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Abstract 12 

The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in 13 
cognition, emotion, and sensory processing. In recent years, interests have shifted towards 14 
developing a deeper understanding of the mechanisms underlying interactions between the 15 
HPC and mPFC in achieving these functions. Considerable research supports the idea that 16 
synchronized activity between the HPC and the mPFC is a general mechanism by which 17 
brain functions are regulated. In this review, we summarize current knowledge on the 18 
hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a 19 
focus on oscillations and highlight several neurodevelopmental and neurological disorders 20 
associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics 21 
across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for 22 
neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, 23 
gene therapy and pharmacotherapy are explored as promising therapies for disorders with 24 
aberrant HPC-mPFC circuit dynamics.    25 
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Introduction 39 

It is well established that the HPC and mPFC are important regions that facilitate cognition, 40 
emotion, and sensory processes (Jin and Maren et al., 2015; Ruggiero et al., 2021). A growing 41 
body of evidence suggests that information sharing between the HPC and mPFC is required 42 
for cognitive processes and successful execution of behaviours (Harris and Gordon, 2015; 43 
Negrón-Oyarzo et al., 2018; Preston and Eichenbaum, 2013; Salimi et al., 2021; Tang et al., 44 
2021; Wirt and Hyman, 2017). Recent evidence further highlights the importance of 45 
communication between the HPC and mPFC during learning and memory processes (Dickson 46 
et al., 2022; Morici et al., 2022). Efforts to understand the pathophysiology of various disorders 47 
have focused on identifying abnormalities in regions of the HPC and mPFC underlying 48 
symptoms of these disorders. It is becoming increasingly clear that neurodevelopmental and 49 
neurological disorders are not only due to a circumscribed deficit in the HPC and/or mPFC, 50 
but also represent a distributed impairment involving HPC-mPFC connectivity (Bast et al., 51 
2017; Calabro et al., 2020; Colgin, 2011; Godsil et al., 2013; Jones and Wilson, 2005; Li et al., 52 
2015; Sigurdsson and Duvarci, 2016). 53 

Neural oscillations are the fundamental mechanism to enable coordinated activity during 54 
normal brain functioning (Buzsáki and Draguhn, 2004; Singer, 1999). There is abundant 55 
evidence for a close relationship between the occurrence of oscillations and cognitive and 56 
behavioural responses (Fries et al., 2001; Uhlhaas and Singer, 2010). Neural oscillations and 57 
synchronization reflect regional and interregional communication between cortical areas. In 58 
general, there is a correlation between the distance over which synchronization is observed 59 
and the frequency of the synchronized oscillations. Short-distance synchronization tends to 60 
occur at higher frequencies (>30 Hz), and long-distance synchronization often manifests in 61 
the low-frequency range (<20 Hz) (von Stein and Sarnthein, 2000). Recent studies further 62 
suggest that cross-frequency modulation across brain areas may serve a functional role in 63 
neuronal computation and communication (Womelsdorf et al., 2010). While high-frequency 64 
brain activity reflects local domains of cortical processing, low-frequency brain rhythms are 65 
dynamically entrained across distributed brain regions by both external sensory input and 66 
internal cognitive events. Therefore, cross-frequency modulation may serve as a mechanism 67 
to transfer information from large-scale brain networks operating at behavioural timescales to 68 
fast, local cortical processing required for effective computation and synaptic modification, 69 
thus integrating functional systems across multiple spatiotemporal scales (Canolty and Knight, 70 
2010). 71 

In this review, we present recent evidence that shows both anatomical and synchronous 72 
activity between the HPC and mPFC. We detail work revealing that the HPC-mPFC circuitry 73 
is essential for cognitive, emotional, and sensory processes. Based on anatomical and 74 
electrophysiological evidence, we further examine the possible neurobiological causes of 75 
impaired HPC-mPFC oscillations and the involvement of aberrant HPC-mPFC oscillatory 76 
activity underlying neurodevelopmental and neurological disorders. Finally, advancements in 77 
deep brain stimulation, gene therapy, and pharmacotherapy are explored as useful 78 
interventions for various disorders associated with aberrant HPC-mPFC circuitry. 79 

 80 

 81 

 82 

 83 

 84 
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Animal Models in Neuroscience Research 85 

