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Abstract 

Background  When studying the association between treatment and a clinical outcome, a parametric multivari‑
able model of the conditional outcome expectation is often used to adjust for covariates. The treatment coefficient 
of the outcome model targets a conditional treatment effect. Model-based standardization is typically applied 
to average the model predictions over the target covariate distribution, and generate a covariate-adjusted estimate 
of the marginal treatment effect.

Methods  The standard approach to model-based standardization involves maximum-likelihood estimation and use 
of the non-parametric bootstrap. We introduce a novel, general-purpose, model-based standardization method based 
on multiple imputation that is easily applicable when the outcome model is a generalized linear model. We term 
our proposed approach multiple imputation marginalization (MIM). MIM consists of two main stages: the genera‑
tion of synthetic datasets and their analysis. MIM accommodates a Bayesian statistical framework, which naturally 
allows for the principled propagation of uncertainty, integrates the analysis into a probabilistic framework, and allows 
for the incorporation of prior evidence.

Results  We conduct a simulation study to benchmark the finite-sample performance of MIM in conjunction 
with a parametric outcome model. The simulations provide proof-of-principle in scenarios with binary outcomes, 
continuous-valued covariates, a logistic outcome model and the marginal log odds ratio as the target effect measure. 
When parametric modeling assumptions hold, MIM yields unbiased estimation in the target covariate distribution, 
valid coverage rates, and similar precision and efficiency than the standard approach to model-based standardization.

Conclusion  We demonstrate that multiple imputation can be used to marginalize over a target covariate distribu‑
tion, providing appropriate inference with a correctly specified parametric outcome model and offering statistical 
performance comparable to that of the standard approach to model-based standardization.
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Background
There has been active debate on whether marginal or 
conditional estimands should be preferred when esti-
mating relative treatment effects [1–6]. Many research-
ers argue that marginal estimands are more appropriate 
inferential targets for decisions at the population level 
[1–3]. The distinction between marginal and conditional 
treatment effects is particularly important for non-col-
lapsible measures such as the odds ratio and the hazard 
ratio. For such measures, the population-level marginal 
effect cannot be expressed as a weighted average of indi-
vidual- or subgroup-level conditional effects. Almost 
invariably, marginal and conditional estimands do not 
coincide for non-collapsible effect measures, even in the 
absence of confounding and effect measure modification 
[7–12].

In the estimation of marginal treatment effects, covari-
ate adjustment is desirable across a range of settings: (1) 
it is applied in the analysis of randomized controlled tri-
als (RCTs) to correct for “chance” covariate imbalances 
and increase power, precision and efficiency [13]; (2) it 
allows for confounding control in the analysis of obser-
vational studies [14]; and (3) it accounts for covariate dif-
ferences between multiple studies in indirect treatment 
comparisons and transportability analyses [15–19]. This 
article focuses on the latter scenario. Nevertheless, the 
methodological findings are also applicable to covariate 
adjustment between the treatment arms of a single com-
parative study.

A popular approach to covariate adjustment involves 
fitting a parametric multivariable model of the con-
ditional outcome mean given treatment and baseline 
covariates. The treatment coefficient of the model targets 
a conditional effect. So-called model-based standardiza-
tion, G-computation or marginalization approaches are 
required to integrate or average the conditional outcome 
model over the target covariate distribution, and produce 
a covariate-adjusted estimate of the marginal treatment 
effect [16, 20–29]. The standard approach to model-
based standardization uses maximum-likelihood estima-
tion to fit the outcome model and the non-parametric 
bootstrap for variance estimation [16, 25–28].

We introduce a novel general-purpose method for 
model-based standardization stemming from the ideas 
underlying multiple imputation [30]. Despite the close 
relationships between the methodologies, these largely 
have been developed separately, with some exceptions 
[31]. We build a link in this article,1 terming our proposed 
approach multiple imputation marginalization (MIM). 

As opposed to the standard version of model-based 
standardization, MIM accommodates a Bayesian statisti-
cal framework, which naturally allows for the principled 
propagation of uncertainty, readily handles missingness 
in the patient-level data, integrates the analysis into a 
probabilistic framework, and permits the incorporation 
of prior evidence and other contextual information.

We conduct a simulation study to benchmark the 
finite-sample performance of MIM in conjunction with 
a parametric outcome model. The simulations provide 
proof-of-principle in scenarios with binary outcomes, 
continuous-valued covariates, a logistic outcome model 
and the marginal log odds ratio as the target effect meas-
ure. When parametric modeling assumptions hold, MIM 
yields unbiased estimation in the target covariate distri-
bution. Code to implement the MIM methodology in R is 
provided in Additional file 1.

Methods
We wish to transport the results of a comparative “index” 
study to a target distribution of covariates. We assume that 
the target is characterized by a dataset that is external to 
the index study. In practice, this could belong to an obser-
vational study or be derived from secondary healthcare 
data sources (e.g. disease registries, cohort studies, insur-
ance claims databases or electronic health records). Such 
administrative datasets are typically larger, less selected, 
and more representative of target populations of policy-
interest than the participants recruited by RCTs [34–36].

For instance, in drug development, a pivotal Phase III 
RCT is typically conducted pre-market authorization to 
obtain regulatory approval. Such trial may have relatively 
narrow selection criteria, to enhance statistical precision 
and power in efficacy and safety testing [37–39]. Policy-
makers may be interested in transporting inferences to a 
“real-world” target covariate distribution, which is more 
diverse or heterogeneous in composition, and more rep-
resentative of the patients who will receive the interven-
tion in routine clinical practice [40].

Let S = 1 denote the index study and let S = 2 denote 
the external target. Adopting the potential outcomes 
framework [41], the target marginal average treatment 
effect estimand for the MIM procedure described in this 
article is a contrast between the, possibly transformed, 
means of potential outcome distributions:

where Y t denotes the potential outcome that would 
have been observed for a subject assigned to interven-
tion T = t , with t ∈ {0, 1} , E(·) represents an expecta-
tion taken over the distribution of potential outcomes in 
S = 2 , and g(·) is an appropriate “link” function, e.g. the 

(1)TATE = g E Y 1 | S = 2 − g E Y 0 | S = 2 ,

1  This article is based on research from Antonio Remiro-Azócar’s PhD the-
sis [32] and a prior working paper by the authors [33].
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identity, log or logit, mapping the mean potential out-
comes onto the plus/minus infinity range. The target esti-
mand in Eq. 1 is the average treatment effect, constructed 
on an additive scale e.g.  the mean difference, (log) risk 
ratio or (log) odds ratio scale, had everyone in the target 
had been assigned T = 1 versus T = 0.

