
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0364-765X |eissn 1526-5471 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Laura Doval
Columbia Business School, laura.doval@columbia.edu

Vasiliki Skreta
University of Texas, Austin and University College London, vskreta@gmail.com

We provide tools to analyze information design problems subject to constraints. We do so by

extending the insight in Le Treust and Tomala (2019) to the case of multiple inequality and equality

constraints. Namely, that an information design problem subject to constraints can be represented

as an unconstrained information design problem with a additional states, one for each constraint.

Thus, without loss of generality, optimal solutions induce as many posteriors as the number of

states and constraints. We provide results that refine this upper bound. Furthermore, we provide

conditions under which there is no duality gap in constrained information design, thus validating a

Lagrangian approach. We illustrate our results with applications to mechanism design with limited

commitment (Doval and Skreta, 2022a) and persuasion of a privately informed receiver (Kolotilin

et al., 2017).
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1. Introduction We provide tools to solve constrained information design problems. These

problems are becoming common: Since Kamenica and Gentzkow (2011) seminal paper on Bayesian

persuasion, the literature on information design has grown steadily. A bulk of new work analyzes

constrained information design problems, which can be classified in three groups:

1. The information designer faces constraints additional to the Bayes’ plausibility constraint in

Kamenica and Gentzkow (2011), like participation in Rosar (2017), moral hazard in Boleslavsky

and Kim (2018), and capacity constraints on information transmission in Le Treust and Tomala

(2019).

2. The designer is designing an information structure that is part of a mechanism that satisfies

incentive and participation constraints, like in mechanism design with aftermarkets (e.g., Calzolari

and Pavan, 2006a; Dworczak, 2020), and in mechanism design with limited commitment (e.g.,

Doval and Skreta, 2022a).

3. Mechanism design problems that do not involve information design and still can be solved

using information design tools, like in Georgiadis and Szentes (2020) and Dworczak et al. (2021).

A natural approach to tackle these constrained information design problems is to set up a

Lagrangian to incorporate the constraints into the objective function, except for the Bayes’ plau-

sibility constraint. If each constraint can be written as the expectation over posteriors of some

function, then the Lagrangian itself can be written as an expectation over posteriors of some func-

tion given the Lagrange multiplier. If there are N possible states of the world, one may be tempted

to apply a corollary of Carathéodory’s theorem (Corollary 17.1.5 in Rockafellar, 1970) and conclude

from this that the optimal information policy uses at most N posteriors. After all, the solution

to the problem would correspond to the concavification of the function whose expectation over

posteriors determines the Lagrangian.

However, as we illustrate next, this approach may fail to deliver the correct solution to the

constrained information design problem:

Example 1.1 (Naive Lagrangian approach) Consider the following constrained information

design problem. There are two equally likely states of the world ω ∈ {0,1} ≡ Ω. Letting µ ∈ [0,1]

denote the probability that the state is ω= 1, the objective function is given by:

f(µ) =

 0 if µ< 1
3

m if µ∈ [ 1
3
, 2

3
)

1 otherwise
, (1.1)

where m is a parameter m ∈ [0,0.5). Denoting by ∆(∆(Ω)) the set of posterior distributions, we

intend to find a posterior distribution τ with mean µ0 = 1/2 that maximizes the expectation of f

subject to a constraint defined by the function g, where

g(µ) = 1 [µ∈ [1/3,2/3]] . (1.2)
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The constrained information design problem is then:

max
τ∈∆(∆(Ω))

Eτ [f(µ)] (CIDL)

s.t.

{
Eτ [µ] = µ0

Eτ [g(µ)]≥ γ .

That is, we choose a posterior distribution τ with mean µ0 to maximize the expectation of the

objective subject to the constraint that in expectation the value of g is at least γ, where γ ∈ (3/4,1).

Letting t≥ 0 denote the multiplier on the inequality constraint, we define the Lagrangian objective:

(f + tg)(µ) =


0 if µ< 1

3

m+ t if µ∈ [ 1
3
, 2

3
)

1 + t if µ= 2
3

1 otherwise

. (1.3)

It is then natural to set up the following problem:

min
t≥0

max
τ∈∆(∆(Ω))

Eτ [f(µ) + tg(µ)] (1.4)

s.t. Eτ [µ] = µ0.

Appealing to the results in Aumann et al. (1995); Kamenica and Gentzkow (2011), one may rec-

ognize that the solution to the inner-maximization in Equation 1.4 corresponds to the concave

hull of f + tg at µ0 (see Definition 2.1) and rely on standard results to reduce the search for an

optimal posterior distribution to those distributions with at most binary support. Visual inspection

of the Lagrangian objective and its concavification in Figure 1 reveal that this would not be an

issue as long as the multiplier t is different from 1/2. Indeed, for the purposes of concavifying the

Lagrangian at the prior µ0 distributions with at most binary support suffice. For instance, when

t < 1/2, the optimal distribution splits µ0 between 0 and 2/3, which leads to an infeasible solution

(see Figure 1c). Instead, when t > 1/2, the optimal distribution splits µ0 between 1/3 and 2/3, which

satisfies the constraint with slack, contradicting that t > 0.

When t= 1/2, multiple distributions over posteriors attain the concavification of the Lagrangian

objective at the prior. Consistent with Corollary 17.1.5 in Rockafellar (1970), there are binary

support distributions that attain the concavification. For instance, we can split the prior between

1/3 and 2/3 or we could split the prior between 0 and 2/3. The former satisfies the constraints,

but delivers the no disclosure payoff to the objective function. Instead, the latter, which delivers

the optimal payoff for the objective f , does not satisfy the constraints. However, there is a third

distribution supported on three points, {0, 1/3, 2/3}, that attains the concavification of the Lagrangian

objective, while at the same time satisfying the constraints: it balances the desire of f to (partially)

reveal information with the satisfaction of the inequality constraint. Note that all three splittings
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of the prior deliver the same value for the Lagrangian objective, but they are not all feasible nor

optimal in the constrained information design problem, CIDL.

For this example, the solution to the program in Equation 1.4 is given by t∗ = 0.5 and

{(τ ?(µ?m), µ?m)}3m=1 = {(1− γ,0), (2γ− 3/2, 1/3), (3/2− γ, 2/3)}.

1
3

µ0 2
3

m

1

µ

f

Figure (a) Objective function f

1
3

µ0 2
3

m+ t

1

µ

f + t∗g

Figure (b) Lagrangian objective, t=t∗

1
3

µ0 2
3

m+ t

1

µ

f + tg

Figure (c) Lagrangian objective,

t= 0.25< t∗

1
3

µ0 2
3

m+ t

1 + t

µ

f + tg

Figure (d) Lagrangian objective,

t= 0.8> t∗

Figure 1. Lagrangian approach in Example 1.1 for m = 0.25; t∗ = 1/2 denotes the optimal multiplier. The dashed

red line is the concavification.

In an inspiring contribution, Le Treust and Tomala (2019) are the first to highlight the issue

raised in Example 1.1 in a model with one inequality constraint. At the heart of their result is the

observation that the Lagrange multiplier is also part of the solution to the optimization problem.

Indeed, they show that the solution corresponds to concavifying a function of N + 1 variables: the

first N correspond to a belief and the last corresponds to the inequality constraint. It follows then
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that the optimal policy may involve N + 1 posteriors. The authors also show that the Lagrangian

approach is valid for their problem.

Many information design problems involve multiple inequality and equality constraints. For

instance, in Doval and Skreta (2022a), the designer designs both an allocation rule and an informa-

tion structure; both have to satisfy the agent’s participation and incentive compatibility constraints.

As another example, consider the problem of persuading a privately informed receiver in Kolotilin

et al. (2017): the designer designs a menu of information structures, which has to satisfy the agent’s

incentive compatibility constraints. Finally, consider the problem of a designer who designs a menu

of offers for a privately informed agent, but is limited in how much information the allocation can

reveal because of privacy concerns, as in Eilat et al. (2021).

We extend the results in Le Treust and Tomala (2019) to the case of multiple equality and

inequality constraints. Theorem 3.1 shows that the information design problem subject to con-

straints is equivalent to the solution of a standard, but higher dimensional, Bayesian persuasion

problem, where the dimensions represent the number of states together with the number of con-

straints. We use this to derive an upper bound on the number of posteriors induced in an optimal

posterior distribution (Corollary 3.1): An optimal posterior distribution induces at most N +I+E

posteriors, where N is the number of states, I is the number of inequality constraints, and E

is the number of equality constraints. Corollary 3.2 then shows that this upper bound can be

refined whenever a constraint does not bind. We also show that the Lagrangian approach is valid.

Indeed, Theorem 3.2 shows that the constrained information design program can be cast as a

Lagrangian where the optimal distribution over posteriors concavifies the Lagrangian at the prior,

while the Lagrange multiplier is chosen to minimize the value of this concavification. In other

words, the value of the constrained information design problem corresponds to the concavification

of the Lagrangian for some multiplier. Theorem 3.3 shows that a Lagrange multiplier exists under

a standard Slater’s condition (Assumption S). Examples 3.2 and 3.3 illustrate how Theorem 3.2

can be used to solve constrained information design problems, even without necessarily solving for

the optimal multiplier.

Propositions 3.1 and 3.2 refine the upper bound on the number of posteriors at an optimal

solution that follows from Corollary 3.1. Proposition 3.1 provides an agreement condition between

the objective and the constraints under which an optimal posterior distribution induces no more

posteriors than the number of states. Intuitively, the condition precludes settings like the one in

Example 1.1, where the objective function favors information disclosure, while the constraints favor

no disclosure. Instead, Proposition 3.2 distills and generalizes in the space of posterior beliefs the
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property that leads to the recommendation principle in information design, that is, the result that

allows one to equate induced posteriors to action recommendations (Myerson, 1982; Kamenica and

Gentzkow, 2011). Under the conditions of Proposition 3.2, optimal posterior distributions may

induce less posteriors than the number of states plus constraints, as we illustrate in Example 3.3,

while at the same time inducing more posteriors than the number of states, as we illustrate in

Example 8.2.

Section 4 shows how Theorem 3.1 can be leveraged to obtain useful results in two important

settings that a priori do not seem to fit the structure of the constrained information design problem

introduced in Section 3:

Section 4.1 considers the problem of mechanism design with limited commitment. In this applica-

tion, the set of states of the world corresponds to the agent’s private information. Doval and Skreta

(2022a) show that it is without loss of generality to consider mechanisms in which the designer

designs both an information structure and an allocation. Furthermore, the mechanism must satisfy

the agent’s participation and incentive compatibility constraints. Theorem 3.1 implies that it is

without loss of generality to focus on mechanisms that induce information structures with finite

support and provides an upper bound on the number of posteriors induced by the mechanism.

Proposition 4.1 shows that when the agent’s payoff satisfies a version of single-crossing for lotteries

(Bester and Strausz, 2007; Celik, 2015; Kartik et al., 2017) the upper bound implied by Theo-

rem 3.1 can be further reduced (Corollary 4.1). The assumption of transferable utility provides

another way in which this bound can be reduced: When the optimal mechanism can be obtained

by maximizing the virtual surplus, the information structure associated to the optimal mechanism

uses at most as many posteriors as the number of states of the world (Proposition 4.2).

Section 4.2 considers the problem of persuading a privately informed receiver (Kolotilin et al.,

2017; Guo and Shmaya, 2019; Candogan and Strack, 2021). Here the information designer designs

a menu of information structures subject to the incentive compatibility constraints of the agent.

We show how the designer’s problem can be separated into different problems, one for each type

of the receiver.1 We use this decomposition and Theorem 3.1 to derive an upper bound on the

number of posteriors employed in an optimal experiment. Since we make no assumption on the

cardinality of the set of receiver actions, the bounds in Proposition 4.4 are the most useful when

the set of actions is larger than the set of types.

1Candogan and Strack (2021) make a similar observation in their problem.
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Related Literature: The paper builds and expands on the results in Le Treust and Tomala

(2019). Given the prevalence of constrained information design this simple extension is bound to be

useful to other researchers. Furthermore, we provide novel applications where these results greatly

simplify the analysis.

Since the first circulation of our draft (see, Doval and Skreta, 2018), there has been renewed inter-

est in providing tools to solve constrained (information) design problems. Dworczak and Kolotilin

(2019) apply our results in their study of duality in Bayesian persuasion. Kang (2020) provides

a set of tools complementary to the ones in this paper, by combining results in Bauer (1958)

and Szapiel (1975). The results in Szapiel (1975) speak to the set of extreme points in the space

of posterior distributions, an infinite-dimensional space, whereas the space of posterior beliefs is

finite-dimensional when the set of states is finite. Babichenko et al. (2020) obtain the upper bound

in Corollary 3.1 using infinite dimensional linear programming tools. They complement the results

in our paper by providing computational complexity results. Azrieli (2021) illustrates the difference

between unconstrained rational inattention problems and those subject to a capacity constraint.

In the context of mechanism design with limited commitment, Bester and Strausz (2007) provide

analogues of Propositions 4.2 and 4.3, using tools of infinite dimensional linear programming.

While this allows them to conclude that mechanisms in their paper use finitely many output

messages, Bester and Strausz (2007) do not provide a characterization of the set of output messages.

