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Abstract. Neurodegenerative conditions typically have highly hetero-
geneous trajectories, with variability in both the spatial and temporal
progression of neurological changes. Disentangling the variability in spa-
tiotemporal progression patterns offers major benefits for patient strat-
ification and disease understanding but is a complex methodological
challenge. Here we present Temporal Subtype and Stage Inference (T-
SuStaIn), a technique that uniquely integrates distinct ideas from unsu-
pervised learning: disease progression modelling, clustering, and hidden
Markov modelling. We formulate T-SuStaIn mathematically and devise
an algorithm for inferring the model parameters and uncertainty. We
demonstrate that the combination of disease progression modelling, clus-
tering, and hidden Markov modelling uniquely enables the discovery of
subtypes distinguished not just by ordering of abnormality accumula-
tion, but also timescale. We apply T-SuStaIn to longitudinal volumetric
imaging data from the Alzheimer’s Disease Neuroimaging Initiative, de-
riving spatiotemporal Alzheimer’s disease subtypes together with their
timelines of evolution and associated uncertainty. T-SuStaIn has broad
utility across a range of longitudinal clustering problems, both in neu-
rodegenerative conditions and more widely in progressive diseases.
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1 Introduction

Characterising the natural history of a disease is a crucial step towards un-
derstanding the underlying disease biology and predicting disease outcomes. In
neurodegenerative diseases, such as Alzheimer’s disease (AD), this has proven
challenging due to the decades-long disease timescale [1], which makes it im-
practical to chart the disease from start to end in an individual. This problem
is exacerbated by the heterogeneity between individuals, with many individu-
als following an atypical trajectory [2]. Quantitative models of neurodegenera-
tive disease subtypes and their progression timescales provide insights into the
heterogeneous patterns of disease changes and enable patient stratification and
prediction of future outcomes in clinical trials and healthcare.

Disease progression modelling (e.g., [3–7]) is a form of unsupervised learning
that enables the estimation of long-term trajectories of disease change from cross-
sectional and short-term longitudinal datasets [8]. The event-based model (EBM)
[3] of disease progression describes a disease as a series of events, where each event
corresponds to a new biomarker becoming abnormal, enabling the identification
of population-level disease progression patterns from cross-sectional datasets.
However, the EBM (a) assumes that all individuals follow a common progression
pattern; (b) estimates only the sequence, not the timescale, of disease changes;
and (c) does not appropriately exploit longitudinal data. The Subtype and Stage
Inference (SuStaIn) algorithm [9] places the EBM in a clustering framework,
enabling the identification of disease subtypes with distinct disease progression
patterns. The temporal event-based model (T-EBM) [10] places the EBM in a
hidden Markov modelling framework, appropriately modelling longitudinal data
to enable the estimation of disease timescales from short-term longitudinal data.

However, SuStaIn cannot estimate disease timescales and the T-EBM can-
not account for disease subtypes. Moreover, SuStaIn inherits the EBM’s inability
to appropriately exploit longitudinal data, which can hinder model identifiabil-
ity when degenerate solutions exist, e.g., when trajectories from two subtypes
cross over (crossing subtype trajectories). The majority of previous techniques
for longitudinal clustering of disease subtypes (e.g. [11]) fail to consider hetero-
geneity in disease stage at baseline (i.e. they do not perform disease progression
modelling). Those that do account for disease stage heterogeneity have typically
required a large number of observations (approximately 1000 individuals with
five time-points each) and have high model complexity [12, 13], hindering their
utility in medical datasets and in identifying subtypes with low prevelance.

