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Abstract
We have investigated the theoretical constraints of the interactions between coupled cortical columns. Each cortical 
column consists of a set of neural populations where each population is modelled as a neural mass. The existence of 
semi-stable states within a cortical column is dependent on the type of interaction between the neuronal populations, 
i.e., the form of the synaptic kernels. Current-to-current coupling has been shown, in contrast to potential-to-current 
coupling, to create semi-stable states within a cortical column. The interaction between semi-stable states of the cortical 
columns is studied where we derive the dynamics for the collected activity. For small excitations the dynamics follow 
the Kuramoto model; however, in contrast to previous work we derive coupled equations between phase and amplitude 
dynamics with the possibility of defining connectivity as a stationary and dynamic variable. The turbulent flow of phase 
dynamics which occurs in networks of Kuramoto oscillators would indicate turbulent changes in dynamic connectivity 
for coupled cortical columns which is something that has been recorded in epileptic seizures. We used the results we 
derived to estimate a seizure propagation model which allowed for inversions using the Laplace assumption (Dynamic 
Causal Modelling). The seizure propagation model was trialed on simulated data, and future work will investigate the 
estimation of the connectivity matrix from empirical data. This model can be used to predict changes in seizure evolu-
tion after virtual changes in the connectivity network, something that could be of clinical use when applied to epilepsy 
surgical cases.

Article Highlights

•	 We investigate in-silico models of cortical networks generating complex activity seen in data from animals and 
humans.

•	 We propose an in-silico model that links network structure to epileptic seizures propagation.
•	 This work presents a technical pipeline that can be used in future studies of epileptic networks.

1  Introduction

The human cortex consists of a lattice of cortical columns with dense intracolumnar connection and a sparse network 
of intercolumnar connections [1]. The histological structure of the cortex consists of several layers of different types of 
neuronal cells with different structures and receptors [2]. Neuronal activity within each column generates extracellular 

 *  Gerald Kaushallye Cooray, gerald.cooray@ki.se | 1Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. 2GOS‑UCL Institute 
of Child Health, University College London, London, UK. 3The Wellcome Centre for Human Neuroimaging, Queen Square Institute 
of Neurology, University College London, London, UK. 4MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology 
and Neuroscience, King’s College London, London, UK.



Vol:.(1234567890)

Research	 Discover Applied Sciences            (2024) 6:36  | https://doi.org/10.1007/s42452-024-05624-8

currents whose effects can be measured using electrodes and sensors in the near vicinity and more coarsely at relatively 
great distances outside the human body using scalp electro- and magnetoencephalography (EEG and MEG) [3]. These 
recordings consist of broadband frequency activity; the frequency content is partly shaped by the different types of post-
synaptic receptors present. The cortical activity also indicates stochastic features of the underlying dynamics, including 
spikes, sharp transients, and paroxysmal rhythms seen both in the healthy and dysfunctional brain [3].

Key features of the dynamics of cortical column activity have been described by a multitude of generative models, 
ranging from one-dimensional integrate and fire neurons, multidimensional neuronal mass models and infinite dimen-
sional partial differential equations. Neuronal mass models allow for sufficient simplification of the cortical columns to 
allow for analytically tractable dynamics of cortical networks [4–6]. The simplest neural mass models are the convolution-
based models where synaptic kernels are used to convolve presynaptic input to produce postsynaptic dynamics. The 
canonical microcircuit model typifies a convolution based neural mass model of a cortical column and consists of 4 
interacting excitatory/inhibitory neuronal populations with recurrent coupling [7]. The dynamics of the cortical column 
are given by 4 coupled 2nd order differential equations. The possible trajectories of such a system can be characterized 
using the phase space representation [8]. Through simulation, these systems have been shown to have complex struc-
tures in phase space including stationary points, limit cycles and chaotic attractors [9–11]. Perturbative activity at a stable 
point is often used to model spontaneous activity as seen on EEG and MEG recordings [12–14]. However, when system 
behavior changes dynamically over time, i.e., iterant activity, it would be better modelled using the full set of dynamics 
involving different semi-stable sets such as limit cycles and stationary points [10]. The biological interpretation of limit 
cycles would be high amplitude oscillatory activity including physiological and abnormal activity including epileptic 
activity like seizures and spikes. We have previously published (under specified conditions) the sufficient and necessary 
constraints required for a neural mass system to have limit cycles [15]. In these models, the type of coupling between 
neuronal subpopulations determines the stability of the topology of the phase space structure i.e., the presence of dif-
ferent stable dynamic regimes. In our previous study we showed that synaptic kernels of potential-to-current coupling 
(S-coupling) will only affect the phase of the trajectories of the model keeping the topology constant, i.e., without any 
effect on the stability of limit cycles. In contrast, synaptic kernels of current-to-current coupling (P-coupling) will affect 
the stability of limit cycles, as does cross coupling between potential-to-current and current-to-current coupling (i.e. 
the interaction between S and P-coupling) [15]. The latter involves at least two neuronal subpopulations and allows for 
complex cross coupling between activity of different frequencies. Generative models with complex phase space topol-
ogy, would be well suited for analysis of empirical data, with similar complexity including, time-varying, and paroxysmal 
brain dynamics. This would be specifically important for model-inversion schemes e.g., dynamic causal modelling (DCM).

