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Abstract— In a cooperative automated driving scenario like
platooning, the ego vehicle needs reliable and accurate per-
ception capabilities to autonomously follow the lead vehicle.
This paper presents the architecture design and development
of an on-board stereo vision system for cooperative automated
vehicles. The input to the proposed system is stereo image
pairs. It uses three deep neural networks to detect and classify
objects, lane markings, and free space boundary simultaneously
in front of the ego vehicle. The rectified left and right image
frames of the stereo camera are used to compute a disparity
map to estimate the detected object’s depth and radial dis-
tance. It also estimates the object’s relative velocity, azimuth,
and elevation angle with respect to the ego vehicle. It sends
the perceived information to the vehicle control system and
displays the perceived information in a meaningful way on
the human-machine interface. The system runs on both PC
(x86 64 architecture) with Nvidia GPU, and the Nvidia Drive PX
2 (aarch64 architecture) automotive-grade compute platform.
It is deployed and evaluated on Renault Twizy cooperative
automated driving research platform. The presented results
show that the stereo vision system works in real-time and is
useful for cooperative automated vehicles.

Index Terms—Artificial intelligence, cooperative auto-
mated vehicles, deep neural network, stereo vision system.

I. INTRODUCTION

In recent years researchers have made significant progress
in the field of autonomous vehicles [1] to reduce traffic
congestion [2], and road accidents caused by human error [3],
[4]. Autonomous vehicles do not depend on communication
with other traffic but rely on multiple on-board sensors to
move and navigate independently. A sensor failure or any
other technical error may lead to a disastrous consequence
[5]. Cooperative automated vehicles, on the other hand,
can share system information with other vehicles making
a significant contribution towards increasing road safety
and improve mobility worldwide. Constructive information
sharing will provide endless possibilities for safe driving,
and multiple vehicles can collaborate to compensate for
information scarcity [6]. An example of such cooperative be-
havior is platooning, where multiple vehicles drive together
in formation [7]. In a platooning scenario, the front lead
vehicle is controlled by the driver, while the ego vehicles
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Fig. 1: Platooning scenario [10].

autonomously follow the vehicle in front of it [8], [9],
[10], is as shown in Figure 1. Vehicles work together in
forming these platoons, coordinating with each other using a
vehicle-to-vehicle (V2V) communication channel [11]. The
V2V communication channel is also used by the vehicles to
communicate information used to optimize the inter-vehicle
distance within a platoon [12].

Automated vehicles need a robust and reliable perception
system to perceive the environment accurately in real-time.
Cameras [13], LiDARs [14], and Radars [15] are among the
many sensors used in perception systems. We use a stereo
camera for the proposed perception system for the following
reasons: i) It is cost-effective as compared with other sensors
such as LiDAR [16], and Radar [17], ii) Compared to Radar
and LiDAR, it provides color and texture information of the
surroundings, that can be used for semantic understanding
of the environment, iii) It can be used to estimate the depth
of objects using image disparity directly [18].

We propose an on-board stereo vision system for the
cooperative automated vehicles. The proposed system uses
the left and right images from the stereo camera to rectify and
compute a disparity map, which is used to estimate the depth
of the detected objects. It uses deep neural networks (DNNs)
to perform object perception, lane perception, free space
perception. The classified objects from the DNN are tracked
in subsequent image frames using an object tracker. The
system also computes the radial distance, relative velocity,
azimuth, and elevation angle of the tracked objects based on
motion estimation with respect to the ego vehicle. It sends
the perceived obstacle information to the vehicle control
system. It displays the perceived obstacle information in



a meaningful way to the driver through the display. The
schematic overview of the proposed system that is used in
the cooperative automated vehicles is shown in Figure 2.
The proposed system is developed on Ubuntu 16.04 (x86 64
architecture) with Nvidia GPU and deployed on Nvidia
Drive PX 2 (aarch64 architecture) automotive-grade compute
hardware. It is evaluated on a cooperative automated driving
research platform consisting of Renault Twizy’s in real-time
with a custom-built automotive-grade Gigabit Multimedia
Serial Link (GMSL) stereo camera.

