagnosis	Rs ID	CADD/ DANN	Current Gene annotation	Gene	Exon or Intron $/$ Total no. exons	HGVSc	HGVSp	gnomAD allele frequency	ACMG classification (See footnote)
65	hEDS	rs149479865	$\begin{aligned} & 26.2 \\ & 0.999 \\ & \hline \end{aligned}$	b)	HSPG2	21/97	ENST00000374695.3 c. 2633G>A	$\begin{aligned} & \text { ENSP00000363827.3 } \\ & \text { p.Arg878His } \end{aligned}$	0.0002409	$\begin{array}{\|l\|} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
536	hEDS	rs145474376	$\begin{aligned} & 22.9 \\ & 0.996 \\ & \hline \end{aligned}$	b)	HSPG2	46/97	$\begin{aligned} & \hline \text { ENST00000374695.3 } \\ & \text { c.5815G }>\mathrm{A} \end{aligned}$	ENSP00000363827.3 p. Ala1939Thr	0.00007685	VUS
650	hEDS	rs201421233	$\begin{aligned} & 18.55 \\ & 0.988 \\ & \hline \end{aligned}$	a)	P4HA3	7/13	ENST00000331597.4 c. $934 \mathrm{C}>$ T	ENSP00000332170.4 p.Pro312Ser, ?	0.00007753	
1002	cEDS	rs150109595	$\begin{aligned} & 19.84 \\ & 0.989 \end{aligned}$	b)	HSPG2	74/97	ENST00000374695.3 $\text { c. } 9908 \mathrm{C}>\mathrm{T}$	ENSP00000363827.3 p.Thr3303Met	0.00005578	VUS PM2 BP4 (Supp)
1263	hEDS	rs773364995	$\begin{array}{l\|} \hline 28.5 \\ 0.997 \\ \hline \end{array}$	b)	HSPG2	61/97	ENST00000374695.3 c.7903G>A	ENSP00000363827.3 p. Glu2635Lys	0.00001221	$\begin{array}{\|l\|} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
1438	hEDS	rs771862177	$\begin{aligned} & \hline 26.7 \\ & 0.985 \\ & \hline \end{aligned}$	b)	HSPG2	88/97	$\begin{array}{\|l\|} \hline \text { ENST00000374695.3 } \\ \text { c. } 12040 \mathrm{C}>\mathrm{A} \end{array}$	ENSP00000363827.3 p. His4014Asn	0	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
1439	hEDS	rs771862177	$\begin{aligned} & \hline 26.7 \\ & 0.985 \\ & \hline \end{aligned}$	b)	HSPG2	88/97	ENST00000374695.3 c. 12040 C $>A$	ENSP00000363827.3 p. His4014Asn	0	$\begin{array}{\|l\|} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
1580	hEDS	-	$\begin{aligned} & 20.8 \\ & 0.98 \end{aligned}$	c)	TMEM130	5/8	$\begin{aligned} & \hline \text { ENST00000416379.2 } \\ & \text { c. } 722 \mathrm{C}>\mathrm{A} \end{aligned}$	ENSP00000413163.2 p.Thr241Asn	0	VUS PM2 BP4 (Supp)
1607	hEDS	-	$\begin{aligned} & 34 \\ & 0.998 \\ & \hline \end{aligned}$	a)	HIST1H4L	1/1	$\begin{aligned} & \text { NM_003546.3 } \\ & \text { c. } 259 G>A \end{aligned}$	ENSP00000348258.2 p.Val87Met	0.000004061	
1629	hEDS	rs747291083	$\begin{aligned} & 18.56 \\ & 0.996 \\ & \hline \end{aligned}$	b)	HSPG2	16/97	$\begin{array}{\|l\|} \hline \text { ENSTO0000374695.3 } \\ \text { c. } 2110 A>G \end{array}$	$\begin{aligned} & \text { ENSP00000363827.3 } \\ & \text { p.Ser704Gly } \end{aligned}$	0.00002442	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
1641	hEDS	rs773796176	$\begin{aligned} & 22.1 \\ & 0.998 \end{aligned}$	b)	HSPG2	4/97	$\begin{array}{\|l\|} \hline \text { ENST00000374695.3 } \\ \text { c. } 326 \mathrm{G}>\mathrm{A} \end{array}$	ENSP00000363827.3 p.Arg109GIn	0.000004061	VUS PM2 BP4 (Supp)
1688	HDCT	rs770843975	$\begin{aligned} & 33 \\ & 0.999 \end{aligned}$	a)	MMP24	4/9	ENST00000246186.6 c.794C>T	ENSP00000246186.6 p.Thr265Met	0.00004088	
1695	hEDS	rs774712031	$\begin{aligned} & 28.6 \\ & 0.998 \end{aligned}$	a)	LRRFIP1	2/11	$\begin{array}{\|l\|} \hline \text { ENST00000392000.4 } \\ \text { c. } 112 C>T \end{array}$	$\begin{aligned} & \text { ENSP00000375857.4 } \\ & \text { p.Arg38Cys } \end{aligned}$	0.00001741	
1714	hEDS	rs75564013	$\begin{aligned} & \hline 21.8 \\ & 0.990 \\ & \hline \end{aligned}$	a)	MMP24	9/9	ENST00000246186.6 c.1730G>C	ENSP00000246186.6 p.Arg577Pro	0.00008123	

ACMG criteria as per Richards et al. (9): $P=$ pathogenic, $L P=$ likely pathogenic, $V U S / L P=$ variant of uncertain significance close to criteria for LP classification, VUS $=$ variant of uncertain significance,
$\mathrm{LB}=$ likely benign, $\mathrm{B}=$ benign. Individual criteria ((9), Table 3)

VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance
(Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf).

Supplementary Table 16. Rare germline variants (CADD>15) in genes previously published as abnormally expressed in skin fibroblasts from cEDS patients (Ref 30), list of genes in supplementary methods.

Patient ID	Clinical Diagnosis	Rs ID	CADD DANN	Current Gene annotation	Gene	Exon or Intron / Total no. exons	HGVSc	HGVSp	gnomAD allele frequency	ACMG classification (See footnote) criteria
395	hEDS	-	$\begin{aligned} & 22.5 \\ & 0.998 \end{aligned}$	a)	DTL	14/15	ENST00000366 c.1993G>A	ENSP00000355 p.Ala665Thr	0.0001178	
534	cEDS	-	$\begin{aligned} & 29.4 \\ & 0.999 \end{aligned}$	a)	POSTN	9/23	ENST00000379 c.1160T>C	$\begin{aligned} & \text { ENSP00000369 } \\ & \text { p.Leu387Pro } \end{aligned}$	0	
967	hEDS	rs755934955	$\begin{aligned} & 25.7 \\ & 0.999 \end{aligned}$	a)	EDIL3	9/11	ENST00000296 c. $994 \mathrm{G}>\mathrm{A}$	$\begin{aligned} & \hline \text { ENSP00000296 } \\ & \text { p.Asp332Asn } \end{aligned}$	0.00002033	
1289	hEDS	-	$\begin{aligned} & 27.5 \\ & 0.998 \end{aligned}$	c)	KIF4A	8/31	ENST00000374 c. $836 \mathrm{~A}>\mathrm{G}$	$\begin{aligned} & \text { ENSP00000363 } \\ & \text { p.Asp279Gly } \end{aligned}$	0	VUS PM2 PP3 (Supp)
1421	hEDS	rs768395830	$\begin{aligned} & \hline 28.3 \\ & 0.998 \\ & \hline \end{aligned}$	c)	CSPP1	12/29	ENST00000262 c. $1576 \mathrm{~A}>\mathrm{G}$	$\begin{aligned} & \text { ENSP00000262 } \\ & \text { p.Asn526Asp } \end{aligned}$	0.000008126	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
1464	hEDS	rs142868256	$\begin{aligned} & 23.5 \\ & 0.985 \end{aligned}$	c)	C3	37/41	$\begin{aligned} & \hline \text { ENSTOOOOO245 } \\ & \text { c. } 4535 G>A \end{aligned}$	$\begin{aligned} & \text { ENSP00000245 } \\ & \text { p.Arg1512His } \end{aligned}$	0.0001178	VUS PM2 PP5 BP6
1642	hEDS	-	$\begin{aligned} & 23.3 \\ & 0.995 \end{aligned}$	a)	POSTN	7/23	ENST00000379 c. $766 \mathrm{~A}>\mathrm{T}$	$\begin{array}{\|l\|} \hline \text { ENSP00000369 } \\ \text { p.Thr256Ser } \end{array}$	0	
1681	hEDS	rs142868256	$\begin{aligned} & 23.5 \\ & 0.985 \end{aligned}$	c)	C3	37/41	$\begin{aligned} & \text { ENST00000245 } \\ & \text { c. } 4535 \mathrm{G}>\mathrm{A} \end{aligned}$	ENSP00000245 p. Arg1512His	0.0001178	VUS PM2 PM5 BP6
1717	hEDS	rs759948962	$\begin{aligned} & 24.4 \\ & 0.998 \\ & \hline \end{aligned}$	c)	C3	9/41	$\begin{aligned} & \hline \text { ENST00000245 } \\ & \text { c. } 910 C>T \end{aligned}$	$\begin{aligned} & \hline \text { ENSP00000245 } \\ & \text { p.Arg304Trp } \end{aligned}$	0.000004067	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \\ & \hline \end{aligned}$
1717	hEDS	rs141915646	$\begin{aligned} & \hline 26.7 \\ & 0.998 \\ & \hline \end{aligned}$	a)	MK167	8/15	$\begin{array}{\|l\|} \hline \text { ENST00000368 } \\ \hline \text { c. } 1513 C>T \end{array}$	$\begin{aligned} & \text { ENSP00000357 } \\ & \text { p.Arg505Cys } \end{aligned}$	0.00003249	

