
Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium
Meta-Solvers

Luke Marris 1 2 Paul Muller 1 3 Marc Lanctot 1 Karl Tuyls 1 Thore Graepel 1 2

Abstract

Two-player, constant-sum games are well stud-
ied in the literature, but there has been limited
progress outside of this setting. We propose Joint
Policy-Space Response Oracles (JPSRO), an algo-
rithm for training agents in n-player, general-sum
extensive form games, which provably converges
to an equilibrium. We further suggest correlated
equilibria (CE) as promising meta-solvers, and
propose a novel solution concept Maximum Gini
Correlated Equilibrium (MGCE), a principled and
computationally efficient family of solutions for
solving the correlated equilibrium selection prob-
lem. We conduct several experiments using CE
meta-solvers for JPSRO and demonstrate conver-
gence on n-player, general-sum games.

1. Introduction
Recent success in tackling two-player, constant-sum games
(Silver et al., 2016; Vinyals et al., 2019) has outpaced
progress in n-player, general-sum games despite a lot of
interest (Jaderberg et al., 2019; OpenAI et al., 2019; Brown
& Sandholm, 2019; Lockhart et al., 2020; Gray et al., 2020;
Anthony et al., 2020). One reason is because Nash equi-
librium (NE) (Nash, 1951) is tractable and interchange-
able in the two-player, constant-sum setting but becomes
intractable (Daskalakis et al., 2009) and potentially non-
interchangeable1 in n-player and general-sum settings. The
problem of selecting from multiple solutions is known as
the equilibrium selection problem (Goldberg et al., 2013;

1DeepMind 2University College London 3Université Gustave
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1That is, there are no longer any guarantees on the expected
utility when each player plays their part of some equilibrium;
guarantees only hold when all players play the same equilibrium.
Since players cannot guarantee what others choose, they cannot
optimize independently, so the Nash equilibrium loses its appeal
as a prescriptive solution concept.

Avis et al., 2010; Harsanyi & Selten, 1988).2

Outside of normal form (NF) games, this problem setting
arises in multi-agent training when dealing with empiri-
cal games (also called meta-games), where a game pay-
off tensor is populated with expected outcomes between
agents playing an extensive form (EF) game, for example
the StarCraft League (Vinyals et al., 2019) and Policy-Space
Response Oracles (PSRO) (Lanctot et al., 2017), a recent
variant of which reached state-of-the-art results in Stratego
Barrage (McAleer et al., 2020).

In this work we propose using correlated equilibrium (CE)
(Aumann, 1974) and coarse correlated equilibrium (CCE) as
a suitable target equilibrium space for n-player, general-sum
games3. The (C)CE solution concept has two main bene-
fits over NE; firstly, it provides a mechanism for players to
correlate their actions to arrive at mutually higher payoffs
and secondly, it is computationally tractable to compute
solutions for n-player, general-sum games (Daskalakis et al.,
2009). We provide a tractable approach to select from the
space of (C)CEs (MG), and a novel training framework that
converges to this solution (JPSRO). The result is a set of
tools for theoretically solving any complete information4

multi-agent problem. These tools are amenable to scaling
approaches; including utilizing reinforcement learning, func-
tion approximation, and online solution solvers, however
we leave this to future work.

In Section 2 we provide background on a) correlated equi-
librium (CE), an important generalization of NE, b) coarse
correlated equilibrium (CCE) (Moulin & Vial, 1978), a sim-
ilar solution concept, and c) PSRO, a powerful multi-agent
training algorithm. In Section 3 we propose novel solution
concepts called Maximum Gini (Coarse) Correlated Equilib-
rium (MG(C)CE) and in Section 4 we thoroughly explore its
properties including tractability, scalability, invariance, and

2The equilibrium selection problem is subtle and can have
various interpretations. We describe it fully in Section 4.1 based
on the classical understanding from (Harsanyi & Selten, 1988).

3We mean games (also called environments) in a very general
sense: extensive form games, multi-agent MDPs and POMDPs
(stochastic games), imperfect information games, are all solvable
with this approach.

4Payoffs for all players are required for the correlation device.
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a parameterized family of solutions. In Section 5 we propose
a novel training algorithm, Joint Policy-Space Response Or-
acles (JPSRO), to train policies on n-player, general-sum
extensive form games. JPSRO requires the solution of a
meta-game, and we propose using MG(C)CE as a meta-
solver. We prove that the resulting algorithm converges to
a normal form (C)CE in the extensive form game. In Sec-
tion 6 we conduct an empirical study and show convergence
rates and social welfare across a variety of games including
n-player, general-sum, and common-payoff games.

An important area of related work is α-Rank (Omidshafiei
et al., 2019) which also aims to provide a tractable alterna-
tive solution in normal form games. It gives similar solutions
to NE in the two-player, constant-sum setting, however it is
not directly related to NE or (C)CE. α-Rank has also been
applied to ranking agents and as a meta-solver for PSRO
(Muller et al., 2020). MG(C)CE is inspired by Maximum
Entropy Correlated Equilibria (MECE) (Ortiz et al., 2007),
an entropy maximizing CE based on Shannon’s entropy that
is harder to compute than Gini impurity.

