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Abstract
Background When utilities are analyzed by time to death (TTD), this has historically been implemented by ‘grouping’ 
observations as discrete time periods to create health state utilities. We extended the approach to use continuous functions, 
avoiding assumptions around groupings. The resulting models were used to test the concept with data from different regions 
and different country tariffs.
Methods Five-year follow-up in advanced non-small cell lung cancer (NSCLC) was used to fit six continuous TTD models 
using generalized estimating equations, which were compared with progression-based utilities and previously published 
TTD groupings. Sensitivity analyses were performed using only patients with a confirmed death, the last year of life only, 
and artificially censoring data at 24 months. The statistically best-fitting model was then applied to data subsets by region 
and different EQ-5D-3L country tariffs.
Results Continuous (natural) Log(TTD) and 1∕

√

TTD models outperformed other continuous models, grouped TTD, and 
progression-based models in statistical fit (mean absolute error and Quasi Information Criterion). This held through sensi-
tivity and scenario analyses. The pattern of reduced utility as a patient approaches death was consistent across regions and 
EQ-5D tariffs using the preferred Log(TTD) model.
Conclusions The use of continuous models provides a statistically better fit than TTD groupings, without the need for strong 
assumptions about the health states experienced by patients. Where a TTD approach is merited for use in modelling, continu-
ous functions should be considered, with the scope for further improvements in statistical fit by both widening the number 
of candidate models tested and the therapeutic areas investigated.

1 Introduction

Health state utility values (HSUVs) are necessary inputs 
to health economic models that use quality-adjusted life-
years (QALYs) as a measure of value in health technology 
assessment. In oncology, health states have commonly been 
defined, and HSUV estimated, by disease progression sta-
tus—an imperfect proxy of utilities for multiple reasons, 
including assessment schedules in clinical trials [1], and 
uncertainty regarding when quality of life falls relative to 
disease progression. More recently, a number of studies have 
used ‘time to death’ (TTD) groupings for health states [2, 
3]. These HSUVs are then used in conjunction with survival 
probabilities to estimate QALYs.

Proximity to death and patient health-related quality 
of life have been shown to be linked [4] beyond a narrow 

application to modelling. Furthermore, recent retrospective 
analyses suggest that TTD may be more strongly correlated 
with health care costs than other factors, including age [5, 
6]. Finally, a simulation study has provided an indication 
of the situations for which TTD utilities will more closely 
reflect the deterioration in quality of life as patients approach 
death than the progression-based utilities approach [7], thus 
offering a better differentiator of the value of competing 
interventions.

TTD utilities are particularly relevant and have frequently 
been used for immunotherapies, where patients may live for 
an extended period of time, potentially even with progressed 
disease [2, 8]. In published implementations of TTD utili-
ties, patient utility has been aggregated by discrete group-
ings of proximity to death, henceforth referred to as group-
ings. The selection of these groupings (e.g., 0–4 weeks, 4–26 
weeks, 26–52 weeks and 52+ weeks from death) appears 
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Key Points for Decision Makers 

Time to death (TTD) health state utilities have been 
extensively used in immune-oncology, and generally 
estimated using discrete ‘groupings’ of TTD, typically in 
days or months to death.

The TTD approach can be generalized to use continuous 
functions of TTD, avoiding the need for strong assump-
tions regarding the construction of groups. The results 
show an improved model using fewer assumptions/vari-
ables.

TTD analysis generates consistent results across different 
regions and EQ-5D country tariffs, with a clear pattern 
of decreased utility in the final year (and particularly, the 
last 3 months) of life.

largely arbitrary, without a strong rationale (either clinical 
or empirical) for the specific groupings chosen [7].

In order to understand the HSUV groupings used, the 
National Institute for Health and Care Excellence (NICE) 
website was searched to identify all immune-oncology 
appraisals completed by October 2022. NICE appraisals 
were used since a large amount of detail is publicly avail-
able, and includes most licensed medicines. In total, 55 
immunotherapy appraisals were identified, of which 3 were 
terminated, leaving 52 appraisals. Of the 49 appraisals where 
the methods used were identifiable, 21 provided analysis by 
TTD groupings, with details split across the various docu-
ments (such as company submission, Evidence Review 
Group report, and decisions). Within the 21 appraisals, 10 
distinct approaches to grouping were identified, where the 
approach used appeared to be linked more to the drug (and 
thus submitting company) than the disease area (Table 1). 
The TTD groupings used appear similar but are inconsistent 
between appraisals; consequently, it is difficult to establish 
if TTD was appropriate in these cases or to compare esti-
mates without considerable structural uncertainty remain-
ing. Given redaction to documents, it is possible that further 
groupings were also used but were not identifiable in public 
documents.