The main contributions of this paper are:
• Developed and integrated an on-board stereo vision

system for cooperative automated vehicles, which can
detect and classify the objects, lane markings, and free
space boundary in front of the vehicle.

• Developed a stereo vision-based motion estimation
module, which computes the tracked object’s radial
distance, relative velocity, azimuth, and elevation angle.

• Evaluated and demonstrated the proposed system per-
formance in real-time with the cooperative automated
driving research platform.

The rest of this paper is structured as follows: In section II,
we describe the proposed system in detail. In section III, we
discuss the experiments and results. We conclude our paper
in section IV.

II. PROPOSED ON-BOARD STEREO VISION SYSTEM

We propose an independent electronic control unit of the
on-board stereo vision system for the Integrated Cooperative
Automated Vehicles (i-CAVE) project. It is a part of the
i-CAVE perception system, which is used to perceive the
environment in real-time. At present, the i-CAVE platoon
consists of one lead vehicle and one ego vehicle. The lead
vehicle is controlled by the driver, and the ego vehicle
autonomously follows the lead vehicle. Our proposed system
is deployed on the ego vehicle, which perceives the traffic
environment with a front-facing stereo camera. It provides
real-time environment information to the vehicle control
system. The vehicle control system uses the perceived en-
vironment information and generates a control command to
autonomously follow the lead vehicle.

A. Architecture Design

The proposed system’s architecture design is divided into
two parts, namely software functional architecture and hard-
ware functional architecture, which is explained below.

1) Software Functional Architecture: The functional soft-
ware architecture of the proposed system is shown in Figure
3. Raw input image frame from the stereo camera is pro-
cessed and then used to perceive the vehicle’s surroundings.
This process is composed of the following modules, which
enables a modular approach for the development of the
stereo vision software: acquisition, stereo vision, deep neural
networks, and motion estimation.

The acquisition module acquires the left and the right
raw input image frame in the RCCB (Red-Clear-Clear-Blue)

Fig. 2: Schematic overview of the proposed on-board stereo vision system
for cooperative automated vehicles.

Bayer format simultaneously from the on-board stereo cam-
era sensor. It reads the rig configuration file (JSON format)
containing camera calibration parameters and converts the
input image frames into the compatible RGBA (Red-Green-
Blue-Alpha) image format for the stereo vision, deep neural
networks, and motion estimation modules. The stereo vision
module uses the camera calibration parameters acquired
from the rig configuration file to undistort and rectify the
input stereo image pairs. The rectified stereo image pairs
are used to compute the disparity map. The deep neural
networks module consists of three sub-modules, such as
object perception, lane perception, and free space perception.
The object perception sub-module classifies and tracks the
detected objects and provides the region of interests (ROIs)
to the motion estimation module. The lane perception sub-
module identifies and classifies the lane markings as left
adjacent lane, left ego lane, right ego lane, and right adjacent
ego lane if they are present on the road. The outputs
of this sub-module to the motion estimation module are
identified as lane markings. The free space perception sub-
module recognizes and classifies the drivable free space in
front of the vehicle. The output of this sub-module to the
motion estimation is the free space boundary of the identified
drivable free space. The motion estimation module takes
the tracked objects’s ROIs from the object perception sub-
module, disparity map from the stereo disparity sub-module.
It computes the depth of each tracked object. It estimates



Fig. 3: Software functional architecture of the proposed on-board stereo vision system for cooperative automated vehicles.

the radial distance, relative velocity, azimuth, and elevation
angle of the tracked objects. The outputs of the previous
modules are sent to the vehicle control system over controller
area network (CAN) and overlaid on the input image that
is displayed on the human-machine interface (HMI) display
over HDMI-cable.

2) Hardware Functional Architecture: The functional
hardware architecture of the proposed system is shown in
Figure 4. We use a dedicated Nvidia Drive PX 2 hardware
platform for our research work because it is a powerful
and efficient automotive-grade platform for real-time ap-
plications. The proposed system hardware consists of the
following components: GMSL stereo camera, power supply,
host PC, Drive PX 2, real-time PC, and HMI.

