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Abstract

Tensor networks are an invaluable tool for the study of quantum systems. In this

thesis we use tensor networks, and more directly matrix product states, to simulate

both open and closed quantum systems.

In the first part we study the one-dimensional spin-1/2 J1-J2 model using a path

integral constructed over matrix product states. This is a spin-model with neigh-

bour (of strength J1) and next-nearest neighbour (J2) interactions. We show how

this treatment is able to capture the transition from antiferromagnetic order to

singlet order at the semi-classical, saddle point level, since saddle points support

non-trivial entanglement structure. Taking an appropriate continuum limit, that is

a generalisation of the Haldane map, we recover the previously known field theory

with the crucial topological terms that determine the nature of the phase transition.

In the second part we introduce a Langevin unravelling of the density matrix

evolution of an open quantum system over matrix product states, which we term

the time-dependent variational principle-Langevin equation. This allows the study

of entanglement dynamics as a function of both temperature and coupling to the

environment. As the strength of coupling to and temperature of the environment is

increased, we find a transition where the entanglement of the individual trajectories

saturates, permitting a classical simulation of the system for all times.

Finally, we present a time-evolution algorithm for ion-trap based quantum com-

puters. Here we optimise translationally invariant quantum circuit representations

of states to simulate the dynamical phase transition of the quantum transverse-field

spin-1/2 Ising model. We implement efficient sequential quantum circuits that are

inspired by infinite matrix product states. Preliminary results on ion-trap emulators

show promise for the utility of this approach.
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Impact Statement

Quantum systems are often difficult to understand, keep track of, and make predic-

tions about. Tensor networks have proven to be an invaluable tool for understanding

these complex quantum systems. High-dimensional tensors encapsulate quantum

correlations, i.e. systems with large amounts of entanglement. Tensor networks

provide a means of approximating these tensors to efficiently represent localised

entanglement in quantum many-body systems. In this thesis we use tensor net-

works in different ways and present new tools built from these existing tools.

The research of this thesis uses tensor networks for their relevant field of study in

the following ways:

Chapter 3: In this chapter we use the new tool of field theories over entan-

gled, tensor network, states. This is a new way of capturing entanglement at the

saddle point, rather than including the proliferation of instantons. We apply this

to study the J1-J2 model, which is a simple model of a frustrated quantum magnet,

that has an interesting phase transition from singlet to antiferromagnetic order.

The quantum description of electrons underpins magnetism in solid state systems.

This generally presents difficult problems, but we find for such an example system,

the tensor networks are able to greatly simplify the analysis and recover established

results of more advanced techniques.

Chapter 4: This work presents a new tool for investigating open quantum sys-

tems; a Langevin equation over tensor network states. The study of open quantum

systems is important to understand realistic experimental setups of quantum sys-

tems and the emergence of classicality. This work also identifies regions where the
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influence of the environment limits the entanglement, so that the system becomes

semi-classical. Such a description requires fewer computational resources to make

predictions, so it is useful to identify when this occurs. In this phase there can also

be no quantum advantage from using a quantum computer.

Chapter 5: In this chapter we present a tensor network based algorithm for

near-term ion-trap quantum devices. Near-term quantum computers are limited

by low numbers of qubits, limited fidelities, and high errors and noise. Algo-

rithms using tensor network states can maximise use of limited resources. Such

algorithms are important to understand for near-term devices, and our algorithm

implementing quantum time evolution shows promise to work on quantum hard-

ware. Ion-trap based quantum hardware have high fidelities, however they are

limited by being slow. Accordingly, we are also faced with balancing the advantages

and disadvantages of the ion-trap architecture.



Chapter 1

Introduction

The world at the level of the very small, or microscopic, is inescapably quantum.

In the 1980s, scientists’ newfound ability to produce high purity samples, near

absolute zero temperatures, and advanced nanotechnology gave rise to a flurry of

discovery – unveiling the exotic nature of low-dimensional materials. This shifted

the experimental paradigm of condensed matter physics, and investigation into

quantum magnetism and topological materials gained considerable traction.

Trying to explain and understand the mechanisms behind these new discov-

eries and also testing the predictions that follow has required the development of

new theoretical tools. Some of these approaches are based in calculations of simple

systems and some are based in simulation. Models and simulations show how the

structure and mechanisms of a system generates the behaviour we observe.

Accessing large quantum systems efficiently is beyond the capabilities of clas-

sical computers, so techniques have been devised to overcome certain specific

hurdles to do so. Some of these approaches are based on tensor networks, as the title

of this thesis goes, which we will go on to introduce. Accordingly, an early goal of

quantum computing was for dynamical simulations [1]. We will also introduce the

type of quantum computers that exist today, which are markedly shy of this goal

but still show potential for interesting experiments. Here we will show how tensor

networks can allow for solutions of quantum problems that maximise the limited

resources that these devices have.

So why is it that quantum systems are so difficult to understand?
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From the beginning – the late 1920s brought the advent of quantum mechan-

ics, and during this time the concept of wave-particle duality was established by

de Broglie [2]. This revealed the possibility for particles, like electrons, to have

further wave-like properties such as diffraction or superposition. This phenomena

was soon after experimentally observed [3, 4] and is now a technique that allows

determination of the crystal structure of materials [5].

The magnetic moment of an atom is due to the motion of the electron. Taking

the classical picture of electrons orbiting a nucleus, these closed current loops

have a magnetic dipole by the laws of electromagnetism. For some atoms the

individual magnetic moments across all the electrons can cancel out, implying no net

magnetic dipole. The motion of electrons have an associated angular momentum,

so the magnetic dipole of an atom, where it exists, is associated with the angular

momentum of the atom. In quantum mechanics there is a further type of angular

momentum, spin, which is the intrinsic angular momentum of a body. We can think

of spins as minuscule magnets that are localised to points.

During this time it was difficult to reconcile the interaction of two electrons.

Here, the wave-like aspects of linear superposition and quantum coherence has great

consequence. Einstein, Podolsky and Rosen (EPR) set out the following thought

experiment of two electrons [6]. Suppose the state of one of the electrons is spin

up |↑⟩ and the other has its spin down |↓⟩. Then the state is prepared as the linear

combination, (|↑↓⟩+ |↓↑⟩)/
√

2. The thought experiment then separates these two

electrons so that they are very far apart from each other, in the process not disturbing

their quantum states.

Then, if we measure the state of one of the electron pair to be |↑⟩, the perfect

anticorrelation of the spins implies the state of the other is fixed to be |↓⟩. EPR found

this ‘action-at-a-distance’ effect unappealing. This lead them to the conclusion that

quantum theory did not provide a complete description of reality. Skipping through

history, this problem was further developed (i.e. Bell’s theorem [7]), which culmi-

nated into the understanding that quantum theory does indeed provide a complete

description of reality – a reality that includes quantum entanglement. This descrip-

tion is at the cost of being inherently probabilistic. That is, there is a fundamental

uncertainty in all observable quantities.
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Classical intuition strives to remove uncertainties; probabilities concern our

ignorance of a system. In quantum, randomness can be a feature and manifests

interesting quantum effects. Shifting to quantum mechanics replaces a classical (say

3-dimensional) coordinate with a probability distribution of possible coordinates.

The wavefunction has the simple interpretation of telling us the probability that we

will find a particle at a given position.

Extending the once daunting notion of the entanglement of two electrons, i.e.

individual spins, to many spins, opens up a whole branch of theoretical physics –

lattice quantum spin systems. This is the study of how lattices with spin degrees of

freedoms confined to sites interact. They are important as prototypical models of

quantum systems being conceptually simple (regular structures), yet still conveying

surprisingly rich physics. The study of simple low dimensional systems has led

to exact solutions. Spin systems also demonstrate phase transitions, seen at the

interplay between thermal and quantum fluctuations.

This quantum description of many electrons leads to quantum magnetism in

solid state systems. The classical intuition would predict that atoms with net mag-

netic moments align on the microscopic scale leading to macroscopic magnetism.

However, this alignment requires large forces between the atoms and the usual

magnetic dipole interaction is too weak to explain room-temperature magnetism.

That is, this should be some zero temperature phenomenon, in order to preserve

the delicate ordering of spins from the disordering effects of thermal fluctuations.

In fact, it is the exchange interaction that influences the alignment of spins.

This is down to Pauli exclusion principle [8] – spins interact by the electrical forces

between the electrons, rather than magnetic. Forces of electrical origin are much

stronger, permitting macroscopic scale magnetism even at room temperature. This

interaction is also short ranged, being dependent on the overlap of atomic wavefunc-

tions. These details make the exchange interaction easier to handle than magnetic

dipole interactions. The form of this can be expressed as,

H = αS1 · S2 + βSz
1Sz

2 (1.1)

where H is the Hamiltonian, an identification of the total energy of the interaction

between the two atoms with spins labelled S1 and S2.
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When α = 0, β = J this is known as the Ising interaction, while for α = J, β = 0

this is the isotropic Heisenberg interaction. For the Ising interaction, the one-

dimensional case is trivial, and further non-trivial results are known for the two-

dimensional case (Onsager solution). For the Heisenberg interaction there are many

important (and non-trivial) results in one-dimension (e.g. exactly solvable models

with Bethe ansatz), and beyond this, results are numerical. The combination of

these interactions and accounting for external fields underpin spin dynamics.

Extending this interaction to many spins takes the form of a summation over

such interacting terms. For example, nearest-neighbour interactions would consist

of a sum over pairs of terms of the form of Eq. 1.1. These interactions can be

extended to act non-trivially on k sites, and thus be called k-local interactions,

H = ∑
i

hi (1.2)

where each of the hi operators act on at most k sites. In the case of k = 2 such a

hi could be hi = αSi · Si+1. k-local Hamiltonians describe realistic systems, where

interactions can generally be treated as local.

From Hamiltonians we would like to determine the energy spectrum (i.e. lowest

energy or ground state) or values of local observables. The obvious technique to

do so is exact diagonalisation. This is a numerical scheme to calculate the exact

eigenstates and energy eigenvalues of a quantum Hamiltonian by expressing the

finite system in matrix form. Thermal expectation values then follow by using these

values. This technique is limited to small system sizes due to memory constraints

(for a chain of length N and spin-1/2, the Hamiltonian represented as a matrix has

dimension 2N × 2N).

To make progress we must overcome the exponentially large vector space

(equipped with inner product), i.e. Hilbert space H, where quantum states reside,

ψ ∈ H. Moving beyond the particularities of particles and waves, from now we

think of quantum states as these vectors ψ. Then the superposition of states follows

from linearity of Hilbert space, say for a single particle qubit with eigenstates |0⟩
and |1⟩, any superposition of these is a valid state, |ψ⟩ = α |0⟩+ β |1⟩.
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Going beyond one qubit, the qubits A and B in states |0⟩A and |0⟩B, form a joint

quantum system described by a tensor product,

|ψAB⟩ = |0⟩A ⊗ |0⟩B . (1.3)

However, if the total system cannot be described by specifying the states of A

and B individually, much like in the EPR experiment, they are said to be entangled.

For instance,

|ψAB⟩ = |0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B ̸= |ψA⟩ ⊗ |ψB⟩ . (1.4)

The degree to which two subsystems (say A and B) are entangled is measured by

the entanglement entropy.

This can be defined by first introducing a further useful quantity, the density

matrix of a system, here it is given by ρAB = |ψAB⟩⟨ψAB| (the outerproduct of these

states in Dirac notation). This is a matrix that defines our quantum system. It is

possible to obtain a reduced density matrix for some subsystem (say A) by tracing

out the remainder of the system (B), ρA = TrB |ψAB⟩⟨ψAB|.
The von Neumann entropy S of the reduced density matrix is the entropy

of entanglement. If it is zero, the two subsystems are separable into pure states,

ρA = TrB |ψAB⟩⟨ψAB| = |ψA⟩⟨ψA|, otherwise the subsystem is in a mixed state and

they are entangled. In general,

S(ρA) = −TrA(ρA log2 ρA). (1.5)

Since the joint Hilbert space of quantum systems is given by the tensor product

of the individual Hilbert state spaces, Hilbert space grows exponentially. It is

this feature of quantum mechanics that makes doing calculations hard. Only few

problems can be solved exactly, so often problems are solved approximately, using

analytical or numerical methods.

One such avenue for analytical and numerical study is using the variational

principle [9]. The idea is to guess a trial wavefunction for the problem, which has

adjustable parameters called variational parameters. In the following we introduce

such a family of states – variational classes of quantum states called tensor networks.
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1.1 Tensor Network States

Tensor networks are mathematical representations of quantum many-body states

based on their entanglement structure [10]. The specific tensor network describes

states with different physical properties, properties such as their dimension or en-

ergy. The tensors themselves codify some degree of entanglement or key properties

of the overall wavefunction. Connecting these regions or tensors as a network builds

the complex quantum state.

1.1.1 Exponential size of the Hilbert space

So far we have only briefly introduced Hilbert space, H, and there we mentioned

how it is exponentially large. Hilbert space is a complex inner product space – that is a

vector space equipped with the mathematical operation of inner product. Quantum

states are vectors with Hilbert space their state space. Using Dirac notation, |ψ⟩ ∈H,

and for two such states, |ψ⟩ , |ϕ⟩ ∈H, their inner product, ⟨ψ|ϕ⟩, is associated with

their overlap.

One of the simplest quantum systems is the qubit, a two-level system of |0⟩
and |1⟩. This is named as such being the quantum version of a classical binary bit.

Physical examples of these systems include the spin(-1/2) of an electron, which can

be either up or down. While a classical bit can be either 0 or 1, a qubit can be anything

of the form α|0⟩+ β|1⟩, where α, β ∈ C and |α|2 + |β|2 = 1 ensures normalisation.

These qubit states can be summarised geometrically as points on the Bloch sphere.

Further computational advantage lies in the way Hilbert space scales

with the number of qubits. A system of n qubits has 2n possible ba-

sis states. For example if n = 3, there are 23 = 8 possible basis states,

|000⟩ , |100⟩ , |010⟩ , |001⟩ , |110⟩ , |101⟩ , |011⟩ , |111⟩. Thus, the dimension of vectors

describing quantum states, also the dimension of matrices that describe quantum

gates or operations, increases exponentially. These basis states allow for entangled

combinations of these qubits, i.e. Eq. 1.4.

As a result, storing and manipulating sizeable quantum states is a near impossi-

ble task for classical computers. In the introduction we appreciate this problem and

had presented solutions that include developing quantum computers. The problem

is simplified by the fact that physically relevant states often have low entanglement.
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These include low-energy states of generic local Hamiltonians, which are bound to

live in a small corner of Hilbert space [11, 12]. How low this entanglement is, is

made precise by area laws. In the following we show where this corner lies.

Area laws for entanglement scaling
The idea that the entropy of a region should scale with its boundary rather than its

volume was first discovered by Bekenstein, who showed that the entropy of a black

hole is proportional to its surface horizon [13]. While general relativity is expected

to be described by an underlying theory of quantum gravity, it is remarkable that

Bekenstein’s result arises within an entirely classical theory, where no description

of the microscopic nature of a black hole exists.

For a quantum many-body system existing within some volume and for some

ground state, the area law conjecture is the statement that the entanglement entropy

of this state scales at most with the boundary of the volume. While a classical

system of n particles requires O(n) parameters to describe, quantum entanglement

increases this to 2O(n) for the analogous quantum system. Satisfying an area law

reduces this requirement, and this has been proven to be true for the interesting

class of gapped one-dimensional quantum systems by Hastings [12].

The Hamiltonian gap is the difference in energy between the ground state

and the first excited state. If this gap is non-zero in the thermodynamic limit,

the Hamiltonian is gapped. The consequences for one-dimensional systems is

that correlations decay exponentially [14], on-top of this a further stronger form

of locality is imposed by area law scaling of entanglement. Furthermore, their

ground states are well approximated by matrix product states (MPS), which are one-

dimensional tensor network states. If the Hamiltonian is ungapped, correlations

show power-law decay and the entropy scales with the logarithm (that is not with

the system size as is true for random states) so the number of parameters remains

yet lower.

This thesis focuses on using matrix product state representations for different

areas of many-body quantum systems. In the following sections we introduce

classes of quantum states, from coherent states to tensor network states. This leads

to introducing MPS and their properties.
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1.1.2 Bosonic coherent states

Before introducing tensor network states, we introduce a precursor class of states

– bosonic coherent states. We present important features of these states follow-

ing [15]. In the introduction, we discussed the fundamental uncertainty of quantum

mechanics, this is the Heisenberg uncertainty principle. This asserts a fundamen-

tal resolution to which certain pairs of observables (i.e. the standard deviation

of a particle’s position σx and momenta σp) can be known, and is set by Planck’s

constant h = 2πh̄, requiring σxσp ≥ h̄
2 . The wavefunction of coherent states satisfy

the Heisenberg uncertainty principle with equality. Because a minimum uncer-

tainty wavepacket is necessarily a Gaussian, the expectation values of position and

momentum satisfy the classical equations of motion of a harmonic oscillator.

Another aspect defining coherent states involves a continuous parametrization

and a resolution of the identity [16]. This is a weighted integral over one dimensional

projection operators onto the set of coherent states. This feature comes across when

we write coherent states |α⟩, with displacement parameter α ∈C, in the |n⟩ basis [15]:

|α⟩ = e−
1
2 |α|2

∞

∑
n=0

αn
√

n!
|n⟩ . (1.6)

These are not stationary states of the harmonic oscillator, but are appropriate for

taking the classical limit. From this the overlap between coherent states is,

|⟨α|β⟩|2 = e−|α−β|2 (1.7)

Thus, the set {|α⟩} is said to be overcomplete, since ⟨α|β⟩ ̸= 0 for α ̸= β. There is still

a closure relation, leading to the resolution of the identity,

∫ d2α

π
|α⟩⟨α| = 1. (1.8)

Inserting many such resolutions of the identity into the quantum-mechanical

partition function transforms it into a sum over classical configurations. The matrix

elements of this sum becomes classical Boltzmann weights. Here the resolution of

the identity provides a way to take a quantum Hamiltonian to a classical Hamilto-

nian.
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Coherent states have applications in Feynman’s path integral formulation of

quantum mechanics [17]. A system is described as a weighted sum over classical

coherent state trajectories, that is, sequences of classical configurations. These

path integrals are therefore useful for understanding the emergence of classicality.

On the contrary, being composed of product (i.e. not entangled) states of coherent

states, entanglement cannot be determined directly from product state field theories.

Spin coherent states
It is also possible to define spin coherent states [18]. In the introduction we intro-

duce spin, which is a fundamentally non-classic property of matter. In algebraic

properties and symmetries this quantity is very similar to angular momentum. It

is a vector operator that when quantised produces a finite number of states.

The spin coherent state |l⟩ is obtained by rotating the highest weight Sz eigen-

state to point in the direction of l. That is, we start with a state well localised in the

z-direction, and apply rotations R(Ω̂) where Ω̂ = (θ,ϕ) [19]. |l⟩ is the spin coherent

state parametrised by the O(3) unit vector l, and |−l⟩ is orthogonal to it. Much

like how coherent states of the harmonic oscillator are sharply peaked Gaussians in

the (x, p)-plane, spin coherent states point in a particular direction to the greatest

allowed extent by angular momentum commutation relations.

Here, for some value of spin S, the overlap between two states and resolution

of the identity is given by,

|⟨l1|l2⟩|2 =
(

1 + l1 · l2
2

)S

(1.9)

1 =
2S + 1

4π

∫
dΩ̂ |l⟩⟨l| . (1.10)

The spinor representation of spin coherent states is useful, and we make use of it in

this thesis. Parametrizing an arbitrary normalised spinor z, this is related to l by a

Hopf or double covering map, l = z†σz. For spin-1/2 the SU(2) coherent state is,

|ψ(θ,ϕ)⟩ = cos
θ

2
|↑⟩+ eiϕ sin

θ

2
|↓⟩ . (1.11)

This spinor representation can be generalised for tensor network states.
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Spin coherent states are the maximal allowed projection along some direc-

tion in space, and in many aspects are the most classical quantum spin states. When

this spin analogy of coherent states was written down in the 1970s [18], it was

not clear whether these would prove to be as useful as the coherent states of the

harmonic oscillator. Then they had uses to discuss simple problems such as a single

spin in a field, a spin wave, or two spin-1/2s with Heisenberg coupling.

They also increase physical insight to problems, but spin coherent states alone

are not enough. While these are the most classical quantum states, the most entan-

gled states are Bell states. We have introduced bosonic and and spin coherent states

as they are very useful and will be utilised throughout this work. The coherent

states are also used as variational wavefunctions to some success, but they cannot

be a complete description of a reality that is not almost classical. They are limited

by the scope of entanglement that they cover.

1.1.3 Tensor network states and matrix product states (MPS)

Challenges in understanding strongly correlated quantum many-body systems are

down to the exponential scaling of Hilbert space. A numerically efficient solution to

solving and processing the quantum state is using tensor network representations.

Variational classes of tensor network states have good properties such as their

numerical efficiency by fulfilling the area law, and codifying the entanglement

structure of a system. Such an approach is semi classical, as their parameters scale

polynomially with the system size.

This ease of description comes from the natural diagrammatic notation these

representations allow, meaning it is not necessary to write down formulas of tensors

with many indices. We represent a single tensor by a geometric shape with legs

sticking out of it, each of these legs correspond to an index, examples of these

diagrams are depicted in Figure 1.1

To represent tensor contraction (e.g. matrix multiplication, vector inner prod-

ucts, the trace of a matrix) the indices being summed over are a shared leg between

the two geometric objects as seen in Figure 1.1a. It is possible to label the direction
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of these legs so that we can graphically describe vectors and their dual in Hilbert

space (i.e. performing calculations with bra-ket notation) and avoid prohibited

contractions, this is illustrated in Figure 1.1b.

Another useful concept to emphasise is grouping and splitting of the tensor

network. For general tensors this would be a tensor rank decomposition. It is

possible to group or split indices in order to lower or raise the rank. This can be

seen in the Figure 1.1c, where grouping unused indices reduces this contraction to

matrix multiplication. Grouping and splitting is possible because spaces of tensors

are isomorphic when their overall dimensions match.

We will present these properties for the example of matrix product states

(MPS). MPS are one-dimensional tensor network states where the tensors are matri-

ces. Nice properties are guaranteed by parametrising states in the area law corner

of Hilbert space. These are useful for one-dimensional physical systems by virtue

of provably satisfying an area law. Their construction, and further their grouping

and splitting is done using the singular value decomposition.

(a)

(b)

(c)

Figure 1.1: Examples of tensor network diagrams. a) Shows a general tensor of rank-3 that
is being contracted with three rank-1 tensors. b) Here we have an example of
matrix multiplication, i.e. contraction of rank-2 tensors. The arrows indicate
the allowed order of multiplication, i.e. where it is not commutative. c) Shows
pictorially tensor rank decomposition. Larger tensors can be broken up into
smaller tensors, which is a useful property for calculation. The type of tensor
determines how this is performed.
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1.1.4 Constructing MPS

Singular value decomposition (SVD) and Schmidt decomposition
We introduce the singular value decomposition (SVD) following [20]. For matrix

M, dim M = NA × NB, the SVD guarantees the existence of a unique decomposition

M = USV†, where:

• U is the matrix such that dim U = NA × min(NA, NB) with orthonormal

columns (left singular vectors) so that U†U = 1. Furthermore if NA ≤ NB,

U is unitary, UU† = 1.

• S is the diagonal matrix such that dim S = min(NA, NB)× min(NA, NB). Its

entries Sii = λi are called singular values assumed to be in descending order.

The number of non-zero singular values is the Schmidt rank of M.