Another important area of related work concerns optimiza-
tion based approaches (von Stengel & Forges, 2008; Dudik
& Gordon, 2012; Farina et al., 2019a) and no-regret ap-
proaches (Celli et al., 2019; 2020; Morrill et al., 2021).
These approaches identify specific subsets or supersets of
(C)CE in the extensive-form game by constructing con-
straint programs or by local regret minimization using the
full representation of the information state space. In contrast,
the oracle approach can iteratively identify meta-games with
smaller support that summarize the strategic complexity of
the game compactly.

2. Preliminaries
This section introduces correlated equilibrium and the multi-
agent training algorithm PSRO.

2.1. Correlated Equilibrium

Each player, p, in a game has a set of actions ap ∈ Ap
(also known as pure strategies) available to it. Let n be the
number of players in a game. Let A = ⊗pAp be the joint
action space and a = (a1, ..., an) ∈ A be a joint action.

Let us index quantities relating to all players apart from
player p as −p = {1, ..., p − 1, p + 1, ..., n}. Let σ(a) =
σ(ap, a−p) be the probability that joint action a ∈ A is
played in a game. Let σ(ap) =

∑
a−p∈A−p

σ(ap, a−p) be
the marginal probability of player p taking action ap ∈
Ap. Let σ(a−p|ap) be the conditional probability that other
players play a−p ∈ A−p, when player p plays ap ∈ Ap. σ
without arguments should be interpreted as a vector of size
[|A|].

Let Gp : A → R be the payoff function for player p
when players play the joint action a ∈ A. The full game
payoff G can therefore be defined by a tensor of shape
[n, |A1|, ..., |An|]. A normal form game is defined by the
tuple G = (G,A).

Define Ap(a′p, ap, a−p) = G(a′p, a−p)−G(ap, a−p) as the
advantage of player p switching action from ap to a′p, when
other players play a−p. This can be represented as a matrix,
Ap, of shape [|Ap|(|Ap| − 1), |A|], since we do not need to
compare an action with itself. The matrix is sparse and a
fraction of 1

Ap
elements are non-zero. We use A, with shape

[
∑
p |Ap|(|Ap| − 1), |A|], to denote the concatenation of

Ap into a two-dimensional matrix.

A correlated equilibrium (CE), is a joint mixed strategy P (a)
such that no player p has payoff to gain from unilaterally
choosing to play another action a′p instead of ap. An ap-
proximate correlated equilibrium (ε-CE)5 is one where that
gain from switching actions is no more than ε. When ε = 0,
the standard CE is recovered. This relationship is described
mathematically in Equation 1, ∀p ∈ P, a′p 6= ap ∈ Ap. In
matrix form, we can simply write Aσ ≤ ε.∑

a−p

σ(a−p, ap)Ap(a
′
p, ap, a−p) ≤ ε (1)

Together, Ap and ε represent the CE linear inequality con-
straints. Mathematically these are equations of a plane, and
separate the joint action space σ(a) into half-spaces. To-
gether these half-spaces intersect to form a convex polytope
of valid CE solutions.

Of special interest are valid CEs that can factorize into
their marginals σ(a) =

∏
p σ(ap), and correspond to NE

solutions. All NEs are also CEs. Since an NE always exists
(when there are finite players and actions) (Nash, 1951),
a CE always exists. An NE is always on the boundary of
the polytope for non-trivial games (Nau et al., 2004). Any
convex combination of CEs is also a CE.

CEs provide a richer set of solutions than NEs. The max-
imum sum of social welfare in CEs is at least that of any
NE. In particular, this allows more intuitive solutions to
anti-coordination games such as chicken and traffic lights.
Consider the traffic lights example; a symmetric, general-
sum, two-player game consisting of two actions go, (G), and
wait, (W ). (G,G) results in a crash, in (W,W ) no progress
is made, and (G,W ) and (W,G) result in progress for one
of the players. Figure 1 shows the NE and CE solution
space for the traffic lights game. The mixed NE solution
(G,W ) = ( 1

11 ,
10
11 ) is clearly unsatisfactory ( 1

121 crashing
and 100

121 waiting). One could argue that the best solution
is to have players flip a coin to decide who waits and who

5There are two competing definitions for approximate CE. We
use the computationally convenient one (Section A.2).



Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers

goes. It turns out that this solution is a valid CE and is in
fact the unique solution of min ε-MGCE, a novel solution
concept that we introduce later in Section 4.3.

Correlation is achieved via a trusted external entity (corre-
lation device) which samples a joint action from a public
CE joint distribution. Each player is given their action in
secret. The properties of the CE means that no individual
player is motivated to deviate from the suggested action. If
there are deviation actions with equal payoff available, the
distribution is a weak equilibrium. If instead, the suggested
actions are better than alternatives, the distribution is a strict
equilibrium. Distributions that produce actions that are not
better than all alternatives are called approximate equilib-
rium, and the maximum gain that can be obtained by an
agent unilaterally deviating from any suggested action is
described by ε > 0. Weak and strict equilibrium have asso-
ciated gain ε = 0 and ε < 0, respectively. Mathematically,
the effect of reducing ε is shrinking the volume of the CE
polytope. We can choose ε when solving for a CE and show
in Section 4.3 how ε can be used to parameterise a family
of MGCE solutions.