We will continue using the perturbative analysis presented previously to investigate the interaction between cortical 
columns and deriving the equations of motion for this activity [15]. Interestingly, our theoretical considerations of inter-
acting neural mass models, allows us to derive the equations of motion for the phase of the cortical activity which turns 
out to be the much-celebrated Kuramoto model [16, 17]. The Kuramoto model has been used as a phenomenological 
model of cortical activity, but has not, to our knowledge been derived directly from more biophysical plausible models 
(e.g., neural mass models) [18–20]. Moreover, our derivations reveal a complex interaction between columns where 
the transition between the semi-stable states of each column is determined by the connectivity between the columns 
as well as the phase difference in activity. Thus, intercortical connectivity is best described through two terms, a static 
connectivity and a dynamic phase-dependent connectivity. Epileptic seizures have been identified as brain states with 
dynamically changing connectivity although a clear understanding of the underlying dynamics is still not well under-
stood. Different studies have presented conflicting results on connectivity changes during the onset, propagation and 
termination of a seizure [21–23]. We used our findings to construct a model of seizure propagation, allowing for inversion 
techniques (DCM) to estimate the connectivity matrices from EEG recorded during epileptic seizure onset and propa-
gation. The theoretical work presented in this paper deepens our understanding of dynamical itinerancy and will also 
provide tractable ways of incorporating our knowledge in schemes of model inversion (e.g., DCM).

In Sect. 2 we will summarise and further investigate the model used to analyse cortical columns. In Sect. 3 the interac-
tions between cortical columns are analysed together with simulations and a proposed seizure propagation model. In 
Sect. 4 we will discuss the findings of the study followed by Sect. 5 giving the mathematical background for Sect. 2 and 
3. References are given in Sect. 7.
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2 � Summary of previous results

2.1 � Cortical column dynamics

We will present a summary of the results derived in [15]. Please see the Appendix (5.1–3) for a full mathematical deriva-
tion of the results in this section. The equation of motion of the neural mass model is given by,

The S-coupling represent the synaptic potential to current coupling and the P-coupling the synaptic current to cur-
rent coupling, both of these coupling types are commonly present in neural mass models [7]. Note that the S-coupling 
is positive close to 0 and the P-coupling negative. These equations will give the standard dynamics of a neural mass 
model and it can be re-written using complexification which will simplify the subsequent derivations. Note that con-
nections between neuronal units are dependent on axonal (or dendritic) pathways between the units and the types of 
synaptic interactions involved. As synaptic interactions can both increase or decrease a membrane potential, we have 
allowed the connection parameters to take both positive and negative values. The complexified equation of motion 
will be given by the following,

The complex variable, z, is given by the following combination of the current and potential variable,

The dynamics with zero coupling between N neuronal populations (ε = μ = 0) will give trajectories on a N-dimensional 
torus, for two neuronal populations the activity will be on a doughnut-shaped surface, Fig. 1. There are several time scales 
of the dynamical activity, the fastest of these scales is the period of oscillation for each neuronal population which is 
determined by their intrinsic frequencies. However, as can be seen in the figure the trajectories with zero coupling (in 
blue) loop back on themselves and the period for this is often on a larger time scale than the individual periods of the 
neuronal populations. When a perturbation is added to the dynamics the trajectories will leave the toroidal surface and 
not loop back as shown in the figure (in red). This deviation can be estimated using a perturbative series expansion and 
will have both an amplitude and phase term.

The dynamics can be simplified by averaging over the fast variables leaving the slow dynamics using an adiabatic 
approximation [8, 24]. To perform the adiabatic approximation the activity of the neural masses is integrated over 
the periods (or near periods of the original activity). The instantaneous amplitude R will be replaced by an averaged 
amplitude over cycles and the instantaneous phase of the dynamics will be replaced by the resulting phase lag when 
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Fig. 1   Schematic image of the trajectory of two interconnected neuronal populations. The fast dynamics is given by the frequencies of the 
individual neuronal populations (in the figure it is of the order of 0.3 time-units). The slow dynamics is determined by the time it takes for a 
trajectory to complete one full cycle looping back (or almost back) to the starting point (which is of the order 1 time-units). With zero cou-
pling the trajectories loop back on themselves as shown to the left (blue) and with a perturbation there is a lag as shown to the right (red). 
This lag can be estimated using a perturbation series expansion
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completing a (near) period, Fig. 1. For small couplings a perturbative series expansion can be done to analyse the effects 
of interpopulation coupling. The changes in the amplitude variable of the trajectory after integrating over a full cycle 
(defined subsequently as the derivative of the flow in the new time scale) is only affected by the P-coupling (when 
including terms up to 1st order in the perturbations series), see Sect. 5.2-3 and Eq. (5.2.2). The S-coupling will result in 
a change of phase lag per cycle and including both types of coupling will give an additional cross coupling (S coupling 
followed by P coupling or vice versa) but of much lower magnitude [15].

The phase portrait is dependent on changes in amplitude but not directly on changes in phase, and the stable points 
of Eq. (2.2) (i.e., when the right-hand side is 0) will define the limit cycles of the original dynamics, see Fig. 2. The stable 
points of Eq. (2.2) will be determined by the shape of the synaptic P-kernel. A monotonic P-kernel will only have a stable 
point at 0, and not give rise to any limit cycles. The simplest non-trivial shape for the P-kernel will have a stable point at 
0 and 2 limit cycles (one stable and one unstable).

