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Abstract  

In zooarchaeology, animal bones are normally identified using comparative macro-

morphological methods, which involve visual comparison of the bone with reference 

materials. However, recent work has oppugned the reliability of these methods. 

Although previous studies applying macro-morphological methods to identify sheep and 

goat bones have found low error rates, these results are based on small numbers of 

analysts, large numbers of different bone types and do not properly account for 

ambiguous "sheep/goat" classifications. 

We present an extensive blind study of performance and reliability for binary macro-

morphological species identification using just the astragalus. Each participant made 

independent comparative identifications on a random subset, including repeat 

presentations for consistency analysis. No sheep/goat category was offered. Instead, 

participants reported confidence scores on each sample. The participants also reported 

the reference materials used and indicated their regions of attention in each image.  

Findings indicate that neither the use of reference materials nor experience are good 

predictors of accuracy, although more experienced analysts are found to be more 

consistent. Forcing binary classifications leads to a more transparent analysis but 

indicates lower performance scores than reported elsewhere, while corresponding 

confidence scores positively correlate with accuracy. Qualitative analysis of reported 

attention regions indicate that mistakes can occur when there is an overlap in the 

morphologies of the two species. We conclude that overreliance on reference materials 

impacts performance when the morphology of reference materials is not representative 
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of the population variance, which is especially evident when the wider bone morphology 

is not adequately integrated into the classification decision. 
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Introduction 

Many zooarchaeologically relevant blind studies have been published since Driver's 

(1992) discussion of the problems in zooarchaeological identifications. These blind 

studies have covered varying topics and they have varying aims, including: 1) the 

comparison of laboratory-based techniques and comparative methods of identification 

(Greenlee and Dunnell 2010; Welker et al. 2015; Pilaar Birch et al. 2019; Prendergast et 

al. 2019); 2) the exploration of analysts’ interpretations and methodological decision 

making when given the same assemblage (Gobalet 2001; Atici et al. 2013; Giovas et al. 

2017); 3) the assessment of published criteria (Fernandez 2001; Zeder and Lapham 

2010; Zeder and Pilaar 2010; Twiss et al. 2017); 4) the reproducibility of an assemblage 

(Nims and Butler 2017; Lau and Whitcher Kansa 2018); 5) the reproducibility of the 

identification of some features (Blumenschine et al. 1996; Lloveras et al. 2014); 6) the 

reproducibility of applying metric measurements (Lyman and VanPool 2009); and 7) the 

impact of fragmentation (Pickering et al. 2006; Domínguez-Rodrigo 2012; Morin et al. 



2017). Together these studies demonstrate inter- and intra-analyst variation in a wide 

range of zooarchaeological tasks, resulting from differences in the analysts’ research 

backgrounds and innate abilities. The observed inter-analyst variation therefore leads 

to zooarchaeological identifications being subjective, even though this subjectivity is 

limited and controlled by a variety of reference materials including guides and manuals, 

both physical and virtual 3D reference specimens, and images and sketches of bones. 

Inter-analyst variation is commonly acknowledged and accepted in the 

zooarchaeological community, with for instance Twiss et al. (2017, p. 303) considering 

zooarchaeological identification to be an ´interpretative act’, and Wolverton (2013, 

p.390) maintaining that it is ‘important to acknowledge that morphological 

identification is a subjective process’. In referring to subjectivity, we mean that the 

results of zooarchaeological research are dependent on and limited by the analysts’ 

research histories and abilities, and it is the inter-analyst variance of classification 

accuracy that is of interest. Regarding intra-analyst variance, we refer to consistency.  

When the subjective nature of the zooarchaeological identification process is combined 

with bones and species that are difficult to separate, one should expect a high level of 

inconsistency and inaccuracy. It is extremely well-known within the zooarchaeological 

community that sheep and goats are difficult to differentiate from their skeletal 

remains, to the extent that Noddle (1974, p. 195) called the problem ‘legendary’. 

However, because sheep and goats are globally important domestic species, they played 

a key role in the early domestication process, and they are highly important to sedentary 

communities (Zeder 2008; Culley et al. 2021), it is important that sheep and goat bones 

are reliably identified by zooarchaeologists and that zooarchaeologists can trust each 

other’s identifications of these elements. The importance of separating sheep and goat 

is also reflected in the fact that one of the first major uses of ZooMS (Zooarchaeology by 

Mass Spectrometry) was performed to separate sheep and goats (Buckley et al. 2010).  

The astragalus was chosen as the focus of this study because they tend to survive 

relatively intact in archaeological contexts due to their relatively high density and low 

nutritional value (Haruda 2017; Pöllath et al. 2018), which means that they are rarely 

broken intentionally, although astragali are occasionally re-purposed as gaming pieces 

(Gilmour 1997; Koerper and Whitney-Desautels 1999; Holmgren 2004). Furthermore, 

several publications have used sheep and goat astragali as the subject of their research 



in showing that their methods can separate the two species (Davis 2016, 2017; Haruda 

2017; Salvagno and Albarella 2017; Salvagno 2020), whereas others have argued that 

descriptive morphological criteria can be defined to separate sheep and goat astragali 

(Boessneck et al. 1964; Boessneck 1969; Prummel and Frisch 1986; Fernandez 2001; 

Zeder and Lapham 2010). Sheep and goat astragali are therefore ideal for testing the 

accuracy and consistency of zooarchaeological analysts as the community is familiar 

with the problem and there are many studies that provide context for the present study. 

Likewise, existing osteometric and comparative methods provide a point of comparison 

for analyst performance in this blind study, as does the prior blind study of Zeder and 

Lapham (2010). Zeder and Lapham's (2010) blind study is considered at length in the 

next section for context. 

Analyst performance in identifying sheep and goat astragali 

Our study builds upon previous work by Zeder and Lapham (2010), who produced an 

in-depth analysis of their blind study, which tested a smaller sample of analysts on a 

broader set of sheep and goat bones than ours. To their credit, Zeder and Lapham (2010) 

not only recognised the importance of accuracy and consistency requirements in 

zooarchaeological macro-morphological identification, but were also the first to 

perform an extensive blind study, and the following re-analysis was only possible due to 

them making the raw data readily available. Because of the influence and importance of 

Zeder and Lapham's (2010) work in zooarchaeology, especially their argument that 

macro-morphological comparisons produce excellent classification accuracies, we use 

their study as a relevant backdrop to highlight prevalent issues in the zooarchaeological 

process as whole, namely the influence of the hierarchically incompatible categories 

(sheep/goat versus binary classifications) on the classification accuracy. Likewise, we use 

Zeder and Lapham's (2010) work as an example of how macro-morphological 

comparisons are dependent on analyst decisions and therefore descriptive methods are 

not always followed consistently. We do not claim that these issues were consciously 

ignored, only that they happen, nor do we aim to discredit their work. Moreover, we 

solely focus on the astragalus classifications. 

In their assessment of the postcranial elements, Zeder and Lapham (2010, Table 5) found 

that using descriptive criteria to classify sheep and goat astragali results in a correct 

classification rate of 100% for goat and 97% for sheep astragali. This finding was then 



adopted by Pöllath et al. (2019, p.812) who stated that they ‘consider it unlikely that our 

samples contained misidentified goat astragali’ to bolster the readers’ trust in the 

morphological assessment that their study was reliant upon. This is a risky stance to take 

considering that Zeder and Lapham (2010) reported 2.2% and 15.4% rate of sheep/goat 

identifications for goat and sheep astragali, respectively, which indicates a large amount 

of uncertainty especially around sheep astragalus identifications. Zooarchaeologists 

have grown accustomed to accepting sheep/goat almost as if it is yet another ‘species’ 

and such a classification is often considered a ‘correct’ classification (e.g. Davis 2017, p. 

67), or ignored from the total number of classifications when computing accuracies as 

done by Zeder and Lapham (2010). As bones classified as sheep/goat present a 

considerable amount of uncertainty to the practitioner (Wolfhagen and Price 2017), 

their exclusion from the total number of classifications means that the accuracy rates 

for individual species may be inflated. We provide an example of this issue in Error! 

Reference source not found.. Although the sheep/goat category may also be thought of 

as a ‘reject’ class, it should not be considered a pure reject class either, since such a role 

is already reserved for the ‘unidentified’ or ‘indeterminate’ category. Instead, 

sheep/goat classification reflects a higher hierarchical and taxonomical level of 

classification – and is therefore closer to a ‘catch-all’ than a ‘reject’ class – which is 

incompatible with binary classifications such as sheep and goat identification. 

Moreover, even if combining the two species increases sample size and produces a 

general picture of caprine exploitation, doing so also obfuscates the potential 

differences in the management strategies for the two species (Halstead et al. 2002; 

Buckley et al. 2010).  

In addition to reporting the accuracy for each element, Zeder and Lapham (2010) report 

the classification rates for each individual criteria for each element as well. For the 

astragalus, these criteria involve: 1) the angle of the medial articular ridge in the dorsal 

aspect; 2) the shape of the distal articular surface in lateral aspect; 3) the size and shape 

of the proximo-plantar projection in medial aspect; and 4) the prominence of the medial 

articular ridge in plantar aspect. In Zeder and Lapham's (2010) Table 3, in which each of 

the four criteria used in differentiating sheep and goat astragali were assessed 

individually, the error rates are reported as follows: 1) for the first criterion, the error 

rate is 0% for goats and 24.7% for sheep with 0% sheep/goat identifications for goat and 

6.4% for sheep; 2) for the second criterion, the error rate is 4.6% for goats and 12.3% 



for sheep in addition to 4.4% sheep/goat for goats and 6.4% for sheep; 3) for the third 

criterion, the error rate for goats is 4.6% and 2.8% for sheep, which is again accompanied 

with 4.4% sheep/goat for goats and 6.5% for sheep; and 4) for the final criterion, the 

goat astragalus error rate is 7.1% and 7.4% for sheep, and there are 8.7% sheep/goat 

identifications for goat and 12.8% for sheep. However, these reported error rates were 

computed for intact specimens and the error rates for archaeological specimens would 

be different as correct identifications are dependent on the survival of these four 

features of astragali. Moreover, although these error rates and percentages of 

sheep/goat identifications are seemingly low, they are not to be taken at face value as 

they derive from the authors’ assessments of the bones even though they were aware 

of the ground-truth species, calling into question the validity of such a study, a point 

which Zeder and Lapham (2010) readily admit and attempt to correct by also reporting 

on results of a proper blind study. The same warning applies to the whole bone 

classification rates reported in Zeder and Lapham's (2010) Table 5.  

Considering the aforementioned issue regarding Zeder and Lapham's (2010) assessment 

methodology, the fact that all relevant features may not be present in archaeological 

samples, and that the morphological variances of archaeological populations are likely 

to be different from modern samples, it is therefore not justifiable to use the 

identification rates from Zeder and Lapham's (2010) Tables 3 as 5 as expected accuracies 

in archaeological studies. Furthermore, taking the reported error rates at face value 

makes the assumption that all analysts would perform equally well when following 

Zeder and Lapham's (2010) criteria.  

In fact, the blind study part of Zeder and Lapham's (2010) research demonstrates the 

exact opposite. In their blind study, six analysts, including the two authors, attempted 

the identification of ten specimens from each species for several elements, 

demonstrating inter-analyst variance as well as how the analysts’ error rates differ when 

classifying sheep versus goat bones. According to Zeder and Lapham (2010), the astragali 

were analysed by all six participants, but from the tables included in the article and the 

associated Supplementary Table 4 – in which the blind study results were detailed – it 

appears that only five of the participants analysed the astragali. Zeder and Lapham's 

(2010) Supplementary Table 4 is the basis for the following two paragraphs. 



In the blind test, the analysts had two tasks: 1) classify individual features as sheep, goat, 

or sheep/goat; and 2) classify the bones as sheep, goat, or sheep/goat. This then means 

that there are two ways in which the analyst accuracy can be computed: 1) majority-

voting, in which each criterion has one vote and sheep/goat classifications are ignored; 

or 2) taking only the final decision into account, again ignoring sheep/goat 

classifications. Treating the ambiguous sheep/goat identifications as a reject category 

and excluding such classifications from the computations, the mean accuracy for all 

analysts was 94.74% (Table 1) for the astragalus identifications when only the final 

decisions are taken into account, and 89.36% (Table 2) when the species identifications 

were computed using majority-voting by criteria (Zeder and Lapham 2010). However, 

these accuracies are inflated by the exclusion of sheep/goat classifications from the total 

number of classifications. The authors (analysts 1 and 2) of the article did not fare any 

better than the less experienced analysts (analysts 4, 5, and 6 in Table 1) when just final 

decisions were taken into account and performed worse than the inexperienced 

analysts when considering each criterion as a vote (Table 2).  

Astragalus identifications from analyst decision 

All analysts 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 41 49 5 0 94.74% 100.00% 89.13% 94.25% 

Goat 49 41 0 5 94.74% 90.74% 100.00% 95.15% 

                  

Analysts 1 and 2 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 17 19 2 0 94.74% 100.00% 89.47% 94.44% 

Goat 19 17 0 2 94.74% 90.48% 100.00% 95.00% 

                  

Analysts 4, 5 and 6 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 24 30 3 0 94.74% 100.00% 88.89% 94.12% 

Goat 30 24 0 3 94.74% 90.91% 100.00% 95.24% 

Table 1 Analyst performance for all astragalus identifications in Zeder and Lapham's (2010) blind study based on the 

analysts’ final decisions. The true positive, true negative, false negative, and false positive derive from the analysts' 

final decision which may differ from majority rule of the different criteria. Analysts 1 and 2 are the authors of the 

study 



Zeder and Lapham's (2010) Supplementary Table 4 further shows that for two astragali, 

analyst 1 (one of the authors) scored all four criteria individually as either goat or 

sheep/goat, but then decided that the bone was actually sheep. In contrast, analyst 2 

(again, one of the authors) assigned one astragalus as a goat even though they thought 

that the bone adhered to sheep-like qualities on three of the four criteria. Furthermore, 

there were four other instances (all analysts) in which a bone was considered 

sheep/goat even though the majority of the criteria pointed to a more precise species 

assignation. In three of the four of such cases, the decision to provide a more precise 

classification would have resulted in a wrong answer.  

