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ABSTRACT

We prove phase-space mixing for solutions to Liouville’s equation for integrable systems. Under a natural non-harmonicity condition, we
obtain weak convergence of the distribution function with rate (time) . In one dimension, we also study the case where this condition fails
at a certain energy, showing that mixing still holds but with a slower rate. When the condition holds and functions have higher regularity, the
rate can be faster.
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. INTRODUCTION

We study Liouville’s equation in action-angle coordinates,
O f(t.q.k) + w(k) - Vqf (t,,k) =0, ey

where g € T, the d-dimensional (flat) torus, are the angles and (ki,...,ky) € K are the conserved quantities in a suitable open set K. The
function w : K —~ RY gives the frequencies associated with each angle. We think of Liouville’s equation as describing the evolution of a large
number of gas molecules or collisionless kinetic gas without interactions. Liouville’s theorem guarantees that, if the motion of a single particle
in this system is integrable, there exist coordinates (g, k) that bring the equation in the form (1).

In classical mechanics, this occurs, for instance, in a potential well in one space-dimension or for spherically symmetric potentials in
dimensions 2 and 3. In these cases, in physical coordinates, Liouville’s equation reads

3tF(t.X,P) = _P‘VxF+ va'vPF; (2)

which can be transformed (for an open set K c R of values of the conserved energy and angular momentum) into the form (1).

The applications are not restricted to classical systems. In a relativistic context, geodesic motion in the Kerr family of space-times is
integrable, and Liouville’s equation (or the collisionless Boltzmann equation) can be written in the form (1).

If the system is anharmonic, in the sense that points with nearby energies move at different angular speeds w(k), regular initial distri-
butions will eventually stretch out to thin filaments that cover the region of phase space allowed by the conservation laws, as illustrated in
Fig. 1.

This phenomenon is called phase-space mixing. It leads to weak convergence in the sense that, for any measurement of a macroscopic
quantity encoded in a test function ¢(q, k), its value satisfies

tim [ [ 7(t.ak)9(adadk = [ Fo(k) [ 9(ak)dadk

Here and throughout this paper, we use a bar to denote the average over the periodic variables, i.e.,
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FIG. 1. Snapshots at times t = 0, 207, and 407 of the evolution of a Gaussian initial condition in a perturbed harmonic oscillator with Hamiltonian H = p?/2 + x2/2 + 0.3x*,
approximate at first order in perturbation theory.

1

Jotk) = [ fol@R)da

Also, we use this term throughout the this paper, we will use the term “test function” loosely to designate “a function against which
the distribution function is tested,” and these functions need not belong to C7°. Mathematically, the roles of ¢ and f are symmetric by the
time-reversal invariance of the evolution, while conceptually f is an empirical density associated with a large number of particles, and only its
averages over regions of phase space (i.e., the support of ¢) have a physical significance.

The relevance of phase-space mixing in clusters of stars had been pointed out historically by Lynden-Bell"* and was highlighted more
recently in Mouhot and Villani’s proof of Landau damping in the Vlasov-Poisson system on the torus.” This sparked interest in proving
mixing in linear models that describe astrophysical systems* or are reasonable toy models for these systems.” A recent paper® studied the

one-dimensional Liouville equation with a slightly anharmonic potential V(x) = % + a% and proved the time convergence of the (one-
dimensional) Coulomb potential generated by this distribution. The authors of Ref. 6 used the so-called vector-field method and obtained a
rate of convergence. The vector-field method has been introduced by Klainerman’ in the context of wave equations and has been applied to
transport equations or the Vlasov-Poisson system, for instance, in Refs. 8-10.