Animal research has formed vital contributions to understanding neural mechanisms and 86 
disorders. Non-human primates have been at the forefront of research efforts, and rodents 87 
have been the most widely used models in neuroscience research. Despite major differences 88 
in anatomical organization of brains and a 17,000-fold variability in brain volume across 89 
mammalian species, the temporal dynamics within and across brain networks remain 90 
remarkably preserved (Buzsáki et al., 2013; van Heukelum et al., 2020; Laubach et al., 2018). 91 
Furthermore, despite a small variability of individual oscillations across species, frequency 92 
ranges within species and their cross-frequency interactions are supported by the same 93 
fundamental mechanisms and can be adequately characterized across species (Buzsáki et 94 
al., 2013). Therefore, valuable insight from studies involving non-human primates and rodents 95 
help with incorporating findings across species into an integrated field of HPC-mPFC research. 96 

 97 

Anatomical Organization of the HPC and mPFC 98 

The HPC, located deep in the medial temporal lobe, can be classified by several subregions 99 
(subiculum, dentate gyrus, cornu ammonis regions CA1-CA3) (Fogwe et al., 2022; Nuñez and 100 
Buño, 2021) and compartments in rodents (ventral/dorsal) and primates (anterior/posterior) 101 
(Fanselow and Dong, 2010). Broadly, the mPFC refers to the cortical region anterior to the 102 
premotor cortex (Xu et al., 2019a). The precise homologies of prefrontal areas between 103 
rodents and primates remain elusive, but considerable evidence demonstrates similar patterns 104 
of interactions between hippocampal and prefrontal areas (Euston et al., 2012; Seamans et 105 
al., 2008). Anatomically, the HPC and medial PFC (mPFC) are linked by several direct 106 
(monosynaptic) and indirect (polysynaptic) pathways. Here, we provide a brief overview of the 107 
anatomy of HPC-mPFC connections, summarized in Fig. 1.  108 

The mPFC receives monosynaptic projections from the ventral CA1 HPC (vHPC) and 109 
subiculum (Phillips et al., 2019; Sigurdsson and Duvarci, 2016). Ventral hippocampal neurons 110 
directly innervate three major GABAergic neurons in the mPFC (parvalbumin-expressing, 111 
somatostatin-expressing, and vasoactive intestinal peptide-expressing interneurons) to 112 
support contextual and spatial information (Jin and Maren, 2015). The dorsal CA3/CA1 HPC 113 
also receives a monosynaptic projection from the mPFC (predominantly anterior cingulate) 114 
(Rajasethupathy et al., 2015).  115 

Several indirect pathways involving the thalamus, lateral entorhinal cortex (LEC) and 116 
amygdala further connect the HPC and mPFC. The thalamic nucleus reuniens (NR) is 117 
bidirectionally connected to both the mPFC and HPC, and this pathway is associated with 118 
global synchronization and associative learning (Griffin, 2015; Roy et al., 2017). Regarding 119 
cortical pathways, the LEC is bidirectionally connected to both the mPFC and HPC (Agster 120 
and Burwell, 2009; Eichenbaum, 2017; Isomura et al., 2006; Salimi et al., 2021), and this 121 
pathway involving the LEC is implicated in memory encoding and retrieval (Eichenbaum, 2017; 122 
Takehara-Nishiuchi, 2020). There are also bidirectional projections between the amygdala 123 
and the vHPC and the mPFC (Guirado et al., 2016; Hübner et al., 2014; Khastkhodaei et al., 124 
2021), and some studies suggest that interactions between the HPC-mPFC regulate emotion 125 
and social behaviours through the basolateral amygdala (BLA)(Felix-Ortiz and Tye, 2014; 126 
Felix-Ortiz et al., 2013; Qi et al., 2018). Recent evidence further suggests that the mPFC 127 
supports the HPC in reconsolidating inhibitory avoidance memory through the amygdala 128 
(Fukushima et al., 2021).  129 
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 130 

Figure 1 General schematic of direct and indirect pathways between the hippocampus 

(HPC) and medial prefrontal cortex (mPFC). Insight from rodent models (top) and 

primates (bottom) demonstrate that the HPC and mPFC are anatomically connected 

via direct and indirect (bidirectional) pathways. Arrows indicate direction of projections. 