This behaviour by the analysts to disregard the morphological criteria highlights the 

problem with the methodology, namely that the individual criteria do not fully capture 

the species variation which leads to inconsistent application of the comparative 

methodology. It is also a distinct possibility that size and other undescribed 

morphological variables affect the analysts’ decision making. However, although the 

effect of undescribed morphological variables is unmeasurable and cannot be easily 

removed as a factor, bone size as a factor can be removed and doing so could help in 

producing a more accurate assessment of the reliability of descriptive criteria. This can 

be most easily achieved by using high definition images of bones, finding the outline of 

Astragalus identifications from criteria 

All analysts 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 37 47 9 1 89.36% 97.37% 80.43% 88.10% 

Goat 47 37 1 9 89.36% 83.93% 97.92% 90.38% 

                  

Analysts 1 and 2 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 15 17 4 1 86.49% 93.75% 78.95% 85.71% 

Goat 17 15 1 4 86.49% 80.95% 94.44% 87.18% 

                  

Analysts 4, 5 and 6 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 22 30 5 0 91.23% 100.00% 81.48% 89.80% 

Goat 30 22 0 5 91.23% 85.71% 100.00% 92.31% 

Table 2 Analyst performance for all astragalus identifications in Zeder and Lapham's (2010) blind study based on the 

majority-voting by criteria. The true positive, true negative, false negative, and false positive derive from the 

analysts' decision on individual criteria and were computed based on majority rule. Analysts 1 and 2 are the authors 

of the study 



the bones and cropping the image to the extents of the bone, after which all images can 

be scaled to a pre-determined size by padding the cropped image with varying number 

of pixels. To ascertain that analysts are consistent and follow the written criteria, it 

would be similarly helpful to collect data on the analysts’ areas of attention during the 

classification task. Again, photographs are helpful in achieving this goal as participants 

would only have to trace their attention areas over the regions of the photo. Moreover, 

the image dataset used in the present study is suitable for future deep learning 

applications, meaning that the blind study acts as a benchmark of human ability for any 

deep learning classifiers using these images. 

Aims and objectives 

This study has several aims: 1) to test the impact of different types of reference 

materials in a zooarchaeological task; 2) analyse the participants’ spatial attention 

during classification; and 3) as it is argued that sheep/goat classifications are not only 

unnecessary, but that they also hide important information about the classifications, 

this category is replaced by a two-step process in which the analyst is forced to make a 

classification and additionally report their confidence score for each classification. These 

self-reported confidence scores force the analysts to consider the uncertainty in their 

classifications and it is shown that higher confidence scores also correspond to higher 

accuracy overall. This study additionally provides a human benchmark for an 

archaeologically relevant image dataset for forthcoming deep learning algorithms. The 

data was gathered in an online blind study and it is analysed in a series of quantitative 

and qualitative analyses. 

Methods 

Image dataset 

The specimens included in the dataset come from National Museum Cardiff’s Noddle 

collection, Sheffield University’s zooarchaeological reference collection, and Historic 

England’s collections stored at Fort Cumberland in Portsmouth. The list of specimens is 

provided in Error! Reference source not found.. In total, 193 astragali (100 sheep, 93 

goat) were photographed from six different views. However, nine specimens were not 

included in the blind study as there were problems with the quality of photographs of 

two specimens and another seven had species information written on the bones 



themselves. The photography and post-processing steps are detailed in Error! Reference 

source not found. and an example of the six images (as shown to study participants) 

produced for each astragalus from this process is displayed in Fig. 1.  

Data collection 

The blind study was hosted at www.sheepgoat.co.uk and took place between 23 June 

2020 and 31 December 2020. In total, 39 fully anonymous participants completed the 

entire study. Each analyst was first asked to consent to the test as required to fulfil the 

ethics requirements (ethics approval granted on 15 June 2020 by UCL Institute of 

Archaeology Ethics Committee, Reference number 2020.020), followed by a series of 

questions about their experience in zooarchaeology and the type of reference materials 

they would be using (detailed in Error! Reference source not found.). After the pre-test 

survey, the participant was taken to a page detailing the instructions for the two main 

tasks of the study (see Error! Reference source not found.). The first of these two tasks 

involved showing the analyst an astragalus from all six views and asking them to identify 

the specimen as either sheep or goat as well as give an estimate of the analyst’s 

Fig. 1 Example images for a goat astragalus 



confidence in that classification (a sliding scale from ‘Guess’ to ‘Absolutely certain’, or 

numerically from 1 to 100 with a default value of 51). The participants were given the 

option to indicate whether they recognized the bone from reference collections because 

the participant may be from the same institution as the specimen – this feature was 

used only once and that classification is not taken into account in any analyses. The 

second task involved painting the areas that the analyst thought were informative for 

the species assignation on top of the set of images shown on the previous page. For 

Analyst 29, there was a glitch in their entries and they provided 29 classifications and 31 

drawings – only those drawings with corresponding classifications are included in the 

analysis of analyst attention. After the test, the participants were allowed to leave 

feedback and they were given the option to view how well they performed. The 

participants had the option to delete their entries throughout the test and even after it. 

The database entity relationship diagram is in Error! Reference source not found.. The 

analyst answers and test images are in Online Resource 11. 

Because asking participants to classify all 184 bones would have been too time- 

consuming, a random sampling strategy was chosen. This was implemented as part of 

the functioning of the website, which picked 20 astragali (ten of each species) for each 

analyst. As it was of interest to also gauge analyst consistency, another ten astragali (five 

of each species) were chosen at random from those initial 20. The participants were not 

told that their consistency was going to be measured, but they were told that the test 

would involve 30 specimens. Had the analysts been told about consistency testing, they 

may have tried to memorise their initial identification, which could have led to artificially 

improved consistency scores. It was programmatically ensured that none of the 

repeated bones were shown immediately after its first occurrence. Because of the 

randomised selection of samples for all participants, one of the 184 astragali was not 

shown to anyone.  

Measuring expertise and defining expertise groups 

Qualifications, years in profession and track record are all poor predictors of test 

performance (Burgman et al. 2011). Previous studies have found this to be the case in 

other species identification tasks such as fisheries observers’ ability to identify sharks 

(Tillett et al. 2012) and great crested newt licence holders’ ability to sort images of newts 

to species (Austen et al. 2018). Considering the fact that these proxies for experience 



are not reliable predictors of expertise, it was decided on an alternative approach to 

group analysts by expertise. In this study, the analysts were aggregated into expertise 

groups based on their answers to five questions, the exact wordings of which can be 

found in Online Resource 4. In general, these questions were designed to act together 

as a proxy for the participants’ expertise in sheep and goat identification, not faunal 

analysis overall.  

The participants were asked about: 1) their highest level of zooarchaeological 

qualification; 2) how many zooarchaeological assemblages they have worked on in the 

last five years; 3) how many hours per week on average they spent analysing 

zooarchaeological remains in the last five years; 4) whether they are specialised in the 

identification of land mammals; and 5) if their specialist experience involved sheep and 

goat separation. For the last two questions, the participants were given the option to 

select ‘Not applicable’. In hindsight, this was a mistake, so these answers are interpreted 

in the analyses as ‘No’. The first three questions were chosen because they were 

assumed to reflect overall experience and/or continued practice, both of which were 

assumed to correlate with a larger mental reference population, while continued 

practice is strongly correlated with skill (Ericsson and Lehmann 1996). These questions 

focused on the last five years (an arbitrary choice) because domain knowledge 

diminishes if it is not practiced (Endsley and Kiris 1995), and it could not be assumed 

that all participants were practicing zooarchaeologists. Furthermore, it is likely that most 

participants have at least some form of underlying training in mammalian 

zooarchaeology, although this was not asked specifically. The grouping of analysts was 

done with the combination of K-medoids and Principal Components Analysis (PCA), as 

discussed next. 

PCA and K-medoids 

The answers to the above questions were pre-processed by centring them around 

zero and scaled to unit variance due to varying number of options for each question, as 

recommended (Abdi and Williams 2010). This was done using Scikit-learn’s 

StandardScaler method (Pedregosa et al. 2011) in Python 3.6. (Python Software 

Foundation 2016). Once the principal components were computed, those principal 

components that explain over 80% of the variance were used as input to K-medoids 

clustering, which aggregated analysts into groups of similar skill-level. K-medoids is more 



robust to noise and outliers than K-means clustering as the cluster centres in K-medoids 

are the most centrally located objects, whereas in K-means the cluster centre can be 

between objects (Zhang and Couloigner 2005). The number of analyst groups created 

was based on the combined evaluation of sum of squared distances (the elbow method), 

Calinski-Harabasz index, and silhouette score. 

Analysing the impact of reference materials 

In addition to asking about the participants’ use of reference texts (one of Boessneck 

1969 or Boessneck et al. 1964, Zeder and Lapham (2010), Prummel and Frisch (1986), 

Other, and  None), the analysts were asked to provide information on whether they 

were planning on using physical specimens, photographs, sketches, or 3D models of 

either or both species as reference aides during the test. This information was important 

in measuring the impact of different reference material types on the analysts’ 

performances. Although it is acknowledged that it would be better to have a control 

group and separate sessions for all participants so that the impact of different reference 

materials was more directly measurable, this was not possible within the research 

timeframe and it was thought improbable that large enough cohort of participants could 

have been found for a such a multi-stage study. 

Generalized linear mixed effects model 

Instead of approaching the impact of reference materials in an unfeasible 

longitudinal study, generalized linear mixed effects models (GLMM) are used to model 

the relationship between the different types of reference materials and the analysts’ 

classifications. GLMM is a statistical modelling method that merges the properties of 

linear mixed models (LMM) and generalized linear models (GLM; Bolker et al., 2009). 

Like GLM, GLMM involves the use of link functions to model non-normal data, whereas 

GLMM resembles LMM in its use of random effects (Bolker et al. 2009; Stroup 2013). 

Thus, GLMM is preferrable over GLM and LMM when the response variable is non-

normal and one can expect variance beyond that explained by the measured variables 

(e.g. type of reference material). Additionally, GLMM can be effectively applied to 

unbalanced and zero-inflated experimental designs, which is the case here (Bolker et al. 

2009; Moscatelli et al. 2012). GLMM is suitable for the present problem because the 

response variable is a binary variable encoding the correctness of a classification (1 = 



’Correct’, 0 = ’Incorrect’) and random variation can be modelled for the subjects 

(analysts) and the test items (bones). The present study additionally uses the species of 

the animal as a source of variance for each analyst.  

The variables modelling random variance (i.e. heterogeneity between clusters) are 

collectively called random effects and the fixed effects are those factors whose levels 

are determined by the experiment and are the main interest of the study (Bolker et al. 

2009; Moscatelli et al. 2012). However, note that both random and fixed effects act as 

explanatory variables and their parameters are estimated through maximum likelihood 

estimation (Bolker et al. 2009). Models that implement random effects aim to 

incorporate variance between clusters – in the present study the clusters are crossed so 

that each specimen may have been seen by multiple analysts, but each analyst’s ability 

also varies by the species of specimen. In practice, this model definition is achieved by 

allowing each analyst and specimen to have their own intercepts, and the slope for each 

analyst is defined by species. In other words, the random effects in the models discussed 

in the results section account for variance between analysts (be it due to skill or 

otherwise), between specimens (due to differences in morphology, quality of the 

photograph, or any other reason), and between species within the analyst (because the 

analyst may be biased towards one species). These variances have to be estimated as 

measuring them directly is very difficult. Fixed effects on the other hand are the factors 

of interest, namely the different reference material types and analyst expertise groups.  

The following example model lends heavily from Barr et al. (2013) who provides a step-

by-step explanation of defining a linear mixed model and which is here adapted for 

GLMM. In this example, the binary response variable 𝑌𝑠𝑖  is modelled by a fixed effect X 

(e.g. species) and two random effects (subject, S, and item, I) with a slope of X varying 

within subject: 

𝑔−1(𝐸(𝑌𝑠𝑖|𝑆0𝑠, 𝑆1𝑠, 𝐼0𝑖)) = 𝛽0 + 𝑆0𝑠 + 𝐼0𝑖 + (𝛽1 + 𝑆1𝑠)𝑋𝑖 + 𝑒𝑠𝑖 . 

As the response variable is a binary variable in the present study, a logit link function is 

used to relate the observations and the predictors. In the above equation, 𝑔−1(∙) is the 

inverse of 𝑙𝑜𝑔𝑖𝑡(∙) link function, 𝐸(𝑌𝑠𝑖|𝑆0𝑠, 𝑆1𝑠, 𝐼0𝑖) is the expected value of the sth 

subject for the ith item when given by-subject random intercept 𝑆0𝑠, by-subject random 

slope 𝑆1𝑠, and by-item random intercept 𝐼0𝑖. 𝛽0 is the overall intercept, 𝛽1 is the overall 

slope, and 𝑋𝑖 is the fixed effect predictor dummy variable for the ith item (e.g. a level of 



species such that 0 = ‘Goat’; 1 = ‘Sheep’). The term 𝑒𝑠𝑖 models the residual error for the 

ith item and sth subject. 

