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Abstract. 

Markets are being populated with new generations of pricing algorithms, powered with Artificial 
Intelligence, that have the ability to autonomously learn to operate. This ability can be both a 
source of efficiency and cause of concern for the risk that algorithms autonomously and tacitly 
learn to collude. In this paper we explore recent developments in the economic literature and 
discuss implications for policy. 
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1. Introduction 

In the last fifteen years the drastic reduction of the cost of computation and data storage has (re-) 
activated general interest and significant developments in Artificial Intelligence (AI) and its 
market applications. In this paper we investigate the use and consequences of algorithms for 
pricing decisions that rely on Artificial Intelligence, “AI-powered algorithms”, using both 
experimental tools involving such algorithms and empirical techniques. We argue that, in line 
with earlier suggestions in the law literature but in contrast to what many economists have 
previously argued, the growing use of such algorithms may increase the likelihood of collusion 
in some markets. But we also suggest new methods that may help fight such collusion. 

Algorithms are not a new phenomenon in markets. At least since the 1980s, industries like 
airlines, hotels and financial markets have relied on these tools for pricing and trading decisions. 
Pricing algorithms for “revenue or yield management” can be thought as (possibly very long) 
lists of prespecified instructions to act in specific ways for specific contingencies, that the 
algorithm then executed (such as for example with Expert Systems). The novelty nowadays is a 
new generation of AI-powered algorithms. Their “intelligence” lies in the ability to 
autonomously learn how to reach a pre-specified objective in unknown environments without 
human intervention.  Firms who want to deploy a pricing algorithm do not need to input 
information about demand or the strategic context in which this algorithm operates. Given a set 
of potential actions (today’s price) for each possible observation (say, previous quantities and 
prices), the algorithm is capable of autonomously discovering the profit-maximizing mapping 
between what they observe and the price they choose. 

The application of autonomously learning algorithms to price goods and services brings about 
important policy challenges that are becoming more relevant as pricing algorithms spread in 
online and traditional brick and mortar marketplaces. Amazon stresses the possibility and the 
benefits of pricing automation in its marketplace with a Selling Partners API service,1 and Chen 
et al. (2016) document that more than one third of the best-selling items on Amazon.com were 
priced by pricing bots in 2014/2015. The European Commission’s 2017 “Final report on the E-
commerce Sector Inquiry” concludes that “A majority of retailers track the online prices of 
competitors. Two thirds of them use software programs that autonomously adjust their own 
prices based on the observed prices of competitors.” Offline usage of pricing algorithms is 
spreading as well, for example, among gasoline retailers in northern Europe.2 There is a growing 
new industry of software intermediaries offering automated pricing services, from turn-key 
options that even small sellers can afford to fully customized pricing software for large 
companies.3 Many of these repricing companies, such as  Kalibrate.com, a2i.com, and Kantify, 
explicitly rely on AI as a key characteristic of their algorithms. 

 
1 See https://web.archive.org/web/20201101114000/https://developer.amazonservices.com/ 
2 See also Sam Schechner, “Why Do Gas Station Prices Constantly Change? Blame the Algorithms,” The Wall Street 
Journal, May 8, 2017. 
3 See for example, https://web.archive.org/web/20180819175854/https://www.techemergence.com/ai-for-
pricing-comparing-5-current-applications/. 

https://kalibrate.com/software/kalibrate-pricing/
https://www.a2isystems.com/wp-content/uploads/2018/11/PriceCast-Fuel-Product-Folder-15.compressed.pdf
https://web.archive.org/web/20200814190150/https:/www.linkedin.com/pulse/artificial-intelligence-can-create-incredible-pricing-nik-subramanian/
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The widespread adoption of algorithmic pricing  reflects obvious benefits. Algorithms guarantee 
faster and potentially “better” decisions while saving costs. They are more responsive to changes 
in supply and demand conditions, which implies better inventory management and reduced 
waste, especially for perishable goods. They can also exploit consumer information, providing 
potentially highly personalized offers that could increase allocative efficiency. There is a general 
consensus that algorithmic pricing has the potential to generate significant efficiency gains and 
reduce transaction costs. 

However, given the key allocative role that prices play in markets, algorithmic pricing can 
generate unintended consequences. Autonomous learning algorithms may learn to price 
discriminate on the basis of race or gender or fail to learn effective competitive strategies, 
resulting in higher market prices. Algorithms may also end up learning that the best way to 
guarantee maximal profits is to decrease competition by, for instance, coordinating with rival 
algorithms. Algorithms can make collusive outcomes easier to sustain due to increased ease of 
monitoring and quicker detection and punishment of deviations (Ezrachi and Stucke 2015; 
Mehra 2016). This is especially a concern in markets with high price transparency and near 
perfect monitoring like gasoline retail or the Amazon Marketplace. Algorithmic pricing can also 
affect competition if a single intermediary software provider sells their product to multiple 
competitors. Such adoption could lead to hub-and-spoke (where the provider acts as the hub of 
the sellers,  Ezrachi and Stucke 2015) or parallel-use scenarios, with competitors coordinating to 
higher prices by delegating choices or relaying information to the same third party. These 
concerns are warranted by the statements and observed behaviour of software providers. Some 
providers promote their products by suggesting that they optimize for long-term revenues and 
avoid price wars (see for example Kantify). In Germany, advertisements show that at least one 
company offers their software to multiple stations and brands in the retail gas market. 

In this paper we focus on algorithmic collusion. The fact that pricing algorithms may learn to 
collude autonomously, without being instructed to do so, and possibly without communication, 
opens up new challenging scenarios for market players, platforms and antitrust authorities. . 
Antitrust law and enforcement identify violations when colluding parties communicate 
explicitly. Currently, algorithms learning to tacitly collude (algorithmic collusion) is not a 
violation of antitrust or competition laws. It is crucial to study whether algorithms can learn to 
tacitly collude, whether algorithmic collusion does arise in practice, and potential policy 
responses to it.  