In this paper, we apply the vector-field method to general integrable systems and any choice of test function ¢. We obtain power-
like convergence to the equilibrium value [ ¢fo. Since we study essentially a transport equation in T? rather than R the rate of
decay does not improve with the dimension. We will assume throughout that w : K = R is of class C* and use the notation Dew for its

Jacobian matrix, i.e.,
(Dw); (k) = O (k).
With these preliminaries in place, we can state our main theorem.
Theorem L1. Let f(t,q,k) be the solution to (1) with initial datum fy € C'(T% x K). Assume that ¢ € C(T? x K) is bounded and that
weC*(K) and detDw(k) #0 forall keK. 3)

Then there exists C depending on w, fo, and ¢ such that

’.[wa (f(t.g.k) - fo(Kk))(q, k)dqdk| < I%Itl

Remark 1. The constant C depends on the initial data, on the test function ¢, and on the inverse of Dw. In Propositions II.1 and III.1, we
give more precise statements that allow us to relax the hypotheses and estimate the constant for concrete cases.

Remark 2. For the case of a particle in a one-dimensional potential well, 277/w(k) is the inverse of the period T of the trajectories, which,
in turn, is the derivative of the area function I [see, e.g., Ref. 11 (Sec. 50)]. In terms of the potential V, we have

T(h)=T'(h),  TI(h):= ﬁ%v(x):hpdx

P
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Apart from regularity issues, condition (3) is simply T'(h) = 11" (h) # 0. For one-dimensional systems (2-dimensional phase space), there is
an extensive literature on the monotonicity properties of the period function T(h). For many potentials, T’ (k) has a definite sign [see, e.g.,
Refs. 12-15]. In Appendixes B and C in Ref. 5, these conditions are specified to several potentials relevant in astrophysics.

Even if the condition det Dw # 0 fails at some points, mixing may still hold. For simplicity, we state this result in the one-dimensional
case and for a linearly vanishing ’.

Theorem 1.2. Fix fy and ¢ of class C", with compact support, and let f denote the corresponding solution to Liouville’s equation. Assume
that w € C*(K) and ' (k) # 0 except for k in the finite set {ki,...,kn} and that 0" (k) # 0. Then, there is C > 0 such that

| [0k = T w00t kgt <

In a different direction, if condition (3) holds and the functions involved have a better regularity, the strategy in the proof of Theorem
I.1 can be iterated to obtain a better rate of decay. Again, we state the one-dimensional result for simplicity.

Theorem 1.3. For d = 1 and under the hypotheses of Theorem 1.1, assume that additionally, ' (k)™ € C'(K) and fo,¢ € C'(T x K) for
some 1 > 2. Then, there exists C > 0 depending on w, fo, and ¢ such that

| Lotk - Foknotak) daak| <

A striking consequence is that mixing is actually super-polynomial when w, fo, and ¢ are of class C*.

Finally, we study the Coulomb potential generated by a particle density F. We will use the notation F for the density in the physical phase
space R? x R? and f = Fo N for the density in action-angle coordinates. The motivation to consider the Coulomb potential, in particular, is
to take into account the gravitational self-interaction (the Vlasov-Poisson system). We generalize the main result of Ref. 6 to any dimension
d and any integrable system. The (¢)~'-decay that we prove remains insufficient to treat the nonlinear equation. This is natural since we do
not expect, in general, that fj is a stationary state for the Vlasov-Poisson system.

The Coulomb potential can be written as the integral of F against a test function with a singularity, which can be compensated by requiring
some extra regularity of F. For a given F defined in Euclidean space, we define the Coulomb potential generated by its particle density as the
unique solution to
VE(0) =0 ifd=1,

. . 4
hm‘waVF(x) =0 ifd>2.

- AVe(x) = /RdF(x,p) dpand{

We will assume that the system with Hamiltonian H(x, p) = |p|*/2 + V() is integrable and denotes N : T x K = G c RY x R for the trans-
formation from action-angle variables to the position and momentum, where G is the open set of values of position and momenta for which
this transformation is well defined and invertible. Then, we have the following corollary.

Corollary I.4. Assume that N is a C'-diffeomorphism and that the frequencies w(k) satisfy (3). Let Fo € C1(G) n L' (G). Denote by F the
solution to Liouville’s equation (2), and then
C

L+t

[ve- Vg~ <

where
Fo:= (FooN)oN"".