There are two important solution concepts in the space of
CEs. The first is Maximum Welfare Correlated Equilibrium
(MWCE) which is defined as the CE that maximises the
sum of all player’s payoffs. An MWCE can be obtained by
solving a linear program, however the MWCE may not be
unique and therefore does not fully solve the equilibrium
selection problem (e.g. constant-sum game solutions all
have equal payoff). The second such concept is Maximum
Entropy Correlated Equilibrium (MECE) (Ortiz et al., 2007)
which maximises Shannon’s entropy (Shannon, 1948) as an
objective. MECE also shares some interesting properties
with MGCE such as computational scalability when the so-
lution is full-support (positive probability mass everywhere).
Drawbacks of this approach are that the literature does not
provide algorithms when the solution is general-support
(non-negative probability) and, maximising Shannon’s en-
tropy can be complex.

Finally, coarse correlated equilibrium (CCE) (Moulin &
Vial, 1978) (Section A.3) is a simpler solution concept that
contains CE as a subset: NE ⊆ CE ⊆ CCE. Intuitively, a
game distribution is in CCE if no player wishes to deviate
before receiving a recommended signal.

The solution concepts discussed so far apply to normal
form (NF) games, and therefore are sometimes prefixed as
such in the literature (NFCE and NFCCE) to disambiguate
them from their extensive form (EF) counterparts (EFCE
(von Stengel & Forges, 2008) and EFCCE (Farina et al.,
2019a)). This distinction is important because although EF
solutions are a natural choice in EF games; NF solutions
can also be applied in EF games by using whole policies
πp ∈ Πp in place of actions ap ∈ Ap. These solutions

are subsets of one another; NFCE ⊆ EFCE ⊆ EFCCE ⊆
NFCCE (von Stengel & Forges, 2008), therefore NFCE is
the most restrictive correlation device while NFCCE is the
least restrictive and is therefore capable of achieving the
highest welfare. The best correlation device to use is a
matter of debate in the literature. However, we note that NF
solutions are interesting in EF games because a) it permits
the highest welfare, and b) only requires communicating
recommendations once before the game starts (as opposed to
EF(C)CEs which require communication at every timestep).
(J)PSRO trains sets of policies and converges to an NF
equilibrium. Therefore, all equilibria discussed in this work
are NF and we do not use a prefix going forward. It is
possible to extend PSRO to EF equilibria (McAleer et al.,
2021).

2.2. Policy-Space Response Oracles (PSRO)

Policy-Space Response Oracles (PSRO) (Lanctot et al.,
2017) (Algorithm 1) is an iterative population based train-
ing method for multi-agent learning that generalizes other
well known algorithms such as fictitious play (FP) (Brown,
1951), fictitious self play (FSP) (Heinrich et al., 2015) and
double oracle (DO) (McMahan et al., 2003).

PSRO finds a set of policies, (πp ∈ Πp)p=1..n, and a distri-
bution over this set for each player, (σp)p=1..n. The distribu-
tion converges to an NE in two-player, zero-sum games, and
has recently been extended to convergence to other types of
equilibria (Muller et al., 2020; McAleer et al., 2021). This
work is in line with these developments, studying conver-
gence of a variant of PSRO with joint policy distributions
and (C)CE meta-solvers in n-player, general-sum games.

PSRO consists of a response oracle that estimates the best
response (BR) to a joint distribution of policies. Commonly
the response oracle is either a reinforcement learning (RL)
agent or a method that computes the exact BR. The com-
ponent that determines the distribution of policies that the
oracle responds to is called the meta-solver (MS). The MS
operates on the meta-game (MG), which is a payoff tensor
estimated by measuring the expected return (ER) of poli-
cies against one another. This is a NF game, but instead of
strategies corresponding to actions, a, they correspond to
policies, π. The set of deterministic policies can be huge
and that of stochastic policies is infinite, therefore PSRO
only considers a subset of game policies: the ones found
by the BR over all iterations so far. Different MSs result in
different algorithms: the uniform distribution results in FSP,
and using the NE distribution results in an extension of DO.

3. MG(C)CE and its Computation
The set of (C)CEs forms a convex polytope, and therefore
any strictly convex function could uniquely select amongst
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GG

GW

WG

WW
NE
MWCE
MECE
MGCE

(a) CE Convex Polytope

G W
G −10,−10 1, 0
W 0, 1 0, 0

(b) Payoff Table

G W
G 0.033 0.334
W 0.334 0.299

(c) MECE
(0, 0)

G W
G 1

121
10
121

W 10
121

100
121

(d) Mixed NE
(0, 0)

G W
G 0 1
W 0 0

(e) Row NE
(1, 0)

G W
G 0 0
W 1 0

(f) Col NE
(0, 1)

G W
G 0.033 0.327
W 0.327 0.313

(g) MGCE
(0, 0)

G W
G 0 0.34
W 0.34 0.32

(h) F-MGCE
(0.34, 0.34)

G W
G 0 0.5
W 0.5 0

(i) MWCE
(0.5, 0.5)