The possibility of algorithmic collusion has not gone unnoticed by competition authorities. The 
OECD, the EU Competition Commissioner Vestager, the FTC in the US,  the Competition 
Market Authority (CMA) in the UK, and the French, German and Canadian competition 
authorities all raised concerns about this risk and the need for additional information and 
monitoring.4 More recently, authorities have also started to envision policy interventions to 

 
4 For example, see pp.109-111 of the 2019 CMA Furman Report, "Unlocking Digital Competition, Report of the 
Digital Competition Expert Panel." Also CMA Research and Analysis Jan. 2021 states “collusion appears an 
increasingly significant risk if the use of more complex pricing algorithms becomes widespread.” 

https://web.archive.org/web/20200814190150/https:/www.linkedin.com/pulse/artificial-intelligence-can-create-incredible-pricing-nik-subramanian/
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address algorithmic collusion. The FTC issued a guidance paper on the use of AI in markets with 
indications of desirable properties that AI tools should have to avoid unintended consequences.5 
The so called New Competition Tool currently being discussed in the European Union to cope 
with digital markets should be designed to account for “oligopolistic market structures with an 
increased risk for tacit collusion, including markets featuring increased transparency due to 
algorithm-based technological solutions (which are becoming increasingly prevalent across 
sectors).”6 

The interest in algorithmic collusion by market authorities was anticipated by academic research. 
Early accounts of the possibility of algorithmic collusion were discussed by legal scholars, in 
particular Ezrachi and Stucke (2016) and Mehra (2016). However, it is only recently that 
economists have started to work on this topic. Common wisdom among economists was initially 
that algorithmic collusion is not possible or unlikely to arise in practice without explicit 
communication.7 Theory models of adaptive learning suggest that tacit collusion is not possible 
(Milgrom and Roberts 1990). Some economists suggested that even if tacit algorithmic collusion 
is theoretically possible, it is unlikely to arise under dynamic real world conditions (Schwalbe 
2018).   

We present recent experimental evidence that autonomous collusion between algorithms can 
arise in synthetic environments (Calvano et al. 2020). We look at a new generation of 
reinforcement learning algorithms (Q-learning) that experiment with random actions as part of 
their learning. The dynamic systems induced by such algorithms are very hard to fully 
characterize using abstract modelling, except for very simple environments that are not realistic 
descriptions of markets. 8 Experimentally, however, it is possible to set up a testing environment 
to study how algorithms evolve and interact over time. Experiments allow for perfect 
identification in controlled albeit synthetic environments. Our setting features (i) algorithms that 
are representative of those likely to be used in practice, and (ii) a realistic simulation of actual 
marketplaces, i.e. a virtual market populated with consumers and pricing-algorithms. Using this 
approach we observe both market outcomes and their determinants. We find that reinforcement 
learning algorithms generate supra-competitive prices and that these higher prices are the result 
of tacit autonomous algorithmic collusion: without explicit communication, algorithms learn to 
engage in retaliatory pricing.   

 
https://www.gov.uk/government/publications/algorithms-how-they-can-reduce-competition-and-harm-
consumers/algorithms-how-they-can-reduce-competition-and-harm-consumers 
5 https://www.ftc.gov/news-events/blogs/business-blog/2020/04/using-artificial-intelligence-algorithms 
6 Proposal for a Regulation by the Council and the European Parliament introducing a new competition tool, 
European Commission, ref. Ares (2020) 2877634. 
7See discussion at the session on Machine Learning, Market Structure and Competition at the 2017 NBER 
Conference on AI: https://www.economicsofai.com/nber-conference-toronto-2017.  
8 Modelling of learning algorithms with a theoretical approach could offer deep insights on what to expect out of a 
repeated interaction among autonomous pricing algorithms. Authors in other disciplines (Brafuss et al 2019, for 
example) have attempted this approach using stochastic approximation methods. A recent theoretical literature 
has addressed the impact on market outcomes of algorithms that are “hard-coded”, thus having no ability to 
explore and learn their behavior with market interactions. See for example, Miklos-Thal and Tucker (2019), Brown 
and MacKay (2019). 
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Having established that algorithms can learn to collude in synthetic environments, we present the 
first real empirical evidence of widespread algorithmic adoption raising margins and prices 
(Assad et al. 2020). Empirically, there are substantial challenges to identifying a causal link 
between adoption and collusion. Pricing technology is often highly proprietary and adoption of 
new algorithms is rarely observed. Adoption choices are also not random and establishing 
causality is important. Moreover, even a causal link between adoption and observable markers of 
collusion such as higher prices and margins does not necessarily recover the intentions (i.e., 
strategies). Algorithmic adoption can affect competition but also other factors that change market 
prices (i.e., better demand discovery). We use comprehensive high frequency pricing data from 
German gasoline retailers to identify the adoption dates of algorithmic pricing technology by 
individual gas stations. We then use an instrumental variables approach to establish causality. 
We recover the effects of adoption on competition by focusing on pre-existing market structure: 
looking at the effects of adoption in monopoly vs. non-monopoly markets, and looking at the 
effects of market-wide adoption in duopoly markets. We find that algorithmic adoption increases 
margins and prices only for non-monopoly stations. In duopoly markets, margins and prices only 
increase if both stations adopt. Together, this suggests that algorithmic pricing has an effect on 
competition. 

After showing that algorithmic collusion is a credible concern, we explore possible policies that 
can mitigate it (Johnson, Rhodes and Wildenbeest 2020). Because of aforementioned concerns 
with abstract modelling and the lack of empirical variation in policy, this is also done in a fully 
controlled experimental environment. The experimental approach allows a researcher to  run a 
large set of experiments in a fully controlled environment, under many different market 
conditions and different algorithmic designs. This potentially allows her to identify factors that 
may make it harder for algorithms to collude. These factors may have to do with the design of 
the algorithms or with rules governing the marketplace. For example, many marketplaces have 
control over which products consumers consider, and could use this power to guide the 
behaviour of algorithms towards procompetitive outcomes. We show that changes in platform 
design, such as rewarding firms that cut prices with additional exposure to consumers, may help 
curb algorithmic collusion. We also show that policies raising consumer surplus can also raise 
platform profits. Overall, thoughtful marketplace design decisions may combat anti-competitive 
forces even when perpetrated by algorithms. 

The paper proceeds as follows. In Section 2, we describe the experimental approach of 
algorithmic collusion has been explored in Calvano et al. (2020). In Section 3 we present the 
main findings of Assad et al. (2020) on the actual risk of algorithmic collusion. In Section 4, we 
discuss the remedies that platforms may put in place as a reaction of seller’s algorithmic 
collusion, as investigated in Johnson et al. (2020). Although we think it is too early to provide 
concrete policy recipes as more research is needed, the concluding Section 5 distills some 
observations from the existing research to develop a robust policy design. 