Here we present Temporal Subtype and Stage Inference (T-SuStaIn), a tech-
nique that uniquely enables the estimation of disease subtypes with distinct pro-
gression patterns and their timescales from short-term longitudinal datasets. We
formulate T-SuStaIn mathematically and derive an algorithm for simultaneously
inferring disease subtypes, progression patterns, and timescales of progression.
Harnessing the added complexity of combining disease progression modelling,
clustering, and hidden Markov modelling in a single framework necessitates the
development of a novel constrained transition matrix that restricts the dimen-
sionality of the parameter space by encoding common assumptions of disease
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progression models. This further enables extension of the inference to use Markov
Chain Monte Carlo (MCMC) sampling, providing a joint estimate of the uncer-
tainty in the subtype progression patterns, proportion of individuals belonging to
each subtype, and the subtype progression timescales. We show that T-SuStaIn
can successfully exploit longitudinal data to recover event sequences that are
not identifiable by the cross-sectional SuStaIn algorithm. We demonstrate T-
SuStaIn using volumetric structural imaging data from the Alzheimer’s Disease
Neuroimaging Initiative, identifying AD subtypes with distinct spatiotemporal
progression patterns and their timelines.

2 Theory

2.1 Mathematical model for T-SuStaIn

Sc

kj,t=0πc

Yi,j,t=0

θc,i

(a) SuStaIn

Sc

kj,t=0 kj,t=1 ... kj,t=Tjπc

Yi,j,t=0

Ac

Yi,j,t=1 ... Yi,j,t=Tj

θc,i

(b) T-SuStaIn

Fig. 1. Graphical models for SuStaIn and T-SuStaIn. Hidden variables are denoted by
circles and observations by squares.

The mathematical model underlying T-SuStaIn is formulated as a mixture
of temporal disease progression models, combining ideas from SuStaIn [9] and
the T-EBM [10]. In this work we use a piecewise linear z-score model of disease
progression [9], which we adapt to have a hidden Markov model formulation
that leverages longitudinal datasets and estimates timelines. As such, T-SuStaIn
makes the same assumptions as both the T-EBM and SuStaIn, namely: i) mono-
tonic biomarker dynamics at the group level; ii) Markov stage transitions at the
individual level; and iii) a mixture of event sequences across the population.
Graphical models of SuStaIn and T-SuStain are shown in Figure 1. We denote
the data for each biomarker i and individual j observed at time t as Yi,j,t; the ini-
tial probability distribution for cluster c as πc; the transition probability matrix
for cluster c with elements aa,b as Ac; the distribution parameters for biomarker
i in cluster c as θc,i; the overall set of model parameters as Θc = [πc, Ac, θc,i];
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the event sequence for cluster c as Sc. Here Sc = {sc(1), ..., sc(N)} is a permuta-
tion of N events that represents the hidden sequence of events defining the state
space for a discrete time Markov jump process, where an event is the transition
of a biomarker from one z-score to another. We denote the hidden stage for in-
dividual j at time t as kj,t and define 0 ≤ x ≤ 1 as a dimensionless variable that
spans the event space. Following [10], under assumptions (i)-(iii), we can write
the equation for the total data likelihood of the T-EBM for cluster c as,

P (Yj |Θc, Sc) =

N∑
kj,t=0

x= k+1
N+1∫

x= k
N+1

P (kj,t=0|Sc, πc)

Tj∏
t=1

P (kj,t|kj,t−1, Sc, Ac)

Tj∏
t=0

I∏
i=1

P (Yi,j,t|kj,t, θc,i, Sc)dx,

(1)

where,

P (Yi,j,t|kj,t, θc,i, Sc) = NormPDF(Yi,j,t, θc,i). (2)

Following [9], we assume a univariate normal distribution for the data, Yi ∼
N (µi, σi), and choose θc,i(x) = [µc,i(x), σc,i], where µc,i and σc,i are the mean
and standard deviations of distribution i in cluster c. In the following we drop the
c index for notational simplicity. We define µi(x) as a piece-wise linear function,

µi(x) =



z1
xEz1

x, 0 < x ≤ xEz1

z1 +
z2−z1

xEz2−xEz1
(x− xEz1) , xEz1 < x ≤ xEz2

...
zM +

zmax−zMi

1−xEzMi

(x− xEzMi
) , xEzMi

< x ≤ 1.

(3)

Here zi = z1, ..., zMi is the set of z-scores for biomarker i such that N =
∑

Mi,
zmax is the maximum z-score for biomarker i; and Ezi is the z-score event at
xEzi = (k + 1)/(N + 1). Here we define the z-scores with respect to the con-
trol population, and hence set the standard deviation σi = 1, i.e., the z-scores
correspond to the number of standard deviations from the control population.