Therefore, in order to characterize an optimal mechanism, the analyst still has to identify the

optimal message space. Instead, we leverage the characterization in Doval and Skreta (2022a),

which allows us to equate the message space of the mechanism to the set of beliefs the designer

holds about the agent’s type. We then use our results, which are based on the tools of convex

analysis employed in the information design literature, to derive an upper bound on the number

of posteriors the principal uses at an optimal mechanism.2

2. The constrained information design problem

Primitives Let Ω denote a finite set of states, Ω = {ω1, . . . , ωN}, and let ∆(Ω) denote the set

of probability measures on Ω, a subset of the Euclidean space RΩ.3,4 For each element µ0 ∈∆(Ω)

2Salamanca (2021) studies communication equilibria in sender-receiver games, using a Lagrangian approach to
study the sender optimal communication equilibrium. This allows him to derive an upper bound like the one in
Corollary 3.1 in the context of his model.

3To make the comparison with Le Treust and Tomala (2019) simple, we follow their notation as much as possible.
However, while they present their results for any convex set X, to make the presentation closer to information design,
we let X be the space of beliefs over the set of states Ω.

4We impose some technical restrictions on our model. We assume Ω is Polish, that is a completely metrizable,
separable, topological space. We endow it and all Polish spaces in the paper with their Borel σ-algebra. For a Polish
space X, we let ∆(X) denote the set of all Borel probability measures on X, endowed with the weak∗ topology. Thus,
∆(X) is also a Polish space (Theorem 15.11 in Aliprantis and Border, 2006).
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and each set S ⊆∆(Ω), we denote the set of probability distributions on S with mean µ0 by ∆µ0
(S).

Below we denote by τ a distribution over posteriors, and by supp τ and | supp τ | the support and

the cardinality of the support of τ , respectively.

We are given a tuple of measurable functions (f, g1, . . . , gI , . . . , gI+E) : ∆(Ω) 7→ RN+I+E. Below,

the function f plays the role of the objective function, the tuple gI ≡ (g1, . . . , gI) denotes the func-

tions that correspond to the I inequality constraints, and the tuple gE ≡ (gI+1, . . . , gI+E) denotes

the functions that correspond to the E equality constraints, where I,E ≥ 0. If I = 0, then there

are no inequality constraints; similarly, if E = 0, then there are no equality constraints.

The program: The results of the paper provide tools to analyze the solution to the following

program, where (µ0, γ)∈RN+I+E:

V (µ0, γ) = sup
τ∈∆µ0 (∆(Ω))

Eτ [f(µ)] (CID)

s.t.

{
Eτ [gI(µ)]≥ γI
Eτ [gE(µ)] = γE

,

where the notation Eτ [gI(µ)] ≥ γI signifies that the vector Eτ [gI(µ)] ∈ RI is component-wise

greater or equal to the vector γI . Similarly, the notation Eτ [gE(µ)] = γE signifies that the vector

Eτ [gE(µ)]∈RE is component-wise equal to the vector γE.

CID generalizes the constrained information design problem in Le Treust and Tomala (2019) in

two dimensions. First, we allow for both equality and inequality constraints, whereas they consider

the case of one inequality constraint (I = 1) and no equality constraints (E = 0). Second, we define

the choice set to be any (Borel) distribution over posteriors with mean µ0, and not just distributions

with finite support. As we show in Proposition 5.1, restricting attention to distributions with finite

support is without loss of generality.

When there are no inequality or equality constraints (I =E = 0), CID coincides with the problem

in Kamenica and Gentzkow (2011). Kamenica and Gentzkow (2011) show that the value of CID

coincides with the concave hull of the function f at the prior, µ0. Because the concave hull operator

plays an important role in what follows, we define it next:

Definition 2.1 (Concave hull of h) Given a function h :RD 7→R, the concave hull of h, denoted

cav h, is the function cavh :RD 7→R defined as

(cav h) (x) = sup{y ∈R|(x, y)∈ conv (hypo h)} , (cav h)

where conv (hypo h) denotes the convex hull of the hypograph of h, that is, the convex hull of the

set {(x, y)∈RD+1 : y≤ h(x)}.
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That is, cav h is the smallest concave function that majorizes h (page 36 in Rockafellar, 1970).

Say that CID is feasible at (µ0,γ) if τ ∈∆µ0
(∆(Ω)) exist such that the constraints in CID are

satisfied. In what follows, it is useful to distinguish the set of parameters (µ0,γ) for which CID is

feasible:

Definition 2.2 (Feasibility) The set of parameters for which CID is feasible is given by

F =
{

(µ, γ̃)∈∆(Ω)×RI+E |(∃τ ∈∆µ (∆(Ω)) : Eτ [gI(µ)]≥ γ̃I , Eτ [gE(µ)] = γ̃E
}
.

Assumptions: We collect here the assumptions that we maintain throughout the analysis

and the assumptions we invoke from time to time. To state the first assumption, recall that the

effective domain of a function h on RD is the set dom h= {x∈RD : h(x)>−∞}.

Assumption 1 (Maintained assumptions on f and g ) The effective domain of (f ,g) is the

set ∆(Ω). Furthermore, f, g <+∞ for all µ∈∆(Ω).

The next assumption is a standard requirement on the objective function in the information design

literature:

Assumption f 1 The objective function f is upper-semicontinuous.

The last assumption plays a similar role to Assumption f for the constraint functions g. We invoke

it below to infer properties of the set F :

Assumption g 1 gI is component-wise upper-semicontinuous, while gE is component-wise con-

tinuous.

We note the following two implications of our assumptions. First, Assumption g implies that the

set F is closed. Second, Assumptions f and g imply that if (µ0, γ)∈F , then the supremum in CID

is attained. We record this below and prove it in Section I.1 in the supplementary material (Doval

and Skreta, 2022b):

Observation 1 (F is closed) Under Assumption g, F is closed.

Observation 2 (CID has a solution) Suppose (µ0, γ) ∈ F and Assumptions f and g hold.

Then, the value of CID, V (µ0,γ), is attained.
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3. Main results Our first main result, Theorem 3.1, connects the value of CID to the concave

hull of a modified version of the objective function f , which we introduce next.

A modified objective function: Let C = {(µ, γ̃) ∈∆(Ω)× RI+E : gI(µ) ≥ γ̃I , gE(µ) = γ̃E}.

That is, C is the subset of ∆(Ω)×RI+E which satisfies a pointwise version of the constraints in

CID. To see this, contrast the set C with F . Whereas CID is feasible at (µ, γ̃) if a distribution with

mean µ exists that satisfies the constraints at γ̃ in expectation, (µ, γ̃) ∈C if the distribution that

places probability 1 on µ satisfies the constraints at γ̃.

Given C, define the function f g :RN+I+E 7→R∪{±∞} as follows

f g(µ, γ̃) = f(µ)− δ(µ, γ̃|C), (3.1)

where δ(µ, γ̃|C) is the indicator function of C, taking value 0 if (µ, γ̃) ∈ C and +∞ otherwise

(Rockafellar, 1970).

Theorem 3.1, relates the solution to CID to the concave hull of the N + E + I-dimensional

function f g:

Theorem 3.1 For each (µ0, γ) ∈RN+I+E, the value of CID at (µ0,γ) coincides with the value of

the concave hull of f g at (µ0,γ). That is,

V (µ0, γ) = cav f g(µ0, γ). (3.2)

Theorem 3.1 characterizes in closed form the value function for CID via the concave hull of the

modified objective function, f g. Key to this result is Lemma 5.1, where we show that the (effective)

domain of cav f g is the set of parameters for which CID is feasible, F . In other words, the convex

hull of the set C is the set F . Thus, while f g is defined relative to the more stringent requirement

that the constraints are satisfied pointwise, the domain of its concave hull is the set F . Within

this domain, that is, within the constraints defined by CID, standard “information design logic”

implies that cav f g(µ0,γ) describes the largest value that Eτ [f ] can attain.

Example 3.1 (Example 1.1 continued) Figure 2 illustrates Theorem 3.1 in the context of

Example 1.1. Figure 2a shows the set C in red; the areas in blue and red depict its convex hull, F .

In the case of one inequality constraint, the set F coincides with the convex hull of the hypograph

of the function g, so that the upper boundary of the set depicted in Figure 2a is cav g, for g as in

Equation 1.2. This is intuitive: CID is feasible at (µ0,γ) if and only if cav g(µ0) satisfies the con-

straint at γ, since this is the largest value that Eτg may attain. Figure 2a also shows that whenever
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the value of the constraint, γ, is strictly positive, then CIDL is not feasible for low enough and

large enough values of the prior. The reason is that for priors µ0 ∈ [0, γ/3)∪ (1− γ/3,1], no Bayes’

plausible posterior distribution exists that assigns enough probability to the event µ∈ [1/3, 2/3].

Figure 2b depicts the function f g for Example 1.1. Computing the concave hull of f g and then

taking its section at γ = γ̃ for different values of γ̃, we obtain Figure 2c. Figure 2c depicts in

dashed red the function cav f g(·,0): When γ=0, the constraint is always satisfied, so that cav f g(·,0)

coincides with cav f . Similarly, in black we have cav f g(·,0.75). As explained above, when µ0 < 1/4

or µ0 > 3/4, CIDL is not feasible, so that cav f g(·,0.75)≡−∞. Instead, when µ0 ∈ [1/2,3/4], the

constraint does not bind, so that cav f g(·,0.75) = cav f , whereas when µ0 ∈ [0.25,0.5), the constraint

does bind and cav f g(·,0.75) is strictly below the unconstrained concave hull of f (dashed red).

1
3

2
3

1

−4

−3

−2

−1

1

µ

γ̃

Figure (a) The set C (red) and its

convex hull F (red+blue)

0.5
1

−4

−2

0.5

1

µ

γ̃

f g

Figure (b) fg on its effective

domain

1
4

1
2

2
3

3
4

0.5

1

µ

cav f g

γ = 0
γ = 0.75
γ = 0.9

Figure (c) cav fg(·, γ) for different values of γ.

Figure 2. The modified objective function fg in Example 1.1.

Bounding the number of posteriors at solutions of CID: By relating the value function

of CID to the concavification of the N+I+E-dimensional function, f g, Theorem 3.1 together with

Corollary 17.1.5 in Rockafellar (1970) imply the following property of solutions to CID, whenever

the supremum in CID is attained:5

Corollary 3.1 Suppose (µ0, γ)∈F and the supremum in CID is attained. Then, a solution τ ? to

CID exists with | supp τ ?| ≤N + I +E.

5Theorem 4.8 in Anderson and Nash (1987) provides an analogue to Corollary 3.1 under the assumption that
the objective and constraint functions are continuous. Instead, we rely on the result in Rubin and Wesler (1958) to
show that restricting the choice set in CID to finite-support distributions is without loss and then on Theorem 3.1
to derive the upper bound using the definition of the cav operator (see Proposition 5.2 in Section 5).
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Example 1.1 shows that the second bound is tight. Furthermore, we can relate the upper bound

on the number of posteriors at an optimal solution to the number of binding constraints:

Corollary 3.2 Suppose (µ0, γ)∈F , the supremum in CID is attained, and that only B < I inequal-

ity constraints bind. Then, a solution τ ? to CID exists with | supp τ ?| ≤N +B+E.

We close this part with two remarks about Theorem 3.1. First, Theorem 3.1 provides an alternative

way to see why Assumptions f and g imply that a solution to CID exists whenever (µ0, γ) ∈ F .

Under those assumptions, it follows that f g is upper-semicontinuous, by virtue of being the sum

of two upper-semicontinuous functions, f , and the negative of the indicator of the closed set, C.

It then follows that under those assumptions the value of CID is attained in the set F . Second,

whereas Theorem 3.1 is written in terms of the optimization problem CID, the proof actually shows

that the convex hull of the graph of f g coincides with the convex hull of the graph of the function

j = (f, g) over the set C. We use this observation when we show that a Lagrange multiplier exists

for CID in Theorem 3.3.

3.1. Validating the Lagrangian approach By delivering a closed form solution to the

value of CID in terms of the cav operator, Theorem 3.1 provides a transparent way to understand

why concavification subject to constraints may necessitate solutions τ whose support contains

more posteriors than the number of states. However, outside of simple examples like Example 1.1,

solving for cav f g is not necessarily tractable, even with a binary state space. There are at least

three related reasons. First, the domain of f g always has dimension larger than N and it increases

with each additional constraint. Second, solving for cav f g implies solving for a distribution over

(µ, γ̃) with mean (µ0,γ), when we are ultimately interested in the marginal of this distribution

over ∆(Ω). Third, as illustrated in Figure 2c, it is important to solve for the joint distribution

over (µ,γ̃) to capture the points at which CID is feasible. To see this, note first that the effective

domain of cav f g(·, γ) depends on γ. Moreover, as evidenced by the difference between cav f and

cav f g(·, γ), the beliefs µ used to attain the latter may also depend on the value of γ.

As we illustrate throughout the paper and is evidenced by the body of work in constrained

information design, the Lagrangian approach maybe more efficient. After all, no matter the number

of constraints, the Lagrangian objective is an N -dimensional function whose effective domain is

the set of posterior beliefs ∆(Ω). Thus, when concavifying the Lagrangian, one can rely on the

standard tools of information design (see, for instance, Observation 3 below). Thus, understanding

under what conditions a Lagrangian approach is valid is definitely of use. Our second main result,

Theorem 3.2, validates the Lagrangian approach:
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Theorem 3.2 Suppose that CID is feasible at (µ0,γ). Then, the following holds

V (µ0, γ)≤ inf
t∈RI+×R

E

[
cav

(
f +

I+E∑
k=1

tkgk

)
(µ0)−

I+E∑
k=1

tkγk

]
. (WD)

Furthermore, if (µ0, γ)∈ intF , then the following holds

V (µ0, γ) = inf
t∈RI+×R

E

[
cav

(
f +

I+E∑
k=1

tkgk

)
(µ0)−

I+E∑
k=1

tkγk

]
. (NDG)

Finally, if F 6= ∅ and Assumptions f and g hold, then NDG holds for all (µ0, γ)∈F .