𝛽0, 𝛽1, 𝑆0𝑠, 𝑆1𝑠 and 𝐼0𝑖 are the parameters estimated through maximum likelihood 

estimation. The distribution of variance parameters (𝑆0𝑠, 𝑆1𝑠, 𝐼0𝑖) is usually assumed to 

be Gaussian with a mean of zero, although non-Gaussian random effects have been 

suggested (Lee and Nelder 1996, 2006). The variance distributions for the example 

model are  

(𝑆0𝑠, 𝑆1𝑠)~Ν ([
0
0

] , [
𝜏00

2 𝜌𝜏00𝜏11

𝜌𝜏00𝜏11 𝜏11
2 ]), 

𝐼0𝑖 ~ 𝑁(0, 𝜔00
2 ), 

𝑒𝑠𝑖 ~ 𝑁(0, 𝜎2). 

Here, 𝜏00
2  is the random intercept variance for subjects, 𝜏11

2  is the random slope variance 

for subjects, 𝜌𝜏00
2 𝜏11

2  is the intercept-slope covariance for subjects, and 𝜔00
2  is the 

random intercept variance for items. These parameters then tell us if the inclusion of 

𝑆0𝑠, 𝑆1𝑠 and 𝐼0𝑖 random effects in the model is of importance, because if they are 

associated with zero or very low variance it would indicate that there is little to no effect 

in the probability of correct answer between analysts and/or specimens. For a deeper 

explanation of GLMM, see Agresti (2002) or Stroup (2013), and for tutorials on 

implementing GLMM in R, see Baayen et al. (2008) and Bolker et al. (2009). 

Finding the best fit GLMM 

The process of finding best fit GLMM involves confirming that the inclusion of random 

effects is sensible. This can be done by fitting a baseline GLM and comparing a series of 

GLMMs that each have varying combinations of random effect structures to the baseline 

GLM. At this stage, the GLMMs and the GLM do not have fixed effects. The comparison 

of the baseline model and GLMM with random effects is tested through Likelihood Ratio 

Tests (LRT), and the best random effects structures are chosen based on the lowest 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and negative 

log likelihood. The best random effects structure is not the final model and it is extended 

by adding fixed effects in varying combinations. The models fitted with fixed effects and 

the model with the best random effects structure are further compared using LRT to 

show that the fixed effects add useful information to the best random effects model. 



With many fixed effects, multicollinearity may become an issue, so models presenting 

such characteristics are ignored. 

Software and packages 

All models are created using the lme4 (Bates et al. 2015) package in R version 4.1.1. 

(R Core Team 2021). Laplace approximation is used to estimate the model parameters 

with the help of the BOBYQA (Bound Optimization BY Quadratic Approximation) 

optimizer. Regarding multicollinearity, models with Variance Inflation Factor of above 5 

are considered above the critical threshold, although higher and lower thresholds are 

also common (see Zuur et al., 2010; Thompson et al., 2017). Over- and underdispersion 

are unidentifiable for binary response values, so they are not evaluated for the models 

(Kain et al. 2015). 

Auxiliary measurements 

All classifications were timed by starting a timer as the page loaded and stopped as 

the participants progressed to the drawing task. As the classification page contained 

multiple tasks, the measured response speed is not a direct measure of response speed 

and this metric therefore has a potentially low signal-to-noise ratio. For this reason 

analysis of response speed is not included as part of the main text, but it is available in 

Error! Reference source not found.. 

In addition, the width of the browser window was measured because the study was 

designed to be shown in a browser window with a minimum width of 1,586 pixels. 

Analysis regarding the impact of browser window size shows that those analysts with 

browser window widths less than 1,586 pixels did not perform markedly worse than 

those with wider browser windows and all analysts are therefore included in all analyses 

(Error! Reference source not found.). 

Results 

All statistics are performed in Python 3.6 using SciPy statistics package (Virtanen et 

al. 2020), apart from the GLMM analyses of reference materials for which the lme4 

package in R has been established as one of the standard packages.  



Analyst expertise groups 

A summary table of analyst expertise is presented in Table 3. Majority (34) of the 

analysts have a master’s or a doctorate degree with a zooarchaeological component, 

but only three of the participants perform zooarchaeological identifications full-time. 

Majority of the participants (32) consider themselves as land mammal specialists and 25 

participants also say they have experience of separating sheep and goat bones. Using 

the information in Table 4 as input to PCA, the first three principal components of the 

PCA explains approximately 82.95% of variance (Fig. 2A). The first three components are 

then used as the inputs to K-medoids. Evaluating the K-medoids output through Calinski-

Harabasz index and sum of squared distances (elbow method) results in the division of 

the analysts into four groups (Fig. 2B and Fig. 2C). Although the Silhouette coefficient 

results in two clusters (Fig. 2D), the difference between the coefficients of two and four 

clusters is small. On this basis, the analysts are divided into four groups, with each 

analyst’s group membership indicated in Table 4. 

The first (Group 1) of these four groups is interpreted as being formed of professionals 

(e.g. commercial zooarchaeologists) because it mainly includes full-time or near full-

time workers who also have analysed many different assemblages in the past five years. 

Group 2 are relative novices at classifying land mammals and especially sheep and goat 

bones, while they also have not generally worked on many assemblages nor do they 

spend a lot of time acting as zooarchaeologists. Group 3 members are classed as 

postgraduates due to all of them holding master’s qualifications. Group 3 members also 

all expressed having experience of separating sheep and goats, but they do not tend to 

spend as much time identifying bones as members in Group 1. Finally, participants in 

Group 4 are classed as doctorates because they all have PhD qualifications, and these 

analysts also have experience of separating sheep and goat bones. Group 4 analysts are 

similar to Group 3 analysts in that they do not spend a lot of time identifying bones. The 

expected order of performance for these groups from worst to best is: Group 2, Group 

3, Group 4, Group 1. The Group 1 analysts have been placed ahead of Group 4 analysts 

in our expectations on the basis that the professionals are more active in using their 

skills, which we assume to be more important for performance than the highest level of 

zooarchaeological qualification. We also expect the doctorates (Group 4) to outperform 

the postgraduates (Group 3) based on their higher level of education, while novices 



(Group 2) are expected to be the worst performing group based on their lack of 

familiarity with sheep and goat differentiation and land mammal specialisation. 

Analyst performance 

The four most accurate analysts (three of which are in Group 4) managed to correctly 

classify 29 of the 30 sets of astragali, giving them an accuracy of 96.67% (Table 5). Their 

accuracy is far better than the average accuracy for all analysts, which is 81.15%. The 

least accurate participant is Analyst 68 in Group 1, whose accuracy (53.33%) is 

indistinguishable from chance. The mean accuracy for analysts in Group 4 (87.27%) is 

ten percentage points higher than for analysts in Groups 1 (77.08%) and 2 (77.13%), with 

Group 3 analysts (82.82%) also faring better than Group 1 and Group 2 analysts (Table 

6). However, median accuracy for analysts in Group 1 (80.00%) is better than for analysts 

in Group 2 (73.33%) and much closer to Group 3 median (81.67%). The median 

performance in Group 4 is 93.33%, which shows that the distribution of analyst 

accuracies is skewed left, just like it is for Group 1, whereas Group 2 is skewed right and 

Group 3 is only negligibly skewed left. It is therefore inferred that Groups 1, 2 and 4 may 

Fig. 2 A) PCA scree plot showing cumulative explained variance. B) Sum of squared distance score for K-medoids. C) 

Calinski-Harabasz index score for K-medoids. D) Silhouette score for K-medoids. The vertical dashed line in figures B, 

C, and D indicates the suggested number of cluster. Note the closeness in scores between two and four clusters in 

figure D 



contain outlying analysts. The boxplots in Fig. 3 confirm this suspicion and it is further 

noted that Group 3 has one outlying analyst who performed far better than most for 

that group of analysts.  

The analysts generally performed better when identifying sheep (84.74% accuracy) than 

goat (77.56%) astragali (Table 7). The median for both species is slightly higher than the 

mean, with a median of 86.67% for sheep and 80.00% for goat. Group 4 analysts (mean: 

93.33%, median: 100%) are the best at identifying sheep astragali, but Group 3 had the 

highest mean accuracy for goat astragali (mean: 83.09%, median: 83.34%) whilst also 

being the only group of analysts that has similar accuracies for both species. However, 

Group 4 analysts had the highest median accuracy for goat astragali (mean: 81.21, 

median: 86.67%). As the sheep and goat accuracies for all analysts were found to violate 

normal distribution in Shapiro-Wilk test (Table 8), Mann-Whitney U test was performed 

and it was found that analysts are overall more accurate in classifying sheep than goat 

astragali (U = 965.0, p = 0.0393, N = 39). Cohen’s d effect size (0.4892) indicates a 

moderate effect as Cohen’s d values of 0.15, 0.36, and 0.65 represent the thresholds 

(based on empirical evidence) for small, medium, and large effect sizes, respectively 

(Lovakov and Agadullina 2021).  

Count of analysts by levels of expertise 

Highest degree 

 None BA/BSc MA/MSc PhD   

No of analysts 1 4 17 17   

  

# Assemblages  

 1-10 10-20 20-30 30-40 40-50 >50 

No of analysts 23 10 3 1 1 1 

  

Hours per week 

 <10 10-20 20-30 Full time   

No of analysts 23 9 4 3   

  

 Land mammal specialist Sheep/goat experience 

 Yes No  Yes No  

No of analysts 32 7  25 14  

Table 3 Analysts’ expertise summarised 



 

  

Analyst expertise groups 

 Analyst Group Qual. # Assemblages 
Hours per 

week 
Land mammal 

specialist 
Sheep/goat 
experience 

P
ro

fe
s
s
io

n
a

ls
 

3 1 MA/MSc 20-30 10-20 Yes Yes 

10 1 PhD 20-30 10-20 Yes Yes 

51 1 PhD 40-50 20-30 Yes Yes 

61 1 PhD 10-20 20-30 Yes Yes 

67 1 MA/MSc >50 20-30 Yes Yes 

68 1 MA/MSc 30-40 Full time Yes No 

71 1 PhD 10-20 Full time Yes Yes 

84 1 MA/MSc 10-20 Full time Yes Yes 

N
o
v
ic

e
s
 

1 2 BA/BSc 1-10 <10 No No 

11 2 MA/MSc 1-10 <10 Yes No 

26 2 BA/BSc 1-10 <10 No No 

29 2 BA/BSc 1-10 10-20 Yes No 

44 2 MA/MSc 1-10 <10 Yes No 

47 2 PhD 1-10 <10 No No 

56 2 PhD 1-10 <10 No No 

58 2 BA/BSc 1-10 <10 No No 

60 2 None 1-10 <10 No No 

65 2 MA/MSc 1-10 <10 Yes No 

66 2 MA/MSc 1-10 <10 Yes No 

96 2 MA/MSc 1-10 20-30 No No 

P
o
s
tg

ra
d
u
a
te

s
 

2 3 MA/MSc 1-10 <10 Yes Yes 

4 3 MA/MSc 1-10 10-20 Yes Yes 

69 3 MA/MSc 1-10 10-20 Yes Yes 

82 3 MA/MSc 10-20 <10 Yes Yes 

95 3 MA/MSc 1-10 10-20 Yes Yes 

99 3 MA/MSc 1-10 10-20 Yes Yes 

100 3 MA/MSc 1-10 <10 Yes Yes 

104 3 MA/MSc 20-30 <10 Yes Yes 

D
o
c
to

ra
te

s
 

18 4 PhD 10-20 10-20 Yes Yes 

36 4 PhD 10-20 <10 Yes No 

37 4 PhD 1-10 <10 Yes Yes 

43 4 PhD 10-20 <10 Yes Yes 

46 4 PhD 1-10 <10 Yes Yes 

48 4 PhD 10-20 <10 Yes Yes 

53 4 PhD 10-20 <10 Yes Yes 

62 4 PhD 1-10 <10 Yes Yes 

81 4 PhD 1-10 10-20 Yes Yes 

83 4 PhD 1-10 <10 Yes Yes 

103 4 PhD 10-20 <10 Yes Yes 

Table 4 Itemised answers and analyst group membership 



 

  

Analyst performances 
 

 Both species (mean) Sheep Goat 
 Analyst Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 

P
ro

fe
s
s
io

n
a
ls

 
3 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 

10 83.33% 87.50% 83.33% 82.86% 100.00% 75.00% 100.00% 85.71% 66.67% 100.00% 66.67% 80.00% 

51 76.67% 77.78% 76.67% 76.43% 66.67% 83.33% 66.67% 74.07% 86.67% 72.22% 86.67% 78.79% 

61 80.00% 85.71% 80.00% 79.17% 100.00% 71.43% 100.00% 83.33% 60.00% 100.00% 60.00% 75.00% 

67 90.00% 90.18% 90.00% 89.99% 93.33% 87.50% 93.33% 90.32% 86.67% 92.86% 86.67% 89.66% 

68 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 

71 80.00% 80.54% 80.00% 79.91% 86.67% 76.47% 86.67% 81.25% 73.33% 84.62% 73.33% 78.57% 

84 86.67% 87.33% 86.67% 86.61% 80.00% 92.31% 80.00% 85.71% 93.33% 82.35% 93.33% 87.50% 

N
o

v
ic

e
s
 

1 86.67% 87.33% 86.67% 86.61% 93.33% 82.35% 93.33% 87.50% 80.00% 92.31% 80.00% 85.71% 

11 70.00% 75.57% 70.00% 68.27% 93.33% 63.64% 93.33% 75.68% 46.67% 87.50% 46.67% 60.87% 