• V† is the matrix such that dim U = min(NA, NB)× NB with orthonormal rows

(right singular vectors) so that V†V = 1. Furthermore if NA ≥ NB, V is unitary,

VV† = 1.

A key property of the SVD is that truncation of the dimension by the number

of Schmidt coefficients we keep gives the optimal approximation of the matrix with

respect to the Frobenius norm. We use the SVD to derive the Schmidt decomposition

of quantum states. This decomposition minimally entangles these two subsystems,

with entanglement given by the Schmidt values. A pure state on subsystems A and

B can be written as,

|ψ⟩ = ∑
ij

Cij |i⟩A |j⟩B , (1.12)

where {|i⟩A} and {|j⟩B} are orthonormal bases of A and B. To calculate the decom-

position to ψ = ∑α λα |α⟩A |α⟩B, where λα are the Schmidt coefficients, we re-write

the state as a matrix then apply SVD. For this general state,

|ψ⟩ = ∑
ij

min(NA,NB)

∑
α

UiαSααV†
jα |i⟩A |j⟩B

=
min(NA,NB)

∑
α

(
∑

i
Uiα |i⟩A

)
λα

(
∑

j
V†

jα |j⟩B

)

=
min(NA,NB)

∑
α

λα |α⟩A |α⟩B .

(1.13)
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Orthonormality of U and V† ensures that {|α⟩A} and {|α⟩B} are orthonormal

and can be extended to be orthonormal bases of A and B. Restricting the number

of Schmidt coefficients, i.e. the sum to run up to r ≤ min(NA, NB), we obtain the

Schmidt decomposition. When r = 1, this corresponds to (classical) product states

and r > 1 to entangled (quantum) states.

We can use this to compute the von Neumann entropy of entanglement (Eq. 1.5)

along this bipartition of the state into A and B,

SA|B(|ψ⟩) = −
r

∑
α

λ2
α log2 λ2

α. (1.14)

For MPS with bond-dimension D, the entanglement is bounded by S ≤ 2log D.

So to simulate a system with high entanglement, the bond dimension must grow

exponentially with the entropy.

Decomposition of quantum states into MPS
In the following, we briefly summarise the steps taken in [21] to arrive at the

many-body wavefunction of MPS. A system of N sites, each with corresponding

on-site d-dimensional Hilbert spaces, is characterised by the pure quantum state

|ψ⟩ ∈ C⊗dN . Since we consider only the spin-1/2 case, we may set d = 2.

• To each of the N spins, we assign two virtual indices (distinguished by Greek

indices), of dimension D. This is called the bond dimension.

• We assume each pair of neighbouring virtual spins corresponding to all the

different sites are in a maximally entangled state, |I⟩ = ∑D
α=1 |α,α⟩.

• To each of the N sites we apply the SVD,

A=
d

∑
i=1

D

∑
α,β=1

Ai,α,β |σi⟩⟨α, β| , (1.15)

where {σi} form a basis of spin states on the site i.

• Ai represents the D× D matrix with elements Ai,α,β. In general, the dimension

of the maximally entangled state |I⟩, and the map A, can be dependent on the

site. Then we write the matrix A[k]
i to represent the matrix corresponding to

the site k ∈ {1, . . . , N}.
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The state we arrive at is the matrix product state,

|ψ⟩ =
d

∑
i1,...iN

VL
1 Ai1 . . . AiN VR

N |σi1⟩ ⊗ . . . ⊗ |σiN ⟩

=

𝜎0 𝜎i-1 𝜎i 𝜎i+1 𝜎N

(1.16)

where the auxiliary vectors VL/R terminate the chain.

Truncating D so that we have the Schmidt decomposition, places a limit on the

entanglement of the state. As we know the Schmidt decomposition is the optimal

(Frobenius norm) truncation, so that our state at a lower bond dimension (therefore

entanglement) is the optimal approximation of the true quantum state.

These are steps to write states in the MPS representation. An MPS ansatz for a

wavefunction can also be arrived at by looking at the features of our problem. We

can write down an MPS of some bond-dimension that recovers properties of the

system, this is done in Chapter 3, where we write an MPS ansatz to capture some of

the states of the J1-J2 Hamiltonian. Well-known examples include the AKLT model,

where the simplicity of the ground state (a state with a valence bond between every

pair of sites) enables it to be written as an MPS [22].

For translationally invariant MPS with open boundary conditions, the on-site

matrices A are all the same,

|ψ⟩ = ⊗
n

Aσn |σn⟩ (1.17)

where the A’s have vector entries belonging to the on-site Hilbert space and the

product implies matrix multiplication. We can also write down infinite transla-

tionally invariant MPS. These enable developing algorithms in the thermodynamic

limit, thus bypassing finite size effects. We discuss properties of infinite transla-

tionally invariant states in the following.

1.2 Properties of MPS states

Many properties of MPS come across clearly within the diagrammatic language.

When contraction is performed, it is usual to first contract the on-site MPS with its

conjugate transpose. This object is known as the transfer matrix E,
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Ei = . (1.18)

Following the notation introduced so far, the topmost blue square represents

the matrix Ai, and the bottom blue square is A∗
i .

1.2.1 Canonical form of MPS

Between two consecutive components of the MPS, it is possible to insert the identity

MM−1, where M is an invertible matrix, and not changing the overall wavefunction.

This enables the choice of a canonical form of the MPS.

= (1.19)

A canonical form is a choice of fixing this degree of freedom that is convenient

for calculations [10, 23]. An MPS is in canonical form if each bond is the Schmidt

decomposition across that index, i.e. it could have been arrived at by the decompo-

sition into MPS. Each bond index corresponds to the labelling of Schmidt vectors

across that bond. Truncating the MPS by bond-dimension is simply keeping some

number of indices ordered by Schmidt coefficients. Furthermore, calculating the

entropy across a bipartition of the MPS chain is simple as it is just the square of the

Schmidt coefficients (as seen in Eq. 1.14).

For infinite translationally invariant MPS, this means that only one tensor and

one vector of Schmidt coefficents is required to describe the whole state. In this

case, when in the canonical form, the bond indices of the MPS always correspond to

orthonormal vectors to the left and right. This is achieved by finding the dominant

left/right eigenvectors, VL, VR, of the transfer matrix (Eq. 1.18). For the right transfer

matrix this is solving the following fixed point equation,

<latexit sha1_base64="wPXRFxsGY5nzUKXUCda5SAvrq0g=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9CQA8eEzAPSJYwO+lNxszOLjOzQgj5Ai8eFPHqJ3nzb5wke9DEgoaiqpvuriARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0e3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7TK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZe+yXKlXStW7LI48nMApnIMHV1CFe6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCQVYzM</latexit>= (1.20)

normalised, the dominant eigenvalue is 1 and VR is called the right environment.
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1.2.2 Calculating observables

Computing expectation values for finite MPS is clear in the diagrammatic lan-

guage. The n-site operator is inserted and then the outermost tranfer matrices are

contracted. The setup for this calculation for a two-site operator θ̂ looks like,

⟨ψ|θ̂|ψ⟩ = . (1.21)

For the infinite MPS (with 1-site unit cell, or translational invariance), this is

much the same upon canonicalisation,

⟨ψ|θ̂|ψ⟩ =

=
<latexit sha1_base64="J5C3+3aRJ4sPbZmQwQU+1DBSmIc=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPRi8cK9gObUDbbSbN0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmltfWNzq7xd2dnd2z+oHh51dJIpBm2WiET1AqpBcAlt5CiglyqgcSCgG4xvZ373CZTmiXzASQp+TEeSh5xRNNKjF1H0MAKkg2rNqTtz2KvELUiNFGgNql/eMGFZDBKZoFr3XSdFP6cKORMwrXiZhpSyMR1B31BJY9B+Pr94ap8ZZWiHiTIl0Z6rvydyGms9iQPTGVOM9LI3E//z+hmG137OZZohSLZYFGbCxsSevW8PuQKGYmIIZYqbW20WUUUZmpAqJgR3+eVV0rmou5f1xn2j1rwp4iiTE3JKzolLrkiT3JEWaRNGJHkmr+TN0taL9W59LFpLVjFzTP7A+vwBspWQ8g==</latexit>

✓̂ .

(1.22)

where the canonicalisation is such that VL = 1.

The operator θ̂ here is a two-site operator. Hamiltonians consist of sums of

such n-site operators. The MPS concept can be extended to matrix product operators

(MPOs) leading to an efficient representation of Hamiltonian operators for algo-

rithms such as DMRG [24] for computing ground states, or for time evolution. We

present one approach to time evolution in the following.

1.2.3 Time evolving MPS using the time-dependent variational principle

(TDVP)

One method for time evolution is the formulation of the Dirac-Frenkel variational

principle for MPS [25]. The time-dependent Schrödinger equation takes the form,

Ĥ(t)|ψ⟩ = ih̄∂t|ψ⟩. The key to this method is to project the time-derivative of the

wavefunction onto the variational manifold.

Consider a set of complex parameters {Xi} of the variational manifold, for MPS

these are the MPS tensors . Every point in this manifold has a well defined tangent

space, so the time-derivative of the wavefunction may be written ∂t|ψ⟩ ≈ |∂iψ⟩ Ẋi.
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The action of the Hamiltonian will generally take us out of the variational manifold,

so we project back onto the manifold by taking the inner product with
〈
∂jψ
∣∣. The

path is chosen from the tangent space of this point such that the fidelity of the

approximation is maximised.

Performing the orthogonal projection of the Schrödinger evolution onto the

MPS manifold, the TDVP equations read,

⟨∂iψ|∂jψ⟩Ẋj = −i⟨∂iψ|Ĥ|ψ⟩, (1.23)

where the collection of complex-valued parameters Ẋ represents the variational

parametrisation, |ψ⟩ = |ψ(X)⟩.
Remarkably, these equations are those of a classical Hamiltonian system [25].

For trajectories evolved this way, the entanglement growth is capped by log D. For

generic states, the MPS is not a sufficient approximation of the microstate, which

should evolve to volume law entanglement entropy. Nonetheless, TDVP respects

conservation laws [25] regardless of the truncation via bond dimension [26]. Ac-

cordingly, we are guaranteed that the hydrodynamic behaviour of local observables

will emerge at long times irrespective of the truncation.

To implement this algorithm, we follow the approach of Haegeman et al. [27].

In Chapter 4 we introduce a Langevin extension to the TDVP equations, and in

Chapter 5 we look at implementing TDVP on present-day quantum computers.



Chapter 2

Technical background

In this chapter we introduce the relevant background for each of the results chapters.

To begin we give a brief overview of work constructing field theories over tensor

network states. This is relevant to Chapter 3, where Feynman path integrals over

matrix product states are employed to treat the J1-J2 model. Next, we discuss open

quantum systems, and aspects of the literature that relate to our new technique of

Chapter 4, for simulating such systems with tensor network states. Finally, we dis-

cuss quantum simulation on quantum computers using MPS , which is background

for our work in Chapter 5 implementing time-evolution algorithms on present-day

quantum computers.

2.1 Field theories over tensor networks

The path integral formulation of quantum mechanics takes us from A to B by

considering a sum of all possible trajectories, to return a probability amplitude. The

sum is taken over these paths and the mathematics goes that finer and finer sums

become integrals. These allowed trajectories are sums of classical paths, i.e. in the

language so far, product state configurations. The path integral formulation is thus

useful for understanding emergent classicality.

Entanglement is usually introduced into the path integral in terms of the Feyn-

man diagrammatic expansion in small fluctuations, or by allowing for imaginary-

time excursions (instantons) to describe tunnelling events [19]. In [28], another way

to introduce some degree of entanglement is shown, presenting the Feynman path

integral formulation over matrix product states.
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2.1.1 Constructing the path integral over MPS

When introducing spin coherent states in Section 1.1.2, we showed that they form

an overcomplete basis set and we wrote down an expression for the resolution of

the identity. To recap, inserting resolutions of the identity over an over-complete

basis set into the quantum-mechanical partition function transforms this into a sum

over classical configurations. This is a way to take a quantum Hamiltonian and

recover classical Hamilton’s equations.

A gauge invariant measure is found to be the Haar measure for SU(2) opera-

tors [28]. It is then possible to write down a resolution of the identity over MPS,

1 =
∫

DA |A⟩⟨A| , (2.1)

we then do the same and insert this into the partition function at every imaginary

timestep, so that we have a path integral over MPS,

Z = Tr e−βĤ = ∏
τ

Tr e−dτĤ1 e−dτĤ1 edτĤ

=
∫

∏
n

dAn . . . e−dτĤ |An⟩⟨An| e−dτĤ |An+1⟩︸ ︷︷ ︸
(⟨An|An+1⟩−dτ⟨An|Ĥ|An+1⟩)

⟨An+1| e−dτĤ . . .

=
∫

DA e
∫

dτ[⟨A|∂τ A⟩−⟨A|Ĥ|A⟩]

=
∫
[DA] e−S[A],

(2.2)

where the measure [DA] contains MPS information and the action S contains the

expectation of the Hamiltonian, Ĥ, and a dynamical Berry phase term arising from

the difference between the MPS tensors at each imaginary timestep.

The addition of Berry phases capture the subtleties of quantum interference

effects, and are crucial in underpinning the quantum nature of the phases. The

path integral is dominated by paths that minimise the action. These correspond to

the projection of the Hamiltonian motion through Hilbert space projected onto the

restricted manifold of MPS. That is to say the saddle point equations, δS/δA = 0

recovers the time-dependent variational principle TDVP (Sec 1.2.3).
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2.1.2 Example: Heisenberg antiferromagnet

The limitations of the coherent state path integral alone is seen in the Heisenberg

antiferromagnet (i.e. J > 0),

HAF = J ∑
⟨i,j⟩

S⃗i · S⃗j + . . . , (2.3)

where ⟨i, j⟩ indicates the sum is over adjacent spins, where the operator acts on

the entire Hilbert space but non-trivially at these sites, and the ellipses represent

freedom in tuning short-ranged interactions to drive quantum phase transitions.

For ⟨i, j⟩ in two dimensions, the ground state can be Néel ordered, with gapless

spin-wave excitations. Whereas the disordered ground state is of singlets,

|ψ⟩ = ∏
⟨i,j⟩

1√
2
(|↑⟩i |↓⟩j − |↓⟩i |↑⟩j), (2.4)

The coherent state description of two spin-1/2 spins is given by symmetric

configurations of |l1, l2⟩. The ground state of the Heisenberg hamiltonian is the

antisymmetric spin singlet 1√
2
(|↑↓⟩ − |↓↑⟩). This type of tunnelling between spins

is not captured by the path integral over product states. However, if we consider

the path integral over MPS of the form,

|ψ⟩ = n1 |l1, l2⟩+ n2 |−l1,−l2⟩ , (2.5)

then transforming the spinor to an O(3) vector n by the Hopf map, the partition

function can be written down,

Z =
∫

Dψ e−S[ψ] =
∫

Dl1Dl2Dn e−S[l1,l2,n], (2.6)

and the Berry phase SB is,

SB[l1, l2,n] =
∫

dt [⟨n|ṅ⟩+ nZ(⟨l1|l̇1⟩+ ⟨l2|l̇2⟩)]. (2.7)

In the entangled path integral, the singlet state is captured at the saddle point.

What would be disconnected configurations using product states are smooth fields

for MPS. The manifold of saddle point configurations is increased to include semi-

classical configurations. Alongside expanding about the semi-classical saddle point,

increasing the bond dimension is another way to include quantum fluctuations. For

an extended presentation of the theory, refer to [29].
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2.2 Open quantum systems

The quantum systems we have considered so far live in this contrived universe

where only the quantum system exists. Realistic descriptions of quantum systems

must take into account the environment in which it is embedded. An open system

is one that exchanges information with another external system. Even highly con-

trolled quantum experiments have some degree of unavoidable openness, so an

understanding of open quantum systems is vital for quantum technologies.

A system becomes open in the context of time evolution. Beginning with a

product state of some system and environment, over time these states will become

entangled, then further in time the environment will influence the quantum system

to decohere. Depending on the scale of the quantum system, and its interaction

with the environment, various relevant timescales appear.

Most quantum systems that are weakly coupled to a large environment usually

relax to a steady state due to dissipation [30]. When the environment is in ther-

mal equilibrium, the steady state is universally described by the Gibbs state [31].

Classically, an example of thermal equilibrium is a particle undergoing Brownian

motion – random motion due to the influence of being suspended in a medium. It

is understood through the Langevin equation,

Mẍ + γẋ + V ′(x) = F(t), (2.8)

where F(t) is a fluctuating force such that ⟨F(t)⟩=0 and ⟨F(t)F(t′)⟩=2γkBTδ(t− t′).

This fluctuation-dissipation relation accounts for the competing sources of drifts and

resistance to drifts leading to thermal fluctuations.

An early goal of quantum theory was to obtain differential equations for time

evolution, leading to the Schrödinger equation. Similarly, this can account for the

open system by introducing noise and dissipation terms as above, making it a

stochastic differential equation. However, extending to interacting particles and

accounting for entanglement is limited by the exponential scaling of Hilbert space.

In Chapter 4 we bypass this problem by introducing a stochastic Langevin

equation for tensor network states (different to the Lindblad formalism [30]). In the

following section we introduce background for this formulation. This includes the

bath model used and elements of the Keldysh formalism to derive this equation.
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2.2.1 Systems and baths

The total Hamiltonian for the system and the environment is made up of three

components: the system contribution, the environment, and their interaction,

Ĥ = ĤS + ĤE + ĤI . (2.9)

If the initial state of system and environment is assumed to be separable, the joint

system-environment state is given by,

|ΨSE(t)⟩ = Te−i
∫ t

0 Ĥdt |ΨSE(0)⟩ = Û(t,0) |ΨSE(0)⟩ = Û(t,0) |ψS(0)⟩ ⊗ |ψE(0)⟩ ,

(2.10)

Direct calculations are impossible due to the huge size of the environment

Hilbert space. It is useful to introduce the density matrix, ρSE = |ΨSE⟩⟨ΨSE|, which

is a generalisation of the wavefunction to include the possibility of uncertainty in its

preparation. Then a suitable density matrix that describes the state of subsystem S

is by taking a partial trace over the environment degrees of freedom, ρS = TrE(ρSE).

For the environment, a useful model is the Caldeira-Leggett model [32]

(Fig. 2.1). This is a model of a system coupled to baths of independent Harmonic

oscillators. This model enabled the first microscopic description of quantum Brow-

nian motion and dissipative quantum tunnelling. Taking a bath of N modes with

positions xj, the relevant Hamiltonians are,

HE =
1
2

N

∑
n=1

p2
n + ω2

nx2
n, (2.11)

HI = −x0

N

∑
n=1

F̂nxn, (2.12)

where the system-environment interaction Fn is assumed to be sufficiently weak so

it is well approximated by a linear coupling (also known as an Ohmic bath).

Entanglement Phase Transitions Key Results: A TDVP Langevin Equation

We present a new technique for the simulation of open 

quantum systems:

  • An unravelling of the density matrix evolution over tra-  

     jectories described by matrix product states (MPS)

  • Equations of motion considered a Langevin extension
    of the time-dependent variational principle (TDVP) 

We uncover a many-body quantum Zeno phase, 

which is induced by coupling to an environment. [1]

Through this technique we see a transition in the classical 
describability of the system – permitting an efficient clas-

sical description of the open quantum system for all times. 

In the quantum Zeno phase, individual trajectories have 

entanglement saturating at a low value, and a low-bond 

order description gives high fidelity for all time. 

  

The Langevin equation augments the TDVP equations [2]

We derive the TDVP Langevin in two ways:

  • Langevin limit of the Keldysh path integral over MPS 

  • Heuristically, using a solution of the Schrödinger eq

    for the bath and system

〈∂iψ|∂jψ〉 = −i〈∂iψ|Ĥ|ψ〉

= −i
∑

n

〈∂iψ|F̂n|ψ〉η(t)

= −i
∑

n

γ
〈ψ|F̂n|ψ〉

dt
〈∂iψ|F̂n|ψ〉

TDVP 

Noise term

Friction term

Coupling to an environment leads to a restriction in 
entanglement growth – a transition into a quantum 
many-body Zeno phase. 

This is the Hamiltonian analogue of the measurement-in-
duced phase transitions seen in quantum circuits [3]. 

 • Fokker-Planck formulation of TDVP Langevin equation

 • Extend this to local observables in closed systems? 

 • Are quantum many-body scars stable to coupling to an   

    environment?

 

  

Numerical Details

Conclusions and Extensions

We model the environment
as individual harmonic baths
for each site of the lattice.
Displacements couple linearly
to the x, y, z cpts. of the spin. 
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Fig. 1

Key Results: Transition to Quantum Zeno Phase

We apply this technique to the tilted field Ising model, 

with J=1, g = −1.05 and h = 0.5. This Hamiltonian is far 

from any integrable point and is rapidly thermalising. 

We study the N=15 chain, and in these examples keep 

T=0.2 fixed, while increasing friction ڠ.  
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i
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growth leads to diverging 
simulation time. 
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Figure 2.1: An example quantum spin system that is coupled individually to external sim-
ple harmonic oscillators. Fluctuations occurring between the single harmonic
oscillator modes and the system is the source of dissipation.
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2.2.2 Briefly, the Keldysh formalism

The density matrix, ρ, is an operator, so it is time-evolved by application of a

forward in-time operator to its left, and a backwards in-time operator to its right,

ρ(t) = Tei
∫ t

0 Hdtρ(0)Te−i
∫ t

0 Hdt. A path integral for this evolution thus has forwards

and backwards evolving fields, this is known as the Keldysh path integral. Amongst

the many applications of this theory, it is useful in the treatment of systems away

from thermal equilibrium and open quantum systems. A Langevin equation can

be constructed from a Keldysh path integral.

Keldysh’s specific formulation [33] introduces what comes to be a convenient

choice of variables via a Keldysh rotation. The fields along the forwards and back-

wards evolving branches of the time contours, ϕ±(t) are transformed into their

classical and quantum components,

ϕcl(t) =
1√
2
(ϕ+(t) + ϕ−(t)) ϕq(t) =

1√
2
(ϕ+(t)− ϕ−(t)) (2.13)

This transformation is useful for the functional formulation of the theory

(i.e. writing formally the continuum limit of correlators or Green functions). The

Keldysh rotation allows us to define independent Green functions, which we intro-

duce by name,

⟨ϕαϕβ(t′)⟩ ≡ iGαβ(t, t′) =


iGK(t, t′) iGR(t, t′)

iGA(t, t′) 0


 , (2.14)

where α, β = (cl,q) and the superscripts R, A, and K label the retarded, advanced, and

Keldysh components of the Green function. The continuum action over the new

fields is given by,

S[ϕcl ,ϕq] =
∫ ∫ ∞

−∞
dt dt′

(
ϕcl ϕq

)
t


 0 [G−1]A

[G−1]R [G−1]K




t,t′


ϕcl

ϕq




t′

. (2.15)

For the details of these calculations see Kamenev [33]. Further, for using the

path integral over matrix product states (MPS) see [28], for a Keldysh path integral

over MPS see [34]. Later in Chapter 4 we present an action of this form over MPS

fields to construct the MPS Langevin equation.
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2.2.3 A quantum particle interacting with an environment

Starting from the Keldysh action of a quantum particle interacting with an Ohmic

bath (i.e. linear dissipation), then taking the classical limit in a certain way, yields

a Langevin description. Limits can be taken in various ways. Keeping only linear

terms in the quantum coordinates leads to a classical Newtonian equation that

disregards both classical (thermal) and quantum fluctuations. Taking the limit

h̄ → 0 leads to the classical dissipative action, which has been reproduced from [33].

