Validation of the new nomenclature of steatotic 1

liver disease in patients with a history of 2

excessive alcohol intake: a prospective cohort 3

study 4

- Mads Israelsen^{1,2}, Nikolaj Torp^{1,2}, Stine Johansen^{1,2}, Camilla Dalby Hansen^{1,2}, Emil 5
- Deleuran Hansen^{1,2}, Katrine Thorhauge^{1,2}, Johanne Kragh Hansen^{1,2}, Ida Villesen^{1,2}, 6
- Katrine Bech¹, Charlotte Wernberg¹, Peter Andersen¹, Katrine Prier Lindvig^{1,2}, 7
- Emmanuel A. Tsochatzis^{1,2,3}, Maja Thiele^{1,2}, *Mary E. Rinella⁴, *Aleksander Krag^{1,2}, 8
- ⁺on behalf of the GALAXY consortium 9

10

11 *Co-senior authors

12 13

14 1: Department of Gastroenterology and Hepatology, Sdr. Boulevard 29, 5000 Odense C, Denmark.

- 15 2: Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Winsløvsparken
- 16 19, 5000 Odense C, Denmark.
- 17 3: UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
- 18 4: University of Chicago, Pritzker School of Medicine, Chicago, Illinois 60637
- 19

20 Conflict of interests:

- 21 MI, NT, SJ, CDH, EDH, KT, IV, KB, CW, PA have no conflict of interest.
- 22 JKH has received speaking fee from Norgine.
- KPL has received speaking fee and support for travels from Siemens.
- 23 24 25 26 27 28 29 30 ET has received speaking fees from Echosens, NovoNordisk, Orphalan and Dr Falk and participated in advisory boards for Boehringer, NovoNordisk, Pfizer, Orphalan, Univar, Alexion and Siemens Healthineers.
- MT has received speaking fees from Siemens Healthcare, Norgine, Echosens, Tillotts pharma, consulting fee from GE Healthcare, Boehringer Ingelheim and GSK, is vice chair on the board Alcohol & Society (NGO) and co-founder and board member for Evido.
- MER In the last 24 months, has done scientific consulting for Boehringer Ingelheim, Intercept 31 32 33 34 Pharmaceuticals, Madrigal, NGM Biopharmaceuticals, Novo Nordisk, GSK, Sonic Incytes, Histoindex, Takeda and Cytodyn.
- AK has served as speaker for Novo Nordisk, Norgine, Siemens and Nordic Bioscience and participated in advisory boards for Norgine, Siemens, Resalis Therapeutics, Boehringer Ingelheim and Novo 35 Nordisk, all outside the submitted work. Research support; Norgine, Siemens, Nordic Bioscience, 36 AstraZeneca, Echosens. Consulting Takeda, Resalis Therapeutics, Zealand Pharma, AlphaSights. 37 Board member and co-founder Evido. 38
- 39

- 41 **Financial support**: This project has received funding to the GALAXY project from the European
- 42 Union's Horizon 2020 research and innovation programme under grant agreement number
- 43 668031
- 44

45 Correspondence to:

- 46 Mads Israelsen, MD PhD; Odense Liver Research Centre; Department of Gastroenterology and
- 47 Hepatology; Odense University Hospital, Denmark; Kloevervaenget 10, Entrance 112; 5000
- 48 Odense C, Denmark; Tele: + 45 20681060, Mail: mads.israelsen@rsyd.dk

49 AND 50

- 51 Aleksander Krag, Professor; Odense Liver Research Centre; Department of Gastroenterology
- 52 and Hepatology; Odense University Hospital, Denmark; Kloevervaenget 10, Entrance 112; 5000
- 53 Odense C, Denmark; Mail: Aleksander.Krag@rsyd.dk
- 54 55

56 Main text: 3616 of 3500 words

- 57 References: 26 of 30
- 58 Abstract 338 words of 300 words
- 59 Tables and Figures: 2 tables, 3 Figures
- 60

61 Abstract (344/300):

- 62 63 Background: Steatotic liver disease (SLD) is a new overarching term including 64 metabolic-dysfunction associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol related SLDcombined with alcohol use exceeding limits of 65 66 MASLD (MetALD), and alcohol-related liver disease (ALD). We aimed to validate the 67 prognostic importance of SLD and the subclasses MASLD, MetALD and ALD. 68 Methods: A prospective cohort of patients with current or previous excessive alcohol 69 intake for at least one year and no prior hepatic decompensation was characterised 70 71 by SLD subclasses. We classified cases into MASLD, MetALD and ALD in 72 accordance with the nomenclature definitions, based on metabolic comorbidity and 73 self-reported average alcohol intake in the three months leading up to inclusion. We compared prognosis between classes using Cox regression analyses on hepatic 74 decompensation and overall mortality as the two outcome measures. Patients not 75 meeting SLD criteria were classified as No-SLD and served as a reference group. 76 77 78 Findings: We enrolled 450 patients with a history of excessive alcohol intake (75% male). The median age was 57 years. Cirrhosis was present in 14%, and 98% had at 79 least one cardiometabolic risk factor. Among them, 324 (72%) met SLD criteria and 80 126 did not have SLD meaning no evident liver steatosis and no significant fibrosis 81 (≥F2). Based on SLD criteria, 49% had MASLD, 24% had MetALD, and 27% had 82 ALD. During follow-up (70 months, IQR 53-94), 64 of the 450 patients 83 84 decompensated (62 with SLD), and 97 died (87 with SLD). Patients with SLD had a significantly higher risk of hepatic decompensation and overall mortality compared to 85 86 those without SLD independent of age, sex, liver stiffness, and cardiometabolic risk factors. The risk of decompensation increased in a stepwise manner: MASLD 87 (HR=5.21, 95%CI 1.13-24.0), MetALD (HR=8.74, 95%CI 1.87-40.8), to and ALD 88 89 (HR=12.0, 95%CI 2.62-55.3). Similarly, overall mortality increased from MASLD 90 (HR=2.45, 95%CI 1.14-5.25), MetALD (HR=3.11, 95%CI 1.38-7.03), to ALD 91 (HR=3.84, 95%CI 1.74-8.45), independent of age, sex, liver stiffness, and cardiometabolic risk factors. 92
- 93

Commented [MR1]: Should we note that we compared to a historic pure MASLD cohort? Prob not here?

94	Interpretation: SLD and its subclasses portend distinct prognoses. There is a need
95	to specify how historical alcohol intake should be integrated into the SLD
96	nomenclature.
97	
98	Funding: The EU Horizon 2020 Research
99	
100	Keywords: Steatotic liver disease, MASLD, MetALD, ALD, Alcohol, prognosis
101	
102	
103	

104 Research in context:

105106 Evidence before this study

We searched Medline for full papers in any language published in peer-reviewed 107 108 journals up to September 25th, 2023, using the term "steatotic liver disease," (SLD) and we identified 91 files. We manually reviewed these files and identified 12 109 110 validating assessing the overlap between non-alcoholic fatty liver disease (NAFLD) 111 and metabolic-dysfunction associated liver disease (MASLD) the new nomenclature 112 of steatotic liver disease in historical NAFLD cohorts and population studies. Among the population studies, we found two papers assessing the prognosis of SLD and its 113 most common subclasses (MASLD, MetALD, and ALD), both using the National 114 Health and Nutrition Examination Survey (NHANES) III dataset. These studies 115 reported that patients with MetALD and ALD had elevated all-cause mortality 116 compared to individuals without SLD. However, there was a discrepancy in the two 117 studies regarding whether patients with MASLD had increased all-cause mortality. 118 We did not find any studies validating the new nomenclature of steatotic liver disease 119 in patients with a history of excessive alcohol intake. Furthermore, none of the 120 studies assessed whether SLD and its most common subclasses carry distinct risks 121 122 of liver-related outcomes.

123 Added value of this study

In a cohort of 450 patients with a history of excessive alcohol intake, we validated
that the new nomenclature is applicable to this patient group. Furthermore, we found
that SLD and its most common subclasses indicate distinct prognoses. The risk of
hepatic decompensation and all-cause mortality worsens progressively from MASLD
to MetALD, and finally to ALD. We also identified limitations opportunities for further

- 129 <u>clarification</u> in the new nomenclature <u>regarding</u> -how historical alcohol intake should
- be addressed and what if different criteria for alcohol intake should apply to
- 131 individuals moving between subclasses.
- 132

133 Implications of all the available evidence

- 134 The new nomenclature should be applied in the assessment to individuals with a
- 135 history of excessive alcohol intake as the subclasses portend distinct prognoses. It is
- 136 necessary to establish clear criteria for incorporating historical alcohol intake into the
- 137 SLD nomenclature.
- 138

139 Introduction

140 Steatotic liver disease (SLD) is the new overarching term for diseases that lead to hepatic steatosis, such as including metabolic dysfunction-associated SLD (MASLD) 141 142 and alcohol-related liver disease (ALD).¹ Additionally, a new category, metabolic 143 dysfunction and alcohol-related liver disease (MetALD) was defined to address the 144 common scenario of MASLD in the context of alcohol intake in excess of the limits 145 (<20/30 (female/male) grams per day) imposed by the NAFLD definition and (nowas 146 well as, the MASLD definition), but <50/60 (female/male) grams per day. The new 147 definition acknowledges the co-existence and synergistic impact of alcohol use and metabolic risk factors as reported in previous studies.²⁻⁵ Furthermore, it reflects the 148 149 reality of the disease as a spectrum rather than mutually exclusive conditions. 150 However, beyond simply semantic changes, the new nomenclature provides a 151 framework for the classification and subclassification of SLD. 152 This framework is rooted in consensus-driven criteria. As they are not data-driven, 153 these criteria demand validation for their clinical applicability and significance in terms of prognosis, since the framework will be decisive for clinical trials and 154 upcoming treatment.⁶ Importantly, the framework of the new nomenclature does not 155 156 include specifications for how to account for and measure current and historic alcohol use. For example, it is not specified over what duration the average alcohol 157 158 intake should be based on. Further, the The nomenclature does not consider severity 159 of liver disease, . Thus, there is a need to assess the new nomenclature in this 160 context., since the staging of MASLD does not differ from that of NAFLD. However, 161 staging and prognosis of the newly formed category, MetALD, requires further 162 clarification.1

- 164 In this study, we aimed to <u>explore the usefulness and impact validate</u> the new SLD
- nomenclature in patients with current or previous excessive alcohol use, by
- 166 determining whether the risk of decompensation and death differ between the three
- 167 classes, MASLD, MetALD and ALD.