Direct pathways involve monosynaptic projections from the CA1 ventral HPC (anterior 

HPC in primates) to the mPFC, and monosynaptic projections from the mPFC 

(predominantly anterior cingulate) to the dorsal CA3/CA1 HPC (posterior HPC in 

primates). Indirect HPC-mPFC pathways involve bidirectional projections between the 

HPC and mPFC through intermediary regions: the thalamic nucleus reuniens (NR), 

lateral entorhinal cortex (LEC) and amygdala (AMY). For details and supporting 

references, see main text. 
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Oscillatory Synchrony in the HPC and mPFC  131 

Oscillations are one of the prominent features of brain activity and play a crucial role in regional 132 
neural integration and inter-regional interactions in the brain. Oscillatory activity in groups of 133 
neurons generally arises from feedback connections between the neurons that result in the 134 
synchronization of their firing patterns. The interaction between neurons can give rise to 135 
oscillations at a different frequency than the firing frequency of individual neurons. These 136 
oscillations typically include Delta (δ, 2-4 Hz), Theta (θ, 5-7 Hz), Alpha (α, 8-12 Hz), Beta (β, 137 
15-29 Hz) and Gamma (γ, low: 30-60 Hz and high: 60-100 Hz) (Cole and Voytek, 2017; Thut 138 
et al., 2012). Oscillations have been observed in brain regions including the HPC (Goyal et 139 
al., 2020), visual cortical areas (Galuske et al., 2019), and olfactory cortex (Salimi et al., 2021). 140 
Inter-regional oscillation coupling could modulate effective connectivity in a given behavioural 141 
period, such as while undertaking cognitive tasks, attentional selection and decision making  142 
(Berger et al., 2019; Doesburg et al., 2012; Gordon, 2011; Guise and Shapiro, 2017). 143 
Considerable evidence (Buzsáki and Draguhn, 2004; Goodman et al., 2018; Wirt et al., 2021) 144 
shows that indirect connectivity through HPC-mPFC oscillatory coupling plays a significant 145 
role across different cognitive domains, such as goal-directed behaviour (Womelsdorf et al., 146 
2010), emotion (Jin and Maren, 2015), context-guided memory (Place et al., 2016), decision-147 
making (Tamura et al., 2017) and spatial/episodic memory (Brincat and Miller, 2015; Igarashi, 148 
2015; Spellman et al., 2015). Synchrony in different frequency bands may play functionally 149 
different roles in neural communication (Fries, 2005; Buzsáki and Draguhn, 2004). See Table 150 
1.  151 

(1) HPC-mPFC δ oscillation: δ-frequency network activity is commonly associated with 152 
sleep, but data from awake-behaving animals show δ-dominated network modes (HPC-mPFC 153 
coupling). Significantly elevated δ power can be observed in stationary animals during brief 154 
pauses between running bouts, whereas synchronization in the delta frequency band was 155 
minimal during locomotion. These findings suggest that HPC-mPFC δ oscillation represents 156 
functionally distinct circuit dynamics that are temporally and behaviourally alternated among 157 
θ-dominated oscillations during navigation. This oscillation is vital to coordinating encoding 158 
and retrieval mechanisms or decision-making processes at a timescale that segments event 159 
sequences within behavioural episodes (Schultheiss et al., 2020).  160 

(2) HPC-mPFC θ oscillation: Modulation of mPFC and HPC oscillatory θ coupling by 161 
mnemonic demands of a working memory task correlated with behavioural performance both 162 
in animals (Brincat and Miller, 2015; Siapas et al., 2005) and in humans (Anderson et al., 163 
2010; Kaplan et al., 2014; Backus et al., 2016), and θ-modulated rhythmic excitability is 164 
essential for long-term synaptic potentiation (Capocchi et al., 1992) and important for gating 165 
information flow and guiding plastic changes (Siapas et al., 2005). In addition, considerable 166 
evidence demonstrates HPC-mPFC θ coupling during spatial navigation when novel 167 
information was encoded and stored information was retrieved (Kaplan et al., 2014). An 168 
increase in HPC-mPFC θ coupling also occurs during active choice decision making (Guitart-169 
Masip et al., 2013) and other memory tasks (Simons and Spiers, 2003).  170 