The remainder of this paper is organized as follows. In Sec. II, we prove the one-dimensional case of Theorems I.1-1.3. In Sec. I1I, we
prove the general case of Theorem I.1 and its Corollary 1.4.

Il. ONE-DIMENSIONAL CASE

The main tool in the proof of this theorem is the vector field,
W = @' (k)t0, + O (5)
A straightforward calculation shows that W commutes with the Liouville operator,

L:= 8[ + w(k)aq
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Therefore, if f solves the transport equation (1), the same goes for W" f (and |[W" f]) for any n = 0,1,2,.. . ., and thus,

[ W sita ogkydkq = [[ W fol(g. K)g(k)dkdg ©)
for sufficiently regular functions f and g. As usual, we will use this property to obtain time-independent bounds.

Proposition IL1. Let f denote the solution to (1) with initial data fy € L' and fix ¢ € L. Assume that either f or ¢ has compact support in
T x K. Then, provided that all terms on the right-hand-side are finite,

[ [ (rtea - Fo®)p(a ke

= 1) @)
t L

W'
Remark 3. The hypotheses on f, ¢, and w of Theorem I.1 imply directly that the terms in the upper bound are indeed finite. Since it is
sufficient to prove the decay for large values of ¢, this proposition implies the one-dimensional case of Theorem IL.1.

Fodk

+
L

%@fo

Remark 4. The hypothesis on compact support is only needed to ensure the absence of boundary terms when integrating by parts. It can

be weakened by adding the value(s) of 1o 2t OK to the right-hand-side, provided that these values are well defined.

W'
Proof. First, note that as a limiting case of (6) or by using the exact time evolution and a change of variables,

fo(k) := ﬁfoo(q,k)dq
= i‘[ﬂ‘fO(q_w(k)t’k) dq =: ﬁ_/,ﬂ,f(t’q’k) dq

We insert this in the expression that we need to estimate and use the fundamental theorem of calculus to write

| [ [ak) - Foo)staydaar =| - [ [ [(rak) - f(t.dk)o(ak) dq’ dad]
“|n L L[ onrwakoota b dadg' dgai

< i foTfT f,ﬁqf(fx 3.k)¢(q, k) dk’ dgdq’ dg.
B ff| /IJ@qf(t,fz,kﬂwq,k) dk\ dgdg.

To obtain this inequality, we first used Fubini’s theorem to perform the k-integral before the others and then extended the range of § (which
requires inserting the absolute value). The last line is just the observation that the q'-dependence has disappeared from the integrand.

We now use W defined in (5) to write 94 = (w’(k)t) ™' (W — 0y). The first term will have the required form to apply (6), and we can
integrate by parts (the boundary terms disappear due to the assumptions on f and ¢) to bring the second term in this form as well. This gives

Joswamoank-c [wiean S0 ae o [ eana] S0 a
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Inserting this in the bound, we found

[ [¢tak) = Fo(0)9(a. k) dqdk|

o M/|¢(q,k)| dqdgdk

kJr  |w'(k)]|
PRACLIA PRI

o [ i 0

In both terms, we can apply (6), and thus, using furthermore that W= = 9y, we have obtained

(f(t,q.k) = fo(k))p(q, k) dqdk
i |
<o [ [ODEED [lo(a bl dadi
. fK fT (@ ak"ff,‘f(’k';) dqdgdk.

This can be rewritten in terms of the averages over T to give (7). O

A. Localization argument

In this section, we prove Theorem 1.2. We use the explicit rate of decay and the expression for the upper bound obtained in Proposition
I1.1 allows for extensions when w’(k) vanishes at some energies in the support of ¢. We use a simple localization argument to treat the case
where (k) vanishes linearly.