2.2 � Interaction between off diagonal and diagonal terms within a cortical column

In this section we will investigate and contrast the effect of self-coupling (represented by diagonal terms of the con-
nectivity matrix) and coupling between different subpopulations within a cortical column (represented by off diagonal 
terms of the connectivity matrix). The analysis is done on one cortical column with two layers containing both P and S 
coupling, Fig. 3).

The stable sets (stable points and limit cycles) of an uncoupled system of neuronal populations will retain stability 
when coupled using small interactions terms as shown in Fig. 4 (see Sect. 5.2 for details on the variables used to estimate 
the dynamics).

The dynamics (phase-portrait) of a 2-layer cortical column is quite different for large interaction terms in comparison 
to small with a change in the number of limit cycles and their stability as shown in Fig. 5 (see Sect. 5.2 for details on the 
variables used to estimate the dynamics).

The trajectories for off-diagonal coupling within a cortical column increases in complexity as the number of limit cycles 
per cortical column increases as the trajectories start folding tightly around each other. The equation for the dynamics 
is derived in Sect. 5.2, Eq. (5.3.2).

(2.2)
dRi

dt
= �ipii f (Ri)

Fig. 2   Adiabatically approxi-
mated dynamics show at 
least one stable point (red) at 
the origin. Depending on the 
shape of the synaptic kernel 
of type P there could be more 
stable points. The simplest 
non-trivial shape will have 1 
stable (red) and unstable limit 
cycle (blue) as shown in the 
figure. Note that there is no 
dependence on the phase (ϕ) 
but only on the amplitude (R)
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3 � Interaction between columns

In this section we will investigate the interaction between cortical columns estimating the change in activity of each 
column due to mutual coupling. We will further show that the interaction between cortical columns is not only deter-
mined by the coupling between them but also their phase difference (see 3.1 for details) where the interaction will be 
given by the Kuramoto model (see 3.2 for details). Using the results from 3.1 to 2 we will derive the stability of semi-
stable states, i.e., the transition times from semi-stable states to global states of stability (see 3.3 for details). We further, 
estimate robust methods for model inversion, estimating the connectivity matrix from transition times (3.4). Finally, all 
the results from 3.1–4 are combined and used to derive a model for estimation of intercortical connectivity from seizure 
propagation in Sect. 3.5. Inversion of the synthetic data was performed using standard (variational Laplace) inversion 
routines available in the SPM software package. The code used in this paper can be obtained from https://​github.​com/​
gercoo/​sz_​propa​gation.

Fig. 3   A. A schematic figure of one cortical column with two neuronal populations (black ball in the upper layer and red ball in the lower 
layer). The self-interactions are given by P-coupling (blue arrows) and the connections between the two layers is given by S- (red arrows) 
and P-coupling. The S and P connections strengths when varied will result in different dynamics. B. A schematic figure of two cortical col-
umns with two layers each (with same coloring as in 3A). The dynamics of the full system will be determined by the self-interaction and 
extrinsic connections between homologous neuronal populations. Interactions between different types of neural populations will consist of 
second order terms or higher in the perturbation series and are therefore not included. The cortical layers are effectively decoupled

Fig. 4   Interaction between 2 neuronal subpopulations is estimated where the amplitude variables for 2 populations in one cortical column 
are shown (R1 and R2). The vector plot around the stable point for different off-diagonal couplings is shown with no off-diagonal terms to 
the left and small off-diagonal terms to the right. Small off diagonal terms result in a small deviation of the flow but retains the stability of 
the stationary points which represents limit cycles in the original model. The red ball indicates a stable limit cycle (note that the phase vari-
ables are not included in the figure.)

https://github.com/gercoo/sz_propagation
https://github.com/gercoo/sz_propagation
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3.1 � Interaction between 2 cortical columns

We will investigate the effect of S and P coupling between two interconnected cortical columns and get a new set of 
dynamics for the columns after the adiabatic approximation. Interlayer connections give second order or higher terms 
in the perturbative expansion which allows us to effectively decouple the cortical layers [14]. The interaction was deter-
mined (including 1st order terms in the perturbative series) by self-interaction terms (gii) for a single column and con-
nections between the same layers of the two cortical columns (hii), Fig. 3, (Sect. 5.3).

As the cortical layers are effectively decoupled, we will perform the rest of the analysis on a single cortical layer. The 
semi-stable states of a single layer of a cortical column are given by the stationary points of Eq. (2.2) which in the simplest 
case of multiple semi-stable states would be a stationary point at 0 and a stable limit cycle (of amplitude Rs) which will 
be indexed as follows,

Each layer of two interconnected columns will have the following stable states for weak extrinsic connection (where 
the first entry indicates the stationary state of the first column and the second entry that of the second column),

As detailed in Sect.5.3–4 the phase lag between the two columns will determine the trajectories together with the 
amplitudes of the activities of the neuronal populations. The phase portraits have the same topological structure but 
the geometry of the phase portrait is is dependent on the phase lag, Fig. 6.