Following [14], the elements of the transition matrix Ac are defined as,

aa,b ≡ P (kj,t = b|kj,t−1 = a, Sc, Ac), (4)

the elements of the initial stage probability vector πa are defined as,

πa = P (kj,t=0 = a|Sc, πc), (5)

and the expected duration of each stage (sojourn time) δk as,

δk =

∞∑
δ=1

δPk(δ) = 1/(1− akk), (6)
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where akk are the diagonal elements of Ac.
The mathematical model underlying T-SuStaIn is defined as a mixture of

temporal event-based models (Equation 1),

P (Y |Θ,S) =

I∏
i=1

[
C∑

c=1

fcP (Yj |Θc, Sc)

]
, (7)

where fc is the fraction of individuals in subtype c out of a total C clusters.

2.2 Constrained transition matrix

In this work we propose a novel constrained form of the transition matrix Ac that
aligns with the assumption of sequential transition through disease stages made
by disease progression models. In a traditional hidden Markov model, states
may be transitioned between in any order. However, in a disease progression
model, the states are instead thought of as stages and have a strict order, with
individuals transitioning sequentially through each stage. For example, if an
individual started at stage 0 at time t = 0 and then transitioned to stage 2 at time
t = 1, a disease progression model would assume that they transition through
stage 1 at some point between t = 0 and t = 1, whereas in a traditional hidden
Markov model there is no such assumption (individuals can move instantaneously
from any state to any other state). We encode this idea by assuming that, for
i < j < k, the probability of transitioning from stage i to stage k is equal to
the probability of transitioning from stage i to stage j and then from stage j to
stage k, i.e. aik = aijajk for i < j < k (assuming aij and ajk are independent).
This generalises to aik =

∏k
j=i+1 aj−1,j . Disease progression models also assume

monotonic progression, which we enforce by using an upper triangular transition
matrix to only allow forward transitions between stages. Following on from these
two assumptions, we can derive an analytical solution to the transition matrix
Ac that depends only on a transition probability vector αc = (a00, . . . , aNN )
encoding the diagonal of the transition matrix.

To do this we derive analytical solutions for the first off-diagonal elements
(a0,1, a1,2, . . . , aN−2,N−1, aN−1,N ) that depend only on the elements of the tran-
sition probability vector αc = (a00, . . . , aNN ). The first off-diagonal elements can
then be used to compute the rest of the elements in the upper triangle of the
transition matrix using aik =

∏k
j=i+1 aj−1,j . From this and the monotonicity

assumption we have:

Ac =



a0,0 a0,1
∏2

j=1 aj−1,j . . .
∏N−2

j=1 aj−1,j

∏N−1
j=1 aj−1,j

∏N
j=1 aj−1,j

0 a1,1 a1,2 . . .
∏N−2

j=2 aj−1,j

∏N−1
j=2 aj−1,j

∏N
j=2 aj−1,j

...
...

...
. . .

...
...

...
0 0 0 . . . aN−2,N−2 aN−2,N−1

∏N
j=N−1 aj−1,j

0 0 0 . . . 0 aN−1,N−1 aN−1,N

0 0 0 . . . 0 0 aN,N


.
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As each row must sum to 1 to give a valid transition matrix, in the last row
we have aN,N = 1. In the second to last row we have aN−1,N−1 + aN−1,N = 1,
which can be rearranged to give aN−1,N = 1 − aN−1,N−1. In the third to last
row we have aN−2,N−2 + aN−2,N−1 + aN−2,N = 1. Substituting in aN−2,N =
aN−2,N−1aN−1,N and aN−1,N = 1 − aN−1,N−1 gives aN−2,N−2 + aN−2,N−1 +

aN−2,N−1(1−aN−1,N−1) = 1, which rearranges to give aN−2,N−1 =
1−aN−2,N−2

2−aN−1,N−1
.