(3) HPC-mPFC α/β oscillation: A study from macaques demonstrated that α/β-band 171 
synchrony driven by the HPC increased with learning, leading to the hypothesis that rapid 172 
object associative learning occurs in the PFC, whereas the HPC guides neocortical plasticity 173 
via oscillatory synchrony in α/β (success) or θ (failure) bands (Brincat and Miller, 2015). 174 

(4) HPC-mPFC γ oscillation: γ rhythms have received a great deal of attention due to their 175 
relationship to higher brain functions (Buzsáki and Wang, 2012; Csicsvari et al., 2003). 176 
However, the role of HP-mPFC in synchronous γ activity is less explored. γ coupling between 177 
the HPC and mPFC was reported in relation to working memory (Sigurdsson et al., 2010) and 178 
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exploratory behaviour during anxiety (Adhikari et al., 2010). As mPFC fast γ oscillations may 179 
be coherent with fast γ in both the HPC and the entorhinal cortex (Colgin et al., 2009), the 180 
entorhinal–hippocampal–mPFC network could therefore coordinate information flow across 181 
these three regions during processing of information related to the external environment 182 
(Colgin, 2011). 183 

(5) HPC-mPFC ripples: Ripples, discrete bouts of fast oscillations that are strongly associated 184 
with underlying bursts of spiking activity (Buzsáki, 2015), have been implicated in memory 185 
formation, consolidation, and retrieval (Buzsáki, 2015; Joo and Frank, 2018). The identification 186 
of HPC-mPFC ripples coupling with extensive cortico-cortical connections (Khodagholy et al., 187 
2017), reflected either a direct hippocampal–entorhinal cortex–neocortex excitation 188 
(Logothetis et al., 2012; Peyrache et al., 2011) and/or an indirect common drive by cortical 189 
slow oscillations (Isomura et al., 2006; Sirota et al., 2008). HPC-mPFC ripple association 190 
areas support roles in memory consolidation and links to navigational planning (Khodagholy 191 
et al., 2017). 192 

(6) HPC-mPFC cross frequency: The cross-frequency coupling of distinct neural oscillations 193 
act as a mechanism for the dynamic co-ordination of brain activity over multiple spatial scales, 194 
with high-frequency activity within local ensembles coupled to large-scale patterns of low-195 
frequency phase synchrony (Bonnefond et al., 2017). 196 

Cross-frequency coupling is present during a range of cognitive functions and likely affects 197 
the organization of brain rhythms. Current data demonstrate its crucial role in long-range 198 
cross-frequency coupling in HPC–prefrontal circuit function. Hippocampal θ oscillations 199 
modulate mPFC assembly patterns by rhythmically biasing synchrony of local γ oscillations in 200 
behaving rats and mice (Sirota et al., 2008; Tamura et al., 2017), suggesting that oscillations 201 
mediate information flow from the HPC to the PFC. In addition, θ-δ coupling mediates 202 
information transfer from the PFC to the HPC via a relay mechanism through the thalamic NR 203 
(Roy et al., 2017). However, this result has been challenged in light of the possibility that δ 204 
oscillations has been attributed to respiratory-entrained oscillations in both structures 205 
(Lockmann and Tort, 2018).  206 

 207 

 208 

 209 

 210 

 211 

 212 
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 215 

 216 

 217 

 218 
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Table 1 The physiological roles of oscillatory synchrony between the hippocampus (HPC) and 219 
medial prefrontal cortex (mPFC). Relevant studies with recordings from generalized regions 220 
of the prefrontal cortex and medial temporal lobe are also included in this table. (LFP=local 221 
field potentials; iEEG= intracranial EEG; MEG=Magnetoencephalography) 222 