We will investigate the following state transition:

The trajectory between the two states will be dependent on both the amplitude and phase lag variables and these 
variables will interact dynamically. However, to keep the results tractable we will decouple the phase lag from the 
amplitude variables. Adding a noise process to the system would randomly push trajectories from the paths plotted 
in the phase portraits. However, the actual trajectories (with ongoing noise) between the two stable states will occur 

{0}, {Rs}

{0, 0},
{
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}
,
{
Rs, 0

}
,
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}
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Fig. 5   Vector plot describing phase space dynamics for different connectivity matrices. The amplitude variables for 2 populations in one 
cortical column are shown (R1 and R2). The panel to the left shows 4 stable (in red) and 5 unstable stationary points (in blue) where the off-
diagonal components have been set to 0. The stationary points would represent stable or unstable limit cycles of the original model, except 
the stationary point at zero which would translate to a stationary point of the original model (i.e., the model before the adiabatic approxi-
mation). The panel to the right shows the dynamics with only off-diagonal terms in the connectivity matrix. 2 stable (in red) and 3 unstable 
stationary points (in blue) are seen representing limit cycles (or stationary point at the 0) of the original model
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close to the constant line R2 = Rs as can be seen in Fig. 7. Deviations of a trajectory from this line will rapidly return 
as the flow is pointed towards the line.

Integrating the flow along R1 will give us the potential trapping the trajectories near the stable points. The potential 
is dependent on the phase lag between the cortical columns and noise process affecting the columns, Fig. 8. Phase dif-
ferences close to 0 will have a global stable point at {Rs, Rs} while phase differences close to π will have a global stable 
point at {0, Rs}.

The transition rates between semi-stable states for a given network of cortical columns will depend on the phase 
lag between the columns (and the coupling) allowing for the definition of a dynamic connectivity between cortical 
columns. This could play a considerable role in seizure propagation and the dynamic nature of connectivity indicated in 
experimental data where various connectivity measures between different cortical regions vary in time, especially during 
seizure progression. We propose with the current analysis that the dynamic variation in connectivity seen in empirical 
data is at least partly dependent on the phase of ongoing neuronal oscillations.

Fig. 6   Phase space plots with trajectories for different values of phase lag (Δφ). The amplitude variables for a given layer of the two con-
nected cortical columns are shown (R1 and R2). There are 4 stable states and the trajectories which are attracted to each stable point are 
drawn with a different colour. Each stable point will represent a limit cycle in the dynamics of the cortical column (or stable point at 0). The 
geometry of the phase portrait is dependent on the phase lag (as can be seen in panel A, B, C and D), although the topological structure 
does not change

Fig. 7   Phase portrait of tra-
jectories flowing to the stable 
states {0, Rs} (red lines) and {Rs, 
Rs} (black lines). The amplitude 
variables for a given layer of 
the two connected cortical 
columns are shown (R1 and 
R2). The transition pathway 
between the stable states can 
be approximated to occur 
within the blue shaded region 
as the flow of the dynamics 
is approximately pointed 
towards the line R2 = Rs
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3.2 � Phase dynamics

The phase and amplitude dynamics are coupled; however, as an approximation (mainly to keep the results tractable 
as was mentioned in 3.1) they can be uncoupled using the average amplitude values (averaged over different trajec-
tories). The phase dynamics will then be given by the following equation where C is a constant (Sect. 5.4),

This equation will approximate the activity around the stationary sets (stationary point or limit cycles) of the corti-
cal columns. It is equivalent to the celebrated Kuramoto model and can also be derived from the Hamiltonian of the 
XY-model [25]. This model has been used to describe phase transitions in solid-state physics and has been shown to 
have interesting topological phase transitions as was shown by Berezinskii, Kosterlitz and Thouless [26]. Systems close 
to local equilibrium states as approximated in equation Eq. (3.2.1) will also have excitations with energies approaching 
0, indicating long range correlations at low temperatures (goldstone modes or bosons) which were first described in 
the analysis of superconductivity by Nambu and Goldstone [27, 28]. The presence of low energy excitations allows 
for spatial correlations to take place over large spatial distribution in the cortex which could be of importance in the 
collation of data in the human brain.

3.3 � Simulations of state transitions

The above derivations indicate that state transitions are dependent on the phase difference between columns. To further 
investigate this statement, 2 cortical columns were interconnected and simulated (using the Euler-method and neural 
mass equations). The effects of intercolumnar connectivity and phase difference were studied. One column was allowed 
to oscillate at a limit cycle and did not receive feedback from the second column. The phase lag between the two cortical 
columns was fixed (not allowed to vary by adjusting the phase lag at each step of the simulation) to estimate the effect 
of connectivity coupling and phase lag on the dynamics of the second cortical column. With fixed connectivity between 
the columns the transition rate between the two semi-stable states of the second column was determined for different 
phase lags. The results indicate the existence of a dynamic and static connectivity where the transition time from one 
state to another is determined by the dynamic connectivity. This can relatively quickly be switched on or off depend-
ing on the phase lag between the interacting columns, Fig. 9. Note that the transition for negative connection strength 
occurs with small phase lags which is what could be expected during a seizure. The connection strength is negative and 
not positive (as could be expected) as the P-coupling has been defined such that it is negative close to 0.

Simulations and theoretical work indicate that larger networks of interacting systems produce a turbulent flow (in 
2 dimensions) of phases where discontinuities are created by vortices [20, 25, 26]. The presence of similar vortices on 
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Fig. 8   The trapping potentials 
for different values of phase 
lag are depicted in the figure. 
When the phase lag between 
the two cortical columns is 
0, the stable point at {Rs, Rs} 
has global stability; when 
the phase lag is π, the global 
stability is at {0, Rs}
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cortical networks could cause rapid, perhaps turbulent, changes in phase lags which in turn would cause changes in 
the “dynamic” connectivity. This could alter the propagation pathways of cortical activity in an almost random fashion.