168 Methods

169 Study design and participants

- 170 Patients with a history of excessive alcohol intake were subclassified according to
- 171 the new nomenclature of SLD and prognosis of the subgroups assessed. The study
- 172 was based on a prospective, observational, biopsy based study with patient
- 173 recruitment from 2013 to 2018 and followed until 2022 September (Danish Data
- 174 Protection Agency ID 13/8204) (Ethical ID S 20120071, S 20160021, S 20170087).
- 175 The study methods are described in detail in previously published studies.^{4,7-9} All
- 176 patients gave written, informed consent prior to inclusion.
- 177 This study was based on a prospective, observational, cohort-study of individuals
- 178 with current or previous excessive alcohol intake with the primary aim to identify and
- 179 study early/compensated liver disease (Danish Data Protection Agency ID 13/8204)
- 180 (Ethical ID S-20120071, S-20160021, S-20170087). The study methods have
- 181 previously been reported in detail.^{4,7-9} All patients gave written, informed consent
- 182 prior to inclusion. Patient recruitment took place from 2013 to 2018 and followed until
- 183 September 2022. During this period, we included 458 patients, of whom 450
- 184 reported their current alcohol consumption. In this study we used the data available
- 185 from these 450 patients to classify patients according to the new nomenclature of
- 186 SLD and assess the prognosis according to subgroups.
- 187 Patients
- We recruited patients with current or previous excessive alcohol intake for at least
 one year, defined as >24 grams/day for women and >36 grams/day for men. These
 limits of alcohol intake was-were based on the Danish Health Care Authority's limits
 for harmful alcohol intake in 2013.

193 liver biopsy. As previously described,⁹ exclusion criteria included the presence or a history of 194 decompensated cirrhosis (indicated by clinically evident ascites, overt hepatic 195 196 encephalopathy, previous endoscopy showing significant esophageal varices with or 197 without variceal bleeding); competing etiologies of chronic liver disease (such as 198 chronic viral hepatitis, autoimmune disorders affecting the liver and bile ducts, or hereditary disorders associated with the accumulation of iron, copper, or α-1-199 antitrypsin); diagnoses of cancer or other incapacitating illnesses with an expected 200 201 survival of fewer than 12 months; severe alcoholic hepatitis as determined by the Glasgow Alcoholic Hepatitis Score; indications of hepatic congestion or bile duct 202 203 dilation as observed through ultrasound; and contraindications to percutaneous liver 204 biopsy. All investigations were performed on the same day, after a 10-minute rest, preceded 205 206 by an overnight fast. Investigations included standardized questionnaires to obtain the patient's medical history and current medication. 207 208 From 2013 to 2016 all patients underwent liver biopsy. Following a modification in 209 the study protocol in 2016, patients with a transient elastography (TE) measurement less than 6 kPa were exempt from undergoing liver biopsy. This exemption was 210 211 based on the absence of advanced fibrosis in any of the previously 199 enrolled

Additional inclusion criteria were age 18-75 years and informed consent to undergo a

- 212 patients with TE measurements below 6 kPa.⁷
- 213

192

214 Evaluation of steatotic liver disease

- 215 According to the new nomenclature patients were classified as having SLD based on
- 216 following criteria:¹ 1) A liver biopsy showing hepatic steatosis; 2) ultrasound or

controlled attenuation parameter (≥290 dB/m)¹⁰ suggesting hepatic steatosis in 217 patients where a biopsy was not performed); 3) A liver biopsy showing significant 218 219 fibrosis (≥F2) (Regardless of whether the biopsy showed steatosis). 220 We classified patients as not having SLD (No-SLD) if not fulfilling any of these 221 criteria. 222 During the study period the histological scoring was conducted in batches of around 223 50. The scoring was performed by the same pathologist with expertise in steatotic 224 liver disease, who wasLiver histology was assessed by a single pathologist, blinded 225 to the clinical data, evaluated all liverdata. Liver biopsies of adequate quality 226 (>10mm length and >5 portal tracts or presence of cirrhotic nodules) was scored in 227 accordance with the NAFLD activity score (NAS) of the Clinical Research Network 228 (NAS-CRN) for steatosis and fibrosis stages according to the NAS-CRN system.¹¹ 229

230 Cardiometabolic risk factors

At inclusion, we measured blood pressure, body mass index (BMI), fasting blood 231 glucose, glycosylated hemoglobin (HbA1c), plasma triglycerides and high-density 232 233 lipoproteins (HDL). Use of antihypertensive drugs, treatment for type 2 diabetes and 234 lipid lowering treatment was recorded at time of inclusion. We used the well described criteria of cardiometabolic risk factors¹² used for in definition of steatotic 235 liver disease (SLD):¹ 1) BMI \geq 25 kg/m² OR waist circumference > 80/94 cm 236 237 (female/male), 2) Fasting serum glucose ≥ 5.6 mmol/L [100 mg/dL] OR 2-hour postload glucose levels ≥ 7.8 mmol/L [140 mg/dL] OR HbA1c ≥ 5.7% [39 mmol/L] OR 238 type 2 diabetes OR treatment for type 2 diabetes, 3) Blood pressure ≥ 130/85 mmHg 239 OR specific antihypertensive drug treatment, 4) Plasma triglycerides ≥ 1.70 mmol/L 240

241 [150 mg/dL] OR lipid lowering treatment and, 5) Plasma HDL-cholesterol \leq 1.3/1.0

242 mmol/L [40/50 mg/dL] (female/male) OR lipid lowering treatment.¹²

243

244 Alcohol intake

245 We surveyed the alcohol history of patients with a standardised interview including 246 questions on 1) the average alcohol intake over the past three months leading up to 247 inclusion, 2) alcohol abstinence in the week leading up to inclusion, 3) Duration of alcohol abstinence (<1 year, 1-5 years, >5 years) 4) the former maximal intake and 248 249 5) the duration of excessive intake. For the subclassification of SLD according to alcohol intake, we used the average alcohol intake over the past three months 250 251 leading up to inclusion. Duration of alcohol abstinence was used for sensitivity 252 analyses in patients reporting low alcohol intake (not exceeding limits of MASLD).

253

254 Subclassification according to the new nomenclature

255 Patients were subclassified into subclasses according to the new nomenclature:¹ 1) 256 MASLD defined patients with SLD, presence of ≥1 cardiometabolic risk factor and self-reported intake of alcohol <20/30 (female/male) gram per day; 2) MetALD was 257 defined as patients with SLD, presence of ≥1 cardiometabolic risk factor and self-258 259 reported intake of alcohol 20-50 / 30-60 (female/male) gram per day; 3) ALD+ defined patients with SLD, presence of cardiometabolic risk factors and self-reported 260 261 intake of alcohol >50/60 (female/male) gram per day; 4) ALD-only defined patients with SLD, without cardiometabolic risk factors and self-reported intake of alcohol 262 263 >20/30 (female/male) gram per day. 5) No-SLD defined patients without hepatic 264 steatosis and without significant fibrosis (fibrosis stage <F2) according to their 265 biopsy. If a liver biopsy was not performed, the assessment was based on ultrasound and controlled attenuation parameter (<290 dB/m)¹⁰ suggesting no presence of

267 steatosis and a transient elastography score below 6 kPa.

- 268 <u>It should be noteiced that according to the new nomenclature, advanced fibrosis</u>
- $(\geq F3)$ in absence of steatosis is sufficient to diagnose SLD if the underlying aetiology
- 270 *is presumed to be MASLD.* ¹ *However, clinically significant fibrosis (≥F2) in absence*
- 271 <u>of steatosis, is sufficient to diagnose SLD if the underlying aetiology is presumed to</u>
- 272 <u>be alcohol-related.¹ Such a classification based on the cause of steatotic liver</u>
- 273 <u>disease makes sense from a clinical perspective. Firstly, F2 fibrosis in ALD/MetALD</u>
- 274 carries a prognosis as unfavorable as F3 fibrosis in MASLD.¹³ Secondly, presence of
- 275 <u>steatosis significantly depends on alcohol consumption. Many patients with alcohol-</u>
- 276 related liver damage reduce alcohol intake before examination leading to absence of
- 277 <u>steatosis (~30%).¹⁰ Here, we decided to use significant fibrosis (\geq F2) because the</u>
- 278 <u>underlying liver damage was at least partially due to alcohol.</u>⁴
- For the prognostic analyses, the groups with ALD+ and **ALD-only** were combined in
- one group named **ALD**.
- 281

282 **Follow-up**

- 283 We tracked the patients by systematic, manual reviewing of their electronic medical
- 284 records which encompassed all contacts with Danish hospitals. Patients were
- followed from inclusion and until death, lost to follow-up, or data censoring in 2022
- 286 September. Patients who were lost to follow-up were censored after last hospital
- 287 contact.
- 288 Outcomes