Figure 1. The solution landscape for the traffic lights game. The solid polytope shows the space of CE joint strategies, and the dotted
surface shows factorizable joint strategies. NEs are where the surface and polytope intersect. There are three unsatisfying NEs: mixed
spends most of its time waiting and does not avoid crashing, the others favour only the row or column player. One MWCE provides a
better solution (note that Row NE and Col NE, and any mixture of the two are also MWCE solutions). The center of the tetrahedron is the
uniform distribution and the MECE and MGCE attempt to be near this point. The dashed lines correspond to the family of solutions
permitted by MGCE and MECE when varying the approximation parameter ε. Both have (GW,WG) = (0.5, 0.5) as the min ε solution.
Player payoffs are given in parenthesis.

this set. The literature only provides one such example:
MECE (Ortiz et al., 2007) which has a number of appealing
properties, but was found to be slow to solve large games.
There is a gap in the literature for a more tractable approach,
and propose to use the Gini impurity (GI) (Breiman et al.,
1984; Bishop, 2006). GI is a member of Tsallis entropy
family, a generalized entropy that is equivalent to GI under
a certain parameterization. It is maximized when the prob-
ability mass function is uniform σ = 1

|A| and minimized
when all mass is on a single outcome. GI is popular in
decision tree classification algorithms because it is easy to
compute (Breiman et al., 1984). We call the resulting solu-
tion concept maximum Gini (coarse) correlated equilibrium
(MG(C)CE). This approach has connections to maximum
margin (Cortes & Vapnik, 1995) and maximum entropy
(Jaynes, 1957). The derivations (Section C.2) follow stan-
dard optimization theory.

3.1. Quadratic Program

The Gini impurity is defined as 1−σTσ, and the MG(C)CE
is denoted σ∗. We use an equivalent standard form objec-
tive − 1

2σ
Tσ. The most basic form of the problem can be

expressed directly as a quadratic program (QP), consisting
of a quadratic objective function (Equation 2) and linear
constraints (Equations 3 and 4).

Gini objective: max
σ
−1

2
σTσ s.t. (2)

(C)CE constraints: Apσ ≤ ε ∀p (3)

Probability constraints: σ ≥ 0 eTσ = 1 (4)

QPs are a well studied problem class and many techniques
may be used to solve them, including convex and quadratic
optimization software, such as CVXPY (Diamond & Boyd,
2016; Agrawal et al., 2018) and OSQP (Stellato et al., 2020).

3.2. Primal and Dual Forms

The primal objective that we wish to optimize is
maxσ minα,β,λ L(σ, α, β, λ) = Lσα,β,λ, where Lσα,β,λ is
the primal Lagrangian function, αp ≥ 0 are the dual vari-
able vectors corresponding to the ε−(C)CE inequality con-
straints (Equation 3), β ≥ 0 is the dual variable vector cor-
responding to the distribution inequality constraints (Equa-
tion 4), and λ is the dual variable corresponding to the dis-
tribution equality constraint (Equation 4). By augmenting
the dual variables α = [α1, ..., αn] and constraints matrix
A = [A1, ..., An], we can write the primal objective com-
pactly as:

Lσαp,β,λ = −1

2
σTσ−αT (Aσ−ε)−βTσ+λ(eTσ−1), (5)
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where the constant vector of ones with appropriate size is
denoted by e, and ε is a vector populated with the approxi-
mation parameter. We can also formulate a simplified dual
version of the optimization as:

Lα,β = −1

2
αTACATα− bTATα+ εTα− 1

2
βTCβ

− bTβ − αTACβ +
1

2
bT b, (6)

where C = I − ebT normalizes by the mean, and b = 1
|A|e

is the uniform vector. The optimal primal solution σ∗ can be
recovered from the optimal dual variables α∗p and β∗p using

σ∗ = CATα∗ + Cβ∗ + b. (7)

The full-support assumption states that all joint probabilities
have some positive mass, σ > 0. In this scenario, the dual
variable vector corresponding to the non-negative proba-
bility constraint is zero, β = 0. Therefore we can define
simplified primal and dual objectives.

Lσα,λ = −1

2
σTσ − αT (Aσ − ε) + λ(eTσ − 1) (8)

Lα = −1

2
αTACATα− bTATα+ εTα+

1

2
bT b (9)

σ∗ = CATα∗ + b (10)

4. Properties of MG(C)CE
In this section we discuss some of the properties of ε-
MG(C)CE6. Section C contains the proofs for this section.

4.1. Equilibrium Selection Problem

There are two levels of coordination; first is selecting an
equilibrium before play commences, and second is selecting
actions during play time. Both NEs and (C)CEs require
agreement on what equilibrium is being played (Goldberg
et al., 2013; Avis et al., 2010; Harsanyi & Selten, 1988): for
(C)CEs this is a joint action probability distribution, and for
NEs this is also a joint action probability distribution that
can conveniently be factored into stochastic strategies for
each player. Therefore, at this level of coordination, both
NEs and (C)CEs are similar. We refer to this coordination
problem as the equilibrium selection problem (Harsanyi &
Selten, 1988). At action selection time only (C)CEs require
further coordination. NEs are factorizable and therefore can
sample independently without further coordination. (C)CEs
rely on a central correlation device that will recommend
actions from the equilibrium that was previously agreed
upon.

6Some of the properties discussed here also apply to MECE
(Ortiz et al., 2007).