3.4 � Inverse modelling to determine synaptic intercolumnar connectivity

We will construct a forward model which will map the connectivity matrix to propagation times for the transition from 
low amplitude activity to high amplitude oscillations (proxy for seizure activity) for different cortical columns. The output 
will be the estimated time for the dynamics of a cortical column to transit between the semi-stable states. The potential 
driving the transition between the 2 stable states is estimated in Sect. 5.5. Adding noise to the system will cause random 
fluctuations in the trajectories and an initial probability distribution of starting points for trajectories will evolve according 
to the Fokker–Planck equation. The flow of the distributions could then be parameterised using the mean (μ) and the 
standard deviation (σ) of the true distribution. We will further assume that  hii > gii which will give the following relation,

This indicates that the transition rate between the low amplitude and high amplitude state is directly proportional 
to the value of h (the extrinsic connectivity) and dependent on the phase lag between the two columns (as was shown 
in the simulation in 3.2) and will only occur if the drift of the mean is positive (i.e., a drift from low amplitude to large 
amplitude activity). Note that when the cosine of the phase lag is near zero, the true transition time will be given by terms 
related to gii, see Sect. 5.5 for the full expression for the transition rate. The transition time is defined as the time for the 
mean of the distribution to drift from the stable state at 0 to the attractor of the limit cycle.

3.5 � Modelling seizure propagation

Each cortical column will have two stationary states of activity, a stable point around the origin and a stable limit cycle. 
We will explore the spread of high amplitude activity (as a proxy for electrographic seizure activity) through a network 
of cortical columns. We will be investigating seizure onset and the connections of the network will be assumed to be 
cascading i.e., areas involved later in the seizure do not connect to areas involved earlier. Breaking this assumption would 
allow for the study of seizure termination, however, the complexity of the model increases and we will not pursue that 
further in this paper.

�(t) = �(0) − h��cos
(
�1
i
− �2

i

)
t

Fig. 9   A Activity of a cortical column (with a semi-stable state at the origin and a limit cycle) when under the influence of a second cortical 
column oscillating in the limit cycle state. The activity will for small phase lags transit to limit cycle oscillations (with an increase in amplitude 
of the oscillation as seen on the plotted graphs). The time for transition from small amplitude activity to large amplitude activity is seen to 
depend on the phase lag between the columns. B With no connection between the columns (h11 = 0) there will be no transition to the limit 
cycle oscillation during the time plotted. C Similar activity as A but the connection between the cortical columns is “switched on” for phase 
lags corresponding to π and is “switched off” for phase lags around 0. Note the opposite sign of intercolumnar connection for A and C (h11). 
The time for full state transition is marked with red arrows. An interval of connectivity values around h11 = 0 were tested which, showed simi-
lar results



Vol:.(1234567890)

Research	 Discover Applied Sciences            (2024) 6:36  | https://doi.org/10.1007/s42452-024-05624-8

As a typical example we will simulate seizure onset times (Tj) for N electrodes with an unknown connectivity matrix 
which will be estimated using the onset times and phase lag values between each electrode pair. The mean of the prob-
ability distribution of the trajectories can be estimated using the following formula (Sect. 5.5 and Eq. 5.5.2),

The dynamics is determined by the connectivity matrix, h, and phase lag between the cortical columns. To investi-
gate the validity of these derivations, seizure spread was simulated using the neural mass model for interacting corti-
cal columns as presented previously. The Euler method and an underlying noise process was used for the simulation. 
Seizure progression is not unique for a given connectivity matrix as this is determined by a mixture of deterministic and 
stochastic variables, Fig. 10.

The distribution of seizure onset for the same connectivity matrix was estimated using 1000 simulations of the same 
model with fitted normative distributions, Fig. 11.

Using only the summary statistics (mean and standard deviation) of seizure onset times across multiple observations, 
we inverted our model for seizure propagation (using DCM) (Sect. 5.5) estimating the connectivity matrix, see Figs. 12 and 
13 for details of the inversion. In general, the estimated connectivity matrix (posterior estimates) was nearer the baseline 
values than the prior values. However, the change between the prior and the posterior distribution is determined by the 

�(t) = �(0) − h��cos
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Fig. 10   Seizure propagation 
simulated using 5 intercon-
nected nodes. Note that 
seizure propagation varies 
for each trial even though the 
connectivity matrix is kept 
constant, illustrating the sto-
chasticity of the propagation

Fig. 11   Probability distribu-
tions for seizure onset for 
five different electrodes (or 
cortical columns) with fitted 
probability distributions for 
the mean. Seizure propaga-
tion was simulated using the 
neural mass model for inter-
acting cortical columns as pre-
sented previously. Five nodes 
were used in the network with 
seizure onset on electrode 
1. The Euler method and an 
underlying noise process was 
used for the simulation. 1000 
simulations were used and 
the onset times (in bins) were 
approximated using a normal 
distribution
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Fig. 12   The results for seizure network inversion using Dynamic Causal modelling. A 5 network model was used to simulate seizure onset 
times (black) as described in Fig. 12. The seizure onset times were also estimated for a prior network (before inversion, red) and a posterior 
network (blue) after inversion. A comparison between the prior (red) and posterior (blue) parameters are given to the right, where the base-
line values were normalised to 0. The posterior estimates of the connectivity values tend towards the baseline values (blue columns are in 
general smaller in amplitude than the red columns)

variances of the prior estimates and also the risk of estimating posteriors at a local minima, factors that can be nuanced 
to the specific hypothesis being tested [29]. The evidence for the model is given by the free energy (-6.904) which could 
be used to compare different models of the same data. To investigate the effect of connection strength on the seizure 
propagation time we varied the latter and estimated the propagation time. As the connection strength was reduced 
there was an increase in propagation time (as shown in Fig. 13C). These changes could be of clinical interest, as a proxy for 
disconnecting the epileptogenic network, where the perturbation of the network led to a slowing of the seizure spread.