Oscillation Region Methods 
Used 

Species Frequency 
Range 

Function Reference 

Delta (δ) HPC-mPFC LFPs Rat 1-4 Hz Decision-
making 

Schultheiss 
et al., 2020 

Theta (θ) vHPC-mPFC LFPs Mice 4-12 Hz Anxiety Adhikari, 
2011 

dHPC-mPFC LFPs Mice 6-12 Hz Decision-
making 

Chang, 
2020 

vHPC-
mPFC-dHPC 

LFPs Mice 4-2 Hz Spatial 
working 
memory 

O'Neill, 
2013 

dHPC-mPFC LFPs Rat 4-12 Hz Decision-
making 

Jones, 2005 

dHPC-mPFC LFPs Rat 4-10 Hz Storage of 
information 

Siapas et 
al., 2005 

HPC-PFC LFPs Rhesus 
macaques 

∼2-6 Hz Working 
memory 

Brincat & 
Miller, 2015 

MTL-PFC iEEG Human 4-8 Hz Memory K. L. 
Anderson et 
al., 2010 

HPC-mPFC MEG Human 3-7 Hz Integrated 
memory 

Backus et 
al., 2016 

mPFC-MTL MEG Human 4-8 Hz Spatial 
memory 
retrieval 

Kaplan et 
al., 2014 

mPFC-MTL MEG Human 4-7 Hz Dynamic 
spatial 
imagery 

Kaplan et 
al., 2017 

PFC-MTL MEG Human 4-8 Hz Decision-
making 

Guitart-
Masip et al., 
2013 

Alpha/Beta 
(α/β) 

PFC-HPC LFPs Rhesus 
macaques 

9-16 Hz Learning Brincat & 
Miller, 2015 

Gamma 
(γ) 
 

vHPC-mPFC LFPs Mice 30-100 Hz Anxiety Adhikari, 
2011 

dHPC-mPFC LFPs Mice 30-80 Hz Spatial 
memory 

Sigurdsson 
et al., 2010 

Ripples HPC-mPFC LFPs Rat 100-150 Hz Navigation 
planning 

Khodagholy 
et al., 2017 

Cross-
frequency 

θ (dHPC) - 
γ (mPFC)  

LFPs Rats and 
Mice 

θ (3-5 Hz);  
γ (30-150 
Hz) 

Information 
flow 

Sirota et al., 
2008 

θ (vHPC) - 
γ (mPFC) 

LFPs Mice θ (4-12 Hz);  
γ (30-120 
Hz) 

Working 
memory  

Tamura et 
al., 2017 

δ (mPFC) - 
θ (dHPC and 
vHPC)  

LFPs Rat δ (2-5 Hz);  
θ (4-8 Hz) 

Unknown Roy, 2017 

 223 
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The HPC-mPFC Circuit in Cognition, Emotion and Sensory Processing 224 

Cognition: Memory and Learning  225 

Important interactions between the HPC and mPFC support the encoding and retrieval of 226 
episodic memories (Eichenbaum, 2017; Jin and Maren, 2015; Kennedy and Shapiro, 2004; 227 
Weilbächer and Gluth, 2017). Considerable evidence demonstrates that in these interactions, 228 
the HPC organizes contextual memory and the mPFC facilitates retrieval of contextual 229 
memories through suppressing inappropriate memories from differing contexts (Eichenbaum, 230 
2017; Preston and Eichenbaum, 2013). Recent functional MRI (fMRI) studies also 231 
demonstrate that persistent HPC-mPFC interactions promote long-term memory through 232 
context-based differentiation (Dugré et al., 2021; Ezzyat et al., 2018). Evidence from rodents 233 
involving paradigms such as the water maze (Vorhees and Williams, 2006), the T-maze 234 
(Deacon and Rawlins, 2006) and spatial win-shift on the radial arm maze (Taylor et al., 2003) 235 
further support the critical role of HPC-mPFC interactions in facilitating the successful 236 
execution of working memory (Liu et al., 2018; Salimi et al., 2022; Sigurdsson and Duvarci, 237 
2016; Wirt et al., 2021). This is further observed in human studies. Increased HPC-mPFC θ 238 
coherence was predictive of successful memory integration in participants performing an 239 
inference task (Backus et al., 2016), and higher HPC-mPFC θ phase synchronization during 240 
encoding of contextually unexpected information was predictive of later memory performance 241 
in epileptic patients (Gruber et al., 2018).  242 