2. Experimental Analysis for Algorithmic Collusion 

Calvano et al. (2020) experiment with algorithms within the context of a workhorse model of 
competition in the economics literature: repeated oligopolistic competition where several firms 
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compete over time with differentiated products. Each firm delegates its pricing to algorithms 
whose objective is to maximize the firm’s discounted profit over an indeterminate time horizon. 
In each period, the algorithm observes and thus reacts to prices effectively charged in previous 
periods by all market participants. After making its choice, it observes the resulting profits 
realized in that period. The idea of the experimental approach is to study the behavior that these 
AI-powered pricing algorithms learn over time by observing them repeatedly interacting in this 
virtual market. 

In particular, Calvano et al. (2020) perform experiments using a type of AI called reinforcement-
learning, specifically Q-learning. Q-learning is an adaptive approach that allows algorithms to 
learn about the strategic environment over time based on their own actions. Although firms do 
not need to use AI algorithms to set prices, such algorithms are used in many other areas of 
application and it may be reasonable to think that firms may adopt these effective techniques in 
the future, if they haven’t done so yet. 

A small number of  “hyperparameters” characterize the design of the algorithms. One parameter 
controls the rate of learning, that is the balance between what the algorithm has learned to date 
and the new observations. The experimentation rate governs the attitude to explore, that is the 
probability that in a given period the algorithm sets a possibly suboptimal price (given available 
knowledge) just to check the reaction of the market, that is of consumers and rivals. Few other 
parameters are then used to initialize the algorithms in each simulation, to set the discount factor 
embedded in the algorithms, the memory of the algorithms (typically one or two past periods) 
and, finally, prices are discretized in a finite price grid. The virtual environment is then 
completed with the economic parameters, that specify the number of firms active in the market, 
each firm’s cost of production, the preferences of consumers (e.g. with logistic or linear demand 
functions) and the degree of differentiation, from homogeneous products to less substitutable 
ones. Notice that, while in principle these algorithms can react to a wide variety of inputs / 
observations, complexity increases rapidly as one expands the size of those potential information 
sets. For this reason, the baseline setup of Calvano et al. (2020) are able to condition their current 
price only on the previous period prices.Within this setup it is then possible to run many 
simulations for each parametric configuration and for different values of the economic and 
hyper- parameters. In this environment, algorithms explore and then learn by mutually 
interacting in what is called Multi Agent Reinforcement Learning. Giving the algorithms enough 
time to learn their strategies (in other terms, to converge according to some specific convergence 
criterion), one can investigate several outcomes. First, the actual prices set by the algorithms. 
Second, one can “dig” into the algorithms and study the embedded strategies they have learnt. 

Experimental Results 

Figure 1 illustrates the price distribution observed across 1000 representative simulations, with 
two firms and for given and reasonable economic and hyperparameters.9  The variability reflects 
the fact that different simulations lead to quantitatively different, although as we shall see 

 
9 The assessment of the algorithms is performed after experimentation has concluded and the algorithms have 
converged to a stable behavior. 
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qualitatively similar, outcomes. It is instructive to compare these observed prices with two 
benchmarks, the monopolist price and the competitive price. The latter is the price that 
maximizes each firm’s profit, given the rival’s price. For differentiated products each firm prices 
above cost, equating marginal costs to marginal revenues. Crucially, in doing so firms ignore the 
negative impact that lowering their price has on their rival’s profit. In the limit case of firms 
carrying identical products, the competitive price equals the marginal cost of production. The 
former is the price that a hypothetical monopoly owner of all firms in the market would set. Or, 
equivalently, is the price that a cartel would agree to charge to maximize the members’ joint 
profits. The fact that a monopolist internalizes the impact of lowering prices on all firms is the 
reason why the monopoly prices exceed competitive one, to the benefit of consumers. The 
distribution shows that  the algorithms set prices significantly higher than those in the 
competitive benchmark and not too far from the monopolist’s prices. 

 

 

Figure 1. The distribution of prices charged by reinforcement-learning price algorithms 
in the virtual market created in Calvano et al. (2020). The price that would maximize 
the firms’ joint profit is just above 1.93. The algorithms routinely learned to collude. 
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Clearly, these prices imply higher profits. In the simulations of figure 1, the algorithms manage 
to secure about 80% of the additional profits that they could make beyond the competitive 
benchmark if they were to behave as a hypothetical monopolist.10 

But how are these high prices obtained? A first possibility is that the pricing algorithms failed to 
learn to compete. If this were the case, a better algorithm or also a human player would promptly 
realize that by slightly reducing one’s price it would be possible to exploit the rivals’ high prices 
and attract most of the consumers in the market. In this case we should not worry about the 
results of simulations like those illustrated in Figure 1. High prices would be just a temporary 
phenomenon, wiped away by standard competitive pressure. The alternative is that the 
algorithms did instead learn to coordinate their prices and support them with some form of 
retaliatory pricing. 

To test this conjecture, Calvano et al. (2020) perform experiments with the trained algorithms, 
meant to document how these tend to react to rival’s price cuts. Specifically, at the end of each 
session, that is after concluding the learning phase, they override one of the pricing algorithms 
by forcing it to set a lower price for just one period and then report the behavior in the periods 
that follows this “shock.” Figure 2 illustrates the typical pattern. Upon observing the firm 1's 
price cut, firm 2 substantially reduces its price in subsequent periods. Firm 1 follows suit as if it 
were expecting firm 2’s reaction. This temporary “price war” exhibiting significantly lower 
prices gradually comes to an end, with both firms returning to the high prices they were charging 
before the exogenous shock. This property of reward (keeping prices high unless a price cut 
occurs), retaliatory pricing (for undercutting) and eventual forgiveness (increasing prices back to 
pre-deviation) is the hallmark of collusion. The algorithms have learned that undercutting the 
other firm’s prices brings forth a war with low profits which ultimately makes any attempt to 
deviate from the spontaneous cartel price unprofitable.11 

 
10 Precisely, letting P, Pc, Pm being respectively the average observed profit, the competitive profit and the 
monopolist’s profit, the profit gain is measured as (P-Pc)/(Pm-Pc)*100. These measures would be 0% in case of 
competitive behavior and 100% in case of monopolistic behavior. 
11 More generally, Calvano et al. (2020) also show that the algorithms learned to play equilibrium strategies. Given 
the learnt strategy and embedded in other algorithms, a given algorithm learns to set a price that (almost) 
systematically and perfectly best responds. 
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Figure 2. After the two algorithms have learned their way to collusive prices, an 
attempt to “cheat” so as to gain market share is simulated by exogenously forcing one 
of the two algorithms to cut its price. From the “shock” period onwards, the algorithm 
regains control of the pricing. The deviation is punished by the other algorithm, so 
firms enter into a price war that lasts for several periods and then gradually ends as 
the algorithms return to pricing at a collusive level. [Source: Calvano et al. (2020). 
Copyright American Economic Association; reproduced with permission of the 
American Economic Review.] 