For a quantum particle with coordinates X(t), placed in a potential V(X),

brought into contact with a bath of harmonic oscillators (Caldeira-Leggett model),

the clasical dissipative action is given by,

S[X⃗] =
∫ +∞

−∞
dt
{
−2Xq[Ẍcl + γẊcl + V ′(Xcl)] + 4iγT(Xq)2

}
. (2.16)

From here, a Langevin equation is obtained by applying the Hubbard-Stratonovich

transformation to the last term in the action,

exp
{
−4γT

∫
dt (Xq)2

}
=
∫

D[ξ(t)]exp
{
−
∫

dt
1

4γT
ξ2(t)− 2iξ(t)Xq(t)

}
, (2.17)

where ξ(t) is an auxiliary Hubbard-Stratonovich field. When we consider observ-

ables in terms of the classical coordinate Xcl , calculation leads to a delta function so

that the only trajectories Xcl(t) that contribute to observables must satisfy,

Ẍcl = −γẊcl − V ′(Xcl) + ξ(t), (2.18)

which is a Langevin equation as introduced in Eq. 2.8, where ξ(t), the auxiliary

Hubbard-Stratonovich field, appears as the time-dependent external force. This

unravelling the density matrix generates stochastic quantum trajectories, much like a

single realisation of a quantum mechanical path to be averaged over.

In Chapter 4, we introduce a new technique for the study of open quantum

systems, which we dub the TDVP-Langevin equation. This technique extends usual

TDVP (Sec 1.2.3) by adding noise and friction terms just as Eq. 2.18. The derivation

follows as above, where the fields are now MPS fields. This picture can provide a

Hamiltonian analogue to random circuit analyses of thermalisation [35–37], results

for which are presented in this chapter.
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2.3 Quantum simulation on quantum computers

In the 1980s Richard Feynman [1] and Yuri Manin [38] both proposed harnessing

quantum mechanics to build a powerful new type of computer. Since the introduc-

tory section, we have been faced by the difficulty of modelling quantum mechanics

due to the exponential scaling of Hilbert space. Perhaps this task could be tangible

if we instead used quantum computers to simulate quantum mechanical processes.

There has been a large research effort in the area of quantum technologies, where

much progress is being made in developing devices that exploit quantum properties

of matter. We are currently in the age of noisy intermediate scale quantum (NISQ)

computing (see [39] for a review) and seeing large technical advances so that these

devices are becoming available for use. Different types of architectures are being

developed for the quantum computers of the future, including superconducting

chip based, photonic, and ion-trapping methods.

Independent of the architecture, the fundamental model of quantum com-

putation is the quantum circuit model (see [40]). As is in classical computation,

algorithms can be expressed as quantum circuits, which are built up of quantum

gates. A quantum gate is a unitary operation, thus the quantum circuit is a way

of expressing matrix manipulation. There are sets of gates that are universal – any

quantum computation can be expressed in terms of a basis of these gates. Other

models of quantum computation also exist.

For the task of quantum simulation, there is an exponential overhead of the

classical computational resources required. Whereas quantum resources should

scale linearly, i.e. in implementing state evolution using n spin systems. This is not

true for general quantum simulation, certain quantum evolution can be efficiently

simulated classically. Furthermore it was shown that quantum dynamics can be

efficiently simulated when only a restricted amount of entanglement is present in

the system, such as the quantum computation of MPS.

For NISQ devices entanglement is a limited resource due to their typical gate

fidelities and achievable circuit depths. Thus, making use of low entanglement cuts

and tensor networks can be one way to simulate quantum systems much larger

than the devices themselves [41]. It is important to develop algorithms that make

efficient use of the continually improving quantum resources available.
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Figure 2.2: The mapping between a tensor with two virtual indices i, j of dimension D and
physical index σ of dimension d, and the unitary U ∈ SU(dD). The i, j are such
that i = i1 ⊗ i2 ⊗ · · · ⊗ in and similarly for j. The way this decomposition is
performed guarantees either left or right canonicalisation of the MPS. In this
diagram left canonicalisation follows since ∑σ(Aσ

ij)
† Aσ

jk = δik.

2.3.1 Encoding MPS in quantum circuits

One way to make efficient use of the limited entanglement respources of present

day quantum devices is to develop matrix product state (MPS) based quantum

algorithms. Rather than using the quantum simulator to simulate n quantum spins,

a device of n qubits simulate states of bond dimension 2n. This treats entanglement

as a resource and for algorithms using these states, bond dimension can be increased

as resources such as gate fidelities and numbers of qubits increase.

There is a natural mapping between tensors, A, of bond dimension D and local

Hilbert space dimension d and the matrices U ∈ SU(dD), Aσ
ij = U(1⊗j),(σ⊗i) [41–44].

This equivalence between MPS and quantum channels is shown in Fig. 2.2. From

this, left canonicalisation ∑σ(Aσ
ij)

† Aσ
jk = δik, follows from the unitary property of

U. This gives us a quantum channel that propagates the right environment in

the spatial direction. Here the right environment is regarded as a sequence of

density matrices that represent mixed states in the bond space [43]. Swapping the

decomposition of U arrives at MPS in right canonical form.

In digital (rather than analog) quantum simulation, the idea is to be able to

simulate quantum systems different and potentially larger than the device itself.

Here computational gates approximate the time evolution of local Hamiltonians.

This versatility is similar to classical computation, and we expect future quantum

devices to be able to simulate complex large quantum interactions. Nonetheless, as

we have seen so far, approximating larger systems is possible using MPS in the case

of infinite translationally invariant systems.
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b)

Figure 2.3: a) Infinite translationally invariant MPS. Here each unitary U is identical. In
general a unitary on n qubits represents a spin-1/2 MPS of bond dimension
D = 2n−1. b) Computing expectation values of infinite MPS. For infinite MPS
in left canonical form, the left of the observable is trivially the identity, while
the right is summarised by V ∈ SU(D2). The remaining elements of the unitary
encodes the tangent space structure connecting the MPS states spanning the
restricted manifold.

An infinite translationally invariant MPS can be represented by an infinite

quantum circuit. In Fig. 2.3a this is shown for a spin-1/2 MPS with bond dimension

D = 2n, with D = 4. For the MPS in left canonical form, the finite circuit showing

calculation of local expectation values is shown in Fig. 2.3b. Here the unitaries below

the operator being measured trivially contract to the identity, and the contraction

above is summarised by V ∈ SU(D2). In general V is not known and must be solved

for as Eq. 1.20. The circuit equivalent of this equation is shown in Fig. 2.4.

In Chapter 5 we develop an MPS algorithm to perform time-evolution by imple-

menting time-dependent variational principle (TDVP). This algorithm is for ion-trap

quantum devices, where the quantum circuits are laid out in time rather than space.

In this chapter we describe how to map our quantum circuits to be time-like and

make use of the circuit representation of MPS.
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Figure 2.4: The fixed point equations for solving for the right environment. The free qubit
lines imply the reduced density matrices, so that this equation is to be interpreted
as the equality of these.



Chapter 3

A generalised Haldane map

for the J1-J2 model

Many critical phenomena in quantum many-body systems may be understood

within the framework of Landau-Ginzburg-Wilson (LGW) theory. This prescribes

an approach to phase transitions in terms of symmetry breaking, that has had

several successful results, and indeed was believed to be a complete description of

continuous phase transitions. However there are both theoretical and experimental

phenomena outside of the remit of LGW theory, notably, deconfined quantum

criticality. This occurs as an emergence of ‘fractional’ charge and gauge fields near

quantum critical points between two conventional (LGW) phases. The J1-J2 model

of a one-dimensional spin-1/2 chain has a phase transition from antiferromagnetic

to VBS order amongst other established results. We use these as benchmarks for

the new approach using matrix product state (MPS) representations within the

standard Feynman path integral and find close agreement with the field theory.

Crucially, the in-built entanglement structure within the MPS ansatz is capable of

describing non-classical physics at the saddle-point level. Taking an appropriate

continuum limit, a generalisation of the Haldane map, we recover the known field

theory with the topological terms that determine the nature of the phase transition.

This work was performed in collaboration with A. G. Green, Adam J. McRoberts, and

Chris Hooley and is currently in preparation for publication [45]. My contribution to this

work was is in the development of the choice of MPS ansatz and underpinning how to take

the continuum limit and computing the topological terms.
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3.1 Introduction

At zero temperatures, with the absence of thermal fluctuations, it is quantum fluctu-

ations that drive exotic quantum phase transitions. These are a type of continuous

phase transition that arise by varying parameters of the system Hamiltonian, such

as the magnetic field. At the quantum critical point, quantum fluctuations are

scale-invariant. Here the wavefunction can be a complicated superposition of an

exponentially large set of configurations that fluctuate at all available length scales,

independent of the microscopic details of the system.

Path integrals are a tool for understanding quantum Hamiltonian systems and

their interesting quantum phases. The prescription here is the Landau-Ginzburg-

Wilson (LGW) paradigm that we will go on to introduce. Here the Feynman path

integral is a useful tool in deriving the Ginzburg-Landau action for a quantum

Hamiltonian. However, the existence of transitions forbidden by LGW theory means

that this is not a complete description of all possible orders of quantum matter.

When it is not possible to deform the wavefunction of a system to a product

state by locally removing entanglement, long-range entanglement must be present.

That is, all short-range entangled states are related to product states by local unitary

transformations, and long-range entangled states remain entangled no matter how

you coarse-grain. The important role in governing the dynamics of topological

order is played by long-range entanglement.

The LGW paradigm can discern phases between long-range order and no long-

range order, but fails in the presence of long-range entanglement, like the example

of the Haldane phase that we later introduce. There are many examples of phases

beyond the LGW paradigm such as long-range entangled and no long-range order

into no long-range entanglement and order as seen in the topological quantum spin

liquid to trivial paramagnet transition.

It is also seen [46–48] that this breakdown can even occur between two Landau

ordered phases. The original example of this is the antiferromagnetic phase to

valence-bond solid phase transition in the spin-1/2 square lattice. This is a transi-

tion between two different long-range ordered phases, with no long-range entan-

glement present. Such is the “deconfined" quantum criticality scenario of extended

Heisenberg models ("J-Q" models) with antiferromagnetic to VBS transitions.
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Senthil and Fisher [49] asked whether the slow power law decay of the classical

order parameters means the criticality can be described directly in terms of the order

parameters. Senthil showed the importance of topological terms in underpinning

the key physics of this transition. A simple example of a system hosting this

antiferromagnet to VBS/singlet order transition (first shown by Haldane [14]) is the

one-dimensional spin-1/2 J1-J2 model.The field theory for the competing orders is

in terms of an SU(2) matrix U with a Wess-Zumino-Witten (WZW) term. U is a

combination of the VBS and Néel order parameters, and the role of the non-trivial

topological WZW term is to rotate these phases into each other, coupling the defects

of the VBS phase to the charges of the coherent state vector.

We approach this phase transition using a path integral over MPS [28]. In this

way we consider path integrals over entangled states. Here we parametrise the MPS

in a way that is directly related to the order parameters of the two phases, capturing

the qualitative physics of the key phases of the model. Even at the saddle-point

level this ansatz is remarkably successful at capturing the known results. Taking the

continuum limit, we show how the Berry phase terms in the resulting effective action

recover the relevant topological terms in a manner very similar to Haldane [14]. This

gives an explicit construction of the link between topological structures in the field

theory and internal structures of the MPS tensors.

MPS played an important role in revealing the importance of topology in many-

body quantum mechanics, for instance, the AKLT state which is an example of

symmetry protected topological order is known as the father of MPS [50]. However,

the connection between the MPS formulation and the topological terms that enter

into field theories, such as those of deconfined critical systems, has not been fully

elucidated. In this work we aim to make that link.

3.1.1 Landau-Ginzburg-Wilson paradigm

Until the 1980s, Landau-Ginzburg-Wilson (LGW) theory was able to capture all

orders and continuous phase transitions in materials. Its most complete description

brings together Ginzburg-Landau symmetry breaking theory, [51] and the renor-

malization group (RG) approach of Wilson [52]. Understanding quantum critical

behaviour through RG flow is a nice application of RG scaling.
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It can be summarised by the following key principles. (i) We can accurately

describe collective thermal fluctuations near second-order phase transitions classi-

cally. Manifested in many physical quantities is an interesting universal singular

behaviour. (ii) Our classical model identifies an order parameter, this is a thermo-

dynamic function that is different in each phase, so can qualitatively distinguish

the ordered state from the disordered state in terms of their associated symme-

tries. (iii) The thermal and quantum fluctuations in close proximity of the transition

point of the order parameter are controlled by a continuum field theory, structured

according to some simple symmetry considerations.

This formalism can be applied to certain d-dimensional quantum systems,

such as the quantum Ising chain, and the coupled dimer antiferromagnet, whose

critical theory is identical to the classical thermal system in (d + 1)-dimensions [53].

Here instantons, that are the zero temperature quantum fluctuations, determine the

quantum nature of the system.

The Néel order parameter acts as a measure of the chequerboard patterning of

the antiferromagnetic Néel phase. In terms of correlation functions this is,

Oα
Néel = lim

|j−k|→∞
(−1)|j−k|

〈
Sα

j Sα
k

〉
. (3.1)

The Néel ground state is adiabatically connected to the classical state with frozen

spins, so does not carry long-ranged quantum entanglement [54]. The shortcomings

of this approach lie here. As an example, consider the one-dimensional spin-1

Heisenberg antiferromagnet with additional crystal field anisotropy term [55],

H = ∑
i

[
Sx

i Sx
i+1 + Sy

i Sy
i+1 + λSz

i Sz
i+1 + D(Sz

i )
2] , (3.2)

where the sum is over the spin-1 operators, that act on the full Hilbert space, but

non-trivially at the ith site, λ is an antiferromagnetic coupling term, and D is the

anisotropy term. For large values of the coupling strength λ, the system is Néel

ordered, while for large crystal anisotropy, D, it is in a disordered phase.

Kennedy and Tasaki approached this problem using stochastic geometric meth-

ods [56] for a path integral approach, treating it as a classical two-dimensional

system with imaginary time coordinate. In this way, it is possible to discern the
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phase diagram of the system qualitatively, and identify a third phase. The Haldane

phase is a topological phase with both λ and D small. It is characterised by a hidden

antiferromagnetic ordering.

If spins can take one of the values +,−,0, which are quantum numbers

linked to the eigenvalues of ŜZ, then it can be seen in this example configuration,

+00− 000+ 0000− 0+, that Néel ordering is concealed/hidden by an unpredictable

number of 0-configurations. A local order parameter would be incapable of dis-

tinguishing between the Haldane phase and the disordered phase. The non-local

order parameter identifying the Haldane phase in this system is the den Nĳs and

Rommelse [57] string order parameter,

Oα
string = lim

|j−k|→∞

〈
−Sα

j exp

[
iπ

k−1

∑
l=j+1

Sα
l

]
Sα

k

〉
. (3.3)

3.1.2 One spin-1/2 Berry phase

The Berry phase is a quantity that describes how a global phase accumulates as

some complex vector is carried around a closed loop in a complex vector space.

Since we are only interested in phases, the complex vectors can be taken to be unit

vectors that we can identify with the ground state wavefunction.

An intuitive example is a spin-1/2 particle in an external magnetic field that

varies around a closed loop on the unit sphere. This is because the SU(2) spinor can

be mapped to an O(3) vector – building a physical picture of what the eigenstates

represent since the spin aligns with the magnetic field. In external magnetic field

B⃗ = B0n̂ and expressed in polar coordinates, this has Hamiltonian H = −γS⃗ · B⃗ =

−γh̄
2 B⃗ · σ⃗ in terms of the Pauli vector, with eigenstates

|+⟩ =

 cosθ/2

eiϕ sinθ/2


 |−⟩ =


 sinθ/2

−eiϕ cosθ/2


 (3.4)

When the external magnetic field varies, B⃗(t), slowly enough (so that the final

time T → ∞) that the adiabatic theorem applies, the eigenstates accumulate Berry

phases. The adiabatic theorem states the groundstate evolves as,

|ψ(t)⟩ = U(t) |n(B(t))⟩

= e−
i
h̄

∫ t
0 dt′EnB(t′)eiγn(t) |n(B(t))⟩

(3.5)
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where the first part is the dynamical phase contribution, which equals 1 since cyclic

evolution implies B⃗(0) = B⃗(T) or we can set En = 0. The second exponential term

is the geometric contribution, the Berry phase, and n labels the eigenstate at this

instant. This extra geometric contribution arises by taking the overlap with ⟨ψ| of

the Schrödinger evolution with adiabatic ansatz.

⟨ψ|ψ̇⟩ = U̇U∗ + ⟨n|ṅ⟩ = 0 (3.6)

where the right-hand side equals zero because instantaneously, Ĥ(B) |n(B)⟩ = 0.

Our goal is to compute the phase of U(t) upon a closed path C in parameter

space that avoids the negative z axis, i.e. the Berry phase,

eiγ = e−
∮

C dt
〈

n(B⃗)
∣∣∣ ˙nB⃗

〉
(3.7)

For |+⟩ this can be solved using polar coordinates,

⟨+| ∂

∂B
|+⟩ = i sin2 θ/2

∂ϕ

∂B
=

i
2
(1 − cosθ)

∂ϕ

∂B
. (3.8)

To calculate the Berry phase we can use Stokes’ theorem and parametrise the interior

of the closed path by τ. The path traced out by the varying magnetic field B⃗ can be

projected down to the Bloch sphere where it aligns with the path of the spin unit

vector n,

∫
dt ⟨n|ṅ⟩ =

∫ ∫
dtdτ ϵijkni∂tnj∂τnk

= −1
2

∫
dt(1 − cosθ)ϕ̇

= −1
2

ω

(3.9)

where ω is the solid angle subtended by the spin.

For general spin quantum number S, the Berry phase is −Sω. The Berry phase

is well defined since taking the pole to be the positive z axis, the resultant solid

angle ω′ satisfies |ω − ω′| = 4π since the solid angle should add up to 4π. This

contributes a factor of 2π in the Berry phase, and e2πi = 1.
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3.1.3 Haldane’s mapping

In one-dimensional systems, the quantum Mermin-Wagner theorem implies that

for T ≥ 0 quantum fluctuations always disorder the ground state so there is no

spontaneously broken symmetry. This means that the conventional means of spin-

wave theory [58] cannot be used to study the disordered phases of the Heisenberg

model, as this assumes a starting point of magnetic ordering. In the language of

symmetry breaking, the O(3) symmetry is spontaneously broken.

However, spin-wave theory is not completely abandoned. Haldane approached

this problem through a mapping distinguishing the effective long- and short-

wavelength behaviour of the ordered ground state. The Heisenberg antiferromag-

net has a short-ranged Hamiltonian, which makes it most sensitive to short-ranged

correlations. Thus, at shorter wavelengths we do not expect much deviation from

Néel ordering, only at longer wavelengths deviation is appreciable. Haldane’s map

retains only these long-wavelength fluctuations, thus retaining the O(3) symmetry.

Haldane mapped the effective long-wavelength action of the quantum Heisen-

berg antiferromagnet onto the nonlinear sigma model (NLσM). The separation of

short and long length fluctuations defines two continuous vector fields that capture

the individual spin and collective behaviour. The spin coherent state at site i is

parametrised as,

Ω̂i(x, t) = (−1)im̂i(1 − L̂2
i )

1
2 + L̂i, (3.10)

where m̂ is the unimodular Néel field, and L̂ is the transverse canting field, chosen to

obey L̂ · n̂ = 0 and the unit vector field Ω̂ is such that S⃗n = (−1)nS ˆΩ(xn). Dominant

contributions to the path integral vary slowly in time. The n̂ is assumed to be

smoothly varying in space and time, while L̂ fluctuates.

The effective action for the slowly varying fields is given by,

S =
1

2g

∫ ∫
dt dx

(
c−1|∂tΩ̂|2 − c|∂xΩ̂|2

)
+

Θ
4π

∫ ∫
dt dx

(
Ω̂ · ∂tΩ̂ × ∂xΩ̂

)

=
1

2g

∫ ∫
dt dx

(
(∂tn)2 − (∇n)2)+ Θ

4π

∫ ∫
dt dx ϵijkni∂tnj∂xnk

(3.11)

where c is the spin-wave velocity and in the second line we have transformed to

polar coordinates.
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The second term is the topological “theta” term, Θ = 2πS, that can be derived

from the Berry phases of the individual spins, which we have shown. The theta

term is a total derivative and does not appear in the classical equations of motion.

This is because on adjacent sites ni ≈ −ni+1 So the Néel degrees of freedom vary

as ni → (−1)i⃗ni and the Berry phase is the sum of the individual spin-1/2 Berry

phases and the integral arises in taking the continuum limit.

The Θ term is linear in time derivatives therefore does not affect the classical

limit of the equations of motion. From this term follows Haldane’s conjecture, about

the nature of the disordered ground state depending on the value of the spin. For

integer values of spin the ground state surprisingly has a gap and unbroken symme-

try. This is the explanation of the free spin-1/2 states at the ends of the AKLT chain.

Haldane’s conjecture is supported by strong numerical [59, 60], theoretical [50, 61],

and experimental [62] arguments.

Accordingly, the Berry phases are irrelevant to the low energy properties of the

Néel phase, while being crucial to capturing the paramagnetic VBS phase. Senthil

et al. [48] show that these terms also modify the quantum critical point between

these phases. This leads to the critical exponents to be different to those predicted

by LGW theory in the absence of Berry phases.

3.2 Results for the J1-J2 model

The J1-J2 model on the spin-1/2 chain contains nearest and next-nearest neighbour

interactions and is a simple model of competing exchange or frustration,

H = J1 ∑
i

σ̂i · σ̂i+1 + J2 ∑
i

σ̂i · σ̂i+2. (3.12)

This model played an important role in understanding the role of topology

in describing quantum systems. Semi-classically, an incommensurate helimagnetic

phase interpolates between the ferromagnetic and anti-ferromagnetic (Néel) phases.

This shows up in a large spin treatment as a helimagnetic phase that interpolates

between the antiferromagnetic and ferromagnetic phases.
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When J1 ̸= 0 and J2 = 0 this is the Heisenberg antiferromagnet. For general

J1, J2 this magnetic order vanishes and a valence-bond solid (VBS) ground state

is formed. The phase diagram varying J1, J2 includes the Majumdar-Ghosh point

where J2 = J1/2. Here the exact ground state is given by the equal superposition of

the two singlet/VBS decorations of the line.

Related to topology, is the appearance of a singlet dimer phase when J1/J2 ≈
1/6 that was first noted by Haldane [63] using a combination of fermionisation and

bosonisation methods. This revealed a Kosterlitz-Thouless like transition between

the singlet and antiferromagnet. A plethora of numerical and analytical approaches

have been developed and deployed to reveal further features [64–70].

The transition to the dimer phase is actually not quite Kosterlitz-Thouless. This

is understood through the space-time topology of the quantum states. The key

additional physics as mentioned earlier in the introduction is that the topological

defects in one phase are bound to the charges of the other – the boundary between

two singlet or VBS phases has a (delocalised) single spin [49].

In field-theoretical treatments this is encoded through additional topologi-

cal terms in the effective action. These are generalisations of the Haldane Theta

term [14] and measure the space-time winding of a joint singlet-antiferromagnetic

order parameter during the tunnelling events (instantons) that drive the transition

between phases.