Current gene annotation:
a) Germline variants in this gene not currently associated with Mendelian disorder
b) Germline variants in this gene associated with disorder of bone metabolism or skeletal dysplasia
c) Germline variants in this gene associated with non-EDS / HTAD phenotype

ACMG classification as per Richards et al. (9): $\mathrm{P}=$ pathogenic, $\mathrm{LP}=$ likely pathogenic, = variant of uncertain significance close to criteria for LP classification,
VUS = variant of uncertain significance, $\mathrm{LB}=$ likely benign, $\mathrm{B}=$ benign.

VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance (Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf).

Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria.

Supplementary Table 17. Rare germline variants (CADD>15) in genes previously published in genome wide association studies, associated with, (p<5 $\times 10^{-}$
${ }^{8}$), self-assessed Beighton Score >5 (6), list of genes in supplementary methods.

Patient ID (Beighton Score)	Clinical Diagnosis	Rs ID	CADD DANN	Current Gene annotation	Gene	Exon or Intron / Total no. exons	HGVSc	HGVSp Domain	gnomAD allele frequency	ACMG classification (See footnote)
44 (5)	vEDS	-	$\begin{aligned} & 28.6 \\ & 0.999 \end{aligned}$	c)	PIEZO1	25/51	$\begin{array}{\|l\|} \hline \text { ENST0000030 } \\ 1015.9 \\ \text { c. } 3575 C>\text { T } \end{array}$	ENSP00000301 p.Ala1192Val Transmembrar	0	$\begin{gathered} \hline \text { VUS } \\ \text { PM2 } \end{gathered}$
44 (5)	vEDS	-	$\begin{gathered} 23.7 \\ 0.972 \end{gathered}$	b)	COL27A1	34/61	$\begin{aligned} & \text { ENST0000035 } \\ & 6083.3 \\ & \text { c. } 3481 \mathrm{C}>\mathrm{G} \end{aligned}$	ENSP00000348 p.Pro1161Ala Collagen like 9	0	$\begin{gathered} \text { VUS } \\ \text { PM2 } \end{gathered}$
45 (5)	HDCT	rs200031013	$\begin{aligned} & 23 \\ & 0.975 \end{aligned}$	c)	PIEZO1	39/51	$\begin{array}{\|l\|} \hline \text { ENST0000030 } \\ 1015.9 \\ \text { c. } 5647 C>T \end{array}$	ENSP00000301 p.Arg1883Trp none	0.0002472	$\begin{gathered} \text { VUS } \\ \text { PM2 } \end{gathered}$
60 (0)	HDCT	rs752193524	$\begin{aligned} & 29.2 \\ & 0.998 \end{aligned}$	b)	COL27A1	26/61	$\begin{aligned} & \text { ENST0000035 } \\ & 6083.3 \\ & \text { c. } 3040 C>\text { T } \end{aligned}$	ENSP00000348 p.Arg1014Cys Collagen like 7	0.000004063	$\begin{aligned} & \hline \text { VUS* } \\ & \\ & \text { PM2 } \\ & \text { PP3 (M) } \end{aligned}$
61 (n / a)	hEDS	-	$\begin{aligned} & 26 \\ & 0.994 \end{aligned}$	c)	PIEZO1	42/51	$\begin{aligned} & \text { ENST0000030 } \\ & 1015.9 \\ & \text { c. } 5978 C>\text { T } \end{aligned}$	ENSP00000301 p.Ser1993Phe Helical transme	-	$\begin{gathered} \text { VUS } \\ \text { PM2 } \end{gathered}$
61 (n / a)	hEDS	rs758079877	$\begin{gathered} 23.5 \\ 0.996 \end{gathered}$	b)	COL27A1	60/61	ENST0000035 6083.3 c. $5413 \mathrm{G}>\mathrm{A}$	ENSP00000348 p.Glu1805Lys C terminal prop	0.00001221	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
99 (0)	HDCT	$\begin{aligned} & \text { rs924560632 } \\ & \text { rs } 755738951 \end{aligned}$	$\begin{gathered} 18.1 \\ 0.945 \end{gathered}$	c)	PIEZO1	39/51	$\begin{aligned} & \text { ENST0000030 } \\ & 1015.9 \\ & \text { c.5602C>T } \end{aligned}$	ENSP00000301 p.Arg1868Cys none	0.00006886	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
385 (n / a)	hEDS	rs753059506	$\begin{aligned} & 26.6 \\ & 0.998 \end{aligned}$	b)	COL27A1	50/61	ENST0000035 6083.3 c. $4597 \mathrm{G}>\mathrm{A}$	ENSP00000348 p.Glu1533Lys Triple helical	0.00001218	$\begin{gathered} \text { VUS } \\ \text { PM2 } \end{gathered}$
$\begin{aligned} & 395,397 \\ & (n / a, n / a) \end{aligned}$	hEDS	rs766146854	$\begin{aligned} & 24 \\ & 0.991 \end{aligned}$	a)	NEDD4L	15/31	ENST0000040 0345.3 c. $1370 \mathrm{C}>$ T	ENSP00000383 p.Pro457Leu Neighbouring p	0.000008.195	$\begin{array}{\|l\|} \hline \text { VUS } \\ \\ \text { PM2, PP2 } \\ \text { BP6 (S) } \\ \hline \end{array}$
422 (6)	HDCT	rs756716936	21.5	a)	STON1	1/3	$\overline{N M} \text { _006873.4 }$ c.773dup	ENSP00000310 p.Asn258Lysfs LoF z $=1.08$	0.0001535	
$\int_{(n / a)}^{428}$	hEDS	rs750927939	$\begin{aligned} & 27.5 \\ & 0.994 \end{aligned}$	c)	PIEZO1	51/51	$\begin{aligned} & \text { ENST0000030 } \\ & 1015.9 \\ & \text { c. } 7415 C>\text { T } \end{aligned}$	ENSP00000301 p.Pro2472Leu None	0.00001323	$\begin{gathered} \text { VUS } \\ \text { PM2 } \end{gathered}$