Following the same logic and substitutions, the fourth to last row rearranges
to aN−3,N−2 =

1−aN−3,N−3

2−aN−2,N−2
. In general we have ai,i+1 =

1−ai,i

2−ai+1,i+1
. So under

our assumptions the transition matrix Ac only depends on the diagonal of the
transition matrix (the transition probability vector αc) and we have

Ac =



a0,0
1−a0,0

2−a1,1

∏2
j=1 aj−1,j . . .

∏N−2
j=1 aj−1,j

∏N−1
j=1 aj−1,j

∏N
j=1 aj−1,j

0 a1,1
1−a1,1

2−a2,2
. . .

∏N−2
j=2 aj−1,j

∏N−1
j=2 aj−1,j

∏N
j=2 aj−1,j

...
...

...
. . .

...
...

...
0 0 0 . . . aN−2,N−2

1−aN−2,N−2

2−aN−1,N−1

∏N
j=N−1 aj−1,j

0 0 0 . . . 0 aN−1,N−1 1− aN−1,N−1

0 0 0 . . . 0 0 1


.

2.3 Inference

Similarly to [9], we devise a hierarchical framework that sequentially fits an in-
creasing numbers of clusters from a number of randomly chosen initial progres-
sion patterns, choosing the optimal number of clusters using cross-validation. We
use MCMC sampling to estimate the model parameters and their uncertainty.
There are a number of parameters to infer for each cluster c = 1, ..., C: the se-
quence Sc, fraction of the population in the cluster f c, initial probability vector
πc, and the transition probability matrix Ac that maximise the total log like-
lihood, L(Sc, fc, πc, Ac) = logP (Y ;Sc, fc, πc, Ac). We make two assumptions to
simplify inference: we use the constrained transition probability matrix described
in Section 2.2 (parameterised by the vector αc) and, following the event-based
model [3], we assume a uniform initial probability vector πc. To speed up conver-
gence of the MCMC, we obtain initial estimates of the set of sequences Ŝc and
fractions f̂c using the SuStaIn algorithm with the modified likelihood function
L(Sc, fc, πc, Ac) = logP (Y ;Sc, fc, πc, Ac) and αc set to αc = (0.5, . . . , 0.5). We
initialise the MCMC sampling procedure using Ŝc, f̂c, and αc = (0.5, . . . , 0.5),
sampling the full distribution of the parameters Sc, fc, and αc for each cluster.

2.4 Subtyping and staging

T-SuStaIn can output subtypes and stages of individuals using either cross-
sectional or longitudinal observations. In either case, an individual is first as-
signed to a subtype, then a stage given that subtype. In the case where an
individual only has a single (i.e., cross-sectional) observation, their subtype is
assigned according to their maximium likelihood subtype. In the case where an
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individual has multiple (i.e., longitudinal) observations, their subtype is assigned
according to their maximium likelihood subtype across all observations. This en-
sures that individuals stay in the same subtype longitudinally, which is a benefit
over cross-sectional SuStaIn.

3 Experiments

3.1 Synthetic data

We first verify that T-SuStaIn can recover subtype progression patterns and
timelines in synthetic datasets with a similar size and number of visits to the
ADNI dataset. We simulate data directly from the mathematical model under-
lying T-SuStaIn to enable a direct comparison of parameter estimates and thus
perform a sanity check that the algorithm can recover trajectories under idealised
conditions. We generate 10 synthetic datasets, setting the number of subtypes to
two and randomly generating a progression pattern for each subtype, with 75%
of individuals belonging to the first subtype, and 25% belonging to the second.
We set the number of subjects to 250, with three visits per subject, giving a total
number of data points of 750. We set the number of biomarkers to three, the
number of z-scores to three (1, 2, and 3), the maximum z-score to 4, and assume
the z-scores evolve from a minimum of 0 with a standard deviation of 1. We set
the transition probability for each z-score event to a = 0.2 for all biomarkers in
each subtype, corresponding to an average transition time of 1.25 years.