We briefly outline the data requirements of the MIM 
procedure. Individual-level data D = (x, t , y) for a com-
parative index study, randomized or non-randomized, 
are available. Here, x is an N × K  matrix of clinical or 
demographic baseline covariates, where N is the num-
ber of participants in the study and K is the number of 
baseline covariates. Each subject n = 1, 2, . . . ,N  has a 
row vector xn =

(

xn,1, xn,2, . . . , xn,K
)

 of K covariates. We 
let y =

(

y1, y2, . . . , yN
)

 denote a vector of clinical out-
comes and t = (t1, t2, . . . , tN ) denote a binary treatment 
indicator vector, with each entry taking the value zero 
or one. We assume that D has no missing values but 
MIM can be readily adapted to address this issue, as is 
illustrated in Additional file 1.

The target dataset contains a matrix of covariates 
xtar of dimensions Ntar × K  , where Ntar is the num-
ber of subjects and K is the number of covariates. We 
assume that all K covariates in the index study are 
available in the target. Each subject has a row vector 
xtari =

(

xtari,1 , x
tar
i,2 , . . . , x

tar
i,K

)

 of K covariates. Individual-
level outcomes under the treatments being studied in 
the index trial are assumed unavailable in the target, 
as would be the case for interventions evaluated in the 
pre-marketing authorization setting.

In the scenario described in this article, standardi-
zation is performed with respect to an external data 
source, and the aim is to estimate marginal treatment 
effects in an external covariate distribution. This is typi-
cally the case in transportability analyses translating 
inferences from trials lacking external validity to the 
target population for decision-making, or in covariate-
adjusted indirect comparisons transporting relative 
effects across a connected network of trials.

Nevertheless, as illustrated in Additional file  1, it 
is also possible to perform standardization over the 
covariate distribution observed in the index study. This 
avoids extrapolation into an external data source and 
may be useful when adjusting for covariate imbalances 
between treatment arms within randomized or non-
randomized comparative studies. Within a randomized 
experiment, covariate adjustment is not necessary for 
unbiased estimation of the marginal treatment effect, 
but can be used to increase precision, i.e. reduce stand-
ard errors [13, 42]. Within a non-randomized study, 
covariate adjustment is necessary to remove confound-
ing bias [43].

Multiple imputation marginalization
Conceptually, MIM consists of two separate stages: (1) 
the generation (synthesis) of synthetic datasets; and (2) 
the analysis of the generated datasets. The synthesis is 
separated from the analysis — only after the synthesis has 
been completed is the marginal effect of treatment on the 
outcome estimated. This is analogous to the separation 
between the imputation and analysis stages in multiple 
imputation.

Multiple imputation is a simulation technique that, 
arguably, is fundamentally Bayesian [30, 44, 45]. Its origi-
nal development was grounded in Bayesian modeling, 
with imputed outcomes derived, at least conceptually, 
from a posterior predictive distribution. Computational 
tools such as Markov chain Monte Carlo (MCMC) and 
the Gibbs sampler only arose to prominence in the sta-
tistical literature several years after Rubin’s seminal paper 
[46]. Consequently, the typical practical implementation 
of multiple imputation is based on a hybrid approach 
[30]: “think like a Bayesian, do like a frequentist”.

Interestingly, our standardization problem can be con-
ceptualized as a missing data problem. Outcomes for the 
subjects in the index study are observed, but outcomes in 
the target population, under the treatments examined in 
the index study, are systematically missing. MIM stand-
ardizes over the target by replacing the missing outcomes 
with a set of plausible values, conditional on some pre-
specified imputation mechanism. Extending the parallel 
with the missing data literature, MIM relies on a missing-
at-random-like assumption: missing outcomes in the tar-
get are assumed conditionally exchangeable with those 
observed in the index study, conditioning on the adjust-
ment model used for standardization.

MIM sits within a Bayesian framework by character-
izing probabilistic relationships among a set of variables, 
and adopts a simulation approach. Figure  1 reveals a 
Bayesian directed acyclic graph (DAG) summarizing the 
general MIM structure and the links between its mod-
ules. In this graphical representation, the nodes represent 
variables; single arrows indicate probabilistic relation-
ships and double arrows indicate deterministic functions. 
The plate notation indicates repeated analyses. We return 
to Fig. 1 and provide more detailed explanations for the 
notation and the individual modules throughout this 
section.

Generation of synthetic datasets: a missing data problem
The first stage, synthetic data generation, consists of two 
steps. Initially, the first-stage regression captures the rela-
tionship between the outcome y and the covariates x and 
treatment t in the patient-level data for the index study. 
In the outcome prediction step, predicted outcomes for 
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each treatment are generated in the target by drawing 
from the posterior predictive distribution of outcomes, 
given the observed predictor-outcome relationships in 
the index study, the set treatment and the target covariate 
distribution.

First‑stage regression
Firstly, a multivariable regression of the observed outcome 
y on the baseline covariates x and treatment t is fitted to 
the subject-level data of the index study:

(2)g(µn) = β0 + xnβ1 +
(

βt + xnβ2

)

1(tn = 1),

where µn is the conditional outcome expectation of sub-
ject n on the natural scale (e.g.,  the probability scale for 
binary outcomes), g(·) is an appropriate link function, β0 
is the intercept, β1 and β2 are vectors of regression coef-
ficients, and the treatment coefficient βt targets a con-
ditional effect at baseline, when the covariates are zero. 
The model specification assumes that the covariates are 
prognostic of outcome at the individual level. Due to the 
presence of treatment-covariate interactions, the covari-
ates are also assumed to be (conditional) effect measure 
modifiers, i.e., predictive of treatment effect heterogeneity, 
at the individual level on the linear predictor scale.