For this model, the order parameter is u ∈ SO(4) with u = (cosθ, sinθn). The

effective field theory is a non-linear sigma model with Berry phase term,

S =
∫

dτdtdx [(−∂tu)2 + (∇u)2] +
1
π

ϵijklui∂τuj∂tuk∂xul (3.13)

It is the Berry phase topological term that imposes a single spin at the site of a VBS

domain wall.
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3.2.1 The model and MPS ansatz

The simple J1-J2 model has a rich phase diagram containing different quantum phase

transitions. In a coherent state description, a ferromagnetic state gives way to an

antiferromagnetic phase via an incommensurate helimagnetic phase with wavevec-

tor that varies as a function of J1/J2 – interpolating between the ferromagnetic and

anti-ferromagnetic phase. Haldane showed that allowing for the possibility of sin-

glet order modifies this phase diagram with a transition from anti-ferromagnetic to

singlet order at around J1/J2 ≈ 1/6. Here we focus on this transition.

We introduce an MPS ansatz that can interpolate smoothly across the phase

transition between the anti-ferromagnetic and singlet phases. The ansatz,

|A⟩ =

cosψ 0

0 ieiξ sinψ




 |n⟩ eiπ/4 |−n⟩

eiπ/4 |−n⟩ |n⟩


 (3.14)

where |n⟩ represents a coherent state polarised in the direction of the unit vector

n, is a MPS of bond-dimension two that allows for long-range magnetic order.

There is a gauge fixing implied when using coherent states, which we present at

the end of this section. The angle ξ allows tuning between singlet and S = 0 triplet

configurations and will generally be set to zero in the following considerations.

This ansatz captures all of the key phases of the J1-J2 model, where the angle

ψ interpolates between singlet and magnetically ordered phases. When ψ = 0 or

ψ = π/2, we describe the product-state antiferromagnet, where |ni⟩=
∣∣(−)in

〉
. The

singlet covers are obtained by taking ψeven = π/4, ψodd = 0, |n⟩ = |(−)in⟩, with the

translation by one bond being made by interchanging the roles of ψeven and ψodd.

The ansatz can also accommodate a coexistence of (commensurate) singlet and

incommensurate magnetic order by an alternation of ψ and an incommensurate

modulation of n.

Furthermore, this ansatz has a finite, 2-site correlation length, and as a result can

be mapped to a two-layer circuit representation (see Section 2.3). Thus, the expec-

tation of the Hamiltonian in this ansatz can be calculated exactly and manipulated

analytically. Eq.(3.14) is in left canonical form with a left environment given by the

identity and environment to the right of a site i given by Ri = (I + τz cos(ψi+1/2)).
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Gauge fixing
The MPS ansatz that we use entangles together coherent state configurations in a

certain way. As usual in using coherent states, there is a gauge fixing implied. The

polar vector n and the tangent vectors in the θ- and ϕ-directions are,

n = (sinθ cosϕ, sinθ sinϕ, cosθ) (3.15)

θ = (cosθ cosϕ, cosθ sinϕ,−sinθ) (3.16)

ϕ = (−sinϕ, cosϕ,0) (3.17)

These are the gauge fixing polar vectors, constructed so that n, θ and ϕ form a right

handed set. This particular choice of the two vectors θ and ϕ corresponds to the

usual U(1) gauge choice for the local phase of the wavefunction.

We want to arrive at expressions in which this gauge freedom is explicit. In

order to do this, we define the complex vectors Θ = θ+ iϕ and Θ∗ = θ− iϕ

|n⟩ = cos(θ/2) |↑⟩+ eiϕ sin(θ/2) |↓⟩ (3.18)

|−n⟩ = −1
2

Θ∗ · σ |n⟩ (3.19)

= sin(θ/2) |↑⟩ − eiϕ cos(θ/2) |↓⟩ (3.20)

where |−n⟩ is a coherent state orthogonal to |n⟩, related by θ → π − θ and ϕ → π +ϕ.

These relations imply that |z⟩ = |↑⟩ and |−z⟩ = −|↓⟩. Furthermore, with these

relations we can also verify that,

⟨n|σi |−n⟩ = −Θ∗
i . (3.21)

3.2.2 Energetics and phase diagram

To simplify the analysis, we restrict n to lie in the xy-plane with an angle between

sites of ∆, such that ni · ni+1 = ϕi · ϕi+1 = cos∆ and θi =−z. Here θi and ϕi are unit

vectors in the directions of increasing polar angles θ and ϕ. Moreover, we restrict

the angles ψi to alternate between two values ψA and ψB on alternating bonds of the

lattice. Note that while the resulting singlet order is commensurate with the lattice,

this restriction permits an incommensurate magnetic order.
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The expectation of the Hamiltonian Eq.(3.12) with the MPS ansatz Eq.(3.14) is

calculated using the methods seen in Section 1.2,

E = J1
[
(cos2(2ψA) + cos2(2ψB))cos∆ − sin[2(ψA + ψB)] (1 − cos∆)

]

+ J2
[
2cos2(2ψA)cos2(2ψB)cos(2∆) + sin(4ψA)sin(4ψB)(1 + cos(2∆))/4

]
.

(3.22)

The phase diagram can be deduced by optimising Eq.(3.22) over ψA, ψB and

∆. The situation of no entanglement, ψA = ψB = 0, corresponds to the classical

ground state phase diagram, i.e. optimising over a coherent state. The energy

reduces to E = J1 cos∆ + J2 cos2∆, where an (incommensurate) helimagnetic phase

with ∆ = cos−1[−J1/(4J2)] interpolates between ferromagnetic and Néel order at

J1/J2 < −4 and J1/J2 > 4 respectively.

For non-zero entanglement, ψA and ψB, the optimisation relies on numerical

methods, these results are shown in Fig. 3.1. Over much of the phase diagram

the behaviour is qualitatively similar to the result of optimising over a coherent

state, except the values of J2/J1 where the helimagnetic phase interpolates between

ferromagnetic and antiferromagnetic phases changes. Indicated by non-zero values

of cos2ψ, a degree of entanglement appears, breaking lattice translation symmetry.

ψA = ψB everywhere, except in a small region, 0.1619 < J2/J1 < 1.317.

The breaking of translational invariance of the entanglement structure corre-

sponds to the formation of one of the two singlet phases out of the antiferromagnet.

This occurs very close to J2/J1 = 1/6, which was the point identified by Haldane

using Abelian bosonisation [63]. On the scales indicated in Fig. 3.1 a) and b), the sin-

glet phase appears to form at an abrupt first order discontinuity in the parameters

of the MPS ansatz. However upon zooming in, this is actually second order.

Calculation of when the energy of the state with uniform entanglement

(E = −2cosψ[(J1 − J2)cosψ + 2J1 sinψ]) crosses the energy of the singlet state

(E = −3J1) suggests that such a first order transition would occur at precisely

J2 = J1/6. However, zooming in on the region around this point reveals the transi-

tion to be continuous, albeit over a narrow range of parameters from J2/J1 ≈ 0.1619,

the point at which the translational invariance of the entanglement structure is first

broken, upto J2/J1 = 3 − 2
√

2 ≈ 0.1716 when the singlet order is fully formed.



3.2. Results for the J1-J2 model 48

0.5 1

-3

-2

-1

1

2

0.05 0.052 0.054

-2.98

-2.97

-2.96

-2.95

-2.94

0.5 1

-0.2

0.2

0.4

0.6

0.8

1

0.05 0.051 0.052 0.053 0.054 0.055

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Phase diagram as a function of arctan(J2/J1)/π. a) A plot of the energy through
the phase diagram. The blue curve shows the energy calculated within equal
entanglement on even and odd bonds, while the green curve is the energy of
a singlet cover. On the scale of the main plot the phase transition between
antiferromagnet and singlet appears discontinuous. However, zooming in on
the transition, presented in the inset, shows that the minimum energy (in orange)
is given by a smooth interpolation between the two phases. b) A plot of the
helimagnetic pitch ∆/π and the entanglement parameter sin(2ψ). Over most
of the phase diagram the entanglement on even and odd bonds is the same
so that ψA = ψB. Between J2/J1 = 0.1619 and 0.1716 this symmetry is broken
favouring ψA = 0 and ψB = π/4 (or vice versa). This transition is extremely rapid
on the scale of the main plot. The inset shows that it is in fact continuous over
a very narrow range. Dashed curves show the optimum symmetric parameters
ψA = ψB in the region where the translational symmetry is broken.

Haldane used a fermionic representation of the spins followed by a bosoniza-

tion to instead predict a Kosterlitz-Thouless transition into the singlet phase1. This

picture will be slightly modified by the topological terms, but there will remain a

1We believe that this is the origin of the narrowness of the transition in our treatment.
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Figure 3.2: The spin stiffness ρ as a function of J2/J1 across the Néel-singlet transition. This is
obtained for the saddle point configuration of the MPS ansatz, eq. 3.23, and the
bosonized field theory [45]. There is good agreement between the two method,
with both exhibiting the jump at critical J2. The black point is the exact (Bethe-
Ansatz) value, π/4, at J2 = 0. This figure was produced by Adam J. McRoberts.

universal jump in the spin stiffness ρ (this is derived by Adam J. McRoberts in [45]).

On the other hand, for the MPS ansatz, an estimate for ρ is obtained remarkably

straightforwardly. We use the dependence of the pitch ∆ to evaluate the resistance

to inducing a twist in the magnetic order. That is,

ρ = ⟨N⟩ ∂2E
∂∆2

∣∣∣∣
∆=π

(3.23)

where ⟨N⟩ = cos(2ψA)cos(2ψB) is the Néel order parameter.

This is plotted in Fig 3.2. Here we see the universal jump associated with the

KT transition is visible, that is even at the saddle-point level the MPS ansatz does

a remarkably good job of capturing the key physics. The jump occurs between the

split transitions, rather than discontinuously, and is broadly in agreement with the

field-theoretic estimate.

The focus of this work is on this Néel to singlet order transition. Later work [49]

went beyond a purely KT treatment and showed the importance of topological WZW

terms in the field theory to encode the binding of spins to domain walls between

singlet phases. The MPS ansatz encodes this physics directly in the structure of the

spin wavefunction. In the following we show how these two perspectives can be

reconciled.
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3.2.3 SO(4) order parameter and continuum limit

In order to relate the MPS and field theoretical approaches, we must construct the

local SO(4) order parameter and then take an appropriate continuum limit. This

treats the Néel and singlet order on an equal footing. In terms of MPS Eq.(3.14), the

local (Néel) magnetic order is given by

Ni = (−)i⟨σ̂i⟩ = cos(2ψi)cos(2ψi+1)ni. (3.24)

The singlet states may be distinguished in the thermodynamic limit by a string

order parameter (e.g. Eq. 3.3). However, for our purposes it suffices to identify a

local singlet order parameter, which can be written when ni ≈ −ni+1,

Di = (−)i⟨σ̂+
i σ̂+

i+1 + σ̂−
i σ̂−

i+1 − σ̂+
i−1σ̂+

i − σ̂−
i−1σ̂−

i ⟩ (3.25)

where σ̃+ = Θ · σ/2 and σ̃− = Θ∗ · σ/2 are spin raising and lowering operators in

the basis of | ± ni⟩.When n is ordered in the z-direction, these reduce to the usual

raising and lowering operators. Then for our state ansatz, Eq.(3.14),

Di = (−)i [−sin(2ψi+1)cos(ψi − ψi+2)cos(ψi + ψi+2)

+sin(2ψi)cos(ψi−1 − ψi+1)cos(ψi−1 + ψi+1)]
(3.26)

The task now is to bring these into a single order parameter. To do so, we

note the following occurs when entanglement is allowed on either only even or

only odd bonds. When there is no entanglement on odd bonds (ψ2i+1 = 0) the

order parameters reduce to N2i = cos(2ψ2i)n2i, N2i−1 =−cos(2ψ2i)n2i−1, and D2i =

D2i−1 = sin(2ψ2i) so that n2 + D2 = 1, forming an SO(4) multiplet2. Conversely,

when there is no entanglement on even bonds (ψ2i = 0), N2i = cos(2ψ2i+1)n2i,

N2i+1 = −cos(2ψ2i+1)n2i+1 and D2i = D2i+1 = −sin(2ψ2i+1).

The two singlet orders can be characterised by a single angle χ ∈ [−π,π]defined

on even sites of the lattice as follows: 2ψ2i−1 = χ2iΘ(χ2i) and 2ψ2i = −χ2iΘ(−χ2i),

where Θ(x) is the Heaviside step function. In this way, positive χ2i indicates

entanglement between sites 2i and 2i + 1, and negative χ2i indicates entanglement

2Note that the roles of sin(2ψ) and cos(2ψ) are interchanged compared to the usual polar decom-
position of an SO(4) multiplet.
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Figure 3.3: Order Parameter: The parameters of the MPS ansatz Eq.(3.14) must be patched
together in order to construct the SO(4) order parameter. The angle χ ∈ [−π,π]
is introduced so that between (0,π) it describes entanglement on odd bonds
and between (0,−π) entanglement on the even bonds. The points χ = 0 and π
describe the two different antiferromangetic phases.

between sites 2i − 1 and 2i. Fig. 3.3 shows how the angles χ rotate between the two

singlet phases and antiferromagnetic phases.

Quantum fluctuations
The saddle-point of the Hamiltonian computed within our ansatz,i.e. the uni-

form entanglement saddle-points of the MPS (3.14) shown in Fig. 3.1 cannot be

completely characterised by the SO(4) order parameter. It captures significant

quantum fluctuations corresponding to instantons in the field theory between the

two singlet covers. Such fluctuations are constrained in a subtle way by monogamy

of entanglement and the structure of the singlet phases such that a (potentially

delocalised) spin appears at the boundary between singlet orders. This is captured

by the auxiliary-space structure of the MPS tensors and ultimately in the topological

terms that appear in the continuum field theory.
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3.2.4 The effective action

Using the SO(4) order parameter and the MPS ansatz that allows a continuum limit,

we can construct the field theory as an MPS path integral [28] (and see Section 2.1.1),

Z =
∫

DΨeiS[Ψ], S =
∫

dt ⟨Ψ|∂tΨ⟩ −H, (3.27)

where DΨ = DnDχDξ is over the parameters of the restricted MPS ansatz.

Despite the enforced staggering of ψi, we still take advantage of the entan-

glement captured by the ansatz at the saddle-point level (the singlet cover). The

procedure we present is in essence an extension of the derivation of the action for

the antiferromagnet, first carried out by Haldane [50, 58, 71]. There are three key

contributions to the effective action; the expectation of the Hamiltonian, a kinetic

term and a topological term.

In the lattice case, we assume entanglement only between sites 2i and 2i + 1

(considering entanglement on the alternate bonds leads to the same continuum

limit). We have the Berry phase,

SB =
∫

dt ⟨ψ|∂tψ⟩

=
∫

dt∑
i

[
iξ̇2i

2
(1 − cosχ2i) +

i
2

cosχ2i [ϕ̇2i cosθ2i − ϕ̇2i−1 cosθ2i−1]︸ ︷︷ ︸
Area swept at 2i minus 2i−1

]
.

(3.28)

that is derived in the following way,

SB =
∫

dt⟨ψ|∂tψ⟩ (3.29)

=
∫

dt∑
i

Tr⟨Ai|∂t Ai⟩

cos2 ψi+1 0

0 sin2 ψi+1




=
∫

dt∑
i

Tr


 ⟨ni| e−iπ/4 ⟨−ni|

e−iπ/4 ⟨−ni| ⟨ni|




cosψi 0

0 −ie−iξi sinψi


×

∂t




cosψi 0

0 ieiξi sinψi




 |ni⟩ eiπ/4 |−ni⟩

eiπ/4 |−ni⟩ |ni⟩






cos2 ψi+1 0

0 sin2 ψi+1




=
∫

dt∑
i

[
iξ̇i

1
2
(1 − cos2ψi) + cos2ψi+1 cos2ψi ⟨ni|ṅi⟩

+iϕ̇i(cos2 ψi sin2 ψi+1 + sin2 ψi cos2 ψi+1)
]
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=
∫

dt∑
i

iξ̇i

2
[1 − cos2ψi] +

iϕ̇i

2
[1 − cosθi cos2ψi+1 cos2ψi] ,

and the Hamiltonian,

H = −J1 ∑
i
[m2i−1 · m2i + wz

2iw
z
2i+2m2i · m2i+1 + wx

2i(m2i−1 · m2i + 1)]

+ J2 ∑
i

wz
2iw

z
2i+2(m2i · m2i+2 + m2i−1 · m2i+1)

(3.30)

where as a last step in these calculations we have identified an O(3) vector

w = (sinχcosξ, sinχsinξ, cosχ) to parametrise the entanglement, and switch-

ing to a Néel field mi = (−)ini. The smoothly varying Néel order parameter

amounts to introducing a polar angle that alternates between sites as θi,odd = θi and

θi,even = π − θi. In our assumption, ψ2i+1 = 0 on odd bonds and 2ψ2i = χ2i − π ̸= 0

on even bonds, leading to the final form of SB, (3.28)). The first term of SB accounts

for fluctuations between singlet and triplet channels. Later we set ξ to its mean-field

value and discard this term.

The Hamiltonian term
The Hamiltonian contribution is the most straightforward to evaluate. This can be

found by taking the continuum limit of the Hamiltonian directly.

E = J1 ∑
i




n2i−1 · n2i

− 1
2 sinχ2i(e−iξ2i Θ2i−1 · Θ2i + eiξ2i Θ∗

2i−1 · Θ∗
2i)

+cosχ2i cosχ2i+2n2i · n2i+1




+ J2 ∑
i

cosχ2i cosχ2i+2(n2i · n2i+2 + n2i−1 · n2i+1).

(3.31)

Identifying the same O(3) vector w to parametrise the entanglement, using the

notation w⊥ = sinχ for compactness, and switching to Néel parameters n2i+1 →
−n2i+1, ϕ2i+1 →−ϕ2i+1, and, θ2i+1 → +θ2i+1. Then,

E = −J1 ∑
i




n2i−1 · n2i

+ 1
2 w⊥

2i(e
−iξ2i Θ2i−1 · Θ∗

2i + eiξ2i Θ∗
2i−1 · Θ2i)

+wz
2iw

z
2i+2n2i · n2i+1




+ J2 ∑
i

wz
2iw

z
2i+2(n2i · n2i+2 + n2i−1 · n2i+1).

(3.32)
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We manipulate the exchange term into a form from which we may directly take the

thermodynamic limit. This is to find the optimal angles ξ2i to minimise the energy.

One can rotate between the real and imaginary parts of Θ = θ+ iϕ by multiply-

ing by a phase factor; Θ′ = θ′+ iϕ′ = eiµ(θ+ iϕ). This corresponds to the U(1)gauge

freedom in our choice of vectors orthogonal to n. It is always possible to make such

a rotation so that θ′2i−1 = θ′2i ∝ n2i−1 × n2i (or alternatively ϕ′
2i−1 = ϕ′

2i ∝ n2i−1 × n2i)

in which case ϕ′
2i−1 · ϕ′

2i = n2i−1 · n2i.

The expectation of the energy is then,

E = −J1 ∑
i




n2i−1 · n2i

+wx
2i cos(ξ2i + µ2i−1 − µ2i)(n2i−1 · n2i+1)

+wz
2iw

z
2i+2n2i · n2i+1


 (3.33)

+ J2 ∑
i

wz
2iw

z
2i+2(n2i · n2i+2 + n2i−1 · n2i+1).

The optimum value of ξ2i is given when ξ2i + µ2i−1 − µ2i = 0. This corresponds to

maximising the singlet order on the bond n2i−1 and n2i. The subsequent treatment

expands around this value. Taking the continuum limit in the usual way leads to

the final expression,

E =
1
2

∫
dx




[J1(1 + (wz)2 + w⊥)/2 − 4J2(wz)2](∇m)2

+(2J1 − 4J2)(∇wz)2

−J1 − 2J1wx + (2J2 − J1)(wz)2


 . (3.34)

where mi are Néel parameters, m2i = (−)2i+1n2i+1, and w⊥=±1 in the singlet phase.

This energy has a mean field transition in the bare theory at J1 > 0 and J2 = 0

between a partially antiferromagnetic phase at J2 < 0 and a perfect singlet phase

at J2 > 0. Quantum fluctuations are expected to shift the position of this transition

(and to restore the translational symmetry in some regions of the phase diagram)

to recover the results of the previous MPS analysis.

Kinetic terms
The relevant saddle-points of this action are the two singlet covers, where χ =±π/2.

By retaining the ξ-dependence of the Berry phase and energy, then expanding to
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second order in the deviations of ξ from its equilibrium value in either case, and

then integrating it out, we obtain a kinetic term (∂tχ)2/32J1.

The m-contribution can be derived in a very similar way as the anti-ferromagnet

(see Haldane’s mapping function, Section 3.1.3 and (3.10)). Separating n into slow

(c = 0) and fast (c ≈ π) degrees of freedom, m and l respectively (note that we have

not retained l in (3.30)), and expanding the Berry phase to first order in the fast

degree of freedom, leaves the contribution
∫

cosχ l · (m × ∂tm) dt. The leading

contribution to the fast degrees of freedom of the Hamiltonian is given by χ0 l · l.

Integrating out l, we obtain a kinetic term χ−1
0 cos2 χ(∂tm)2.

The topological term
The effective field theory of the J1-J2 model has a topological term that encodes the

structure of the defects between the two singlet phases or between two Néel phases.

This can be obtained substituting Eq.(3.10) into SB, Eq.(3.28) following Haldane’s

steps in the derivation of the Theta term for the antiferromagnet. The topological

term arises from the second term of SB (3.28). In the continuum limit this becomes,

iΩ =
∫

dτ ∑
2i

i
2

cosχ2i(ϕ̇2i cosθ2i − ϕ̇2i−1 cosθ2i−1)

∼
∫

dτdx
i
4

cosχ(∂τϕ∂x cosθ − ∂xϕ∂τ cosθ)

(3.35)

Here, the second term follows after integrating by parts, and θ and ϕ are now

the angular co-ordinates of the Néel field m̂. Note the factor of 1/2 in changing

from the sum over n to the integral over x. Eq.(3.35) is the polar coordinates version

of the SO(4) topological term identified in [49].

Ω =
2πk
2π2

∫ 1

0
dζ
∫

dτdx ϵabcdua∂ζub∂τuc∂xud (3.36)

where k ∈ Z is odd. The factor of 2π2 in the denominator is the area of S3,the unit

three-sphere, and u(ζ,τ, x) is an extension of the field u(τ, x) = (sinχ, cosχm) ≡
(u0,u) satisfying

u(ζ = 0,τ, x) = (1,0,0,0) (3.37)

u(ζ = 1,τ, x) = u(τ, x) = (sinχ, cosχm) (3.38)
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In the MPS treatment, the internal structure of the ansatz constrains domain

walls between different singlet phases to contribute to the overall Berry phase as

a free spin. The topological term imposes this same constraint in the field theory.

To see this consider a Néel order for ni without x-dependence and a static smooth

interpolation of cosχ between −π and π. In this case, using the second form of the

Berry phase, Eq.(3.35), the integral over space can be carried out leaving a result

equal to the Berry phase of a single spin.

The resultant field theory
We switch to the standard angular coordinates on S3, i.e. define α = π/2 − χ, in

terms of which (wz)2 = sin2 α and (∂wz)2 ∼ (∂α)2. Then, in summary, we have

derived the following field theory from the MPS ansatz,

S = iΩ +
∫

dtdx
[

1
32J1

((∂tα)
2 + sin2 α(∂τm̂)2)

+ (J1 − 2J2)((∂xα)2 + sin2 α(∂xm̂)2) + V(α)

]
,

(3.39)

where the dimerisation potential is,

V(α) ≈ −3J1

2
+

J2

2
− J2

2
cos2α (3.40)

The action was derived directly from an MPS parameterisation of the spin states

Eq.(3.14). This form of the action makes the physics of the transition particularly

transparent, if J2 < Jc
2, the potential V(α) is irrelevant and the SO(4) symmetry

emerges in the infrared, while the topological term ensures the theory remains

gapless. Whereas if J2 > Jc
2, the V(α) term appears, and the SO(4) symmetry is

broken in favour of dimer order.