26 70.00% 70.09% 70.00% 69.97% 66.67% 71.43% 66.67% 68.97% 73.33% 68.75% 73.33% 70.97% 

29 65.52% 65.87% 65.71% 65.48% 71.43% 62.50% 71.43% 66.67% 60.00% 69.23% 60.00% 64.29% 

44 86.67% 87.33% 86.67% 86.61% 80.00% 92.31% 80.00% 85.71% 93.33% 82.35% 93.33% 87.50% 

47 73.33% 73.76% 73.33% 73.21% 66.67% 76.92% 66.67% 71.43% 80.00% 70.59% 80.00% 75.00% 

56 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 

58 70.00% 72.50% 70.00% 69.14% 86.67% 65.00% 86.67% 74.29% 53.33% 80.00% 53.33% 64.00% 

60 73.33% 73.76% 73.33% 73.21% 80.00% 70.59% 80.00% 75.00% 66.67% 76.92% 66.67% 71.43% 

65 76.67% 77.78% 76.67% 76.43% 86.67% 72.22% 86.67% 78.79% 66.67% 83.33% 66.67% 74.07% 

66 90.00% 91.67% 90.00% 89.90% 80.00% 100.00% 80.00% 88.89% 100.00% 83.33% 100.00% 90.91% 

96 70.00% 70.09% 70.00% 69.97% 73.33% 68.75% 73.33% 70.97% 66.67% 71.43% 66.67% 68.97% 

P
o

s
tg

ra
d

u
a

te
s
 

2 96.67% 96.88% 96.67% 96.66% 100.00% 93.75% 100.00% 96.77% 93.33% 100.00% 93.33% 96.55% 

4 86.67% 87.33% 86.67% 86.61% 80.00% 92.31% 80.00% 85.71% 93.33% 82.35% 93.33% 87.50% 

69 83.33% 83.48% 83.33% 83.31% 86.67% 81.25% 86.67% 83.87% 80.00% 85.71% 80.00% 82.76% 

82 80.00% 80.54% 80.00% 79.91% 73.33% 84.62% 73.33% 78.57% 86.67% 76.47% 86.67% 81.25% 

95 75.86% 75.96% 75.71% 75.75% 80.00% 75.00% 80.00% 77.42% 71.43% 76.92% 71.43% 74.07% 

99 76.67% 76.79% 76.67% 76.64% 73.33% 78.57% 73.33% 75.86% 80.00% 75.00% 80.00% 77.42% 

100 83.33% 83.48% 83.33% 83.31% 80.00% 85.71% 80.00% 82.76% 86.67% 81.25% 86.67% 83.87% 

104 80.00% 80.54% 80.00% 79.91% 86.67% 76.47% 86.67% 81.25% 73.33% 84.62% 73.33% 78.57% 

D
o

c
to

ra
te

s
 

18 93.33% 94.12% 93.33% 93.30% 100.00% 88.24% 100.00% 93.75% 86.67% 100.00% 86.67% 92.86% 

36 96.67% 96.88% 96.67% 96.66% 100.00% 93.75% 100.00% 96.77% 93.33% 100.00% 93.33% 96.55% 

37 96.67% 96.88% 96.67% 96.66% 93.33% 100.00% 93.33% 96.55% 100.00% 93.75% 100.00% 96.77% 

43 86.67% 89.47% 86.67% 86.43% 100.00% 78.95% 100.00% 88.24% 73.33% 100.00% 73.33% 84.62% 

46 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 

48 83.33% 84.72% 83.33% 83.16% 93.33% 77.78% 93.33% 84.85% 73.33% 91.67% 73.33% 81.48% 

53 93.33% 94.12% 93.33% 93.30% 100.00% 88.24% 100.00% 93.75% 86.67% 100.00% 86.67% 92.86% 

62 63.33% 78.85% 63.33% 57.64% 100.00% 57.69% 100.00% 73.17% 26.67% 100.00% 26.67% 42.11% 

81 66.67% 67.94% 66.67% 66.06% 53.33% 72.73% 53.33% 61.54% 80.00% 63.16% 80.00% 70.59% 

83 90.00% 90.18% 90.00% 89.99% 93.33% 87.50% 93.33% 90.32% 86.67% 92.86% 86.67% 89.66% 

103 96.67% 96.88% 96.67% 96.66% 100.00% 93.75% 100.00% 96.77% 93.33% 100.00% 93.33% 96.55% 

Table 5 Analyst performance scores for both species and separately. Note that Precision, Recall, and F1-scores in 

both species section are computed as the means of the two species 
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The analyst performances for overall, sheep, and goat accuracies were further subjected 

to statistical tests to verify the observed between-group patterns. As Group 4 scores did 

not satisfy the assumption of normality in Shapiro-Wilk test (Table 8), the group-wise 

scores were transformed using Box-Cox power transformation, but the group-wise 

scores did not satisfy the equality of variance assumption in Levene’s test (W = 8.2307, 

p = 0.0003). Using other power transformations did not help with transforming the data 

to satisfy the assumption of normality, and therefore Kruskal-Wallis H test (Kruskal and 

Wallis 1952) was undertaken on the untransformed accuracies to compare if at least 

one group’s ranks dominate at least one other group. Kruskal-Wallis H test is followed 

by Dunn’s test with Bonferroni correction to understand exactly which groups are 

different, as recommended as the post-hoc test (Dunn 1964; Dinno 2015). 

This analysis demonstrates that there is no evidence in favour of any one group of 

analysts having higher overall accuracy than at least one other group (df = 3, H = 7.0575, 

p = 0.0701). Likewise, the test did not provide evidence for group-wise differences in 

goat astragalus accuracy (df = 3, H = 4.4727, p = 0.2147), but there does appear to be a 

group-wise difference in the analysts’ ability to classify sheep astragali (df = 3, H = 

Means and medians by expertise group for both species 

Overall 
 Accuracy Precision Recall F1-score 

Mean (± SD) 81.15% (± 10.80%) 82.47% (± 10.34%) 81.15% (± 10.79%) 80.83% (± 11.17%) 

Median 83.33% 83.48% 83.33% 82.86% 
     

Group 1 
 Accuracy Precision Recall F1-score 

Mean (± SD) 77.08% (± 11.88%) 78.63% (± 12.68%) 77.08% (± 11.88%) 76.87% (± 11.81%) 

Median 80.00% 83.13% 80.00% 79.54% 
     

Group 2 
 Accuracy Precision Recall F1-score 

Mean (± SD) 77.13% (± 9.43%) 78.26% (± 9.24%) 77.14% (± 9.40%) 76.84% (± 9.61%) 

Median 73.33% 74.67% 73.33% 73.21% 
     

Group 3 
 Accuracy Precision Recall F1-score 

Mean (± SD) 82.82% (± 6.65%) 83.12% (± 6.68%) 82.80% (± 6.67%) 82.76% (± 6.67%) 

Median 81.67% 82.01% 81.67% 81.61% 
     

Group 4 
 Accuracy Precision Recall F1-score 

Mean (± SD) 87.27% (± 11.82%) 89.40% (± 9.07%) 87.27% (± 11.82%) 86.65% (± 13.12%) 

Median 93.33% 93.33% 93.33% 93.30% 

Table 6 Means and medians by expertise groups 



9.7208, p = 0.0211). Thus, performing Dunn’s test to discover the group-wise differences 

in sheep astragalus accuracies, it is shown that there is a significant (when α < 0.05) 

difference between Group 2 and Group 4 analysts (Group 2 and Group 4: p = 0.0269), 

but not between any other two groups (Group 1 and Group 4: p = 0.1876; Group 3 and 

Group 4: p = 0.1296; for all other group-wise comparisons: p = 1). 

Although the only between-groups difference identified in statistical testing was found 

between the analyst groups 2 and 4 regarding sheep astragalus accuracy, Fig. 3 

additionally implies that Group 4 outperforms the other groups in overall and sheep 

accuracy, but not in goat accuracy. It may be that the number of participants is not large 

enough to produce statistical significance in a rank-based statistical testing, even though 

graphical evaluation demonstrated a clear difference between groups.  

Analyst consistency 

Overall analyst consistency is 86.41%, which indicates a good, but not excellent 

consistency among the participants (Table 9). Groups 1 and 4 are more consistent than 

Groups 2 and 3, suggesting that more experienced analysts are more consistent. 

Considering that Shapiro-Wilk test for normality (Table 10) shows that Group 4 

consistency scores do not satisfy the assumption of normality – and Box-Cox power 

transformation was unsuccessful – Kruskall-Wallis H test was again applied on the 

untransformed values. The outcome of this test does not support the hypothesis that 

any group of analysts is more consistent than any other group, however (df = 3, H = 

4.4148, p = 0.22).  

The Bland-Altman plot (Fig. 4) shows the difference in accuracies between the test and 

re-test samples (N = 10) against the mean accuracy of these same samples and therefore 

demonstrates the relationship between accuracy and consistency for all groups – Group 

4 is the most consistent and the most accurate, whereas Group 1 analysts are more 

consistent but not more accurate than Group 2 and Group 3 analysts. Thus, although 

statistical testing did not demonstrate significant differences in consistency across the 

analyst groups, the graphical analysis suggests that the more experienced analysts are 

more consistent. It may be that group size is again a factor in the statistical tests, same 

as for the analyses of group-wise differences in accuracy. 

 



 

 

Shapiro-Wilk test for normality for accuracy 
 Accuracy Sheep accuracy Goat accuracy 
 N W p W p W p 

Overall 39 0.95911 0.1665 0.90581 0.0033 0.92088 0.0093 

Group 1 8 0.89195 0.2440 0.92196 0.4459 0.93753 0.5870 

Group 2 12 0.86348 0.0541 0.90530 0.1856 0.96024 0.7872 

Group 3 8 0.88284 0.2005 0.87754 0.1784 0.91860 0.4186 

Group 4 11 0.77146 0.0040 0.52396 0.0000 0.73547 0.0013 

Table 7 Means and medians for sheep and goat astragali by expertise groups 

Means and medians by expertise groups for each species 

Overall 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep 
recall 

Goat  
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

84.74%  
(± 13.29%) 

77.56%  
(± 15.95%) 

80.12%  
(± 11.75%) 

84.83%  
(± 12.27%) 

84.74% 
(± 13.29%) 

77.56%  
(± 15.95%) 

81.77%  
(± 10.52%) 

79.90%  
(± 12.60%) 

Median 86.67% 80.00% 78.95% 84.62% 86.67% 80.00% 83.33% 81.25% 

          

Group 1 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep 
recall 

Goat  
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

80.83% 
(± 17.25%) 

73.33%  
(± 14.25%) 

75.76%  
(± 12.39%) 

81.51%  
(± 16.58%) 

80.83%  
(± 17.25%) 

73.33% 
(± 14.25%) 

77.55% 
(± 12.31%) 

76.19%  
(± 11.66%) 

Median 83.34% 70.00% 75.74% 83.49% 83.34% 70.00% 82.29% 78.68% 

          

Group 2 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep 
recall 

Goat 
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

80.95%  
(± 9.93%) 

73.33%  
(± 16.57%) 

76.59% 
(± 12.62%) 

79.92%  
(± 8.67%) 

80.95% 
(± 9.93%) 

73.33%  
(± 16.57%) 

78.10%  
(± 8.71%) 

75.59%  
(± 11.11%) 

Median 80.00% 70.00% 71.83% 81.18% 80.00% 70.00% 75.34% 72.75% 

          

Group 3 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep 
recall 

Goat 
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

82.50% 
(± 8.68%) 

83.09%  
(± 8.33%) 

83.46% 
(± 6.97%) 

82.79% 
(± 7.98%) 

82.50%  
(± 8.68%) 

83.09% 
(± 8.33%) 

82.78% 
(± 6.57%) 

82.75%  
(± 6.95%) 

Median 80.00% 83.34% 82.94% 81.80% 80.00% 83.34% 82.01% 82.01% 

          

Group 4 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep 
recall 

Goat  
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

93.33%  
(± 13.66%) 

81.21%  
(± 19.96%) 

84.72%  
(± 12.08%) 

94.07% 
(± 10.84%) 

93.33%  
(± 13.66%) 

81.21% 
(± 19.96%) 

88.09% 
(± 11.21%) 

85.22% 
(± 16.37%) 

Median 100.00% 86.67% 88.24% 100.00% 100.00% 86.67% 93.33% 92.86% 

Table 8 Shapiro-Wilk tests for normality for analysts’ accuracy overall, and for sheep and goats separately. Only 

Group 4 analysts have a non-normal distribution 



 

 

  

Consistency 

Group Mean SD 

Overall 86.41% 14.78% 

Group 1 90.00% 7.56% 

Group 2 80.00% 20.00% 

Group 3 82.50% 14.88% 

Group 4 93.64% 8.09% 

Table 9 Mean consistency based on the ten repeated specimens 

Shapiro-Wilk test for normality for 
consistency 

Group N W p 

Group 1 8 0.84891 0.0929 

Group 2 12 0.88632 0.1057 

Group 3 8 0.91981 0.4283 

Group 4 11 0.75439 0.0024 

Table 10 Shapiro-Wilk test for normality for analysts’ consistency. Again, only Group 4 analysts have a non-normal 

distribution 

Fig. 4 Bland-Altman plot of accuracies for test and re-test samples (N=10). The group densities are the kernel density 

estimates with the bandwidth smoothing adjusted down from 1 to 0.6. Best viewed in colour, available online 



Reference materials 

The analysts were allowed to use any reference materials they thought would be 

helpful. Indeed, when prompted about the usefulness of reference materials after the 

main part of the study, only three analysts mentioned that reference materials were not 

useful, whereas 30 analysts found their reference materials having been useful and six 

analysts did not answer the question. The participants’ reference material usage is 

itemised in Table 11, which shows that none of the analysts relied solely on goat 

astragalus in any of the media, but seven analysts considered it appropriate to rely on a 

physical sheep astragalus. Two of those seven analysts used reference images of sheep 

as well. The counts of different reference material types are shown in Table 12. 