Fig. 13   A Colormap of the baseline connectivity matrix with connection strengths between the network electrodes. B Colormap of the pos-
terior connectivity matrix C Variation in seizure propagation time modelled by varying the gain of the connectivity matrix
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4 � Discussion and conclusion

In this study we continued our theoretical investigating into the dynamics of cortical columns, in particular the 
interaction between different columns. We have previously investigated the sufficient and necessary criteria for 
semi-stable states within a cortical column. It was shown to be dependent on the synaptic kernels connecting the 
neuronal subpopulations. The topological structure of the phase portrait was determined by synaptic kernels model-
ling current-to-current coupling. Moreover, it was shown that only those connections between neural subpopula-
tions which led to a “resonance” of activity survived the adiabatic averaging and could affect the dynamics. For a 
single cortical column, resonating connections were given by self-connecting loops involving one or more neural 
subpopulations. These semi-stable states within a cortical column remained stable for small coupling between cor-
tical columns. Even though intracortical (intrinsic) connectivity required self-connecting loops to give resonating 
terms, a mixture of intercortical (extrinsic) and intrinsic connectivity resulted in resonating terms from open ended 
connections (i.e., a connection between different neuronal subpopulations). This would happen if neural subpopu-
lations from different cortical columns oscillating at the same frequency were connected (directly or through other 
types of neuronal subpopulations). The presence of open-ended connections introduced a new variable into the 
dynamics of cortical columns; the phase lag between identical neural subpopulations in different columns. The total 
dynamics involved coupled equations of amplitude and phase variables. From the equations of motion, we could 
estimate the time for transitions between semi-stable states in networks of connected columns showing that the 
transition rate depended on the connectivity between the columns and also the phase difference. We propose that 
the transition time reflects a dynamic connectivity measure between columns which is phase dependent and can 
quickly change value, in fact the possibility exists that the connection can be turned on and off as the dynamical 
system evolves. There is plenty of support in empirical investigation of cortical activity, measured through micro or 
macro electrodes, of the idea of a dynamic connectivity. This is often seen in highly non-linear or turbulent activ-
ity of the cortex for e.g., the progression of epileptic seizures [21–23]. In the seizure propagation model tested in 
this paper all connections of the network were positive which would cause the phase difference to quickly tend to 
0. This allowed us to simplify the model; however, including a connectivity matrix with a mixture of positive and 
negative values would cause a complex nodal interaction which was not further analyzed. Investigating the equa-
tions of motion revealed that the phase dynamics, at least when perturbed around a semi-stable state, is given by 
the XY-model (or equivalently the Kuramoto model). Similar proposals of quickly changing connectivity have been 
presented when analyzing brain activity using the Kuramoto model [20]. Furthermore, there is a vast literature 
on the dynamics of the XY model, where it has been shown that there is a topological phase transition where the 
continuous symmetry of the XY-model (or the phase-dynamics presented this study) is broken. The implications 
for columnar network dynamics would include long range order for the phase variables at low temperatures which 
breaks at a critical temperature resulting in an exponential decay in phase correlations. This transition has been 
explained by a change in the topological structure of the dynamics at a critical temperature where low temperature 
dynamics is governed by stable vortex-antivortex pairs and high temperature activity by free vortices [25].

In contrast to many studies applying the Kuramoto model to cortical activity we have in this paper not assumed it to 
be true but derived it as a consequence of a network of neural mass models. This strengthens the assumptions of our 
derivations and furthermore, gives the coupled amplitude dynamics of cortical activity which is usually not associated 
with the Kuramoto model. The coupling between phase and amplitude dynamics is what allowed us to define dynamic 
connectivity. This was used to generate a model (a forward model) of seizure propagation within a network of cortical 
columns. Modelling the seizure propagation as a transition between semi-stable states in a network of nodes is novel 
and has been alluded to in [15] and further elaborated in this paper. This model was compared to simulated neural mass 
model activity which gave similar findings. Furthermore, we inverted this model using the simulated data to estimate 
the unknown connectivity matrix. The results did show an improved connectivity matrix, approaching the matrix used 
to simulate the data; however, this is dependent on the prior estimates and the risk of estimating connectivity matrices 
at local maxima of the Bayesian free energy, all of which can be nuanced depending on the specific question asked [29]. 
This part of the paper is a proof of principle of the validity of the seizure progression model that was presented. This model 
can be further expanded with multifrequency dynamics, which is often seen in clinical data on seizure progression, by 
including more semi-stable states per cortical column. This study used neural masses to understand the network activity 
and derive a seizure propagation model. The main reason we chose neural mass models in comparison to other models 
for cortical activity was for simplicity and practically. Neural field theories for example are more complex and estimating 
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interactions between regions of the cortex is difficult as would be setting up an inversion pathway. One of the main 
clinical applications of this computational exercise is that we provide a generative model for seizure progression that 
leads to a relatively straight forward inversion. Furthermore, applying this technique to estimate seizure propagation 
networks in patient with epilepsy will hopefully provide experimental results that will support the findings of this study. 
As was discussed shortly in Sect. 3, the cortical layers are approximately decoupled; however, when more experimental 
results are available the seizure propagation model would allow for a natural complexification of the model by introduc-
ing cross layer coupling if needed.