This means that neither NEs nor (C)CEs can be directly
used prescriptively in n-player, general-sum games. These
solution concepts specify what subsets of joint strategies
are in equilibrium, but does not specify how decentralized
agents should select amongst these. Furthermore, the pres-
ence of a correlation device does not make (C)CEs prescrip-
tive because the agents still need a mechanism to agree on
the distribution the correlation device samples from7. This
coordination problem can be cast as one that is more com-
putational in nature: what rules allow an equilibrium to be
uniquely (and perhaps de-centrally) selected?

This highlights the main drawback of MW(C)CE which does
not select for unique solutions (for example, in constant-sum
games all solutions have maximum welfare). One selection
criterion for NEs is maximum entropy Nash equilibrium
(MENE) (Balduzzi et al., 2018), however outside of the two-
player constant-sum setting, these are generally not easy to
compute (Daskalakis et al., 2009). CEs exist in a convex
polytope, so any convex function can select among them.
Maximum entropy correlated equilibrium (MECE) (Ortiz
et al., 2007) is limited to full-support solutions, which may
not exist when ε = 0, and can be hard to solve in practice.
Therefore, there is gap in the literature for a computationally
tractable, unique, solution concept and this work proposes
MG(C)CE fills this gap.

Theorem 1 (Uniqueness and Existence). MG(C)CE pro-
vides a unique solution to the equilibrium solution problem
and always exists.

4.2. Scalable Representation

MG(C)CE can provide solutions in general-support and,
similar to MECE, MG(C)CE permits a scalable representa-
tion when the solution is full-support. Under this scenario,
the distribution inequality constraint variables, β, are inac-
tive, are equal to zero, can be dropped, and the α variables
can fully parameterize the solution.

Theorem 2 (Scalable Representation). The MG(C)CE, σ∗,
has the following forms:

General Support: σ∗ = CATα∗ + Cβ∗ + b (11)

Full Support: σ∗ = CATα∗ + b (12)

Where e is a vector of ones, |A| =
∏
p |Ap|, C = I − eT b,

and b = 1
|A|e are constants. α∗ ≥ 0 and β∗ ≥ 0 are the

optimal dual variables of the solution, corresponding to the
(C)CE and distribution inequality constraints respectively.

Let |Ap| correspond to the number of actions available to
player p, and the total number of joint actions, σ, is |A| =

7This is true if the correlation device is not considered as part
of the game. If it was part of the game (for example traffic lights
at a junction) the solution concept can appear prescriptive.
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p |Ap|. For each value of σ, there is a corresponding β

dual variable. The number of α dual variables is no more
than the number of pair permutations

∑
p |Ap|(|Ap| − 1)

for CEs or actions
∑
p |Ap| for CCEs. Clearly, games with

three or more players and many actions,
∑
p |Ap|(|Ap| −

1)�
∏
p |Ap| for CEs and

∑
p |Ap| �

∏
p |Ap| for CCEs,

allow for a very scalable parameterization if the full-support
assumption holds. Furthermore, optimal α∗ are sparse so
we can discard rows from A, in a similar spirit to SVMs
(Cortes & Vapnik, 1995).

For CEs, full-support is not possible when an action is
strictly dominated by another. This case can be easily miti-
gated by iterated elimination of strictly dominated strategies
(IESDS) (Fudenberg & Tirole, 1991). This also has the
desirable property of simplifying the optimization. In a
similar argument, when actions are repeated (having the
same payoffs), only one need be retained with appropriate
modifications to the optimization.

Among the set of ε-MG(C)CE there always exists one with
full-support. Note that any infinitesimal positive ε will per-
mit a full-support (C)CE, but ε-MG(C)CE does not neces-
sarily select these. An upper bound on ε which permits a
full-support solution is given by Theorem 3.
Theorem 3 (Existence of Full-Support ε-MG(C)CE). For
all games, there exists an ε ≤ max(Ab) such that a full-
support, ε-MG(C)CE exists. A uniform solution, b, always
exists when max(Ab) ≤ ε. When ε < max(Ab), the solu-
tion is non-uniform.

4.3. Family of Solutions

ε-MG(C)CE provides an intuitive way to control the strict-
ness of the equilibrium via the approximation parameter, ε,
which parameterizes a family of unique solutions. Positive ε
expands the solution set and results in a higher Gini impurity
solution, at the expense of lower payoff, and approximate
equilibrium. Negative ε shrinks the solution set to achieve a
strict equilibrium and higher payoff at the expense of Gini
impurity. This might also be a more robust solution (Wald,
1939; 1945; Ben-Tal et al., 2009) if the payoff is uncertain.

It is worth emphasizing a set of particularly interesting so-
lutions within this family. Firstly the standard MG(C)CE,
with ε = 0, provides a weak equilibrium for non-trivial
games (Theorem 4). Secondly, an edge case with pos-
itive ε is max(Ab)-ε-MG(C)CE which guarantees a uni-
form distribution solution. Converging to uniform when
increasing ε is a desirable property (principle of insuffi-
cient reason) (Leonard J. Savage, 1954; Sinn, 1980; Jaynes,
1957). Thirdly, note that all ε < max(Ab) are guaran-
teed to have a non-uniform distribution (Theorem 3), there-
fore, a 1

2 max(Ab)-ε-MG(C)CE could be an interesting
way to regularise a MGCE towards a uniform distribution.
Fourthly, because our algorithms are particularly scalable

when full-support, working out the minimum ε such that
a full-support solution exists, full-ε-MG(C)CE, would be
useful. Finally, the solution with the smallest feasible ε is
the min ε-MG(C)CE. This solution has the lowest entropy
of the family, but the highest payoff, and constitutes the
strictest equilibrium. Refer to Figure 1 for the family of
solutions for the traffic lights game.
Theorem 4. For non-trivial games (Nau et al., 2004), the
MG(C)CE lies on the boundary of the polytope and hence is
a weak equilibrium.

