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Abstract— In this paper, we present a deep neural network
based real-time integrated framework to detect objects, lane
markings, and drivable space using a monocular camera
for advanced driver assistance systems. The object detection
framework detects and tracks objects on the road such as
cars, trucks, pedestrians, bicycles, motorcycles, and traffic signs.
The lane detection framework identifies the different lane
markings on the road and also distinguishes between the ego
lane and adjacent lane boundaries. The free space detection
framework estimates the drivable space in front of the vehicle.
In our integrated framework, we propose a pipeline combining
the three deep neural networks into a single framework,
for object detection, lane detection, and free space detection
simultaneously. The integrated framework is implemented in
C++ and runs real-time on the Nvidia’s Drive PX 2 platform.

Index Terms— advanced driver assistance system, artificial
intelligence, autonomous driving, deep neural network, free
space detection, lane detection, object detection.

I. INTRODUCTION

A great deal of research has been done on various ad-
vanced driver assistance systems (ADAS) using sensors like
camera [1], [2], lidar [3], and radar [4], to reduce road
accidents and improve both driver and pedestrian safety.
Camera based systems are widely used, as it is cost-effective
and can also provide valuable information required for de-
tection, identification and tracking of objects. Vision based
applications like object detection, lane detection, free space
detection, etc. are used in ADAS systems like adaptive cruise
control (ACC), forward collision warning (FCW), intelli-
gent speed assistance (ISA), lane keeping system (LKS),
lane change assistance (LCA), and lane departure warning
(LDW). Initially, traditional computer vision and model
based techniques were used for the previously mentioned
applications [5], [6]. In recent years, artificial intelligence
(AI) based deep learning techniques have proven to be
more accurate and are replacing traditional computer vision
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based approaches [7], [8]. The main drawback of deep-
learning based approaches is that it consumes a lot of
computation power and it is difficult to implement for real-
time applications. But, with recent advancement in both CPU
(central processing unit) and GPU (graphics processing unit)
technology has made it possible to use deep-learning based
approaches for real-time applications.

Nvidia Drive PX 2 is a very powerful automotive grade
computation platform that is highly optimized for deploying
deep neural network (DNN) frameworks [9], [10]. The main
goal of our work is to make a step forward in autonomous
driving while showcasing the real-time perception capabili-
ties of Drive PX 2. For this purpose, we used the Drive PX
2 platform to evaluate and deploy our framework.

The DNN for object detection is trained to detect and
track various objects on the road in front of the vehicle
such as cars, trucks, bicycles, motorcycles, pedestrians, and
traffic sign boards [11]. The lane detection DNN is trained to
recognize different lane markings on the road in front of the
vehicle [12]. It can detect the lane markings of the left and
right lane where the vehicle is driving, these are called ego
lane markings. Also, it recognizes the next lane markings
to the left and the right of the ego lane markings, these are
called adjacent lane markings. The free space detection DNN
is trained to identify the drivable space in front of the vehicle
[13].

In this work, we propose a deep learning based real-time
integrated framework for autonomous driving, in which the
three frameworks object detection, lane detection and the
free space detection are coupled together and can run simul-
taneously. This framework can provide various information
about obstacles, lane markings and drivable space to the
vehicle control system to increase safety and reliability. This
framework can also help further in localization [14], mapping
[15], [16] and path planning [17] in autonomous driving.

The main contributions of this work are: i) developed an
integrated framework as an individual module ii) modified
the image streaming functionality in order to make the
input image format compatible with the object detection



framework, the lane detection framework, the free space
detection framework, and the proposed integrated framework
iii) evaluated the performance of the proposed integrated
framework along with the object detection framework, the
lane detection framework, and the free space detection frame-
work on Ubuntu 16.04 and Drive PX 2 platform.

The sections of this paper are organized as follows: In
Section 2, the Nvidia deep neural network framework is
discussed. In Section 3, the proposed integration framework
is explained. In Section 4, the experimental setup and results
of the object detection framework, the lane detection frame-
work, the free space detection framework, and the proposed
integrated framework are provided, and finally Section 5,
concludes the paper.

II. NVIDIA DEEP NEURAL NETWORK FRAMEWORK

The Drive PX 2 platform comes with DriveWorks, a
software development kit (SDK), built on top of compute
unified device architecture (CUDA), and along with a gigabit
multimedia serial link (GMSL) camera [18]. Also, it contains
CUDA deep neural network (CuDNN) to work with cameras
and along with graphics processing unit (GPU). It includes
the sensor abstraction layer (SAL) to interface with GMSL
camera. Using pre-trained DNNs, Drive PX 2 can accurately
classify and track obstacles on the road in front of the vehicle
using a camera.