Fig. 1  Multiple imputation marginalization (MIM). A Bayesian directed acyclic graph representing MIM and its two main stages: (1) synthetic data 
generation; and (2) the analysis of synthetic datasets. Square nodes represent constant variables, circular nodes indicate stochastic variables, single 
arrows denote stochastic dependence, double arrows indicate deterministic relationships and the plate notation indicates repeated analyses



Page 5 of 15Remiro‑Azócar et al. BMC Medical Research Methodology           (2024) 24:32 	

The conditional outcome model in Eq.  2 will be 
our “working”, “nuisance” or “imputation” model 
from now onward. We consider this to be a para-
metric model within a generalized linear modeling 
framework. In logistic regression, the link function 
g(µn) = logit(µn) = ln [µn/(1− µn)] is adopted. Other 
choices are possible in practice such as the identity link 
for linear regression or the log link for Poisson regres-
sion. The conditional outcome model is to be estimated 
using a Bayesian approach. We shall assume that efficient 
simulation-based sampling methods such as MCMC are 
used. Prior distributions for the regression coefficients 
would have to be specified, potentially using contextual 
information.

When standardizing with respect to an external target 
and/or when the index study is non-randomized, one is 
reliant on correct specification of the outcome model 
for unbiased estimation. In the former case, there is par-
ticular interest in modeling covariate-treatment prod-
uct terms (“interactions”) to capture (conditional) effect 
measure modification. In the latter case, the outcome 
model should adjust for potential confounders. Time and 
care should be dedicated to model-building, while being 
mindful of erroneous extrapolation outside the covariate 
space observed in the index study [47].

We shall assume that a single parametric outcome 
model is estimated, including treatment-covariate prod-
uct terms to capture treatment effect heterogeneity at the 
individual level. An alternative strategy is to postulate 
two separate outcome models, one for each treatment 
group in the index comparative study [48]. While such 
approach allows for individual-level treatment effect het-
erogeneity over all the baseline covariates included in the 
models, it prevents borrowing information across treat-
ment groups.

Outcome prediction
In this step, we generate predicted outcomes for the treat-
ments under investigation, but in the target covariate dis-
tribution, by drawing from the posterior predictive 
distribution of outcomes. This is to be constructed using 
the imputation model in Eq.  2. Beforehand, a “data aug-
mentation” step is required. We shall create a copy of the 
original target covariate dataset and vertically concatenate 
it to the original xtar . The concatenation is denoted 

x∗ =
[

xtar

xtar

]

 and has N ∗ =
(

2× Ntar
)

 rows and K col-

umns. The original j = 1, 2, . . . ,Ntar rows are assigned the 
treatment value t∗j = 1 and the appended 
j =

(

Ntar + 1
)

,
(

Ntar + 2
)

. . . ,N ∗ rows are assigned the 
treatment value t∗j = 0 . The treatment indicator vector in 
the augmented dataset is denoted t∗ =

(

t∗1 , t
∗
2 . . . t

∗
N∗

)

.

Using MCMC sampling, it is fairly straightforward to 
implement the estimation of both the first-stage regres-
sion and the outcome prediction steps within a single 
Bayesian computation module. Having fitted the first-
stage regression, we will iterate over the L converged 
draws of the MCMC algorithm to generate M ≤ L syn-
thetic datasets: {D∗ = D

∗(m) : m = 1, 2 . . . ,M} , where 
D

∗(m) =
(

x∗, t∗, y∗(m)
)

 . Covariates x∗ and treatment t∗ 
are fixed across all the synthetic datasets. In line with the 
multiple imputation framework, each synthetic dataset is 
filled in by drawing a vector of outcomes 
y∗(m) =

(

y
∗(m)
1 , y

∗(m)
2 , . . . , y

∗(m)
N∗

)

 of size N ∗ from the pos-
terior predictive distribution p(y∗ | x∗, t∗, y, x, t) , given 
the original index trial and the augmented target 
datasets.

Assuming convergence of the MCMC sampling algo-
rithm, the posterior predictive distribution of outcomes 
is approximated numerically as:

where the realizations β(l) ∼ p(β | y, x, t) are independ-
ent draws from the posterior distribution of the first-
stage regression parameters β =

(

β0,β1,β2,βt
)

 , which 
encode the predictor-outcome relationships observed in 
the index trial, given some suitably defined prior p(β) . 
Here, l = 1, 2, . . .L indexes each MCMC iteration after 
convergence.

Consequently, L predictive samples y∗(1), . . . , y∗(L) ∼
p
(

y∗ | x∗, t∗,β(l)
)

 are drawn independently from the 
posterior predictive distribution of outcomes. Dedicated 
MCMC programming software such as Stan [49] would 
typically return an L× N ∗ matrix of simulations. We will 
“thin” the matrix such that only M ≤ L of the rows are 
retained. This is to reduce the computational run time of 
the MIM analysis stage. The M remaining outcome impu-
tations are used to complete the synthetic datasets 
{D∗(m) =

(

x∗, t∗, y∗(m)
)

: m = 1, 2, . . . ,M} . Table  1 illus-
trates the structure of each synthetic dataset.

Analysis of synthetic datasets
In the second stage, the analysis of synthetic datasets, we 
seek inferences about the marginal treatment effect in 
the target covariate distribution (TATE in Eq. 1, but here 
denoted � ), given the synthesized outcomes. The analy-
sis stage consists of another two steps. In the second-
stage regression step, estimates of the marginal treatment 
effect in each synthesis m = 1, 2, . . . ,M are generated by 
regressing the predicted outcomes y∗(m) on the treatment 
indicator t∗ . In the pooling step, the treatment effect 

p
(

y∗ | x∗, t∗, y, x, t
)

=
∫

β

p
(

y∗ | x∗, t∗,β
)

· p(β | y, x, t)dβ

≈ 1

L

L
∑

l=1

p
(

y∗ | x∗, t∗,β(l)
)

,
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estimates and their variances are combined across all M 
syntheses.

In standard multiple imputation, the imputation and 
analysis stages may be performed simultaneously in 
a joint model [45]. In MIM, this is challenging because 
the dependent variable of the analysis is completely syn-
thesized. Consider the Bayesian DAG in Fig. 1. In a joint 
model, the predicted outcomes are a collider variable, 
blocking the only path between the first and the second 
module (information from the directed arrows “collides” 
at the node). As a result, the data synthesis and analysis 
stages have been implemented as separate modules in a 
two-stage framework. The analysis stage conditions on 
the outcomes predicted by the synthesis stage, treating 
these as observed data.