453 (4)	HDCT	rs756716936		a)	STON1	1/3	NM_006873.4 c.773dup	ENSP0000031d p.Asn258Lysfs LoF z $=1.08$	0.0001535	
475 (7)	hEDS	-	$\begin{aligned} & 24.5 \\ & 0.995 \end{aligned}$	c)	PIEZO1	47/51	ENSTO000030 1015.9 c. $6795 \mathrm{C}>\mathrm{G}$	ENSP00000301 p. Ile2265Met None	0	$\begin{array}{\|c} \hline \text { VUS } \\ \text { PM2 } \end{array}$
479 (6)	HDCT	rs781648726	$\begin{gathered} 19.6 \\ 0.936 \end{gathered}$	a)	NEDD4	1/22	ENST0000033 8963.2 c. $1006 \mathrm{G}>\mathrm{A}$	ENSP00000345 p.Gly336Arg None	0.00002443	
526 (7)	HDCT	rs763621682	$\begin{aligned} & 17.2 \\ & 0.631 \end{aligned}$	b)	COL27A1	27/61	ENSTOOOOO35 6083.3 c.3136C>T	ENSP00000348 Pro1046Ser Collagen like 7	0.00001633	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
532 (2)	HDCT	rs150886795	$\begin{gathered} 18.24 \\ 0.990 \end{gathered}$	a)	NEDD4	1/22	ENST0000033 8963.2 c.385G>A	ENSP00000345 p.Asp129Asn none	0.0003058	
635 (7)	HDCT	rs775232854	$\begin{gathered} 16.72 \\ 0.967 \end{gathered}$	c)	VCAN	8/15	ENST0000026 5077.3 c. $4380 A>C$	p. ENSP00000265	0.000008149	VUS PM2 BP4 (Supp)
650 (7)	hEDS	-	${ }^{34}$	a)	NOTCH4	27/30	ENST0000037 5023.3 c.4772del	ENSP00000364 p. Leu1591Argf LOEUF $=0.74$	0.000008257	
670 (8)	hEDS	rs532112751	$\begin{aligned} & 24.4 \\ & 0.996 \end{aligned}$	c)	PIEZO1	27/51	ENSTOOOOO30 1015.9 c. $3922 \mathrm{C}>\mathrm{G}$	ENSP00000301 p.Leu1308Val None	0.0001946	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
673 (3)	hEDS	-	$\begin{aligned} & 23.9 \\ & 0.998 \end{aligned}$	a)	NEDD4	15/22	ENSTOOOOOO33 8963.2 c.3103A>G	ENSP00000345 p.lle1035Val HECT	0.0000398	
769 (3)	hEDS	rs781127798	$\begin{aligned} & \hline 24.1 \\ & 0.995 \\ & \hline \end{aligned}$	a)	MAB21L4	1/5	ENST0000038 8934.4 c.94C>T	ENSP00000373 p.Arg32Cys	0.00002893	
777 (7)	HDCT	rs778125678	$\begin{gathered} 22.6 \\ 0.996 \end{gathered}$	a)	STON1	1/3	$\begin{aligned} & \text { NM_006873.4 } \\ & \text { c. } 702 \mathrm{~A}>\mathrm{C} \end{aligned}$	ENSP00000310 p.Glu234Asp None	0.000005414	
778 (7)	hEDS	-	$\begin{gathered} 16.91 \\ 0.986 \end{gathered}$	c)	PIEZO1	17/51	ENST0000030 1015.9 c. $2279 \mathrm{~A}>\mathrm{T}$	ENSP00000301 p.Asp760Val Neighbouring p	0	$\begin{array}{\|c} \hline \text { VUS } \\ \text { PM2 } \end{array}$
814 (8)	HDCT	-	$\begin{aligned} & 31 \\ & 0.997 \end{aligned}$	c)	NEDD4L	31/31	ENST0000040 0345.3 c. $2893 \mathrm{G}>\mathrm{T}$	ENSP00000383 p.Val965Leu HECT	0	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \\ & \text { PP2 } \end{aligned}$

884 (9)	hEDS	rs781001928	$\begin{aligned} & 35 \\ & 0.999 \end{aligned}$	a)	ARHGAP44	19/21	ENST0000037 9672.5 c. $1933 C>T$	ENSP00000368 p.Arg645Trp none	0.00002056	
1002 (7)	cEDS	rs568280615	$\begin{aligned} & 24.3 \\ & 0.997 \end{aligned}$	c)	PIEZO1	22/51	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO30 } \\ 1015.9 \\ \text { c. } 3000 \mathrm{C}>\mathrm{A} \end{array}$	ENSP00000301 p.Phe1000Leu Transmembran	0.0002875	VUS PM2
1396 (7)	kEDS	rs144412674	$\begin{aligned} & 17.1 \\ & 0.998 \end{aligned}$	a)	STON1	1/3	$\begin{array}{\|l\|} \hline \text { NM_006873.4 } \\ \text { c. } 1258 \mathrm{G}>\mathrm{A} \end{array}$	ENSP00000310 p.Val420Met MHD	0.00004111	
1399 (4)	hEDS	rs144412674	$\begin{aligned} & 17.1 \\ & 0.998 \end{aligned}$	a)	STON1	1/3	$\begin{array}{\|l\|} \hline \text { NM_006873.4 } \\ \text { c. } 1258 \mathrm{G}>\mathrm{A} \end{array}$	ENSP00000310 p.Val420Met MHD	0.00004111	
$\begin{gathered} 1420 \\ (n / a) \end{gathered}$	HDCT	rs777936815	19.92	b)	COL27A1	12/61	ENST0000035 6083.3 c.2365_2367d up inframe insertion	ENSP00000348 p.Pro789dup LOUEF $=0.3$	0.000008122	vUS PM2 PM4
1421 (7)	hEDS	rs754511035	$\begin{gathered} 16.14 \\ 0.955 \end{gathered}$	b)	COL27A1	3/61	ENST0000035 6083.3 c.409G>A	ENSP00000348 p.Val137Ile N terminal prop	0.000004189	VUS PM2 BP4 (Supp)
1511 (7)	hEDS	rs767968797	$\begin{aligned} & 23.9 \\ & 0.999 \end{aligned}$	a)	ABI3BP	3/35	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO28 } \\ 4322.5 \\ \text { c. } 311 G>A \end{array}$	ENSP0000028 p. Arg104Gln None	0.00002849	
1527 (3)	hEDS	-	$\begin{aligned} & 24.2 \\ & 0.997 \end{aligned}$	a)	XKR6	2/3	ENST0000041 6569.2 c.844T>C	ENSP00000416	0	
1616 (8)	hEDS	rs141525894	$\begin{aligned} & 24.3 \\ & 0.996 \end{aligned}$	a)	NOTCH4	30/30	ENST0000037 5023.3 c. $5764 \mathrm{G}>\mathrm{A}$	ENSP00000364 p. Gly1922Arg none	0.000133	
1626 (8)	hEDS	rs773623130	16.31	a)	ABI3BP	intron 9/67	$\begin{array}{\|l\|} \hline \text { NM_0013755 } \\ 47.2 \\ \text { c. } 910+5 _910+ \\ \text { 6insA } \end{array}$? $\text { LOEUF = } 0.56$	0.0001247	
1666 (8)	hEDS	rs191960195	$\begin{gathered} 17.07 \\ 0.963 \end{gathered}$	a)	ABI3BP	7/35	$\begin{array}{\|l\|} \hline \text { ENST0000028 } \\ 4322.5 \\ \text { c. } 722 C>T \end{array}$	ENSP0000028 p.Ala241Val None	0.0001058	
1695 (8)	hEDS	rs765636311	$\begin{aligned} & 22.4 \\ & 0.994 \end{aligned}$	a)	NOTCH4	20/30	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO37 } \\ 5023.3 \\ \text { c. } 3203 \mathrm{C}>\mathrm{A} \end{array}$	ENSP0000036 p. Pro1068His multiple	0	

Current gene annotation:
a) Germline variants in this gene not currently associated with Mendelian disorder
b) Germline variants in this gene associated with disorder of bone metabolism or skeletal dysplasia
c) Germline variants in this gene associated with non-EDS / HTAD phenotype

ACMG classification as per Richards et al. (9): $P=$ pathogenic, $L P=$ likely pathogenic, = variant of uncertain significance close to criteria for LP classification, VUS $=$ variant of uncertain significance, $L B=$ likely benign, $B=$ benign.

VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance
(Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf).

Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria.