This finding is very robust as we will briefly discuss next, and it is remarkable that algorithms 
display such a stubborn ability to autonomously learn such a fairly sophisticated collusive 
strategy.. In fact, the observed pattern is very much consistent with what theoretical economic 
analysis of collusion among rational agents generally predicts. 

Robustness. 

Calvano et al. (2020) first consider the economic parameters. When a larger number of 
independent algorithms maximizing their own profits interact in the market equilibrium prices 
reduce, but they are still significantly higher than the competitive level and supported by 
collusive strategies. Algorithmic collusion also persists, albeit to a smaller extent when firms 
differ in terms of cost efficiency and or quality of their product, exactly as theory predicts. 
Similarly, a smaller discount factor reduces prices and profits, in this case down to the 
competitive level when the algorithms become dynamically myopic with a nil discount factor. 
Algorithmic collusion persists also with different degrees of product differentiation and also with 
perfectly substitutable products. A stochastic demand reduces the ability to coordinate on high 
prices, but still algorithmic collusion prevails, as well as with a variable market structure where 
some firms unpredictably enter and exit the market as they would to for example responding to 
their inventories. 
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Calvano et al. (2021) also show that algorithmic collusion copes with more complex economic 
environments with imperfect information and imperfect monitoring. In the former case 
algorithms privately know the costs of their firms but not those of the other firms which may 
differ. In the latter, instead, algorithms are not able to perfectly observe the prices chosen by the 
other algorithms as they only observe an imperfect signal. Surprisingly, algorithmic collusion 
also adapts to these much more complicated environments. 

Algorithmic collusion is also robust to changes in the hyper parameters. That is changes in the 
design of the algorithms. Clearly, too short experimentation inhibits learning with algorithms 
failing to converge, as with extreme values of the learning rate. However, it is clear that 
algorithmic collusion is not the product of a fortuitous choice of these parameters and prevails 
over a very broad range. 

Other interesting experiments can then be performed with the flexibility of the simulated virtual 
market. For example, one can show what happens when a new algorithm enters a market 
populated by algorithms that have already performed their learning and ended up with 
algorithmic collusion. The question is whether the new entrant learns to exploit the high prices of 
the “experienced algorithms” or rather it learns to adapt to their collusive behavior. Interestingly, 
it is possible to show that what happens is rather the second possibility with the market ending 
up in a new equilibrium with collusive prices (possibly reduced by the presence of an extra firm). 
It is also possible to verify to what extent the learnt collusive strategies are specific to the 
episodes that the algorithms face in their learning history. This can be done taking algorithms 
that have performed their learning in different virtual markets and putting them together in the 
same market. Interestingly, in this case their behavior is clearly perturbed showing price wars for 
a certain number of initial periods, but very quickly they learn to restore a new collusive 
equilibrium with high prices supported with the expectation of punishments of deviations. 

Policy Issues and Implications. 

Collusion is by no means a new phenomenon. Antitrust authorities have been investigating and 
fighting cartels organized by managers all over the world for more than a century and we only 
became aware of cartels that get discovered. With algorithmic collusion, there are at least two 
important novelties. The first is that algorithms’ ability to autonomously learn to collude is 
possible and seems very robust, as discussed above. The second, and probably even more 
important observation, is that algorithms autonomously learn to collude, without any instruction 
to do so, and they do it silently, without any form of communication. Since managers’ intention 
to collude and explicit communications have been the key elements to proving unlawful 
collusion with humans, algorithmic collusion poses a fundamental legal challenge. If authorities 
discover algorithmic collusion, currently this would not constitute a violation of competition law. 

We think that the current state of matters could and probably should be addressed. Here we 
mention the possible difficulties that will be confronted with. 

The type of collusive strategies that algorithms easily learn as discussed above, could be in 
principle adopted by humans too. In fact, the tacitly agreed reward-punishment scheme discussed 
above is the typical model of collusion that is taught in economics textbooks as the canonical 
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mechanism for sustaining a collusive agreement, that clearly cannot rely on explicit contractual 
obligations. A crucial difference relates to the potential for gathering evidence in the two 
scenarios.  With humans there is no way courts and authorities could unveil a tacit collusive 
agreement, as they cannot read into the managers’ minds. This is why the current application of 
antitrust law is administered on the basis of hard evidence of communication, such as emails and 
phone calls. With algorithmic collusion, it would instead in principle be possible  to document 
the learnt strategies, performing experiments along the lines of the experiment depicted in figure 
2. This is not to say that it is going to be an easy task, as we further discuss in Section 5, but it is 
at least a potential promising avenue to cope with algorithmic collusion. 

 

3. Empirical Analysis of Algorithmic Collusion 

Despite growing theoretical and experimental evidence that commonly used pricing algorithms 
can reach tacitly collusive equilibria, a question remains about how real this risk in practice is. 
The answer will influence the extent to which competition authorities oversee the adoption of 
these technologies (see for instance the UK Digital Competition Expert Panel 2019 Report pp 
109-111). Therefore, empirical work investigating the impact of the adoption of algorithmic-
pricing software is essential. However, any empirical analysis must overcome three important 
challenges. First, adoption decisions are typically not publicly observed. Second, adoption is 
endogenous because the decision to adopt is correlated with factors that are unobserved to 
researchers. Finally, even if adoption can be causally linked with higher prices or margins, it is 
not clear whether these can be attributed to changes in competition intensity rather than to other 
factors, such as an improved ability to price discriminate. 