Second‑stage regression
We fit M second-stage regressions of predicted outcomes 
y∗(m) on treatment t∗ for m = 1, 2, . . . ,M . Identical anal-
yses are performed on each synthesis:

where η(m)
j  is the expected outcome on the natural 

scale of unit j in the m-th synthesis, the coefficient 
α(m) is an intercept term and δ(m) denotes the marginal 

(3)g
(

η
(m)
j

)

= α(m) + δ(m)t∗j ,

treatment effect in the m-th synthesis. There is some 
non-trivial computational complexity to performing 
a Bayesian fit in this step. That would embed a nested 
simulation scheme. Namely, if we draw M samples 
{y∗(m) : m = 1, 2, . . .M} in the synthesis stage, a fur-
ther number of samples, say R, of the treatment effect 
{δ(m,r) : m = 1, 2 . . .M; r = 1, 2, . . .R} would be drawn 
for each of these realizations separately. This structure is 
unlikely to be feasible in terms of running time.

Using maximum-likelihood estimation, a point esti-
mate δ̂(m) of the marginal treatment effect and a measure 
of its variance v̂(m) are generated in each synthesis y∗(m) . 
Equation 3 is a marginal model of outcome on treatment 
alone. Adopting terminology from the missing data lit-
erature, the second-stage regression in the analysis stage 
is “congenial” with the first-stage regression in the syn-
thesis stage because treatment was already included as a 
predictor in the first-stage regression [44].

Pooling
We must now combine the M point estimates of the mar-
ginal treatment effect and their variances to generate a 
posterior distribution. Pooling across multiple syntheses 
is a topic that has already been investigated within the 
domain of statistical disclosure limitation [50–56].

In statistical disclosure limitation, data agencies miti-
gate the risk of identity disclosure by releasing multiple 
fully synthetic datasets. These only contain simulated 
values, in lieu of the original confidential data of real 
survey respondents. Raghunathan et  al. [50] describe 
full synthesis as a two-step process: (1) construct mul-
tiple synthetic populations by repeatedly drawing from 
the posterior predictive distribution, conditional on 
a model fitted to the original data; and (2) draw ran-
dom samples from each synthetic population, releas-
ing these synthetic samples to the public. In practice, 
as indicated by Reiter and Raghunathan [55], it is not 
a requirement to generate the populations, but only 
to generate values for the synthetic samples. Once the 
samples are released, the analyst seeks inferences based 
on the synthetic data alone.

MIM is analogous to this problem, albeit there are 
some differences. In MIM, the analyst also acts as the 
synthesizer of data, and there is no “original data” on out-
comes as such if the index study has not been conducted 
in the target covariate distribution. In any case, values 
for the samples are generated in the synthesis stage by 
repeatedly drawing from the posterior predictive distri-
bution of outcomes. This is conditional on the predictor-
outcome relationships indexed by the model fitted to the 
index study, the set treatment and the target distribution 
of covariates.

Table 1  An example of the structure of the m-th synthetic 
dataset, created in the data synthesis stage of MIM. In this 
example, N = 7 ( N∗ = 14 ) and K = 3 . Prior to imputing the missing 
outcomes, a copy of the original target covariate dataset has 
been assigned the treatment value zero and been vertically 
concatenated to the original x tar , assigned the treatment value 
one

Covariates ( x∗) Treatment ( t∗) Outcome 
(

y∗(m)
)

xtar1,1 xtar1,2 xtar1,3
1 y

∗(m)
1

xtar2,1 xtar2,2 xtar2,3
1 y

∗(m)
2

xtar3,1 xtar3,2 xtar3,3
1 y

∗(m)
3

xtar4,1 xtar4,2 xtar4,3
1 y

∗(m)
4

xtar5,1 xtar5,2 xtar5,3
1 y

∗(m)
5

xtar6,1 xtar6,2 xtar6,3
1 y

∗(m)
6

xtar7,1 xtar7,2 xtar7,3
1 y

∗(m)
7

xtar1,1 xtar1,2 xtar1,3
0 y

∗(m)
8

xtar2,1 xtar2,2 xtar2,3
0 y

∗(m)
9

xtar3,1 xtar3,2 xtar3,3
0 y

∗(m)
10

xtar4,1 xtar4,2 xtar4,3
0 y

∗(m)
11

xtar5,1 xtar5,2 xtar5,3
0 y

∗(m)
12

xtar6,1 xtar6,2 xtar6,3
0 y

∗(m)
13

xtar7,1 xtar7,2 xtar7,3
0 y

∗(m)
14
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We seek to construct a posterior distribution for the 
marginal treatment effect, conditional on the synthetic 
outcomes (and treatment). That is, p(� | y∗, t∗) . Follow-
ing Raab et  al. [56], each y∗(m) is viewed as a random 
sample from p

(

y∗ | x∗, t∗,β(m)
)

 , where β(m) is sampled 
from its posterior p(β | x, t , y) . Hence, the “true” mar-
ginal treatment effect δ(m) for the m-th synthesis, corre-
sponding to β(m) , can be defined as a function of this 
sample. In each second-stage regression in Eq. 3, this is 
the treatment effect estimated by δ̂(m).

Consequently, following Raghunathan et  al. [50], 
the estimators {δ̂(m), v̂(m);m = 1, 2, . . . ,M} from the 
second-stage regressions are treated as “data”, and 
are used to construct an approximation to the poste-
rior density p(� | y∗, t∗) . This density is assumed to be 
approximately normal and is parametrized by its first 
two moments: the mean µ� , and the variance σ 2

� . To 
derive the conditional distribution p

(

µ�, σ
2
� | y∗, t∗

)

 
of these moments given the syntheses, the estimators 
{δ̂(m), v̂(m);m = 1, 2, . . . ,M} , where v̂(m) is the point esti-
mate of the variance in the m-th second-stage regression, 
are treated as sufficient summaries of the syntheses, and 
µ� and σ 2

� are treated as parameters. Then, the posterior 
distribution p(� | y∗, t∗) is constructed as:

In analogy with the theory of multiple imputation [30], 
the following quantities are required for inference:

where δ̄ is the average of the treatment effect point esti-
mates across the M syntheses, v̄ is the average of the point 
estimates of the variance (the “within” variance), and b is 
the sample variance of the point estimates (the “between” 
variance). These quantities are computed using the point 
estimates from the second-stage regressions.