The DriveWorks SDK comes with built-in perception
DNNs such as:

• Multi-class object detection and tracking framework
• Lane detection framework
• Free space detection framework

A. Multi-Class Object Detection and Tracking Framework

The multi-class object detection and tracking framework
based on DriveWorks DriveNet pipeline [19], [20] is com-
prised of the object detector, the object tracker, and the
object clustering sub-modules. The object detector module
implements the functionality to load the detection network,
apply transformations to the input image such that it has the
correct format for the loaded network. Then it runs inference
using the loaded network and interprets the output of the
network. Finally, it gets the list of object proposals for the
given input image.

The DriveNet pipeline utilizes camera images, the camera
should be instantiated in SAL. SAL is a medium through
which the physical sensors communicate with the Drive-
Works, the framework is shown in Figure 1.

After instantiating the camera in SAL, a handle to SAL
is assigned, which should be used to initialize the Drive-
Works application programming interface (API) context. The
context is like a realm in which the application is going
to operate. After its initialization, its handle should be
passed to the DriveNet pipeline to specify the context. Each
of the aforementioned sub-modules of the object detector
module should be initialized, used according to the pipelines
configuration, and released at the end. The rendering module
is used to display the output image on the computer screen.

Fig. 1: Multi-class object detection and tracking framework.

The DriveWorks can transfer images from one API to
another API through the image streaming pipeline. For exam-
ple, in order for the rendering module to be able to function,
the images must be translated into an open graphics library
(OpenGL) API compatible form, which requires initialization
of a streamer from CUDA API (where the image is used
in detection, tracking and clustering sub-modules) to the
OpenGL API. At the end, all the received images should
be returned back to the sender and then destroyed.

B. Lane Detection Framework

The lane detection framework based on DriveWorks
LaneNet pipeline [19], [20] utilizes camera images. The
camera should be instantiated in SAL and the framework
is shown in Figure 2.

Fig. 2: Lane detection framework.

The lane detection framework assigns numbers to the lane
markings from the left to the right. The left adjacent marker
is labelled -2, the ego left marker is labelled -1, the ego right
marker is labelled 1, and the right adjacent marker is labelled
2. For each frame the lane detection framework identifies the
lane markings. It uses three functions to identify, interpret
and assign coordinates to the lanes identify with an image.
These functions create a structure that has labels for the
position of the lane and contains all the pixel coordinates
represented as (x,y) for each lane marking.



C. Free Space Detection Framework

The free space detection framework based on DriveWorks
OpenRoadNet pipeline [19], [20] utilizes camera images. The
camera should be instantiated in SAL and the framework is
shown in Figure 3.

Fig. 3: Free space detection framework.

In the same way as the lane detection framework, the free
space detection framework uses three different functions to
identify, interpret and assign coordinates to the free space
boundary.

The free space detection framework is able to identify the
free space on the surface road in front of the vehicle and
also identifies various objects obstructing the drivable space
such as cars, pedestrians, and curbs.

III. PROPOSED INTEGRATED FRAMEWORK

In this section, we present a deep neural network based
real-time integrated framework, to detect objects, lane mark-
ings, and drivable space using a monocular camera, for
autonomous driving, is given in detail.

A. Integrated Framework Overview

In our integrated framework, we propose a pipeline com-
bining three deep neural networks presented in section II.
The proposed integrated framework for autonomous driving
is shown in Figure 4.

B. Integrated Framework Architecture

The proposed integrated framework architecture as shown
in Figure 5 has the following components:

• Input image frame: This component captures the input
image frame from the on-board Sekonix GMSL camera.

• Initialize pipeline: This component initializes the vari-
ous parameters and converts the acquired input image
frame into the compatible image format for the object
detection, the lane detection, and the free space detec-
tion framework.

• Integrated framework: Initially, this component removes
the lens distortion of an input image frame. The main
purpose of this rectification module is to convert an im-
age acquired with an input camera model by projecting
it into an output camera model. Later, this component

integrates the three deep neural-networks into a single
pipeline, to detect objects, lane markings, and drivable
space simultaneously, for autonomous driving.

• Visualization: This component renders the output image
frame of the integrated framework on the computer
screen.

IV. PERFORMANCE EVALUATION

In this section, we discuss our experimental setup and
experimental evaluation results, in detail.

A. Experimental Setup

We conducted experiments on our prototype research ve-
hicle, which has autonomous driving functionality, is shown
in Figure 6.

The Drive PX 2 platform is mounted in the trunk of a car,
the wired interface connected to Drive PX 2 with 60 field
of view (FOV) Sekonix GMSL camera which is mounted
behind the front windshield, positioned close to the rear-view
mirror.