3.2 Crossing subtype trajectories

Crossing subtype trajectories have a stage in the middle of each trajectory where
the two subtypes look identical (see example in Figure 2). In this case cross-
sectional SuStaIn cannot disentangle which beginning and end of each trajec-
tory belong to which subtype. However, T-SuStaIn should be able to disentangle
the trajectories by observing the trajectories of individuals before and after the
cross-over stage. We run a set of simulations that specifically test the perfor-
mance of T-SuStaIn for inferring crossing subtype trajectories compared to the
SuStaIn algorithm in [9], which only handles cross-sectional data. To ensure any
improvements are not simply due to an increase in the number of data points,
we use the same number of data points in each case. Specifically, we run SuStaIn
on five simulated datasets of 2500 subjects with cross-sectional data only, and
T-SuStaIn on five simulated datasets of 500 subjects with 5 time-points. We
simulate data from two subtypes across three biomarkers with the progression
patterns shown in Figure 2, assuming that the first subtype has a 60% prevalance,
and the second a 40% prevalence. We simulate two z-score events per biomarker
(z=1 and z=2), a maximum z-score of 3, and assume the z-scores evolve from
a minimum of 0 with a standard deviation of 1. The transition probability is
set to a = 1

3 for all biomarkers in each subtype, corresponding to an expected
transition time of 1.5 years per stage. Consequently an individual with five time
points would be expected to transition three stages on average over the course
of their five follow-ups.
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3.3 Alzheimer’s disease dataset

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu)5. We se-
lected 308 participants from ADNI [15], including individuals who have complete
data for two or more consecutive yearly visits, an MCI or AD diagnosis at base-
line, and are APOE4 positive (one or more APOE4 alleles). This gave a set
of 808 data points in total (average of 2.62 visits per person) with follow-ups
spaced at one year intervals. We applied T-SuStaIn to regional MRI volumes
from the hippocampus, temporal lobe and other cortical regions (sum of all cor-
tical regions except those in the temporal lobe), correcting for age, sex, years of
education, scanner field strength (1.5T vs. 3T) and intracranial volume (ICV)
using a control population of 220 APOE4-negative controls. To do this we built
a linear regression model for each region, with regional volume as the dependent
variable and the above covariates as the independent variables. We then residual-
ized each region (true value minus predicted value from regression) and z-scored
the residuals using the controls’ means and standard deviations. We used these
z-scored residuals as the biomarker inputs to T-SuStaIn. We ran T-SuStaIn using
4 startpoints and 1E5 MCMC iterations, and following [9] identified the optimal
number of clusters using the cross-validation information criterion (CVIC).

3.4 Positional variance diagrams

Subtype progression patterns are plotted using positional variance diagrams,
which visualise the sequence for each subtype and the uncertainty in that se-
quence. The colours represent different z-score events, with red corresponding to
a z-score of 1, magenta a z-score of 2, and blue a z-score of 3. Each square visu-
alises the probability a particular z-score event occurs at that particular stage,
ranging from 0 in white to 1 in red (z=1), magenta (z=2) or blue (z=3).

3.5 Event timelines

The most probable timelines and their uncertainty are obtained from the MCMC
samples of the transition matrix for each subtype by using kernel density esti-
mation to fit a non-parametric distribution to the samples and hence obtain
descriptive statistics of the mode and full width at half maximum (FWHM).

4 Results

4.1 T-SuStaIn can recover event sequences and timelines in
synthetic datasets of similar size to ADNI

We simulated 10 datasets of a similar size to ADNI (250 subjects with three time
points), with two subtypes with a prevalence of 75% and 25% and randomly cho-
sen progression patterns. The kendall tau distance between the ground truth and
5 For further information see: www.adni-info.org
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estimated subtype progression patterns was 0.91 (sd=0.20) for Subtype 1 and
0.57 (sd=0.20) for Subtype 2 (kendall tau of 1 indicates maximum similarity, and
-1 indicates maximum dissimilarity). T-SuStaIn estimated an average transition
probability of 0.25 (sd=0.06) for Subtype 1 and 0.25 (sd=0.04) for Subtype 2.