In addition, there appear to be group-wise trends as well, which are summarised in Table 

13 and Table 14. In short, Group 1 analysts use physical reference specimens more 

frequently than analysts in other groups, Group 2 and Group 3 analysts prefer using 

images and sketches, and Group 4 analysts refrain from using reference materials apart 

from reference texts. Regarding the analysts’ use of reference texts, Groups 1, 2 and 4 

prefer Zeder and Lapham's (2010) publication and Group 3 prefer Boessneck et al. (1964) 

or Boessneck (1969). Furthermore, Fig. 5 shows that Group 3 analysts are more likely to 

use many different reference sources, whereas Group 4 analysts tend to use just one. 

GLMM for reference materials 

In the first instance, four different random effects structures are compared to a 

baseline GLM through LRT (Table 15). LRT is a suitable test for mixed-effects models 

when the model only contains random effects (Bolker et al. 2009). When applying LR 

testing to fixed effects models, the model parameters should be estimated through 

Maximum Likelihood rather than Restricted Maximum Likelihood and the sample size 

should be large (Bolker et al. 2009). As there is no clear definition of what constitutes a 

large sample size (we consider our sample size of 1,168 classification to be adequate, 

although these come from 39 participants) and because Bolker et al. (2009, p.132) 

“would recommend against using the LR test for fixed effects unless the total sample 

size and numbers of blocks are very large” for using LRT, we also report AIC scores. It 

was found that the best combination of random effects is one where Species (‘Goat’ = 

0, ‘Sheep’ = 1) acts as random slope within Analyst random effect, while both Analyst 

and Specimen are the random intercepts. Species is also used as a fixed effect in this 



configuration. The best random effects model is Null 4 to which the different types of 

reference materials are added as fixed effects.  

As reference specimens, images, and sketches were not utilised uniformly (see Table 

11), their levels were re-formatted to binary (‘No’ = 0, ‘Yes’ = 1) levels to indicate 

whether the analyst used a given reference material. Regarding reference text usage, 

Prummel and Frisch (1986) was not used by anyone and therefore reference text fixed   

Reference material use by analyst 

Analyst Group 
Reference 
specimen 

Reference 
images 

Reference 
sketches 

Reference 
model 

Reference texts 

3 1 Sheep Both No No Zeder & Lapham 

10 1 No No No No None 

51 1 No No No No Other 

61 1 Sheep Both Both Both Zeder & Lapham 

67 1 Sheep No No No Zeder & Lapham 

68 1 Sheep Sheep Both No Boessneck 

71 1 Sheep No No No Zeder & Lapham 

84 1 No No No No None 

1 2 No Both Both No Zeder & Lapham 

11 2 No Both No No Zeder & Lapham 

26 2 No No Both No Zeder & Lapham 

29 2 Sheep Sheep No No Zeder & Lapham 

44 2 No Both No No None 

47 2 No No Both No Zeder & Lapham 

56 2 No No Both No Boessneck 

58 2 No Both No No None 

60 2 No No Both No Zeder & Lapham 

65 2 Sheep No No No Zeder & Lapham 

66 2 No No No No Zeder & Lapham 

96 2 No No No No Zeder & Lapham 

2 3 No Both Both No Boessneck 

4 3 No Both Both No Boessneck 

69 3 Both Both Both No Other 

82 3 No No No No Zeder & Lapham 

95 3 No Both Both No Other 

99 3 No Both Both Both Zeder & Lapham 

100 3 No No Both No Boessneck 

104 3 Both Both Both No Boessneck 

18 4 No No No No Zeder & Lapham 

36 4 No No No No Boessneck 

37 4 No No Both No Zeder & Lapham 

43 4 No No No No Zeder & Lapham 

46 4 No No No No None 

48 4 No No No No Zeder & Lapham 

53 4 No No No No Other 

62 4 No Both No No None 

81 4 No No No No Zeder & Lapham 

83 4 No No No No None 

103 4 No No No No Boessneck 

Table 11 Reference materials used by the analysts 



 

  

effect has four levels (‘None’ = 0, ‘Boessneck’ = 1, ‘Other’ = 2, ‘Zeder and Lapham’ = 3). 

3D model usage was too infrequent to be of use, so it is not taken into consideration. 

The response variable is a binary variable corresponding to whether the classification 

was correct or not.  

Table 12 Counts of analysts for each level of all reference materials 

Count of analysts by reference material level 

Reference specimen 
 Sheep Goat Both None  

No of analysts 7 0 2 30  

      

Reference images 
 Sheep Goat Both None  

No of analysts 2 0 13 24  

      

Reference sketches 
 Sheep Goat Both None  

No of analysts 0 0 15 24  

      

Reference model 
 Sheep Goat Both None  

No of analysts 0 0 2 37  

      

Reference texts 
 Zeder & Lapham Boessneck Prummel & Frisch Other None 

No of analysts 20 8 0 4 7 

Number of analysts using reference materials 
 Group 1 Group 2 Group 3 Group 4 

Reference specimen 5 2 2 0 

Reference images 3 5 6 1 

Reference sketches 2 5 7 1 

Reference model 1 0 1 0 

Reference texts 6 10 8 8 
     

Percentage of analysts (within group) 
 Group 1 Group 2 Group 3 Group 4 

Reference specimen 62.50% 16.67% 25.00% 0.00% 

Reference images 37.50% 41.67% 75.00% 9.09% 

Reference sketches 25.00% 41.67% 87.50% 9.09% 

Reference model 12.50% 0.00% 12.50% 0.00% 

Reference texts 75.00% 83.33% 100.00% 72.73% 

Table 13 Summary of groups' use of reference materials 



Using each reference material type individually as the fixed effect, it was found that only 

reference specimens (Ref 3 model) and reference images (Ref 4 model) added more 

information to the Null 4 model (Table 16) in LRT and AIC. Furthermore, it was found 

that adding all reference materials (Ref 5 model) and analyst grouping (Ref 6 model) as 

fixed effects is also justified given the LRT and AIC results in Table 16. Incorporating 

interactions of the different reference materials as well as the analyst groupings, 

however, resulted in an overfit model and this model is therefore not reported here. 

Although the Likelihood Ratio Test did not show a significant improvement for Ref 6 

model over Ref 5 (χ2 = 7.2753, Df = 3, Pr(> χ2) = 0.0636), the focus is nonetheless on Ref   

Number of analysts using reference texts 
 Zeder & Lapham Boessneck Prummel & Frisch Other None 

Group 1 4 1 0 1 2 

Group 2 9 1 0 0 2 

Group 3 2 4 0 2 0 

Group 4 5 2 0 1 3 
      

Percentage of analysts (within group) 
 Zeder & Lapham Boessneck Prummel & Frisch Other None 

Group 1 50.00% 12.50% 0.00% 12.50% 25.00% 

Group 2 75.00% 8.33% 0.00% 0.00% 16.67% 

Group 3 25.00% 50.00% 0.00% 25.00% 0.00% 

Group 4 45.45% 18.18% 0.00% 9.09% 27.27% 

Table 14 Summary of groups' use of reference texts 

Fig. 5 A bar plot of analysts' number of used reference resources. Best viewed in colour, available online 



  

Random effects structures (null model selection) 

Model Effects AIC BIC logLik deviance χ2 Df Pr(>χ2) 

Baseline None (GLM model) 1132.2 1137.3 -565.11 1130.2    

Null 1 Analyst (intercept) 1116.9 1127 -556.45 1112.9 17.324 1 3.15e-05 

Null 2 Specimen (intercept) 1060 1070.1 -527.99 1056 74.253 1 < 2.2e-16 

Null 3 
Analyst (intercept), 

Specimen (intercept) 
1045.5 1060.7 -519.75 1039.5 90.731 2 < 2.2e-16 

Null 4 

Analyst (intercept), 
Species (slope within 
Analyst), Specimen 

(intercept) 

1023.6 1054.0 -505.81 1011.6 118.61 5 < 2.2e-16 

Table 15 Random effects structure selection. Each null model was compared to the baseline GLM. The best random 

effects structure is highlighted in grey 

Fixed effect models compared to Null 4 

Model Fixed effects Comparison AIC BIC logLik deviance χ2 Df Pr(> χ2) 

Ref 1 
Species + 
Reference  

texts 
Null 4 1027.2 1072.8 -504.60 1009.2 2.426 3 0.4888 

Ref 2 
Species + 
Reference 
sketches 

Null 4 1024.2 1059.6 -505.09 1010.2 1.4386 1 0.2304 

Ref 3 
Species + 
Reference 
specimen 

Null 4 1021.0 1056.5 -503.51 1007.0 4.5982 1 0.0320 

Ref 4 
Species + 
Reference 

images 
Null 4 1019.5 1055 -502.77 1005.5 6.0832 1 0.0137 

Ref 5 

Species + 
Reference  

texts + 
Reference 
sketches + 
Reference 
specimen + 
Reference 

images 

Null 4 1021.9 1082.7 -498.97 997.94 13.677 6 0.0335 

Ref 6 

Species + 
Reference  

texts + 
Reference 
sketches + 
Reference 
specimen + 
Reference 
images +  

Group 

Null 4 1020.7 1096.6 -495.33 990.66 20.953 9 0.0129 

Table 16 Likelihood ratio tests showing that additional reference materials contribute to the model. Null 4 is the best 

fit null model from Table 15. Fixed effects models that are better fit than Null 4 are highlighted in grey 



6 model because we are interested in the Group level effect and the AIC score is lower. 

Any question of whether Simpson’s Paradox has occurred is negated by the fact that 

none of the Ref 5 model coefficients for reference materials are significant Table 17, nor 

are they hugely different from Ref 6 coefficients. In other words, whether the data is 

split by Group (as in Ref 6 model) or all analysts were considered as part of a single group 

(as in Ref 5 model) our interpretation of the results remains the same. The VIF and 

tolerance values for species, expertise groups, reference texts, sketches, specimen, and 

images indicate that these fixed effects express negligible levels of multicollinearity in 

Ref 6 model (Error! Reference source not found.). The formal definition of Ref 6 model 

is provided in Online Resource 9.  

Multicollinearity for fixed effects in Ref 6 

Fixed effect VIF Increased SE Tolerance 

Species 1.01 1.00 0.99 
Group 3.13 1.77 0.32 

Reference texts 2.27 1.51 0.44 
Reference specimen 1.93 1.39 0.52 
Reference images 1.75 1.32 0.57 

Reference sketches 1.78 1.33 0.56 

Table 17 Maximum likelihood estimates for Ref 5 model. Significant coefficients highlighted in grey 

Table 18 Multicollinearity measures for fixed effects included in Ref 6 model  

Maximum likelihood estimates for Ref 5 model 

Fixed effects 

Parameter Effect Coefficient Std. Error z-value Pr(>|z|) 

𝛽0 Intercept 2.2611 0.4348 5.201 1.99e-07 

𝛽1 Species: Sheep 0.7915 0.4350 1.819 0.0689 

𝛽2 Boessneck 0.5909 0.5247 1.126 0.2601 

𝛽3 Other text 0.2904 0.5624 0.516 0.6056 

𝛽4 Zeder and Lapham -0.2205 0.4136 -0.533 0.5939 

𝛽5 Reference specimen -0.4497 0.3330 -1.351 0.1768 

𝛽6 Reference images -0.6148 0.3238 -1.898 0.0577 

𝛽7 Reference sketches -0.3342 0.3320 -1.007 0.3140 

Random effects 

Parameter Effect Variance Std. Dev. Corr.  

𝐼0𝑖 Specimen (Intercept) 2.5299 1.5906   

𝑆0𝑠 Analyst (Intercept) 0.7184 0.8476   

𝑆1𝑠 Species: Sheep (Slope within Analyst) 2.6757 1.6357 -0.84  



Ref 6 model produces log odds estimates of a correct answer given the species of the 

specimen, analyst expertise group membership, and the combination of reference 

materials used by the analyst, conditional on specimen and analyst random effects. 

Observing the coefficients for this model (Error! Reference source not found.), it is 

notable that none of the individual reference materials have a significant and positive 

effect on the probability of a correct answer as is the case for Ref 5 model. The only 

variable with a significant effect on the log odds of a correct answer is whether the 

analyst is in Group 4. 

Self-reported confidence 

Self-reported confidence was measured on the scale from 1 to 100 with a default 

value of 51. Out of the total of 1,168 classifications made by the participants, the default 

confidence value was not changed in 225 instances. Thus, this section involves the 

Table 19 Maximum likelihood estimates for Ref 6 model. Significant coefficients highlighted in grey 

Maximum likelihood estimates for Ref 6 model 

Fixed effects 

Parameter Effect Coefficient Std. Error z-value Pr(>|z|) 

𝛽0 Intercept 1.8266 0.4802 3.8040 0.0001 

𝛽1 Species: Sheep 0.7852 0.4477 1.7540 0.0794 

𝛽2 Boessneck 0.1842 0.5147 0.3580 0.7204 

𝛽3 Other text -0.0512 0.5435 -0.0940 0.9249 

𝛽4 Zeder and Lapham -0.3337 0.3993 -0.8360 0.4033 

𝛽5 Reference specimen -0.0842 0.3664 -0.2300 0.8183 

𝛽6 Reference images -0.5471 0.3186 -1.7170 0.0860 

𝛽7 Reference sketches -0.2191 0.3213 -0.6820 0.4953 

𝛽8 Group 2 0.1985 0.3795 0.5230 0.6010 

𝛽9 Group 3 0.6382 0.4537 1.4060 0.1596 

𝛽10 Group 4 1.0188 0.4339 2.3480 0.0189 

      

Random effects 

Parameter Effect Variance Std. Dev. Corr.  