Assad et al. (2020) address these challenges and provide the first empirical analysis of the impact 
of wide-scale adoption of algorithmic pricing solutions, complementing existing theoretical and 
experimental works. They take advantage of high-frequency retail gasoline price data from 
Germany, where advertising by a leading algorithmic software provider, Danish company a2i 
Systems, suggests that algorithmic pricing software has been widely available for adoption since 
2017. 

Algorithmic software providers claim that their products can help gasoline station owners 
"master market volatility with AI-powered precision pricing, respond rapidly to market events 
and competitor changes" (Kalibrate.com) and take advantage of "superhuman expertise" 
(a2i.com). Software providers stress the ability of their algorithms to incorporate market 
conditions and variables such as own and competitor prices, sales volumes, costs and weather 
and traffic events. For a given station, an algorithm trains based on historical data. It uses these 
inputs and takes in additional "real-time" information such as current weather and traffic patterns 
to set prices that maximize station profits. Transactions resulting from these prices are fed back 
into the algorithm as new inputs.  

Although all software providers focus on the speed and responsiveness of their pricing 
algorithms, the exact specifications of algorithms used in the retail gasoline market are unknown. 
For example, while most software providers claim to condition on historical own and competitor 

https://kalibrate.com/software/kalibrate-pricing/
https://www.a2isystems.com/wp-content/uploads/2018/11/PriceCast-Fuel-Product-Folder-15.compressed.pdf
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prices, it is not known how long their algorithms’ memories are.12 Even the type of machine 
learning used (adaptive vs. reinforcement learning) is mostly obfuscated. References in a recent 
paper that broadly describes one such algorithm, Derakhshan et al (2016), suggests that they use 
reinforcement learning techniques that experiment with random actions to learn the state space as 
in Calvano et al. (2020) and Johnson et al. (2020), but it is not stated explicitly. 

Regardless of the type of learning algorithms used in this market, widespread adoption could still 
facilitate collusive behaviour. The German gasoline retail market is subject to price disclosure 
regulations and near perfect price transparency. In such an environment algorithms can make 
deviations from collusive conduct easier to detect and punish and help sustain supra-competitive 
prices. Advertisements in trade publications also suggest that multiple stations in a single local 
market could adopt identical pricing software, raising concerns of hub-and-spoke collusion, 
depending on how individualized the algorithms are for each customer.   

Identifying Station-Adoption. 

A first challenge is that the decision to adopt algorithmic-pricing software is not directly 
observed in the data. To identify adopters Assad et al (2020) test for structural breaks in pricing 
behaviours related to the use of sophisticated pricing software. The software is advertised to 
"rapidly, continuously, and intelligently react" to market conditions; automatically setting 
optimal prices in reaction to changes in demand or competitor behaviour; or, to maximize 
margins without affecting the behaviour of consumers or competitors. Therefore, following 
adoption stations should make more frequent and smaller price adjustments, and should react 
more quickly to changes in competitors' prices. 

These measures of pricing behaviour line up with what is described in the economic and legal 
literature discussing algorithmic adoption. Ezrachi and Stucke (2015) point out the ability for 
algorithmic software to increase the capacity to monitor consumer activities and the speed of 
reaction to market fluctuations. Mehra (2016) notes the ability of AI pricing agents to more 
accurately detect changes in competitor behaviour and more quickly update prices accordingly.13 

Assad et al. (2020) use a Quandt-Likelihood Ratio test (Quandt 1960), a method standard in the 
economics literature, to identify possible breaks for each station. To minimize false positives, a 
station is classified as an algorithmic-pricing adopter if it experiences a structural break in at 
least two measures within a short time period (taken to be eight weeks, but robust to alternative 
specifications). A large number of breaks are found in all three measures. For example, many 
stations go from changing their prices five times per day to ten times per day. Approximately 
30% of stations experience structural breaks in more than one of the measures. The majority of 

 
12 Results from the experimental literature suggest memory is short. State spaces become exponentially 
larger and the price optimization problem becomes increasingly more complex and unstable with longer 
memory. Calvano et al. (2020) and Johnson et al. (2020) both limit algorithmic memory to one period.   
13 Chen et al. (2016) identify algorithmic pricing users in Amazon Marketplace by measuring the correlation of user 
pricing with certain target prices, such as the lowest price of a given product in the Marketplace. 
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these breaks occur in mid-2017, just after algorithmic pricing software becomes widely 
available, suggesting that the measures capture algorithmic-pricing software adoption. 

Identifying Causal Effects of Adoption on Margins and Prices. 

Having identified which stations adopt algorithmic pricing software and when, Assad et al. 
(2020) compare outcomes (margins and prices) of adopting and non-adopting stations. The 
challenge faced at this stage is that adoption decisions and timing are likely correlated with 
station/time specific factors unobservable to the researcher. For example, stations that hire better 
managers could be more likely to adopt the new software, but also different in other dimensions 
than worse-managed stations, making it difficult to isolate the effects of adoption. A simple OLS 
regression, even one controlling for a large number of station- and time-specific characteristics, 
as well as changing local confounders such as weather and demographics, would yield biased 
and inconsistent estimates of the effect of adoption on outcomes. 

Assad et al. (2020) address this challenge with an instrumental variable (IV) approach. They find 
variables (instruments) that shift station incentives to adopt the software independently of their 
idiosyncratic unobservable characteristics. The instruments allow them to recover the "true" 
causal effect of adoption on outcomes. The main IV is the adoption decision by a station's brand 
(i.e., by brand-HQ).14 

As in other cases of corporate technology adoption (e.g., Tucker 2008), technology adoption in 
retail gasoline happens at two levels: at the brand-HQ level and at the individual station level. 
Brands make big-picture decisions about the technology they would like their stations to use, and 
provide stations with employee training, technical support and maintenance and subsidies. 
Individual station owners make adoption decisions specific to their stations. This involves 
incurring investment costs such as pump and Point of Sale (PoS) terminal upgrades. The costs 
can be substantial and are not necessarily fully subsidized by the brand. An example is the 1990s 
Exxon Mobil (Esso's parent company) brand-wide roll-out of the Mobil Speedpass, a contactless 
electronic payment system. BusinessWeek reports that to adopt the technology individual station 
owners had "to install new pumps costing up to $17,000--minus a $1,000 rebate from Mobil for 
each pump" (BusinessWeek). Partial investment subsidies by brands help explain staggered or 
delayed technology adoption in this market. Brand-level decisions should not be correlated with 
individual station-specific unobservables. 