We can now estimate a connectivity matrix from EEG data from seizure progression with a model which 1) specifi-
cally models seizure progression 2) is based on the XY-model (equivalently the Kuramoto model) derived from basic 
neural mass models and 3) biophysically linked to synaptic connectivity. An important clinical question which arises 
for any patient where possible epilepsy surgery is considered, is to define the optimal region of the brain which, when 
removed would result in seizure freedom. This can now be modelled prior to surgery by removing or disconnecting parts 
of the cortical network and estimating the effect that has on seizure propagation. This could be empirically tested using 
retrospective data on a surgical case series to investigate the possible usefulness of the model and the modifications 
required to improve applicability to a clinical setting. We have not investigated seizure termination in this study which 
is of clinical interest as it will define the duration of seizures and hence the clinical impact the seizures will have on a 
patient. The model we proposed for seizure propagation is a “cascading” network with only unidirectional connectivity, 
which can model the propagation of seizure activity but not its termination. Using a bi-directional connectivity matrix it 
is possible to model seizure termination, and the model-inversion should still remain tractable, even though there will 
be an increase in complexity. This will be further investigated in a future study of seizure propagation and termination.

The equation of motion revealed that the dynamics was only related to phase differences and not the absolute value 
of phases. The corresponding Hamiltonian for the system would also only be dependent on phase differences between 
columns. This contrasts with amplitude values which populate freely the equations of motion. The property of phase dif-
ferences in the Hamiltonian results in excitation levels for the system around a semi-stable equilibrium state of infinitely 
small energies, i.e., very slowly varying fields [27, 28]. These modes (or goldstone modes) will result in long range cor-
relations between cortical columns. They will contain information of the correlation between a large number of cortical 
columns. If it is assumed that cortical columns in the healthy brain project information onto semi-stable states, we have 
now been able to define the process in which the correlations within the total information presented to the brain could 
be stored. Goldstone modes might be projections of the information processed by the brain; moreover, they are also 
known to cause the turbulent flow in phase dynamics, something we have suggested might be a key feature in seizure 
dynamics. We will propose the following hypothesis that cognitive function of the brain and seizure threshold are both 
dependent on goldstone modes. This could imply that there is a threshold for maximal cognitive function of a brain 
constructed using cortical columns as the disruption of turbulent phase dynamics is dependent on the same goldstone 
modes. Interestingly, it is highly probable that epileptic seizures will affect a brain only if it has a minimal complexity; 
seizures are only known in higher order animals (mammals) [30]. We will in a future study, investigate the implications 
these low energy excitations have on the dynamics of interconnected cortical columns.

In conclusion we have derived in this paper the dynamics of interconnected cortical columns where the phase and 
amplitude variables were shown to be the define variables. The equations of motion revealed that excitations of activ-
ity around stationary states were governed by the Kuramoto model, a model that has often been used to model phase 
dynamics of the brain. The results that were derived were applied to construct a forward model for seizure propagation 
which was inverted using DCM on simulated data. In a future project we will apply this model to actual seizure data 
investigating the possible clinical impact this might have. Moreover, we will also examine the above theory of cortical 
connectivity from the perspective of a cortical lattice theory and investigate the implications that would have on model-
ling cortical function.
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Appendix

Index

The following nomenclature and definitions will be used in this paper.
pi – current variable of the ith population (in layer i) of a cortical column. qi – potential variable of the ith population 

of a cortical column. zi – complex variable defined using the potential and current term of the ith neuronal population. 
Ri – modulus of zi. φI – phase of zi. ωI – natural frequency of the ith neuronal population of a cortical column. ε – Perturba-
tion constant for connectivity via the S-kernel. μ – Perturbation constant for connectivity via P-kernel. Ri,n,m – term with 
coefficient εnμm in the perturbative series expansion of Ri. φi,n,m – term with coefficient εnμm in the perturbative series 
expansion of φi. S – A synaptic kernel mapping potentials to currents (given by tanh). Sr – rth order term in the Taylor 
series of S around 0. P – A synaptic kernel mapping currents to currents (for spike rate adaptability). Pr – rth order term 
in the Taylor series of P around 0. sij – Connectivity gain between the ith and jth population via a type S synaptic kernel. 
pij – Connectivity gain between the ith and jth population via a type P synaptic kernel. hij – Connectivity gain between 
the ith population in a cortical-columns and the jth population in a second cortical column (these connections could be 
either type S or type P connections).

Adiabatic approximation of neural mass model

The neural mass model will be given by the following complex ordinary differential equation. Sums in the equations run 
over the layers of a cortical column (roman indexes). Each equation will give the activity of one layer of the cortical col-
umn. The interactions between the layers are via the synaptic kernels S and P. The S-synaptic kernel is given by a sigmoid 
function (tanh). The P-synaptic kernel will be assumed to have several 0 points (allowing for multiple semi-stable states).