The custom-built GMSL stereo camera component is
connected to Drive PX 2 using the Fakra Coax cable. The
power supply component uses a DC-DC converter to convert
the 24V DC input from the vehicle battery to 12V DC
to power the Drive PX 2 hardware unit using an 8-pin
power supply cable. The stereo vision software is developed
on the host PC, and the compiled executable is deployed
on the Drive PX 2 (target). The host is connected to the
target using a Gigabit Ethernet (GbE) port, which is used
to monitor and debug the target while running. The Drive
PX 2 AutoChauffeur configuration consists of two Tegra
System-on-Chip (SOC), namely Tegra A (Parker A) and
Tegra B (Parker B). Additionally, an ASIL-D safety based
Infineon Aurix TC297 microcontroller unit (MCU) is used
to configure and control the entire system. Each of the
Tegra SoCs consists of a CPU with four A57 cores and
two Denver2 cores, and one integrated GPU (iGPU). Each
SoCs can access a PASCAL architecture based discrete GPU
(dGPU) through the dedicated PCIe bus. Both the SoCs can
communicate with each other via Gigabit Ethernet. The Drive
PX 2 hardware supports twelve GMSL cameras using Fakra
Coax cable connectors. The twelve connectors are divided
into three groups (Group A, Group B, Group C), each group
consisting of four ports (Port 0, 1, 2, 3). We have connected
the left camera of the stereo setup to Port A0 of Group A,
and the right camera to Port A0 of Group B. It supports six

CAN channels, can-1 to can-4 are forwarded through Aurix
microcontroller, and can-5 to can-6 are directly accessed by
the Tegra A and Tegra B, respectively. The proposed system
runs on a Tegra A or Tegra B of Drive PX 2 hardware,
which directly communicates with the vehicle control system
over the CAN-bus. The real-time PC runs a Simulink real-
time kernel and executes the vehicle control system Simulink
model. The vehicle control system model consists of three
modules, namely perception, planning, and control, which
directly communicates with the actuators over the vehicle
CAN-bus. The HMI is used to display the results from stereo
vision software via HDMI cable (HDMI Parker A/B port).

B. Development
The developed modules to classify objects, compute the

radial distance, relative velocity, azimuth, and elevation angle
of objects, are explained below.

1) Stereo Vision: The acquired left and right synchronized
input images from the stereo camera are used for stereo rec-
tification and disparity computation. The stereo rectification
algorithm runs on the GPU and generates rectified images
based on the stereo camera calibration parameters. The stereo
disparity algorithm takes the rectified images and runs on
the GPU using CUDA programming. It computes a disparity
map using a stereo semi-global matching (SGM) algorithm
[19].

2) Deep Neural Networks: The deep neural networks
(DNNs) module is used to provide semantic information in
front of the vehicle. It consists of three sub-modules, such as
object perception, lane perception, and free space perception.

The object perception sub-module uses Nvidia’s propri-
etary DNN called DriveNet [20] to perform real-time ob-
ject detection and tracking. The DriveNet object detection
algorithm runs on the CPU and GPU. It consists of three
parts, such as object detection, object clustering, and object
tracking. The input to the object detection algorithm is
the RGBA image format, and the output is object propos-
als with bounding boxes. Each object can have multiple
proposals. The object clustering algorithm clusters these
various proposals into one bounding box for each detected
object. The object tracking algorithm tracks the detected



Fig. 4: Hardware functional architecture of the proposed on-board stereo vision system for cooperative automated vehicles.