Patient ID	Variant ID	Age	Sex	$\underset{\substack{\text { Clinical } \\ \text { Diagnosis }}}{\text { and }}$	Beighton score	villefranche Major/ Minor	$\begin{array}{\|c\|} \hline \text { Aortic \& Other } \\ \text { Vascular } \\ \text { involvent } \end{array}$		Skin Biopsy	Gene NM	$\begin{gathered} \text { Current } \\ \text { Gene } \\ \text { annotation } \end{gathered}$	Protein Domain	Rs ID ClinVar	gnomad allele frequency	CADD dann	$\substack{\text { ACMG } \\$ classicicition $\\ \text { (See footrote) }$$\\ \\ \text { criteria }}$
${ }^{34}$	${ }^{50}$	30-39	F	ноСт	3	$\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{H}, \mathrm{I} \\ & \mathrm{~d}, \mathrm{i} \end{aligned}$	Carotid artery dissection	-	normal	PTGER4 NM_000958.3 c. $6446>$ T	a)	p.Arg215Leu helical transmembran e (3AA).	-	0	$\begin{aligned} & 29.2 \\ & 0.998 \end{aligned}$	
404	${ }^{51}$	40-49	M	neds	9	$\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{I} \\ & \mathrm{a}, \mathrm{~d}, \mathrm{f}, \mathrm{i}, \mathrm{u} \end{aligned}$	-	+	$\begin{array}{\|l} \begin{array}{l} \text { Occasional } \\ \text { irregular } \\ \text { collagen fibril } \end{array} \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { MMP25 } \\ \text { NM_022468.5 } \\ \text { c. } 580 \subset \text { T } \end{array} \\ \hline \end{array}$	a)	p. His 1947 yr	${ }^{\text {r1004972120 }}$	0	$\begin{array}{\|l} \hline 28.9 \\ \hline \end{array}$	
446	52	40-49	M	ност	4	$\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{l} \\ & \mathrm{~d}, \mathrm{i}, \mathrm{f}, \mathrm{u} \end{aligned}$	Carotid artery dissection	+	irregular collagen fibril	$\left.\begin{array}{\|l\|} \hline \text { ADAMTS5 } \\ \text { NM_007038.5 } \\ \text { c.2314A>G } \end{array} \right\rvert\,$	a)	$\begin{array}{\|l\|} \hline \text { p.Thr772Ala } \\ \text { spacer domain } \end{array}$	-	0	${ }^{22.6}$	
${ }^{446}$	53	40-49	M	HDCT	4	$\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{l} \\ & \mathrm{~d}, \mathrm{i}, \mathrm{f}, \mathrm{u} \end{aligned}$	Carotid artery dissection	+	$\begin{array}{\|l} \begin{array}{l} \text { irregular } \\ \text { collagen fibril } \\ \text { size } \end{array} \end{array}$	$\begin{array}{\|l\|} \hline \text { ADAMTS16 } \\ \text { NM_139056.4 } \\ \text { c.24596>A } \end{array}$	a)	p.Arg220GIn	${ }^{\text {15748937514 }}$	0.0000281	$\begin{aligned} & 32 \\ & 0.999 \end{aligned}$	
${ }^{446}$	54	40-49	M	HDCT	4	$\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{l} \\ & \mathrm{~d}, \mathrm{i}, \mathrm{f}, \mathrm{u} \end{aligned}$	Carotid artery dissection	+	irregular collagen fibril size	$\begin{array}{\|l\|} \hline \text { NFATS } \\ \text { NM_138713.4 } \\ \text { c.3446T>A } \\ \hline \end{array}$	a)	p.Val1149Asp	-	${ }^{0}$	$\begin{array}{\|l\|} \hline 25.8 \\ 0.981 \\ \hline \end{array}$	
505	55	10-19	F	ност	-	$\begin{array}{\|r} H \\ \mathrm{~g}, 1, u \end{array}$	-	+	$-$	$\left.\begin{array}{\|l\|} \hline \text { ROBO2 } \\ \text { NM_OO2942.5 } \\ \text { C.2018G A } \end{array} \right\rvert\,$	c)	F.Arg673His	 15376737394 (LB)	0.000121	34 133	VUS PM2, PP3 (Supp) BP6 (S)
566	56	60-69	M	neds	5	$\begin{aligned} & \mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{H}, \mathrm{I}, \mathrm{~J} \\ & \mathrm{x}, \mathrm{y}, \text { aa } \end{aligned}$	-	biparental	$\begin{array}{\|l} \hline \begin{array}{l} \text { Collagen fibril } \\ \text { size variability } \end{array} \end{array}$	$\left.\begin{array}{\|l\|} \hline \text { SYAP1 } \\ \text { NM_032796.4 } \\ \text { c.37OT } \end{array} \right\rvert\,$	a)	p.GIn13Ter	-	0	$\begin{aligned} & 36 \\ & 0.998 \end{aligned}$	
703	57	10-19	F	neds	-	$\begin{array}{\|l\|} \hline \mathrm{c}, \mathrm{H} \\ \hline \mathrm{t}, \mathrm{u} \\ \hline \end{array}$	-	-	-	$\begin{array}{\|l\|} \hline \text { LZTS1 } \\ \begin{array}{l} \text { NM_ } 021020.5 \\ \text { c. } 1483 G>A \end{array} \\ \hline \end{array}$	a)	p.GIu495Lys	${ }^{\text {I1 150225368 }}$	0.0005212	$\begin{array}{\|l\|} \hline 22.8 \\ 0.997 \\ \hline \end{array}$	
761	58	20-29	M	neDs	6	$\begin{aligned} & \mathrm{B}, \mathrm{C}, \mathrm{H}, \mathrm{I}, \mathrm{~J} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{t}, \mathrm{u}, \mathrm{v} \end{aligned}$		+	-	$\left\|\begin{array}{l} \text { c9 } \\ \text { NM_001737.5 } \\ \text { c. } 1052>6 \end{array}\right\|$	c)	p.Ser351Cys Transmembra ne	${ }^{\text {rs } 1999424520}$	0.0000318	$\begin{aligned} & 25.5 \\ & 0.991 \end{aligned}$	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
1396	59	0-9	M	kEDS	7	$\begin{aligned} & \mathrm{C}, \mathrm{H}, \mathrm{~J} \\ & \mathrm{e}, \mathrm{f}, \mathrm{u}, \mathrm{w} \end{aligned}$	-	+	-	INO80D NM_017759.5 c. $1822-1823 \mathrm{~d}$ eAC	a)	p.Thr6087er	-	${ }^{0}$	35	
1450	${ }^{60}$	30-39	F	neds	-	$\mathrm{B}, \mathrm{C}, \mathrm{H}, \mathrm{I}$ $\mathrm{a}, \mathrm{t}, \mathrm{u}$ premature rupture of membranes C, H	-	+	$\begin{array}{\|l} \hline \begin{array}{l} \text { Collagen fibril } \\ \text { size variability } \end{array} \end{array}$	$\left.\begin{array}{\|l\|} \hline \text { MMP8 } \\ \text { NM_002424.3 } \\ \text { c. } 679 C T \mathrm{~T} \end{array} \right\rvert\,$	a)	p.His 227 Tyr	${ }^{15769627751}$	0.00000518	${ }^{23.6}$	
1491	${ }^{61}$	20-29	F	neds	${ }^{6}$	$\begin{aligned} & \mathrm{c}, \mathrm{H} \\ & \mathrm{~d}, \mathrm{f}, \mathrm{t}, \mathrm{y} \end{aligned}$	-	-	-	$\left.\begin{array}{\|l\|} \hline \text { FBN3 } \\ \text { NM_032447.5 } \\ \text { c. } 6988 \bigcirc T \end{array} \right\rvert\,$	a)	$\begin{array}{\|l\|} \hline \text { p.Arg2330Trp } \\ \text { TB9 domain } \end{array}$	${ }^{\text {r3372443838 }}$	0.0000678	$\begin{array}{\|l} \hline 34 \\ 0.999 \end{array}$	
1620	62	20-29	M	neDs	6	$\mathrm{C}, \mathrm{H}, \mathrm{I}$ $\mathrm{d}, \mathrm{f}, \mathrm{t}, \mathrm{u}$	-	+	-	ITGA2 NM_002203.4 c. 1027A	c)	p.Asn343Asp	-	0	$\begin{array}{\|l\|} \hline 28.4 \\ \hline 0.998 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
1625	${ }^{63}$	60-69	F	HDCT	-	\underline{g}, r, t	AoR	-	$-$	TGFB1/1, NMM001042454 3 c. $199 \subset>T$	a)	p.Arg67Trp Nr Phosphoserine	${ }^{-}$	0	$\frac{0.9}{35}$ 0.999	
1695	${ }^{64}$	20-29	F	neds	8	$\begin{aligned} & \mathrm{c}, \mathrm{H}, \mathrm{l} \\ & \mathrm{f}, \mathrm{u} \end{aligned}$	-	+	$-$	$\left.\begin{array}{\|l\|} \hline \text { NOTCH4 } \\ \text { NM_004557.4 } \\ \text { c.3203CA } \end{array} \right\rvert\,$	a)	p.Pro1068His	${ }^{\text {15765636311 }}$	0	${ }^{22.4}$	
1717	${ }^{65}$	40-49	F	neds	7	$\begin{aligned} & \mathrm{c}, \mathrm{H} \\ & \mathrm{~d}, \mathrm{t} \end{aligned}$	-	-	-	$\left\|\begin{array}{l} \hline \text { C3 } \\ \text { NM_000064.3 } \\ \text { c. } 910 c>T \end{array}\right\|$	c)	p.Arg304Trp Neighbours phosphoserine	${ }^{\text {r11189452748 }}$	0.00000399	$\begin{array}{\|l\|} \hline 24.4 \\ 0.999 \end{array}$	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$

$A C M G$ criteria as per Richards etal. (9): $P=$ pathogenic, $L P=\|$ ikely pathogeni,,$V U S / L P=$ variant of uncertains significance close to criteria for $L P$ classification, VUS $=$ variant of uncertain significance, $L B=$ likely benign, $B=$ benign. Iddividual criteria ((9), Table 3)
VUS" are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance (Figure 6 of https://www. acgs. uk. com/media/11631/uk-practice-guidelines-for-variant-classfifiction-v4-01-2020. pdf).
segregation analysis, re-evaluation for specific phenotypic features and/o f further functional analysis may enable variant reclassification, using ACMG criteria.
EDS Diagnostic Criteria as per list in Supplementary Table 1.