𝐼0𝑖 Specimen (Intercept) 2.6887 1.6397   

𝑆0𝑠 Analyst (Intercept) 0.8164 0.9036   

𝑆1𝑠 Species: Sheep (Slope within Analyst) 2.9412 1.7150 -0.93  



evaluation of both corrected (N=943) and uncorrected (N=1,168) confidence values in 

separate tests, where the corrected subset of classifications simply means the removal 

of classifications with a confidence value of 51. Furthermore, although the self-reported 

confidence values represent interval data, it can be argued that they should be 

represented through Likert-like scale due to obtaining the values using a sliding scale.  

Thus, the classifications are placed into four confidence bins: 1) confidence values [1-

25] are considered ‘Very low’; 2) confidence values of (25-50] are ‘Low’; 3) (50-75] are 

‘High’; and 4) confidence scores (75-100] are labelled ‘Very high’ confidence. Here, 

parentheses indicate exclusivity and square brackets inclusivity. 

For both corrected and uncorrected sets of classifications, χ2-tests were performed to 

see if there are statistically significant differences in the expected and observed 

frequencies of correct and incorrect answers for the four different confidence 

categories. The results of this test are shown in Table 20 – the χ2-tests were statistically 

significant in both cases when α < 0.05, which means that the number of correct and 

incorrect classifications are dependent on the confidence category. Although the 

association between the confidence category and the classification correctness is not 

particularly strong according to Cramér’s V measure, the relationship between 

confidence categories and correct answers is quite clear in Fig. 6, especially for corrected 

confidence scores. This plot shows that as analysts are more confident about their 

classification, the ratio of incorrect to correct answers is reduced, although the error 

rate is still 10.46% in the highest confidence category. Thus, replacing sheep/goat 

identification with strict species identifications accompanied by self-assessed 

Fig. 6 Correct and incorrect classifications by confidence categories for the corrected and uncorrected sets. Best 

viewed in colour, available online 



confidence scores for each bone could increase the overall accuracy if one only takes 

those classifications with the highest confidence category into account. Reduced error 

rate would have the effect of reducing noise in subsequent analyses and therefore 

enable statistically more powerful zooarchaeological research. 

Applying different thresholds to the confidence scores (x-axis) and plotting them against 

the mean accuracy for the classifications with a confidence score above that threshold 

(y-axis), it can be shown (Fig. 7A and Fig. 7C) that the self-reported confidence threshold 

that maximizes the classification accuracy in the present task is 96, when the mean 

accuracy reaches 95.11%. However, the mean accuracy begins to plateau around the 85 

mark, when the mean accuracy is 93.33%. In addition, there is a large difference in the 

number of classifications that are taken into account at these two different thresholds 

– when the threshold is set at 96 (inclusive), we are only including 15.16% of the 

classifications in the corrected set of classifications, whereas at 85 (inclusive) level we 

include 31.81% of classifications. To include at least 50% of the classifications, the 

threshold has to be set to 75 (inclusive), when the mean classification accuracy is 

88.77%. To include at least 75% of the classifications, the threshold must be lowered to 

57 (inclusive), when the mean classification accuracy is 86.08%.  

In Fig. 7B and Fig. 7D, the mean accuracy for classifications below the given confidence 

threshold is presented for the uncorrected and corrected datasets, respectively. These 

χ2-test for confidence categories and correctness of answer 

All analysts 

 Uncorrected confidences Corrected confidences 
 Observed χ2 expected Observed χ2 expected 

Category Corr. Incorr. Corr. Incorr. Corr. Incorr. Corr. Incorr. 

Very low 60 37 78.73 18.27 60 37 79.62 17.38 
Low 97 31 103.89 24.11 97 31 105.06 22.94 
High 380 104 392.84 91.16 206 53 212.58 46.42 

Very high 411 48 372.55 86.46 411 48 376.74 82.26 
         
         
 χ2 p df N χ2 p df N 

Statistics 49.383 1.10e-10 3 1,168 48.94 1.30e-10 3 943 

 

Effect sizes 

Corrected test Cramér’s V  Uncorrected test Cramér’s V 

All analysts 0.2056  All analysts 0.2278 

Table 20 χ2-test for confidence categories and correctness of answer. The test is significant for both uncorrected and 

corrected set of confidence scores 



figures demonstrate that lower confidence scores are less informative than higher 

confidence scores because of the large confidence intervals – there are far fewer 

classifications with low confidence scores, but classifications with low confidence scores 

cannot immediately be said to be misclassified. Instead, Fig. 7B and Fig. 7D mainly reflect 

the methodology for obtaining the self-reported confidence scores in that the lower end 

of the sliding scale was labelled ‘Guess’, so the expected accuracy for a classification 

with a confidence score of 1 is 50%. The trend in these figures is that the analysts’ 

accuracy is slightly above the expected accuracy, but the expected accuracy is within the 

95% confidence interval of the empirical data. 

Between-group differences in confidence scores 

In addition to the correct and incorrect answers being dependent on the confidence 

scores for all answers, there may exist between-group differences in this relationship. 

The bar plots in Fig. 8 show that the error rates for analysts in Groups 3 and 4 are much 

lower for the ‘Very high’ confidence category than in the other three confidence 

categories. Although the overall pattern is similar for Groups 1 and 2, the effect is much 

smaller. χ2-tests were not suitable for finding out the relationship within analyst groups 

Fig. 7 A) Mean accuracy for all classifications above the confidence threshold, without correction for confidence 

scores. B) Mean accuracy for all classifications below the confidence threshold, without correction for confidence 

scores. C) Mean accuracy for all classifications above the confidence threshold, with correction for confidence scores. 

D) Mean accuracy for all classifications below the confidence threshold, with correction for confidence scores. Best 

viewed in colour, available online 



as the expected values were less than five in more than 20% of the cells for all but Group 

2, which is a commonly cited minimum threshold for using χ2-tests for independence  
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(Bewick et al. 2004). Thus, it was opted to use the continuous confidence scores rather 

than the categorical values in the comparison of analyst expertise groups. 

These continuous confidence values did not satisfy the assumption of normal 

distribution (Table 22) and therefore Kruskal-Wallis H test (Table 23) followed by Dunn’s 

test (Table 21) with Bonferroni correction was performed. These tests demonstrate that 

Group 2 confidence scores are significantly different from the other groups when α = 

0.05, and Group 3 confidence scores are additionally significantly different from Group 

4 confidence scores when only taking the corrected set of confidence values into 

account. This result implies that less experienced analysts are less confident about their 

decisions, as would be expected. However, taking the analysts’ mean confidence scores 

and plotting them with boxplots (Error! Reference source not found.), it can be shown 

that Group 3 analysts’ mean confidences are not much different from Group 4 analysts’ 

mean confidences. This difference in the conclusions drawn from the boxplot and 

Dunn’s test can be explained by the fact that raw confidence scores of individual 

answers were used in Dunn’s test, whereas the boxplots display analysts’ mean 

confidences. Thus, while analysts in Group 3 are not, on average, less confident than 

analysts in Group 4, it may be that Group 3 participants were shown astragali that were, 

by chance, morphologically more ambiguous than those shown to Group 4 analysts. 

Between-species differences in confidence scores 

Next, it is aimed to answer the question of which species the analysts are more 

confident about classifying. This part of the analysis was devised due to seven analysts 

opting to use a physical sheep astragalus as a reference and it was of interest to find out   

Fig. 9 Boxplot of mean confidences for the analysts. The green triangle indicates mean value, while the orange line 

reflects median. Circles are outlying analysts 



 

whether the analysts were more confident about classifying sheep astragali. This 

hypothesis was also informed by the general observation that suitable goat astragali 

were harder to find for inclusion in the present study and that the literature on goat 

bone development is not as extensive as for sheep, which leads us to believe that there 

may be a bias in the zooarchaeological community towards a higher confidence in 

identifying sheep astragali. 

First, it was tested whether the confidence scores for sheep and goat bones followed 

normal distributions. This test was performed using Shapiro-Wilk test, which shows that 

the confidence scores for sheep (uncorrected: W = 0.9429, p = 3.39e-14; corrected: W = 

0.8918, p = 1.05e-17) and goat (uncorrected: W = 0.951, p = 5.25e-13; corrected: W = 

0.9062, p = 1.81e-16) violates the normality assumption, and thus, Mann-Whitney U test 

was performed (Table 25). This test supports the hypothesis that analysts are less 

confident about their decision when classifying goats, although the effect size (Cohen’s 

Table 21 Shapiro-Wilk's test for normality for analysts’ mean confidence scores for all groups 

Shapiro-Wilk's test for normality for analyst mean confidence (group-
wise) 

  Uncorrected Corrected 
 N W p W p 

Group 1 8 0.93308 5.56e-09 0.87640 2.45e-11 

Group 2 12 0.96900 6.27e-07 0.93930 3.42e-09 

Group 3 8 0.94836 1.68e-07 0.91187 7.18e-10 

Group 4 11 0.90987 3.81e-13 0.83412 2.77e-16 

Dunn's test for continuous confidence scores across analyst groups 
 Uncorrected Corrected 
 Group 1 Group 2 Group 3 Group 4 Group 1 Group 2 Group 3 Group 4 

Group 1 1.0000 1.13e-10 1.0000 0.3414 1.0000 5.50e-12 1.0000 0.5056 

Group 2 1.13e-10 1.0000 1.81e-13 1.85e-20 5.50e-12 1.0000 4.62e-10 8.45e-22 

Group 3 1.0000 1.81e-13 1.0000 1.0000 1.0000 4.62e-10 1.0000 0.0489 

Group 4 0.3414 1.85e-20 1.0000 1.0000 0.5056 8.45e-22 0.0489 1.0000 

Table 22 Dunn's test for continuous confidence scores across analyst groups. Statistically significant results 

highlighted in grey. Values are Bonferroni corrected p-values at α = 0.05 

Table 23 Kruskal-Wallis H test for confidence scores across analyst experience groups 

Kruskal-Wallis H test for confidence  

scores across analyst groups 
 df H p 

Corrected continuous 3 107.14 4.52e-23 

Uncorrected continuous 3 108.02 2.93e-23 



d) suggests that the species of the bone has only a small effect on confidence (see 

Lovakov and Agadullina 2021). Furthermore, even though the median and mean 

confidence scores for sheep tend to be larger than for goat, within-group Mann-Whitney 

U tests did not produce any statistically significant results for uncorrected or corrected 

sets (Table 24). 

Specimen difficulty 

Next, we want to identify difficult and easy specimens, which is achieved by 

computing the Difficulty Index (also known as Facility Index) for each specimen. 

Difficulty Index simply measures the proportion of answers that were correct for a given 

specimen, meaning that the lower the index, the harder the specimen. This index is first 

used in comparing the levels of difficulty between the two species because we observed 

that species impacted the analysts’ confidence scores and accuracies. We then explore 

the between-group differences in Difficulty Index as some groups may have been shown 

easier specimens by chance. Finally, we perform a correlation test to see if difficulty  

Mann-Whitney U test for sheep and goat confidences, group-wise 

Group 
Median 
(sheep) 

Median 
(goat) 

Mean 
(sheep) 

Mean 
(goat) 

N 
(sheep) 

N 
(goat) 

U p adj. 
Cohen's d 

(effect size) 

U
n
c
o
rr

e
c
te

d
 1 70 70 69.59 65.68 120 120 7779.5 1 0.1571 

2 51 51 55.56 51.75 179 180 17696.0 0.4179 0.1548 

3 72.5 70 71.44 68.56 120 119 7709.0 1 0.1327 

4 76 77 72.36 70.35 165 165 13986.5 1 0.0811 

C
o
rr

e
c
te

d
 1 82 75 75.25 69.16 92 97 5223.5 0.1666 0.2320 

2 67.5 61 57.01 51.98 136 138 10513.0 0.341 0.1786 

3 79 73 74.14 70.91 106 105 6113.0 0.8669 0.1480 

4 83 82.5 76.73 75.19 137 132 9014.5 1 0.0609 

Table 24 Mann-Whitney U test for sheep and goat confidence scores for each analyst group. Bonferroni correction is 

used to compute the adjusted p-value 

Mann-Whitney U test for confidences between sheep and goats 

 Median 
(sheep) 

Median 
(goat) 

Mean 
(sheep) 

Mean 
(goat) 

N 
(sheep) 

N 
(goat) 

U p 
Cohen's d 

(effect size) 

Uncorrected 70 66 66.46 63.29 584 584 182491 0.0372 0.1251 

Corrected 76 73 70.16 66.21 471 472 121386 0.0143 0.1459 

Table 25 Mann-Whitney U test for confidences between sheep and goats 
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correlates with analysts’ mean confidence. However, note that specimens with low 

numbers of classifications may over- or under-estimate the difficulty of the specimen. 