The aim of this research was to investigate an alterna-
tive approach of modelling utility as a continuous function 
of proximity to death, avoiding the need to create discrete 
groupings and thus impose structural breakpoint assump-
tions implicit in this functional form. This was done using 
a large dataset in non-small cell lung cancer (NSCLC), 
pooling 5-year follow-up data from two international, ran-
domized, phase III clinical studies, including regular self-
reported EQ-5D-3L responses collected throughout the 

post-progression period [9]. The large number of patients 
included and the long duration of follow-up allows for more 
extensive analysis than typically feasible for the first analysis 
of a registrational study. Secondary aims were to verify that 

Table 1  Groupings of time to death utilities in company base cases 
for completed NICE technology assessments to October 2022

MCC Merkel cell carcinoma, NSCLC non-small cell lung cancer, 
NICE National Institute for Health and Care Excellence, RCC  renal 
cell carcinoma, SCC squamous cell carcinoma, SCLC small cell lung 
cancer, TA technology assessment
a,b are extremely similar, but differ in being defined by days vs. weeks
c Also included progression status as a variable
d Two models were included in the submission
e Also included a variable for ‘on treatment’
All details taken from publicly available documents hosted on the 
NICE website, with each TA accessible at https://www.nice.org.uk/
guidance/TAXXX by substituting the TA number for ‘XXX’

NICE TA number Year Drug Cancer type

Months: <1, 1–3, 3–6, 6–9, 9–12, 12+a

Days: <30, 30–89, 90–179, 180–269, 270–359, 360+b

TA319a 2014 Ipilimumab Melanoma
TA366b 2016 Pembrolizumab Melanoma
TA428 b,c,d 2017 Pembrolizumab NSCLC
Days: <30, 30–89, 90–179, 180+
TA357 2015 Pembrolizumab Melanoma
Days: <30
TA384c 2016 Nivolumab Melanoma
Days: <30, 30–179, 180–359, 360+
TA428d 2017 Pembrolizumab NSCLC
TA531 2018 Pembrolizumab NSCLC
TA557 2018 Pembrolizumab NSCLC
TA600 2019 Pembrolizumab NSCLC
TA650 2020 Pembrolizumab RCC 
TA737 2021 Pembrolizumab Oesophageal/gas-

tro-oesophageal
TA801 2022 Pembrolizumab Breast
a Days: <30, 30–99, 100+
b Weeks: <4, 4–12, 12+
a TA517 2018 Avelumab MCC
b  TA691d 2021 Avelumab MCC
Weeks: ≤5, 5–15, 15–30, 30+
TA520 2018 Atezolizumab NSCLC
TA584 2019 Atezolizumab NSCLC
TA638e 2020 Atezolizumab SCLC
Days: <30, 31–60, 61–90, 91–180, 180–364, 365+
TA661 2020 Pembrolizumab Head and neck SCC
Days: <35, 35–266, 267+
TA691d 2021 Avelumab MCC
Days: <35, 35–74, 75–209, 210+
TA705 2021 Atezolizumab NSCLC
Days: ≤28, 29–56, 57–84, 84+
TA736 2021 Nivolumab Head and neck SCC
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findings remained consistent across geographical regions, 
and using different EQ-5D-3L country tariffs.

2  Methods

2.1  Data Sources

Pooled data from the clinical studies of nivolumab versus 
docetaxel in pretreated metastatic squamous (CheckMate 
017, NCT01642004) and non-squamous (CheckMate 057, 
NCT01673867) NSCLC was used to perform the analysis. 
As the studies continued to collect data beyond the regis-
trational period, the 5-year long-term follow-up data were 
used, with a minimum follow-up of 64.2 and 64.5 months 
for CheckMate 017 and 057, respectively.