Since the ε is deterministically known for the max(Ab)ε-
MG(C)CE, 1

2 max(Ab)ε-MG(C)CE and MG(C)CE solu-
tions, we can solve for these using the standard solvers
discussed in Section 3. For the min ε-MG(C)CE we can
tweak our optimization procedure to solve for this case di-
rectly by simply including a cε term to minimize, where
c > 1. We use bisection search to find full-ε-MG(C)CE.

4.4. Invariance

An important concept in decision theory, called cardinal
utility (Mas-Colell et al., 1995), is that offset and positive
scale of each player’s payoff does not change the properties
of the game. A notable solution concept that does not have
this property is MW(C)CE.
Theorem 5 (Affine Payoff Transformation Invariance). If
σ∗ is the ε-MG(C)CE of a game, G, then for each player p
independently we can transform the payoff tensors G̃p =
cpGp + dp and approximation vector ε̃p = apεp for some
positive cp and real dp scalars, without changing the so-
lution. Furthermore rows of the advantage matrix A, and
approximation vector, ε, can be scaled independently with-
out changing the MG(C)CE.

4.5. Computationally Tractable

In general, finding NEs is a hard problem (Daskalakis et al.,
2009). While solving for any valid (C)CE is simple (basic
feasible solution of a linear constraint problem) (Matouek &
Gärtner, 2006), and finding a (C)CE with a linear objective
is an LP, solving for a particular (C)CE can be hard. For
example, MECE (Ortiz et al., 2007) requires optimizing a
constrained nonlinear objective. α-Rank can be solved in
cubic time in the number of pure joint strategies, O(|A|3).

MG(C)CE, however, is the solution to a quadratic program,
and therefore can be solved in polynomial time. Further-
more, if the assumption is made that the solution is full-
support, the algorithm’s variables scale better than the num-
ber of σ parameters.

Space requirements are dominated by the storage of the
advantage matrixA, which requires a space ofO(n|Ap||A|)
when exploiting sparsity. Computation is also on the order
O(n|Ap||A|) for gradient computation, exploiting sparsity.
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The number of variables depends on whether we are solving
the general-support, |A|+ n|Ap|2, or full-support, n|Ap|2
version. It is possible to make use of sparse matrix imple-
mentations and only efficient matrix-vector multiplications
are required to compute the derivatives.

5. Joint PSRO
JPSRO (Algorithm 2) is a novel extension to Policy-Space
Response Oracles (PSRO) (Lanctot et al., 2017) (Algo-
rithm 1) with full mixed joint policies to enable coordination
among policies. Although a conceptually straightforward
extension, careful attention is needed to a) develop suitable
best response (BR) operators, b) develop tractable joint dis-
tribution meta-solvers (MS), c) evaluate the set of policies
found so far, and d) develop convergence proofs.

Using notation of Section 2.1, but policies instead of actions.
Let (Π∗p)p=1..n be the set of all policies of the extensive
form game available for each player, and Π∗ = ⊗pΠ∗p be
the set of all joint policies. JPSRO is an iteration-based
algorithm, let {cπtp, ...} = Πt

p be the set of new policies
found at iteration t for player p with c ∈ C indexing an
individual policy within that set. The set of all policies
found so far for player p is denoted Π0:t

p and the set of joint
policies is denoted Π0:t = ⊗pΠ0:t

p . The expected return
(ER), an NF game (G0:t

p )p=1..n, is tracked for each joint
policy found so far such that G0:t

p (π) is the expected return
to player p when playing joint policy π. We also define G∗p
to be the payoff over all possible joint policies.

The MS is a function taking in the ER and returning a joint
distribution, σt, over Π0:t, such that σt(π) is the probability
to play joint policy π ∈ Π0:t at iteration t. The BR operator
finds a policy which maximizes the expected return over of
opponent mixed joint policies, π−p ∈ Π0:t

−p. This mixture is
defined in terms of the MS joint distribution, σt.

5.1. Best Response Operators

At iteration t + 1 each set, Π0:t
p , can be expanded using

either using a CCE or CE best response (BR) operator. The
type of BR operator used determines the type of equilibrium
that JPSRO converges to (Section 5.4).

JPSRO(CCE)
There is a single BR objective for each player, which ex-
pands the player policy set, Π0:t+1

p = Π0:t
p ∪ Πt+1

p , where
Πt+1
p = {BRt+1

p }, and σ(π−p) =
∑
πp∈Π0:t

p
σ(πp, π−p).

BRt+1
p ∈ argmax

π∗p∈Π∗p

∑
π−p∈Π0:t

−p

σt(π−p)G
∗
p(π
∗
p , π−p)

The CCE BR attempts to exploit the joint distribution with
the responder’s own policy preferences marginalized out.