Supplementary Table 19. Variants identified in EDS patients of differing clinical EDS subtypes with a 'candidate gene' approach based on reported Marfan mouse models, EDS mechanisms, Skeletal dysplasia, Matrisome, Myopathies, Integrins, Dedicator of cytokinesis (DOCK), circadian rhythm genes, Ephrins, Tetraspanins (TSPANs) and serine proteases.

Patient ID	Clinical Diagnosis	Current Gene annotation	Gene	HGVSc	HGVSp	CADD	Rs ID	Exon	gnomAD allele frequency	ACMG Classification (See footnote) criteria
Marfan Mouse Model genes										
61	hEDS	c)	IRF7	ENST0000039 7566.1 c.1424T>C	ENSP0000038 0697.1 p.Leu475Pro	20.4	rs376761232	9/9	0.00002048	vUS PM2 PP3 (Supp)
75	cEDS	a)	TMEM176B	ENST0000044 7204.2 c. 16G>A	ENSP0000041 0269.2 p.Val6Met	22.5	-	2/7	0	
404	hEDS	a)	MMP25	ENSTO000033 6577.4 c. $580 C>T$	ENSP0000033 7816.4 p. His194Tyr	28.9	-	4/10	0	
474	HDCT	c)	SCUBE3	$\begin{aligned} & \hline \text { NM_152753.4 } \\ & \text { c.2578G>A } \end{aligned}$	p.Val860Ile CUB domain	24.8	rs76742237	19/22	$0 . .0000159$	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
567	HDCT	c)	IRF7	ENST0000039 7566.1c. 1180 G>T	ENSP0000038 0697.1p.Gly 39 4 Cys	27.5	rs368953784	7/9	0.00001254	vUS PM2 PP3 (Supp)
653	cEDS	a)	MMP25	$\begin{array}{\|l\|} \hline \text { ENSTOOOOO33 } \\ 6577.4 \\ \text { c. } 85 \text { _86insGCG } \\ \text { CGTCGCCGCAC } \\ \text { CGTTAAAAAT } \\ \text { CACGTCCTGCA } \\ \text { TACTCTCGCCG } \\ \text { CGAAGC } \\ \hline \end{array}$	ENSP0000033 7816.4 p.Val29GlyfsT er7	28.6	-	1/10	0	
922	hEDS	a)	NFAT5	$\begin{array}{\|l\|} \hline \text { NM_138713.4 } \\ \text { c.1165G>A } \end{array}$	p.Gly389Ser RH domain	23.3	rs753948488	6/15	0.0000244	
1387	HDCT	a)	TMBIM1	$\begin{array}{\|l\|} \hline \text { NM_022152.6 } \\ \mathrm{c} .847 \mathrm{G}>\mathrm{A} \\ \hline \end{array}$	p.Glu283Lys	34	rs76243510	12/12	0.0004781	
1444	hEDS	c)	SCUBE3	$\begin{array}{\|l\|} \hline \text { NM_152753.4 } \\ \text { c. } 2518 \mathrm{C}>\mathrm{T} \end{array}$	p.Arg840Cys	35	rs1464548360	19/22	0.00000398	$\begin{array}{\|l} \hline \text { VUS } \\ \text { PM2 } \end{array}$
1451	cEDS	a)	IGFBP2	$\begin{array}{\|l\|} \hline \text { ENST0000023 } \\ 3809.4 \\ \text { c. } 221 C>T \\ \hline \end{array}$	ENSP0000023 3809.4 p.Pro74Leu	23.1	-	1/4	0	
1500	hEDS	a)	TMBIM1	$\begin{array}{\|l\|} \hline \text { NM_022152.6 } \\ \text { c. } 817 \mathrm{C}>\mathrm{G} \end{array}$	p.Leu273Val	23.3	-	12/12	0	
1524	cEDS	a)	TMBIM1	$\begin{aligned} & \text { NM_022152.6 } \\ & \text { c.412del } \end{aligned}$	p.Tyr138Thrfs Ter12 LOEUF = 1.11	35	rs775344685	5/12	0.0000159	
1595	hEDS	a)	NFAT5	$\begin{array}{\|l\|} \hline \text { NM_138713.4 } \\ \text { c. } 2907 \mathrm{G}>\mathrm{C} \end{array}$	p.GIn969His	22.8	rs759928002	13/15	0.0000398	

EDS candidate Genes										
107	hEDS	a)	COL5A3	$\begin{array}{\|l} \hline \text { ENST0000026 } \\ 4828.3 \\ \text { c. } 1307 \mathrm{G}>\mathrm{A} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000026 } \\ \text { 4828.3 } \\ \text { p.Arg436GIn } \\ \hline \end{array}$	24.8	rs773225571	12/67	0.00001642	
534	cEDS	a)	FBN3	NM_032447.5 c. $6661 \mathrm{C}>$ T	p.Arg2221Trp EGF like 36 \& cysteine disulfide domains	27.3	rs202020932	54/64	0.0000123	
538,560	HDCT (538), hEDS (560)	c)	C2	$\begin{aligned} & \text { ENST0000029 } \\ & 9367.5 \\ & \text { c. } 1716 \mathrm{G}>\mathrm{C} \end{aligned}$	$\begin{aligned} & \hline \text { ENSPO000029 } \\ & 9367.5 \\ & \text { p.Lys572Asn } \end{aligned}$	23.9	rs376278843	13/18	0.0001411	vus PM2
584	hEDS	a)	CR1L	$\begin{aligned} & \hline \text { NM_175710.2 } \\ & \text { c.382C>T } \end{aligned}$	p.Arg128Ter $\begin{aligned} & \text { LOEUF = } 1.6 \\ & \text { Splice + } 5 \end{aligned}$	36	rs199942497	04/12	0.000223	
769	hEDS	a)	ADAM28	ENST0000026 5769.4 c.737A>G	ENSP0000026 5769.4 p.Asn246Ser	24.5	-	9/23	0	
798	vEDS	a)	COL5A3	$\begin{aligned} & \text { ENST0000026 } \\ & 4828.3 \\ & \text { c. } 361 \mathrm{G}>\mathrm{A} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ENSP0000026 } \\ \text { 4828.3 } \\ \text { p.Ala121Thr } \end{array}$	24.1	rs199691548	3/67	0.00006152	
810	HDCT	a)	COL5A3	ENST0000026 4828.3 c. $2260 C>$ T	$\begin{array}{\|l\|} \hline \text { ENSP0000026 } \\ 4828.3 \\ \text { p.Pro754Ser } \\ \hline \end{array}$	15.55	-	30/67	0	
1346	vEDS	a)	ADAMTS20	$\begin{array}{\|l\|} \hline \text { ENST0000038 } \\ 9420.3 \\ \text { c. } 1957 C>T \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ENSP0000037 } \\ & 4071.3 \\ & \text { p.Arg653Cys } \end{aligned}$	32	rs79065113	14/39	0.00004138	
1387	HDCT	a)	ADAM23	$\begin{aligned} & \text { ENST0000026 } \\ & 4377.3 \\ & \text { c. } 1369 \mathrm{G}>\mathrm{A} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ENSP0000026 } \\ \text { 4377.3 } \\ \text { p.Gly457Ser } \end{array}$	18.3	rs759614751	14/26	0.00001219	
1450	hEDS	a)	MMP8	$\begin{array}{\|l\|} \hline \text { ENST0000023 } \\ 6826.3 \\ \text { c. } 679 C>T \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000023 } \\ 6826.3 \\ \text { p. His227Tyr } \end{array}$	23.6	rs769627751	5/10	0.00005286	
1484	hEDS	c)	C8A	$\begin{aligned} & \hline \text { ENST0000036 } \\ & 1249.3 \\ & \text { c. } 1528 \subset>T \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ENSP0000035 } \\ 4458.3 \\ \text { p.Leu510Phe } \end{array}$	27.9	rs200018561	10/11	0.00008122	vUS PM2
1630	hEDS	a)	FBN3	NM_032447.5 c. $4886 \mathrm{C}>\mathrm{T}$	p.Thr1629lle EGF like 25 domain	28.5	rs376299515	39/64	0.000203	
1641	hEDS	a)	ADAMTS20	ENST0000038 9420.3 c. $4781 _4782 d$ up	$\begin{array}{\|l\|} \hline \text { ENSP0000037 } \\ \text { 4071.3 } \\ \text { p.Ala1595GInf } \\ \text { sTer39 } \\ \hline \end{array}$	36	-	31/39	0	
1642	hEDS	a)	ADAM33	$\begin{aligned} & \hline \text { ENST0000035 } \\ & 6518.2 \\ & \text { c. } 706 C>T \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ENSP0000034 } \\ 8912.2 \\ \text { p. Arg236Cys } \end{array}$	34	rs750423431	8/22	0.00000406	
1681	hEDS	a)	MMP8	$\begin{array}{\|l\|} \hline \text { ENST0000023 } \\ 6826.3 \\ \text { c. } 782 \mathrm{~A}>\mathrm{C} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000023 } \\ 6826.3 \\ \text { p. Tyr261Ser } \end{array}$	27.6	-	5/10	0.00001669	
1688	HDCT	a)	ADAMTS4	$\begin{array}{\|l\|} \hline \text { ENST0000036 } \\ \text { 7996.5 } \\ \text { c. } 1700 \mathrm{G}>\mathrm{A} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000035 } \\ \text { 6975.4 } \\ \text { p.Arg567His } \\ \hline \end{array}$	33	rs139714128	6/9	0.00006548	
1688	HDCT	a)	MMP24	$\begin{array}{\|l\|} \hline \text { ENST0000024 } \\ 6186.6 \\ \text { c. } 794 C>T \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSPO0000024 } \\ \text { 6186.6 } \\ \text { p.Thr265Met } \\ \hline \end{array}$	33	rs770843975	4/9	0.00004088	