289	Hepatic decompensation during follow-up was defined according to the Baveno-VII
290	criteria,14-defined as the development of either major ascites, variceal bleeding, or
291	overt hepatic encephalepathy during the follow-up period. Survival ctatuc of each
292	patient was recorded at the end of the data collection. Reports of excessive alcohol
293	intake in electronic modical records was recorded along with the clinical outcomes.
294	

Field Code Changed

295 Statistical analysis

296	We report categorical data as counts and frequencies, and continuous data as \underline{mean}
297	with standard deviations (SD) or medians with interquartile ranges (IQR) according
298	to the distribution. Chi-square and Wilcoxon signed rank <u>-sum</u> test were used to
299	compare SLD and no-SLD. Chi-square and Kruskal-Wallis tests were used to
800	compare the subclasses of SLD <u>.</u>
301	Complete data on cardiometabolic risk factors were available in 416 (92%) of the
302	450 patients. We had missing data on BMI for three patients, fasting plasma glucose
303	and HbA1c for nine patients without known type 2 diabetes, triglycerides for 21
304	patients without known dyslipidemia, HDL-cholesterol for 25 patients without known
305	dyslipidemia, and blood pressure for five patients without known hypertension. The
306	data were assumed to be missing completely at random. We present the distribution
307	of the number of cardiometabolic risk factors for complete cases, as well as the
308	distribution in the best and worst-case scenarios. In the best-case scenario, all
309	individuals with missing data are assumed to be absent of the cardiometabolic risk
310	factors, while in the worst-case scenario, they are assumed to have the presence of
311	these risk factors. We examined the potential consequences of the missing
312	cardiometabolic data on the subclassification of the patients according to the new

313	nomenclature (Supplementary Table 1). Based on this, we could classify 449 out of
314	450 patients according to the criteria of the new nomenclature without any
315	assumption on missing data. The last single patient had no data for blood pressure
316	but was otherwise free of any cardiometabolic risk factors. In the context of the SLD
317	subclassification, we assumed that the patient had normal blood pressure since all
318	other parameters indicated that he was healthy from a cardiometabolic perspective.
319	Cox regression analyses were performed to compare the prognosis for hepatic
320	decompensation and all-cause mortality. We tracked the patients by systematic,
321	manual reviewing of their electronic medical records which encompassed all
322	contacts with Danish hospitals. Patients were followed from inclusion and until event
323	(hepatic decompensation and all-cause mortality), lost to follow-up, or data censoring
324	in September 2022. Patients who were lost to follow-up were censored after last
325	hospital contact. Hepatic decompensation during follow-up was defined according to
326	the Baveno VII criteria ¹⁴ defined as the development of either major ascites, variceal
327	bleeding, or overt hepatic encephalopathy during the follow-up period. Survival
328	status of each patient was recorded at the end of the data collection. Reports of
329	excessive alcohol intake in electronic medical records was recorded along with the
330	clinical outcomes. First, we compared the prognosis between patients with and
331	without SLD. Next, we looked at the subclasses of SLD (MASLD, MetALD and ALD)
332	and compared the prognosis with patients without SLD (No-SLD). We performed
333	univariable and multivariable Cox regression analysis. In multiple Cox regression
334	analysis, we adjusted for age, sex, liver stiffness by transient elastography and
335	presence of cardiometabolic risk factors at inclusion. Kaplan-Meier curves are all
336	based on the models derived from the multivariable Cox regression analyses.
337	Sensitivity analyses were performed based on duration of alcohol abstinence. We

i.

Field Code Changed

338	only included patients with adequate measurements for the presence and severity of	
839	liver disease. In cases of missing data related to the features used for the criteria of	
840	cardiometabolic risk factors (1-6% missing per risk factor), we assumed data were	
341	missing at random and that these patients did not fulfil that criterium for that specific	
842	risk factor. We considered P <0.05 as statistically significant, and used STATA 18	
843	(College Station, TX, US) for all calculations.	

Formatted: Font: Font color: Text 1, Ligatures: Standard + Contextual

345

346 **Results**

347 Patients

- 348 We included 450 patients with current or previous alcohol intake exceeding limits of
- 349 MASLD for at least one year. Baseline, demographics, and clinical characteristics
- 350 are presented in Table 1. MedianMean age was 57-56 (±10) years (IQR 50-
- 64)among 337 (75%) were men and 113 (25%) were women. Significant fibrosis
- β52 (≥F2) was seen in 191 (43%) of the patients and cirrhosis in 61 (14%).
- 353 A liver biopsy was not performed on 94 patients with a liver stiffness below 6 kPa.
- 354

355 Prevalence of steatotic liver disease

- 356 At inclusion, 324 (72%) of 450 patients met the criteria of SLD (Figure 1). Of these,
- 357 267 (82%) had hepatic steatosis on biopsy or imaging, whereas the remainder 57
- 358 (18%) patients without steatosis, were found to have >F2 and hereby met the criteria
- of SLD. The last 126 patients did not fulfil the criteria of SLD (No SLD) meaning no
- 360 evident liver steatosis and no significant fibrosis (≥F2).
- 361

362 Cardiometabolic risk

- 363 In the overall cohort of 450 patients, 439 (98%) met at least one of the
- 364 cardiometabolic criteria and only 11 (2%) presented with none. Among the 324
- 365 patients with SLD, 318 (98%) met at least one of the cardiometabolic criteria and
- 366 only 6 (2%) had no cardiometabolic risk factors (Figure 1 and Figure 2A) leading to a
- 367 categorisation of these as ALD-only.

368

Commented [MR2]: Would ref here Delphi as well as note the equivalency between alcohol F2 and MASLD F3 (with ref) The majority (67%) of patients with SLD had at least three cardiometabolic risk factors. Elevated BMI, hypertension and prediabetes/diabetes were the most common, each were recorded in more than two third of the patients (Table 1).

372

373 Alcohol use

Patients with SLD and cardiometabolic risk factors were divided into the three
subclasses based on their self-reported average alcohol intake within the last three
months; 155 (49%) of 318 had a low alcohol intake and met the MASLD criteria, 76
(24%) had an excessive alcohol intake matching the MetALD criteria, and 87 (27%)
had an excessive alcohol intake matching the ALD criteria (Figure 1).

379

Characterisation of steatotic liver disease and its subclasses 380 381 Characteristics of the patients with SLD and without SLD are presented in Table 1. 382 When comparing the two groups, patients with SLD were older (58 (SD±1) years 383 versus 52 years (SD±9)59 (IQR 52-65) years versus 53 (IQR 46-60) years, P-value 384 <0.001) and fewer reported to be alcohol abstinent for at least one week prior to 885 inclusion (37% versus 56%, P-value < 0.001). Both groups had high prevalence of cardiometabolic risk factors (Figure 2A) but the median load of cardiometabolic risk 386 887 factors was three significantly higher in patients with SLD compared to two the group 388 without SLD (P value < 0.001). All cardiometabolic risk factors, except 389 prediabetes/diabetes, were more frequent in patients with SLD-(P-value < 0.001). 390 Only one (<0.5 %) patient with SLD and current excessive alcohol intake (>20/30 g (female/male) per day) had no cardiometabolic risk factors. 391

393	The characteristics according to the subclasses of SLD are presented in Table 2.
394	When comparing the SLD subclasses (MASLD, MetALD and ALD+), the group with
395	MetALD was slightly older. The ALD+ group had the highest representation of males.
396	The load of cardiometabolic risk factors (Figure 2B) was similar between the groups.
397	Hypertension and elevated plasma triglycerides were seen more frequently in
398	patients with MetALD and ALD+ compared to patients with MASLD, while decreased
399	HDL-cholesterol was seen more frequently in patients with MASLD compared to
400	MetALD and ALD+. A significantly higher proportion of patients had significant
401	fibrosis (\geq F2) in the MASLD group compared to the MetALD and ALD+ groups (69%
402	versus 53% versus 48% , P-value = 0.001). Also, a significant higher proportion of
403	patients had cirrhosis in the MASLD group compared to the MetALD and ALD+
404	groups (28% versus 8% versus 13% , P-value < 0.001).
405	

Follow-up 406

407	We followed the patients for a median follow up period of 70 (IQR 53-94) months.
408	During follow-up, 64 patients developed hepatic decompensation of which 62
409	patients had SLD at inclusion. Death occurred in 97 patients of which 87 patients
410	had SLD at inclusion.
411	We followed patients until first episode of hepatic decompensation, lost to follow up,
412	death or central data censoring in September 2022. Four patients did not consent for
413	electronic follow up and were not included in the analysis. Within the follow up
414	period seven patients left the region and were lost to follow up. At time of censoring,

- period seven patients left the region and were lost to follow up. At time of censoring,
- 415 none of the seven patients had developed hepatic decompensation. During follow
- up, hepatic decompensation occurred in 67 patients and 53 patients died without 416

417	having developed hepatic decompensation within a median follow-up period of 67
418	(IQR 52-92) months. Patients who died without having developed hepatic
419	decompensation were censored at time of death. In total, 97 patients died within a
420	median follow-up period of 70 (IQR 53-94) months. Of these, 48 of 97 (45%) died
421	after developing hepatic decompensation, and one died of cholangiocarcinoma.
422	Among the last 48 deaths, the cause of 35 deaths was not directly linked to liver
423	disease, and the cause was unknown in 13 deaths.
424	
425	Prognosis
426	Patients with SLD had a significantly worse prognosis compared to patients without
427	SLD independent of cardiometabolic risk factors (Figure 3). This included a higher
428	risk of hepatic decompensation and all-cause mortality in univariable, and
429	multivariable Cox regression analyses adjusted for age, sex <u>and</u> , liver stiffness and
430	presence of cardiometabolic risk factors (Supplementary Table 24, Supplementary
431	Table <u>3</u> 2 and Figure 3).
432	
433	In the following analysis of the subclasses of SLD the groups with ALD+ and ALD-
434	only were combined in one group named ALD given small numbers in the ALD-only
435	group. All three subclasses of SLD (MASLD, MetALD and ALD) had significantly
436	higher risk of hepatic decompensation and all-cause mortality compared to the
437	patients without SLD in univariable Cox regression analysis (Supplementary Table 3
438	and Supplementary Table 4). In multivariable Cox regression analyses, the risk of
439	hepatic decompensation increased gradually with the level of alcohol intake from
440	MASLD <u>(HR=4.73, 95%CI 1.03-21.6)</u> (HR=5.21, 95%CI 1.13-24.0), MetALD (HR =
1	