Theorem 3.2 clarifies the sense in which the Lagrangian approach is valid for CID. Equation NDG

states that we can interpret the value of CID as obtaining from the following procedure: For each

candidate Lagrange multiplier t, we obtain the concave closure of the Lagrangian at the prior µ0

and then we choose the Lagrange multiplier t to minimize the Lagrangian.

Theorem 3.1 relates the value of CID to the concave hull of the modified objective function f g,

whereas the proof of Theorem 3.2 relates the concave closure of f g to the corresponding Lagrangian

of CID. Thus, in general, we only obtain an upper bound on the value of CID as in Equation WD.

Now, the proof of Theorem 3.1 implies that the effective domain of cav f g is F . Because the concave

closure and the concave hull of f g coincide in the interior of their effective domain (Theorem 7.4

in Rockafellar, 1970), it then follows that in the interior of F , the value of CID coincides with that

of the optimized Lagrangian, which leads to NDG.6

As we show in Section II of the supplementary material (Doval and Skreta, 2022b), Theorem 3.2

states in the language of concavification that there is no duality gap between CID and its dual in

the interior of F .7 Indeed, we show in Proposition II.1 that the right hand side of NDG is the value

of the dual to CID. In other words, the first part of the statement of Theorem 3.2 simply says that

weak duality holds for CID, whenever it is feasible at (µ0,γ).

However, by restating the dual in terms of the concavification of an N -dimensional function,

f +
∑I+E

k=1 tkgk, Theorem 3.2 becomes useful in applications. Indeed, the following observation is

standard in information design:

6Theorem 3.2 provides the analogue to Theorem 3.3, item 2 in Le Treust and Tomala (2019), while clarifying the
assumptions for their result to hold. In particular, in their proof, the authors equate the concave hull of fg with its
concave closure. Without further assumptions on fg or the constraint set C, Theorem 7.4 in Rockafellar (1970) implies
that these functions coincide everywhere except on the relative boundary of F (see Example 8.1). This motivates the
restriction to the interior of F in the statement of Theorem 3.2. Furthermore, under Assumptions f and g, cav fg is
upper-semicontinuous and hence, coincides with the concave closure of fg everywhere.

7CID is an instance of the dual of a semi-infinite linear program (Anderson and Nash, 1987). Assuming that the
objective and constraint functions are continuous, Theorem 4.4 in Anderson and Nash (1987) provides conditions
under which the value of the dual coincides with the value of the primal. For instance, when (µ0, γ)∈ intF , then the
conditions of item (b) of Theorem 4.4 hold, since by Assumption 1, V (µ0, γ)<+∞ for (µ0, γ)∈F .
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Observation 3 Suppose τ attains cav(f +
∑I+E

k=1 tkgk)(µ0). Then,

supp τ ⊆

{
µ∈∆(Ω) : cav(f +

I+E∑
k=1

tkgk)(µ) = (f +
I+E∑
k=1

tkgk)(µ)

}
, (3.3)

that is τ only induces posteriors for which there is no value to persuasion.

We illustrate the usefulness of Theorem 3.2 together with Observation 3 in Example 3.2:8

Example 3.2 (Newsroom) A news platform designs how information is released to consumers

and wishes to be perceived as unbiased. We represent this as follows. There are two equally likely

states of the world, Ω = {ωL, ωR}. The platform’s payoff is given by

f(µ) =

∣∣∣∣12 −µ
∣∣∣∣+ 0.4,

where µ∈ [0,1] is the likelihood a consumer who gets their news on the platform assigns to the true

state being ω = ωR after getting the news from the platform. Consistent with its desire to provide

unbiased content, the platform’s payoffs are maximized when consumers learn the true state.

In order to operate, the platform must be able to collect ad revenue and for this it requires a

broad audience. A left (right) leaning consumer enjoys reading the news on the platform whenever

the platform confirms the consumer’s views of the world, which we model by the following payoff

functions:

gL(µ) =

 0.4 if µ≤ 0.6
1.3− 1.5µ if 0.6<µ≤ 0.8
0.5− 0.5µ if 0.8<µ≤ 1

, gR(µ) =

 0.4 if µ≥ 0.4
1.5µ− 0.2 if 0.2≤ µ< 0.4
0.5µ if 0≤ µ< 0.2

.

A left (right) leaning reader gets their news from the platform if her expected payoff is larger than

γL (γR), where γ· ∈ (0.2,0.4) and 8− 5γR − 12.5γL ≤ 3. Figure 3 depicts the platform’s and the

readers’ payoff functions.

Without readers, the platform gets no revenues so the optimal news provision policy solves:

max
τ∈∆µ0∆(Ω)

Eτ [f ] (CIDN)

s.t. Eτ [gi]≥ γi, i∈ {L,R}.

That is, the news platform has lexicographic preferences over ad revenue and its desire to appear

neutral. The platform first needs to guarantee ad revenue and hence, ensure readership. Having

guaranteed readership, the platform then prefers to provide news with as little slant as possible.

8For an example in the literature that also relies on Observation 3 to arrive at an optimal solution through the
concavification of the Lagrangian, see Rosar (2017).
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Figure 3. Objective function (left) and constraints (right) in Example 3.2

Theorem 3.2 implies that in order to solve the platform’s problem we can consider the following

Lagrangian objective function:

(f + tg) (µ) =


0.9−µ+ tL0.4 + tR0.5µ if µ∈ [0,0.2)
0.9−µ+ tL0.4 + tR(1.5µ− 0.2) if µ∈ [0.2,0.4)
|µ− 0.5|+ 0.4(tL + tR) if µ∈ [0.4,0.6)
µ− 0.1 + tL(1.3− 1.5µ) + tR0.4 if µ∈ [0.6,0.8)
µ− 0.1 + tL(0.5− 0.5µ) + tR0.4 otherwise

. (3.4)

We now apply Observation 3 to Figure 4, which depicts the Lagrangian and its concavification at

the prior, to derive conclusions about the posterior distributions that achieve that concavification

and whether they can satisfy the constraints. For instance, in the case of Figure 4a it is enough

to consider posterior distributions that place probability only on {0,1}, whereas for Figure 4c it

is enough to consider distributions whose support lies in {0.4,0.6}. This automatically rules out

that a solution exists where the multipliers, tL, tR, are as in Figure 4a, since this would lead to an

infeasible solution. Instead, inspection of Figure 4b shows that optimal posterior distributions would

have support in a subset of {0,0.4,0.6,1}. Indeed, the optimal solution has exactly this support:9 the

platform balances its desire to appear neutral with enough political content to attract its audience.

Similar to Example 1.1, there is another posterior distribution which attains the concavification of

the Lagrangian and has binary support; namely, fully revealing the state. However, this is clearly

not feasible.

Existence of a Lagrange multiplier: The analysis so far leaves open the question of whether

a Lagrange multiplier exists such that the value of CID corresponds to the concavification of the

Lagrangian at the prior. Theorem 3.3 below confirms this is the case under the following Slater’s

9The optimal distribution has support (0,0.4,0.6,1) with weights (2/3 + 5/6γR− 5/3γL,1− 5/2γR, 5/3γR + 25/6γL−
5/3,1− 5/2γL).
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Figure 4. Lagrangian approach in Example 3.2; t∗ denotes the optimal multiplier. The dashed red line is the con-

cavification

condition. To introduce this condition, let J denote the section at the prior µ0 of the convex hull

of the graph of the function j=(f ,g), that is, J = {y ∈RI+E+1|(µ0, y) ∈ conv (graph j)}. The set J

describes the values of the objective and the constraints that are jointly feasible under the Bayes’

plausibility constraint. That is, y ∈ J if and only if τ ∈∆µ0
∆(Ω) exists such that y = Eτ [j] (cf.,

Boleslavsky and Kim, 2018; Doval and Smolin, 2021).

Assumption S 1 CID satisfies Slater’s condition at (µ0, γ) ∈ F if a point in the interior of J ,

(yf , y
?
I+E), exists such that y?I ≥ γI and y?E = γE.

Theorem 3.3 (Existence of a Lagrange multiplier) Suppose CID satisfies Assumption S at

(µ0, γ). Then, a Lagrange multiplier, t∗ ∈RI+E, exists such that t∗I ≥ 0 and

V (µ0, γ) = cav

(
f +

I+E∑
k=1

t∗kgk

)
(µ0)−

I+E∑
k=1

t∗kγk. (3.5)
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The proof is in Section 5, where we show that CID can be cast as a finite-dimensional program

with affine objective and constraints on the convex set J , denoted by CIDJ . Corollary 28.2.2 in

Rockafellar (1970) implies that under Assumption S a Lagrange multiplier exists for CIDJ . We use

this result to show that Equation 3.5 holds.

3.2. Refined upper bounds We now provide results which allow us to refine the upper

bound in Corollary 3.1, whenever a solution to CID exists.

3.2.1. Conflict-agreement Examples 1.1 and 3.2 share the following feature: The objective

function f and the constraint functions g do not agree on the ranking of the distributions over

posteriors. For instance, in Example 1.1, (partial) information revelation is optimal under the

objective f , but it is not for the constraint function g. Similarly, in Example 3.2, the news platform

prefers full information revelation, whereas the audience prefers partial information revelation.

Proposition 3.1 below shows that in the absence of such disagreement one can refine the upper

bound on the cardinality of the support of the solutions to CID.

To introduce Proposition 3.1, we first introduce a notion of agreement between the objective

function f and the constraint functions, g:

Definition 3.1 (Agreement) The tuple (f, g) is in agreement if the following holds. For any two

posterior distributions τ, τ ′ ∈∆µ0
(∆(Ω)), if f prefers τ to τ ′, that is,

Eτ [f ]≥Eτ ′ [f ] ,

then

1. gI prefers τ to τ ′, that is, for all i∈ {1, . . . , I}, Eτ [gi]≥Eτ ′ [gi], and

2. gE is indifferent between τ and τ ′, that is, for all i∈ {I + 1, . . . , I +E}, Eτ [gi] =Eτ ′ [gi].

To understand why Definition 3.1 distinguishes between inequality and equality constraints, recall

that one can always express CID as an optimization problem subject to only inequality constraints.

Indeed, one may replace the equality constraints, Eτ [gE] = γE, by two inequality constraints,

Eτ [gE] ≥ γE and Eτ [−gE] ≥ −γE. Under this alternative representation of CID, the requirement

that equality constraints are indifferent between τ and τ ′ in item 2 in Definition 3.1 follows from

applying item 1 in Definition 3.1 to gE and −gE.

A tuple (f ,g) satisfies Definition 3.1 if, for instance, (i) f and gI are concave, while gE is affine,

or (ii) f and gE are convex, while gE is affine.
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Proposition 3.1 (Agreement leads to posterior distributions with at most N beliefs)

Suppose (i) the tuple (f ,g) is in agreement, (ii) Assumption f holds, and (iii) (µ0, γ) ∈ F . Then,

a solution τ ? to CID exists and satisfies that | supp τ ?| ≤N .

The proof of Proposition 3.1 shows that when (f ,g) are in agreement, then the distribution over

posteriors that attains cav f(µ0) (i.e., the unconstrained solution) is feasible for CID. Thus, Def-

inition 3.1 provides an economically principled way of understanding in which environments the

constraints do not bind.

An immediate corollary of Proposition 3.1 is the following. Suppose that we expand the opti-

mization problem in CID by adding (g′, γ′) such that (i) (f, g′) are in agreement and (ii) a solution

exists to the new optimization problem. Then, a solution τ exists with |supp τ | ≤N + I +E. That

is, the support of the optimal posterior distribution does not increase when we add constraints

that are in agreement with the objective and do not make the program infeasible.10

3.2.2. Generalized Information design While Proposition 3.1 provides a form of agree-

ment under which the support of the solutions to CID is at most the cardinality of the set of states,

as we illustrate next, not every form of disagreement leads to adding beliefs in the support of a

solution to CID:

Example 3.3 (Prosecutor and judge with an outside option) Consider the following ver-

sion of the prosecutor example in Kamenica and Gentzkow (2011). Everything is as in Kamenica

and Gentzkow (2011) except that the judge has access to outside information. However, the judge

has limited time and can either listen to the prosecution or to their own information source. We

model this as the prosecutor facing a constraint: the judge has to receive at least the payoff they

can achieve by using their own information source.

Formally, let Ω =A= {0,1} denote the set of states and judge’s actions. Payoffs are u(a,ω) =

1[a= ω] and v(a,ω) = 1[a= 1] for the judge and the prosecutor, respectively. Let µ0 ∈ [0,1] denote

the prior probability that ω= 1. Assume that µ0 < 1/2. The judge has access to another experiment,

τJ ∈ ∆µ0
(∆(Ω)). Let a∗(µ) denote the judge’s optimal action choice when the posterior belief is

µ, breaking ties if necessarily in favor of the prosecutor. Finally, let v̂(µ) =
∑

ω∈Ω µ(ω)v(a∗(µ), ω)

10To see this, let τ? denote the solution to CID and τ?? denote the solution to the program with (f, g, g′) at
(µ0,γ,γ′), which exists by assumption. This means that τ?? is feasible for CID. Thus, Eτ?f ≥ Eτ??f . If the latter
inequality is strict, Definition 3.1 implies that τ? is feasible for (f, g, g′) at (µ0,γ,γ′).
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and û(µ) = Eµ [u(a∗(µ), ·)] denote the prosecutor and judge’s indirect utility functions. Then, the

prosecutor’s optimal payoff follows from solving the following problem:

max
τ∈∆µ0∆(Ω)

Eτ [v̂(µ)] (CIDKG)

s.t. Eτ [û(µ)]≥EτJ [û(µ)] .