After deriving the quantities in Eqs. 5, 6 and 7, there 
are two options to approximate the posterior distribu-
tion of the marginal treatment effect in Eq. 4. The first 
involves direct Monte Carlo simulation and the second 
uses a simple normal approximation. In Additional 

(4)

p
(

� | y∗, t∗
)

=

∫

µ� ,σ 2
�

p
(

� | µ� , σ
2
�

)

p
(

µ� , σ
2
� | y∗, t∗

)

d
(

µ� , σ
2
�

)

.

(5)δ̄ =
M
∑

m=1

δ̂(m)/M,

(6)v̄ =
M
∑

m=1

v̂(m)/M,

(7)b =
M
∑

m=1

(

δ̂(m) − δ̄

)2
/(M − 1),

file  1, the inferential framework for pooling outlined 
in this section is extended to scenarios involving cor-
related outcomes and non-scalar estimands with mul-
tiple components [57]. This involves a multivariate 
outcome model (i.e.  with multiple dependent vari-
ables) and the combination of correlated treatment 
effects corresponding to multiple outcomes.

Pooling via posterior simulation  Firstly, one draws µ� 
and σ 2

� from their posterior distributions, conditional on 
the syntheses. These distributions are derived by Raghu-
nathan et al. [50]. Values of µ� are drawn from a normal 
distribution:

Values of σ 2
� are drawn from a chi-squared distribution 

with M − 1 degrees of freedom:

Values of � are drawn from a t-distribution with M − 1 
degrees of freedom [50]:

where the σ 2
�/M term in the variance is necessary as an 

adjustment for there being a finite number of syntheses; 
as M → ∞ , the variance tends to σ 2

�.

By performing a large number of simulations, one is esti-
mating the posterior distribution in Eq. 4 by approximat-
ing the integral of the posterior in Eq. 10 with respect to 
the posteriors in Eqs. 8 and 9 [50]. Hence, the resulting 
draws of � are samples from the posterior distribution 
p(� | y∗, t∗) in Eq. 4. One can take the expectation over 
the posterior draws to produce a point estimate �̂ of the 
marginal treatment effect in the target distribution of 
covariates. A point estimate of its variance V̂

(

�̂

)

 can be 
directly computed from the draws of the posterior den-
sity. Uncertainty measures such as 95% interval estimates 
can be calculated from the corresponding empirical 
quantiles.

The posterior distributions in Eqs. 8, 9 and 10 have been 
derived under certain normality assumptions, which are 
adequate for reasonably large sample sizes, where the rel-
evant sample sizes are both the size N of the index study 
and the size N ∗ of the synthetic datasets.

Pooling via combining rules  A simple alternative to 
direct Monte Carlo simulation is to use a basic approxi-
mation to the posterior density in Eq.  4, such that the 

(8)p
(

µ� | y∗, t∗
)

∼ N
(

δ̄, v̄/M
)

,

(9)p
(

(M − 1)b/
(

σ 2
� + v̄

)

| y∗, t∗
)

∼ χ2
M−1.

(10)p
(

� | µ�, σ
2
�

)

∼ tM−1

(

µ�, (1+ 1/M)σ 2
�

)

,
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sampling distribution in Eq. 10 is normal as opposed to 
a t-distribution. The posterior mean is the average of the 
treatment effect point estimates across the M syntheses. 
A combining rule for the variance arises from using b− v̄ 
to estimate σ 2

� , which is equivalent to setting σ 2
� at its 

approximate posterior mean in Eq. 9 [54]. Again, the b/M 
term is necessary as an adjustment for there being a finite 
number of syntheses.

Consequently, point estimates for the marginal treatment 
effect in the target covariate distribution and its variance 
can be derived using the following plug-in estimators:

The combining rules are slightly different to Rubin’s 
variance estimator in multiple imputation (in Eq.  12, 
v̄ is subtracted instead of added) [30]. Interval esti-
mates can be approximated using a normal distribution, 
e.g.  for 95% interval estimates, taking ±1.96 times the 
square root of the variance computed in Eq.  12 [50]. A 
more conservative, heavier-tailed, t-distribution with 
νf = (M − 1)(1+ v̄/((1+ 1/M)b))2 degrees of freedom 
has also been proposed, as normal distributions may 
produce excessively narrow intervals and undercoverage 
when M is more modest [52]. Note that the combining 
rules in Eqs. 11 and 12 are only appropriate for reason-
ably large M. The choice of M is now discussed.

Number of synthetic datasets
In standard multiple imputation, it is not uncommon to 
release as little as five imputed datasets [30]. However, 
MIM is likely to require a larger value of M because it 
imputes all of the outcomes in the syntheses, as opposed 
to a relatively small proportion of missing values. Adopt-
ing terminology from the missing data literature, the 
“fraction of missing information” in MIM is 1, because 
the original dataset used to fit the first-stage regression 
is different than the augmented target dataset used to fit 
the second-stage regression.

In the statistical disclosure limitation literature, a com-
mon choice for the number of syntheses is M = 100 [52]. 
We encourage setting M as large as possible, in order to 
minimize Monte Carlo error and thereby maximize pre-
cision and efficiency. A sensible strategy is to increase the 
number of syntheses until repeated analyses across dif-
ferent random seeds give similar results, within a speci-
fied degree of accuracy. Assuming MCMC simulation is 
used in the synthesis stage, the value of M is likely to be 
a fraction of the total number of iterations or posterior 
samples required for convergence. As computation time 

(11)�̂ = δ̄,

(12)V̂
(

�̂

)

= (1+ 1/M)b− v̄.

is driven by the synthesis stage, increasing M provides 
more precise and efficient estimation [52, 58] at little 
additional cost in the analysis stage.

An inconvenience of the expressions in Eqs. 9 and 12 is 
that these may produce negative variances. When the 
posterior in Eq.  9 generates a negative value of σ 2

� , i.e., 
when (M−1)b

χ∗ < v (where χ∗ is the draw from the poste-
rior in Eq. 9), the variance of the posterior distribution in 
Eq.  10 is negative. Similarly, Eq.  12 produces a negative 
variance when (1+ 1/M)b < v̄ . This is because the for-
mulations have been derived using method-of-moments 
approximations, where estimates are not necessarily con-
strained to fall in the parameter space. Negative variances 
are unlikely to occur if M and the size of the synthetic 
datasets are relatively large. This is due to lower variabil-
ity in σ 2

� and V̂
(

�̂

)

 [53]: v̄ decreases with larger syntheses 
and b is less variable with larger M [52].