441	<u>7.69, 95%Cl 1.66-35.6) (HR = 8.74, 95%Cl 1.87-40.8)</u> to ALD (<u>HR=10.2, 95%Cl</u>
442	2.24-46.4) (HR=12.0, 95%Cl 2.62-55.3) compared to patients without SLD adjusted
443	for age, sex, liver stiffness and presence of cardiometabolic risk factors (Figure 4A).
444	Overall mortality increased gradually with the level of alcohol intake level from
445	MASLD <u>(HR=2.30, 95%CI 1.08-4.90) (HR=2.45, 95%CI 1.13-5.25)</u> , MetALD <u>(HR =</u>
446	<u>2.94, 95%Cl 1.31-6.58) (HR = 3.1, 95%Cl 1.38-7.03) to ALD (HR=3.57, 95%Cl 1.64-</u>
447	7.80) (HR=3.84, 95%CI 1.74-8.45) compared to patients without SLD adjusted for
448	age, sex, liver stiffness and presence of cardiometabolic risk factors (Figure 4B).
449	
450	Sensitivity analysis for abstinence duration in MASLD
451	Among the 155 patients classified as MASLD, 40 (26%) patients had a low current
452	alcohol intake (median 12 (IQR 3-24) grams), while 84 (54%) reported to be
453	abstinent for less than one year, 14 (9%) patients between 1-5 years, and 16 (10%)
454	patients for more than 5 years. We performed sensitivity analyses of the prognosis
455	using the patients who had a low current alcohol intake as reference. The risk of
456	hepatic decompensation decreased gradually with duration of abstinence: <1 year of
457	alcohol abstinence <u>(HR=0.73, 95% CI 0.32-1.69) (HR=0.89, 95% CI 0.36-2.22)</u> , 1-5
458	years <u>(HR=0.65, 95%Cl 0.17-2.54)</u> (HR=0.62, 95%Cl 0.14-2.68), and >5 years
459	<u>(0.22, 95%Cl 0.03-1.87)</u> (0.27, 95%Cl 0.03-2.35) . The risk of all-cause mortality was
460	also lower in groups reporting abstinence at inclusion: <1 year of alcohol abstinence
461	<u>(HR=0.64, 95% CI 0.30-1.36) (HR=0.62, 95% CI 0.29 1.32)</u> , 1-5 years_(HR=0.97,
462	<u>95%Cl 0.33-2.82) (HR=0.91, 95%Cl 0.30-2.72)</u> , and >5 years <u>(0.37, 95%Cl 0.08-</u>
463	<u>1.74) (0.38, 95%Cl 0.08 1.77)</u> .

465	During follow-up, in electronic medical records, we identified recorded reports of
466	excessive alcohol intake in 82 (54%) out of 155 patients classified as MASLD. The
467	proportion of patients with excessive drinking during follow-up was 50-65% in all
468	subgroups except for the group with more than 5 years of alcohol abstinencet having
469	only one of the 16 patients had a report of during follow up6% cases of excessive
470	alcohol intake (Supplementary Table 5).
471	
472	Sensitivity analysis for cardiometabolic risk factors in ALD
473	When comparing patients with ALD according to the presence of cardiometabolic
474	risk factors (ALD+ versus ALD-only), the ALD-only group was significantly younger.
475	(51 (IQR 47-53) years versus 59 (IQR 52-65) years , P value = 0.001) and they had a
476	lower average alcohol intake over the past preceding three months leading up
477	tobefore inclusion. Importantly, none of the patients without cardiometabolic risk
478	factors had an average daily alcohol intake exceeding the threshold of >50/60 g
479	(female/male) and only one patient had an average daily alcohol intake of 20-50/50-
480	60 g (female/male). Thirteen of 87 (15%) patients with cardiometabolic risk factors
481	and high alcohol intake at inclusion (ALD+) developed hepatic decompensation, and
482	14 (16%) of 87 died during follow-up. In patients without cardiometabolic risk factors
483	at inclusion (ALD-only), one (17%) of six patients developed hepatic
484	decompensation and two-(33%) of six patients died during follow-up.
485	A formal statistical comparison between the groups could not be performed due to
486	the low number of patients without cardiometabolic risk factors (ALD-only).

488 Discussion

In this prospective cohort study of patients with a history of excessive alcohol
intake, we characterised and analysed the prognosis of patients with SLD
according to the new nomenclature.¹ Our findings revealed that 72% of the
patients met criteria for SLD, and a notable 98% exhibiting at least one
cardiometabolic risk factor. We observed that the prognosis was driven by
current level of alcohol intake with the risk of hepatic decompensation and
mortality incrementally increasing from MASLD through MetALD to ALD.

497	The new SLD nomenclature, based on a consensus process involving 224
498	experts and patient advocates, primarily aimed to rename non-alcoholic fatty
499	liver disease. ¹ However, the framework also covers other aetiologies of
500	hepatic steatosis, thereby including patients with excessive alcohol intake.
501	In our study of patients with excessive alcohol intake, we found the criteria to
502	be easily applicable and the subclassification straightforward with simple
503	parameters available in most healthcare settings. Importantly, we found that
504	the subclasses had different prognoses, underlining the significance of
505	considering SLD (MASLD, MetALD and ALD) as a spectrum rather than
506	distinct conditions (NAFLD or ALD). ⁶
507	However, our study also unearthed certain limitations withinareas where
508	further clarification is warranted within the framework of the new
509	nomenclature. The nomenclature of SLD defines specific levels of alcohol
510	intake to allow subclassification and ideally better prognosticate and

511	determine the relative contribution of alcohol or cardiometabolic risk factors to
512	liver disease progression. This subclassification bears significant implications
513	for clinical trials and future treatments for metabolic dysfunction associated
514	steatohepatitis (MASH). Therefore, several aspects require further
515	specification and careful consideration. First of all, it is important to define the
516	timeframe during which alcohol intake should be taken into account. At what
517	point does alcohol cease to be a relevant disease driver, allowing patients with
518	a former excessive alcohol intake to be categorised as MASLD/MASH? Or
519	vice versa moving from MASLD/MASH to MetALD or ALD after a period of
520	increased alcohol intake. We also need consensus on how to handle this in
521	the setting of clinical trials. Second, how can we reliably assess alcohol intake,
522	given that self-reported alcohol is usually inaccurate, and underreporting is
522 523	given that self-reported alcohol is usually inaccurate, and underreporting is further influenced by culture and stigma. ^{15,16} <u>Our sensitivity analyses revealed</u>
523	further influenced by culture and stigma. ^{15,16} Our sensitivity analyses revealed
523 524	further influenced by culture and stigma. ^{15,16} <u>Our sensitivity analyses revealed</u> that nearly 50% of those reporting low alcohol consumption at inclusion did
523 524 525	further influenced by culture and stigma. ^{15,16} <u>Our sensitivity analyses revealed</u> that nearly 50% of those reporting low alcohol consumption at inclusion did not have reports of excessive alcohol use during the follow-up period.
523 524 525 526	further influenced by culture and stigma. ^{15,16} <u>Our sensitivity analyses revealed</u> that nearly 50% of those reporting low alcohol consumption at inclusion did not have reports of excessive alcohol use during the follow-up period. Additionally, we observed a trend indicating that patients reporting more than
523 524 525 526 527	further influenced by culture and stigma. ^{15,16} <u>Our sensitivity analyses revealed</u> <u>that nearly 50% of those reporting low alcohol consumption at inclusion did</u> <u>not have reports of excessive alcohol use during the follow-up period.</u> <u>Additionally, we observed a trend indicating that patients reporting more than</u> <u>5 years of abstinence prior to inclusion had the lowest risk of excessive</u>
523 524 525 526 527 528	further influenced by culture and stigma. ^{15,16} <u>Our sensitivity analyses revealed</u> <u>that nearly 50% of those reporting low alcohol consumption at inclusion did</u> <u>not have reports of excessive alcohol use during the follow-up period.</u> <u>Additionally, we observed a trend indicating that patients reporting more than</u> <u>5 years of abstinence prior to inclusion had the lowest risk of excessive</u>
523 524 525 526 527 528 529	further influenced by culture and stigma. ^{15,16} <u>Our sensitivity analyses revealed</u> that nearly 50% of those reporting low alcohol consumption at inclusion did not have reports of excessive alcohol use during the follow-up period. Additionally, we observed a trend indicating that patients reporting more than 5 years of abstinence prior to inclusion had the lowest risk of excessive alcohol use during the follow-up period.

ethanol (PEth) show promise as an operational tool to assess alcohol intake

533

534	within the preceding 2-4 weeks, ¹⁹ we advocate for sequential measurements
535	in clinical practice, as well as in the context of clinical trials over a six-month
536	period as often used when evaluating patients with ALD for liver
537	transplantation, especially when correct classification has significant clinical
538	implications.
539	
540	Another limitation within the framework of the new nomenclature is the
541	substantial heterogeneity it encompasses in the ALD subclass, as it
542	categorises individuals with both cardiometabolic risk factors and a daily
543	alcohol intake exceeding 50/60 grams, alongside individuals without
544	cardiometabolic risk factors but a daily alcohol intake exceeding 20/30 grams.
545	In this study, we identified only a small group of patients with ALD without
546	cardiometabolic risk factors (ALD-only), which differed notably in age and
547	exhibited a considerably lower daily alcohol intake. Given the known
548	association between alcohol intake and metabolic dysfunction ²⁰ leading to the
549	development of cardiometabolic risk factors, our findings raise practical
550	challenges. These are particularly pertinent when classifying almost all SLD
551	patients consuming 20-50/30-60 g of alcohol per day (female/male) as
552	MetALD, thereby practically shifting the threshold for ALD to >50-60 g
553	(female/male). These data strongly advocate for a thoughtful refinement of the
554	ALD definition within the SLD spectrum.