This Drive PX 2 AutoChauffeur is an aarch64 computing
platform consists of two separate but identical Nvidia Tegra
system on a chip (SOC). Each SOC has two processors,
one dual-core and one quad core, that operate between 1.4
- 2.0 GHz. A GPU with 256 cores operating at 1.12 GHz is
also included on each SOC. Between the two Tegra SOCs,
there is a total of 12 CPU cores and 512 GPU cores. In
addition to the integrated GPUs on the two SOCs, there are
two additional Pascal GPUs on the Drive PX 2, totaling four
GPUs. We also used a x86 platform laptop with Intel Core
i7 CPU@2.80 GHz RAM 16GB, Nvidia Quadro M1200,
Ubuntu 16.04 to compare the performance of our framework
across different platforms. Both the Drive PX 2 and the
laptop has DriveWorks 0.6.67, CUDA 9.0, and CuDNN 7.3.0
software installed.

B. Experimental Results

Each framework presented in Section II, and Section III
was developed as individual modules and the results are
explained below:

• Input image frame: We acquired the input image frame
of 1920x1208 resolution at 30 frames per second (FPS)
from an on-board Sekonix GMSL camera, is shown in
Figure 7a. We processed the input image frame into
the compatible form of the multi-class object detection
framework, the lane detection framework, and the free
space detection framework.

• Rectification: The input image frames has lens distor-
tion. This module reads the camera parameters: hor-
izontal field of view FOV(H)=60.6, vertical field of
view: FOV(V)=36.1, and resolution 1920x1208, and
the camera intrinsics from a rig configuration file.
It then performs rectification by projecting the input
image frame to the undistorted output image frame.
The rectified images are feed to the multi-class object
detection framework, the lane detection framework, and



Fig. 4: Proposed integrated framework.

Fig. 5: Architecture of the proposed integrated framework.

Fig. 6: A Toyota Prius autonomous driving research prototype vehicle equipped with Nvidia Drive PX 2, and Sekonix GMSL Camera. Sekonix GMSL
Camera connected to Drive PX 2 over GMSL cable in a vehicle (center image). Drive PX 2 mounted in the trunk of a vehicle (left image). Sekonix GMSL
camera which is mounted behind the front windshield, positioned close to the rear-view mirror (right image).

the free space detection framework, as shown in Figure
7b.

• Multi-class object detection and tracking framework:
The multi-class object detection and tracking framework

detects the objects on the road, are shown in Figure 7c.
It overlays bounding boxes for detected objects such as
cars, trucks, traffic light signs, bicycles, and pedestrians.
The color of the bounding boxes represent the objects



(a) Input image frame from the on-board Sekonix GMSL camera. (b) Rectified input image frame (undistortion).

(c) Results of object detection’s using the multi-class object detection and
tracking framework.

(d) Results of lane markings using the lane detection framework.

(e) Results of drivable space recognition using the free space detection
framework.

(f) Results of objects, lane markings, and drivable space detection simulta-
neously using the proposed integrated framework.

Fig. 7: Results of integrated framework modules.

that it detects. For instance, red for cars, green for
person, and magenta for road signs.

• Lane detection framework: The lane detection frame-
work detects lane markings on the road, are shown in
Figure 7d. The color of the lane markings represent
the lanes that is identified. For instance, cyan for left
adjacent lane, red for left ego lane, green for right ego
lane, and blue for right adjacent lane.

• Free space detection framework: The free space detec-
tion framework detects the drivable space in front of
the vehicle, is as shown in Figure 7e. It separates
the drivable and the non-drivable space in the image
with boundary markings. The color of the markings
represents the type of object that is obstructing the
drivable space. For instance, red for vehicle boundaries,

green for curbs, persons are blue, yellow for others.
• Single Pipeline: This pipeline detects objects, lane

markings and road free space simultaneously on the
road, is as shown in Figure 7f.

The performance comparison of the proposed integrated
framework along with the multi-class object detection frame-
work, the lane detection framework, and the free space
detection framework, are shown in Table I.

The processing time of the proposed integrated framework
on the image frame is 56 ms on host platform (17 Hz) and 51
ms on target platform (19 Hz), which is good for various low
speed ADAS applications. We observed that the obstacles
on the road in front of the vehicle are detected in a frame
including pedestrians, cars, sign boards, lane markers, road
edges and vehicle drivable space in a real-time environment.



TABLE I: Performance comparison of the frameworks (in ms).

Framework Intel Core i7 Quadro M1200 (Host) Drive PX 2 (Target)
Multi-Class Object Detection and Tracking Framework 38 34

Lane Detection Framework 09 06
Free Space Detection Framework 07 04
Proposed Integrated Framework 56 51

V. CONCLUSIONS

In this paper, we proposed an integrated framework for
autonomous driving based on the Nvidia deep neural network
multi-class object detection framework, the lane detection
framework, and the free space detection framework. To verify
the feasibility and practicality of the integrated framework,
we conducted experiments on our autonomous driving re-
search vehicle with a Drive PX 2 and a monocular camera.
Through our experiments on the road, we demonstrated that
our integrated framework runs at 19 Hz on the Drive PX 2
platform which is enough for low-speed ADAS applications.
This framework can also be used for localization based
on map matching strategy, mapping, and path planning for
autonomous driving solutions.