Since brand adoption decisions are also unobserved Assad et al. (2020) use a proxy for adoption 
to instrument: the fraction of a brand's stations that adopt AI pricing. If only a very small fraction 
of a brand's stations adopts AI, it is unlikely that the brand itself decided to adopt it. If a large 
fraction adopts, it is likely that the brand itself adopted and facilitated adoption by the stations. 

 
14 As a robustness check, Assad et al (2020) consider an alternative set of instruments: annual measures of local 
broadband internet availability and quality. Most algorithmic-pricing software are "cloud" based and require 
constant downloading and uploading of information. Without high speed internet, adoption is not particularly 
useful. Conditional on local demographic characteristics broadband quality should not depend on station-specific 
unobservables, but stations are more likely to adopt once their local area has access to reliable high speed 
internet. 

https://web.archive.org/web/20070409104123/http:/www.businessweek.com/1997/10/b3517110.htm
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Using brand-adoption as an IV, Assad et al. (2020) examine the effects of adoption on mean 
monthly prices and margins, as well as on the distribution of prices and margins. They show that 
mean station-level margins increase by 0.7 Euro cents per litre after adoption. Mean margins for 
non-adopting stations are approximately 8 Euro cents, so this is a 9% increase in margins.15 
Other moments of the margin distribution also generally increase after adoption. Adoption also 
causes a 0.5 Euro cents per litre increase in mean prices. There are over 47 million cars 
registered in Germany (EuroStat). Assuming that each car has an average tank size of 40 litres 
and fills up once a week, universal adoption of algorithmic pricing software could increase total 
consumer expenditures on fuel by nearly 500 million Euros per year. 

Identifying Effects of Adoption on Competition. 

There are many channels, other than through competition, that adoption of algorithmic-pricing 
software can change margins. For instance, an algorithm can better detect underlying fluctuations 
in wholesale prices or better predict demand. To isolate the effects of adoption on competition 
Assad et al. (2020) focus on the role of market structure, comparing adoption effects in 
monopoly (one station) markets and non-monopoly markets. If adoption does not change 
competition, effects should be similar for monopolists and non-monopolists. They also perform a 
more direct test of theoretical predictions by focusing on duopoly (two station) markets. Assad et 
al. (2020) compare market-level average margins in markets where no stations adopted, markets 
where one station adopted and markets where both stations adopted. In the first market type, 
competition is between human price setters. In the second it is between a human price setter and 
an algorithm, while in the last it is between two algorithms. By comparing all three market types 
they are able to identify the effect of algorithmic pricing on competition. 

Findings in Assad et al. (2020) show that outcomes vary based on market structure. First, 
adopting stations with no competitors in their ZIP code see no statistically significant change in 
mean margins, while those with competitors experience an increase of 0.8 cents per litre and a 
rightward shift in the distribution of their margins. These results suggest that algorithmic pricing 
software adoption raises margins only through its effects on competition. Second, estimates in 
duopoly (two station) markets reveal that, relative to markets where no stations adopt, markets 
where both do experience a mean margin increase of 2.2 cents per litre, or roughly 28%. Markets 
where only one of the two stations adopts see no change in mean margins or prices. These results 
show that market-wide algorithmic-pricing adoption raises margins and prices, suggesting that 
algorithms reduce competition. The magnitudes of margin increases are consistent with previous 
estimates of the effects of coordination in the retail gasoline market (Clark and Houde 2013, 
2014; Byrne and De Roos 2019). 

Finally, Assad et al. (2020) explore the mechanism underlying the relationship between 
algorithmic pricing and competition by asking whether algorithms are unable to learn how to 
compete effectively, or whether they actively learn how not to compete (i.e., how to tacitly 
collude). If it is the former, immediate increases in margins should be visible. If it is the latter, 

 
15 Estimates using alternative broadband availability IVs are qualitatively similar to the main estimates but 
quantitatively larger. 

https://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_cars_in_the_EU#Overview
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algorithms should take longer to train and converge to tacitly-collusive strategies (Calvano et al. 
2020). Assad et al (2020) find evidence that margins do not start to increase until about a year 
after market-wide adoption, suggesting that algorithms in this market learn tacitly-collusive 
strategies. These findings are in line with simulation results in Calvano et al. (2020). 

Policy Issues and Implications. 

The findings in Assad et al. (2020) provide the first systematic evidence of the effects of 
algorithmic pricing software adoption on competition. From the perspective of competition and 
antitrust authorities, they are troubling. Algorithmic pricing software can learn to coordinate, 
suggesting that widespread adoption of such software can facilitate tacit collusion and raise 
prices and markups. To the best of our knowledge, this occurs without explicit communication 
between competitors, making it legal according to current competition laws in many countries. 

While the evidence in Assad et al (2020) is particular to retail gasoline markets in Germany, the 
same algorithmic pricing software has been adopted in gasoline retail markets around the world. 
At a minimum, their results suggest that competition authorities in Germany and elsewhere 
should undertake a census of retail-gasoline pricing software to understand the market structure 
of the algorithmic software market and the extent of adoption. Such a census can help separate 
whether the main effect of algorithmic pricing software on competition comes from multiple 
stations in a market adopting the same or different algorithms. Which algorithm competitors 
adopt is not directly observed and the two possibilities have different implications for regulators 
and policy-makers. 

 

4. Platform Design for Algorithmic Collusion 

Online marketplaces such as those operated by Amazon, eBay, and Walmart allow third-party 
merchants to set the prices of goods that they sell on the marketplace. The potential for collusive 
merchant behavior exists, and there is concern that the growing prevalence and sophistication of 
pricing algorithms may facilitate collusion.  

What steps, if any, can online retail marketplaces take to fight collusion by third-party merchants 
and improve competitive outcomes? This is the question posed in Johnson et al. (2020). In that 
article, which we discuss and summarize here, we seek answers using both economic theory and 
algorithmic experiments, and use the resulting insights to identify relevant policy issues.  

We now sketch the underlying economic scenario we are trying to capture (full details can be 
found in the above-mentioned article). Imagine a consumer arrives at an online marketplace and 
types a product descriptor into the search tool. Perhaps she is looking for a certain type of 
product but is unsure exactly which brands to consider. The platform can influence how many 
products she considers, and which products those are, in many ways. For instance, the platform 
controls the ranking of products on the search page and how many are on that page. Additionally, 
if she clicks on a product to gain more information about it, the platform chooses which 
additional products to present on that page, and so on. This overall process might be very 
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complicated and so to capture the basic idea we suppose that the platform chooses how many 
products the consumer considers. 