bounding boxes to maintain temporal consistency. The output
of this algorithm is the bounding boxes and class labels of
the detected objects. It detects and classifies five different
classes of objects: car, pedestrian, bicycle, traffic sign, and
traffic light. The color of the bounding boxes represents
the classes that it detects: red for cars, green for traffic
signs, blue for bicycles, magenta for traffic lights, and orange
for pedestrians. The lane perception sub-module is used
to provide lane markings information in front of the ego
vehicle. It uses Nvidia’s proprietary DNN called LaneNet
[20] to perform real-time lane detection and classification.
The LaneNet lane detection algorithm runs on the CPU
and GPU. The input image to this network is the RGBA
image format, and the output is polylines representing lane
markings. It calculates a probability map of lane markings for
each pixel using an encoder-decoder architecture on the input
image. The probability map is then binarized into clusters of
lane-markings through polylines fitted to assign lane position
types. The output of this algorithm is the lane markings
represented as polylines and labels for the identified lane
lines. It detects and classifies four different types of lane
markings. The classified lane markings are left adjacent-lane,
left ego-lane, right ego-lane, and right adjacent-lane when
they are present on the road. The colors of the polylines
represent the lane marking position types are as follows:
yellow for left adjacent-lane, red for left ego-lane, green for
right ego-lane, and blue for the right adjacent-lane. The free
space perception sub-module is used to estimate the drivable
free space in front of the ego vehicle. It uses Nvidia’s propri-
etary DNN called FreeSpaceNet [20] to perform the real-time
drivable free space boundary detection and classification. The
FreeSpaceNet detection algorithm runs on the CPU and GPU.
The input to the network is the RGBA image format, and the
output is the free space boundary for the recognized drivable
free space. The boundary separates the obstacle from the
drivable free space. Each pixel on the boundary is associated
with one of the four semantic labels: red for the vehicle, blue
for a pedestrian, green for the curb, and yellow for others.

3) Motion Estimation: In this module, the radial distance,
relative velocity, azimuth, and elevation angle of the tracked
objects with respect to the ego vehicle are estimated. This
module runs on the CPU. The depth estimation process uses a

stereo camera setup in standard stereo geometry or canonical
stereo or frontal parallel. The two cameras of the stereo
camera setup are identical, with the same spatial resolution,
the same focal length, and the parallel optical axes.

Fig. 5: A stereo vision geometric model for depth estimation. The camera
coordinate system (Xc, Yc, Zc) is relative to the left camera’s center of
projection. The x-axis (Xc) points to the right of the image plane, the y-
axis (Yc) points to the bottom of the image plane, and the z-axis (Zc)
points forward, along the optical axis. The image coordinate system (u, v)
is relative to the upper left corner of the image.

Depth estimation: The Figure 5 depicts the stereo triangu-
lation technique used to estimate the depth of a lead vehicle
with respect to the ego vehicle in a platooning scenario.
The position of the midpoint of the lead vehicle in the
camera coordinate system is P (X,Y, Z) observed from both
cameras at projection point PL(uL, vL) in the left image
plane and PR(uR, vR) in the right image plane with u along
with horizontal axis and v along with vertical axis. The
principal points of both the cameras are CL(uCL, vCL) and
CR(uCR, vCR) respectively. The left camera OL and right
camera OR are fixed on the roof of the ego vehicle with
a constant baseline distance (b). Using the similar triangles
∆POLOR (blue dashed lines triangle) and ∆PPLPR (red



dashed lines triangle), we can derive the following expression
[21]:

z/b = (z − f)/(b− (uL − uR)) (1)

from which we can obtain:

z/b = (z − f)/(b− d) (2)

where, d = (uL-uR) is disparity in pixels, from which we
can obtain:

z = f ∗ b/d (3)

where, z is the depth of the point P from the stereo camera in
meters, f is the effective focal length of the stereo camera
in pixels, and b is the baseline between the left and right
cameras in meters. Focal length and baseline are stereo
camera constants that are obtained from the stereo camera
calibration.

Radial distance estimation: The Figure 6 depicts the stereo
vision geometric model that is used to estimate the radial
distance of a lead vehicle with respect to the ego vehicle in a
platooning scenario. The lead vehicle’s position P (X,Y, Z)
in the camera coordinate system can be calculated using the
computed depth of the point P (z) in meters, focal length
(f ) in pixels, corresponding image point PL(uL, vL) in the
left image plane [22]:

(X,Y, Z) = ((uL − uCL) ∗ z/f, (vL − vCL) ∗ z/f, z) (4)

from which we can compute the radial distance (ρ) in meters:

ρ =
√
X2 + Y 2 + Z2 (5)

The radial distance is computed by taking the average of the
radial distance of all points in a small region around the point
P . The region is estimated by taking 1/5th of the size of
the ROI output from the object perception sub-module. The
standard deviation of the radial distance is also computed to
estimate the noise in the distance computation.