Since the prosecutor can design any experiment, the prosecutor can always replicate the judge’s

information source. Thus, without loss of generality, the judge uses the prosecutor’s experiment,

while the prosecutor offers the judge an experiment that is at least as valuable to the judge as their

own information source.

Appealing to Theorem 3.2, we setup the Lagrangian objective v̂(µ) + tû(µ), which we depict in

Figure 5. Relying once again on Observation 3, it is possible to show that a unique Lagrange multi-
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Figure (a) Objective and constraint
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Figure (d) t= 2

Figure 5. Lagrangian in Example 3.3; the optimal multiplier is t∗ = 1.

plier t∗ exists such that the solution may involve more than two posterior beliefs: This corresponds
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to t∗ = 1 and is depicted in Figure 5c. In Figure 5c, infinitely many beliefs are candidates for the

support of an optimal solution, namely, {0} ∪ [1/2,1]. Note, however, that v̂ and û are linear on

[1/2,1] (Figure 5a), so that there is no loss of optimality or feasibility in inducing at most one

posterior belief in [1/2,1], which will be chosen to satisfy the judge’s participation constraint. It

follows that a solution to CIDKG exists with at most binary support.

Definition 3.2 distills the mathematical property that lies behind Example 3.3:

Definition 3.2 (Generalized information design environment) A K-generalized informa-

tion design environment is a tuple (f, gI , gE) such that a partition (∆k)
K
k=1 of ∆(Ω) exists satisfying

the following properties:

1. For each k ∈ {1, . . . ,K}, ∆k is convex,

2. For each k ∈ {1, . . . ,K}, (f, gI) is concave on ∆k,

3. For each k ∈ {1, . . . ,K}, gE is affine on ∆k.

Example 3.3 is an instance of a 2-generalized information design environment for the partition

∆1 = [0,1/2) and ∆2 = [1/2,1]. Indeed, both the objective function, v̂, and the constraint function,

û, are linear on each element of the partition.11

To gain some intuition behind Definition 3.2, consider a standard Bayesian persuasion problem,

where a receiver possesses K actions, {a1, . . . , aK}. Then, ∆k represents the set of beliefs for which

ak is optimal for the receiver, so that ∆k is a convex set and ∪Kk=1∆k = ∆(Ω). While (∆k)
K

k=1

is not necessarily a partition of ∆(Ω) (e.g., the receiver may have multiple best responses at a

given belief), in applications we usually work with a selection out of the receiver’s best response

correspondence, a∗(µ), which we can use to redefine the collection (∆k)
K
k=1 to be a partition.

Suppose now that the tuple (f, g) are indirect utilities. That is, there exist (f ′, g′) :A×Ω 7→R,

such that

f(µ) =
∑
ω∈Ω

µ(ω)f ′(a∗(µ), ω), g(µ) =
∑
ω∈Ω

µ(ω)g′(a∗(µ), ω).

Then, it is immediate to see that on ∆k – that is, holding the receiver’s best response fixed,– (f, g)

are linear functions of µ. The term generalized information design references that we allow the

objective, f , and the inequality constraints, gI , to be concave, rather than just linear.

11Example 1.1 is a 4-generalized information design environment, where ∆1 = [0, 1/3),∆2 = [1/3, 2/3),∆3 =
{2/3},∆4 = (2/3,1].
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In standard Bayesian persuasion, one can usually appeal to the revelation principle (Myerson,

1982) to bound the number of posteriors by the cardinality of the action set. Proposition 3.2 shows

that this insight extends to generalized information design environments, providing us with an

additional bound on cardinality of the support of the solutions to CID (see Corollary 3.3).

Proposition 3.2 (Generalized information design) Assume (f, gI , gE) is a K−generalized

information design environment. If a solution to CID exists, then a solution τ ? to CID exists with

| supp τ ?| ≤K.

Together with Corollary 3.1, Proposition 3.2 implies the following:

Corollary 3.3 (Support upper-bound in Generalized Information Design problems)

In a K−generalized information design environment, if a solution to CID exists, then a solution

τ ? to CID exists with | supp τ ?| ≤min{K,N + I +E}.

Example 8.2 in Section 8 illustrates that in K-generalized information design environments with

N <K, optimal policies can induce more posteriors than the number of states, but less than the

number of states plus (binding) constraints (that is, N <K <N + I +E).

4. Applications Section 4 illustrates how the tools in Section 3 can be brought to bear in

problems that seemingly do not fit the statement of CID, but by reformulating them as constrained

information design problems, their analysis can be simplified. Section 4.1 studies a simple instance

of mechanism design with limited commitment as in Bester and Strausz (2007). We rely on the

revelation principle in Doval and Skreta (2022a) to formulate a program that combines elements

of information design and mechanism design and characterizes the principal’s optimal mechanism.

Armed with Theorem 3.1 and its corollaries, we bound the the cardinality of the support of the

principal’s optimal mechanism. Instead, Section 4.2 studies Bayesian persuasion of a privately

informed receiver. While the receiver’s incentive constraints do not a priori fit those in CID, Propo-

sition 4.4 illustrates how the results so far can be used to bound the cardinality of the support of

each experiment in the menu offered by the sender.

4.1. Mechanism design with limited commitment Section 4.1 showcases how Theo-

rem 3.1 can be leveraged to inform the characterization of optimal mechanisms in settings in which

the principal has limited commitment. To keep the presentation simple and to facilitate the com-

parison with other work in the literature, we present the results in the context of a reduced-form

representation of limited commitment based on the model in Bester and Strausz (2007).
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Consider the problem of a principal who interacts with a privately informed agent, who knows

the state of the world. Let µ0 ∈∆(Ω) denote the principal’s prior belief about the state of the world.

The interaction lasts for two periods, t ∈ {1,2}. In each period t, as a result of the interaction,

an allocation at ∈ At is determined, where At is the set of allocations in period t. There is a

correspondence A :A1 ⇒A2 that describes the set of feasible period 2 allocations as a function of

the allocation in period 1. Below, the allocation a2 ∈A2 captures in reduced form the principal’s

limited commitment. Let v(a1, a2, ω) and u(a1, a2, ω) denote the principal and the agent’s payoff,

respectively, when the allocation is (a1, a2) and the state of the world is ω. We assume an allocation

(a∗1, a
∗
2) exists such that u(a∗1, a

∗
2, ω) = 0 for all ω ∈Ω. This allocation plays the role of the outside

option in what follows.12

Mechanisms A mechanism M consists of a set of input messages M , a set of output messages

S, and a device ϕ :M 7→∆(S×A1), which associates to each input message m∈M a distribution

over output messages and allocations.

Timing The game proceeds as follows: In period 1, after the agent observes the state ω ∈

Ω, the principal offers the agent a mechanism, M. After observing the mechanism, the agent

decides whether to accept or reject. If she rejects the mechanism, an allocation (a∗1, a
∗
2) ∈A1×A2

is implemented. If instead she accepts the mechanism, she privately submits an input message to

the mechanism. This message determines the distribution ϕ(·|m) from which the output message

and the allocation are drawn. In period 2, after observing the output message and the allocation,

the principal chooses an allocation a2 ∈A2.

Our objective is to characterize the optimal mechanism for the principal under the solution

concept of Perfect Bayesian equilibrium. In particular, the principal’s choice of the allocation in

period 2 must be sequentially rational. Indeed, for each a1 ∈A1, denote by

a2(a1, µ)∈BR2(a1, µ)≡ arg max
a2∈A(a1)

∑
ω∈Ω

µ(ω)v(a1, a2, ω), (4.1)

a solution to the principal’s problem in period 2 when his belief about the state of the world is

µ. The assumptions in footnote 12 imply the above problem is well-defined. In a slight abuse of

notation, let BR2 denote the set of all selections from the best response correspondence BR2(·).

12Throughout, we make the following technical assumptions. First, the set of allocations A1,A2 are compact Polish
spaces. Second, endowing product sets with their product σ-algebra, we assume that the principal and the agent’s
utility functions are bounded measurable functions. We assume that the principal’s utility is continuous in a2 for
each (a1, ω). Third, the correspondence A is measurable and for each a1 ∈A1, A(a1) is compact. Finally, for any two
measurable spaces X and Y , a mapping ζ :X 7→∆(Y ) is a transition probability from X to Y if, for any measurable
C ⊆ Y , ζ(C|x)≡ ζ(x)(C) is a measurable real valued function of x∈X.
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Remark 1 (Mechanism design with downstream interactions) Whereas below we empha-

size the limited commitment interpretation, by replacing the payoff function v(·) with another func-

tion w(·) in Equation 4.1, this model also captures in reduced form settings where an upstream

mechanism designer chooses a mechanism anticipating that a downstream third party observes the

mechanism’s allocation and takes an action a2 ∈A2 in response. The downstream third party may

represent another principal as in Calzolari and Pavan (2006b); Pavan and Calzolari (2009), or an

aftermarket as in Calzolari and Pavan (2006a); Dworczak (2020).

Revelation principle Theorem 1 in Doval and Skreta (2022a) implies the principal-optimal

Perfect Bayesian equilibrium can be characterized as the solution to a constrained optimization

program (see P below). Indeed, Theorem 1 in Doval and Skreta (2022a) has the following three

implications. First it is without loss of generality to restrict attention to direct Blackwell mech-

anisms, where the set of input and output messages are the set of states and posterior beliefs,

respectively, i.e., M = Ω and S = ∆(Ω). Furthermore, the device ϕ can be decomposed into two

transition probabilities, a disclosure rule, β : Ω 7→∆∆(Ω), and an allocation rule, α : ∆(Ω) 7→∆(A1).

Second, it is without loss of generality to restrict attention to equilibrium strategies such that the

agent finds it is optimal to participate and truthfully report the state of the world. Finally, when

the mechanism outputs a belief µ, this is the belief that would result from Bayes’ rule when the

principal observes output message µ, and the agent participates and truthfully reports her type.

When for each ω, the distribution β(·|ω) has finite support, this is equivalent to requiring that

µ(ω) =
µ0(ω)β(µ|ω)∑

ω′∈Ω µ0(ω′)β(µ|ω′)
. (4.2)

We can write the principal’s problem as follows:13

max
β:Θ 7→∆∆(Ω),α:∆(Ω)7→∆(A1),a2∈BR2

∑
ω∈Ω

µ0(ω)Eβ(·|ω)

[
Eα(·|µ) [v(a1, a2(a1, µ), ω)]

]
(P)

s.t.

{
(∀ω ∈Ω) Eβ(·|ω)

[
Eα(·|µ) [u(a1, a2(a1, µ), ω)]

]
≥ 0

(∀ω ∈Ω)(∀ω′ 6= ω) Eβ(·|ω)−β(·|ω′)
[
Eα(·|µ) [u(a1, a2(a1, µ), ω)]

]
≥ 0

,

where the two sets of constraints are the agent’s participation and truthtelling constraints. Fur-

thermore, the transition probability β must satisfy that for all measurable subsets Ũ of ∆(Ω) and

all subsets Ω̃ of Ω, ∑
ω′∈Ω̃

β(Ũ |ω′)µ0(ω′) =
∑
ω∈Ω

∫
µ(Ω̃)β(dµ|ω)µ0(ω).

13Bester and Strausz (2007) analyze a version of the problem P with the following differences. First, instead of
letting the set of output messages be the set of beliefs, they leave the set S unspecified. Therefore, they only analyze
the principal’s optimal mechanism within those that use signals in S. Second, because the set S is unspecified, their
program has an additional constraint: the choice of a2 has to be optimal given the realization of s and the period-1
allocation. Finally, they do not allow for randomized allocations. Doval and Skreta (2022a) show that this may be
with loss of generality (Strausz, 2003 also shows the importance of allowing for randomization for the standard version
of the revelation principle to hold).
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Limited commitment as constrained information design. To show how Theorem 3.1

can inform the solution to P we first show how to write the principal’s optimization problem as one

in which he chooses a Bayes’ plausible distribution over posteriors and an allocation rule α : ∆(Ω) 7→
∆(A1). For any measurable subset Ũ of ∆(Ω), and for any subset Ω̃ of Ω, let P ∈∆(Ω×∆(Ω))

denote the following measure:

P(Ω̃× Ũ) =
∑
ω∈Ω̃

β(Ũ |ω)µ0(ω).

The disintegration theorem (Proposition 3.6 in Crauel, 2002) implies a distribution τ ∈ ∆∆(Ω)

exists such that

P(Ω̃× Ũ) =

∫
Ω̃

∑
ω∈Ω̃

µ(ω)

 τ(dµ).

It follows that for all ω ∈Ω and all measurable subsets Ũ of ∆(Ω), we have

β(Ũ |ω)µ0(ω) =

∫
Ω̃

µ(ω)τ(dµ),

and we can write the agent’s payoff when the state is ω and she reports ω′ as follows:

Eβ(·|ω′)
[
Eα(·|µ) [u(a1, a2(a1, µ), ω)]

]
=Eτ

[
Eα(·|µ)

[
µ(ω′)

µ0(ω′)
u(a1, a2(a1, µ), ω)

]]
.