JPSRO(CE)
There is a BR for each possible recommendation a
player can get, Πt+1

p = Π0:t
p ∪ Πt+1

p , where Πt+1
p =

{(BRt+1
p (πip))i=1..|Π0:t

p |}.

BRt+1
p (πp) ∈ argmax

π∗p∈Π∗p

∑
π−p∈Π0:t

−p

σt(π−p|πp)G∗p(π∗p , π−p)

Therefore the CE BR attempts to exploit each policy con-
ditional “slice”. In practice, we only calculate a BR for
positive support policies (similar to Rectified Nash (Bal-
duzzi et al., 2019). Computing the argmax of the BRs can
be achieved through RL or exactly traversing the game tree.

5.2. Meta-Solvers

We propose that (C)CEs are good candidates as meta-solvers
(MSs). They are more tractable than NEs and can enable co-
ordination to maximize payoff between cooperative agents.
In particular we propose three flavours of equilibrium MSs.
Firstly, greedy (such as MW(C)CE), which select highest
payoff equilibria, and attempt to improve further upon them.
Secondly, maximum entropy (such as MG(C)CE) attempt to
be robust against many policies through spreading weight.
Finally, random samplers (such as RV(C)CE) attempt to
explore by probing the extreme points of equilibria. Note
that these MSs search through the equilibrium subspace, not
the full policy space, and this restriction is a powerful way
of achieving convergence. Note that since CEs ⊆ CCEs,
one can also use CE MSs with JPSRO(CCE).

5.3. Evaluation

Measuring convergence to NE (NE Gap, Lanctot et al.
(2017)) is suitable in two-player, constant-sum games. How-
ever, it is not rich enough in cooperative settings. We pro-
pose to measure convergence to (C)CE ((C)CE Gap in Sec-
tion E.4) in the full extensive form game. A gap, ∆, of zero
implies convergence to an equilibrium. We also measure
the expected value obtained by each player, because conver-
gence to an equilibrium does not imply a high value. Both
gap and value metrics need to be evaluated under a meta-
distribution. Using the same distribution as the MS may be
unsuitable because MSs do not necessarily result in equilib-
ria, may be random, or may maximize entropy. Therefore
we may also want to evaluate under other distributions such
as MW(C)CE, because it constitutes an equilibrium and
maximizes value. A final relevant measurement is the num-
ber of unique polices found over time. The goal of an MS is
to expand policy space (by proposing a joint policy to best
respond to). If it fails to find novel policies at an acceptable
rate, this could be evidence it is not performing well. Not
all novel policies are useful, so caution should be exercised
when interpreting this metric. If using a (C)CE MS and the
gap is positive, it is guaranteed to find a novel BR policy.
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Algorithm 1 Two-Player PSRO

1: Π0
1, Π0

2← {π0
1}, {π0

2}
2: G0← ER(Π0)
3: σ0

1 , σ0
2 ←MS(G0)

4: for t← {1, ...} do
5: πt1, ∆t

1← BR(Πt−1
2 , σt−1

2 )
6: πt2, ∆t

2← BR(Πt−1
1 , σt−1

1 )
7: Πt

1, Πt
2← Πt−1

1 ∪ {πt1}, Πt−1
2 ∪ {πt2}

8: Gt← ER(Πt)
9: σt1, σt2←MS(Gt)

10: if ∆t
1 + ∆t

2 = 0 then
11: break

return (Π0:t
1 , Π0:t

2 ), (σt1, σt2)

Algorithm 2 JPSRO

1: Π0
1, ..., Π0

n ← {π0
1}, ..., {π0

n}
2: G0← ER(Π0)
3: σ0←MS(G0)
4: for t← {1, ...} do
5: for p← {1, ..., n} do
6: {1πtp, ...}, {1∆t

p, ...} ← BRp(Π0:t−1, σt−1)
7: Π0:t

p ← Π0:t−1
p ∪ {1πtp, ...}

8: G0:t← ER(Π0:t)
9: σt←MS(G0:t)

10: if
∑
p,c

c∆t
p = 0 then

11: break
return Π0:t, σt

5.4. Convergence to Equilibria

JPSRO(CCE) converges8 to a CCE and JPSRO(CE) con-
verges to a CE. We provide a sketch of the proofs here, for
full proofs see Section E.5.
Theorem 6 (CCE Convergence). When using a CCE meta-
solver and CCE best response in JPSRO(CCE) the mixed
joint policy converges to a CCE under the meta-solver dis-
tribution.
Theorem 7 (CE Convergence). When using a CE meta-
solver and CE best response in JPSRO(CE) the mixed joint
policy converges to a CE under the meta-solver distribution.

Proof. A (C)CE MS provides a distribution that is in equi-
librium over the set of joint policies found so far, Π0:t. For
the algorithm to have converged, it needs to also be in equi-
librium over the set of all possible joint policies, Π∗. This
is the case when the BR fails to find a novel policy with
nonzero gap. Policies that have been found before, by defi-
nition of (C)CE, have zero gap. All behavioural policies can
be defined in terms of a mixture of deterministic policies.
Therefore, given that there are finite deterministic policies
the algorithm will converge.