3.3 Discussion

This work has introduced an MPS ansatz that reproduces key features of the phases

transitions of the J1-J2 model, encompassing ferromagnetic, Néel, spiral, and dimer

orders. When optimised for the J1-J2 Hamiltonian, it shows a very rapid, but

continuous transition between antiferromagnetic and singlet order in the vicinity
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of J2/J1 = 1/6. This is the transition point found by Haldane in his fermionisa-

tion/bosonisation treatment of the same model3.

In this work an SO(4) order parameter combining the Néel and singlet orders is

identified, and a continuum path integral constructed over MPS fields parametrised

by this. The construction is similar to that for the antiferromagnet, but using MPS

valued fields rather than coherent states.

The MPS treatment parametrises the microscopic structure of topological de-

fects in the spin configuration. Specifically, the presence of a single (delocalised)

spin at the boundary between singlet phases. Haldane’s original treatment showed

that the transition is Kosterlitz-Thouless like4. It is remarkable how the simple MPS

ansatz captures so many key features of this transition at the saddle-point level. The

underlying Kosterlitz-Thouless character is presumably responsible for the rapidity

of the transition.

The MPS state effectively re-sums instantons of the coherent state theory and

encodes their topological structure in the local structure of the MPS fields. This

connection has been noted previously [28, 72]. The contribution made here is to

show how the MPS faithfully encodes topological features, and how these lead

directly to topological terms encoding the same information in the field theory.

It is intriguing to speculate that this connection between topological terms in

a field theory and the structure of MPS ansaetze could be used more generally as

a method to re-sum instantons, in favour of a higher bond-dimension MPS path

integral. Indeed, finite correlation-length MPS tensors – such as those used in this

work – play a special role in classification of symmetry protected topological order.

Ultimately, it would be desirable if these methods could be extended to two-

dimensions to capture similar physics in models such as the J-Q model [48].This

is tricky because generic PEPS states are not efficiently contractible rendering a

PEPS path integral non-local (a criteria for the MPS path integral discussed in

Section 2.1.1), although it may be possible to circumvent this difficulty by using

sequential circuit ansaetze [73].

3If one restricts to helimagnetic phases with translationally invariant entanglement and purely
singlet phase, then the transition is first order at exactly J2/J1 = 1/6.

4Where logarithmic corrections occur due to the topological term in the action.
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3.3.1 Extending to higher dimensional J-Q models

The J-Q model, also known as the coupled dimer antiferromagnet [54], extends the

Heisenberg antiferromagnet. This is a model on the two-dimensional square lattice

with Hamiltonian,

H = J ∑
⟨ij⟩

σi · σj + Q ∑
⟨ijkl⟩

(σi · σj − 1)(σk · σl − 1) (3.41)

where the second sum is to be taken over plaquettes, i.e. opposite sides of the unit

square of the lattice. This model also hosts the VBS to antiferromagnetic transition,

as previously introduced.

This is an example of higher dimensional deconfined quantum criticality. Here

we consider the order parameter u ∈ SO(5)\SO(4) given by N = (vcosθ,nsinθ),

where v ∈O(2) is the VBS contribution and n ∈ SO(3) is the Néel vector [74]. Similar

to the Haldane map, the topological WZW term [46,49] is a mapping function, which

contains the order parameter field u ∈ SO(5) that drives the non-trivial physics of

this model. The effective action is given by,

S =
∫

dtdxdydτ [(∂tu)2 + (∇u)2] + ϵijklmui∂tuj∂xuk∂yul∂τum (3.42)

The topological term couples defects of the VBS phase to the charges of the

coherent state vector. It counts a free spin n worth of Berry phase in the middle of

the vortex v. Capturing this behaviour by a generalised Haldane map in the field

theory over entangled states is an overarching goal. Here we have shown this for

the simpler example, the one-dimensional J1-J2 model.



Chapter 4

Phase transitions in the classical

simulability of open quantum systems

A key challenge for quantum technologies lies in understanding how the quantum

system interacts with its environment and how this interaction affects the quantum

nature of the system. This chapter introduces a new technique for the simulation

of open quantum systems, and shows how this can be used to demonstrates novel

features in entanglement dynamics. Specifically, we take a Langevin trajectories

approach that allows for fine tuning of the environment parameters. As the strength

of coupling to and temperature of the environment is increased, we find a transition

where the entanglement of the individual trajectories saturates, thus permitting a

classical simulation of the system for all times.

This work was performed in collaboration with Andrew G. Green, Andrew Hallam, and James

Morley and has been published [75]. My primary contribution to this work was looking at

the application of this technique as a probe of entanglement dynamics. The data collected to

produce the figures in this chapter is available online, DOI: 10.5522/04/22732289.
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4.1 Introduction

In Chapter 1, we introduce open quantum systems and how they lend to the classical

world we observe. We also introduce the different approaches to their study. One

is where we describe the evolution of the density matrix with master equations.

Where the inclusion of Lindblad operators account for the effects of an environment.

Another is to use stochastic trajectories of pure quantum systems that can reproduce

results of the former approach upon averaging.

This is more aligned with the Langevin approach that gives a good account

of the thermal properties of the system-bath interaction. Accounting for both tem-

perature and coupling to the environment is achieved due to their satisfying a

fluctuation-dissipation relation. These parameters appear in the equations of mo-

tion as separate terms so they can be fine-tuned and studied individually.

While Langevin methods have been used extensively for quantum systems, they

can be limited to individual quantum systems that do not take into account entan-

glement. Extending the Schrödinger equation to a stochastic differential equation

by accounting for noise and dissipation becomes the usual problem of exponential

scaling of Hilbert space.

It is at this point that tensor network states prove useful with their tunable

degree of entanglement. We derive and present a technique for simulation of open

quantum systems that makes use of a variational parametrisation of trajectories

obtained by unravelling the evolution of an open system density matrix. The

equations of motion of each trajectory can be considered a Langevin extension of

the time-dependent variational principle (TDVP). This extension adds noise and

friction terms to the original TDVP equations [25].

This work is of two parts, the technique itself and the interesting physics

observed by applying this tool. We apply this technique to probe entanglement

dynamics in open systems. Open system dynamics act to disentangle and cause

decoherence, furthermore, classical behaviour in open systems can often be emer-

gent. This is linked to the complexity of describing the open system at early and

late times. Broadly speaking, an open quantum system can be termed classical in

at least two different ways.
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On one hand, if a quantum system is in a weakly-entangled state, it may be

considered classical as long as the entanglement remains low. In this early time

limit, semi-classical equations of motion of the system apply – growing entangle-

ment makes this problem intractable. On the other hand, an open system behaves

classically once the coupling to the environment has caused dephasing.

Can these views be reconciled and a classical description developed that works

from the earliest to the latest times? Recent insights have made steps towards such

an understanding for open systems. The interplay between entangling dynamics

and frequent projective or weak measurements has been explored [35, 76–81]. The

transition from volume law to area law entanglement allows such a classical (i.e.

weakly-entangled) description of the system for all times.

Such semi-classical descriptions and the transition in entanglement growth are

related to the quantum Zeno effect. This is the phenomenon by which frequent

measurement in a channel impedes transitions in that channel [82]. The nature

of a transition to a many-body quantum Zeno phase has been studied extensively

[83–93] and similar analyses extended to measurement-induced transitions in open

Hamiltonian systems [94–97].

For closed systems, the TDVP equations constitute a semi-classical limit; they

correspond to classical Hamilton equations of motion on the variational mani-

fold [25, 98]. As the entanglement grows during the Hamiltonian evolution, the

TDVP equations break down as a larger and larger variational manifold is required

in order to capture the state and its dynamics, alongside a larger and larger error

when projecting the evolved states back to a given variational manifold. In this

sense, the semi-classical description is confined to early times, where a finite bond

order simulation is sufficient to capture the entanglement.

In our stochastic TDVP Langevin equation applied to MPS, we find thresholds

in the dynamics of individual trajectories as a function of coupling to and tem-

perature of the environment. Beyond a certain coupling strength, the bath-system

interaction causes the entanglement to saturate at a low value, so that a low-bond

order MPS description gives high fidelity for all time. This constitutes a transition in

the classical describability of the open quantum system: the low bond order TDVP

Langevin equation is an effective semi-classical description that works for all time.
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This chapter is organised as follows. We begin by introducing the stochastic

TDVP-Langevin equation in Sec. 4.2. Here we discuss its derivation and numerical

implementation. Then in Sec. 4.3 we introduce some results from applying this

technique, studying the open evolution of a rapidly entangling system. Here we see

a transition to a quantum Zeno phase as the strength of coupling to the environment

is increased in different limits (finite temperature, noise, friction). We then look

more closely at our data and discuss scaling relations and how the data collapse is

different before and after the transition in Sec. 4.3.2. Finally we explore limits on

classical simulability in Sec. 4.4 and efficiency of our approach, then we look into

further avenues for this work in Sec. 4.5.

4.2 A Stochastic TDVP Langevin Equation

Langevin equations describe the motion of a system coupled to an environment (or

alternatively the motion of slow collective degrees of freedom in an effective bath

described by the faster degrees of freedom [99]) by adding noise and friction terms

to the basic equations of motion of the system.

If the environmental degrees of freedom are in thermal equilibrium, the friction

and noise satisfy a fluctuation-dissipation relation. Applied to quantum systems,

the Schrödinger equation provides the basic equations of motion. The ensemble of

the resulting stochastic Schrödinger trajectories recovers the density matrix evolu-

tion and is said to be an unravelling of it.

The TDVP Langevin equation can be written in its Markovian limit as:

〈
∂iψ
∣∣∂jψ

〉
Ẋj = −i ⟨∂iψ| Ĥ |ψ⟩ − i∑

n
⟨∂iψ| F̂n |ψ⟩ηn(t)− i∑

n
γ

d⟨ψ| F̂n |ψ⟩
dt

⟨∂iψ| F̂n |ψ⟩ .

(4.1)

The terms on the left-hand side and the first term on the right constitute the conven-

tional time-dependent variational principle (TDVP) equations (Section 1.2.3) [25]

projecting the Schrödinger equation onto a variational manifold. The second and

third terms on the right are the noise and friction due to coupling to the environ-

ment. F̂n are the operators by which the system is coupled to the bath displacement

operators. We generally assume these to be spatially local.
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For spin-half chains they are given by the x,y and z-components of the spin

operators on each site, each of which couples to a separate bath. The bath is de-

scribed as a collection of harmonic oscillators and the noise-correlator is determined

by the spectrum of oscillators and the temperature of the bath. These are related

by a fluctuation-dissipation relation, ⟨⟨η(t)η(t′)⟩⟩ = 2γTδ(t − t′) in the combined

classical and Markovian limits.

This approach to unravelling the density matrix evolution has some partic-

ularly attractive features. It can treat coupling to finite-temperature and non-

Markovian environments, expanding the relevance of environment-induced many-

body Zeno transitions. The TDVP Langevin equation can be used with any vari-

ational parametrisations in any dimension that permits a TDVP treatment in the

absence of an environment. Consequently, the effects of long-range interactions in

one dimension [100,101] can be readily incorporated. It lends itself particularly well

for combination with stochastic TDVP evolution of neural quantum states [102–104].

In the present treatment we use one-dimensional matrix product states (MPS)

[21, 105, 106]. To date, MPS techniques have been employed in the study of open

systems largely by starting with the Lindblad master equation and either describing

the density matrix directly as a matrix product operator [107–109] or else unravelling

its evolution over MPS representations of quantum trajectories [110–112]. These

approaches cannot treat finite temperature or non-Markovian environments for

which alternative methods are required [113].

We provide a heuristic derivation and Keldysh field theory derivation of

Eq.(4.1) in the following section. We develop the Langevin equation from the

Keldysh path integral for the time-evolution of the density matrix. The method

follows that of [114, 115] with the modification that the Keldysh path integral is

constructed over matrix product states [28].

The result adds noise and friction to the time-dependent variational principle

constructed over matrix product states [25]. The same construction for other vari-

ational classes leads to a similar stochastic equation of motion, which we dub the

TDVP-Langevin equation. Alternative unravellings of the Lindblad equation for the

density matrix evolution over MPS [110] apply in different circumstances of relative

time and energy scales of the bath and system.
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The construction over MPS of Eq.(4.1) follows the prescription for TDVP seen

in [25], which we detail in the numerical implementation section. Integration of this

equation is made complicated by the friction term. Naively, this requires inversion

of a matrix that is proportional to the system size and dimension of the variational

manifold. However, recognising that it consists of an outer product of vectors allows

an efficient inversion and integration of the equations of motion.

In later sections we also show that thermal distributions are fixed points of

the TDVP Langevin evolution. A thermal distribution is given by a Boltzmann-

weighted Haar average over the variational manifold. For MPS of bond dimension

D, this average can be performed as a Haar integral over the group SU(dD) with d

the local Hilbert space dimension.

The bath model
Approaches to studying open systems that involve writing down an effective equa-

tion of motion for the reduced density matrix, i.e. a Markovian or non-Markovian

quantum master equations, can be highly efficient but do not allow any access to the

environmental degrees of freedom. In this work we consider a paradigmatic model

of the dissipative dynamics of the environment, the Caldeira-Leggett model [32].

We model the bath as a collection of independent non-interacting harmonic

oscillators. These are linearly coupled to local system operators F̂n at site n by their

displacements. The bath and interaction Hamiltonians are given by,

ĤB = ∑
n

∑
α

h̄ωα(â†
n,α ân,α +

1
2
) (4.2)

ĤI = −∑
n

∑
α

λα(â†
n,α + ân,α)F̂n (4.3)

where the index α labels the different oscillator modes at the site n.

The distribution and temperature of the oscillator modes is assumed to be the

same at each site. Further, we assume no back reaction of the system on the bath – as

seen by the exclusion of an extra counter term [116,117]. The counter term accounts

for frequency shifts so that the system Hamiltonian is the physically observable

Hamiltonian, and can formally be absorbed into the system.
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The assumption we make is subtle – the bath must be non-linear in order to

thermalise energy absorbed from the system, but these non-linearities must operate

on timescales such that the bath’s effect on the system is the same as independent

oscillators. This allows noise and dissipation to be related by the fluctuation-

dissipation relation. The assumptions are non-trivial, but standard, and permit the

simple manipulations that follow.

A heuristic derivation
A heuristic derivation of the TDVP Langevin equation can be made in the spirit of

the Frenkel principle for deriving the TDVP equations [9]. The state of the system

and bath are parametrized as |ψ(x)⟩ ⊗n,α |ϕn,α⟩, where x corresponds to some set of

variational parameters of the system and ϕn,α are coherent state parameters of the

α-oscillator on site n.

The time derivative of the wavefunction in the Schrödinger equation for the

system and bath is expanded using chain rule over these parameters,

−iĤ |ψ⟩ ⊗n,α |ϕα⟩ ≈ ż |∂zi⟩ ⊗n,α |ϕn,α⟩+ |ψ⟩∑
m,β

ϕ̇m,β∂ϕm,β(⊗n,α |ϕn,α⟩) (4.4)

where the inequality is because the dynamics might take the state outside of the

variational manifold.

Taking an inner product with ⟨∂zi ψ| ⊗n,α ⟨ϕn,α| allows us to obtain an equation

of motion for the system in the presence of the bath, while taking an inner product

with ⟨ψ| ∂ϕo,γ (⊗n,α ⟨ϕn,α|) allows us to obtain an equation of motion for the bath in

the presence of the system, with system Hamiltonian HS,

i⟨∂zi ψ|∂zj ψ⟩żj = ⟨∂zi ψ|ĤS|ψ⟩+ ∑
n
⟨∂zi ψ|F̂n|ψ⟩∑

α

λα(ϕ̄n,α(t) + ϕn,α(t)) (4.5)

iϕ̇n,α = ωα + λα⟨ψ|F̂n|ψ⟩ (4.6)

The equalities are attained since the inner products with the tangent vectors

project the Hamiltonian evolution back onto the variational manifold. These equa-

tions correspond to the usual TDVP equations with addition of terms coupling

between the system and bath.
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The remaining steps involve integrating the equation of motion for the bath

degrees of freedom and substituting back into the equation of motion for the system.

The formal solution of the equation of motion of the bath degrees of freedom is

ϕn,α(t) = ϕn,α(0)e−iωαt −
∫ ∞

0
dt′ DR(t′ − t) ⟨ψ|F̂n|ψ⟩ , (4.7)

where we have identified the retarded bath correlator DR(t′ − t) = −iΘ(t −
t′)⟨â†(t′)â(t)⟩ = ieiω(t′−t). The assumptions of no back reaction of the system on

the bath lies in treating the terms ηn(t) = ∑α ϕn,α(0)e−iωαt as a stochastic random

field with variance appropriate to the thermal distribution. After further identifying

∂tΓ(t) = DR(t) the equation of motion is of the form,

i
〈

∂Ai ψ
∣∣∣∂Aj ψ

〉
Ȧj = ⟨∂Ai ψ|ĤS|ψ⟩

+ ∑
n
⟨∂Ai ψ|F̂n|ψ⟩

(∫
dt′ Γ(t − t′)

〈
∂Aj ψ

∣∣∣F̂n

∣∣∣ψ
〉

Ȧj + η(t)
)

.
(4.8)

Correlations in the noise fields η(t) relate to the dissipation kernel Γ(t − t′) by

fluctutation-dissipation theorem. The Markovian limit, Γ(t − t′) = Γδ(t − t′), re-

covers Eq. 4.1.

Keldysh field theory derivation
A formal derivation from the Keldysh path integral can also be made. We follow

the approach described in [33, 114, 118] of constructing a Keldysh path integral

for the density matrix and then integrating out the bath in an appropriate limit to

obtain a Langevin equation. Our main modification is to construct the path integral

over MPS following [28].

The initial density matrix is assumed to factorise into density matrices for the

system and bath as ρ̂ ⊗ ρ̂bath - the bath being in thermal equilibrium and its distri-

bution assumed to be unchanged in time. This evolves to T̄e−i
∫ t

0 dt′(Ĥ+Ĥint+Ĥbath)ρ̂ ⊗
ρ̂bathTe−i

∫ t
0 dt′(Ĥ+Ĥint+Ĥbath) at time t.

Construction of the Keldysh path integral proceeds by dividing up the time-

ordered (T) and anti-time-ordered (T̄) exponentials into many infinitesimal evolu-

tions, and inserting resolutions of the identity over coherent state variables for the

bath and using a Haar measure over MPS states for the system [28].
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1 =
∫

∏
n

dϕ̄n(t)dϕn(t)e−∑n ϕ̄nϕn ⊗n |ϕ̄n⟩⟨ϕn| (4.9)

=
∫

DA(t)|A⟩⟨A| (4.10)

Here DA symbolises an integral over all tensors in the MPS chain over the Haar

measure, as introduced in [28].

A Keldysh rotation transforms from the fields on the time-ordered contour (+)

and the anti time-ordered contour (−) to the sum and difference between them,

A± = Acl ± Aq, ϕ± = ϕcl ± ϕq – known as the classical and quantum components

of the quantum field. These manipulations give the following path integral for the

evolution kernel of the density matrix:

K(t) =
∫

DAD(ϕ̄,ϕ)eS[Ac,Aq,ϕc,ϕq] (4.11)

S = S[Acl + Aq]− S[Acl − Aq] +
∫

dt

[
∑
n,α

λα

(
Fq

n , Fcl
n

)

 ϕcl

n,α + ϕ̄cl
n,α

ϕ
q
n,α + ϕ̄

q
n,α



]

(4.12)

+
∫

dt dt′
[
∑
n,α

(
ϕ̄cl

n,α(t), ϕ̄
q
n,α(t)

)

 0 [DA

α ]
−1(t − t′)

[DR
α ]

−1(t − t′) [D−1
α ]K(t − t′)




 ϕcl

n,α(t′)

ϕ
q
n,α(t′)



]

where DA
α , DR

α and DK
α are the advanced, retarded and Keldysh components of the

bath Greens function. Consistent with our assumption of a thermal equilibrium

bath and no back reaction, they are related by the fluctuation dissipation relation:

DK
α (ω) = coth(ω/2T)[DR

α (ω) − DA
α (ω)] with DR(A) = 1/(ω ± iδ). Furthermore,

S[A] is the action of the system in the absence of coupling to the bath.

The simple quadratic form of the bath action follows from our assumptions

and modelling of its effects as independent harmonic oscillators. This allows for

integrating out the bath and, depending upon timescales [119], to construct either

a Lindblad or Langevin limit.

We construct the latter limit in three steps. First the bath degrees of freedom

are integrated out. The resulting dissipative contribution to the action has cross

terms between classical and quantum components of the expectations of F̂, and a

term quadratic in the quantum component,

Sdiss =
∫

dt dt′∑
n

(
Fcl

n , Fq
n

)
(t)


 0 DA(t − t′)

DR(t − t′) DK(t − t′)




 Fcl

n

Fq
n,


 (t′), (4.13)
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where the bath propagators without indices indicate a sum over all modes, for

example DR = ∑α λ2
αDR

α . The quadratic term in Fq is decoupled with a Hubbard-

Stratonovich field η(t) that will ultimately play the role of the stochastic noise field

in Eq.4.1.

The final trick to bring this integral to the Langevin form is to Taylor expand

the action to linear order in the quantum fields, Aq. The result is a path integral

over the MPS tensors Aq and Acl and the noise field η:

K(t) =
∫

DAqDAclDηeiS[Ac,Aq,η] (4.14)

S =
∫

dt∑
n

Aq
n(t) ...

×
[

2δS[Acl ]/δAcl
n (t) + 2∑

m
∂Fcl

m /∂Acl
n (t)

(∫
dt′ DR(t − t′)Fcl

m (t′) + ηm(t)
)]

︸ ︷︷ ︸
Eq.(1)

−
∫

dt dt′∑
n

ηn(t)[DK]−1(t − t′)ηn(t′). (4.15)

This is equivalent to the TDVP Langevin of Eq.(4.8). The quantum field Aq plays

the role of a Lagrange multiplier that imposes Eq.(4.8) and the remaining term

gives the bath correlations. The tensor indices have been suppressed for clarity

in this expression. To make the comparison with the TDVP-Langevin equation,

note that when δS[Acl ]/δAcl
n (t) = 0 recovers the usual TDVP equations for matrix

product states. The additional terms correspond to the dissipative effects of the

bath. These terms are non-local in the chain indices n and m, despite our model of

local independent baths.

This is due to the potential long-ranged entanglement of the matrix product

state. The long-range effects of the noise term reflect those already found in the

usual TDVP equations, since the noise term arises from a random local poten-

tial. The non-locality of the friction term is more problematic and some insight

is required to implement this efficiently. This is discussed when we outline the

numerical implementation of this in Sec. 4.2.1
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4.2.1 Numerical implementation

Here we outline how the TDVP-Langevin equation, Eq.(4.1), can be implemented

numerically for matrix product states (MPS). This work was performed by Andrew

Hallam, and we highlight the steps taken here. As we have seen, this equation

comprises three parts. The first of these is the closed-system TDVP equation, which

is implemented by standard means [25].