These steps allow us to express the principal’s objective and the agent’s incentive and participation

constraints as expectations under the same measure, τ ∈ ∆µ0
(∆(Ω)). Indeed, we can write the

principal’s problem similar to the problem in CID:

max
τ∈∆µ0∆(Ω),α:∆(Ω) 7→∆(A1),a2∈BR2

Eτ

[
Eα(·|µ)

[∑
ω∈Ω

µ(ω)v(a1, a2(a1, µ), ω)

]]
(CIDLC)

s.t.

 (∀ω ∈Ω) Eτ(·)

[
Eα(·|µ)

[
µ(ω)

µ0(ω)
u(a1, a2(a1, µ), ω)

]]
≥ 0

(∀ω ∈Ω)(∀ω′ 6= ω) Eτ(·)

[
Eα(·|µ)

[(
µ(ω)

µ0(ω)
− µ(ω′)

µ0(ω′)

)
u(a1, a2(a1, µ), ω)

]]
≥ 0

.

The resulting program CIDLC allows us to highlight the connection between mechanism design

with limited commitment and the literature on information design. After all, the designer can be

thought of as a sender who designs an information structure for a receiver, who happens to be his

future self. However, there are differences. In our setting, the principal (the sender in Kamenica and

Gentzkow, 2011) also chooses a distribution of period-1 allocations for each posterior he induces.

In addition, the principal cannot implement any Bayes’ plausible distribution over posteriors, but

only those that satisfy the incentive compatibility and participation constraints of the agent, which,

in turn, depend on the resulting period-2 allocation.

In what follows, we focus on the case in which the agent’s preferences satisfy a version of increas-

ing differences, which takes into account that the agent faces lotteries over allocations:
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Definition 4.1 (Bester and Strausz, 2007; Celik, 2015; Kartik et al., 2017) The family

{u(·, ω) : ω ∈ Ω} satisfies monotonic expectational differences if for any two distributions P,Q ∈

∆(A1×A2),
∫
u(·, ωi)d(P −Q) is monotone in i.

Kartik et al. (2017) show that u satisfies monotonic expectational differences if, and only if, it takes

the form, u(a1, a2, ωi) = b(ωi)h1(a1, a2) +h2(a1, a2) + c(ωi), where h1, h2 are finitely integrable and

b is monotonic. Without loss of generality, assume that b is weakly increasing, so that ω1 is the

agent’s “lowest type.”14

Like increasing differences in mechanism design with commitment, monotonic expectational dif-

ferences imply that the solutions to P coincide with the solutions to a much simpler program,

which imposes only a subset of the incentive compatibility constraints:

Proposition 4.1 If {u(·, ω) : ω ∈Ω} satisfies monotonic expectational differences, then to charac-

terize the solution to P, it suffices to guarantee that

1. The agent’s participation constraint holds when the state is ω1, and

2. Adjacent incentive compatibility constraints are satisfied.

See Section 6 for a proof. We then obtain the following corollary:

Corollary 4.1 Any solution to P utilizes at most 3N − 1 posteriors.

Remark 2 (Connection to the literature) Proposition 4.1 has antecedents in the literature.

Assuming that the agent’s utility function has the form characterized by Kartik et al. (2017), Bester

and Strausz (2007) show that adjacent incentive constraints imply global incentive compatibility

constraints. However, they do not show that the lowest type’s participation constraint implies the

other participation constraints, which requires an assumption like the one we make in footnote 14.

Instead, Celik (2015) assumes the condition in Definition 4.1 holds and states without proof that

it implies that adjacent incentive compatibility constraints imply global incentive compatibility con-

straints. Besides providing a complete proof of the result, Proposition 4.1 closes the link between

the two aforementioned papers via the result in Kartik et al. (2017) which shows that the only

utility functions that satisfy the condition in Celik (2015) are those assumed by Bester and Strausz

(2007).

14We also assume that h1(a∗1, a
∗
2) = min(a1,a2):a2∈A(a1) h1(a1, a2). This allows us to conclude that whenever the

lowest type, ω1 participates of the mechanism, then all types participate of the mechanism.



Author: Article Short Title
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 25

Transferable utility: Transferable utility is a common assumption in mechanism design. In

what follows, we show how this assumption further simplifies the characterization of an optimal

mechanism by reducing in some instances the number of posteriors that the mechanism employs.

Therefore, we make the following assumptions in the remainder of this section. First, the set of

period 1 allocations is given by A1 =A′1×R+, where the second coordinate denotes a payment from

the agent to the principal. We denote an element of A1 by a1 = (a′1, x). Second, we assume that

A((a′1, x)) =A(a′1). Finally, we assume that the agent and the principal’s payoffs can be written as

follows:

v(a1, a2, ω) = ṽ(a′1, a2, ω) +x, u(a1, a2, ω) = ũ(a′1, a2, ω)−x.

Transferable utility implies that focusing on mechanisms that do not randomize on transfers is

without loss of generality. Hereafter, we replace x with its expectation under the mechanism when

the posterior is µ, x(µ), and we let α̃ : ∆(Ω) 7→∆(A′1) denote the marginal of α over A′1.

The following result follows from Proposition 4.1:

Corollary 4.2 Suppose that the family {u(·, ω) : ω ∈ Ω} satisfies monotonic expectational differ-

ences and utility is transferable. Then, the participation constraint is binding for ω1.

Under the assumptions of monotonic expectational differences and transferable utility, we could

further simplify P by showing that downward-looking incentive constraints always bind at the

optimum. This then justifies the study of the so-called relaxed program:

max
τ∈∆µ0

∆(Ω),α̃:∆(Ω)7→∆(A′1),x:∆(Ω)7→R,a2(·)∈BR2(·)
Eτ

[
Eα̃(·|µ)

[∑
ω∈Ω

µ(ω)ṽ(a′1, a2(a′1, µ), ω) +x(µ)

]]
(R)

s.t.

 Eτ
[
Eα(·|µ)

[
µ(ω1)

µ0(ω1)
(ũ(a′1, a2(a′1, µ), ω)−x(µ))

]]
= 0

(∀i∈ {2, . . . ,N}) Eτ
[
Eα̃(·|µ)

[(
µ(ωi)

µ0(ωi)
− µ(ωi−1)

µ0(ωi−1)

)
(ũ(a′1, a2(a′1, µ), ωi)−x(µ))

]]
= 0

,

which is obtained by dropping the monotonicity constraints:15

Eτ
[
Eα(·|µ)

[(
µ(ωi)

µ0(ωi)
− µ(ωi−1)

µ0(ωi−1)

)
(ũ(a′1, a2(a′1, µ), ωi)− ũ(a′1, a2(a′1, µ), ωi−1))

]]
≥ 0, (M)

for each i ∈ {2, . . . ,N}. We can use the binding constraints to substitute the transfers out of the

principal’s program and obtain the following:

Proposition 4.2 The solution to the relaxed program uses at most N posteriors.

15The constraints in Equation M are obtained by combining the restriction that ωi does not want to report ωi−1

and ωi−1 does not want to report ωi. Under Definition 4.1, the binding downward-looking incentive constraints
together with the monotonicity constraints imply the local constraints in Proposition 4.1.
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The proof of Proposition 4.2 is in Section 6. It follows from two observations. First, once we

substitute the transfers out of the principal’s payoff, we are left with an expression that only

depends on the distribution over posteriors induced by the mechanism and the portion of the

allocation rule that corresponds to A′1. Second, since we are ignoring the monotonicity constraints,

one can solve for the optimal α by pointwise maximization since direct Blackwell mechanisms

separate the design of the mechanism’s information structure (represented by τ) from the design

of the allocation rule (represented by α). We are then left with a function that depends only on

the distribution over posterior beliefs, that is, a standard Bayesian persuasion problem. The proof

of Proposition 4.2 also suggests how the principal in period 1 chooses a2 when the principal is

indifferent in period 2: ties are broken in favor of maximizing the virtual surplus.

Remark 3 (Relaxed program and limited commitment) Proposition 6.1 in Section 6 pro-

vides a necessary and sufficient condition under which the solution to the relaxed program can

be implemented whenever it satisfies the monotonicity constraints. Whereas in mechanism design

with commitment, transfers exist that implement the solution to the relaxed program as long as it

satisfies the monotonicity constraints, M, this is not necessarily the case under limited commit-

ment, as we illustrate in Example I.1 in the supplementary material.16 To see this, note that in the

relaxed program the binding downward-looking incentive constraints together with ω1’s participation

constraint impose N restrictions on the transfers {x(µ) : µ ∈∆(Ω)}. However, the solution to the

relaxed program might use less than N posteriors. Therefore, finding transfers x(µ) that satisfy all

constraints may not possible.17 Alternatively, not all downward-looking constraints may bind in the

optimal mechanism.18

In many instances, however, the solution to R will fail to satisfy the monotonicity constraints,

M. As we show next, it is enough to add as many posteriors as binding monotonicity constraints

at the optimum:

Proposition 4.3 Consider the program obtained by adding the monotonicity constraints M to the

relaxed program R. The solution to the new program uses at most N +B posteriors, where B is

the number of binding constraints at the optimum.

Proposition 4.3 follows immediately from Corollary 3.1 and Corollary 3.2.

16Example I.1 provides a counterexample to the claim in Bester and Strausz (2007) that whenever it satisfied the
monotonicity constraints, the solution to the relaxed program can be implemented as a solution to P.

17This is never an issue in mechanism design with commitment: Without loss of generality, we can always have
one transfer for each type.

18Fortunately, the above is not an issue when there are two types or a continuum of types. In both cases, it is
possible to show that downward looking constraints bind (see Doval and Skreta, 2022a).



Author: Article Short Title
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 27

4.2. Persuasion of a privately informed receiver Consider an information designer who

controls the release of information about a state of the world ω ∈Ω and faces a privately informed

agent. Let Θ denote a finite set of agent types and let qθ denote the probability that the agent is

of type θ. Let M = |Θ|. As in Section 4.1, let µ0 denote the prior belief over Ω. We assume that

the state of the world ω and the agent’s type θ are independently distributed.

While the designer controls the release of information about the state of the world, the agent

is the one who ultimately takes actions. That is, after observing the information released by the

designer, the agent selects an action a from a compact set A. Let u(a, θ,ω) and v(a, θ,ω) denote

the agent and the designer’s payoffs, respectively, when the agent takes action a, the agent’s type

is θ, and the state of the world is ω. We assume that both functions are continuous in a for each

(θ,ω)∈Θ×Ω.

For each θ ∈Θ, let

a∗(µ, θ)∈ arg max
a∈A

∑
ω∈Ω

µ(ω)u(a, θ,ω),

denote the agent’s optimal action choice when her type is θ and her belief about ω is given by µ.

Let

U(µ, θ) =
∑
ω∈Ω

µ(ω)u(a∗(µ, θ), θ,ω),

denote the agent’s optimal payoff when her type is θ and her belief about ω is given by µ. Whenever

necessary, we assume that the agent breaks ties in favor of the designer.

The information designer designs a menu of experiments τ : Θ→∆µ0
∆(Ω) to solve:19

max
τ :Θ→∆µ0∆(Ω)

∑
θ∈Θ

qθ
∑

µ∈∆(Ω)

τ(µ, θ)
∑
ω∈Ω

µ(ω)v(a∗(µ, θ), θ,ω) (4.3)

s.t. (∀θ ∈Θ)(∀θ′ 6= θ)Eτ(θ,·)[U(µ, θ)]≥Eτ(θ′,·)[U(µ, θ)].

That is, the designer chooses an experiment to maximize his payoff subject to two constraints. First,

for each type θ ∈ Θ, the experiment must induce a Bayes’ plausible distribution over posteriors.

Second, each type θ ∈Θ must prefer their experiment over the one offered to types θ′ other than

θ.

Proposition 4.4 illustrates how Theorem 3.1 can be used to simplify the solution to the problem

in Equation 4.3:

19Lemma 7.1 in Section 7 shows that it is without loss of generality to focus on experiments where the set of
signals is the space of beliefs over Ω.
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Proposition 4.4 The designer’s optimal payoff can be found from the solution to

max
{uθ}θ∈Θ

max
τ :Θ→∆µ0∆(Ω)

∑
θ∈Θ

qθ
∑

µ∈∆(Ω)

τ(µ, θ)
∑
ω∈Ω

µ(ω)v(a∗(µ, θ), θ,ω) (CIDIR)

s.t.

{
(∀θ ∈Θ) Eτ(θ,·) [U(·, θ)]≥ uθ
(∀θ ∈Θ)(∀θ′ 6= θ) uθ′ ≥Eτ(θ,·) [U(µ, θ′)]

.

Then, for each θ, the experiment, τ(θ, ·), induces at most N +M posteriors.

The result in Proposition 4.4 affords two simplifications for the designer’s problem. First, while

the incentive compatibility constraints in Equation 4.3 impose conditions across the experiments

for different types, the optimization problem in CIDIR decouples the problem of designing the

experiment for θ from the problem of designing the experiment for θ′. Second, Proposition 4.4

states that each experiment uses at most N +M posteriors. This second simplification is useful

when the set of actions available to the agent is rich. Consider, for instance, the case in which

A=R and the agent’s payoff is u(a, θ,ω) =−(a− (ω+θ))2. In this case, even if the space of actions

is a continuum, Proposition 4.4 implies that the designer can focus, without loss of generality, on

experiments that induce finitely many beliefs.