Specifically, there are a total of n differentiated products in a category (we assume a standard 
logit model of differentiated-product demand), of which k<n are shown to consumers. We 
consider two policies that determine the identities of these k products. The simpler of the two 
policies is called Price Directed Prominence (PDP). Under this policy, in each period the 
platform shows k of the products with the lowest prices.16 The second policy, Dynamic PDP, is 
more subtle and is described below.  

What happens when a platform steers demand using these policies? We seek to answer this 
question primarily using experiments on AI algorithms. However, as a preliminary step we use 
economic theory to frame some of the challenges and potential tradeoffs faced by a platform.  

Theory Predictions for Price Directed Prominence in Competitive Markets. 

If sellers are not colluding, then individual firms have a strong incentive to cut prices, because 
the n-k firms with the highest price are not shown to any consumers. Indeed, theory predicts all 
firms will set prices equal to marginal cost. Consumers benefit from these price decreases but are 
harmed by the loss of variety presented to them. Therefore, PDP induces a tradeoff for 
consumers.  

We show that this tradeoff between lower prices and less variety benefits consumers as long as 
consumers are shown enough products, that is, so long as k is not too small (indeed, we find that 
consumers benefit even if almost two-thirds of firms are not presented to consumers). This 
simple and intuitive result is nonetheless powerful as it shows that steering techniques that limit 
consumer choice can nonetheless benefit consumers, at least when the market is competitive.  

Theory Predictions for Price Directed Prominence in Cartelized Markets. 

Now suppose that the n firms in the industry have formed a cartel. We note that there are many 
prices on which these firms could collude. To draw a sharp contrast with competitive markets, 
we focus on collusion at the prices that maximize the overall profits of the n cartel members. 

In stark contrast to what happens in competitive markets, theory predicts that PDP harms 
consumers when sellers collude both before and after the implementation of PDP. The reason is 
that, when the market is cartelized, PDP does not lead to dramatic price decreases. Instead, the 
cartel finds it optimal to reduce prices slightly, and this is not enough to compensate consumers 
for the variety loss.  

There is a silver lining: showing fewer firms to consumers makes it somewhat harder to sustain a 
cartel, meaning that some (but likely not all) cartels may no longer be sustainable. To understand 
why, recall that cartels are sustainable when each firm’s short-run gain of deviating from cartel 
pricing is smaller than the long-run cost to that firm of starting a retaliatory price war. When 

 
16 In the article we more generally allow the n-k firms with higher prices to receive some demand rather than 
none, but the number of consumers who see these products is smaller than the number who see the k lowest-
priced products.  
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fewer firms are shown to consumers, the gains to deviating from a cartel are larger because there 
are fewer alternative options being offered to consumers. 

This silver lining aside, we also consider a different steering technique, Dynamic PDP, which is 
tailored to attack the foundations of collusion more directly than PDP. The basic idea of 
Dynamic PDP is to make it more attractive for a firm to deviate from a cartel. It accomplishes 
this by making it more difficult for a cartel to punish those who deviate from cartel pricing.  

Specifically, under Dynamic PDP a firm that cuts its price today is rewarded not only today (by 
being one of the firms shown to all consumers) but also in future periods. The future benefits 
come in the form of a “cushion” or “advantage” offered by the platform that makes it easier for 
that firm to be shown to all consumers in the future even if rivals retaliate with their own price 
cuts. The net effect is that a firm cutting prices today expects also to be shown to consumers in 
the future even if rivals undercut it somewhat. In equilibrium, for a properly sized cushion, this 
logic leads all firms to compete for the cushion and the final effect is a breakdown in collusion. 
Indeed, theory predicts marginal-cost pricing under Dynamic PDP, even when firms would 
otherwise form a cartel and even when that cartel would be robust to the simpler PDP technique.  

Results of Algorithmic Experiments. 

But how do actual AI algorithms behave? To investigate, in Johnson et al. (2020) we perform 
experiments using the same type of reinforcement-learning (Q-learning) algorithms discussed in 
Section 2.  

Briefly, we run the experiments in the following manner. We specify the same demand system as 
in our theoretical analysis and then allow our algorithms to interact repeatedly with each other 
until their learning converges. The algorithms condition on prices from the previous period (in 
principle they might condition on a longer horizon, but our assumption of a single period keeps 
the state space to a manageable size).We look at how prices, consumer surplus, and platform 
profits are affected by implementing the policies of PDP and Dynamic PDP. We separately 
consider both a low and a high level of product differentiation.  

Our experiments reveal that AI algorithms do not always behave as predicted by theory.  Overall, 
however, we find support for the idea that platform-design policies that limit consumer choice 
can benefit consumers.  

In more detail, our first results involve circumstances where firms value the future highly, that is, 
have high discount factors (theory suggests collusion among economic actors is easiest in this 
case). Consistent with this, and in line with our predictions, we find that PDP may cause 
algorithms to lower their prices but that consumers may still be harmed overall due to the loss of 
variety. However, contrary to our theoretical predictions, we find that when the level of product 
differentiation is low, PDP lowers prices enough that consumers do benefit.  

Although it is encouraging that PDP sometimes benefits consumers when the future is valued 
highly, the bottom line is that in this case PDP exhibits mixed success in our algorithmic 
experiments. It seems that the AI algorithms we use are sufficiently flexible in their learning that 
they are able to maintain very high prices, even when PDP is in place. 
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However, our second policy-design tool, Dynamic PDP, appears to work very well even when 
the future is valued highly. We find that AI algorithms drop their prices substantially and that 
consumers benefit across a wide array of parameter values.  

We also perform experiments using lower discount factors, corresponding to situations in which 
the future is not valued as highly. Here we find that PDP by itself can achieve large consumer-
surplus gains. This is in line with our theoretical predictions in which consumers typically 
benefit from PDP if markets are competitive rather than cartelized. 