Simulation study
Aims
The objectives of the simulation study are to provide 
proof-of-principle for MIM and to benchmark its sta-
tistical performance against that of the standard imple-
mentation of parametric model-based standardization 
(parametric G-computation), which uses maximum-like-
lihood estimation with non-parametric bootstrapping for 
inference [16, 25–28]. The simulation study investigates 
a setting in which the index study is a perfectly-executed 
two-arm RCT. This will be standardized to produce a 
marginal treatment effect in an external target covariate 
distribution.

Methods will be evaluated according to the follow-
ing finite-sample (frequentist) characteristics [59]: (1) 
unbiasedness; (2) precision; (3) efficiency; and (4) cov-
erage of interval estimates. The chosen performance 
metrics assess these criteria specifically. The ADEMP 
(Aims, Data-generating mechanisms, Estimands, 
Methods, Performance measures) structure by Mor-
ris et  al. [59] is used to describe the simulation study 
design. Example R code implementing the methods on 
a simulated example is provided in Additional file 1. All 
simulations and analyses have been performed using R 
software version 4.1.1 [60].2

Data‑generating mechanisms
The data-generating mechanisms are inspired by those 
presented by Phillippo et  al. [61]. We consider binary 
outcomes using the log odds ratio as the measure of 
effect. An index RCT investigates the efficacy of an active 

2  The files required to run the simulations are available at http://​github.​
com/​remir​oazoc​ar/​MIM.

http://github.com/remiroazocar/MIM
http://github.com/remiroazocar/MIM
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treatment (coded as treatment 1) versus a control (coded 
as treatment 0). Outcome yn for subject n in the index 
RCT is simulated from a Bernoulli distribution, with 
event probabilities θn = p

(

yn | xn, tn
)

 given covariates xn 
and treatment tn generated using a logistic model:

Two correlated continuous covariates, xn,1 and xn,2 
are simulated per subject n by drawing from a multi-
variate Gaussian copula with pre-specified means and 
standard deviations for the marginal distributions, and 
a pre-specified covariance matrix. The first covariate 
follows the marginal distribution xn,1 ∼ N(1, 0.52) , and 
the second covariate follows the marginal distribution 
xn,2 ∼ N(0.5, 0.22) . There is some positive correlation 
between the two covariates, with pairwise correlation 
coefficients set to 0.15. Both covariates are prognostic of 
the outcome in the control group at the individual level. 
Due to the presence of treatment-covariate interactions, 
both covariates are also (conditional) effect measure 
modifiers (i.e., predictive of treatment effect heterogene-
ity) at the individual level on the (log) odds ratio scale. 
The covariates also modify marginal treatment effects at 
the population level on the (log) odds ratio scale.

We set the intercept to β0 = −0.5 , coefficients for the 
main covariate-outcome associations to β1,k = 2σk for 
covariate k, where σk is the standard deviation of the sam-
pling distribution of covariate k, and coefficients for the 
interaction terms to β2,k = σk . The treatment coefficient 
(i.e. the conditional log odds ratio for the active interven-
tion versus control at baseline, when the covariate values 
are zero) is set to βt = −1.5 . That is, if the binary out-
come represents the occurrence of an adverse event, the 
active treatment would be more efficacious than the con-
trol. The covariates could represent influential prognostic 
and effect-modifying comorbidities that are associated 
with greater odds of the adverse event and lower efficacy 
of active treatment versus control at the individual level 
on the (log) odds ratio scale.

The simulation study adopts a factorial arrangement 
using three index trial sample sizes times two levels of 
overlap between the index trial and the target covariate 
distributions. This results in a total of six simulation sce-
narios. The settings are defined by varying the following 
parameter values:

•	 Sample sizes of N ∈ {500, 1000, 2000} for the index 
RCT, with a 1:1 active treatment vs.  control alloca-
tion ratio.

yn ∼ Bernoulli(θn),

θn = logit−1
[

β0 + β1,1xn,1 + β1,2xn,2 +
(

βt + β2,1xn,1 + β2,2xn,2
)

1(tn = 1)
]

.

•	 The level of (deterministic) overlap between the 
index RCT and the target covariate distribution: lim-
ited overlap (50% of the index study population lies 
outside of the target population) and full overlap (the 

index study population is entirely contained within 
the target population) [61].

Following Phillippo et al. [61], the target covariate distri-
bution is set to achieve the required level of overlap by 
using a proxy parameter κ ( κ = 0.5 corresponds to 50% 
overlap and κ = 1 corresponds to full overlap). Then, 
each covariate k in the target follows the marginal distri-
bution x∗n,k ∼ N

(

m∗
k , σ

∗
k
2
)

 , with m∗
k = mk(1.1+ (1− κ)2) 

and σ ∗
k = 0.75σk , where mk is the mean of the sampling 

distribution of covariate k in the index RCT. The target 
joint covariate distribution is a multivariate Gaussian 
copula with the pairwise correlation coefficients set to 
0.15. Ntar = 2000 subject profiles are simulated for the 
target covariate dataset. Individual-level outcomes in the 
target, under the treatments being investigated in the 
index study, are assumed unavailable and not simulated.

Estimands
The target estimand is the true marginal log odds ratio 
for active treatment versus control in the target covari-
ate distribution. This may vary across the settings of the 
simulation study because, by design, changing the level of 
(deterministic) overlap changes the target covariate dis-
tribution, and the true marginal log odds ratio depends 
on the covariate distribution.

For each scenario, true values of the marginal estimand 
are determined by simulating a cohort of 2,000,000 sub-
jects, a number sufficiently large to minimize sampling 
variability, using the target covariate distributions in the 
simulation study. Hypothetical subject-level binary out-
comes under active treatment and control are simulated 
for the cohort according to the true outcome-generating 
mechanism. The true marginal log odds ratio is com-
puted by averaging the simulated unit-level outcomes 
under each treatment and contrasting the marginal out-
come expectations on the log odds ratio scale. A simu-
lation-based approach is necessary to compute the true 
marginal estimands due to the non-collapsibility of the 
(log) odds ratio [62–64].