The second and third terms incorporate the effects of the environment, and are

the random noise induced by the environment and the friction respectively. The

noise term is essentially a time-dependent Hamiltonian term, which we integrate

in a Stratonovich scheme. The friction term requires more care as even in the

Markovian limit, it is generally spatially non-local. A significant simplification can

be achieved by working with purely local operators.

The TDVP equations for MPS can be written in the form

⟨∂iψ|∂jψ⟩Ẋj = −i⟨∂iψ|Ĥ|ψ⟩

⇒ ⟨∂An ψ|∂Am ψ⟩Ȧm = −i⟨∂An ψ|Ĥ|ψ⟩
(4.16)

where the variational parametrisation with complex parameters {Xi} are MPS,

{Ai}, with tensor indices suppressed and retaining only the site index for clarity.

The solution of this equation is well established. A sensible choice of gauge fix-

ing for the tangent vectors to the MPS manifold puts the Gramm matrix ⟨∂An ψ|∂Am ψ⟩
in a diagonal form. Many algorithms exist for evaluating the TDVP equations for

finite systems, in this work we use a modification of the method introduced in [27].

A single time-step of the algorithm consists of sweeping through the system

from right to left and applying a unitary rotation to the local variables on each site,

An(t + δt) = eiHe f f An(t), followed by a repetition of this process by sweeping from

left to right.

The Noise contribution to the TDVP Langevin equation over MPS can be written

in the form

−i∑
m
⟨∂iψ|F̂m|ψ⟩η(t)⇒−i∑

m
⟨∂An ψ|F̂m|ψ⟩ηm(t) (4.17)

As can be seen, this takes the same form as the right hand side of Eq.(4.16), so no

substantial modification to the TDVP algorithm is required. At the beginning of
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each timestep δt, ηm(t) is chosen by sampling from a normal distribution with mean

zero and variance 2δtγT.

Finally, the friction term is computed as follows. In the Markovian limit and in

terms of the MPS tensors, the friction term can be written as follows,

−i∑
m

γ
⟨ψ|F̂m|ψ⟩

dt
⟨∂iψ|F̂m|ψ⟩, (4.18)

where,
⟨ψ|F̂m|ψ⟩

dt
= ⟨ψ|F̂m|∂An ψ⟩Ȧn + ⟨∂Ān

ψ|F̂m|ψ⟩ ˙̄An. (4.19)

This equation, (4.19), can be evaluated by substituting in Eq.(4.16), the TDVP

equations. In the following manipulations we introduce the poisson bracket nota-

tion, {O1,O2} = i⟨ψ|Ô1|∂An ψ⟩⟨∂Ān
ψ|Ô2|ψ⟩ − i⟨ψ|Ô2|∂An ψ⟩⟨∂Ān

ψ|Ô1|ψ⟩,

(δm,n + ∑
n

γ{Fm, Fn})
⟨ψ|F̂n|ψ⟩

dt
= {Fm, H}+ ∑

n
{Fm, Fn}ηn(t)

→ ⟨ψ|F̂n|ψ⟩
dt

= (1 + γF)−1

(
{Fm, H}+ ∑

n
{Fm, Fn}ηn(t)

) (4.20)

where Fij = {Fi, Fj}. Evaluating Eq.(4.20) exactly for arbitrary operators F̂n is gener-

ally numerically inefficient, scaling quadratically in the number of noise operators.

Moreover, it is inconsistent with the site-by-site sweep algorithm introduced above

for the TDVP equations.

Fortunately, Eq.(4.20) is substantially simplified in the case of single-site, local

noise fields. For local fields {Fi, Fj} is non-zero provided the two operators are

located on the same site of the system. Thus F becomes a simple, block diagonal

matrix, which is numerically efficient to invert.

Combining this, the modified TDVP algorithm works as follows: Before each

sweep through the system ηm(t) is sampled from a normal distribution with mean

0 and variance 2δtγT. The Hamiltonian and noise terms are then used to calculate
⟨ψ|F̂n|ψ⟩

dt for all noise operators Fn using Eq.(4.20). The noise and friction terms

combine with the Hamiltonian using Eq.(4.16) and the state is evolved using the

standard TDVP algorithm.
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4.2.2 Thermal distributions are fixed points

Here we show that thermal distributions are fixed points of the TDVP Langevin

evolution. This is something that we would expect of the TDVP-Langevin equation

as realised in our numerical implementation. We show how this is consistent for

the one and two spin cases through calculation.

In the left canonical form, MPS of left bond order D and local Hilbert space

dimension D are given by SU(dD) isometries [105]. In the case of a finite chain of

length L, the left bond order at the nth site Dn = dn up to the maximum bond order

at site n = logd Dmax. The bond order remains Dmax up to site L − 1 + logd Dmax
beyond which it reduces as Dn = d(n−L+1).

The thermal expectation of an operator can be calculated by a Boltzmann-

weighted Haar average over this variational manifold. The average of an operator

Ô is given by

⟨⟨Ô⟩⟩ =
∫

∏n DAn⟨ϕ|Ô|ϕ⟩exp
[
−β⟨ϕ|Ĥ|ϕ⟩

]
∫

∏n DAn exp
[
−β⟨ϕ|Ĥ|ϕ⟩

] . (4.21)

The expectation of the Hamiltonian ⟨ϕ|Ĥ|ϕ⟩ and the operator ⟨ϕ|Ô|ϕ⟩ are calculated

by usual MPS techniques. In practice, we carry out the integrals by by sampling

a Haar random distribution of isometric MPS tensors; Aσ
ij ≡ Ui⊗σ,j⊗1 ∈ SU(dDn)

. These are obtained by a QR decomposition of a tensor with elements drawn

randomly from a normal distribution.

Fig. 4.1 shows this Boltzmann-weighted Haar distribution as a function of en-

ergy at different temperatures. These thermal distributions are fixed-points of the

dynamics described by Eq.(4.1). We show for the example of temperature T = 0.1

that the energy distribution remains as time evolves.

Example: one spin
For the example of a single spin we can write a Langevin equation and we can

calculate the expectation of the Hamiltonian explicitly. The fixed point for both of

these is a thermal diffusion over phase space.

For one-spin, we parametrise on the Bloch sphere, l, with the spin coherent state

|ψ⟩ = |l⟩, such that l2 = 1. Under the Hamiltonian H = Bσz, we want to compute
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Figure 4.1: Distribution of energies of states at finite-temperature for length 15 chain at bond order
Dmax = 2: a) The density of occupied states is computed for the Hamiltonian
studied in this work (introduced here later Eq. (4.24)), H =with J = 1 g =−1.05,
and h = 0.5 from a sample of Haar random distributed isometric MPS initial
states. At T = ∞ – an unweighted Haar average, the majority of the states are
in the middle of the spectrum and are highly entangled. A Boltzmann weight
shifts this distribution to lower energy. Low-entanglement states are a subset
of measure zero in the thermodynamic limit. b) The Boltzmann-weighted Haar
average is a fixed point of the TDVP-Langevin equation. Here we compare
distributions obtained after evolving with the Hamiltonian for t = 1, 2, and 3,
with γ = 0.1 and T = 0.1. The distribution for T = 0.1 is shown in bold in a), we
see the Langevin evolution preserves this distribution.

⟨H⟩ exactly and using the Langevin equation. The exact calculation is as follows,

⟨H⟩ = ∑σ ⟨σ|H|σ⟩ e−βH

∑σ e−βH =
B(eBβ − e−Bβ)

eBβ + e−Bβ
= B tanh Bβ. (4.22)

Compared to using the Langevin equation, with dl = sinθdθdϕ,

⟨H⟩ =
∫

dl Blze−βlzB
∫

dl e−βlzB

=

∫
dθ sinθ cosθBe−βBcosθ

∫
dθ sinθe−βBcosθ

=
−B
β

1
βB

∂B cosh βB
cosh βB

= B tanh Bβ.

(4.23)
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4.3 Environment induced transitions in entanglement

dynamics

We now move onto applying this technique to investigate environment induced

phase transitions. For a given Hamiltonian, we find that as the strength of the

coupling to and temperature of the environment is increased, there is a transition

into a many-body Zeno phase where the bond dimension necessary to describe the

dynamics is capped to be below the system size. As the bath strength increases, the

entanglement in the system saturates at a lower value, and states evolve to have a

high fidelity with lower bond-dimension simulations.

To begin, we should ask what environment or measurement induced transitions

in entanglement dynamics are. Measurement induced phase transitions where

thermalisation and volume law entanglement growth is inhibited by random mea-

surements leading to non-unitary time evolution was first seen as an entanglement

transition in [35, 76, 80]. In the introduction (Sec. 4.3.2) we define scaling of entan-

glement, its characterisation can be volume law, subextensive, or area law.

The competition between Hamiltonian dynamics that brings about entangle-

ment growth and local measurement causing entanglement saturation. If g is the

coefficient of number of measurements in time over number of unitaries applied in

time, g = # measurements
# unitaries , there is a critical gc, beyond which measurements impede

entanglement growth.

This setting involves random unitary gates punctuated with projective mea-

surements. This ‘entangling’ to ‘disentangling’ [35] transition has since been seen

in random Clifford circuits [36, 37, 120] and monitored free fermions [97, 121]. The

question of whether this type of phenomena survives in open quantum circuits, i.e.

circuits as we have described but in the presence of realistic decoherence processes,

has also been explored [122]. Bypassing the quantum circuit altogether, similar

analyses extend to open Hamiltonian systems [94–97,121].

Here we have the tools to ask whether such transitions occur in open Hamilto-

nian systems in the presence of decoherence and finite-temperature environments.

We look at applying the TDVP-Langevin equation to a chaotic Hamiltonian system

and look at how entanglement entropy and fidelity of our system state behaves in
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different regions of phase space. Environmental parameters that we have available

to us are temperature T, friction γ, and noise γT and in the following we explore

different limits of phase space. Note, these are not independent parameters as can

be seen in the labelling of their variables.

In the absence of coupling to a bath, TDVP equations eventually fail as the

entanglement grows beyond that which can be represented on the variational man-

ifold1. However, just as observed in projective measurements of random circuits,

the effects of the environment may restrict the growth of entanglement.

In extremis this might limit entanglement of individual trajectories so that they

can be represented on low dimensional variational manifolds. The TDVP Langevin

equation will then give a good account of the dynamics at all times, signifying a

transition in its classical representability. This is our interpretation of the sequence

of results presented in this section.

This key result is summarised in Fig. 4.2 for the specific example of the model we

consider, which captures the dynamics of the von Neumann entanglement entropy.

We show this figure before introducing the specific model to make clear the basic

properties of MPS Langevin evolution. The general shape and behaviour of these

trajectories is interesting here and is general.

For temperature fixed at a certain value T = 0.2, there is a transition in entan-

glement dynamics beyond a critical value, γT ≈ 0.11. The saturation entanglement

becoming intrinsic to the interplay between the Hamiltonian and the dissipative

bath, rather than by the choice of variational manifold. We detail these results in

the following section alongside similar transitions that occur when friction, γ, or

noise, γT are kept constant.

1TDVP equations for the thermofield purification of the density matrix may escape this fate [98] at
least as far as local observations are concerned
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Figure 4.2: Basic Properties of MPS Langevin Evolution: The TDVP Langevin equation, Eq.(4.1)
describes the evolution of the density matrix through an ensemble of stochastic
pure-state trajectories. a) von Neumann entropy as a function of time averaged over
70 trajectories at different coupling strengths. Temperature is fixed at T = 0.2,
while friction, γ (and therefore noise, γT) is varied. Simulations were carried
out at bond dimension D = 128. Three different regimes of behaviour are
apparent: an initial transient, followed by an approximately linear-in-t growth,
and finally a saturation. At low values of γ this saturation is determined by the
variational approximation. At high values it is determined intrinsically by the
interplay of the Hamiltonian and the dissipative bath. It signals whether a lower
bond-dimension (hence less computationally intensive) simulation suffices in
to capture the entropy dynamics. b) Scaling collapse of the data shown in a).
Amplitudes and timescales are rescaled by factors of S0 and t0, respectively (Fits
to S(t) = S0 tanh(t/t0) are used as a guide to this rescaling). These are plotted
versus γT in the insets c) and d), which show clear evidence of a transition at
around γT ≈ 0.11, beyond which the saturation entanglement is determined
by balance between entangling effects of the Hamiltonian and environmental
dissipation.
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4.3.1 Results for tilted field Ising model

The Hamiltonian that we consider is the tilted field Ising model

Ĥ = −∑
i

[
Jσz

i σz
i+1 + hσz

i + gσx
i
]

, (4.24)

with J = 1, g = −1.05 and h = 0.5. With these parameters, the Hamiltonian is far

from any integrable point and rapidly thermalising [26, 123].

Infinite temperature and vanishing friction
Fig.4.3a shows the variation in von Neumann entanglement across the central bond

as a function of time for simulations with range of noise strengths. The simulations

are carried out at bond order D = 160, which sufficiently fully captures the Hilbert

space at this system size.

The broad result of these simulations is that the entanglement saturates at

long times at a value determined by the system size. This is consistent with an

infinite temperature final state with the maximum entanglement supported by the

variational manifold. The most interesting aspect of these results is the decreasing

rate of early-time entanglement growth with increasing noise strength. Crucially we

do not find evidence of an intrinsic saturation of entanglement – only that dictated

by the limitations of the variational approximation.

Fig. 4.3b shows the collapse of these data after rescaling time by a factor t0

(obtained by fitting to the function S(t) = S0 tanh(t/t0), fitting is discussed fur-

ther in Sec. 4.3.2). The saturation entanglement S0 ≈ 4.6 is the same for all noise

strengths. Fig.4.3c shows the saturation time t0 obtained in this way. This fitting

is very good beyond γT = 0.15. Beyond this coupling strength, the dynamics are

similar to random unitary circuits with conservation laws [77,124]. Indeed, setting

the external fields in Eq.4.24 to zero generates the same dynamics.

Finite temperature and friction
Including both noise and friction, we see a transition into a many-body Zeno phase

in which entanglement saturates. This is demonstrated in two ways; by considering

the saturation of entanglement at long times and by a high fidelity between low-

and high-bond order simulations at long times.
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Figure 4.3: Evolution of Entanglement at Infinite Temperature: a) von Neumann entropy versus
time for different values of γT with γ = 0 (infinite temperature). Analogous to
Fig. 4.2, after an initial transient, the entanglement grows linearly with time
before saturating at a value determined by the MPS manifold (here with D =
160). The rate of entanglement growth reduces with increasing noise γT due to
dephasing effects of the bath. Unlike the finite temperature and friction case in
Fig. 4.2 all curves saturate to the same entanglement. We anticipate that in the
absence of restrictions imposed by the system size and/or choice of variational
manifold the entanglement would continue to grow linearly in time. b)
Saturation of entanglement for higher γT curves illustrated by extending the
simulations to t = 120. c) Rescaling the time coordinate of the data by a factor
t0 collapses the data onto a single curve (Fitting to a function S(t) = S0 tanh t/t0
is used to extract the rescaling factors. The scaling is remarkably good beyond
γT = 0.15. d) Timescales extracted in this way show a linear dependence upon
noise γT.

This transition is evident in the entanglement entropy data for fixed T = 0.2,

shown in Fig.4.2, where increasing coupling strengths causes reduced saturation

entanglement. This transition can also be observed in different cuts through the

noise-friction (γ − γT) plane, where analogous plots to Fig. 4.2 is presented in

Sec. 4.3.2.
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(1) Saturating entanglement: In order to demonstrate this, in Fig. 4.4 we plot

the long-time average of the von-Neumann entropy, S̄. The simulations are carried

out for a time 60 (in units of J) and averaged over the time interval 50-60.

The typical time-dependence from which such saturation values are computed

is shown in Fig.4.2a. For low noise and friction, the saturation is determined by the

limitations of the variational manifold. Panels a), b) and c) show S̄ as a function of

γT at fixed γ, T at fixed γ, and γT at fixed γ, respectively. A threshold is reached

for each bond dimension where it adequately captures the saturation entanglement,

thus indicating a transition to increasingly classically simulatable dynamics.

The transition can be seen from the point where the trajectories obtained at

different bond dimensions give the same saturation entanglement. From this we

can extract a critical γ or γT as a function of bond dimension that we show in the

insets. Note that since these data show the entanglement averaged over time 50-60,

in some cases the saturation entanglement has not yet been reached. The transition

is therefore expected to be slightly sharper than that shown in the figures. Compare

for example Fig. 4.2d with Fig. 4.4a.

(2) Fidelity as t → ∞: We can identify an analogous transition in the fidelity of

each trajectory at different bond dimensions versus a reference trajectory with bond

dimension D = 128. In this case, we find that beyond a critical combination of γ or

γT, the fidelity of the state at low bond dimension remains close to 1 for long times.

We expand upon this result in Fig. 4.5, where we identify a divergent classical

simulation time. We note that the fidelity is more sensitive to the time-step as friction

is increased – an issue typical of numerical integration of systems of stochastic

differential equations. This makes accessing the critical point of the transition

numerically intensive for the parameters and Hamiltonian we consider. The entropy

is less sensitive to this.

4.3.2 Scaling functions and features of open Langevin evolution

As we have shown, in order to investigate the entanglement dynamics that arise in

the open evolution, we study the parameter space of the TDVP Langevin equations.
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Figure 4.4: Evolution of Saturation Entanglement at Finite Temperature: In the main figures we
show the dependence of the von Neumann entropy as a function of noise and
friction: a) versus γT at fixed T, b) versus γ at fixed γT, c) versus γT at fixed γ.
In each case, at low values of noise and friction, the saturation entanglement
S̄, is determined by the choice of variational parametrization through the bond
order. As the noise and friction are increased, there is a cross-over where the
saturation entanglement decreases from this value. Each bond dimension cap-
tures the saturation entanglement for a sufficiently large noise and friction. This
is indicated when the entanglement begins to follow the entanglement given
by the highest bond dimension simulation. At the transition, the saturation
entanglement of the lower bond dimensions converges to that of the highest
bond dimension. Beyond this point the saturation entanglement is determined
intrinsically by the interplay between the Hamiltonian and the environment.
In each corresponding inset figure, we have extracted critical dissipation strengths
where these transitions occur as a function of bond dimension.

This is by keeping temperature, friction, and noise fixed, while varying either

noise or friction. Fig. 4.2a) shows the basic properties of MPS Langevin evolution

for the case of fixed temperature, where beyond a certain coupling strength the

system enters a quantum Zeno phase. Fig. 4.6 shows analogous plots capturing the

dynamics for the cases of fixed γT and γ.

Like the case of T = 0.2, the long time saturation of the entanglement can

either be determined by the variational approximation (i.e. bond dimension) or

intrinsically by the interplay of the Hamiltonian and the dissipative bath. In the

accompanying figures, there are now two plots for the data collapse upon scaling.

We also plot S0, the fitted entanglement saturation value and corresponding t0,

defining the entanglement saturation time.

The fit to S(t) = S0 tanh t/t0 is seen to be better before the transition, and unlike

for fixed temperature, the fit to S0(1− exp(−t/t0)) is better after the transition – we

plot these separately. For intermediate values of γ,γT we use both fits, since features

of both sides of the transition appear. This is the source of the hysteresis in the plots

for S0 and t0. We have overlayed these plots for S0 on the plots of S̄ in Fig. 4.7. This

shows the range of approximate values for the saturation entanglement.
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Figure 4.5: Divergent Classical Simulation Time: Simulations carried out at a bond order D
give a good account of the system evolution up to a time t∗(D). We extract these
values versus a reference D = 128 simulation, which serves as the reference
account of the system. We do this in two ways, by comparing the difference in
von Neumann entanglement entropy between these states and the fidelity with
this state. t∗(D) is the time when the simulation with lower bond dimension
deviates appreciably from the reference trajectory. The row with panels a), b),
c), shows t∗(D) extracted from the entropy, while panels d), e), f) shows t∗(D)
extracted from the fidelity. The fixed variables are split across the columns –
a), d), shows varying γT at fixed T = 0.2, b), e) varying γ at fixed γT = 0.25,
and c), f) varying γT at fixed γ = 0.2. Panels g) and h) show typical evolution
of entanglement and fidelity with time. These data are taken from the the
trajectory with noise γT = 0.1 which is close to the critical point for T = 0.2. A
simulation is judged to have ceased to provide a good account of the system
when the trajectory deviates beyond ϵ = 0.05, and the time at which this occurs
is t∗(D). In g), this is the point where ∆S/SD=128 = |SD=128 − SD|/SD=128 > ϵ.
Analogously in h), t∗(D) is the time when the fidelity is appreciably different
from 1, i.e. |⟨ψD=128(t)|ψD(t)⟩| < 1 − ϵ. A divergent t∗(D), within either
method of extraction, indicates a transition in the classical simulability of the
open quantum system.
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Figure 4.6: Many-body Zeno transition in the γ − T plane. These results extend Fig. 4.2 of
the main text a) Further values for the von Neumann entropy as a function of
time are shown for averaged trajectories at different coupling strengths. In I.
we have kept noise fixed with γT = 0.25, while in II. we keep friction fixed with
γ = 0.2. These simulations have bond dimension kept at D = 128 and serve
as the reference case for the comparisons made against lower bond dimension
simulations. Curves b) and c) show the data collapse from obtained by rescaling
the amplitude by S0 and the timescale by t0 before and after the many-body Zeno
transition, respectively following the procedure described in the text. A few
curves near the transition show different early and late time behaviour leading
to the apparent hysteresis in the plots of the extracted S0 and t0 shown in the
insets d) and e) respectively.

Figure 4.7: Evolution of Saturation Entanglement at Finite Temperature: Here we have shown
Fig. 4.4 from the main text with curves for S0 overlayed. a) In the case where
T is kept fixed, the curve for S0 is exactly the D = 128 simulation since clear
entanglement saturation occurs. For fixed γT and γ the transition is less sharp.
In figures b) and c) we have overlayed the curves for S0 as seen in Fig. 4.6d.
The lower curve shows the saturation entanglement post-Zeno phase, while
the higher curve is pre-Zeno, i.e. the value of S̄ for non-critical curves that
would then be attained given longer simulation time. The actual saturation is
intermediate. This indicates a region of values the entanglement may saturate to,
since it reflects an averaging of types of trajectory. Near to the many-body Zeno
transition a few curves show different early- and late-time behaviour leading to
an apparent hysteresis in S0.
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For these intermediate trajectories, the tanh fitting describes their late time

behaviour and the exp fitting the early time behaviour – explaining the trailing

off of those trajectories in the fitting. A more detailed look at this observation

follows. Identifying a critical point for the D = 128 data for fixed T = 0.2 (Fig. 4.2)

is simple as it is where plateaus at lower values of entanglement are clearly seen,

until entanglement in the system becomes distinctly very low.

Meanwhile, a feature that appears in the data for fixed γ and γT is a region

of supposed slowed entanglement growth, a more ambiguous critical value, thus a

region of intermediate behaviour. Furthermore, for certain intermediate trajectories,

simulating for longer times could lend to attaining maximal saturation entangle-

ment. Upto the times we simulate, a clear plateau has not emerged.

Taking a closer look, these ‘slowed’ trajectories are unlike the infinite tempera-

ture case where noise slows entanglement growth. These seem to evolve as though

they are within the Zeno phase up to some time, where a random kick causes the

entanglement to continue growing. This can be seen most clearly in Fig. (4.6.II.a),

when γT = 0.19. Up to time t = 20, this trajectory hints to saturating soon, until some

kick, seen in the discontinuity or kink around this time, drives the entanglement to

keep growing.