Proof of Theorem 1.2. Let 0 < € < 1 to be fixed later. We fix a smooth cutoff function y with support in (-1,1) and values in [0, 1] such
that y = 1 in [-1/2,1/2]. We define y; := X(%) and 77, := [T~ (1 - xic). Then, we write ¢(q, k) = 7:(k)¢(q, k) + (1 — 7:(k))$(g, k). Note
that #:(k)¢(q, k) satisfies the hypotheses of Proposition IL.1. Thus, (7) gives

| [ tak) = Fao)n. (39 a.k) dad
< T 1w - (8osl,, + |Faore],)
o

7 (&)
t w’ L

Now, we need to extract the e-dependence from the L® -norms. Since w"(k,') + 0, for some C > 0 and all € < 1, we have

o’

inf | (k)| 5
supp(77)Nsupp( ) C
This gives the bounds
R
w' - " ¢ w' )~ ~ &
We have obtained
C
| [ [ wak) - Foyn. <= ®
On the other hand,
| [tab - 7o) - n.0) ()
< sz(l —qe(k))/Tf(t,q,k) dgdk
<o,
J. Math. Phys. 63, 071502 (2022); doi: 10.1063/5.0091016 63, 071502-5
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We sum with (8), evaluate at some T > 1, and pick e = T™* to obtain
| [ [ rab - Fa)ecai]| < crP
for small T, both terms are bounded, this implies the result. O

B. Improved decay

If the initial condition is more regular, we can improve the estimate on the decay. To this end, we use the following L' -version of Poincaré
inequality.

LemmaIL.2 (Poincaré inequality). Assume that g : T — R is a periodic function of class C' and g(x) = 0 for some x € [0,27). Then, for all
leN,

leg(q)\qu (ﬂ)lfﬂlg(l)(q)ldq-

Proof. Without loss of generality, we may assume that x = 0. Then,

foﬂ\g(q)ldq= fon’fosg'(r) dr
< /Oﬂ‘g'(r)|/r”dsdrsﬂ_/oﬂ’g'(r)|dr.

Treating the contribution to the L'-norm of the interval [7, 277] analogously, we find that

ds

fT\g(q)ldq < ﬂfTIg'(q)ldq-

For the case [ > 2, we proceed by induction. By periodicity, ng("l) = 0,50 g7V (x) = 0 for some x € T, and we can iterate the argument. O

As a consequence, we can obtain a faster rate of decay for more regular initial data and observables. For the sake of readability, we assume
that the support of ¢ is compact (bounded away from the boundary of K) although it is possible to relax this to suitable decay of the functions
and their derivatives.

Proof of Theorem 1.3.  As in the proof of Proposition II.1, we bound

< [ []os [ r(ta 000k | dada

We then use Lemma II.2 to insert [ — 1 additional derivatives as follows:

| [ ak) - Foo)(adaar| <7~ [ [oh [ £(ak)9(a. k) aK| dada

sr’lnl’lff
TJT

In the previous expression, we keep in mind that the operator W only affects the variables denoted by k and g, not g. Expanding the product

|00~ Tkt s

1
f( VZ,[ka)k) F(LaK)$(g.0) dk‘ didg

makes 2' terms appear. In order to integrate by parts, we iterate the identities

(l)” (k)
' (k)

[0k, W] = @ (k)tD, = (W =),

and for any sufficiently regular function g(k),
[(W.g(k)] = [0k.(K)] = &' (k).

This allows us to obtain an identity of the form

1
=0 m=0

(Vav)'(k?k) =3 gm(RW",
J
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where each of the functions gy (k) is a complicated expression containing powers of ()™ and its derivatives up to order I — (m + ). In
each term, we integrate by parts in K to obtain

>

m=0

1
S () re.anpan o JoW 163000 (K)6(69) ak]

!