Fig. 6: A stereo vision geometric model for distance estimation (top view).

Relative velocity estimation: The Figure 7 depicts the
stereo vision geometric model that is used to estimate the
relative velocity of a lead vehicle with respect to the ego
vehicle in a platooning scenario. The relative velocity V(P,Q)

(in meters/seconds) of the lead vehicle in the camera coordi-
nate system can be obtained by computing the displacement
from the previous position (P ) to the current position (Q) in
terms of change of radial distance (∆ρ) in meters within the
time (dt) in seconds:

V(P,Q) =
∆ρ

dt
(6)

Fig. 7: A stereo vision geometric model for velocity estimation (side view).
The computed radial distance of previous vehicle position (P ) is marked
with red dashed lines and current position (Q) is marked with blue dashed
lines. The vehicle coordinate system (Xv , Yv , Zv) is relative to the center
of the rear axle and on the ground. The x-axis (Xv) points forward to the
front of the vehicle, the y-axis (Yv) points to the left of the vehicle, and
the z-axis (Zv) points upwards.

Azimuth angle estimation: The Figure 6 depicts the stereo
vision geometric model that is used to estimate the azimuth
angle of a lead vehicle with respect to the ego vehicle in
a platooning scenario. After obtaining the pixel coordinate
PL(uL, vL) of the lead vehicle from the object tracker
algorithm, and with the position of the optical center of the
left image CL(uCL, vCL), the relative horizontal distance
from the optical center is (duL) (in pixels) computed using
the following expression [22]:

duL = (uL − uCL) (7)

from which we can compute the azimuth angle (α) (in
degrees) of the point P using the focal length of the left
camera (in pixels):

α = arctan(duL/f) (8)

Elevation angle estimation: The Figure 8 depicts the stereo
vision geometric model used to estimate the elevation angle
of a traffic light with respect to the ego vehicle while
performing platooning.

After obtaining the pixel coordinate, PL(uL, vL) of
the traffic light from the object tracker algorithm, and
with the position of the optical center of the left image



Fig. 8: A stereo vision geometric model for elevation estimation (side view).

CL(uCL, vCL), the relative vertical distance from the optical
center is (dvL) (in pixels) computed using the following
expression [22]:

dvL = (vL − vCL) (9)

from which we can compute the elevation angle (β) (in
degrees) of the point P using the focal length of the left
camera (f ) (in pixels):

β = arctan(dvL/f) (10)

The above methods are developed in C++ with Nvidia
DriveWorks 1.2, CUDA 9.2, and CuDNN 7.4.1 on an Ubuntu
16.04 LTS and deployed on a Drive PX 2 hardware platform.

III. EXPERIMENTS AND RESULTS

In this section, we describe the experimental setup and
evaluate the performance of the proposed on-board stereo
vision system. We conducted the experiments on a Renault
Twizy cooperative automated driving research platform. It
consists of one lead vehicle and one ego vehicle. The ego ve-
hicle, Renault Twizy, which is equipped with a GMSL stereo
camera, Nvidia Drive PX 2 hardware platform with a stereo
vision software, and 12V DC USB powered HDMI 10.1 inch
small monitor, is shown in Figure 9. The Drive PX 2 requires
a 12V DC power supply to operate. Hence, we added a DC-
DC converter to convert from a car battery 24V DC to 12V
DC. We used two identical Sekonix GMSL automotive-grade
cameras (SF3325) with an ONSEMI CMOS AR0231 image
sensor, 2.3 MegaPixel (1920x1208 resolution), 60 degrees
horizontal field of view (ψ in Figure 6) and 30 degrees
vertical field of view (θ in Figure 8), for our custom-built
stereo camera setup. It also includes the mounting solution
for the cameras. This consists of the aluminum beam onto
which the cameras are mounted on the car roof using a rigid
mounting bar at a baseline distance of 30 centimeters. The
ego vehicle is also equipped with an NXP Cocoon Long-
Range Radar, which we have used to compare the results of
the proposed system. The Radar operates at a frequency of
78 GHz and has a horizontal field of view of 120 degrees
and a vertical field of view of 20 degrees. It generates
measurements at 14 Hz. The Radar is rigidly fixed in the
middle of the front bumper of the ego vehicle. We used the
Kvaser Leaf Light HS V2 CAN monitor tool to read the