Between-species comparison 

The Difficulty Index is shown for each specimen in Fig. 10, demonstrating that a large 

proportion of specimens are very easy and only a small number are very difficult. The 

specimens with red labels in the x-axis represent sheep and the blue labels represent 

goat astragali. Difficulty Index violates the assumption of normality in Shapiro-Wilk test 

for both species (Sheep: N = 99, W = 0.741, p = 6.33e-12; Goat: N = 84, W = 0.8161, p = 

7.6e-09). Thus, Mann-Whitney U test was performed, showing that sheep are 

significantly (at α < 0.05) easier than goats for the analysts to classify (Nsheep = 99, Ngoat 

= 84, Meansheep = 0.8344, Meangoat = 0.7546, U = 4896, p = 0.03). The Cohen’s d effect 

size is small to moderate (d = 0.3093) and Fig. 11 indicates that the harder sheep 

astragali are outliers. The spread of difficulties is also shown as a kernel density estimate 

plot in Fig. 12 for all specimens. 

Fig. 11 Boxplot of the Difficulty Index. Outliers are circles, the green triangle is the within group mean, and the 

orange line is the within group median 



Between-group comparison 

As it was observed that there are differences in analyst performances and confidence 

scores between expertise groups (albeit not statistically significant), it is of interest to 

verify that the difficulty of the specimens seen by analysts in different groups does not 

vary significantly between groups. After computing the mean difficulty of the specimens 

seen by each analyst, the within-group difficulties passed the Shapiro-Wilk tests for 

normality for all groups (Group 1: W = 0.9358, p = 0.5698; Group 2: W = 0.9150, p = 

0.2473; Group 3: W = 0.9702, p = 0.8999; Group 4: W = 0.9506, p = 0.6515) and Levene’s 

test for equality of variance (F = 0.5304, p = 0.6644), and thus, one-way ANOVA is 

performed. The result of the ANOVA test is that the specimen difficulties between 

analyst expertise groups are not significantly different (F = 0.2410, p = 0.8672), and this 

conclusion is supported by the kernel density estimate plot for group-wise item difficulty 

(Fig. 13). We can therefore be confident in the assumption that the random selection of 

specimens for each analyst did not significantly affect any of the analyses. 

Fig. 12 Kernel Density Estimate for Difficulty Index for all specimens (N=183) 



Correlation tests 

The specimen difficulty is expected to correlate with the analysts’ mean confidence. 

Because we are using the corrected set of confidence scores here, the tests are 

performed on a reduced number of specimens. As the specimen mean confidences 

violate the assumption of normality in Shapiro-Wilk test (W = 0.9731, p = 0.0016, N = 

179) as does the specimen Difficulty Index (W = 0.7390, p = 1.71e-16, N = 179), 

Spearman’s rank correlation test is performed, which demonstrates a positive 

correlation (r = 0.3778, p = 1.85e-07, N = 179). Thus, as specimens have a higher 

Difficulty Index (i.e. they are easier), the analysts are more confident about their 

classification, although the correlation is not very strong.  

The strength of the correlation between mean confidence and item difficulty is not 

explained by the number of responses for a given specimen, as shown by Spearman’s 

correlation test between the number of responses and difficulty index (r = -0.0186, p = 

0.803, N = 183). This is further demonstrated in Error! Reference source not found., 

where the mean Difficulty Index for specimens (triangles in boxplots) are plotted against 

Fig. 13 Difficulty Index KDE-plot for expertise groups. The mean specimen difficulties were computed for each analyst 

based on all 30 test items and these are represented by group in this figure. Best viewed in colour, available online 



the number of responses by analysts (x-axis). This figure shows how the mean (triangles) 

Difficulty Index remains relatively stable between 0.7 and 0.9 for all items with 13 or 

fewer responses while the number of specimens ranges from five to 25 in the same 

interval. The three specimens with 14 or more responses appear to have been very easy 

for the analysts, as two of them have a Difficulty Index of 1 and the specimen with 17 

responses has a Difficulty Index of just below 0.9. Error! Reference source not found. 

additionally shows this phenomenon for both species, demonstrating how the mean 

Difficulty Index (triangles) is more often higher for sheep when specimens are grouped 

by the number of times they were attempted. 

 

Fig. 14 A) Relationship between the number of responses and the Difficulty Index. The coloured triangles are means 

associated with the boxplots and the diamonds are the outlier specimens in terms of difficulty. Note how the means 

(triangles) do not vary significantly despite the change in the number of responses. B) The count of specimens by 

their number of responses. The number of responses contains both original answers and all consistency tests. Best 

viewed in colour, available online 



 

Qualitative analysis of the analysts’ areas of attention 

As part of the study, the participants were asked to paint on top of the images of the 

bones the features that they used in their classifications. This resulted in hundreds of 

drawings for both species and these drawings are used here in a qualitative manner with 

respect to the zooarchaeological descriptions typically used for differentiating the sheep 

and goat astragali. First, the overall patterns are explored and then we turn our 

attention to the easiest and hardest specimens of each species.  

Overall analyst attention 

The analysts’ drawings of the regions of the bones pertinent to the classification 

(Error! Reference source not found.A) follow very closely the regions included in the 

descriptive criteria defined by Zeder and Lapham (2010) and Boessneck (1969; 

Boessneck et al. 1964) – the medial articular ridge in dorsal and plantar views, the distal 

articular surface in lateral view, and the proximo-plantar projection in medial view are 

the most often drawn on regions for both species. The number of drawings for each 

view is very similar for the two species (see counts in Error! Reference source not 

found.A), so there are no large differences in the execution of the drawing task between 

species.  

To obtain a more nuanced understanding of the analysts’ behaviour, the drawings of 

correct (Error! Reference source not found.B) and incorrect (Error! Reference source 

not found.C) answers are compared. As would be expected, when the classifications are 

correct, the analysts’ drawings and the descriptive criteria are in synchrony – the 

features drawn on sheep and goat astragali correspond to the descriptive criteria 

associated with the respective species. However, when the analysts are incorrect in their 

classifications, the drawn areas of goat specimens now correspond to sheep-like 

qualities in descriptive criteria and the sheep drawings correspond to goat-like qualities. 

Thus, the analysts make their decisions by following descriptive criteria very closely, but 

as the criteria do not fully encapsulate the variances of the morphologies of the two 

species, the analysts make mistakes. This pattern is easiest to discern in the drawings 

for the dorsal and medial views of the correct and incorrect answers. In the dorsal view, 

the medial articular ridge is described as being generally oblique for goats and horizontal 



for sheep, but the opposite is true for incorrect classifications. Concerning the medial 

view, the proximo-plantar projection is usually described as being more rounded for 

sheep and pointed for goats, but again, the opposite is true for the drawings of the 

incorrect answers.  



The easiest and the hardest specimens 

To underline this overall pattern, we turn to the easiest and the hardest specimens 

as examples of cases when the morphological shape of the bone does not fit within the 

variation covered by descriptive criteria. The easiest specimens are chosen on the basis 

of which bones had the highest Difficulty Index and the most classification attempts, 

Fig. 15 Average focus maps by view and species. Each view is averaged by the number of times (N) it was drawn by 

analysts. The true label is on the left. A) Average analyst focus map for the specimens. These classifications include 

correct and incorrect answers for both species. B) Average analyst focus maps for the correctly classified specimens. 

C) Average analyst focus maps for the incorrectly classified specimens 



whereas the hardest specimens are chosen based on the lowest Difficulty Index and 

highest number of classification attempts. The easiest sheep is Portsmouth 3113 L 

(correctly classified in all 14 classifications, Fig. 16A) and the easiest goat is Cardiff 57 L 

(correctly classified in all 15 attempts, Fig. 16B). The hardest sheep is Portsmouth 3567 

L (incorrectly classified in all three attempts, Fig. 16C) and the hardest goat specimen is 

Cardiff 77 R (incorrectly classified in all seven cases, Fig. 16D). L and R indicate the side 

of the animal the specimen comes from. The red areas in these images correspond to all 

drawings made by the analysts. 

To begin with, the proximo-plantar projection and medial articular ridge in medial view 

are very similar for the easiest sheep (Fig. 16A) and the hardest goat specimens (Fig. 

16D), showing the overlapping morphological variances of the two species. 

Furthermore, the medial articular ridge for the hardest goat specimen, Cardiff 77 R, is 

nearly horizontal with respect to the longest axis of the bone in dorsal view, which would 

Fig. 16 The easiest (top row) and hardest (bottom row) sheep and goat specimens. The sheep are on the left and 

goats on the right side. R in the specimen name refers to right side and L to the left side of the animal. A) The easiest 

sheep astragalus - Portsmouth 3113 L. B) The easiest goat astragalus - Cardiff 57 L. C) The hardest sheep astragalus 

- Portsmouth 3567 L. D) The hardest goat astragalus - Cardiff 77 R. Note the curved nature of the bone in dorsal 

view. This curvature may cause the medial articular ridge to appear more horizontal in dorsal view. Best viewed in 

colour, available online 



normally be associated with sheep (Boessneck 1969; Zeder and Lapham 2010). The angle 

of the medial articular ridge for Cardiff 77 R specimen is even more horizontal than for 

the easiest sheep, Portsmouth 3113 L. It is therefore quite understandable that this 

bone was problematic for analysts if they followed the instructions in descriptive 

criteria. However, Cardiff 77 R has morphological qualities that may make it vary from 

the expected. For instance, Cardiff 77 R has a general curvature that can be seen in the 

dorsal view, which may result in the medial articular ridge becoming more horizontal as 

well as reduce its prominence in medial view. In the plantar view of this specimen, the 

plantar articular surface is also distinctly shifted towards the lateral side, which may be 

a further symptom of the bending of the astragalus. This particular specimen can 

therefore be likened to a spring that is pressed unevenly such that as one side is 

compressed, the opposite side bulges outwards. Even though the morphology of Cardiff 

77 R does not conform to the expected morphology, it is not possible to say definitively 

that this bone is abnormal because we simply do not know the population variance. In 

other words, although Cardiff 77 R is just one sample, bones with morphologies beyond 

the descriptive criteria and other comparative methods may be more common than 

currently thought given the vastness of the archaeological record. Current comparative 

methods (especially those depending on written and/or drawn descriptions) therefore 

underestimate the importance of morphological variation as the variation is reduced to 

single points in a multidimensional space.  

The hardest sheep and the easiest goat specimens, too, have shared morphological 

qualities. The hardest sheep – Portsmouth 3567 L (Fig. 16C) – has an oblique medial 

articular ridge in the dorsal view that is quite prominent in the medial view and the 

proximo-plantar projection in medial view is very pointed, all of which are features 

normally associated with goat-like morphologies (Boessneck 1969; Zeder and Lapham 

2010) and are found in Cardiff 57 L (Fig. 16B). Yet, the distal articular surface in the 

lateral view of Portsmouth 3567 L is not tear-drop shaped (a feature typically considered 

goat-like) as it runs across the entire lateral face of the bone, which is as expected from 

a sheep (Zeder and Lapham 2010).  

To summarise, the medial articular ridge and the pointiness of the proximo-plantar 

projection are the most likely sources of much of the confusion for human analysts due 

to the analysts’ dependence of these features in both dorsal and medial views. The 



medial articular ridge obliqueness in dorsal view is not very different between the hard 

and the easy specimens (apart from Cardiff 77 R, for which we gave a possible 

explanation), whereas its prominence in medial view is very similar between the easy 

goat and the hard sheep as well as between the easy sheep and the hard goat. Likewise, 

the proximo-plantar projection is pointed for hard sheep and easy goat, but less so for 

hard goat and easy sheep. These examples therefore underline the argument that 

morphological descriptions do not apply to individuals whose morphologies vary from 

the morphology of those samples that were used in defining the original descriptive 

criteria. Thus, even though these features are good individual features to separate a 

large proportion of sheep and goat astragali, the overlapping morphological variance is 

such that zooarchaeology as a discipline could benefit from a holistic approach to 

classifying bones to species. In other words, instead of typifying bone morphologies to 

simple rules and specific features, the whole bone morphology should be considered for 

more reliable classifications in the future, especially as the features of a given bone are 

dependent on all other features of that same bone as well as the articulating bones. 

Bones should therefore be thought of as continuous geometries, not as a series of 

discrete features. Of course, the observations made here on a limited number of bones 

require further quantitative testing, but this is beyond the scope of this article. 

Discussion 

The results of the blind study are complex, but we have achieved our three main aims. 

First, we have tested the impact of different types of reference materials in the 

classification of sheep and goat astragali. Second, we have analysed the participants’ 

spatial attention. Third, we have shown that self-reported confidence scores can be used 

in place of the ambiguous sheep/goat category. The additional benefit of our study is 

that it can be used as a benchmark for an archaeologically relevant image dataset for 

forthcoming deep learning models. 

However, we acknowledge that the results may be affected by the method of acquiring 

the participant data since zooarchaeologists do not normally classify bones only from 

photographs and instead zooarchaeologists aim to inspect the bones carefully in person. 

The images used also did not incorporate relevant size information to help the analysts 

to differentiate the species, which may affect the results. The removal of size 

information was necessary because it is not usually part of the described morphological 



criteria, although osteometric analyses demonstrate size differences between sheep 

and goat astragali (Davis 2017; Haruda 2017; Salvagno and Albarella 2017).  

Although it has previously been found that there is little agreement in the identifications 

of pottery and lithic artefacts when they are based on digital photographs and when the 

identifications are performed in a laboratory (Heilen and Altschul 2013), Heilen and 

Altschul's (2013) study failed to account for the fact that two different analysts were 

involved in the classification of the materials, so their observed discrepancy may simply 

reflect the two analysts’ capabilities. We therefore argue that even though the analysts’ 

performances could be better if performed in person, there is no firm evidence that 

using digital images is the cause of lower classification accuracies. In fact, only one 

participant (Analyst 104) raised any concerns about the photographs, saying that couple 

of the photographs were “blurred at the proximal end”, “truncated”, and “speckled or 

very light/white and it was not clear where the surfaces were.” Analyst 104 also 

mentioned that lighting and angle could be adjusted when analysing bones in person. 