556	This study is not without limitations. <u>First, our study</u> was <u>an observational</u>
557	design with the potential presence of unmeasured confounders. However, to
558	address unmeasured confounders, we carefully selected variables based on a
559	causal directed acyclic graph (Supplementary Figure 1). It is worth noting that
560	hepatic genetic risk factors were not included in the Cox regression models.
561	We decided against including hepatic genetic risk variants since genetic
562	analyses is not recommended as part of the clinical assessment for steatotic
563	liver disease. ²¹ Furthermore, hepatic genetic risk variants influence on liver
564	disease have most impact on the fibrosis stage at time of diagnosis ⁴ and less
565	on the prognosis. ²² Moreover, variations in alcohol intake over time and the
566	management of cardiometabolic risk factors are likely to have an impact on
567	the prognosis. In this regard, the prognosis estimates are presented as hazard
568	ratios (HRs) which inherently carry a selection bias that could have influenced
569	our findings. ²³
570	Second, the classification of many patients as MASLD, despite documented
571	excessive alcohol intake during the follow-up period, likely does not accurately
572	represent the prognosis of "traditionalpure" MASLD without a history of
573	excessive drinking. There are no studies that specifically assess this issue,
574	however, harmful alcohol consumption in 28.9% of patients perceived as
575	NAFLD has been reported. ²⁴ <u>However, to delve into this further, we did a</u>
576	comparison for the risk of hepatic decompensation between a 'pure' MASLD
577	cohort ²⁵ and the MASLD subclass in this study (Supplementary Figure 3). The
578	estimates showed that our study may overestimate the risk of disease

579	progression in MASLD, especially in patients with transient elastography >12
580	kPa indicating advanced liver disease. This is in line with other MASLD
581	studies of the natural history showing that liver disease driven by
582	cardiometabolic risk factors without alcohol occurs at a much slower pace. ^{13,26}
583	The question is whether the period of abstinence required to transition a
584	patient from ALD/MetALD to MASLD should be determined based on the
585	cause of the disease or the implications for disease management. With the
586	expectation of upcoming medications for MASH patients, a critical question for
587	individuals with a history of excessive alcohol use becomes: How long should
588	a patient reduce alcohol consumption (or remain abstinent) before ongoing
589	liver disease activity is considered due to MASH and thus eligible for MASH
590	directed therapeutics. ²⁵ Still, we acknowledge that it is likely that our study
591	overestimate the risk of disease progression in the MASLD group. Disease
592	driven by cardiometabolic risk factors without alcohol occurs at a much slower
593	pace. ^{13,26} This difference may explain why the burden of cardiometabolic risk
594	factors had a minimal impact on the prognosis. In contrast, ALD follows a
595	steeper curve before the impact of cardiometabolic risk factors reaches its
596	maximum effect. This difference may explain why the burden of
597	cardiometabolic risk factors had a minimal impact on the prognosis. Also,
598	when considering that alcohol is a strong driver of the disease, it may appear
599	peculiar that more individuals in the MASLD group had advanced liver
600	disease. However, a plausible explanation for this could be that there were
601	more sick quitters in the MASLD group. The term sick quitters describes the
1	

602	phenomenon in which individuals reduce their alcohol consumption as they
603	develop serious illness. ²⁷ Interestingly, we observed that individuals in the
604	MASLD group with more than 5 years of abstinence were at the lowest risk of
605	relapse into excessive alcohol use and developing decompensated liver
606	disease.
607	Third, it is noteworthy that the high prevalence of cardiometabolic risk factors
608	observed in our study may vary in a younger population with a history of
609	excessive alcohol intake, potentially resulting in differing rates of MetALD.
610	Conversely, younger individuals without metabolic risk factors may not
611	develop SLD.
612	Fourth, Additionally, alcohol intake was based on self-reported information,
613	and the accuracy may differ between cultures ²⁸ , which could complicate the
614	correct subclassification. We considered conducting sensitivity analyses within
615	the MASLD group, taking into account excessive alcohol intake during follow-
616	up. Nevertheless, we opted against conducting these analyses to prevent the
617	introduction of immortal time bias.
618	
619	In conclusion, the criteria of SLD are easy to apply in clinical studies and the
620	subclasses are of clinical relevance, as they divide patients into populations of
621	significantly different prognoses. Further specification on how historical
622	alcohol intake should be incorporated into the nomenclature is needed,
623	because this subclassification is decisively for clinical studies and upcoming

524 treatment<u>management</u>. Criteria for moving between subclasses also need to

625 be defined.

627 Acknowledgement

- 628 We wish to thank the research nurses and medical student team at FLASH and the
- 629 administrators of the GALAXY consortium: Louise Skovborg Just and Vibeke
- 630 Nielsen.
- 631

632 Author contribution

- 633 Conceptualization: MI, MR, AK. Data curation: MI, NT, SJ, CDH, KT, JKH, KPL, PA,
- 634 MT. Formal Analysis: MI, NT. Funding acquisition: AK Investigation: MI, NT, SJ, CDH,
- 635 KT, JKH, KPL, PA, MT. Methodology: MI, NT, MR, AK. Project administration:
- 636 MT, AK. Supervision: MT, MR, AK. Validation: MT, AK. Visualization: MI Writing -
- 637 original draft: MI, NT, MR, AK. Writing review & editing: MI, NT, SJ, CDH, EDH, KT,
- 638 JKH, IV, KB, CW, PA, KPL, ET, MT, MR, AK
- 639

640 Data availability

- 641 Data are available on request after approval from the Danish Data Protection Agency
- 642 in a pseudonymised manner upon request to mads.israelsen@rsyd.dk. The study
- 643 protocol and statistical analysis plan are available online.

644

646

647 **References**

648 1. Rinella ME, Lazarus JV, Ratziu V, et al. A multi-society Delphi consensus statement on 649 new fatty liver disease nomenclature. J Hepatol 2023. 650 Hart CL, Morrison DS, Batty GD, Mitchell RJ, Davey Smith G. Effect of body mass index 2. 651 and alcohol consumption on liver disease: analysis of data from two prospective cohort 652 studies. BMJ 2010; 340: c1240. 653 Mallet V, Parlati L, Martinino A, et al. Burden of liver disease progression in 3. 654 hospitalized patients with type 2 diabetes mellitus. J Hepatol 2022; 76(2): 265-74. 655 4. Israelsen M, Juel HB, Detlefsen S, et al. Metabolic and Genetic Risk Factors Are the Strongest Predictors of Severity of Alcohol-Related Liver Fibrosis. Clin Gastroenterol Hepatol 656 657 2022; 20(8): 1784-94 e9. 658 5. Aberg F, Luukkonen PK, But A, et al. Development and validation of a model to 659 predict incident chronic liver disease in the general population: The CLivD score. J Hepatol 660 2022; 77(2): 302-11. 661 6. Israelsen M, Torp N, Johansen S, Thiele M, Krag A. MetALD: new opportunities to 662 understand the role of alcohol in steatotic liver disease. Lancet Gastroenterol Hepatol 2023. 663 Thiele M, Detlefsen S, Sevelsted Moller L, et al. Transient and 2-Dimensional Shear-7. 664 Wave Elastography Provide Comparable Assessment of Alcoholic Liver Fibrosis and Cirrhosis. 665 Gastroenterology 2016; 150(1): 123-33. Thiele M, Madsen BS, Hansen JF, Detlefsen S, Antonsen S, Krag A. Accuracy of the 666 8. Enhanced Liver Fibrosis Test vs FibroTest, Elastography, and Indirect Markers in Detection of 667 668 Advanced Fibrosis in Patients With Alcoholic Liver Disease. Gastroenterology 2018; 154(5): 669 1369-79. 670 9. Rasmussen DN, Thiele M, Johansen S, et al. Prognostic performance of 7 biomarkers compared to liver biopsy in early alcohol-related liver disease. J Hepatol 2021. 671 672 Thiele M, Rausch V, Fluhr G, et al. Controlled attenuation parameter and alcoholic 10. 673 hepatic steatosis: Diagnostic accuracy and role of alcohol detoxification. J Hepatol 2018; 674 68(5): 1025-32. 675 11. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological 676 scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41(6): 1313-21. 677 Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint 12. 678 interim statement of the International Diabetes Federation Task Force on Epidemiology and 679 Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World 680 Heart Federation; International Atherosclerosis Society; and International Association for the 681 Study of Obesity. Circulation 2009; 120(16): 1640-5. 682 13. Thiele M, Johansen S, Israelsen M, et al. Non-invasive assessment of hepatic 683 decompensation. Hepatology 2023. 684 14. de Franchis R, Bosch J, Garcia-Tsao G, Reiberger T, Ripoll C, Baveno VIIF. Baveno VII -685 Renewing consensus in portal hypertension. J Hepatol 2022; 76(4): 959-74. 686 15. Schomerus G, Leonhard A, Manthey J, et al. The stigma of alcohol-related liver 687 disease and its impact on healthcare. J Hepatol 2022; 77(2): 516-24. 688 16. Aberg F, Byrne CD, Pirola CJ, Mannisto V, Sookoian S. Alcohol consumption and 689 metabolic syndrome: Clinical and epidemiological impact on liver disease. J Hepatol 2023;

690 **78**(1): 191-206.