<y
j=0

[

<3 ¥ [oltgns)], [ Wk dk

=0 m=0

-

Finally, we apply (6) to bound

J

| a0 - Foptah) dadt| < o'5 5 [3lgmo] . [ [ Iw"s(ea0)]aa
- [oland)], Lol ”
j=0 m=0

lll. PROOFS FOR d > 2

In this section, we prove mixing for the d-dimensional case. In this case, we define the following d vector fields:
d
W = tDw(k)Vq + Vi or Wi=ty, (O, wi(k)) g, + Ok, 9)
i=1

As before, each component of W commutes with the Liouville operator. If Dw is an invertible matrix, most of the proof goes through as
before. For the sake of completeness, we state Theorem I.1 with an explicit bound on the right-hand-side. To this end, we define the matrix
norm

[M]eo = max|Mijl.

Proposition IIL1. Let f(t,q,k) be the solution to (1) with initial datum fy € C'(T% x K). Assume that ¢ € C:(T% x K) and that
det Dw(k) # 0 forallk € K.
Then, M := (Dw(k))™" is well defined and

MJN (t:9.k) ~ fo(k))$(4.k) dqdk‘

e (S Y PR
i=1

)

Proof. As before, we express the left-hand-side as

Uwa(f (t:4:K) - Fo(k))9(4,k) dqdk|

1
- Gy fwfwa(f(t,q,k)—f(t,q’,k))¢(q,k)dkdqdq’.
We then write
4 rq
SaR) = f0d K =2 [0S s gl k)
j=1 79
J. Math. Phys. 63, 071502 (2022); doi: 10.1063/5.0091016 63, 071502-7
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and bound

[ [ (Fta.0) = Falh) (. ) dad]

1

(2n)dzf1r4/1rd/ |/8q}f(t Q- G155 15 - - - 44 k) $(g, k) dk| dsdgdq’.

We now write d;; = t'[M(W - V})];. Thus, by using the divergence theorem for the second term (and using the compact support of ¢ to
conclude the absence of boundary terms), we obtain

|‘[K8qu(t,q1,...q,-_l,s,quﬂ,...,q,’i,k)gb(q,k) dk|
1
< ;fKI[M(k)W]jf(t,ql,-~-qj—l»s,qjﬂ,..-,q;,k)fb(q,k)\dk

1 / .
" ?_/K|f(t> qis... qj—1a$>qj+1) e >q:1, k)(Vk . M(k)T(/)(q) k)e}

Moo e &
SMZ/%AWJU,%,...qj,l,s,q;+1,...,q;,k)|dk
i=1 +

Vi -MT¢é;|
+M[J]‘(qu,...q]-_l,s,q;Jrl,...,qé,k)|dk.

Inserting this in the previous bound and using (6), we obtain

[ [ tab - Fo(k)o(ak) dadk

< 21l 2 0], + 97031, [ ], ) D

Finally, we prove Corollary I.4.

Proof of Corollary 1.4. For fixed xo € RY, we write ¢y, for the fundamental solution to Poisson’s equation in dimension d. In particular,

(x— xo)]I[_oo,xO] + max(0,xo) ifd=1,
¢x, (%) ={ =(27) " In(|x - x0|) ifd =2,
Kalx — xo| 42 ifd>3

for a suitable constant x;. Hence, we can write

Vi(x0) = Adéd¢xa(x)F(t,x,v) dxdv = ‘[Td/;pxo(q,k)f(t,q,k) dkdg,

where we used the notation f = Fo N and ¢y, = ¢, o N. Now, the integral is in a suitable form to apply the arguments in the proofs of
Theorems II.1 and III.1, provided that gy, is sufficiently regular. The Coulomb kernel ¢, belongs to the Sobolev space Wlloc1 (R? x RY) since
the integral of its derivative in a ball is finite. Outside a sufficiently large ball, the function and its derivatives are bounded. Since we assume
that N is of class C', ¢y, inherits these properties. Thus, Vy@y, € L' + L. For the L™ -part, we can apply Proposition IIL1 directly, and for the

L' part, we switch the roles of f and ¢ in the Proof of Proposition IIL1. O
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