Skeletal Dysplasia										
1450	hEDS	b)	TRPV4	$\begin{aligned} & \text { NM_021625.5 } \\ & \text { c.1634T>C } \end{aligned}$	p.lle545Thr	20.7	rs757630049	10/16	0	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \\ & \text { PM1 } \end{aligned}$
Matrisome										
383	cEDS	a)	DSEL	ENST0000031 0045.7 c. $2788 \mathrm{C}>$ T	$\begin{array}{\|l\|} \hline \text { ENSP0000031 } \\ \text { 0565.7 } \\ \text { p.Arg930Ter } \end{array}$	42	-	2/2	0	
595	cEDS	a)	ROCK1	ENST0000039 9799.2 c. $1208 \mathrm{G}>\mathrm{A}$	$\begin{aligned} & \hline \text { ENSP0000038 } \\ & 2697.1 \\ & \text { p.Arg403His } \\ & \hline \end{aligned}$	22.9	rs374052961	10/33	0.00008004	
635	HDCT	c)	CHSY1	ENSTO000025 4190.3 c. $278 C>G$	$\begin{aligned} & \text { ENSP0000025 } \\ & 4190.3 \\ & \text { p.Thr93Ser } \end{aligned}$	22.7	rs142148989	1/3	0.0002626	vUS PM2
1289	hEDS	a)	CHPF	ENST0000024 3776.6 c. $2026 \mathrm{G}>\mathrm{A}$	$\begin{aligned} & \hline \text { ENSP0000024 } \\ & 3776.6 \\ & \text { p.Glu676Lys } \\ & \hline \end{aligned}$	34	-	4/4	0	
1443	hEDS	a)	CHPF2	$\begin{aligned} & \hline \text { ENSTO000003 } \\ & 5307.2 \\ & \text { c.1375C>T } \end{aligned}$	$\begin{aligned} & \text { ENSP0000003 } \\ & 5307.2 \\ & \text { p.Arg459Trp } \end{aligned}$	32	rs749772535	4/4	0.00004971	
1443	hEDS	a)	DSEL	ENST0000031 0045.7 c. $607 A>T$	p.Arg203Ter	35	rs143469336	2/2	0.00000796	
1665	hEDS	a)	DSEL	$\begin{aligned} & \mathrm{N}, 032160.3 \\ & \text { c.1061A>C } \end{aligned}$	p.Asn354Thr	24.3	rs374976853	2/2	0.0000159	
1669	hEDS	a)	CHSY3	ENSTOOOOO30 5031.4 c. $1013 \mathrm{C}>$ T	$\begin{array}{\|l\|} \hline \text { ENSP0000030 } \\ \text { 2629.4 } \\ \text { p.Thr338Met } \\ \hline \end{array}$	34	rs761257284	2/3	0.000004061	
Myopathy										
703	17	d)	MYH2	ENST0000024 5503.5 c. $5540 \mathrm{G}>\mathrm{A}$	$\begin{aligned} & \hline \text { ENSP0000024 } \\ & 5503.5 \\ & \text { p.Arg1847His } \end{aligned}$	33	rs748605415	38/40	0.0001462	$\begin{array}{\|l} \hline \mathrm{VUS} \\ \text { PM2 } \\ \mathrm{BS} 2 \end{array}$
777	HDCT	d)	MYH2	$\begin{aligned} & \text { ENST0000024 } \\ & 5503.5 c .1115 \\ & \text { G>A } \end{aligned}$	$\begin{array}{\|l} \text { ENSPO000024 } \\ 5503.5 \text { p.Arg37 } \\ 2 \mathrm{His} \end{array}$	35	rs750569547	12/40	0.00001218	VUS* PM2 PP3 (M)
1477	hEDS	a)	ABLIM2	ENST0000044 7017.2 c. $1768 \mathrm{G}>\mathrm{A}$	ENSP0000039 3511.2 p.Val5901le	23.9	rs200508979	20/21	0.0002302	
1620	hEDS	a)	ABLIM2	$\begin{array}{\|l\|} \hline \text { ENST0000044 } \\ 7017.2 \\ \text { c. } 337 C>T \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ENSP0000039 } \\ 3511.2 \\ \text { p.Arg113Trp } \\ \hline \end{array}$	31	-	3/21	0	
Integrins										
44	vEDS	a)	ITGA10	ENST0000036 9304.3 c. $1655 \mathrm{C}>$ T	ENSP0000035 8310.3 p.Ala552Val	33	-	14/30	0	
383	cEDS	a)	ITGA10	ENST0000036 9304.3 c. $2592 \mathrm{G}>$ T	$\begin{aligned} & \hline \text { ENSP0000035 } \\ & 8310.3 \\ & \text { p.Lys864Asn } \end{aligned}$	24.2	-	21/30	0	
475	hEDS	a)	ITGA10	ENST0000036 9304.3 c. $2071 C>T$	ENSP0000035 8310.3 p.Arg691Cys	28.2	rs782455269	16/30	0.00002031	
612	hEDS	a)	ITGA10	ENST0000036 9304.3 c. $790 C>$ T	ENSP0000035 8310.3 p.Arg264Ter	36	rs782338989	8/30	0.00002872	
673	hEDS	a)	ITGA2	$\begin{array}{\|l\|} \hline \text { ENST0000029 } \\ \text { 6585.5 } \\ \text { c.757T>A } \end{array}$	ENSP0000029 6585.5 p.Phe253Ile	33	-	7/30	0	