For κ = 0.5 (limited overlap), the true marginal out-
come probabilities for active treatment and control in the 
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target population are 0.60 and 0.75, respectively, result-
ing in a true marginal log odds ratio of -0.68. For κ = 1 
(full overlap), the true marginal outcome probabilities for 
active treatment and control in the target population are 
0.50 and 0.69, resulting in a true marginal log odds ratio 
of -0.81.3

Methods
Each simulated dataset is analyzed using: (1) the standard 
implementation of parametric model-based standardi-
zation (parametric G-computation) [16, 25–28]; and (2) 
parametric model-based standardization using MIM.

Standard model‑based standardization
Among the subjects in the index RCT, outcomes are 
regressed on baseline covariates and treatment using 
a logistic model. Maximum-likelihood is used to esti-
mate the conditional outcome model, which is correctly 
specified. Outcome predictions under each treatment 
are made by applying the fitted regression to the full 
target covariate dataset. The marginal log odds ratio is 
derived by: (1) averaging the predicted conditional out-
come means by treatment group over the target covariate 
dataset; (2) transforming the resulting marginal outcome 
means to the log odds ratio scale; and (3) producing 
a contrast for active treatment versus control in such 
scale [16, 27, 28]. For inference, the index RCT is resa-
mpled via the ordinary non-parametric bootstrap with 
replacement, using 1,000 resamples (the target covariates 
are assumed fixed). The average marginal log odds ratio 
and its standard error are computed as the mean and the 
standard deviation, respectively, across the resamples. 
Confidence intervals are computed using the “percen-
tile” method; 95% interval estimates are derived from the 
2.5th and the 97.5th percentiles across the resamples.

Multiple imputation marginalization
In the synthesis stage, the first-stage multivariable logis-
tic regression is correctly specified and is estimated using 
MCMC sampling. This is implemented using the R pack-
age rstanarm [65], an appendage to rstan [66]. We 
adopt the default normally-distributed “weakly informa-
tive” priors for the logistic regression coefficients [65]. 
Predicted outcomes are drawn from their posterior pre-
dictive distribution, given the augmented target dataset. 
We run two Markov chains with 4,000 iterations per 
chain, with 2,000 “burn-in” iterations that are not used for 

posterior inference. The MCMC chains are thinned every 
4 iterations to use a total of M = (2000× 2)/4 = 1000 
syntheses of size N ∗ = 2× Ntar = 4000 in the analysis 
stage. The second-stage regressions are simple logistic 
regressions of predicted outcomes on treatment that are 
fitted to each synthesis using maximum-likelihood esti-
mation. Their point estimates and variances are pooled 
using the combining rules in Eqs. 11 and 12. Wald-type 
95% confidence intervals are estimated using t-distribu-
tions with νf = (M − 1)(1+ v̄/((1+ 1/M)b))2 degrees 
of freedom. Variance estimates are never negative under 
any simulation scenario. In a test simulation scenario 
( κ = 0.5 and N = 1000 ), the selected value of M = 1000 
is high enough, so that the Monte Carlo error is adequate 
with respect to the uncertainty in the estimator. Upon 
inspection, marginal log odds ratio estimates across dif-
ferent random seeds are approximately within 0.01.

Performance measures
We simulate 1,000 datasets per scenario. For each sce-
nario and methodology, the following performance meas-
ures are computed over the 1,000 simulated datasets: (1) 
bias; (2) empirical standard error (ESE); (3) mean square 
error (MSE); and (4) empirical coverage rate of the 95% 
interval estimates. These criteria are explicitly defined by 
Morris et al. [59] and specifically address the aims of the 
simulation study. The ESE evaluates precision (aim 2) and 
the MSE measures overall efficiency (aim 3), accounting 
for bias (aim 1) and precision (aim 2).

To quantify the simulation uncertainty, Monte Carlo 
standard errors (MCSEs) over the data replicates, as 
defined by Morris et  al. [59], will be reported for each 
performance metric. Based on the scenario inducing the 
highest long-run variability ( κ = 0.5 and N = 500 ), the 
MCSE of the bias of the methods is at most 0.015 under 
1,000 simulations per scenario, and the MCSE of the 
coverage (based on an empirical coverage percentage of 
95% ) is 

(√
(95× 5)/1000

)

% = 0.69% , with the worst-case 
being 1.58% under 50% coverage. Such levels of simula-
tion uncertainty are considered sufficiently precise, and 
1,000 simulations per scenario are deemed appropriate.

Results
Performance metrics for the six simulation scenarios are 
reported in Fig. 2. The limited overlap settings ( κ = 0.5 ) 
are displayed at the top (in ascending order of index trial 
sample size, from top to bottom), followed by the full 
overlap settings ( κ = 1 ) at the bottom. For each simu-
lation scenario, there is a ridgeline plot depicting the 
spread of point estimates for the marginal log odds ratio 
across the 1,000 simulation runs. The dashed red lines 
indicate the true estimands. At the right of each ridgeline 
plot, a summary tabulation exhibits empirical quantities 

3  In contrast, the true average conditional log odds ratio for active treat-
ment versus control, at the covariate means of the target population, 
is given by the weighted average: βt + β2,1m

∗
1 + β2,2m

∗
2 = −2.5+ 0.5×

(1.1+ (1− κ)2)+ 0.2× 0.5× (1.1+ (1− κ)2) . This is equal to -0.69 for 
κ = 0.5 and to -0.84 for κ = 1.
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Fig. 2  Simulation study results. The distribution of treatment effect point estimates over the simulation runs and the empirical quantities used 
to measure the statistical performance of standard model-based standardization (“Standard”) and multiple imputation marginalization (“MIM”) are 
visualized for the six scenarios. The dashed red lines in the ridgeline plots to the left indicate the true estimands
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used to measure the statistical performance of each 
method, with MCSEs presented in parentheses alongside 
the corresponding performance metrics.

In the full overlap scenarios, absolute bias is similarly 
low for MIM and the standard version of model-based 
standardization. In the limited overlap scenarios, the bias 
of both standardization methods has slightly higher mag-
nitude. There seems to be a minimal increase in bias as 
the number of subjects in the index trial decreases. Bias 
is more marked in the scenarios with N = 500 (-0.019 
and -0.013 for MIM and the standard approach, respec-
tively, in the limited overlap setting, and -0.017 and 
-0.017, respectively, in the full overlap setting). This is 
likely due to the small-sample bias inherent in logistic 
regression [67].