Looking at the individual trajectories that are then averaged over, it can be

seen that this is not the slowing in entanglement growth as seen in the infinite

temperature case (Fig. 4.3), rather the average of three types of behaviour. This is

summarised in how we extract the different scaling coefficients for pre- and post-

criticality also early and later time critical trajectories.

Our interpretation of these data is that the many-body Zeno transition con-

fines trajectories to a low entanglement region of the variational manifold. Near

the transition certain trajectories may have a very long dwell-time in this reduced

entanglement phase before being kicked into the higher entanglement region. This

might be termed a pre-Zeno plateau.

Extracting scaling coefficients
The essence of our scaling collapse shown in Fig. 4.2 and Supplementary Fig. 4.6

is to rescale entanglement by a factor of S0 and timescales by a factor of t0. We
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identify these factors by fitting to two analytical forms: either S(t) = S0 tanh(t/t0)

or S0(1 − exp(−1.4 t/t0)) (the factor of 1.4 in the latter gives approximately the

same fitted t0 with either function).

These functions are heuristics used to extract our scaling. In principle such

a fit is not necessary, but we find it a good way to obtain our scaling. Moreover,

the fits are actually rather good. Fig. 4.8 shows a typical fit to S(t) averaged over

trajectories. For data at constant temperature shown in Fig. 4.2, we find that the

form S(t) = S0 tanh(t/t0) gives a reasonable fit both above and below the many-

body Zeno transition.

In the cases of constant noise and constant friction, we find a slightly better

fit using S0(1 − exp(−1.4 t/t0)) in the many-body Zeno phase. Similar fits (to

tanh(t/t0)) have been used in random unitary circuits [77, 124]. This can explain

the quality of fit in the infinite-temperature/zero-friction case, with γT > 0.15,

where the dynamics are akin to random unitary circuit.

Typical fits: In Fig. 4.8b), we show a typical fitting to S(t) = S0 tanh(t/t0) for the case

where T = 0.2 and γT = 0.1. This trajectory is in the many-body Zeno phase as can

be seen by the value of S0 = S̄ = 3.6, which is less than the maximum value of 4.6

found in these simulations.

Pre-Zeno fits: As mentioned above, in the case of many-body Zeno transitions

at constant noise or constant friction, we find that trajectories near the transition

display early-time behaviour typical of the many-body Zeno phase crossing at early

times over to a late-time behaviour typical of trajectories in which the environment

does not restrict the entanglement growth.

Fig. 4.9 shows how we treat such trajectories. Panel b) shows averaged trajecto-

ries at γ = 0.19, γT = 0.25 and γ = 0.18, γT = 0.25 with fits to S(t) = S0 tanh(t/t0) at

late times and to S0(1 − exp(−1.4 t/t0)) early times. Panel a) shows 70 trajectories

that are averaged to obtain the γ = 0.19, γT = 0.25 results. It is from these individual

trajectories that the underlying behaviour is one of apparent saturation to a many-

body Zeno phase before a random kick from the leaving the low entanglement

region of the manifold at some random time.

We also see that as the coupling strength increases, the region of time for which

the exp fitting is valid increases, while the tanh fit decreases. This indicates how the
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frequency of either type of trajectory changes as the coupling strength increases.

Accordingly, for the case of fixed γ and γT, it is difficult to identify a point where

the transition occurs.

Figure 4.8: Scaling fit to S(t): Here we show the fitting procedure used to determine S0 and
t0 for our scaling collapse for the case fixed temperature and varying noise. a)
Shows 70 trajectories for T = 0.2 and γT = 0.1. For these parameters, the system
is in the many-body Zeno phase. We highlighted a typical trajectory in bold
and we have overlay the average of these trajectories as depicted in Fig. 4.2 in
the main text. b) The dashed line shows the fitting S(t) = S0 tanh(t/t0) with
S0 = S̄ = 3.6 and t0 = 18.

Figure 4.9: Scaling fit for pre-Zeno Trajectories: Here we show how scaling is determined for
those trajectories near to the many-body Zeno transition that display different
early- and late-time behaviour. a) 70 trajectories with γT = 0.14 and γ = 0.2
together with the average trajectory shown in green. Individual trajectories
show signs of saturation of entanglement which persists for a period of time
before beginning to rise again. b) The average trajectory can be fit in two
different ways at early and late times. Here we show these fits for trajectories
γT = 0.14 and γ = 0.2, and γT = 0.15 and γ = 0.2 using S0(1 − exp(−1.4 t/t0))
for early times and S(t) = S0 tanh(t/t0) for later times.
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4.4 Limits on Classical Simulability

The TDVP Langevin equation cannot efficiently describe a system in the many-body

Zeno phase, but the question remains of how tight this bound on simulation is. Can

efficient methods of classical simulation be found that extend into the region that

we have identified as the many-body Zeno phase?

As a system approaches thermalisation, it is more efficient to use a density

matrix description, a variational representation of its purification [98], or a neural

quantum state [125] than an unravelled description in terms of pure state trajectories.

Indeed, these latter descriptions are efficient both at early times where entanglement

is weak and at late times as thermalisation occurs [126–129]. Nevertheless, there

are good grounds to believe that our bound on classical simulability is strong.

Our reasoning is that the complexity of open system quantum dynamics is

non monotonic. In the generic case there is a large information/complexity barrier

between efficient early- and late-time descriptions. The question of whether an

efficient classical description is possible is essentially asking whether coupling to

the environment suppresses this complexity barrier.

When a system is initially in an unentangled state then weakly coupled to

a finite temperature bath, the early-time evolution is characterised by a growing

complexity similar to growth of entanglement in the closed system. The TDVP-

Langevin approach applies in this limit. Alternative approaches such as MPO

representations of the density matrix or neural quantum states have similar (or

higher) complexity in this limit.

At late times the complexity decreases as the system approaches thermalisation

and ultimately a hydrodynamic description is appropriate. An MPO description of

the density matrix is efficient in this limit. These considerations separate efficient

early- and late-time descriptions of the system dynamics. Whilst we cannot preclude

the existence of a more efficient early-time classical description than the TDVP

Langevin description (or related unravellings of the Lindblad evolution at early

times), we are not aware of any candidate.

We address the issue of classical simulability from the early time side of the

complexity barrier where TDVP-Langevin evolution of matrix product states is

appropriate – and where its efficiency is at least as good as alternative schemes.
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This allows us to ascertain whether the complexity barrier has been suppressed by

coupling to the environment.

MPO descriptions of the density matrix, MPS descriptions of its purification,

or neural quantum states are efficient both in the early- and late-time limits. Such

descriptions must still surmount the complexity barrier and their late-time efficiency

does not help in this. Indeed, we anticipate that analyses using different variational

parametrizations to determine whether the early-time growth of the complexity

barrier is suppressed will yield similar results, notwithstanding the issue of their

late-time efficiency.

What is the origin of this complexity barrier and how high is it? The peak in

complexity emerges in the balance between the entangling effects of the system’s

Hamiltonian and the thermalising effects of the bath. We identify two timescales:

i. the timescale at which entanglement saturates (Ssat ∼ L logd) in the absence of

thermalisation tsat, (also known as the Thouless time [130]); ii. the timescale ttherm

at which the system approaches thermalisation with the bath.

Note, this ttherm should not be confused with internal relaxation timescale,

which for brevity we assume is much longer than ttherm. On this timescale the

complexity decreases to that of the reduced density matrix on the length scale of

the thermal correlation length ξ(T); i.e. an operator entanglement ∼ ξ(T) logd and

operator bond dimension dξ(T).

The complexity barrier between early and late times depends upon the relative

size of tsat and ttherm. The worst case is when ttherm ≫ tsat, this is the complexity of

an arbitrary state of the system. Whereas if ttherm < tsat then the complexity barrier

may be considerably less – and an efficient classical simulation possible.

In this limit, as shown by the results presented here, the ballistic early growth

of entanglement may also be suppressed. Moreover, a complete understanding of

the thermalisation process from this complexity point of view is also lacking. A

reliable estimate of the height of the complexity barrier is therefore still unavailable.

A variational description of the state (say using MPS) is efficient before the

complexity barrier and a variational description of the density matrix (for example

using an MPO) is efficient at later times. Because of this, we do not expect a more

efficient classical algorithm exists to describe the worst case volume-law phase. An
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attractive feature of the TDVP Langevin approach to describing the dynamics of

this phase is that it permits the use of the same semi-classical parametrization – the

variational parameters – from early to late times and ultimately connects to the very

late-time hydrodynamic limit.

It is worth comparing this discussion with recent classical time-evolution al-

gorithms that permit an efficient description of local observables in closed ther-

malising systems, valid for all time [98, 131, 132]. The central idea in these works

is that correlations beyond a certain lengthscale are neglected as they never affect

local observables. When coupled to an external bath, the explicit restriction to lo-

cal observables is not required since the bath decoheres longer-range correlations.

Whether an internal or external bath, the underlying principles seem similar.

4.5 Further applications

We present applications for the TDVP-Langevin equation that take advantage

of the entanglement dynamics/regimes it can probe. Both adiabatic quantum

computation and many-body localisation exist in isolated quantum systems, but

experimentally there is always some coupling to an environment. The TDVP-

Langevin equation can be useful where we wish to study weakly open systems.

Analog error correction
The adiabatic theorem [133] allows for adiabatic quantum computing (AQC).

This is useful in the scenario of satisfiability problems and other combinatorial

search problems. While ground states are a fundamental notion within condensed

matter physics, within computational complexity theory a close analogy can be

made with constraint satisfaction problems (CSPs).

A CSP asks whether some mathematical object has a state that satisfies a number

of constraints, if not, the problem is said to be unsatisfiable. The terms of some

local Hamiltonian can represent constraints whose violation have an associated

energy cost, thus taking the system out of equilibrium, proving unsatisfiability.

By slowly changing the Hamiltonian, a consequence of the adiabatic theorem is

access to quantum states we cannot prepare, i.e. the ground states of our problem

Hamiltonian.



4.5. Further applications 88

Shifting from classical to quantum, the adiabatic theorem implies that such

a protocol is guaranteed to work, given we have an isolated quantum system.

Realistically, there will always be sources of decoherence. Here we ask whether

this present work can be applied to identify a tolerable amount of decoherence that

can preserve what would be enough quantum correlations in the system to take

advantage of in computation.

AQC is equivalent to gate based quantum computing, however there is no

threshold theorem for adiabatic computing. The threshold theorem, or quantum

fault-tolerance theorem, states that within some threshold of physical error rate, a

quantum computer can suppress and bound the logical error rate [134]. No such

theorem exists for AQC, however, it is interesting to speculate what it means for such

a computational device to be in its Zeno phase, and if this could provide similar

bounds for error-correction.

In [72] a likening is drawn with many algorithms inspired by processes oc-

curring in the physical sciences, such as AQC, being summarized in the Langevin

equation for the Brownian motion of a particle. In this work entanglement is ac-

counted for in the Langevin equation. Then, the existence of a connected adiabatic

computational path in the projected dynamics on the manifold of MPS of some

bond-dimension determines the limits of AQC.

Following this line of determining entanglement resources that remain in the

presence of an environment, it is shown that the dissipative failure of adiabatic

quantum transport can be understood as a dynamical phase transition [135]. For

the simple model of two spin-1/2s, when there is no entanglement, there is no

adiabatic theorem, and so no dynamics. This provides a degree of control in

suppressing entanglement and the way this inhibits adiabatic computation.

The present work on the TDVP-Langevin equation extends these analyses of

two-spin Langevin evolution to many spins. Modelling the environment as local

harmonic baths and thus assuming the number of dissipation channels is propor-

tional to the number of spins translates to physical AQC devices. It is then possible

to investigate how environmental depletion of entanglement can cause failure of

the computation.
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Many body localisation in open systems
The many-body localised (MBL) phase is an insulating phase attained in the pres-

ence of quenched disorder, where a many-body quantum system can fail to act as its

own heat bath. As a result the MBL phase fails to reach thermal equilibrium, retain-

ing memory of its initial conditions. It is characterised by this quantum ergodicity

breaking and area law entanglement scaling – quantum correlations persist locally

for arbitrarily long times.

The paradigmatic MBL system is the disordered XXZ spin chain,

H =
L−1

∑
i=1

[σx
i σx

i+1 + σ
y
i σ

y
i+1 + ∆σz

i σz
i+1] +

L

∑
i=1

hiσ
z
i (4.25)

where hi is random and hi ∈ [−2h,2h]. The transition from ergodic to MBL occurs

when h = hc ≈ 3.7 [136].Evidence for an MBL phase has been found experimen-

tally [137], motivating an understanding of MBL in the presence of decoherence

since achieving physical isolated quantum systems is impossible – there will always

be some coupling to an environment by virtue of measurement devices.

This motivates research effort into looking at the MBL phase in open systems.

In the presence of an environment, the MBL phase necessarily delocalises. The focus

here is when there is weak coupling to a bath – whether the MBL phase persists in

the presence of weak dephasing or if there are novel dynamic regimes here. The

stability of MBL has been studied in the presence of local dissipation using the

Lindblad formalism [138–144], where results are generally indicative of MBL.

An issue that faces numerical studies of MBL are finite-size constraints [145,

146]. Exact diagonalisation techniques are limited to small system sizes, so many

of the approaches listed above use MPS and time evolve using TEBD [105]. Using

MPS is justified deep in the MBL phase, where analytical and numerical studies

find a slow, logarithmic growth of entanglement [147].

In looking at applicability of using MPS in the regime close to criticality, [148]

take an approach using TDVP. They find agreement in the critical point for system

sizes accessible by exact diagonalisation, and find that this drifts for larger systems.

However they find evidence that the critical disorder strength saturates and they

match predictions of unbounded growth of this for quasi-2D and 2D systems.
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This analysis using TDVP could be extended to the TDVP-Langevin equation in

order to investigate questions about weak coupling to an environment and provide

a complementary view. Furthermore, non-Markovian baths can be treated in this

setting, which is used to understand dephasing in the ergodic phase and study the

ergodic to MBL transition [149].

4.6 Discussion

This work introduces a new method to investigate the dynamics of open many-body

quantum systems, the TDVP-Langevin equation. We derive this by considering an

appropriate limit of the Keldysh path integral constructed over a variational man-

ifold. We carry this out explicitly for the MPS manifold. Our investigations reveal

a phase transition in the applicability of this approach as a function of coupling to

the environment – when the bath temperature and induced friction are sufficiently

high, entanglement growth in individual trajectories is suppressed, and a low bond

order description works for all time. This is a transition in the classical simulability

of the open quantum system.

We believe that this transition is related to several other transitions in quantum

dynamics that have been observed as a function of coupling the the environment

or measurement, including the restriction of entanglement growth in random cir-

cuits with projective measurement, the quantum Zeno effect (and perhaps the KT

transition in the spin-boson model [135,150,151]).

The implications of this result may be far-reaching. In the context of using the

TDVP-Langevin equation to simulate open quantum systems, an efficient descrip-

tion for long times is possible for systems in the many-body quantum Zeno phase.

Indeed, when a target system is in such a phase, there is no (asymptotic) advantage

in using a quantum computer to simulate it. Since many chemical reactions of po-

tential interest for quantum computation occur embedded in a dissipative aqueous

environment, this is a point worthy of consideration.

Moreover, viewed from the perspective of a description of a quantum computa-

tional device or simulator, the transition into the many-body Zeno phase indicates

transitions in the ability to solve quantum problems. While thresholds of noise
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for quantum error correction have been identified in the case of gate-based quan-

tum computation, no such thresholds currently exist for adiabatic computation.

It is intriguing to speculate that determining whether a putative adiabatic com-

putational device is in its Zeno phase or not might provide similar bounds on

performance [72, 135].

We envisage a number of ways in which this work might be developed. Ex-

tending the approach to local observables in closed quantum systems presents

some exciting possibilities. In this case the bath would refer to other elements

of the system itself and its properties self-consistently determined through the

evolution [99, 152], Such a description has the promise of connecting early-time

semi-classical descriptions to late-time hydrodynamics and thermalisation. Explor-

ing the Fokker-Planck formulation of the TDVP-Langevin equation would bring a

complementary perspective to our analysis [153–155].

The accurate description of a quantum system from early to late times is gen-

erally not possible because of growing entanglement. However, coupling to the

environment can limit this growth and render this achievable. This work has co-

ordinated physical insights from several different perspectives to develop such a

numerical scheme. We hope that the algorithm itself will prove useful and that it

will inspire further insights.



Chapter 5

MPS algorithms for quantum computers

In the present era of noisy intermediate-scale quantum (NISQ) computers, a pertinent

challenge remains in how we utilise these devices. The NISQ quantum computer

is limited by low numbers of qubits, limited fidelities, and incapacity for error

correction. Algorithms using matrix product states (MPS) can maximise limited

resources, while allowing the exploration of interesting quantum problems. The

key here is that n qubits with connectivity between them can represent an MPS

of bond-dimension 2n. In this work we ultimately look to implement quantum

time-evolution on ion-trap based quantum architectures. For this we present and

develop the required prerequisites.

This work was performed in collaboration with Lesley Gover, Vinul Wimalaweera, James

Dborin, and Andrew G. Green. This work is ongoing. I was involved with this project

during the early stages of developing the algorithm.
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5.1 Introduction

The term Noisy intermediate-scale quantum (NISQ) was coined by John Preskill [156],

referring to the current state of quantum computing. Present day quantum com-

puters are not yet advanced enough for fault-tolerant error correction, nor large

enough to immediately demonstrate quantum advantage. Available NISQ devices

are also limited by gate fidelities, leading to the resultant restriction on the available

entanglement resources.

Matrix product state and tensor network based approaches to simulating quan-

tum systems efficiently classically do so by restricting entanglement [23]. For NISQ

devices, MPS based approaches can be useful for this reason too since the resource

of quantum entanglement is limited. Furthermore, this is often not a restrictive

approximation. The classical complexity of simulating the wavefunction of a sys-

tem of size N is set by the Hilbert space dimension, which scales exponentially.

However, as a recurring theme of this thesis, the Hilbert space actually explored by

the quantum system can be structured, forming the physically relevant corner.

By using MPS and parametrising systems by entanglement, the size of the

quantum device can be much smaller than the system being simulated. In this

work we look to develop quantum algorithms using MPS for use on near-term

ion-trap based quantum devices. In the remainder of the introductory section we

discuss ion-trap quantum computing and how MPS can be represented here. We

then move on to the results of this work, presenting our schemes for calculating

state overlaps, and using this, for quantum time-evolution.

5.1.1 Ion-trap quantum computing

As contenders for future scalable quantum computers go, ion-trap based architec-

tures show a lot of promise. Researchers have demonstrated up-to 10 minute coher-

ence times [157], and have shown that the hardware allows gate, state-preparation,

and measurement fidelities in the region of 10−4 to 10−5 [158]. This follows from

the very low cross-talk from measurement.

However, for ion-traps repetition rates are not as good as for other implemen-

tations, making the sampling error high. Ion trap quantum computers work by

physically shuttling the ions around into the active region of the trap in order to
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perform gate operations, which are slow processes. Nonetheless, this results in the

high gate fidelities and low cross-talk that are several orders of magnitudes higher

than say for superconducting quantum computers.

Some ion-trap architectures allow for mid-circuit measurements, which in turn

opens up the possibility of performing tensor network calculations [42–44] laid out

in time rather than space. One such device is Quantinuum’s trapped-ion quantum

charge-coupled device (QCCD) proposal [159]. The applicability of our algorithms

is generally ambiguous of the ion-trap architecture. The results we present here are

for the trapped-ion QCCD with a vision to implement these algorithms on other

existing trapped-ion quantum computers to compare and benchmark.

Quantum tensor networks have been implemented on a trapped-ion QCCD,

one example is an algorithm for simulating quantum quenches [160]. The general

idea is the physical qubits are sequentially generated from left to right, i.e. making

use of qubit reuse. The quantum coherence is stored in the bond qubits, thus all

available qubits are used for the classically hard part of the simulation; capturing

the entanglement. This algorithm has been used to simulate the chaotic dynamics

of the self-dual kicked Ising model [161]. Mid-circuit measurement and qubit reuse

meant that using at most 9 trapped ion qubits, this simulation could start from an

entangled state of 32 spins.

In the remainder of the introduction we show how we map matrix product

states (MPS) to time-like quantum circuits, using the equivalence to quantum chan-

nels that was introduced in Section 2.3. We make use of mid-circuit measurements

and qubit re-use, so that the bond-dimension/entanglement information can be

maximised across the presently available qubits. We also show how to represent

infinite translationally invariant states using a finite state, as seen in Section 1.2, by

mapping the environment degrees of freedom to a quantum circuit.

The results of this chapter are shown for the Quantinuum trapped-ion QCCD.

As this work is ongoing, the results section is incomplete. Here we come across

one of the major issues of using NISQ-era devices, in particular ion-traps, being

sampling errors. We show how these problems are overcome by restricting the

state space that we optimise over. Further, discussions are in place for running this

algorithm on other ion-trap devices, which we hope will form future work.
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Figure 5.1: Mapping quantum circuits of matrix product states from a space-like represen-
tation to time-like. The auxiliary bond dimension leg of the circuit is identified
and must be rearranged in the time-like circuit so that it acts on the first n − 1
qubits. This swapping of legs is shown under the arrow indicating the transfor-
mation from U to Û, with hat labelling this transformed form. In the time-like
representation the final qubit in the register is measured and reset upon each
application of the MPS as a unitary matrix. The entanglement information
propagates through the auxiliary legs, while qubit reset at each time step means
that the next site of the spin chain can be incorporated.

5.1.2 Time-like quantum circuits

In the technical introduction, Section 2.3, we have presented the mapping between

matrix product states and quantum channels. Combining this with the feature

of qubit reset and reuse that is available to ion-trap based quantum hardware, it

is possible to simulate a D-dimensional spin system using a (D − 1)-dimensional

subset of qubits alongside an ancillary qubit register whose size scales logarithmi-

cally with the amount of entanglement present in the system (i.e. the scaling of

bond dimension when we encode MPS in quantum circuits) [160].

This is shown for an indefinitely long spin-1/2 chain in Figure 5.1. On the left

of this figure we show a spin-1/2 chain of MPS with bond-dimension D = 2. Each

unitary U is a site on this spin chain. The green thread linking these unitaries shows

how the auxillary, bond dimension ‘leg’ travels through the circuit (see Figure 2.2

to see how these legs are reshaped). On the right of this figure we show how to

map such an MPS laid out in space onto a ‘time-like’ representation.

Here the top-most qubits carry the auxilary bond-dimension information. For

the case of D = 2 this is one qubit, otherwise bond dimensions D = 4,8,16, ... would

be captured by 2,3,4, ... ancillary qubits. After the application of each unitary

representing the MPS, the final qubit is measured and reset. This means that this

qubit can be shuttled and reused to apply the next unitary along the spin-chain. In

this way we have a time-like representation as the next unitary is available and can

be applied at the following timestep.
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Figure 5.2: Representing infinite translationally invariant states using the power method.
Rather than solving the necessary fixed point equations, repeated application
of the MPS unitary should converge exponentially to the correct environment
tensor. This convergence to V is shown here. a) In the space-like representation,
right environment, V, i.e. the infinite state on the right of some point of interest
can be summarised by a finite state, the left environment is L = 1. b) In the
time-like representation, left environment, V, can be summarised by a finite
state, the right environment is R = 1.

Now we can consider how to represent infinite states. Figure 5.2 shows how

we do this for space-like and time-like representations. When calculating some

observables at a certain site, the environment tensor V represents the effect of the

remainder of the system. This can be solved for via the fixed point equations

shown in the technical introduction, Sec 2.3, in Fig. 2.4. The construction of the

environment is dependent on the transfer matrix (used to calculate the overlap

density classically).