EQ-5D-3L assessment schedules were identical in the two 
studies. These were taken either every 4 weeks (nivolumab) 
or every 3 weeks (docetaxel) for the first 6 months, then 
every 6 weeks thereafter for the remainder of the treatment 
period. Follow-up EQ-5D-3L assessments were taken 30 
and 100 days post treatment discontinuation, then every 
3  months for the following 12 months, and then every 
6 months until death. In total, the pooled datasets provided 
4850 EQ-5D-3L responses from 788 patients. Over the study 
durations, 718 of these patients died, with a median TTD of 
271 days (interquartile range 130–522).

2.2  Statistical Analysis

Following a prespecified statistical analysis plan, a num-
ber of models were fitted to the observed EQ-5D-3L data 
(scored using the UK value set) using the generalized esti-
mating equation (GEE) to account for correlation at the 
patient level. The models tested used TTD (in days) as a 
linear continuous variable, as well as additional functional 
forms, including Log(TTD) , TTD2 , TTD2 + TTD , 1∕

√

TTD , 
and 1∕eTTD , all selected as the models had the ability to 
reflect increasingly impaired quality of life in proximity to 
death. The results of these continuous functions were then 
compared with fitted models using either models based on 
progression status, or previously published discrete TTD 
groupings of ≤ 4 weeks, 5–26 weeks, 27–52 weeks, and 
>52 weeks [10].

Model fits were compared using the mean absolute error 
(MAE) of the predicted-observed values, and the Quasi 
Information Criterion (QICu). The QICu mimics the Akaike 
Information Criterion (AIC), including penalization for the 
number of parameters included in the regression. Confirma-
tory analyses were then performed, repeating analyses in 
only the subset of patients who died within the study period, 
using data on the last year of life only, analyzed by treat-
ment (nivolumab vs. docetaxel), and by study (due to the 

differing disease histologies). An additional analysis was 
also performed, artificially censoring the individuals at a 
maximum of 24 months follow-up to understand whether the 
same models would be preferred in the more common cir-
cumstances of less mature data, for example from early data 
cuts of registrational trials as are typically used for health 
technology assessment. This artificially censored dataset 
included 617 of the 718 observed deaths.

MAE and QICu were used to select a best-performing 
TTD model to carry forward to perform analysis by region 
and EQ-5D value set. The aim of this analysis was to verify 
that similar TTD trends were observed and to understand 
the magnitude of any observed differences between tariffs. 
The best-performing model was also applied to data split by 
geographic region of patients (Europe/North America (US 
and Canada)/rest of world), using the UK tariff value set to 
investigate whether the association found between patient 
utility and proximity to death is related to geography.

3  Results

A visually perceptible trend between TTD and utility was 
evident in the dataset, with utility remaining relatively stable 
until the last year of life and then declining considerably 
until death. The different continuous functions of TTD were 
fitted to this data, with four of them converging (Fig. 1). 
Statistical metrics (the MAE and QICu) [Table 2] supported 
the perceived trend of stability followed by decline in the last 
year of life, shown by the poor performance of using only 
TTD in the regression model. To show this last year of life, 
electronic supplementary material (ESM) Fig. 1 is identical 
to Fig. 1 but showing only the final 12-month period.

Of the continuous functions, the Log(TTD) and 1∕
√

TTD 
models performed the best; these models had the lowest 
QICu, with a slightly lower MAE for the Log(TTD) model. 
Comparing these models with progression-based utility 
models and the discrete TTD grouping models, the MAE 
and QICu were improved (i.e., lower), indicating a better 
fit to the data (MAE) and statistical fit accounting for the 
number of explanatory variables (QICu). For completeness, 
model parameters are presented in ESM Table 1.

Results remained consistent when analyzing only patients 
with a confirmed death in the study period and only using 
data in the last year of life (Table 2)—in both cases with 
MAE at least as good, and lower QICu for continuous func-
tions. The Log(TTD) and 1∕

√

TTD models performed com-
parably in this analysis subset, with the Log(TTD) model 
performing marginally better than the 1∕

√

TTD model 
(<0.01 difference in the MAE). Analyzing by non-squamous 
versus squamous disease (implicitly by clinical study given 
the differences in patient populations) and by treatment, 
again gave consistent results (ESM Fig. 2, ESM Fig. 3). 
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The analysis artificially censoring the data at the 24-month 
time period also showed a consistent pattern of a good fit to 

the data for continuous time models, without differences in 
coefficients, particularly Log(TTD) and 1∕

√

TTD (Table 2).