CAN messages of the proposed system in lab testing. The
CAN message from the proposed system (Drive PX 2), which
corresponds to the object information (class type, radial
distance, relative velocity, azimuth, and elevation angle)
are decoded using the database container (dbc) file by the
real-time control system and generates a control command.
The experiments are performed in two different scenarios:
a) Controlled outdoor environment, where the position and
movement of objects in the environment are known, we
compare the measurements of the proposed system with
the Radar b) Traffic environment, where we discuss the
output of the DNNs in the proposed system on a highway.
The execution time of the proposed system in two different
platforms are also discussed.

Fig. 9: The experimental setup of the Twizy cooperative automated research
vehicle platform.

A. Controlled Outdoor Environment

In the scenario depicted in Figure 10, the vehicles were
stationary, and a person moved away from the ego vehicle.
The person started from 3 meters away from the ego vehicle,
then moved to 6 meters, 9 meters, and ultimately to 12
meters in a period of 25 seconds. The output of the results
from the proposed system is plotted and compared with
the measurements of the Radar. The Figure 11a shows
the plot of the measured radial distance (in meters) of all
objects detected by the Radar, as this Radar cannot classify
an object. We can see that the distance of most of the
objects is constant except one, which starts from 3 meters
and ultimately stops at 12 meters. The curve flattens and
increases after every 3 meters because the person remained
stationary for some seconds after moving every 3 meters.
The multiple of 3 meters distance is marked with cones, as
shown in Figure 10b. The Figure 11b shows the plot of the
measured radial distance (in meters) of the tracked person
by the proposed system. We can see a similar trend in the
curve where it flattens and increases after every 3 meters
as compared to the Radar measurements. The Figure 11c
shows the plot of the measured radial distance (in meters) of
the tracked vehicles by the proposed system. We can see
that the measured distance of the vehicles is constant as
expected. The Figure 12a shows the plot of the measured
relative velocity (meters/seconds) of all objects detected by
the Radar. We can see a clear increase and decrease in
velocity when the person moves and stops, respectively. The
Figure 12b shows the plot of the measured relative velocity
(in meters/seconds) of the tracked person by the proposed



system. We can see a similar trend in the curve, and the
measurements are much noisier than the Radar system. The
noise can be reduced by using temporal filters. The Figure
12c shows the plot of the measured relative velocity (in
meters/seconds) of the tracked vehicles by the proposed
system. The measurements are noisy but are always close
to zero. The noisy measurements are present because of
erroneous disparity map estimation due to improper stereo-
image synchronization or error stereo matching algorithms.
The Figure 13a shows the plot of the measured azimuth
(in degrees) of all detected objects detected by the Radar.
The azimuth of the detected objects is noisy but tends to
be constant. The Figure 13b shows the plot of the measured
azimuth (in degrees) of the tracked person, and Figure 13c
shows the plot of the measured azimuth (in degrees) of the
tracked vehicles by the proposed system. We can see that
the proposed system’s measurements are less noisy than the
Radar. There is a small difference in the plot of the vehicle’s
azimuth because some vehicles were missed by the Radar.
The Figure 14a shows the plot of the measured elevation
(in degrees) of all detected objects detected by the Radar.
The elevation does not vary that much as all the vehicles are
stationary, and the change in elevation of the person moving
away from the vehicle is small as person always stays close
to the center of the image. The Figure 14b shows the plot
of the measured elevation (in degrees) of the tracked person,
and Figure 14c shows the plot of the measured elevation
(in degrees) of the tracked vehicles by the proposed system.
We can see a similar trend in the measurements, but this
time the estimated measurements are much less noisy than
the Radar. The experiments show that the Radar is good at
the estimation of velocity and range of objects, whereas the
proposed system had noisy measurements for velocity, and
the noise is comparatively less for radial distance estimation.
The main advantage of the proposed system over the Radar
is that it can classify objects, and the object’s azimuth
and elevation measurements are more accurate than that
of Radar’s. Fusing measurements from both systems will
increase the perception capability of the vehicle.