- 691 17. Pollard MS, Tucker JS, Green HD, Jr. Changes in Adult Alcohol Use and Consequences 692 During the COVID-19 Pandemic in the US. JAMA Netw Open 2020; 3(9): e2022942.
- 693 18. Israelsen M, Madsen BS, Torp N, et al. Rifaximin-alpha for liver fibrosis in patients 694 with alcohol-related liver disease (GALA-RIF): a randomised, double-blind, placebocontrolled, phase 2 trial. Lancet Gastroenterol Hepatol 2023. 695
- 696 19.

Litten RZ, Bradley AM, Moss HB. Alcohol biomarkers in applied settings: recent 697 advances and future research opportunities. Alcohol Clin Exp Res 2010; 34(6): 955-67.

- 698 20. Diaz LA, Arab JP, Louvet A, Bataller R, Arrese M. The intersection between alcohol-699 related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 700 2023.
- 701 21. Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, et al. AASLD Practice Guidance on 702 the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 703 2023; 77(5): 1797-835.
- 704 Johansen S, Thiele M, Juel HB, Hansen T, Krag A. External validation of a genetic risk 22. 705 score that predicts development of alcohol-related cirrhosis. J Hepatol 2022; 77(6): 1720-1. 23.
- 706 Hernan MA. The hazards of hazard ratios. Epidemiology 2010; 21(1): 13-5. 707 24. Staufer K, Huber-Schonauer U, Strebinger G, et al. Ethyl glucuronide in hair detects a
- 708 high rate of harmful alcohol consumption in presumed non-alcoholic fatty liver disease. J 709 Hepatol 2022; 77(4): 918-30.
- Boursier J, Hagstrom H, Ekstedt M, et al. Non-invasive tests accurately stratify 710 25.
- 711 patients with NAFLD based on their risk of liver-related events. J Hepatol 2022; 76(5): 1013-712 20.
- 713 26. Allen AM, Therneau TM, Ahmed OT, et al. Clinical course of non-alcoholic fatty liver 714 disease and the implications for clinical trial design. J Hepatol 2022; 77(5): 1237-45.
- 715 27. Shaper AG, Wannamethee G, Walker M. Alcohol and mortality in British men:
- 716 explaining the U-shaped curve. *Lancet* 1988; **2**(8623): 1267-73.
- Sudhinaraset M, Wigglesworth C, Takeuchi DT. Social and Cultural Contexts of Alcohol 717 28.
- 718 Use: Influences in a Social-Ecological Framework. Alcohol Res 2016; 38(1): 35-45.
- 719 720

721 Tables and Figures

	Overall cohort	SLD	No SLD	
	N=450	N=324	N=126	
Age, years	<u>56 (±10)</u> 57 (50-64)	<u>59 (±12)</u> 59 (52-65)	<u>52 (±9)</u> 52 (46-60)	
Sex, male (%)	337 (75%)	259 (80%)	78 (62%)	
BMI, kg/m^2	<u>27 (±5)</u> 27 (24-31)	<u>28 (±5)</u> 28 (24-31)	<u>26 (±4)</u> 25 (23-28)	
Alcohol use				
Average alcohol intake, g/day ⁺	12 (0-51)	24 (0-60)	0 (0-27)	
Alcohol abstinence last week, n (%)‡	258 (57%)	121 (37%)	71 (56%)	
Years of excessive use (>20/30 g/day)(1),		(••••)	(, - ,	
1-10 years	134 (32%)	94 (31%)	40 (34%)	
>10-20 years	110 (26%)	73 (24%)	37 (31%)	
>20 years	180 (42%)			
Cardiometabolic risk factors	180 (42%)	139 (45%)	41 (35%)	
Cardiometabolic risk factors				
BMI ≥ 25 kg/m ² ⁽²⁾	311 (69<u>70</u>%)	240 (74<u>75</u>%)	71 (56<u>57</u>%)	
Fasting glucose ≥5.6 mmol/L OR HbA1c ≥ 39 mmol/mol OR T2DM OR anti- diabetic treatment ⁽³⁾	339_<u>365</u> (75<u>83</u>%)	257-<u>265</u> (83 83%)	100 (79<u>82</u>%)	
Blood pressure ≥130/85 mmHg OR antihypertensive drug treatment ⁽⁴⁾	321 (71<u>72</u>%)	249 (77<u>78</u>%)	72 (57<u>58</u>%)	
Triglycerides ≥1.7 mmol/L OR treatment with lipid lowering drugs ⁽⁵⁾	186 (41<u>43</u>%)	151 (47<u>49</u>%)	35 (28<u>29</u>%)	
HDL ≤1.0/1.3 mmol/L (male/female) OR treatment with lipid lowering drugs ⁽⁶⁾	152 (34 <u>36</u> %) 123 (38 <u>40</u> %)		29 (23<u>24</u>%)	
Liver parameters				
· Significant fibrosis (≥F2), yes (%) ⁽⁶⁾	191 (43%)	191 (60%)	0 (0%)	
Cirrhosis (F4), yes (%) (7)	61 (14%)	61 (19%)	0 (%)	
Liver stiffness measurement by TE, kPa	6.5 (4.8-11.8)	8.8 (5.6-20.9)	4.5 (3.8-5.5)	
Presence of steatosis (S1-S3) ⁽²⁾ ,	193 (66%)	193 (76%)	0 (0%)	
Table 1: Characteristics of patient			_ · · ·	
•				
SLD: Histological or radiographic e suggesting steatosis OR significant				
of biopsy OR imaging suggesting r				
⁺ The average alcohol intake over		ithis leading up to in	LIUSION. + AICONOI	
abstinence in the week leading up	o to inclusion.			
Data from ⁽¹⁾ 424, ⁽²⁾ 447, ⁽³⁾ 441, ⁽⁴⁾ 42	9, (5)425, (6)445 natio	ents. ⁽⁷⁾ Data from 29	3 biopsies	
Data 110111 14/424, 14/447, 19/441, 14/42	. 3, 9423, 9445 pati	ents. WDatd HOIII 29	2 NIChaiga	

BMI, Body mass index; T2DM, Type 2 diabetes mellitus; TE, transient elastography.

722 723

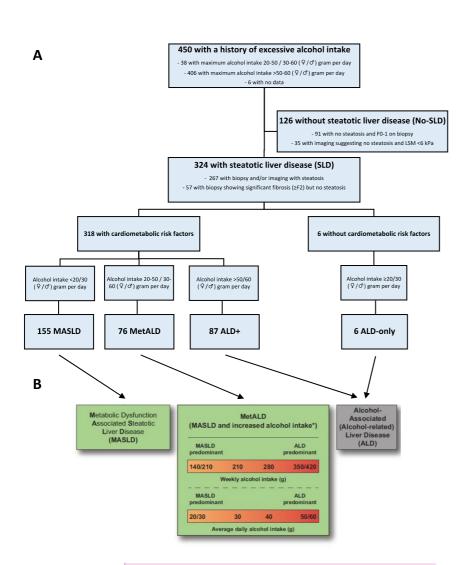
1

l

L

	MASLD	MetALD	ALD+	ALD-only	No SLD
	N=155	N=76	N=87	N=6	N=126
Age, years	<u>57 (±10)</u> 58	<u>60 (±9)</u> 61	<u>58 (±9)</u> 59	<u>49 (±7)</u> 51	<u>52 (±9)</u> 52
	(52-63)	(54-68)	(52-65)	(47-53)	(46-60)
Sex, male (%)	123 (79%)	57 (75%)	75 (86%)	4 -(67%)	78 (62%)
BMI, kg/m^2	<u>28 (±5)</u> 28	<u>29 (±6)</u> 29	28 (±6) 27	<u>21 (±3)</u> 22	<u>26 (±4)</u> 25
	(25-31)	(26-32)	(25-32)	(20-23)	(23-28)
Alcohol use					
Average alcohol intake, g/day ⁺	0 (0-0)	48 (36-51)	103 (72-288)	41 (0-72)	0 (0-27)
Alcohol abstinence last week, n (%)‡	117 (75%)	2 (3%)	0 (0%)	2 -(23%)	71 (56%)
Years of excessive use (>20/30 g/day) ⁽¹⁾ ,					
1-10 years	54 (38%)	25 (35%)	13 (15%)	2 -(33%)	40 (34%)
>10-20 years	31 (22%)	18 (25%)	22 (26%)	2 -(33%)	37 (31%)
>20 years	58 (41%)	29 (40%)	50 (59%)	2 -(33%)	41 (35%)
Cardiometabolic risk factors					
BMI ≥ 25 kg/m ² ⁽²⁾	115 (74%)	58 (76%)	67 (77%)	0 (0%)	71 (56%)
Fasting glucose ≥5.6 mmol/L OR HbA1c ≥ 39 mmol/mol OR T2DM OR anti-diabetic treatment ⁽³⁾	126 (81%)	63 (83%)	76 (87%)	0 (0%)	100 (79%)
Blood pressure ≥130/85 mmHg OR antihypertensive drug treatment ⁽)	111 (72%)	66 (87%)	72 (83%)	0 (0%)	72 (57%)
Triglycerides ≥1.7 mmol/L OR treatment with lipid lowering drugs ⁽⁵⁾	65 (42%)	40 (53%)	46 (53%)	0 (0%)	35 (28%)
HDL \leq 1.0/1.3 mmol/L (male/female) OR treatment with lipid lowering drugs ^(f)	72 (46%)	22 (29%)	29 (33%)	0 (0%)	29 (23%)
Liver parameters					
Significant fibrosis (<u>></u> F2), yes (%) ⁽⁶⁾	107 (69%)	39 (53%)	41 (48%)	4 (80%)	0 (0%)
Cirrhosis (F4), yes (%) (7)	44 (28%)	6 (8%)	11 (13%)	0 (0%)	0 (%)
Liver stiffness measurement by TE, kPa	9.5 (6.1-28)	7.9 (5.5-13)	8.7 (5.4-17)	8.4 (6.2-11)	4.5 (3.8-5.5
Presence of steatosis (S1-S3) (2),	76 (83%)	54 (74%)	60 (71%)	3 (60%)	0 (0%)