As expected, precision is lost as the index trial sample 
size and the level of covariate overlap are reduced. With 
κ = 0.5 , there exists a subpopulation within the target 
population that does not overlap with the index trial 
population. Therefore, inferences in a subsample of the 
target covariate dataset will rely on extrapolation of the 
conditional outcome model. With poorer covariate over-
lap, further extrapolation is required, thereby incurring 
a sharper loss of precision. Precision is very similar for 
both standardization methods, as ESEs are virtually equal 
in all simulation scenarios for both. Similarly, efficiency 
is virtually identical for both standardization methods. 
As per the ESE, MSE values also increase as the num-
ber of subjects in the index trial and the level of overlap 
decrease. Because bias is almost negligible across the 
simulation scenarios, efficiency is driven more by preci-
sion than by bias.

From a frequentist viewpoint, the empirical cover-
age rate should be equal to the nominal coverage rate to 
obtain appropriate type I error rates for null hypothesis 
testing. Namely, 95% interval estimates should include 
the true marginal log odds ratio 95% of the time. Theo-
retically, due to our use of 1,000 Monte Carlo simulations 
per scenario, the empirical coverage rate is statistically 
significantly different to the desired 0.95 if it is less than 
0.9365 or more than 0.9635. For both standardization 
methods, empirical coverage rates only fall outside these 
boundaries, marginally — 0.934 for MIM and 0.935 for 
the standard approach – in the scenario with N = 500 
and full overlap. This suggests that uncertainty quantifi-
cation by the standardization methods is adequate.

Discussion
Despite measuring statistical performance in terms of 
frequentist finite-sample properties, MIM offers per-
formance comparable to that of the standard version 
of model-based standardization. Both approaches pro-
vide appropriate inference with a correctly specified 

parametric conditional outcome model. The simulation 
study demonstrates proof-of-principle for the standardi-
zation methods, but only considers a simple best-case 
scenario with correct model specification and two con-
tinuous covariates. It does not investigate how robust the 
methods are to failures in assumptions.

Parametric outcome models impose strong functional 
form assumptions; for example, that effects are linear and 
additive on some transformation of the conditional out-
come expectation. Such modeling assumptions may not 
be plausible where there are a large number of covariates 
and complex non-linear relationships between them. To 
provide some protection against model misspecifica-
tion bias, one may consider using flexible data-adaptive 
estimators, e.g.  non-parametric or machine learning 
techniques, for the conditional outcome model (the first-
stage regression in MIM). While such approaches make 
weaker modeling assumptions, they may still be subject 
to larger-than-desirable bias in finite samples and are 
constrained by limited theoretical justification for valid 
statistical inference [68].

In practice, the use of MIM is appealing for several 
reasons. Firstly, as illustrated in Additional file  1, MIM 
can readily handle missingness in the patient-level data 
for the comparative index study. Missing outcomes, and 
potentially covariate and treatment values, could be 
imputed in each MCMC iteration of the synthesis stage, 
naturally accounting for the uncertainty in the missing 
data of the index study.

Secondly, the Bayesian first-stage regression model can 
incorporate both hard external evidence (e.g. the results 
of a meta-analysis) and soft external evidence (e.g. expert 
knowledge) to construct informative prior distributions 
for the model coefficients. When external data cannot 
be leveraged, “weakly informative” contextual informa-
tion can be used to construct skeptical or regularization 
prior distributions. Through shrinkage, such priors can 
improve efficiency with respect to maximum-likelihood 
estimators in certain scenarios [69].

Thirdly, a Bayesian formulation for the first-stage 
regression offers additional flexibility to address other 
issues, such as measurement error in the patient-level 
data of the index trial [70]. Bayesian model averaging can 
be used to capture structural or model uncertainty [71]. 
When one is unsure about which baseline covariates are 
(conditional) effect measure modifiers, one can allow 
interactions to be “half in, half out” by specifying skep-
tical prior distributions for the candidate product term 
coefficients in Eq. 2 [72–74].4

4  In the words of Simon and Freedman [74], this “encourages the quanti-
fication of prior belief about the size of interactions that may exist. Rather 
than forcing the investigator to adopt one of two extreme positions regard-
ing interactions, it provides for the specification of intermediate positions.”
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In this article, we have used multiple imputation to per-
form model-based standardization over a target empirical 
covariate distribution, assumed to belong to participants 
that are external to the index study. In this scenario, one 
is reliant on correct specification of the outcome model 
(the first-stage regression in MIM) for unbiased estima-
tion in the target. One is also reliant on covariates being 
consistently defined across data sources and on complete 
information on influential covariates being available both 
for the index study and for the target. In practice, this is a 
key challenge [75, 76], which could be addressed through 
the development of core patient characteristic sets that 
define clinically important covariates to be measured and 
reported among specific therapeutic areas [77].

In the absence of overlap between the covariate dis-
tributions in the index study and the external target, 
e.g. when the index study covariate distribution lies out-
side the target covariate distribution, one must consider 
the plausibility of the outcome model extrapolation. Sen-
sitivity analyses using alternative model specifications 
may be warranted to explore the dependence of infer-
ences on the selected adjustment model. Recently, several 
authors have proposed sensitivity analyses that are appli-
cable where potential effect measure modifiers are meas-
ured only in the index trial but not in the target dataset 
[78, 79]. These techniques could be applied in conjunc-
tion with MIM.

While we have used multiple imputation to standardize 
over an external covariate distribution, it is also possible to 
standardize over the empirical covariate distribution of the 
index study, as illustrated in Additional file 1. This involves 
less stringent assumptions and avoids model-based extrap-
olation into an external data source. Such approach allows 
for the estimation of covariate-adjusted marginal treat-
ment effects within individual comparative studies, adjust-
ing for covariate imbalances between treatment arms.

A limitation of this article is the lack of a real case 
study demonstrating the application of the new method-
ology. While proof-of-principle for MIM has been pro-
vided through simulation studies, the method should be 
applied to a real example in order to influence applied 
practice. This is a key priority for future research.
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