The complex trajectory function, z, can be written in modulus-argument form,

The adiabatic approximation can be done analytically if the perturbation constants are small, which will be assumed. 
A perturbative series expansion of the equations of motion in terms of ε and μ was done using the following expansions,
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Using these expansions, the left-hand side (LHS) of the equation of motion (Eq. 5.2.1) will be given by the following 
equation.

The right-hand side (RHS) of the equation of motion (Eq. 5.2.1) will be given by the following equation.

An adiabatic approximation was done over a complete cycle of oscillation of the cortical column. The changes in the trajec-
tory after integrating over a full cycle (defined subsequently as the derivative of the flow in the new time scale) showed that 
the amplitude variable was only affected by P-coupling (first order expansion terms) and combinations of P- and S-coupling 
(2nd order expansion terms) as shown below,

The amplitude terms of Eq. (5.5.5) will be given by the following expressions,

The other terms in the perturbation series up to 2nd order cancel or are smaller than the given terms (i.e., μ2, ε, ε2). Equa-
tion (5.2.2) was used to plot the dynamics of a cortical column with 2 layers (Fig. 4) with the following variables,

ω1 = 1. ω2 = 2.
s12 = p12 = s21 = p21 = 0 or 0.1. p11 = p22 = 0 or 0.1. S(x) = tanh(x).
P – was defined using a Taylor series with the following coefficients:
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P1 = − 0.1. P2 = 1.5. P3 = − 3.2

Interaction between 2 cortical columns

The dynamics of two cortical columns will be examined by connecting the two columns using extrinsic (extra-columnar) 
connections. The intrinsic connections (intracolumnar) will be denoted by gij, and the extrinsic will be denoted by hij. The 
equations determining the motion of the 2 cortical columns will be given by the following equations (one for each column). 
Different cortical columns are indexed by superscripts.

As was shown in Sect. 5.2, the 2nd, 3rd and 4th term on the RHS of Eq. (5.3.1) will affect the phase portrait topology, but 
the 1st term will not. The 3rd and 4th term will affect the phase space structure due to the phase difference between the two 
cortical columns. After integrating over a full cycle (the adiabatic approximation) we get the following expressions,

The amplitude and phase dynamics will be a sum of the above equations depending on the types of connections present 
between the cortical columns. We get the following relation assuming only connections of P-type,

Phase dynamics

The phase lag and amplitude dynamics are coupled; however, as an approximation (mainly to keep the results tractable) we 
will uncouple them by using the average amplitude values (averaged over different trajectories when the system is under 
a noise process)
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The phase dynamics when both cortical columns are in the high amplitude state will be given by the following equation 
which is equiavalent to the Kuramoto model.

This equation will approximate the activity around the stationary sets (stationary point or limit cycles) of the cortical 
columns. It is equivalent to the celebrated Kuramoto model when connected to a cortical column in a high amplitude state.

Transition from near zero state to high amplitude state

The transition time between the two semi-stable states (near 0 to high amplitude state) when under the influence of a second 
cortical column in a high amplitude state can be estimated using Eq. (5.3.2). Integrating this equation along R1 will give the 
potential trapping the trajectories near the stable points (A is a constant).

The Fokker Planck equation resulting from the flow of the above gradient with a noise process would be given by the 
following expression (amplitude of the noise process will be denoted by σn and the Fokker Planck operator will be denoted 
LFP). The probability distribution is given by ρ.

This Fokker Planck flow will be projected to the space of normal distributions. The flow of the distributions could then be 
parameterised using the mean (μ) and the standard deviation (σ) of the true distribution. To simplify the integration, we will 
assume integration over the whole real line.

The last term of the Fokker Planck eq., the diffusion component, will not affect the mean but will have a component for 
the change in standard deviation.
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The drift term of the FP-eq will give the following,

We will change the variable of integration as follows,
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We then have for the full integral,

Simplifying if hii > gii , we get the following expression for the change in mean of the trajectory.

Which in turn could be integrated into the following expression for the mean (μ) parameter,

As a typical example we will simulate seizure onset times (Tj) for N electrodes with an unknown connectivity matrix which 
will be estimated using the onset times and phase lag values between each electrode pair. The mean of the distribution of 
the ith population can be approximated (after absorbing constants into the definition of h) using the following equation (Θ 
is the Heaviside step function).

We will take �i(0) = 0 and so that the transition time will be defined by the following equation.

The solution to the following equation will estimate onset times as a function of connectivity, h.
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The dynamics is determined by the connectivity matrix, h, and phase lag between the cortical columns.

Summary of dynamic causal modelling

We provide a short summary and references for the inversion scheme used in this study. Please see the following publi-
cations for a description of the inversion scheme [31–33]. One of the main reasons in performing the DCM is to estimate 
a posterior distribution for the parameters of the model given the measured data. In the present study it would be the 
unknown connectivity matrix. The inversion requires defining a forward model which will be a function of the unknown 
parameters mapping to the data space. The forward model will in this case give the likelihood of the data given fixed 
parameters.

To estimate the posterior distributions of the parameters given the data, Bayes theorem will be used.

Both the prior and posterior distributions are assumed to be Gaussian (Laplace approximation). As the forward model is 
non-linear, several iterations of the estimation of the posterior are required and is done using the Expectation-Maximation 
algorithm (EM) [34]. In the E-step the conditional expectations and covariances of the parameters are estimated. This is 
then followed by the M-step where the hyperparameters (mean and covariance of the prior distribution) are estimated. 
This is done repeatedly until the change in free energy of the estimated model is smaller than a given tolerance level.
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