We also use our algorithmic experiments to investigate whether a platform benefits from 
adopting steering policies that lower prices. This is important because if not then we might 
instead expect platforms only to adopt harmful policies such as those that tend to display firms 
with higher prices. Our experiments reveal that platforms can benefit from the policies we 
consider. Specifically, when a platform receives a per-unit fee from merchants (as, for example, 
Amazon does when a merchant uses its fulfillment services) then the platform benefits when 
total sales are higher and we find that our techniques sometimes increase the total units sold. 
This is more likely when the same steering also benefits consumers, which makes sense: if prices 
fall enough to benefit consumers despite the variety loss, total demand is typically up. 

On the other hand, at least for the parameterizations we consider, the total revenue generated by 
merchants goes down when we impose our steering policies. Because many platforms receive a 
share of revenue from their merchants as a fee, at first this suggests that a platform may hesitate 
to impose such policies. However, by lowering prices across its entire platform, we believe a 
platform may generate additional total demand; the market size of those who frequent the 
platform should increase. Our calculations suggest that the platform may often benefit from 
lower prices when this is true. 

Aggregate merchant (supplier) profits decrease under these policies, both due to the fact that 
prices are falling but also because some consumers are only shown a subset of the available 
products. Although we do not systematically study the distribution of merchant profits, we can 
say that sometimes asymmetric outcomes are reached, with one merchant earning more than 
another. Thus, symmetric learning outcomes are not always reached. 

Policy Issues and Implications. 

As originally described in more detail in Johnson et al. (2020), several policy implications 
emerge from that research. 

First, steering techniques that limit consumer choice can benefit consumers, because of how such 
techniques influence the strategic decisions of firms. A platform that commits to a policy that 
limits variety can compel firms to lower their prices, thereby making consumers better off 
despite diminished variety. To be clear, this means that sometimes a platform does not display a 
particular product to a consumer even though the consumer would prefer that product to those 
that they are shown, and yet consumers still benefit. At the same time, this does not imply that 
limiting choice on its own is certain to benefit consumers—for consumers to benefit it is crucial 
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that such a policy causes firms to make procompetitive decisions that they otherwise would not 
have taken. 

Second, even when algorithmic collusion might otherwise emerge, platforms may have the tools 
to fight back and destabilize a cartel. However, doing so may require more subtle policies. In our 
analysis, that more subtle policy is Dynamic PDP, which is specifically designed to influence the 
intertemporal tradeoff firm face when deciding whether to remain in a cartel or instead act 
competitively.  

Third, when more subtle policies are required, such policies may appear to be non-neutral and 
yet have positive effects on competition. For instance, under Dynamic PDP, in some periods 
particular firms receive preferential consideration from the platform. Importantly, however, 
today’s preferential treatment is “earned” in earlier periods by cutting prices in those periods, 
and so effective policies may still be non-neutral when viewed from a longer-term perspective. 

Finally, there has been debate about whether platforms (especially large, dominant platforms) 
should have a legal duty to promote competition on their marketplaces. But a pertinent question 
in this debate is whether and how platforms can reasonably achieve this outcome. One 
implication of our article is that platforms may indeed have some of the tools they need to do 
this. Moreover, in some cases these tools can be fairly simple and related to steering techniques 
already employed by most platforms.  

5. Concluding Remarks 

Economists’ research conducted so far on algorithmic collusion suggests that concern over the 
use of pricing algorithms may be warranted. As detailed in Section 2, at least in simplified 
experimental settings algorithms can autonomously learn to tacitly collude, and as detailed in 
Section 3 there is at least suggestive empirical evidence from the retail gasoline market that the 
adoption of such algorithms indeed raises prices. Moreover, under current laws algorithmic 
collusion may not even be illegal. However, as shown in Section 4, research also suggests that it 
may be possible to limit the harm associated with such collusion by changing the rules by which 
algorithms interact on online marketplaces. 

The experimental evidence in Section 4 naturally leads to questions about whether there are 
broader policy initiatives that might fight any algorithmic collusion. Any such initiatives must be 
resilient to the fact that AI algorithms might yield many consumer benefits, for example by 
enhancing allocative or productive efficiency, not merely lead to collusive prices. Heavy handed 
policies such as banning pricing algorithms may be welfare reducing (as well as nearly un-
enforceable).   

Given the uncertainty about whether pricing algorithms primarily help or harm consumers, and 
the very early current stage of research on such questions, we believe it is prudent for regulators 
to move cautiously, but to continue moving and learning about the diverse uses of pricing 
algorithms in the (very complex) real world.  

A better understanding of the market for pricing software may be extremely valuable to 
authorities. For example, in a specific market it might be highly informative to know whether 
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most or all industry participants use the pricing algorithm of the same company, and what 
exactly led them to adopt the same software.  

Perhaps most importantly, it would be tremendously valuable to authorities to understand in 
more detail how different algorithms function. It can often be difficult (especially for outside 
observers) to understand how algorithms make decisions. Small decisions by the designers of the 
algorithms, including hyperparameter selection, objective function, and the data on which 
algorithms are trained, can all have substantial effects on how the algorithms ultimately behave. 
There is therefore much scope for the exact functioning and intent of an algorithm to be 
obfuscated. 

One intriguing possibility is that regulators could gain access to the underlying algorithms and 
training data. Such access might allow regulators to gain insights into the design decisions 
behind specific algorithms, and to experiment to see how they behave in various settings. A 
challenge for this approach is similar to challenges encountered in our studies of synthetic 
environments (Calvano et al. 2020 and Johnson et al. 2020). There is no standard “format” by 
which algorithms operate; instead they are often customized within a specific IT setting and for a 
particular problem faced by a firm. Outcomes may also vary depending on the specific 
environment faced by the algorithm (i.e., the pricing strategy and algorithms of their 
competitors).  

We believe that any investigations into algorithmic pricing must acknowledge that pricing 
algorithms that operate on marketplaces cannot be understood in isolation. Instead, they must be 
studied jointly along with the rules that the marketplace imposes on the algorithms; these rules 
themselves are implemented by algorithms, further complicating the situation.17  Financial 
markets, for example, have their own specific trading rules and, being populated by algorithms 
that automate trading decisions, are a natural subject for further investigation. 

We believe we are in the very early stages of both academic and applied research on pricing 
algorithms and collusion. Future research, perhaps collaborative research with computer 
scientists and others, is urgently needed. 

  

 
17 Also, consumers may activate to counter algorithmic collusion. Active algorithmic consumers have been 
investigated in Gal and Elkin-Koren (2017). 
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