Remark 4 (Connection to the literature) In a model where the receiver’s payoff depends on

the state ω only via the posterior mean, Candogan and Strack (2021) also observe the equiva-

lence between their analogues of program CIDIR and the one in Equation 4.3. Because of their

assumptions, they model experiments as convex functions and do not rely on the concavification

approach. Instead, Proposition 4.4 applies to settings with finitely many states and types, in which

the receiver’s payoff can depend on the state in arbitrary ways.
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5. Omitted results and proofs of Section 3

Finite support distributions are without loss in CID: We first show that it is without

loss to restrict the choice set in CID to distributions with finite support.

Proposition 5.1 (Finite support is without loss of generality) Fix (µ0, γ) ∈ F . Let τ ∈
∆µ0

(∆(Ω)) be such that it satisfies the constraints. Then, there exists τ ? such that supp τ ? is finite

and Eτ? [(f, g)] =Eτ [(f, g)]. In particular, τ ? satisfies the constraints.

[ Proof of Proposition 5.1] Let τ be as in the statement of Proposition 5.1. Define:

f? =

∫
∆(Ω)

f(µ)τ(dµ), g? =

∫
∆(Ω)

g(µ)τ(dµ).
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By assumption, g?E = γE and g?I ≥ γI .
Let A= supp τ denote the support of τ . Let B = {(µ,f(µ), g(µ)) : µ∈A}. Because Ω is finite, the

main result in Rubin and Wesler (1958) implies that (µ0, f
?, g?)∈ convB. Caratheodory’s theorem

(Theorem 17.1 in Rockafellar, 1970) implies that M ≤N + 1 + I +E exists such that (µ0, f
?, g?)

can be written as the convex combination of M elements of B. That is, (λm, µm)Mm=1 exist such

that (λm)Mm=1 ∈∆µ0
({µ1, . . . , µM}) and

(f?, g?) =
M∑
m=1

λm(f(µm), g(µm)).

Letting τ ? denote the distribution on ∆(Ω) that assigns probability λm to µm, and 0 otherwise,

completes the claim.

Proof of Theorem 3.1: We first present the statement and proof of Lemma A.1, a step of

which later on repeats in the proof of Theorem 3.1:

Lemma 5.1 (Relationship between F and C) The set F is the convex hull of the effective

domain of f g. That is, F=conv C.

[ Proof of Lemma 5.1] F ⊆ conv (C): Let (µ, γ̃) ∈ F . By Proposition 5.1, (λm, µm)Mm=1 exist

such that M ∈ N, {µ1, . . . , µM} ⊆∆(Ω), (λm)Mm=1 ∈∆µ({µ1, . . . , µM}),
∑M

m=1 λmgI(µm) ≥ γ̃I , and∑M

m=1 λmgE(µm) = γ̃E.

Define γ =
∑M

m=1 λmg(µm) and let γ̃m = g(µm) + γ̃− γ. Note that

M∑
m=1

λmγ̃m =
M∑
m=1

g(µm) + γ̃− γ = γ̃.

Furthermore, note that γI ≥ γ̃I , so that gI(µm)≥ γ̃m,I . Similarly, γE = γ̃E, so that gE(µm) = γ̃m,E.

It thus follows that for all m∈ {1, . . . ,M}, (µm, γ̃m)∈C and hence (µ, γ̃)∈ conv (C).

conv (C)⊆F: Let (µ, γ̃) ∈ conv (C). Then, (λm, µm, γ̃m)Mm=1 exist such that M ∈ N,

{µ1, . . . , µM} ⊆∆(Ω), {γ̃1, . . . , γ̃M} ⊂ RI+E, (λm)Mm=1 ∈∆(µ,γ̃) ({(µ1, γ̃1), . . . , (µM , γ̃M)}) and for all

m∈ {1, . . . ,M}, gI(µm)≥ γ̃m,I and gE(µm) = γ̃m,E. Noting that

M∑
m=1

λmgI(µm)≥
M∑
m=1

λmγ̃m,I = γ̃I and
M∑
m=1

λmgE(µm) =
M∑
m=1

λmγ̃m,E = γ̃E,

we obtain that (µ, γ̃)∈F .

The proof of Theorem 3.1 relies on the following representation of the cav operator:

Proposition 5.2 (Corollary 17.1.5 in Rockafellar, 1970) Given a function h : RD 7→ R, we

have that for all x,

(cav h) (x) = sup

{
M∑
m=1

λmh(xm)|{x1, . . . , xM} ⊂ dom h, (λm)Mm=1 ∈∆x({x1, . . . , xM}),M ≤D+ 1

}
.
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[ Proof of Theorem 3.1] Consider first (µ0, γ) /∈F . Lemma 5.1 implies that cav f g(µ0, γ) =−∞,

whereas V (µ0, γ) =−∞. Thus, from now on, we consider (µ0, γ)∈F .

By Proposition 5.1 and the definition of V (µ0, γ), for each ε > 0, (λm, µm)Mm=1 exist such that

the constraints in CID are satisfied and
∑M

m=1 λmf(µm)≥ V (µ0, γ)− ε. The proof of Lemma 5.1

implies that (γ̃m)Mm=1 exist such that

M∑
m=1

λmγ̃m = γ̃,

and for all m∈ {1, . . . ,M}, gI(µm)≥ γ̃m,I and gE(µm) = γ̃m,E. Applying the definition of cav f g in

Proposition 5.2, we conclude that:

cav f g(µ0, γ)≥
M∑
m=1

λmf(µm)≥ V (µ0, γ)− ε.

Since this holds for all ε > 0, we obtain that cav f g(µ0, γ)≥ V (µ0, γ).

By definition of cav f g(µ0, γ), for all ε > 0, (λm, µm, γ̃m)Mm=1 exist such that (i)

(λm)Mm=1 ∈ ∆(µ0,γ) ({(µ1, γ̃1), . . . , (µM , γ̃M)}), (ii) for all m ∈ {1, . . . ,M}, gI(µm) ≥ γ̃m,I , gE(µm) =

γ̃m,E, and (iii)
∑M

m=1 λmf
g(µm, γ̃m) =

∑M

m=1 λmf(µm)≥ cav f g(µ0, γ)− ε.

Similar steps to those in the proof of Lemma 5.1 imply that V (µ0, γ)≥ cav f g(µ0, γ)− ε. Since

this holds for all such ε > 0, we conclude that V (µ0, γ)≥ cav f g(µ0, γ).

[ Proof of Corollary 3.2] Under the assumptions of Corollary 3.2, V (µ0,γ) equals

VB(µ0, γB, γE) = sup
τ∈∆µ0 (∆(Ω))

{Eτ [f(µ)] |Eτ [gB(µ)]≥ γB,Eτ [gE] = γE}, (5.1)

where (gB, γB) is the projection of vector (gI , γI) on the set B of binding constraints. Furthermore,

by assumption, a solution exists that attains VB(·). Theorem 3.1 implies that VB(µ0, γB, γE) =

cavf (gB ,gE)(µ0, γB, γE). Thus, a solution to CID exists which uses at most N +B+E beliefs.

The proof of Theorem 3.2 uses the notion of the concave closure of a function h:

Definition 5.1 (Concave closure of h) Given a function h :RD 7→R, the concave closure of h,

denoted by cav h, is the function from RD to R which satisfies:

hypo (cav h) = cl (conv (hypo h)) . (cav h)

That is, cav h is the smallest upper-semicontinuous concave function that majorizes h (page 36

in Rockafellar, 1970). Example 8.1 in Section 8 illustrates that in general cav h and cav h do not

coincide. However, because the effective domain of cav h is a convex set, cav h and cav h may only

differ on the boundary of dom(cav h) (Theorem 7.4 in Rockafellar, 1970).
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[ Proof of Theorem 3.2] To prove that Equation WD holds, suppose that CID is feasible at

(µ0,γ) so that τ ∈ ∆µ0
(∆(Ω)) exists that satisfies the constraints. For all such τ and for any

t∈RI+×RE, the following holds:

Eτ [f(µ)] =Eτ

[
f(µ) +

I+E∑
k=1

tkgk(µ)

]
−Eτ

[
I+E∑
k=1

tkgk(µ)

]

≤Eτ

[
f(µ) +

I+E∑
k=1

tkgk(µ)

]
−
I+E∑
k=1

tkγk ≤ cav

(
f +

I+E∑
k=1

tkgk

)
(µ0)−

I+E∑
k=1

tkγk,

where the first inequality follows from τ being a feasible solution for CID and tI ≥ 0 and the second

inequality follows because τ ∈∆µ0
(∆(Ω)). We conclude that for any t∈RI+×RE,

V (µ0, γ) = sup
τ∈∆µ0 (∆(Ω)):Eτ gI≥γI ,Eτ gE≥γE

Eτ [f ]≤ cav

(
f +

I+E∑
k=1

tkgk

)
(µ0)−

I+E∑
k=1

tkγk. (5.2)

Since Equation 5.2 holds for every t ∈RI+×RE, taking the infimum on both sides delivers Equa-

tion WD.

We now prove that Equation NDG holds for (µ0,γ) in the interior of F . Let 〈x, y〉 denote the

inner product, that is for vectors x, y ∈ RD, 〈x, y〉=
∑D

i=1 xiyi. For a function h : RD 7→ R, let h∗

denote its Fenchel conjugate, where h∗(t) = supx{〈x, t〉 − h(x)}. Theorem 11.1 in Rockafellar and

Wets (2009) implies −cav(−h)(x) = (h∗)∗(x) whenever −cav(−h) is proper. Hence,

cav h(x) = inf
p

{
〈x,p〉+ sup

x̃
(h(x̃)−〈p, x̃〉)

}
. (5.3)

We now apply this to the function f g at (µ0, γ) in the interior of F ; in particular, note that this

implies that C is non-empty. Let pµ0
∈RN and pγ ∈RI+E,

cav f g(µ0, γ) = inf
(pµ0 ,pγ)∈RN+I+E

{
〈pµ0

, µ0〉+ 〈pγ , γ〉+ sup
µ,γ̃

(
f g(µ, γ̃)−〈pµ0

, µ〉− 〈pγ , γ̃〉
)}

= inf
(pµ0 ,pγ)∈RN+I+E

{
〈pµ0

, µ0〉+ 〈pγ , γ〉+ sup
(µ,γ̃)∈C

(f(µ)−〈pµ0
, µ〉− 〈pγ , γ̃〉)

}
. (5.4)

Because C is non-empty, the supremum in the second line is not −∞. If k ∈ {1, . . . , I} exists such

that pγ,k > 0, then letting γ̃k → −∞, the supremum is +∞. We can thus restrict attention to

pγ,k ≤ 0 for k ∈ {1, . . . , I}. Setting tγ =−pγ we get,

cav f g(µ0, γ) = inf
pµ0∈R

N ,tγ∈RI+×R
E

{
〈pµ0

, µ0〉− 〈tγ , γ〉+ sup
(µ,γ̃)∈C

(f(µ)−〈pµ0
, µ〉+ 〈tγ , γ̃〉)

}

= inf
pµ0∈R

N ,tγ∈RI+×R
E

{
〈pµ0

, µ0〉− 〈tγ , γ〉+ sup
µ

(
f(µ)−〈pµ0

, µ〉+
I+E∑
k=1

tγ,kgk(µ)

)}
(5.5)

= inf
tγ∈RI+×R

E

{
inf

pµ0∈R
N

[
〈pµ0

, µ0〉+ sup
µ

(
f(µ) +

I+E∑
k=1

tγ,kgk(µ)−〈pµ0
, µ〉

)]
−〈tγ , γ〉

}

= inf
tγ∈RI+×R

E

{
cav(f +

I+E∑
k=1

tγ,kgk)(µ0)−〈tγ , γ〉

}
= inf

tγ∈RI+×R
E

{
cav(f +

I+E∑
k=1

tγ,kgk)(µ0)−〈tγ , γ〉

}
,
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where (i) the second equality follows from noticing that γ̃k = gk(µ), whenever k > I, while it is

optimal to set γ̃k = gk(µ) whenever k ≤ I since tγ,k ≥ 0, (ii) the third equality is just a rewriting,

(iii) the fourth equality follows from noting that the infimum in the square brackets is the definition

of the concave closure of f +
∑
tγ,kgk (see Equation 5.3), and (iv) the final equality follows from

noting that (µ0,γ) in the interior of F implies that µ0 is in the interior of ∆(Ω), and the concave

closure coincides with the concave hull in the interior of effective domain of f +
∑I+E

k=1 tkgk, which

is ∆(Ω) by Assumption 1.

Equation NDG then follows by noting that cav f g coincides with cav f g in the interior of F

(Theorem 7.4 in Rockafellar, 1970).

Finally, to see that the third statement of Theorem 3.2 holds, note the following. Similar steps

to those in the proof of Observations 1 and 2 show that under Assumptions f and g, the corre-

spondence that assigns to each (µ0, γ) ∈ F the subset of ∆µ0
(∆(Ω)) that satisfies the constraints

is a non-empty, compact-valued, upper-hemicontinuous correspondence. A version of the Theorem

of the Maximum (Lemma 17.30 in Aliprantis and Border, 2006) implies that V (µ0,γ) is upper-

semicontinuous. Theorem 3.1 then implies that cav f g is upper-semicontinuous and hence, coincides

with cav f g.

[ Proof of Theorem 3.3]

Let JF = {y ∈ J |yI ≥ γI , yE = γE} denote the elements in J that satisfy the constraints in CID at

(µ0,γ). In the supplementary material, Proposition I.1 shows that JF 6= ∅ if and only if (µ0, γ)∈F ,

and Proposition I.2 shows that sup{yf |y ∈ JF}= V (µ0, γ).