673	hEDS	a)	ITGA2	ENST0000029 6585.5 c. $764 C>T$	$\begin{aligned} & \text { ENSP0000029 } \\ & 6585.5 \\ & \text { p.Ala255Val } \\ & \hline \end{aligned}$	34	-	7/30	0	
718	cEDS	a)	ITGA2	$\begin{array}{\|l\|} \hline \text { ENST0000029 } \\ 6585.5 \\ \text { c. } 85 \mathrm{G}>A \end{array}$	$\begin{array}{\|l} \text { ENSP0000029 } \\ 6585.5 \\ \text { p.Ala29Thr } \end{array}$	31	rs374701439	2/30	0.00005286	
1504	HDCT	a)	ITGA2	ENST0000029 6585.5 c. $2474 T>G$	$\begin{array}{\|l\|} \hline \text { ENSP0000029 } \\ 6585.5 \\ \text { p.Phe825Cys } \\ \hline \end{array}$	27.5	rs759539816	20/30	0.00003259	
1504	HDCT	a)	ITGA2	ENST0000029 6585.5 c.1790G>A	$\begin{array}{\|l\|} \hline \text { ENSP0000029 } \\ 6585.5 \\ \text { p.Arg597His } \end{array}$	23.4	rs770216834	14/30	0.00004895	
1620	hEDS	a)	ITGA2	ENST0000029 6585.5 c. $1027 \mathrm{~A}>\mathrm{G}$	$\begin{array}{\|l\|} \hline \text { ENSP0000029 } \\ 6585.5 \\ \text { p.Asn343Asp } \\ \hline \end{array}$	28.4	-	9/30	0	
1681	hEDS	a)	ITGA10	ENSTOOOOO36 9304.3 c. $1562 \mathrm{G}>\mathrm{A}$	$\begin{array}{\|l\|} \hline \text { ENSP0000035 } \\ 8310.3 \\ \text { p.Arg521His } \\ \hline \end{array}$	29	-	13/30	0	
1743	hEDS	c)	ITGA2B	ENST0000026 2407.5 c. $2902 T>C$	$\begin{array}{\|l\|} \hline \text { ENSP0000026 } \\ 2407.5 \\ \text { p. } \text { Tyr968His } \end{array}$	24.3	rs5914	28/30	0	$\begin{array}{\|l} \hline \mathrm{VUS} \\ \mathrm{PM} 2 \\ \mathrm{PP2} \end{array}$
DOCK										
73	HDCT	c)	DOCK6	ENST0000029 4618.7 c. $1631 \mathrm{~A}>\mathrm{G}$	ENSP0000029 4618.6 p. His544Arg	23	-	14/48	0	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
74	hEDS	c)	DOCK6	ENST0000029 4618.7 c. $4445 \mathrm{G}>\mathrm{A}$	$\begin{array}{\|l} \hline \text { ENSP0000029 } \\ 4618.6 \\ \text { p.Ser1482Asn } \end{array}$	23.8	-	35/48	0	$\begin{array}{\|l\|} \hline \text { VUS } \\ \text { PM2 } \end{array}$
385	hEDS	c)	DOCK6	$\begin{aligned} & \text { NM_020812.4 } \\ & \text { c.484G>A } \end{aligned}$	p..Glu162Lys	20	rs766200535	5/48	0.00000971	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \\ & \text { BP4 (Supp) } \end{aligned}$
385	hEDS	a)	DОСК9	ENST0000037 6460.1 c. $4223 \mathrm{C}>$ T	$\begin{array}{\|l\|} \hline \text { ENSP0000036 } \\ 5643.1 \\ \text { p.Ser1408Phe } \\ \hline \end{array}$	28.3	-	39/57	0	
1424	hEDS	c)	DOCK2	NM_004946.3 c. $4090 \mathrm{C}>$ T	ENSP0000025 6935.8 p.Arg1364Cys	35	rs536724336	41/52	0.00002033	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \\ & \text { PP2 } \end{aligned}$
1450	hEDS	c)	DOCK6	ENST0000029 4618.7 c. $4641 \mathrm{C}>\mathrm{A}$	$\begin{aligned} & \hline \text { ENSP0000029 } \\ & \text { 4618.6 } \\ & \text { p.Phe1547Leu } \end{aligned}$	22.8	-	36/48	0	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
1491	hEDS	c)	DOCK6	NM_020812.4 c. $2629 \mathrm{C}>$ T	p.Arg877Cys		rs199553475	22/48	0.000181	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
1503	HDCT	c)	DOCK6	NM_020812.4 c. $3811 \mathrm{C}>$ T	p.Arg1271Cys	24.4	rs376724815	30/48	0.0000563	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \\ & \text { BP4 (Supp) } \end{aligned}$
1613	hEDS	a)	DOCK9	ENST0000037 6460.1 c. $2438 \mathrm{C}>$ T	$\begin{array}{\|l\|} \hline \text { ENSP0000036 } \\ 5643.1 \\ \text { p.Ser813Phe } \\ \hline \end{array}$	29.9	rs778275450	22/57	0.000008204	
1630	hEDS	c)	DOCK6	$\begin{array}{\|l\|} \hline \text { NM_020812.4 } \\ \text { c. } 3310 C>T \end{array}$	p.Arg1104Trp	35	rs767376510	27/48	0.0000377	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
1656	hEDS	c)	DOCK3	ENST0000026 6037.9c. 1490 T $>\mathrm{C}$	ENSP0000026 6037.8 p.lle497Thr	26.8	rs748558159	16/53	0.00002032	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \\ & \text { PP2 } \end{aligned}$

Circadian Genes										
446	HDCT	c)	PER2	ENSTO000025 4657.3 c. $2434 \mathrm{G}>\mathrm{A}$	ENSP0000025 4657.3 p. Gly 812 Arg	22.6	rs201525818	19/23	0.0002591	vUS PM2 BP4 (Supp)
526	HDCT	a)	ZFHX3	ENST0000026 8489.5 c. $2443 \mathrm{G}>\mathrm{A}$	ENSP0000026 8489.5 p.Val815Met	24	-	2/10	0	
564	HDCT	c)	PER1	ENST0000031 7276.4 c. $3223 \mathrm{~T}>\mathrm{C}$	ENSP0000031 4420. 4p.Ser1075Pro	26.8	-	20/23	0	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
635	HDCT	a)	ZFHX3	ENST0000026 8489.5 c. $9872 \mathrm{~T}>\mathrm{C}$	ENSP0000026 8489.5 p. Leu3291Pro	19.21	-	10/10	0	
671	HDCT	a)	SEC61B	ENST0000022 3641.4 c. $137 \mathrm{G}>\mathrm{A}$	ENSP0000022 3641.4 p.Arg46His	34	-	03/04	0.0000131	
821	kEDS	c)	PER1	ENSTOOOOO031 7276.4 c. $3583 C>G$	ENSPO000031 4420.4 p. Arg1195Gly	24.1	rs200744636	22/23	0.0000004	$\begin{aligned} & \text { VUS } \\ & \text { PM2 } \end{aligned}$
1443	hEDS	a)	ZFHX3	ENST0000026 8489.5 c. $2213 A>G$	ENSP0000026 8489.5 p.Lys738Arg	22	rs755685914	2/10	0.000028	
1528	cEDS	a)	ZFHX3	ENST0000026 8489.5 c. $7561 \mathrm{G}>\mathrm{A}$	ENSP0000026 8489.5 p. Ala2521Thr	21.4	rs140414544	9/10	0.0000077	
1717	hEDS	a)	ZFHX3	ENST0000026 8489.5 c. $5821 \mathrm{~A}>\mathrm{G}$	ENSP0000026 8489.5 p.Arg1941Gly	22.6	rs760103457	9/10	0.000012	
Ephrins										
372	vEDS	a)	EPHA8	$\begin{array}{\|l\|l} \hline \text { NM_020526.5 } \\ \text { c. } 2635 C>T \end{array}$	p.Arg879Trp protein kinase domain	33	rs147803148	15/17	0.0000325	
409	cEDS	a)	EPHA8	$\begin{aligned} & \hline \text { NM_020526.5 } \\ & \text { c. } 2753 \mathrm{G}>\mathrm{A} \\ & \hline \end{aligned}$	p.Arg918GIn	25.5	rs141279306	16/17	0.000121	
777	HDCT	a)	EFNA1	$\begin{array}{\|l\|} \hline \text { NM_004428.3 } \\ c .556 C>T \end{array}$	p.Arg186Cys	35	rs760306344	5/5	0.0000119	
TSPANs										
75	cEDS	c)	TSPAN12	NM_012338.4 c. $184 \mathrm{G}>\mathrm{A}$	p.Val64Met	29.9	-	04/08	0	$\begin{array}{\|l\|} \hline \text { VUS } \\ \text { PM2 } \\ \hline \end{array}$
99	HDCT	a)	TSPAN14	$\begin{aligned} & \hline \text { NM_030927.4 } \\ & \mathrm{c} .20 \mathrm{C}>\mathrm{G} \\ & \hline \end{aligned}$	p.Ser7Cys	26.1	-	02/09	0	
136	cEDS	a)	TSPAN2	$\begin{array}{\|l\|} \hline \text { NM_005725.6 } \\ \text { c. } 626 \mathrm{~T}>\mathrm{C} \\ \hline \end{array}$	p.Val209Ala	24.9	rs34749181	8/8	0.000171	
396	cEDS	a)	TSPAN9	$\begin{array}{\|l\|} \hline \text { NM_00116832 } \\ \text { c. } 620 \mathrm{C}>\mathrm{T} \\ \hline \end{array}$	p.Thr207Met	33	rs141218062	07/08	0.0000723	
564	HDCT	a)	TSPAN17	$\begin{aligned} & \hline \text { NM_130465.5 } \\ & \text { c.355G>T } \end{aligned}$	p.Asp119Tyr	31	rs367611196	4/9	0.0000066	
595	cEDS	a)	TSPAN3	$\begin{array}{\|l\|} \hline \text { NM_005724.6 } \\ \mathrm{c} .380 \mathrm{~A}>\mathrm{G} \\ \hline \end{array}$	p.Asn127Ser	21.2	rs370307435	04/07	0.000013	
1387	HDCT	a)	TSPAN15	$\begin{array}{\|l\|} \hline \text { NM_012339.5 } \\ \text { c. } 649 \mathrm{C}>\mathrm{T} \end{array}$	p.Arg.217Trp	33	rs200107830	07/08	0.000131	
1462	hEDS	a)	TSPAN17	$\begin{array}{\|l\|} \hline \text { NM_130465.5 } \\ \text { c.620G>C } \\ \hline \end{array}$	p.Arg207Pro	33	-	06/09	0	
1681	hEDS	a)	TSPAN32	$\begin{aligned} & \hline \text { NM_139022.3 } \\ & \mathrm{c} .913 \mathrm{~A}>\mathrm{T} \\ & \hline \end{aligned}$	p.Arg305Ter	35	-	10/10	0	