Fig. 1  EQ-5D-3L utility (UK value set) versus time to death (TTD) in the pooled CheckMate-017 and CheckMate-057 studies, including pre-
ferred model fits

Table 2  Time to death models (TTD) applied to the pooled CheckMate-017 and CheckMate-057 EQ-5D-3L data using the UK value set

Bold formatting shows the preferred Log(TTD) model fit
n number of patients, N number of observations, MAE mean absolute error, QICu Quasi Information Criterion, TTD time to death (days), NA not 
applicable (model did not converge)
a Date last known alive used as the date of death for continuous TTD models

Statistical model All  patientsa

[n = 788, N = 4850]
Confirmed death 
only used in model 
fits i.e. excluding 
censors
[n = 718, N = 3627]

Last year of life 
only used in model 
fits
[n = 587, N = 2007]

Artificially censoring 
at 24 months follow-
up
[n = 617, N = 2645]

MAE QICu MAE QICu MAE QICu MAE QICu

TTD 0.184 4853 0.183 3629 0.193 2009 0.184 2656
L��(TTD) 0.173 4847 0.178 3628 0.190 2008 0.179 2656

1∕
√

TTD 0.179 4847 0.177 3628 0.190 2008 0.180 2656

1∕eTTD NA NA NA NA 0.201 2009 0.193 2652

TTD
2 NA NA NA NA 0.195 2009 0.186 2656

TTD
2 + TTD NA NA NA NA 0.190 2010 0.181 2657

Time to death grouping (≤4 weeks, 5–26 weeks, 
27–52 weeks, ≥52 weeks)

0.175 4849 0.178 3631 0.191 2011 0.180 2658

Progression-based utilities (pre/post progression) 0.193 4852 0.191 3629 0.201 2009 0.194 2656
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When comparing regional subgroup analyses using the 
Log(TTD) model, similar trends were observed, although 
with differences in the absolute utilities reported. For 
example, in North America, the mean utility fell from 
0.678 at 180 days before death to 0.622 at 30 days before 
death. The corresponding values for Europe were 0.655 to 
0.508, and for the rest of the world, 0.669 to 0.565 (Fig. 2). 
As a result, the continuous models fit showed similar pat-
terns to when fit to the overall dataset, although with slight 
differences in coefficients.

In selecting a preferred model for comparisons across 
regions and country tariffs, a case could be made for the 
use of both Log(TTD) and 1∕

√

TTD , with the Log(TTD) 
model used due to its marginally lower MAE, acknowledg-
ing that in practice a wider range of factors should be con-
sidered in choosing a preferred model than simply model 
fit statistics. The Log(TTD) model results were consistent 
across all relevant tariffs (Argentina, Australia, Belgium, 
Canada, Chile, China, Denmark, France, Germany, Italy, 
Japan, The Netherlands, New Zealand, Poland, Portugal, 
South Korea, Spain, Sweden, UK, US), with the fitted 
models presented in Fig. 3. Although some differences 
in absolute utility between tariffs are apparent, there was 
a high degree of consistency in the way utility fell before 
death across the value sets. This similarity can be seen in 
the predicted 90 days before death utilities, where across 

the country tariffs, the mean was 0.67, median 0.68, and 
standard deviation 0.08, i.e., a high degree of alignment 
between tariffs.

4  Discussion

The main finding of the analysis was that predicting patient 
utility as a continuous function, as opposed to using a group-
ing approach, allows for a statistically better model fit (same 
or better MAE, with lower QICu) achieved without the need 
to impose groupings. Table 1 shows that 10 different cut-offs 
have been used in NICE appraisals to group time periods 
(ranging from 2 to 6 groups used), exemplifying the arbi-
trary nature of model selection with grouping; the use of 
a continuous function avoids such assumptions. Although 
the grouping approach did in some instances give an equal 
MAE to the continuous approaches, the additional param-
eters specified resulted in a worse statistical fit (as measured 
by the QICu), and therefore would not be preferred. This 
analysis also demonstrated that the continuous TTD models 
also provided an improvement in model fit compared with 
progression-based analyses, although this was not the pri-
mary comparison and may not be appropriate in all cases. As 
such, when a case is made for an approach to estimation of 
HSUVs, such statistical considerations should form a part of 

Fig. 2  Fitted utility models to EQ-5D-3L versus time to death (TTD) by region using the UK value set, including preferred model fits to Check-
Mate-017 and CheckMate-057 data
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the reasoning, alongside the clinical rationale and assump-
tions implicit in the approach taken.