Let ef ∈RI+E+1 denote the canonical vector that has a 1 in the first coordinate and 0 otherwise,

whereas for i∈ {1, . . . , I+E} ei is the canonical vector that has a 1 in the (i+ 1)th coordinate and

0 otherwise. Finally, let k0 such that k0(y) = 〈ef , y〉= yf if y ∈ J and −∞ otherwise.

The problem sup{yf |y ∈ JF}, whose value coincides with that of CID, corresponds to the follow-

ing finite-dimensional optimization problem on the convex set J :

sup
y∈J

k0(y) (CIDJ)

s.t.

{
(∀i∈ {1, . . . , I})〈ei, y〉 ≥ γI
(∀i∈ {I + 1, . . . , I +E})〈ei, y〉= γE

.

Assuming CID satisfies Assumption S at (µ0,γ), Corollary 28.2.2 in Rockafellar (1970) implies that

t∗ ∈RI+×RE exists such that the supremum of the function

L(y, t∗) = k0(y) +
I+E∑
i=1

t∗i (〈ei, y〉− γi) ,
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whose effective domain is J , is finite and equal to the value of CIDJ . That is, t∗ is a Lagrange

multiplier for CIDJ . Since the value of CIDJ is the value of CID, we have the following:

V (µ0, γ) = sup
y∈J

[
k0(y) +

I+E∑
i=1

t∗i (〈ei, y〉− γi)

]
= sup

y∈J

[
yf +

I+E∑
i=1

t∗i (yi− γi)

]

= sup
τ∈∆µ0 (∆(Ω))

[
Eτ [f ] +

I+E∑
i=1

t∗i (Eτ [gi]− γi)

]
= sup

τ∈∆µ0 (∆(Ω))

Eτ

[
f +

I+E∑
i=1

t∗i gi

]
−
I+E∑
i=1

t∗i γi

= cav

[
f +

I+E∑
i=1

t∗i gi

]
(µ0)−

I+E∑
i=1

t∗i γi,

where the first equality is by definition of t∗, the second is obtained by spelling out the inner

products, the third is by definition of y ∈ J , the fourth groups all terms that correspond to τ , and

the last is by definition of the concave hull at the prior.

[ Proof of Proposition 3.1] Because f is upper-semicontinuous, a solution τ ? exists that attains

cav f . Furthermore, Corollary 17.1.5 in Rockafellar (1970) implies that without loss of generality

the cardinality of the support of τ ? is at most N .

Let τ be such that τ ∈∆µ0
(∆(Ω)) and τ satisfies the constraints of CID. Note that f (weakly)

prefers τ ? to τ . Since (f, g) are in agreement, we have the following:

Eτ? [gI ]≥Eτ [gI ]≥ γI , Eτ? [gE] =Eτ [gE] = γE.

Thus, τ ? is feasible for CID. Proposition 3.1 then follows.

[ Proof of Proposition 3.2] Let τ ? denote a solution to CID and suppose that |suppτ ?|=M >K.

Then, there exists k ∈ {1, . . . ,K} such that |∆k∩suppτ ?| ≥ 2. Letting suppτ ? = {µ?1, . . . , µ?M}, define

τ ??k =
∑M

m=1 τ
?(µ?m)1[µ?m ∈∆k] and let µ??k =

∑M

m=1
τ?(µ?m)/τ??k µ

?
m1[µ?m ∈∆k].

Consider the distribution over posteriors τ ?? that places weight τ ?(µ?m) on µ?m whenever µ?m ∈

{µ?1, . . . , µ?M} \∆k, places weight τ ??k on µ??k , and 0 otherwise. It is immediate to check that it

averages out to the prior.

Since f and gI are concave over ∆k, then Eτ?? [(f, gI)] ≥ Eτ? [(f, gI)] ≥ (Eτ? [f ], γI). Similarly,

because gE is affine on ∆k, we have that Eτ?? [gE] =Eτ? [gE] = γE. Thus, τ ?? is feasible and (weakly)

increases the objective. Proposition 3.2 follows.

6. Proofs of Section 4.1

[ Proof of Proposition 4.1] Consider the following program:

max
β:Θ7→∆∆(Ω),α:∆(Ω)7→∆(A1)

∑
ω∈Ω

µ0(ω)Eβ(·|θ)
[
Eα(·|µ) [v(a1, a2, ω)]

]
(A)

s.t.

 Eβ(·|ω1)

[
Eα(·|µ) [u(a1, a2(a1, µ), ω1)]

]
≥ 0

(∀i∈ {2, . . . ,N}) Eβ(·|ωi)−β(·|ωi−1)

[
Eα(·|µ) [u(a1, a2(a1, µ), ωi)]

]
≥ 0

(∀i∈ {1, . . . ,N − 1}) Eβ(·|ωi)−β(·|ωi+1)

[
Eα(·|µ) [u(a1, a2(a1, µ), ωi)]

]
≥ 0

.
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We show that the solution to A satisfies all the constraints of P. To simplify notation, in what

follows, let

u(µ,ωi) =Eα(·|µ) [u(a1, a2(a1, µ), ωi)] .

Note first that the solution to A satisfies that for all i≥ 2,

Eβ(·|ωi) [u(µ,ωi)]≥Eβ(·|ωi−1) [u(µ,ωi)]

Eβ(·|ωi−1) [u(µ,ωi−1)]≥Eβ(·|ωi) [u(µ,ωi−1)] ,

so that for all i≥ 2, we have

Eβ(·|ωi)−β(·|ωi−1) [u(µ,ωi)−u(µ,ωi−1)]≥ 0. (6.1)

Equation 6.1 has two implications. First, Definition 4.1 together with equation Equation 6.1 implies

that if k < i, then it cannot be the case that

Eβ(·|ωk)−β(·|ωk−1) [u(µ,ωi)−u(µ,ωk)]< 0.

Hence, we must have Eβ(·|ωk)−β(·|ωk−1)u(µ,ωi) ≥ Eβ(·|ωk)−β(·|ωk−1)u(µ,ωk), when k < i. Second, if

k > i, Equation 6.1 evaluated at k together with monotonic expectational differences implies that

Eβ(·|ωk)−β(·|ωk−1)u(µ,ωk)≥Eβ(·|ωk)−β(·|ωk−1)u(µ,ωi). We use these two implications in what follows.

To show that the statement of the proposition holds, consider i and j < i− 1. The solution to A

satisfies that for k ∈ {j+ 1, . . . , i}:

Eβ(·|ωk)[u(µ,ωk)]≥Eβ(·|ωk−1)[u(µ,ωk)].

Adding up over k ∈ {j+ 1, . . . , i}, we obtain

i∑
k=j+1

E(β(·|ωk)−β(·|ωk−1))u(µ,ωk)≥ 0. (6.2)

As discussed above, Definition 4.1 together with Equation 6.1 imply the left-hand side of Equa-

tion 6.2 is bounded above by

i∑
k=j+1

E(β(·|ωk)−β(·|ωk−1)) [u(µ,ωi)] =Eβ(·|ωi)−β(·|ωj) [u(µ,ωi)] . (6.3)

Equations 6.2 and 6.3 imply

Eβ(·|ωi)[u(µ,ωi)]≥Eβ(·|ωj)[u(µ,ωi)].
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Therefore, the constraint that i does not report j < i− 1 holds. Similarly, consider i and j > i+ 1.

The solution to A satisfies that for k ∈ {i, . . . , j− 1}

Eβ(·|ωk)[u(µ,ωk)]≥Eβ(·|ωk+1)[u(µ,ωk)].

Adding up over k ∈ {i, . . . , j− 1}, we obtain

j−1∑
k=i

E(β(·|ωk)−β(·|ωk+1))u(µ,ωk)≥ 0. (6.4)

As discussed above, Definition 4.1 together with Equation 6.1 imply that the left-hand side is

bounded above by

j−1∑
k=i

E(β(·|ωk)−β(·|ωk+1))u(µ,ωi) =E(β(·|ωi)−β(·|ωj))u(µ,ωi). (6.5)

Equation 6.5 follows because Equation 6.1 implies E(β(·|ωk)−β(·|ωk+1))u(µ,ωk) is decreasing in k.

Equations 6.4 and 6.5 imply

Eβ(·|ωi)[u(µ,ωi)]≥Eβ(·|ωj)[u(µ,ωi)].

Therefore, the incentive constraint that i does not report j, j > i+ 1 holds.

Finally, because we have all incentive compatibility constraints, it follows that, when ui satisfies

Definition 4.1, the participation constraints for i ≥ 2 are implied by the participation constraint

for i= 1. To see this, note the following. First, because all incentive compatibility constraints are

satisfied, we have that for all i≥ 2,

Eβ(·|ωi)[u(µ,ωi)]≥Eβ(·|ω1)[u(µ,ωi)]. (6.6)

We can write the right-hand side of Equation 6.6 as

Eβ(·|ω1)[u(µ,ω1) +u(µ,ωi)−u(µ,ω1)]. (6.7)

Now, since the family {u(·, ω) : ω ∈Ω} satisfies Definition 4.1, we have that

u(µ,ωi)−u(µ,ω1) = (b(ωi)− b(ω1))Eα(·|µ)[h1(a1, a2(a1, µ))] + c(ωi)− c(ω1).

Moreover, recall from footnote 14, that we assume that u(a∗1, a
∗
2, ωi) = 0 for all i∈ {1, . . . ,N}. Hence,

we can rewrite the above as:

u(µ,ωi)−u(µ,ω1) = (b(ωi)− b(ω1))Eα(·|µ)[h1(a1, a2(a1, µ))] + c(ωi)− c(ω1)

= (b(ωi)− b(ω1))(Eα(·|µ)[h1(a1, a2(a1, µ))]−h1(a∗1, a
∗
2))≥ 0,

since b(·) is increasing in ωi and h1 is minimized at (a∗1, a
∗
2) by the assumption in footnote 14.
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[ Proof of Corollary 4.1] Proposition 4.1 implies that under monotonic expectational differences,

it is enough to consider the solution to A. Writing it in terms of the distribution of posteriors it

induces, we obtain:

max
α:∆(Ω) 7→∆(A1),a2∈BR2

max
τ∈∆µ0∆(Ω)

Eτ

[
Eα(·|µ)

[∑
ω∈Ω

µ(ω)v(a1, a2(a1, µ), ω)

]]
(A′)

s.t.


Eτ(·)

[
Eα(·|µ)

[
µ(ω)

µ0(ω)
u(a1, a2(a1, µ), ω1)

]]
≥ 0

(∀i∈ {2, . . . ,N})Eτ(·)

[
Eα(·|µ)

[(
µ(ωi)

µ0(ωi)
− µ(ωi−1)

µ0(ωi−1)

)
u(a1, a2(a1, µ), ωi)

]]
≥ 0

(∀i∈ {1, . . . ,N − 1})Eτ(·)

[
Eα(·|µ)

[(
µ(ωi)

µ0(ωi)
− µ(ωi+1)

µ0(ωi+1)

)
u(a1, a2(a1, µ), ωi)

]]
≥ 0

.

Fix α : ∆(Ω) 7→∆(A1) and a selection a2(·)∈BR2, and consider the program:

max
τ∈∆µ0 (∆(Ω))

Eτ

[
Eα(·|µ)

[∑
ω∈Ω

µ(ω)v(a1, a2(a1, µ), ω)

]]
(A′α)

s.t.


Eτ(·)

[
Eα(·|µ)

[
µ(ω1)

µ0(ω1)
u(a1, a2(a1, µ), ω1)

]]
≥ 0

(∀i∈ {2, . . . ,N})Eτ(·)

[
Eα(·|µ)

[(
µ(ωi)

µ0(ωi)
− µ(ωi−1)

µ0(ωi−1)

)
u(a1, a2(a1, µ), ωi)

]]
≥ 0

(∀i∈ {1, . . . ,N − 1})Eτ(·)

[
Eα(·|µ)

[(
µ(ωi)

µ0(ωi)
− µ(ωi+1)

µ0(ωi+1)

)
u(a1, a2(a1, µ), ωi)

]]
≥ 0

.

Note that there might be allocations α for which there is no τ that satisfies the incentive com-

patibility and/or participation constraints. To address this issue, let Cα denote the policies τ that

satisfy the constraints in A′α. Let f0
α(τ) denote

Eτ

[
Eα(·|µ)

[∑
ω∈Ω

µ(ω)v(a1, a2(a1, µ), ω)

]]
,

and let

fα(τ) =

{
f0
α(τ) if τ ∈Cα
−∞ otherwise

.

In what follows, fα(τ) is the objective function under consideration. Note that letting,

gi(µ) =

(
µ(ωi)

µ0(ωi)
− µ(ωi+1)

µ0(ωi+1)

)
u(µ,ωi), i∈ {1, . . . ,N − 1}

gN−2+i(µ) =

(
µ(ωi)

µ0(ωi)
− µ(ωi−1)

µ0(ωi−1)

)
u(µ,ωi), i∈ {2, . . . ,N}

g2N−1(µ) =
µ(ω1)

µ0(ω1)
u(µ,ω1),

we can write A′α as a special case of CID, with I = 2N − 1. Corollary 3.1 implies that any finite

solution to A′α uses at most 3N − 1 beliefs.