The environment can be approximated using the power method, which approxi-

mates the infinite state with a finite state. Long chains of the transfer matrix should

converge exponentially to the environment tensor. When we introduce our algo-

rithm in the following section, we also show how the tranfer matrix is represented

in the ‘time-like’ circuits. For transfer matrix C, the power method is the statement

that lim
n→∞ CnV ∝ V0, where V is some vector and V0 is the highest eigenvalue. In

the following section we calculate these quantities in the time-like representation,

beginning with state overlaps and expectation values.
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5.2 The algorithm

Here we present the methods used to calculate state overlaps and perform time

evolution using time-dependent variational principle. Before considering quantum

dynamics, we must be able to compute the overlap effectively as this is a common

step in variational protocols. As a starting step we use a simple approximation to

the environment using the fact that the time evolution is over a small time interval

δt. We then compute the overlap density using the power method.

5.2.1 Calculating state overlaps

For two MPS encoded as unitaries, UA and UB, their overlap is computed by consid-

ering circuits of the form depicted in Figure 5.3. These circuits consist of n repeating

blocks of the transfer matrix Cn. In the case of Figure 5.3, n = 3 are visible. For

general UA ̸= UB, as n → ∞, this gives an overlap of 0. The distance between states

is encoded in the rate at which the outcome of this circuit tends to 0. This occurs as

λn, where λ is the principle eigenvalue of the transfer matrix EUA,UB .

There are many ways to compute EUA,UB , [41] uses a variational representation

of the either side eigenvectors of the transfer matrix (here these are dubbed top T⃗

and bottom B⃗ due to the way this circuit is laid out in space and are analogous to L⃗

and R⃗). To do this involves solving fixed-point equations for L⃗ and R⃗. While in [162]

this is expanded on by using the power method instead. The principle eigenvalue

is given by,

λ = lim
n→∞

L⃗.En
UA,UB

.R⃗

L⃗.En−1
UA,UB

.R⃗
= lim

n→∞

Cn(UA,UB)

Cn−1(UA,UB)
(5.1)

Where L⃗ and R⃗ are approximations to the eigenvectors of either transfer matrix.

This is equivalent to considering ‘long’ blocks of the quantum circuit Cn, i.e. using

the power method, and in the limit n → ∞ this should converge to λn/λn−1. This

converges exponentially quickly, and can be sped up for good choices of L⃗ and R⃗.

When either approximation is exact, this converges for n = 1. For these simulations,

L = |0⟩⟨0|+O(dt2) and R = 1 +O(dt2).

The symbol representing the destructive SWAP test is a new element appear-

ing in this circuit. The symbol summarises a block containing a Hadamard gate,

followed by a CNOT gate and then measurement of both qubits. This is a time-like
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<latexit sha1_base64="jGnO3r1acxhB5ey6K8sAzv9JIt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48tmFpoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoduY/PKHSPJH3ZpxiENOB5BFn1Fip6ffKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL6+S1kXVu6zWmrVK/SaPowgncArn4MEV1OEOGuADA4RneIU359F5cd6dj0VrwclnjuEPnM8ftBuM4g==</latexit>

U
<latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i <latexit sha1_base64="hQZ3dnfQlC99pr0+3Ge7LHap0FY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzAOSJcxOZpMxszPLTK8QQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0O/NbT9xYodUDjlMeJnSgRCwYRSc1uygSbnvlil/15yCrJMhJBXLUe+Wvbl+zLOEKmaTWdgI/xXBCDQom+bTUzSxPKRvRAe84qqhbEk7m107JmVP6JNbGlUIyV39PTGhi7TiJXGdCcWiXvZn4n9fJML4JJ0KlGXLFFoviTBLUZPY66QvDGcqxI5QZ4W4lbEgNZegCKrkQguWXV0nzohpcVS/vLyu1Wh5HEU7gFM4hgGuowR3UoQEMHuEZXuHN096L9+59LFoLXj5zDH/gff4AuH+POw==</latexit>

⇥
<latexit sha1_base64="hQZ3dnfQlC99pr0+3Ge7LHap0FY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzAOSJcxOZpMxszPLTK8QQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0O/NbT9xYodUDjlMeJnSgRCwYRSc1uygSbnvlil/15yCrJMhJBXLUe+Wvbl+zLOEKmaTWdgI/xXBCDQom+bTUzSxPKRvRAe84qqhbEk7m107JmVP6JNbGlUIyV39PTGhi7TiJXGdCcWiXvZn4n9fJML4JJ0KlGXLFFoviTBLUZPY66QvDGcqxI5QZ4W4lbEgNZegCKrkQguWXV0nzohpcVS/vLyu1Wh5HEU7gFM4hgGuowR3UoQEMHuEZXuHN096L9+59LFoLXj5zDH/gff4AuH+POw==</latexit>

⇥<latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i
<latexit sha1_base64="8dgUNtlwMYbuUbXl56sZXjm50AY=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9Vj04rGKaQttKJvtpl262YTdiVBK/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXplIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJJpxn2WyES3Qmq4FIr7KFDyVqo5jUPJm+Hwduo3n7g2IlGPOEp5ENO+EpFgFK304J91S2W34s5AlomXkzLkqHdLX51ewrKYK2SSGtP23BSDMdUomOSTYiczPKVsSPu8bamiMTfBeHbphJxapUeiRNtSSGbq74kxjY0ZxaHtjCkOzKI3Ff/z2hlG18FYqDRDrth8UZRJggmZvk16QnOGcmQJZVrYWwkbUE0Z2nCKNgRv8eVl0rioeJeV6n21XLvJ4yjAMZzAOXhwBTW4gzr4wCCCZ3iFN2fovDjvzse8dcXJZ47gD5zPHxR/jRM=</latexit>

U 0 <latexit sha1_base64="8dgUNtlwMYbuUbXl56sZXjm50AY=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9Vj04rGKaQttKJvtpl262YTdiVBK/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXplIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJJpxn2WyES3Qmq4FIr7KFDyVqo5jUPJm+Hwduo3n7g2IlGPOEp5ENO+EpFgFK304J91S2W34s5AlomXkzLkqHdLX51ewrKYK2SSGtP23BSDMdUomOSTYiczPKVsSPu8bamiMTfBeHbphJxapUeiRNtSSGbq74kxjY0ZxaHtjCkOzKI3Ff/z2hlG18FYqDRDrth8UZRJggmZvk16QnOGcmQJZVrYWwkbUE0Z2nCKNgRv8eVl0rioeJeV6n21XLvJ4yjAMZzAOXhwBTW4gzr4wCCCZ3iFN2fovDjvzse8dcXJZ47gD5zPHxR/jRM=</latexit>

U 0 <latexit sha1_base64="8dgUNtlwMYbuUbXl56sZXjm50AY=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9Vj04rGKaQttKJvtpl262YTdiVBK/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXplIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJJpxn2WyES3Qmq4FIr7KFDyVqo5jUPJm+Hwduo3n7g2IlGPOEp5ENO+EpFgFK304J91S2W34s5AlomXkzLkqHdLX51ewrKYK2SSGtP23BSDMdUomOSTYiczPKVsSPu8bamiMTfBeHbphJxapUeiRNtSSGbq74kxjY0ZxaHtjCkOzKI3Ff/z2hlG18FYqDRDrth8UZRJggmZvk16QnOGcmQJZVrYWwkbUE0Z2nCKNgRv8eVl0rioeJeV6n21XLvJ4yjAMZzAOXhwBTW4gzr4wCCCZ3iFN2fovDjvzse8dcXJZ47gD5zPHxR/jRM=</latexit>

U 0
<latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i

<latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i

<latexit sha1_base64="jGnO3r1acxhB5ey6K8sAzv9JIt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48tmFpoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoduY/PKHSPJH3ZpxiENOB5BFn1Fip6ffKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL6+S1kXVu6zWmrVK/SaPowgncArn4MEV1OEOGuADA4RneIU359F5cd6dj0VrwclnjuEPnM8ftBuM4g==</latexit>

U
<latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i

<latexit sha1_base64="Fbi1txjwhVFtJGxh6VBMuse0RJE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBiyepYD+gDWWz2bRrN7thdyKU0v/gxYMiXv0/3vw3btsctPXBwOO9GWbmhangBj3v2ymsrW9sbhW3Szu7e/sH5cOjllGZpqxJlVC6ExLDBJesiRwF66SakSQUrB2ObmZ++4lpw5V8wHHKgoQMJI85JWilVo9GCk2/XPGq3hzuKvFzUoEcjX75qxcpmiVMIhXEmK7vpRhMiEZOBZuWeplhKaEjMmBdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODQLHsz8T+vm2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0uHRBOKNqCSDcFffnmVtC6q/mW1dl+r1O/yOIpwAqdwDj5cQR1uoQFNoPAIz/AKb45yXpx352PRWnDymWP4A+fzB7Thj0Q=</latexit>· · ·

<latexit sha1_base64="hQZ3dnfQlC99pr0+3Ge7LHap0FY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzAOSJcxOZpMxszPLTK8QQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0O/NbT9xYodUDjlMeJnSgRCwYRSc1uygSbnvlil/15yCrJMhJBXLUe+Wvbl+zLOEKmaTWdgI/xXBCDQom+bTUzSxPKRvRAe84qqhbEk7m107JmVP6JNbGlUIyV39PTGhi7TiJXGdCcWiXvZn4n9fJML4JJ0KlGXLFFoviTBLUZPY66QvDGcqxI5QZ4W4lbEgNZegCKrkQguWXV0nzohpcVS/vLyu1Wh5HEU7gFM4hgGuowR3UoQEMHuEZXuHN096L9+59LFoLXj5zDH/gff4AuH+POw==</latexit>

⇥
<latexit sha1_base64="hQZ3dnfQlC99pr0+3Ge7LHap0FY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzAOSJcxOZpMxszPLTK8QQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0O/NbT9xYodUDjlMeJnSgRCwYRSc1uygSbnvlil/15yCrJMhJBXLUe+Wvbl+zLOEKmaTWdgI/xXBCDQom+bTUzSxPKRvRAe84qqhbEk7m107JmVP6JNbGlUIyV39PTGhi7TiJXGdCcWiXvZn4n9fJML4JJ0KlGXLFFoviTBLUZPY66QvDGcqxI5QZ4W4lbEgNZegCKrkQguWXV0nzohpcVS/vLyu1Wh5HEU7gFM4hgGuowR3UoQEMHuEZXuHN096L9+59LFoLXj5zDH/gff4AuH+POw==</latexit>

⇥<latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i

<latexit sha1_base64="jGnO3r1acxhB5ey6K8sAzv9JIt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48tmFpoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoduY/PKHSPJH3ZpxiENOB5BFn1Fip6ffKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL6+S1kXVu6zWmrVK/SaPowgncArn4MEV1OEOGuADA4RneIU359F5cd6dj0VrwclnjuEPnM8ftBuM4g==</latexit>

U
<latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i <latexit sha1_base64="hQZ3dnfQlC99pr0+3Ge7LHap0FY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzAOSJcxOZpMxszPLTK8QQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0O/NbT9xYodUDjlMeJnSgRCwYRSc1uygSbnvlil/15yCrJMhJBXLUe+Wvbl+zLOEKmaTWdgI/xXBCDQom+bTUzSxPKRvRAe84qqhbEk7m107JmVP6JNbGlUIyV39PTGhi7TiJXGdCcWiXvZn4n9fJML4JJ0KlGXLFFoviTBLUZPY66QvDGcqxI5QZ4W4lbEgNZegCKrkQguWXV0nzohpcVS/vLyu1Wh5HEU7gFM4hgGuowR3UoQEMHuEZXuHN096L9+59LFoLXj5zDH/gff4AuH+POw==</latexit>

⇥
<latexit sha1_base64="hQZ3dnfQlC99pr0+3Ge7LHap0FY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzAOSJcxOZpMxszPLTK8QQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0O/NbT9xYodUDjlMeJnSgRCwYRSc1uygSbnvlil/15yCrJMhJBXLUe+Wvbl+zLOEKmaTWdgI/xXBCDQom+bTUzSxPKRvRAe84qqhbEk7m107JmVP6JNbGlUIyV39PTGhi7TiJXGdCcWiXvZn4n9fJML4JJ0KlGXLFFoviTBLUZPY66QvDGcqxI5QZ4W4lbEgNZegCKrkQguWXV0nzohpcVS/vLyu1Wh5HEU7gFM4hgGuowR3UoQEMHuEZXuHN096L9+59LFoLXj5zDH/gff4AuH+POw==</latexit>

⇥<latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i

<latexit sha1_base64="jGnO3r1acxhB5ey6K8sAzv9JIt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48tmFpoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoduY/PKHSPJH3ZpxiENOB5BFn1Fip6ffKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL6+S1kXVu6zWmrVK/SaPowgncArn4MEV1OEOGuADA4RneIU359F5cd6dj0VrwclnjuEPnM8ftBuM4g==</latexit>
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Figure 5.3: a) Principle eigenvalue of the transfer matrix. If L and R are good approximations
to the left and right eigenvectors, this circuit corresponds to some power of the
principle eigenvalue. In this case we have three repeating blocks of the transfer
matrix, so we obtain λ3. These circuits make use of the destructive SWAP test,
the shorthand for which is introduced. Over all of these repeating blocks of the
circuit, the bitwise AND of the resultant bitstring indicates passing or failing the
SWAP test. Over repeated shots this represents the probability of equality. b)
Quantum circuit for computing state overlaps in the time representation. This specific
circuit computes ⟨ψ|ψ⟩, for some translationally invariant MPS ψ encoded as a
quantum channel U. This circuit makes use of the destructive SWAP test, the
shorthand for which is introduced. c) The eigenvectors L and R of the transfer
matrix are good approximations accurate to order O(dt2).

implementation of the destructive SWAP test generalised to n qubits as seen in [163].

Here the measurement outcomes of the top-most qubit and bottom qubit are stored

as bitstrings. The test succeeds if the bitwise AND of these bitstrings has even

parity. Such outcomes are averaged over and the probability of equality computed.
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Figure 5.4: First order trotterisation scheme implementing quantum time-dependent varia-
tional principle. This circuit provides a cost function where the optimisation
over U′ gives the state parametrised by U at the next time step. Here two powers
of the power method are shown. The cost function is L = |0⟩⟨0| and due to the
first-order Trotterisation errors are such that R = 1 +O(dt2). Here U is evolved
forward by half a time step and the U′ is evolved backwards by half a time step
for symmetry.

5.2.2 Quantum time-dependent variational principle

In designing algorithms for NISQ devices, the number of qubits the algorithm uses

must be minimised. Further the qubits themselves and their landscape will incur

sources of errors specific to the device. The key to implementing algorithms is in

the management and mitigation of errors, and of course this can be achieved by

limiting the resources the algorithm requires. Thus, our implementation of the

time-dependent variational principle (TDVP) must be simple.

This implementation of time evolution follows from the method for computing

state overlaps [162,164–166]. Some MPS |ψ(U(t)⟩ parametrised by the unitary U(t)

can be time-evolved to a time t + dt under some Hamiltonian H as follows,

U(t + dt) = argmax
W

|⟨ψ(W)| eiHdt |ψ(U(t))⟩| (5.2)

If using the power method to compute this overlap, the probability λ that the

swap test measures 0⊗N is the principle eigenvalue of the transfer matrix. For a

state parametrised by U at time t, the time evolution circuit provides a cost function

whose optimisation over U′ returns the state at time t+dt. We use the time evolution

cost function circuit of Figure 5.4 and repeating blocks of this (the power method)

to approximate the principle eigenvalue.

The time evolution operator is expanded using a Trotterisation scheme. While

higher order Trotterisation schemes improve the scaling of errors with the time step
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Figure 5.5: Parameterisation of the unitaries so as to restrict the state space optimised over.
Due to high sampling errors, we assume that we know two previous steps of the
time evolution, so the third step is more simply interpolated. In the simulations,
this consists of specifying the Z and X rotations that generate the previous steps.

dt, for circuits laid out in time, their implementation require more qubits. To keep

the number of qubits minimal, a feature of translationally invariant states evolving

with nearest-neighbour, translationally-invariant Hamiltonians is employed. In this

case the TDVP equations with either only the even or odd parts of the Hamiltonian

is the same as evolving using the full Hamiltonian then dividing by two [25].

In Figure 5.4, this circuit implements a first order Trotterisation scheme that

uses only the odd-bonds of the Hamiltonian. For this scheme the cost function is L =

|0⟩⟨0|+O(dt2) and R = 1+O(dt2). Due to this projecting back onto translationally

invariant states, errors are incurred at a higher order in dt than is expected by simply

accounting for Trotter errors [162]. The repeating block of this circuit is the transfer

matrix, so that in Figure 5.4, two powers of the transfer matrix are shown.

5.3 Results

Since this project is in progress, we present the results as they stand so far. We

study the dynamical quantum phase transition of the one-dimensional transverse

field Ising model [162]. For N sites, the Hamiltonian is given by,

H = −J
N−1

∑
i

ẐiẐi+1 + g
N

∑
i

Xi, (5.3)

where Ẑ and X̂ are Pauli matrices acting on site i, J the exchange coupling and g the

transverse field. This model harbours a phase transition in the ground state when

g/J = 1. It has a further dynamical quantum phase transition, a phase transition

driven by advancing time as opposed to being driven by control parameters such as

temperature or pressure. This is when a ground state on one side of this transition

(say g/J < 1) is evolved with a Hamiltonian opposite (in this case g/J > 1).
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Figure 5.6: Exact and simulated results of the dynamical quantum phase transition. The
exact result is useful for comparison with the quantum algorithm. The ‘TM
simulation’ refers to dynamics obtained from numerical optimisation of the
principle eigenvalue of the ansatz transfer matrix. This is useful for comparison
with the simulations as it uses the reduced parameterisation of the 2-qubit uni-
taries. Further, this is why this calculation does not exactly align with the exact
result. Two results are shown for the simulation using the time-evolution algo-
rithm presented here. The noiseless simulation is the numerical optimisation
of the circuits Fig. 5.4 in the absence of noise. The emulator simulation is the
implementation of this algorithm on the Honeywell ion-trap device emulator.
The quantum algorithm is faithful in reproducing the dynamics.

We present results showing that the groundstate and dynamical properties

of this model can be seen, thus investigated, on the Quantinuum machine. This

algorithm is implemented using the Quantinuum emulator, and plots for the cost

function obtained reflects the dynamics we expect.

5.3.1 Mitigating sampling costs

Ion traps have very high gate and measurement fidelities. Their performance is

primarily inhibited by long repetition times, which limits the number of samples

that can be taken. Without careful consideration, the number of samples required

to optimise the U′ that parametrises the next time step is prohibitive. This problem

is overcome by making a good initial guess.
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We assume knowledge of the previous two steps of the time evolution so that

the state space optimised over is restricted, we linearly extrapolate to the next time

step as an initial guess. This is corrected using SPSA (simultaneous perturbation

stochastic approximation) [167] with a narrowly defined sampling region to improve

this guess. Furthermore, the unitaries U′ are parametrised as shown in Figure 5.5

to enable shallower circuits [162].

5.3.2 Results so far

These results are presented in Fig. 5.6, where J = 1, and we begin with a groundstate

with g = 1.5 and evolve under g = 0.2. In Fig 5.6, the results of four calculations are

shown. The exact calculation is performed using a Jordan-Wigner transformation

and is a useful basis for comparison. The ‘TM simulation’ refers to simulating using

transfer matrix methods. Here the parameters of the unitaries are optimised by first

converting to the tensor representation and then computing the largest eigenvalue

of the transfer matrix. This is useful for comparison with as the peak is shifted

slightly left due to also using the reduced parameterisation (Fig 5.5).

We show two simulations using the first order time evolution algorithm we

have presented, Fig. 5.4. The noiseless simulation refers to its implementation

and numerical optimisation using Cirq, and the emulator simulation is using the

Honeywell device emulator. These results show that the time evolution algorithm

can reproduce these dynamics. The good results from the Honeywell emulator are

promising of the utility of this algorithm for Quantinuum’s device and potentially

other ion-trap devices.

5.4 Discussion

So far, this work has demonstrated and implemented an algorithm for performing

quantum time evolution on emulators for ion-trap NISQ devices. The emulator

results are promising, meaning that we can hope to run this on actual quantum

hardware. In future work we would like to be able to implement this algorithm on

other ion-trap quantum devices and look at extending to higher bond-dimensions.
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Discussion

This thesis is formed of three main research projects that make use of tensor net-

work, and more specifically, matrix product state (MPS) representations of quantum

states. Tensor network representations parameterise the quantum state according to

the amount of entanglement. The individual tensors capture some degree of entan-

glement, or some other key property of the overall wavefunction. Connecting these

regions creates a network that builds the complex quantum state. Each research

project of this thesis differs in the nature of research and none directly follow from

the other, but they all take advantage of the attractive properties of tensor network

states, and within these MPS.

The main technique used in this thesis are MPS parameterisations of the many-

body Hilbert space. Calculations involving the many-body Hilbert space are often

limited by exponential scaling as more bodies are added. For one-dimensional

quantum systems, every state can be written in the MPS decomposition, and this

representation is useful when bond-dimension D is small. Physically relevant states

tend to embody less entanglement than random states in Hilbert space, making the

reduction to MPS efficient and useful. In this work, MPS techniques have been

extended to tools for the study of field theories of condensed matter, open quantum

systems, and quantum simulation, with their advantages built in.

In the first project chapter titled ‘A generalised Haldane map for the J1-J2

model’, presents an application for field theories over MPS, where entanglement

can be captured at the saddle point. In the following chapter, which is a more

numerical simulation project, ‘phase transitions in the classical simulabitlity of

open quantum systems’, MPS are the semi-classical states for which we can write
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a Langevin equation. Finally, with ’MPS algorithms for quantum computers’, MPS

are utilised in order to maximise the limited entanglement resources of current

NISQ-era quantum computers.

The main achievements of this work for each project are: i. Showing the utility

of path integrals over MPS, re-deriving the critical point of the J1-J2 model in a

simpler way, and as such elucidating the link between the topological terms that

enter into field theories and the MPS formulation. ii. Presenting a new way to

simulate open quantum systems, using the TDVP-Langevin equation over tensor

network states, and providing the Hamiltonian analogue of measurement-induced

phase transitions, and demonstrating such entanglement transitions in the finite

temperature case. iii. Demonstrating a new algorithm for use on NISQ-era ion trap

quantum computers that capitalises on the features of these devices.

There are various future avenues for each project. A goal of the MPS description

of the deconfined quantum criticality in the J1-J2 model is to be able to extend to

higher dimensional J-Q models, where the analysis is much more complicated. For

the TDVP-Langevin equation, it would be interesting to see whether this approach

lends to an equivalent threshold theorem for adiabatic quantum computing. This

technique can be applied to various scenarios involving open quantum systems, and

could be extended to the study of local observables in closed systems. In the limit

of a linearised TDVP-Langevin equation, one may seek exact analytic solutions. For

quantum time evolution on ion-trap quantum computers, we hope we can use this

algorithm on different existing devices and be able to time-evolve larger systems

and to higher bond-dimensions.

Progress in theoretical physics is often times importing insights and the joining

of ideas of its various sub-disciplines. For tensor network techniques, the focus on

entanglement is importing insights from quantum information theory to some prob-

lems more in the domain of condensed matter physics. Matrix product states began

by providing insights to understanding the spin-1 quantum Heisenberg chain, and

now they are ubiquitous. This thesis has made use of many tensor network and

matrix product state based tools, and it will be interesting to see in what new arenas

these tools may find use.
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