MASLD, presence of cardiometabolic risk factors AND <20/30 (female/male) gram alcohol per day; MetALD, presence of cardiometabolic risk factors AND 20-50 / 30-60 (female/male) gram alcohol per day;


ALD+, presence of cardiometabolic risk factors AND >50/60 (female/male) gram alcohol per day;
 ALD-only, no cardiometabolic risk factors AND >20/30 (female/male) gram alcohol per day.
 No SLD, biopsy OR imaging suggesting no hepatic steatosis AND no significant fibrosis (<F2).
 † The average alcohol intake over the past three months leading up to inclusion. ‡ Alcohol abstinence in the week leading up to inclusion.

Data from ⁽¹⁾424, ⁽²⁾447, ⁽³⁾441, ⁽⁴⁾429, ⁽⁵⁾425, ⁽⁶⁾445 patients. ⁽⁷⁾Data from 293 biopsies

ALD, alcohol-related liver disease; BMI, Body mass index; MASLD, Metabolic dysfunction-Associated Steatotic Liver Disease; T2DM, Type 2 diabetes mellitus; TE, transient elastography.

725 726

727

Figure 1: Flow chart: A) Subcategorising the patients with a history of excessive alcohol intake according to the new definition of steatotic liver disease. B) The original figure showing the (relevant) subcategorise of steatotic liver disease.

ALD, alcohol-related liver disease; MASLD, Metabolic dysfunction-Associated Steatotic Liver Disease; MetALD, metabolic dysfunction and alcohol related liver disease; SLD, Steatotic liver disease **Commented [MR3]:** We might want to use the newer version of the figure that also has MASH - just published in final form Oct 30

MASLD, presence of cardiometabolic risk factors AND <20/30 (female/male) gram alcohol per day; MetALD, presence of cardiometabolic risk factors AND 20-50 / 30-60 (female/male) gram alcohol per day; ALD+, presence of cardiometabolic risk factors AND >50/60 (female/male) gram alcohol per day; ALD-only, no cardiometabolic risk factors AND >20/30 (female/male) gram alcohol per day.

No SLD, biopsy OR imaging suggesting no hepatic steatosis AND no significant fibrosis (<F2). ALD, alcohol-related liver disease; MASLD, Metabolic dysfunction-Associated Steatotic Liver Disease; MetALD, metabolic dysfunction and alcohol related liver disease; SLD, Steatotic liver disease Similar figures for the entire cohort (including patients with missing data) can be found in Supplementary Figure 2, depicting both the best and worst-case scenarios.

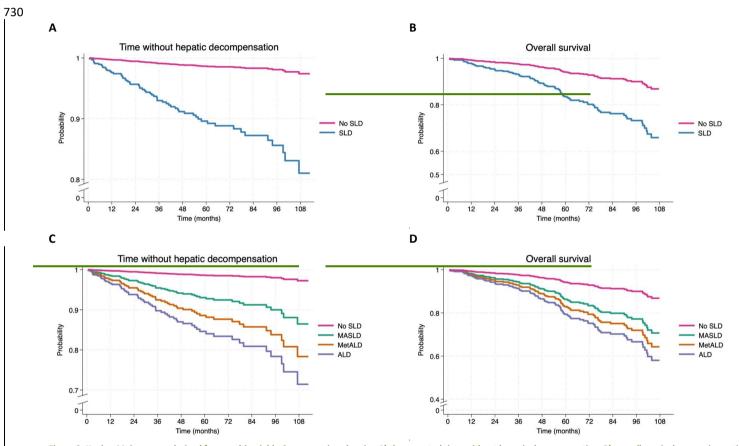


Figure 3: Kaplan-Meier curves derived from multivariable Cox regression showing A) the expected time without hepatic decompensation, B) overall survival comparing patients with and without. Subclasses of SLD are compared with C) the expected time without hepatic decompensation and D) overall survival. Models are adjusted for age, sex, liver stiffness and presence of cardiometabolic risk factors at inclusion (Table 3 and Table 4). ALD, alcohol-related liver disease; MASLD, Metabolic dysfunction-Associated Steatotic Liver Disease; MetALD, metabolic dysfunction and alcohol related liver disease; SLD, Steatotic liver disease

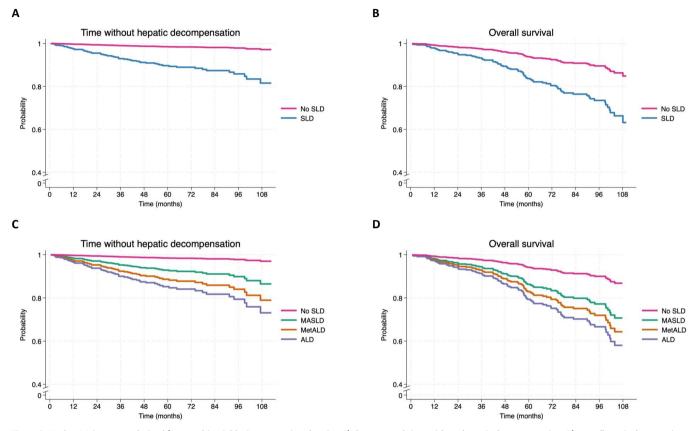
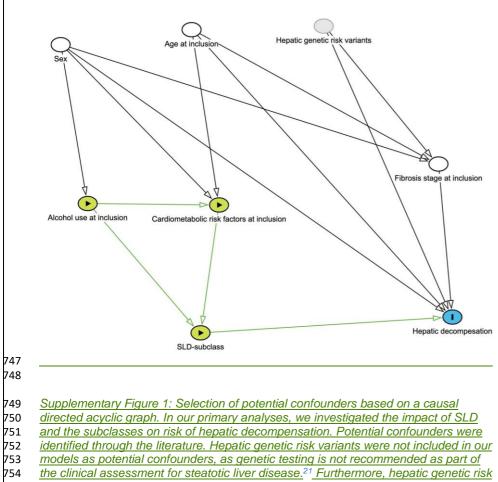
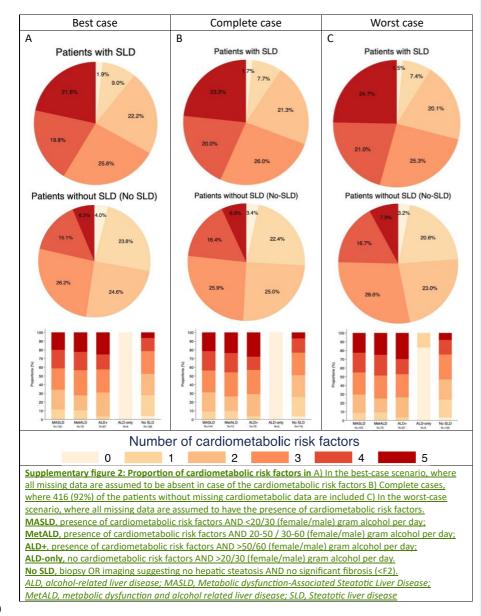
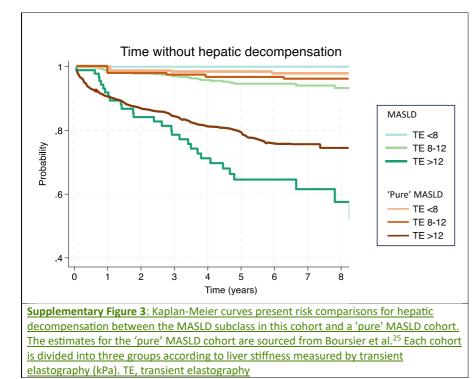



Figure 3: Kaplan-Meier curves derived from multivariable Cox regression showing A) the expected time without hepatic decompensation, B) overall survival comparing patients with and without. Subclasses of SLD are compared with C) the expected time without hepatic decompensation and D) overall survival. Models are adjusted for age, sex, liver stiffness and presence of cardiometabolic risk factors at inclusion (Table 3 and Table 4). *ALD, alcohol-related liver disease; MASLD, Metabolic dysfunction-Associated Steatotic Liver Disease; MetALD, metabolic dysfunction and alcohol related liver disease; SLD, Steatotic liver disease*


732	
733	Supplementary
734	
735	
736	Validation of the new nomenclature of steatotic
737	liver disease in patients with a history of
738	excessive alcohol intake: a prospective cohort
739	study
740	Mads Israelsen ^{1,2} , Nikolaj Torp ^{1,2} , Stine Johansen ^{1,2} , Camilla Dalby Hansen ^{1,2} , Emil
741	Deleuran Hansen ^{1,2} , Katrine Thorhauge ^{1,2} , Johanne Kragh Hansen ^{1,2} , Ida Villesen ¹ ,
742	Katrine Bech ¹ , Charlotte Wernberg ¹ , Peter Andersen ¹ , Katrine Prier Lindvig ^{1,2} ,
743	Emmanuel A. Tsochatzis ^{1,2,3} , Maja Thiele ^{1,2} , Mary E. Rinella ⁴ , Aleksander Krag ^{1,2} , ⁺ o
744	behalf of the GALAXY consortium


+on

755 variants influence on liver disease have most impact on the fibrosis stage at time of

756 <u>diagnosis⁴ and less on the prognosis.</u>22

Supplementary Tables

	Complete data (n=416)		Missing data (n=34)				
	≥1 CMRF Zero CMRF		≥1 CMRF Zero CMR				
<u>- SLD (n=324)</u>	295	5	23	<u>1*</u>			
<u>- No-SLD (n=126)</u>	<u>112</u>	<u>4</u>	<u>9</u>	<u>1</u>			
Total (n=450)	<u>407</u>	<u>9</u>	<u>32</u>	2			
Supplementary Table 1: This table shows the distribution of the presence of at least one cardiometabolic risk factor for both patients with complete and missing cardiometabolic data. Furthermore, it illustrates how the distribution relates to whether the patients have steatotic liver disease, as it is only within this group of patients that cardiometabolic risk factors are relevant for the subclassification of patients. We identified 1 patient (marked *) who had no data for blood pressure but was otherwise free of any cardiometabolic risk factors (BMI<25 and normal levels blood glucose, HbA1c, HDL-cholesterol, Triglycerides and did not use antihypertensive drugs).							