ACKNOWLEDGMENT

This research work is part of the i-CAVE (integrated
cooperative automated vehicles) research programme with
project number 363265/10021636. This i-CAVE programme
is funded by NWO (Netherlands Organisation for Scientific
Research).

REFERENCES

[1] Zehang Sun, G. Bebis, and R. Miller, “On-road vehicle detection: a
review,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 28, no. 5, pp. 694–711, May 2006.

[2] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., vol. 1, June 2004,
pp. I–I.

[3] R. Domnguez, E. Onieva, J. Alonso, J. Villagra, and C. Gonzlez,
“Lidar based perception solution for autonomous vehicles,” in 2011
11th International Conference on Intelligent Systems Design and
Applications, Nov 2011, pp. 790–795.

[4] A. Manjunath, Y. Liu, B. Henriques, and A. Engstle, “Radar based
object detection and tracking for autonomous driving,” in 2018 IEEE
MTT-S International Conference on Microwaves for Intelligent Mobil-
ity (ICMIM), April 2018, pp. 1–4.

[5] Li-Chen Fu and Cheng-Yi Liu, “Computer vision based object detec-
tion and recognition for vehicle driving,” in Proceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation (Cat.
No.01CH37164), vol. 3, May 2001, pp. 2634–2641 vol.3.

[6] A. Moujahid, M. ElAraki Tantaoui, M. D. Hina, A. Soukane, A. Or-
talda, A. ElKhadimi, and A. Ramdane-Cherif, “Machine learning
techniques in adas: A review,” in 2018 International Conference on
Advances in Computing and Communication Engineering (ICACCE),
June 2018, pp. 235–242.

[7] A. Shrestha and A. Mahmood, “Review of deep learning algorithms
and architectures,” IEEE Access, vol. 7, pp. 53 040–53 065, 2019.

[8] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, M. Hasan,
B. C. V. Esesn, A. A. S. Awwal, and V. K. Asari, “The history
began from alexnet: A comprehensive survey on deep learning
approaches,” CoRR, vol. abs/1803.01164, 2018. [Online]. Available:
http://arxiv.org/abs/1803.01164

[9] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski,
B. Firner, L. D. Jackel, and U. Muller, “Explaining how a
deep neural network trained with end-to-end learning steers
a car,” CoRR, vol. abs/1704.07911, 2017. [Online]. Available:
http://arxiv.org/abs/1704.07911

[10] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-
driving cars,” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[11] D. de Geus, P. Meletis, and G. Dubbelman, “Single
network panoptic segmentation for street scene understand-
ing,” CoRR, vol. abs/1902.02678, 2019. [Online]. Available:
http://arxiv.org/abs/1902.02678

[12] A. Gurghian, T. Koduri, S. V. Bailur, K. J. Carey, and V. N. Murali,
“Deeplanes: End-to-end lane position estimation using deep neural
networksa,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2016.

[13] W. P. Sanberg, G. Dubbleman et al., “Free-space detection with self-
supervised and online trained fully convolutional networks,” Electronic
Imaging, vol. 2017, no. 19, pp. 54–61, 2017.

[14] A. Das and G. Dubbelman, “An experimental study on relative and
absolute pose graph fusion for vehicle localization,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), June 2018, pp. 630–635.

[15] C. Lu, M. J. G. van de Molengraft, and G. Dubbelman, “Monocu-
lar semantic occupancy grid mapping with convolutional variational
encoderdecoder networks,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 445–452, April 2019.

[16] F. Remmen, I. Cara, E. de Gelder, and D. Willemsen, “Cut-in sce-
nario prediction for automated vehicles,” in 2018 IEEE International
Conference on Vehicular Electronics and Safety (ICVES), Sep. 2018,
pp. 1–7.

[17] S. Eilers, J. Boger, and M. Frnzle, “A path planning framework for
autonomous vehicles,” in 9th International Workshop on Robot Motion
and Control, July 2013, pp. 203–208.

[18] NVIDIA DRIVE - Autonomous Vehicle Development Platforms,
https://developer.nvidia.com/drive/, [Online], 2018.

[19] NVIDIA DriveWorks Development Guide,
https://developer.nvidia.com/driveworks-docs/, [Online], 2018.

[20] NVIDIA GPU Technology Conference (GTC), San Jose, CA, USA,
2018, https://www.nvidia.com/en-us/gtc/, [Online], 2018.