6. CEs and CCEs as Joint Meta-Solvers
We evaluate a number of (C)CE MSs in JPSRO on pure com-
petition, pure cooperation, and general-sum games (Section
H). All games used are available in OpenSpiel (Lanctot
et al., 2019). More thorough descriptions of the games used
can be found in Section F. We use an exact BR oracle, and
exactly evaluate policies in the meta-game by traversing the
game tree to precisely isolate the MS’s contribution to the
algorithm.

We compare against common MS including uniform, α-

8In exponential time in the worst case, however in practice
convergence is much faster.

Rank (Omidshafiei et al., 2019; Muller et al., 2020), Pro-
jected Replicator Dynamics (PRD) (Lanctot et al., 2017)
which is an NE approximator, and random vertex (coarse)
correlated equilibrium (RV(C)CE) which randomly selects a
solution on the vertices of (C)CE polytope. We also include
a random joint and random Dirichlet solvers as baselines.
We treat the solutions to the MSs as full joint distributions.
Random solvers were evaluated with five seeds and we plot
the mean. When evaluating, we measure equilibrium gaps
under their own MS distribution and MW(C)CE to provide a
consistent and value maximizing comparison. Experiments
were ran for up to 6 hours, after which they were terminated.

Kuhn Poker (Kuhn, 1950; Southey et al., 2009; Lanctot,
2014) is a zero-sum poker game with only two actions per
player. The two-player variant is solvable with PSRO, how-
ever the three-player version benefits from JPSRO. The
results in Figure 2a show rapid convergence to equilibrium.

Trade Comm is a two-player, common-payoff trading game,
where players attempt to coordinate on a compatible trade.
This game is difficult because it requires searching over a
large number of policies to find a compatible mapping, and
can easily fall into a sub-optimal equilibrium. Figure 2b
shows a remarkable dominance of CCE MSs. It is clear that
traditional PSRO MSs cannot cope with this cooperative
setting.

Sheriff (Farina et al., 2019b) is a two-player, general-sum
negotiation game. It consists of bargaining rounds between
a smuggler, who is motivated to import contraband without
getting caught, and a sheriff, who is motivated to find con-
traband or accept bribes. Figure 2c shows that JPSRO is
capable of finding the optimal value.

7. Discussion
There has been significant recent interest in solving the
equilibrium selection problem (Ortiz et al., 2007; Omid-
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(b) Value sum on three-item Trade Comm. The approximate CCE
MS was not sufficient to converge in this game, however all valid
CCE MSs were able to converge to the optimal value sum.
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Figure 2. JPSRO(CCE) on various games. Additional metrics can
be found in Section H. MGCCE is consistently a good choice of
MS over the games tested.

shafiei et al., 2019). This paper provides a novel approach
which is computationally tractable, supports general-support
solutions, and has favourable scaling properties when the
solution is full-support.

The new solution concept MG(C)CE is rooted in the power-
ful principles of entropy and margin maximisation. There-
fore it is a simple solution that makes limited assumptions,
and is robust to many possible counter strategies (Jaynes,
1957). The MG(C)CE defines a family of unique solutions
parameterized by ε, that can control for the properties of
the distribution. We have compared it to other NE, CE, and
α-Rank solutions, and have shown it has several advantages
over these approaches, and performs very well across a
variety of games.

PSRO has proved to be a formidable learning algorithm in
two-player, constant-sum games, and JPSRO, with (C)CE
MSs, is showing promising results on n-player, general-
sum games. The secret to the success of these methods

seems to lie in (C)CEs ability to compress the search space
of opponent policies to an expressive and non-exploitable
subset. For example, no dominated policies are part of
CEs, and during execution there are no policies a player
would rather deviate to. For (C)CE MSs, if there is a value-
improving BR it is guaranteed to be a novel policy.

There is a rich polytope of possible equilibria to choose
from, however, a MS must pick one at each time step. There
are three competing properties which are important in this
regard, exploitation, robustness, and exploration. For ex-
ploitation, maximum welfare equilibria appear to be useful.
However, to prevent JPSRO from stalling in a local equi-
librium it is essential to randomize over multiple solutions
satisfying the maximum welfare criterion. To produce ro-
bust BRs, entropy maximizing MSs (such as MG(C)CE)
have better empirical value and convergence than the uni-
form MS. For exploration, we can randomly select a valid
equilibrium at each iteration which outperforms random
joint and random Dirichlet by a significant margin (similar
to AlphaStar’s “exploiter policies” (Vinyals et al., 2019)).
Furthermore, one could also switch between MSs at each
iteration to achieve the best mix of exploitation and explo-
ration.

Another strength of (C)CE MSs is that they appear to per-
form well across many different games, with different num-
bers of players and payoff properties.

8. Conclusions
We have shown that JPSRO converges to an NF(C)CE over
joint policies in extensive form and stochastic games. Fur-
thermore, there is empirical evidence that some MSs also
result in high value equilibria over a variety of games. We
argue that (C)CEs are an important concept in evaluating
policies in n-player, general-sum games and thoroughly eval-
uate several MSs. Finally, we believe that both MG(C)CE
and JPSRO can scale to large problems, by using stochastic
online MSs for the former and exploiting function approxi-
mation and RL for the latter.
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