Formatted: English (United States)

	Univariable		Multivariable		
	HR (95% CI)	P-value	HR (95% CI)	P-value	
Presence of SLD					
SLD, yes	<u>15.39 (3.76-</u> <u>62.9))</u> 14.7 (3.58- 60.0)	<u>0.0001</u> <0.001	7. <u>01 (1.62-30.4)</u> 98 (1.83- 34.8)	0.00 <u>92</u> 6	
Adjusting variables					
Age, years	1.01 (0.99-1.04)	<u>0.22</u> 0.324	0.98 (0.95-1.01)	0. <u>14</u> 232	
Sex, <u>fe</u> male	<u>1.35 (0.80-</u> <u>2.26)</u> 1.44 (0.86- 2.43)	<u>0.26</u> 0.170	<u>1.68 (0.98-2.87)</u> 1.82 (1.06- 3.12)	<u>0.057</u> 0.030	
Presence of >1 CMRF, yes	0.97 (0.49-1.91)	0.931	0.57 (0.26-3.13)	0.172	
Liver stiffness by TE, kPa	1.05 (1.0 <u>5</u> 4- 1.06)	<0.00 <u>0</u> 1	1.05 (1.04-1.06)	<0.00 <u>0</u> 1	

Supplementary Table 21: Univariable and multivariable risk Cox regression analysis on hepatic decompensation.

SLD, Biopsy with steatosis OR imaging suggesting steatosis OR significant fibrosis (≥F2)
No SLD, biopsy OR imaging suggesting no hepatic steatosis AND no significant fibrosis (<F2).</p>

CMRF, cardiometabolic risk factor; SLD, Steatotic liver disease; TE, transient elastography

770

	Univariable		Multivariable		
	HR (95% CI)	P-value	HR (95% CI)	P-value	
Presence of SLD					
SLD, yes	4.34 (2.25-8.37)	<0.00 <u>0</u> 1	2.78 (1.37-5.64)2.96 (1.45 6.05)	<u>0.0045</u> 0.002	
Adjusting variables					
Age, years	1.02 (1.00-1.04)	0.027	1.00 (0.98-1.02)	0.9 <u>3</u> 27	
Sex, <u>fe</u> male	1.12 (0.72-1.76)	0.61 2	<u>1.38 (0.87-2.20)</u> 1.39 (0.87 2.22)	0.1 <u>765</u>	
Presence of >1 CMRF, yes	0.99 (0.57-1.71)	0.960	0.69 (0.87-2.22)	0.245	
Liver stiffness by TE, kPa	1.03 (1.02-1.04)	<0.00 <u>0</u> 1	1.03 (1.02-1.0 <u>3</u> 4)	<0.00 <u>0</u> 1	
Supplementary Table 32: Univariable and multivariable risk Cox regression analysis on					

overall survival.

SLD, Biopsy with steatosis OR imaging suggesting steatosis OR significant fibrosis (≥F2)
No SLD, biopsy OR imaging suggesting no hepatic steatosis AND no significant fibrosis (<F2).</p>

CMRF, cardiometabolic risk factor; SLD, Steatotic liver disease; TE, transient elastography

	Univariable		Multivariable	
	HR (95% CI)	P-value	HR (95% CI)	P-value
SLD subclasses (Reference No SLD)				
MASLD	<u>16.84 (4.05-</u> <u>70.0)</u> 15.5 (3.60- 64.4)	<u>0.0001</u> <0.001	<u>4.73 (1.03-21.6)</u> 5.21 (1.13- 24.0)	<u>0.045</u> 0.035
MetALD	14.0 (3.17-61.5)	<u>0.0005</u> <0.001	7.69 (1.66-35.6)8.74 (1.87- 40.8)	<u>0.0091</u> 0.00
ALD	13. <u>8</u> 7 (3.13- 60.3 2)	<u>0.0005</u> 0.001	<u>10.2 (2.24-46.4)</u> <u>12.0 (2.62-</u> <u>55.3)</u>	<u>0.0027</u> 0.00
Adjusting variables				
Age, years	1.0 <u>2</u> 4 (0.99- 1.04)	<u>0.22</u> 0.324	0.98 (0.95-1.01)	0.28 2
Sex, <u>fe</u> male	1. <u>35 (0.80-</u> 2.26)44 (0.86- 2.43)	<u>0.26</u> 0.170	1.96 (1.13-3.41)	<u>0.035</u> 0.017
Presence of >1 CMRF, yes	0.97 (0.49 1.91)	0.931	0.58 (0.26-1.29)	0.183
Liver stiffness by TE, kPa	1.05 (1.0 <u>5</u> 4- 1.06)	<0.00 <u>0</u> 1	1.06 (1.04-1.07)	<0.00 <u>0</u> 1
hepatic decompensat MASLD, presence of c per day;	ion. ardiometabolic r	isk factors ANI	able risk Cox regression a D <20/30 (female/male) g ID 20-50 / 30-60 (female/	ram alcoho

ALD, presence of cardiometabolic risk factors AND >50/60 (female/male) gram alcohol per day OR no cardiometabolic risk factors AND >20/30 (female/male) gram alcohol per day. No SLD, biopsy OR imaging suggesting no hepatic steatosis AND no significant fibrosis (<F2).

ALD, alcohol-related liver disease; <u>CMRF, cardiometabolic risk factor</u>; MASLD, Metabolic dysfunction-Associated Steatotic Liver Disease; MetALD, metabolic dysfunction and alcohol related liver disease; SLD, Steatotic liver disease; TE, transient elastography

775 776 777

l

	Univariable		Multivariable	
	HR (95% CI)	P-value	HR (95% CI)	P-value
SLD subclasses (Reference No SLD)				
MASLD	4.24 (2.13-8.43)	<0.00 <u>0</u> 1	2.30 (1.08-4.90) ^{2.45} (1.14- 5.25)	<u>0,031</u> 0.022
MetALD	4.04 (1.88-8.70)	<u>0.0003</u> <0.001	<u>2.94 (1.31-6.58)</u> 3.11 (1.38- 7.03)	<u>0.0089</u> 0.006
ALD	4.88 (2.32-10.2)	<0.00 <u>0</u> 1	<u>3.57 (1.64-7.80)</u> 3.84 (1.74- 8.45)	<u>0.0013</u> 0.001
Adjusting variable				
Age, years	1.02 (1.00-1.04)	0.027	1.00 (0.98-1.0 <u>2</u> -2)	<u>0.95</u> 0.887
Sex, <u>fe</u> male	1.12 (0.72-1.76)	0.61 2	<u>1.44 (0.90-2.31)</u> 1.45 (0.91- 2.33)	0.120<u>0.13</u>
Presence of >1 CMRF, yes	0.99 (0.57-1.71)	0.960	0.68 (0.37-1.27)	0.227
Liver stiffness by TE, kPa	1.03 (1.02-1.04)	<0.00 <u>0</u> 1	1.03 (1.02-1.04)	<0.00 <u>0</u> 1

Supplementary Table $\underline{54}$: Univariable and multivariable risk Cox regression analysis on allcause mortality

MASLD, presence of cardiometabolic risk factors AND <20/30 (female/male) gram alcohol per day;

MetALD, presence of cardiometabolic risk factors AND 20-50 / 30-60 (female/male) gram alcohol per day;

ALD, presence of cardiometabolic risk factors AND >50/60 (female/male) gram alcohol per day OR no cardiometabolic risk factors AND >20/30 (female/male) gram alcohol per day. No SLD, biopsy OR imaging suggesting no hepatic steatosis AND no significant fibrosis (<F2).

ALD, alcohol-related liver disease; -CMRF, cardiometabolic risk factor;-MASLD, Metabolic dysfunction-Associated Steatotic Liver Disease; MetALD, metabolic dysfunction and alcohol related liver disease; SLD, Steatotic liver disease; TE, transient elastography

778

	1	Time of self-reported abstinence					
	None	None <1 year 1-5 years >5 years					
Alcohol in follow-up n=40 n=85 n=14 n=16							
Excessive use, No	18 (47%)	30 (35%)	7 (50%)	15 (94%)			
Excessive use, Yes 20 (53%) 55 (65%) 7 (50%) 1 (6%)							
Supplementary Table 65: The proportion of patients classified as MASLD with excessive							
alcohol intake during follow up according to the length abstinence at time of inclusion.							

I