This finding was consistent in analyses using observa-
tions taken in the last year of life. Although multiple models 
appeared to provide a good fit to the data, Log(TTD) and 
1∕

√

TTD showed good performance in this dataset. There 
may also be other model forms that we did not test that could 
have provided a better fit; for example, given that much of 
the fall in utility occurs in the last year or so of life, a case 
for a ‘two-part’ model, with utility constant until a point at 
which utility begins to fall, could be considered. Support for 
such an approach can be seen from the artificial censoring at 
24 months, a scenario more likely to be seen around the reg-
istration of new products where data are less mature and thus 
long-term estimates less available to inform longer-term fits. 
The consistency in the continuous TTD relationship esti-
mated with full follow-up and artificial censoring datasets 
supports the validity of estimating TTD relationships with 
immature data, and indicates utility can reliably be extrapo-
lated using a TTD approach for survival outside the range 
of the observed data. This in turn facilitates better estimates 
of quality of life in modelling, and thus, ultimately, in deci-
sion making at the population level. Care is still required 
however in the fitting of models. As highlighted by peer 

review, various models may asymptote if time is zero, and 
thus appropriate checks, adding 1 day (as with survival mod-
els), or limits may need to be applied. Equally, the variability 
of the data should be noted, with some patients having high 
utilities until extremely close to death. This heterogeneity is 
a feature of utility data and, indeed, is to be expected [11].

When comparing across regions, the findings of utility 
linked to TTD were highly consistent. In all three regions 
included, the same pattern of utility falling markedly in the 
last year of life was observed, even with different absolute 
baseline levels of self-reported utility. Similarly, the pattern 
of falls in utility towards the end of life was seen across 
the analyses, with only minimal differences seen between 
tariffs—the shape of curves was similar, with only small 
differences in absolute values. As such, we found no strong 
evidence to suggest that the relationship between TTD and 
utility varies substantially by region, providing further sup-
porting evidence for the TTD approach.

The main strength of the analyses performed relates to 
the quantity of data available for analysis. With over 4000 
EQ-5D observations with 5 years of follow-up, it represents 
an incredibly rich source for hypothesis testing. The main 
limitation of the findings is that they are derived from a 
contemporary clinical trial in NSCLC and may not be 

Fig. 3  Log(time to death) model fits to pooled CheckMate-017 and CheckMate-057 EQ-5D-3L data applying (selected) country tariffs
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generalizable to other conditions or broader patient popu-
lations. Although there exists evidence that such patterns 
are seen in cancer patients in general [12], further research 
to understand where such patterns are evident is therefore 
required, both in different cancer areas and perhaps in non-
oncology terminal diseases. Additional avenues for future 
research could also be including patient characteristics 
(such as response, performance status, or adverse events) to 
improve model fit, or expanding to joint models of survival 
and utility.

As a broader concern, the analysis performed illustrates 
another limitation of utility regressions—the schedule of 
assessments in a clinical trial often varies related to disease 
progression and length of follow-up. In the clinical trials 
examined here, assessments were more frequent while on 
treatment than in survival follow-up. It would seem plausible 
that patients are more likely to miss visits or not complete 
questionnaires as their health deteriorates, which would 
imply data are not missing at random and would be linked 
to utility values. Although an untestable assumption, if cor-
rect then the estimates produced from analyses (regardless of 
specification—continuous TTD, grouped TTD, or progres-
sion-based) may overestimate quality of life (despite values 
already seeming low in some instances).

5  Conclusions

Despite the limitations, this work represents the first applica-
tion of continuous TTD functions using a large, long-term 
dataset. Although further analysis is required to ensure the 
replicability of findings and expansion of candidate mod-
els, the research indicates continuous functions represent 
an attractive and viable option for the modelling of utility 
data compared with groupings. Given the approach requires 
fewer assumptions than the use of groupings, it is also likely 
to increase the accuracy of estimates and thus acceptability 
to payers.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40273- 023- 01314-2.
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