Finally, we would further counter the argument that using images rather than physical 

specimens somehow impacted the results by arguing that identifications of bones from 

images are not infrequent, and they typically occur when an analyst is faced with a 

difficult morphology and they want to consult with colleagues elsewhere in the world.  

Analyst performance 

The blind study demonstrates that the consistency of human experts is good, but 

their overall accuracy (81.15%) is lower than the accuracy reported (89.36%-94.74%, see 

Table 1 and Table 2) by Zeder and Lapham (2010). This difference may be explained by 

the differing methodologies and the number of participants. Furthermore, it was 

observed that human error rates for sheep (15.26%) is lower than for goat astragali 

(22.44%) and that the analysts were also more confident about classifying sheep 

astragali. The noted differences regarding accuracy and confidence are reflected in how 

difficult the bones of the two species were for the analysts overall, with sheep bones 

generally being easier to identify. This observed difference between species means that 

using comparative methods of identifying archaeological remains of sheep and goat 

astragali are likely to lead to a bias towards sheep astragalus identifications. Our study 

therefore raises the question of how large of an impact this bias has for sheep to goat 



ratios. We discuss the impact of confidence and especially in relation to sheep:goat ratio 

in more detail in a separate section below. 

Group-level differences 

Although statistical tests were unable to find clear differences between the analyst 

groups apart from sheep astragalus accuracy between Group 2 and Group 4, we 

consider these expertise groups to be valid and display different levels of abilities based 

on the performance boxplots in Fig. 3 and consistency plot in Fig. 4. However, the 

expertise groups themselves were not found to match expectations; prior to the analysis 

of the group performances, we set the expectation that Group 1 analysts (the 

professionals) would outperform other groups due to zooarchaeological identification 

tasks being part of their daily routine, followed by Group 4 (doctorates), Group 3 

(postgraduates), and finally Group 2 (novices). However, our study shows that Group 4 

analysts were the most accurate and consistent group even though they tended to have 

worked on fewer number of assemblages and spent less time on identification tasks per 

week than Group 1 participants. Moreover, Group 4 outperformed other groups despite 

their lack of reliance on reference materials. Taking all of the evidence regarding Group 

4 (i.e. high accuracy, high consistency, high confidence, infrequent use of reference 

materials, PhD level education, and relatively few hours spent in identification tasks) 

into consideration, we can be confident in stating that they were the true experts.  Thus, 

the group performance results are at odds with our expected order.  

One possible explanation for the discrepancy between our expectations and the results 

may be that our study design does not truly capture expertise in sheep and goat 

astragalus differentiation. We do not think this is the case, since the deviation of Group 

1 performance from the expectation (i.e. observed rank 3 vs expected rank 1) is enough 

to explain the overall deviation from the expected order of the group performances. We 

can also clearly see that novices (Group 2) are worse than postgraduates (Group 3) who 

are worse than doctorates (Group 4), demonstrating a progression in performances as 

the analysts become more highly qualified and better acquainted with sheep and goat 

separation. Note, however, that the highest level of qualification is not the defining 

feature of the expertise groupings and other questions also play a role in the creation of 

the groups. If the study design had been flawed, it is more likely that the rank order of 

the analyst groups would be closer to random and we would not have been able to place 



the analysts into such clearly defined groups as the analysts would have been assigned 

to groups randomly.  

Instead, we argue that the hours worked in zooarchaeological identification tasks and 

how many assemblages the analysts had worked on in the last five years do not have a 

large impact on analysts’ ability to separate sheep and goat astragali. We argue this to 

be the case on the basis that Group 1 analysts were not more accurate and only 

somewhat more consistent than analysts in Group 2 (relative novices) and those in 

Group 3 (postgraduates). This result further conforms to the more general assessment 

of the impact of experience on performance by Ericsson and Lehmann (1996), who state 

that increased amount of knowledge gained through experience in a domain does not 

always lead to superior performance compared to the less-experienced individuals. In 

other words, sheep and goat astragalus classification is not necessarily a task where 

analyst expertise can be measured via time spent in zooarchaeological tasks or the 

variety of tasks. Instead, it is argued that latent ability to identify shapes, continuous 

self-improvement, or even a teaching role are more likely to lead to better performance, 

but this cannot be deduced from the collected data and requires further research.  

Inference on reference materials 

Surprisingly, we did not find any evidence of reference materials being helpful in the 

classification task. In the GLMM analysis, using Boessneck (1969; Boessneck et al. 1964) 

as a reference text was the only type of reference material that was found to have a 

positive coefficient, while all the other reference materials had a negative coefficient. 

This result means that not using any type of reference material results in a higher log 

odds of correctly identifying the species than when relying on reference materials, apart 

from when using Boessneck (1969; Boessneck et al. 1964) and even then the difference 

is not statistically significant. The only important factor in having a higher log odds of a 

correct answer is membership in Group 4.  

This result may seem flawed to many, since most of us believe that having reference 

materials are helpful (e.g. Bochenski 2008) – this was certainly the authors’ belief as 

well. However, we argue that reference materials are likely to be most useful when a 

bone morphology is encountered for the first time or when the morphology is very 

uncommon, as the analyst has not yet formed a mental frame of reference for that 

morphology. As one builds this mental frame of reference, the usefulness of reference 



materials wains. This is evident in the fact that most zooarchaeologists are capable of 

identifying a large variety of bones accurately without relying on any reference 

materials, but they are quick to ask for help when encountering an unusual specimen. 

Likewise, reference materials are often used when trying to differentiate between two 

very similar morphologies, but as noted, our results do not support such a usage. As 

Group 4 analysts were much less likely to rely on reference materials, they have the 

highest accuracy, they are the most consistent, and they were the most confident, we 

put forward the argument that these analysts have built a mental frame of reference for 

the morphological differences between sheep and goat astragali and we again reiterate 

our argument that they are likely to be the true experts at this task. This result cannot 

be explained by the selection of bones that Group 4 analysts analysed, since the 

distribution of specimen difficulties were not found to differ between groups.  

Additionally, the result that reference materials were not found to increase the log odds 

of a correct answers could reflect the fact that the population variances are not captured 

by single reference items (be it a 3D model, physical specimen, image, or sketch). While 

publications and manuals can draw conclusions from a large number of specimens, they 

tend to simplify the variation to single points. Physical reference collections are similarly 

limited as they often only include a handful of specimens for each species and typically 

contain samples from a limited subset of species. The usefulness of reference materials 

is therefore likely limited by their incapability to contain variance. Even descriptive 

criteria may not encapsulate the entire variation as they tend to be gross generalizations 

that are based on specimens that can derive from many geographic regions or worse, 

from very specific populations. Indeed, it has been argued that geographic and temporal 

variation affect the morphology of at least sheep astragali (Haruda et al. 2019; Pöllath 

et al. 2019). Thus, when an analyst is exceedingly reliant on reference materials, their 

accuracy may be lowered if they are unable to match the underlying population 

variances of the reference sample and the test sample, particularly when only parts of 

the bone morphology are used such as when the study specimen is fragmented. In a 

forthcoming article, we argue that the mismatch between the population variances and 

the variance encapsulated in reference materials can be reduced by using deep learning 

convolutional neural networks as they can take advantage of the entire bone 

morphology in a classification task, whereas comparative identification is reliant on 

defined, discrete features. 



Impact of confidence 

As expected, we found that confidence correlates with one’s ability to classify sheep 

and goat astragali and that human analyst confidence correlates with the difficulty of 

the specimen, which is again as expected. It was also found that by setting a threshold 

to confidence scores it becomes possible to limit the evaluation of an assemblage to 

only those specimens that the analysts are the most confident about, which increased 

the average accuracy. This observation is especially true for analysts in Groups 3 and 4, 

whose accuracies improved from 82.82% and 87.27% for all answers to 95.24% and 

94.74% for answers in the ‘Very high’ confidence category (using a threshold value of 

75), respectively. When the confidence threshold is set to 85 for all groups, the mean 

accuracy is 93.33%, whereas the mean accuracy for all answers is 81.15%.  

As analysts are more confident about classifying sheep than goats, limiting the answers 

to the most confident responses has the downside that the sheep to goat ratio shifts in 

favour of sheep, regardless of whether one analyses the true ratio, the ratio for correct 

answers, or the ratio for all answers. We have demonstrated this effect in detail in 

Online resource 10. Importantly, as low confidence answers would be likely classified as 

sheep/goat in zooarchaeological analyses, it is probable that this same effect is present 

in many published studies and sheep are therefore more than likely overrepresented in 

sheep:goat ratios that do not take ambiguous sheep/goat classifications into account.  

Experience and confidence 

In Driver's (1992) view, more experienced analysts are less willing to differentiate 

between morphologically similar species and therefore are presumably more likely to 

place bones in the sheep/goat category. However, our study found that analysts in 

Groups 1 and 4 (the more experienced analysts) have higher confidence scores than 

analysts in Groups 2 and 3. Because there is no prior information about what confidence 

level analysts used when they place samples in the ‘sheep/goat’ class, analysts could 

find the adoption of self-reported confidence scores beneficial in that it allows the 

communication of the rejection criteria. For example, the analyst can simply state that 

they included specimens that they were 75% confident to be correct and excluded those 

specimens with lower confidence from further analysis. Using self-reported confidence 

scores therefore informs peers about the analyst’s certainty for each specimen, which 

in turn allows the reviewer to identify potential blind spots in the analysis. The analysts 



themselves could use this data for self-reflection to find out areas of zooarchaeological 

identification that they need to improve upon should they keep track of their confidence 

scores over a long period. Furthermore, one additional avenue for taking advantage of 

confidence values could be to use them as prior probabilities following Wolfhagen and 

Price's (2017) methodology. However, unlike Wolfhagen and Price (2017, p.626), who 

mention that prior probabilities “express beliefs about the proportion of goats or sheep 

in an assemblage”, confidence scores could be used to express beliefs about the 

specimen being a goat or a sheep. The difference in these definitions is larger than it 

seems: instead of using one prior for the entire study sample, confidence scores allow a 

unique prior for all bones. 

In the future, similar studies that incorporate fragmented bones should be conducted 

because fragmentation has an impact on analyst accuracy (Pickering et al. 2006), which 

is likely to also have an effect on confidence. Furthermore, as it was found that analysts 

are more confident and better at classifying sheep astragali, it may be that there is a 

wider issue of reference materials being biased towards one species and it would be 

beneficial to look further into this issue. Overreliance on reference materials that are 

biased or depict limited variance would lead to systematic errors, which may 

erroneously lead to inflated or deflated confidence, depending on the population 

prevalence of the features used for classifying the bones. These errors would then be 

compounded in regional studies or meta analyses. 

Specimen difficulty 

Perhaps unexpectedly, majority of the astragali were easy for the analysts, while a 

small number of them were very difficult. The qualitative analysis of the analysts’ 

attention demonstrates how the analysts follow the descriptive criteria very faithfully. 

It is put forward here that the morphological variation of the difficult bones are at the 

fringes or beyond the morphological variation expressed by reference materials or 

indeed the analysts’ own mental frame of reference. For example, the obliqueness of 

the medial articular ridge and the pointiness of the proximo-plantar projection are very 

similar for difficult goat and easy sheep specimens and vice versa, which obviously leads 

to a false classification as these features are primary features used in differentiating the 

two species (Boessneck 1969; Zeder and Lapham 2010). Thus, it is important to involve 

morphologically more varied references, but doing so is not easy nor always possible 



due to the availability of specimens or space, let alone the fact that the analyst would 

have to make several comparisons for each possible species. Instead, computational 

models (such as deep learning convolutional neural networks) could be used in the 

future. 

Conclusion 

Our study has shown that human analysts can be very accurate at classifying sheep 

and goat astragali from photographs, but on average, their classification error rate is 

around one in five specimens. We did not find any evidence that using reference 

materials leads to a higher probability of a correct answer, and we argue that the reason 

is that morphological variation is not captured well by any single reference material 

type. Furthermore, analysts were found to be more confident and accurate when 

classifying sheep astragali, suggesting that either the analysts or the reference materials 

may be biased towards the identification of sheep. It is likely that this bias is also present 

in published sheep to goat ratios. This research has further shown that self-reported 

confidence scores can be used in place of the ambiguous sheep/goat class, which has 

several benefits to the researchers. For example, confidence scores can inform peers 

about potential blind spots in the analysis and analysts can use self-reported confidence 

scores to identify their own strengths and weaknesses if they keep track of the 

confidence scores.  

Finally, analysts’ focus maps demonstrate that human experts are somewhat inflexible 

about which features they use to classify the specimens. This behaviour leads to the 

misclassification of specimens that do not have very specific features that fall within the 

morphological variance insinuated by reference materials. As written and drawn 

comparative materials often have discrete boundaries and zooarchaeologists are 

trained to follow these guides, any bone that varies from the expected rigid shape has a 

higher probability of being misidentified. In some cases it may be enough that one 

feature of a bone is deemed to have a morphology of another species that all other 

features are disregarded. Therefore, we conclude that more flexible classification 

methods are needed for increased classification accuracy. Such a method should take a 

holistic approach to the species morphology and be able to encapsulate the full variance 

of the bones. We suggest that deep learning convolutional neural networks are able to 

achieve this and their usefulness will be shown in a forthcoming paper. Deep learning 



convolutional neural network models also have the benefit of being portable as they 

only occupy digital space and can be utilised over the internet.  
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