(a) Disparity map. (b) Detection and tracking out-
put.

Fig. 10: A controlled outdoor scenario, where a person moved from 3m to
6m to 9m to 12m away from the ego vehicle. Figure 10a shows the disparity
map of the scene, and Figure 10b shows the output of the proposed system.

B. Traffic Environment

In the scenario depicted in Figure 15, the ego vehicle was
following the lead vehicle on a highway. We can see that the
object perception module detects the vehicles (red bounding

(a) (b) (c)

Fig. 11: Figure 11a shows the plot of the measured relative radial distance
of objects detected by the Radar. Figures 11b and 11c show the plot of the
measured relative radial distance of the tracked person and vehicles by the
proposed system, respectively.

(a) (b) (c)

Fig. 12: Figure 12a shows the plot of the measured relative velocity of
objects detected by the Radar. Figures 12b and 12c show the plot of
the measured relative velocity of the tracked person and vehicles by the
proposed system, respectively.

(a) (b) (c)

Fig. 13: Figure 13a shows the plot of the measured azimuth of objects
detected by the Radar. Figures 13b and 13c show the plot of the measured
azimuth of the tracked person and vehicles by the proposed system,
respectively.

(a) (b) (c)

Fig. 14: Figure 14a shows the plot of the measured elevation of objects
detected by the Radar. Figures 14b and 14c show the plot of the measured
elevation of the tracked person and vehicles by the proposed system,
respectively.

boxes), and traffic lights (magenta bounding boxes) in the
scene accurately. The lane perception module detects the left
ego lane (red line) and right ego lane (blue line) accurately.
The free space detection module also detects the drivable
free space in front of the ego vehicle and is represented as a
continuous curve from the left to the right side of the image.

C. Processing Time

We compare the processing time of the proposed system,
on the Ubuntu 16.04 (x86 64 architecture) and Drive PX 2



Fig. 15: Results of the proposed system, in highway traffic scenario.

TABLE I: Performance comparison of frameworks in terms of processing
time (in milliseconds).

Platform
(architecture)

Nvidia Deep Neural Networks Stereo
Vision
System

Object
Detection

Lane
Detection

Free Space
Detection

Ubuntu16.04
(x86 64) 11 03 01 23

Drive PX 2
(aarch64) 34 06 04 138

(aarch64 architecture) platform with Nvidia DriveWorks 1.2,
CUDA 9.2, and CuDNN 7.4.1 library, are shown in Table I.
The processing time of the proposed system is 23 ms (43 Hz)
on a PC with Intel Core i7 CPU (Ubuntu 16.04 LTS), Nvidia
TITAN Xp GPU card with PASCAL architecture (Nvidia
graphics driver 396 for x86 platform), and 138 ms (7.2 Hz)
on the Drive PX 2 platform, which is suitable for various
low-speed cooperative automated vehicle applications.

IV. CONCLUSIONS

In this paper, we presented the architecture design and
development of an on-board stereo vision system for coop-
erative automated vehicles. The experimental result shows
that Radar provides more accurate or less noisy range and
velocity measurements than the proposed system. Whereas
the proposed system’s azimuth and elevation angle mea-
surements are more accurate than that of Radar. The main
advantage over the Radar system is that the proposed system
can accurately classify objects and estimate radial distance,
azimuth, and elevation angles. The proposed system runs
at 7.4 Hz on Drive PX 2 automotive-grade platform in a
real-time environment and it can be used in cooperative
automated driving.
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