1656	hEDS	a)	TSPAN9	$\begin{aligned} & \text { NM_00116832 } \\ & \text { c. } 661 \mathrm{G}>\mathrm{A} \end{aligned}$	p.Ala221Thr	23.3	rs149866702	08/08	0.000046	
1665	hEDS	a)	TSPAN1	$\begin{aligned} & \text { NM_005727.4 } \\ & \text { c. } 643 G>A \end{aligned}$	p.Val215Met	24.7	rs149302587	09/09	0.000125	
Serine proteases										
60	HDCT	c)	TMPRSS5	$\begin{array}{\|l\|} \hline \mathrm{NM} _030770.4 \\ \text { c. } 702 \mathrm{C}>\mathrm{G} \end{array}$	p.Ser234Arg	22	-	8/13	0	
99	HDCT	c)	TMPRSS5	$\begin{aligned} & \hline \text { NM_030770.4 } \\ & \text { c. } 1216 \mathrm{G}>\mathrm{A} \\ & \text { c. } 1216 \mathrm{G}>\mathrm{A} \end{aligned}$	p.Gly406Arg	25.8	-	12/13	0.0000197	
396	cEDS	a)	PRSS36	$\begin{aligned} & \mathrm{NM} _173502.5 \\ & \text { c. } 2371 \mathrm{G}>\mathrm{T} \end{aligned}$	p.Glu791Ter	39	rs201757658	15/15	0.0000591	
396	cEDS	a)	TMPRSS15	$\begin{aligned} & \text { NM_002772.3 } \\ & \text { c. } 687 \mathrm{~T}>\mathrm{G} \end{aligned}$	p.Phe229Leu	27	rs138300762	7/25	0.00000657	
397	hEDS	a)	PRSS36	$\begin{aligned} & \mathrm{NM} _173502.5 \\ & \text { c. } 2371 \mathrm{G}>\mathrm{T} \end{aligned}$	p.Glu791Ter	39	rs201757658	15/15	0.000591	
423	HDCT	a)	PRSS35	$\begin{array}{\|l\|} \hline \text { NM_153362.3 } \\ \text { c. } 410 \mathrm{G}>\mathrm{A} \end{array}$	p.Arg137Met	22.9	rs148479497	02/02	0.000177	
475	hEDS	a)	TMPRSS9	$\begin{aligned} & \text { NM_182973.3 } \\ & \text { c. } 1253 \mathrm{C}>\mathrm{T} \end{aligned}$	p.Pro418Leu	24.3	rs150970765	9/17	0.000131	
567	HDCT	a)	PRSS50	$\begin{array}{\|l\|} \hline \text { NM_013270.5 } \\ \text { c.115G>T } \end{array}$	p.Gly39Cys	23.1	rs151210292	7/11	0.0000197	
922	hEDS	a)	PRSS53	$\begin{aligned} & \hline \text { NM_00103950 } \\ & \text { c. } 91 \mathrm{C}>\mathrm{T} \end{aligned}$	p.Arg31Cys	34	rs377044450	03/11	0.0000197	
1424	hEDS	c)	TMPRSS6	$\begin{aligned} & \text { NM_00137450 } \\ & \text { c. } 290 \mathrm{G}>\mathrm{A} \end{aligned}$	p.Arg97Gln	24.6	rs531422898	03/18	0.0000197	VUS PM2 BP4 (Supp)
1461	hEDS	a)	PRSS22	$\begin{array}{\|l\|} \hline \text { NM_022119.4 } \\ \text { c.433G>A } \\ \hline \end{array}$	p.Val145Met	24.4	-	04/06	0	
1462	hEDS	c)	PRSS12	$\begin{aligned} & \text { NM_003619.12 } \\ & \text { c.419G>T } \end{aligned}$	p.Ser140Ile	25.2	rs775377995	01/13	0.000046	VUS PM2
1462	hEDS	a)	TMPRSS9	$\begin{aligned} & \text { NM_182973.3 } \\ & \text { c. } 682 \mathrm{del} \end{aligned}$	p.Cys228Valfs Ter71	33	-	07/18	0	
1484	hEDS	c)	PRSS12	$\begin{array}{\|l\|} \hline \text { NM_003619.4 } \\ \text { c. } 1640 \mathrm{C}>\mathrm{A} \end{array}$	p.Ala547Asp	33	rs201005601	09/13	0.0000855	$\begin{aligned} & \hline \text { VUS } \\ & \text { PM2 } \end{aligned}$
1579	hEDS	a)	TMPRSS12	$\begin{aligned} & \hline \text { NM_182559.3 } \\ & \text { c. } 805 \mathrm{G}>\mathrm{A} \\ & \hline \end{aligned}$	p.Gly 269Arg	32	rs369598424	05/05	0.000105	

Current gene annotation:
a) Germline variants in this gene not currently associated with Mendelian disorder
b) Germline variants in this gene associated with disorder of bone metabolism or skeletal dysplasia
c) Germline variants in this gene associated with non-EDS / HTAD phenotype
d) Germline variants in this gene associated with a myopathy phenotype

ACMG classification as per Richards et al. (9): $\mathrm{P}=$ pathogenic, $\mathrm{LP}=$ likely pathogenic, = variant of uncertain significance close to criteria for LP classification, VUS = variant of uncertain significance, $\mathrm{LB}=$ likely benign, $\mathrm{B}=$ benign.

VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance (Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf).

Segregation analysis, re-evaluation for specific phenotypic features and/or further functional analysis may enable variant reclassification, using ACMG criteria.

[^0]: Additional variant annotation is given in online supplemental table 6.
 cEDS, classical Ehlers-Danlos syndrome; HDCT, heritable disorders of connective tissue; hEDS, hypermobile Ehlers-Danlos syndrome; LP, likely pathogenic; P, pathogenic.

[^1]: EDS Diagnostic Criteria and Abbreviations as per lists in Supplementary Table 1.

[^2]: Key: ACMG criteria as per Richards et al. ref 9: $P=$ pathogenic, $L P=$ likely pathogenic, VUS/LP $=$ variant of uncertain significance close to criteria for LP classification,
 VUS = variant of uncertain significance, $\mathrm{LB}=$ likely benign, $\mathrm{B}=$ benign. Individual criteria ((9), Table 3)

 VUS* are defined here as including VUS that according to ACGS criteria are "hot", "warm" or "tepid" Variants of Uncertain Significance
 (Figure 6 of https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf).

[^3]: Current gene annotation:
 a) Germine variants in this gene not currently a ssociated with Mendelian disorder