4.2 T-SuStaIn can infer crossing trajectories in synthetic datasets

Figure 2 illustrates an example dataset in which T-SuStaIn infers crossing sub-
type trajectories when cross-sectional SuStaIn fails. Across five simulated datasets,
T-SuStaIn estimated the correct subtype progression patterns in all five simu-
lations. Cross-sectional SuStaIn estimated the correct subtype progression pat-
terns in only two of five simulations, consistent with our expectation that cross-
sectional SuStaIn should estimate the correct progression by chance 50% of the
time given that there are two possible stage 4-6 progression patterns that could
be randomly appended to either of the stage 1-3 progression patterns. T-SuStaIn
can leverage longitudinal data from individuals who move from stages 1-3 to
stages 4-6 to link the patterns together correctly.

Ground Truth SuStaIn T-SuStaIn
Subtype 1

Subtype 2

Subtype 1

Subtype 2

Subtype 1

Subtype 2

Fig. 2. Example outputs of SuStaIn vs. T-SuStaIn for recovering crossing trajectories
using synthetic data. Each progression pattern is visualised using a positional variance
diagram (see Section 3.4). In the ground truth the subtypes cross at stage 3, at which
point all the biomarkers have reached a z-score of 1. However, the two subtypes have
distinct progression patterns before and after this cross-over point. These progression
patterns can be inferred by T-SuStaIn, but not SuStaIn.

4.3 T-SuStaIn identifies two subtypes with distinct progression
patterns in ADNI

Figure 3 shows the two subtypes inferred by T-SuStaIn in ADNI. As with SuS-
taIn, each subtype has a distinct progression pattern, but T-SuStaIn further es-



10 Young, Aksman, Alexander and Wijeratne

timates an event transition matrix (and therefore a distinct timeline). The first
subtype (86% prevalence) has early hippocampal atrophy, followed by temporal
lobe atrophy and then widespread cortical atrophy. The second subtype (14%
prevalence) has temporal and cortical atrophy at earlier stages. We hypothesise
that the first subtype reflects previously described ‘typical’ AD subtypes and
the second ‘cortical’ AD subtypes [9, 2, 11].

Subtype 1 Subtype 2

Fig. 3. T-SuStaIn identifies two subtypes with distinct progression patterns and time-
lines in ADNI. Top row: positional variance diagrams (explained in Section 3.4) of the
progression patterns estimated for each subtype. Bottom row: transition matrices for
each subtype. Right column: example MCMC samples of event sojourn times in each
subtype (blue line indicates the kernel density estimates described in Section 3.5). Cor-
tical NT: all regions in cortex excluding the temporal lobe.

4.4 Each ADNI subtype has a distinct timeline

Figure 4 shows the event timelines inferred by T-SuStaIn in ADNI. T-SuStaIn
infers that the overall timeline of Subtype 1 is longer than Subtype 2, consistent
with previous studies indicating faster progression of cortical AD subtypes [16].

5 Discussion

We introduced T-SuStaIn, a longitudinal discrete clustering technique that disen-
tangles spatial and temporal heterogeneity in progressive diseases. The strengths
of T-SuStaIn lie in its ability to infer interpretable temporal subtypes from rea-
sonably sized datasets of order 100 individuals, and to provide improved identi-



Temporal subtype and stage inference 11

Subtype 1 Subtype 2

Fig. 4. Visualisation of ADNI subtype timelines. The colours represent different z-score
events (red: z=1, magenta: z=2, blue: z=3), with the dots representing when the event
occurs (mode described in Section 3.5), and the boxes representing the uncertainty in
the timing of the event (FWHM described in Section 3.5).

fiability over cross-sectional SuStaIn, for example in the case of crossing trajec-
tories. Whilst our results support T-SuStaIn’s broad potential clinical utility, we
acknowledge that its current formulation limits its use to data with fixed-time
intervals; future work will allow for variable-time intervals [17]. Although we fo-
cused on complete structural MRI data in this work, T-SuStaIn can readily use
any type of dynamic biomarker data and accounting for missing data is straight-
forward, e.g., [10]. As with SuStaIn, various disease progression models can be
used with T-SuStaIn to model alternative data types [18, 3, 9, 19]. As such, T-
SuStaIn will be able to infer longitudinal subtypes from short-term multi-modal
datasets with irregular sampling and missing data, further extending its use in
improving disease understanding and patient stratification.
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