[ Proof of Corollary 4.2] Towards a contradiction, suppose the participation constraint of ω1 is

not binding. Then, let ε=Eβ(·|ω1)

[
Eα(·|µ)[ũ(a′1, a2(·), ω1)]

]
. Consider a mechanism that increases all

transfers, x(µ) + ε. All incentive constraints continue to be satisfied, the participation constraint

for ω1 binds, and revenue increases, contradicting that the solution was optimal.
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[ Proof of Proposition 4.2] Given a selection a2(a′1, µ) from the principal’s best response corre-

spondence in period 2 when his beliefs are µ, let

u(a′1, a2(a′1, µ), ωi) = ũ(a′1, a2(a′1, µ), ωi)

−
1−

∑
n≤i µ0(ωn)

µ0(ωi)
(ũ(a′1, a2(a′1, µ), ωi)− ũ(a′1, a2(a′1, µ), ωi−1)).

Then, replacing the constraints in R in the principal’s objective function, we obtain the following

expression:

Eτ [Eα(·|µ)

∑
ω∈Ω

µ(ω) (ṽ(a′1, a2(a′1, µ), ω) +u(a′1, a2(a′1, µ), ω))]≡Eτ [v̌(α,a2, µ)] .

Therefore, we can write R as

max
τ∈∆µ0 (∆(Ω)),α,a2(·)∈BR2

Eτ [v̌(α,a2, µ)] . (6.8)

That is, the solution to the relaxed problem is obtained by maximizing a version of the virtual

surplus, represented by v̌, and then choosing a distribution over posteriors that averages out to the

prior. The following remark is in order:

Remark 5 (Tie-breaking) So far we have remained silent about how a2(a′1, µ) is chosen, beyond

the restriction that a2(·) ∈ BR2. We can use the function ṽ(a′1, a2(a′1, µ), ωi) + u(a′1, a2(a′1, µ), ωi)

to determine how to break the possible ties in BR2 and make the principal’s objective function

upper-semicontinuous. In fact, if a2, a
′
2 ∈BR2(a′1, µ), then in the relaxed program, a2 is selected as

long as

∑
ω∈Ω

µ(ω) [ṽ(a′1, a2, ω) +u(a′1, a2, ω)]≥
∑
ω∈Ω

µ(ω) [ṽ(a′1, a
′
2, ω) +u(a′1, a

′
2, ω)] .

In other words, ties are broken in favor of the virtual surplus.

We now illustrate how to solve the program in Equation 6.8. Towards this, fix the selection a∗2 as

in Remark 5. Because the program is separable in the allocation α across posteriors µ, the solution

can be obtained in two steps. First, for each posterior µ, we maximize v̌(·, a∗2, µ) with respect to

α. Denote the value of this problem v̂(µ). Second, we choose τ to maximize the expectation of

v̂(·) subject to the constraint that τ is Bayes’ plausible. A straightforward application of Corollary

17.1.5 in Rockafellar (1970) implies that the solution to R involves at most N posteriors.

To introduce Proposition 6.1, we construct two objects from the solution to the relaxed pro-

gram, ϕ∗ ≡ (τ ∗, α̃∗, a∗2). First, similar to the commitment solution, we can always find a transfer
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xϕ∗(ωi) that solves ωi’s binding constraint for each i∈ {1, . . . ,N}. Namely, using the participation

constraint of ω1, let

xϕ∗(ω1) =Eτ∗
[
Eα̃∗

[
µ(ω1)

µ0(ω1)
u(a′1, a

∗
2(a′1, µ), ω1)

]]
.

Recursively, using the downward looking incentive constraint of ωi and the transfer xϕ∗(ωi−1),

define:

xϕ∗(ωi) =Eτ∗
[
Eα̃∗

[(
µ(ωi)

µ0(ωi)
− µ(ωi−1)

µ0(ωi−1)

)
u(a′1, a

∗
2(a′1, µ), ωi)

]]
+xϕ∗(ωi−1).

Second, we construct an N × | supp τ ∗| matrix, Bτ∗ , with (i, j)-element τ ∗(µj)
µj(ωi)

µ0(ωi)
.

Thus, finding transfers that implement the solution to the relaxed program reduces to verifying

that a solution exists to Bτ∗ x̃= xϕ∗ , where x̃ is a vector of transfers, one for each posterior in the

support of τ ∗.

Proposition 6.1 Suppose the solution to the relaxed program, ϕ∗ = (τ ∗, α∗, a∗2), satisfies the mono-

tonicity constraints. Then, transfers x̃∗ exist such that (τ ∗, α∗, x̃∗, a∗2) solve P if and only if a

solution x̃∈R| supp τ∗| exists to

Bτ∗ x̃= xϕ∗ .

That is, if and only if rank(Bτ∗) = rank(Bτ∗ |xϕ∗).

The conditions of Proposition 6.1 are satisfied, for instance, if the posterior distribution that solves

the relaxed program induces N linearly independent posteriors, or if it has singleton support. In

the first case, the matrix Bτ∗ is invertible, whereas in the second case, all types have the same

allocation and pay the same transfer.

[ Proof of Proposition 6.1] Let ϕ∗ = (τ ∗, α̃∗, a∗2) denote the solution to the relaxed program and

let M = | supp τ ∗|. By Proposition 4.2, M ≤N . Given the steps in the proof of Proposition 4.1, it

is immediate that if we can find transfers {x̃(µ) : µ ∈ supp τ ∗} that satisfy the constraints of the

relaxed program, then we have a solution to P.

Evidently, if x̃ ∈RM exists such that Bτ∗ x̃= xϕ∗ , then (τ ∗, α̃∗, x̃, a∗2) solve P. To get the second

part of the if and only if, suppose that transfers x̃ ∈ RM exist such that (τ ∗, α̃∗, x̃, a∗2) solve P.

Then, note that the following holds. First, for ω1,

Eτ∗
[
µ(ω1)

µ0(ω1)
x̃(µ)

]
=Eτ∗

[
Eα̃∗

[
µ(ω1)

µ0(ω1)
u(a′1, a

∗
2(a′1, µ), ω1)

]]
.

Furthermore, for i≥ 2

Eτ∗
[
µ(ωi)

µ0(ωi)
x̃(µ)

]
=Eτ∗

[
Eα̃∗

[(
µ(ωi)

µ0(ωi)
− µ(ωi−1)

µ0(ωi−1)

)
u(a′1, a

∗
2(a′1, µ), ωi)

]]
+Eτ∗

[
µ(ωi−1)

µ0(ωi−1)
x̃(µ)

]
.
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This implies that x̃ solves the system Bτ∗ x̃= xϕ∗ .

The Rouché-Capelli theorem (Theorem 2.38 in Shafarevich and Remizov, 2012) then implies the

rank conditions in the statement.

7. Proofs of Section 4.2 Without loss of generality, a menu of experiments consists of a

finite set of signals S and a collection of distributions {πθ : Ω 7→∆(S) : θ ∈Θ}. Under experiment

πθ, when the agent observes signal s∈ S, the agent updates her belief about the state of the world

as follows:

µs(ω) =
µ0(ω)πθ(s|ω)∑

ω′∈Ω πθ(s|ω)µ0(ω′)
≡ µ0(ω)πθ(s|ω)

Prπ,θ(s)
.

A menu of experiments is incentive compatible if the following holds for all θ ∈Θ and θ′ 6= θ:∑
µ∈∆(Ω)

∑
{s∈S:µs=µ}

Prπ,θ(s)U(µ, θ)≥
∑

µ∈∆(Ω)

∑
{s∈S:µs=µ}

Prπ,θ′(s)U(µ, θ). (7.1)

Lemma 7.1 It is without loss of generality to focus on experiments such that S = ∆(Ω).

T he statement follows from Equation 7.1. To see this, let 〈{πθ}θ∈Θ, S〉 denote an experiment.

Consider the following experiment, 〈{π′θ}θ∈Θ,∆(Ω)〉

π′θ(µ|ω) =
∑

{s∈S:µs=µ}

πθ(s|ω). (7.2)

Note that

Prπ′,θ(µ) =
∑
ω∈Ω

µ0(ω)π′θ(µ|θ) =
∑
ω∈Ω

µ0(ω)
∑

{s∈S:µs=µ}

πθ(s|ω) =
∑

{s∈S:µs=µ}

Prπ,θ(s).

Thus, 〈{π′θ}θ∈Θ,∆(Ω)〉 yields the same payoff to the designer and the agent. Furthermore, it is

incentive compatible.

[ Proof of Proposition 4.4] The proof proceeds in two steps. We first argue that the problems

in Equation 4.3 and CIDIR have the same value. We then apply Theorem 3.1 to the problem in

CIDIR to argue for the upper bound in the number of posteriors induced in an optimal experiment.

To see that both problems have the same value, consider the following argument. Let τ ∗ denote

a solution to Equation 4.3. For each θ ∈Θ, let

u∗θ =Eτ∗(θ,·)[U(µ, θ)].

Then, it is immediate to check that (τ ∗, (u∗θ)θ∈Θ) solves the problem in CIDIR.
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Let (τ ∗, (u∗θ)θ∈Θ) denote a solution to the problem in CIDIR. Note that without loss of generality

we can take

u∗θ =Eτ∗(θ,·)[U(µ, θ)].

Note that for each θ this relaxes the incentive compatibility constraint for θ′ 6= θ and it does

not affect the first constraint for θ’s experiment. It then follows that τ ∗ solves the problem in

Equation 4.3.

Consider now the problem in CIDIR. Fix {uθ}θ∈Θ. Note that the problem of finding an optimal

τ : Θ→∆µ0
∆(Ω) given {uθ}θ∈Θ is separable across θ ∈Θ. That is, given {uθ}θ∈Θ, it is enough to

solve M optimization problems:

max
τ :Θ→∆µ0∆(Ω)

Eτ(θ,·) [V (µ, θ)] (7.3)

s.t.

{
Eτ(θ,·) [U(·, θ)]≥ uθ

(∀θ′ 6= θ) uθ′ ≥Eτ(θ,·) [U(µ, θ′)]
,

where V (µ, θ) =
∑

ω∈Ω µ(ω)v(a∗(µ, θ), θ,ω). For each θ, the problem in Equation 7.3 is a special

case of the problem in CID. Corollary 3.1 implies that a solution exists that uses at most N +M

posteriors.

8. Omitted examples

8.1. The concave hull and the concave closure of h may differ

Example 8.1 (cav h and cav h may differ) Consider the function

h(x) =

{
0 if x> 0
−∞ otherwise

. (8.1)

Then,

cav(h)(x) =

{
0 if x> 0
−∞ otherwise

, (cav)

whereas

cav(h)(x) =

{
0 if x≥ 0
−∞ otherwise

. (cav)

8.2. Refined upper bounds Example 8.2 below illustrates how under the conditions of

Proposition 3.2 one can obtain posterior distributions that induce more posteriors than the number

of states N , but less than the number of states plus constraints, N + I + E. In the example,

N = I = 2 and both constraints bind at the optimum. However, (f ,g) is a 3-generalized information

design environment.
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Figure (a) Objective function
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Figure (b) Constraints

Figure 6. Objective function (left) and constraints (right) in Example 8.2

Example 8.2 (Social Media) A social media platform designs how information is released to

consumers and wishes to be perceived as unbiased. We represent this as follows. There are two

equally likely states of the world, Ω = {ωL, ωR}, where ωi denotes the platform’s political inclination.

The platform’s payoff is given by

f(µ) =
1

2
−
∣∣∣∣12 −µ

∣∣∣∣ , (8.2)

where µ ∈ [0,1] is the likelihood an outside observer attaches to the platform being right-leaning

ω= ωR after spending time on it. Consistent with its desire to be perceived as neutral, the platform’s

payoffs are maximized when consumers do not learn anything relative to the prior about its political

inclinations.

Similar to Example 3.2, the platform must collect ad revenue to operate and for this it requires

a broad audience. A left (right) leaning consumer enjoys spending time on the platform only if

she perceives the platform’s content as left (right) leaning, which we model by the following payoff

functions:

gL(µ) = max

{
1

4
−µ,0

}
,gR(µ) = max

{
0, µ− 3

4

}
. (8.3)

A left (right) leaning consumer participates on the platform if her expected payoff is larger than γL

(γR). Figure 6 depicts the platform’s and the audiences’ payoff functions. Without participation,

the platform gets no revenues so the optimal information disclosure policy solves:

max
τ∈∆µ0∆(Ω)

Eτ [f ] (CIDSM)

s.t. Eτ [gi]≥ γi, i∈ {L,R}.
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Figure (a) tL = tR = 1< t∗
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Figure (b) tL = tR = t∗ = 2
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Figure (c) tL = tR = 3> t∗

Figure 7. Lagrangian approach in Example 8.2; t∗ denotes the optimal multiplier. The dashed red line is the con-

cavification.

Note that the tuple (f, gL, gR) is a 3-generalized information design environment with partition

∆1 = [0, 1/4),∆2 = [1/4, 3/4),∆3 = [3/4,1].

Theorem 3.2 implies that in order to solve the platform’s problem we can consider the following

Lagrangian objective function:

(f + tg) (µ) =


µ+ tL

(
µ− 1

4

)
if µ≤ 0.25

µ if µ∈ (0.25,0.5]
1−µ if µ∈ (0.5,0.75)
1−µ+ tR

(
µ− 3

4

)
otherwise

. (8.4)

It is possible to show that the optimal solution corresponds to t∗L = t∗R = 2 and the platform’s content

policy having support in {0, 1/2,1}. That is, the platform balances its desire to appear neutral, with

enough political content to attract its audience. This can be confirmed by visually inspecting the

Lagrangian objective function and its concavification at the prior in Figure 7 for different values

of the multipliers tL, tR.
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