Evidence from rodents demonstrate that the HPC-mPFC circuit is crucial for learning. Bilateral 243 
or crossed inactivation of the HPC (dorsal or ventral) or mPFC impaired flexible spatial 244 
learning (Avigan et al., 2020), and increased θ-band synchrony between HPC and mPFC 245 
pathways were observed during the transition from retrospective to prospective encoding 246 
(Myroshnychenko et al., 2017). It has also been shown that novel experiences alter vHPC θ 247 
oscillations and vHPC–mPFC connectivity, subsequently contributing to the modulation of 248 
learning-associated plasticity (Park et al., 2021). This implicates the crucial role of the HPC-249 
mPFC circuitry in learning-associated circuit plasticity, where it can be primed for subsequent 250 
learning through novelty-induced changes to its circuit connectivity. It has also been shown in 251 
rhesus monkeys that frequency-specific interactions and oscillatory synchrony underlie 252 
relevant points during associative learning, suggesting that oscillatory signals from the HPC 253 
guides neocortical plasticity in the PFC during associative learning (Brincat and Miller, 2015). 254 
Studies in human further suggest that the HPC-mPFC circuit is not only activated and engaged 255 
in interactions with various brain regions to integrate information during new learning, but also 256 
play an important role in higher-level cognition, such as the acquisition of hierarchical concepts 257 
in category learning (Schlichting and Preston, 2016; Theves et al., 2021). Therefore, the HPC-258 
mPFC circuit plays a crucial role in supporting cognitive processes involving memory and 259 
learning.  260 

 261 

Emotion  262 

The HPC and mPFC are critically implicated in the neurocircuitry of emotion involving the 263 
contextual modulation of fear (Hartley and Phelps, 2010; Ji and Maren, 2007; Kjelstrup et al., 264 
2002), emotional judgment (Perry et al., 2011) and emotional memory (Engen and Anderson, 265 
2018; Holland and Kensinger, 2010; Lovett-Barron et al., 2014; Richter-Levin and Akirav, 266 
2000). The mPFC is implicated in the appraisal and expression of negative emotion (dorsal-267 
caudal mPFC), and regulates limbic regions that facilitate emotional responses (ventral-rostral 268 
mPFC) (Etkin et al., 2011). Increasing evidence suggests that hippocampal-cortical pathways 269 
facilitate the emotional regulation of fear and emotional processing through oscillations (Jin 270 
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and Maren, 2015; Vertes, 2006). Enhanced ripple-δ-spindle coupling across the HPC-mPFC 271 
circuit is observed in mice exposed to exogenous acute stress, providing evidence that 272 
emotional encoding is supported by oscillations across this circuit (Lv et al., 2022). These 273 
findings support evidence from human studies that demonstrate the association between 274 
HPC-mPFC θ synchronization and anxiety-like behaviour (Khemka et al., 2017; Korn et al., 275 
2017).   276 

There is evidence to suggest that indirect HPC-mPFC pathways modulate emotional 277 
processes such as fear extinction and emotion regulation through circuits involving the 278 
amygdala (Hartley and Phelps, 2010; Jin and Maren, 2015; Ramanathan et al., 2018). The 279 
amygdala is a key structure in fear-conditioning and eliciting emotional states, assigning 280 
emotional dimensions to sensory stimuli through constant evaluation and integration of 281 
arousal states (Kim and Cho, 2020; Ressler and Maren, 2019; Šimić et al., 2021). Insight from 282 
studies using projection tracers and optogenetics in rodents have demonstrated that the 283 
amygdala is anatomically connected to the HPC and mPFC (Hintiryan et al., 2021; Orsini et 284 
al., 2011; Yang and Wang, 2017) and oscillatory synchrony between these regions are 285 
implicated in supporting emotional arousal and consolidation of emotional memories 286 
(Hermans et al., 2014; Paré et al., 2002). Further studies have found increased θ 287 
synchronization across the vHPC-BLA-mPFC circuit during heightened anxiety and learned 288 
fear expression, suggesting that oscillatory rhythms across this circuit are engaged during 289 
emotional states (Adhikari et al., 2010; Çalışkan and Stork, 2019). These findings are 290 
supported by studies in humans, providing evidence for unidirectional θ and α oscillations in 291 
the amygdala that modulate hippocampal γ activity during fear processing (Zheng et al., 2017), 292 
and synchronization of θ oscillations in the amygdala and mPFC to facilitate fear learning 293 
(Chen et al., 2021). Altogether, considerable evidence suggests a neurocircuitry of emotion 294 
regulation that involves the HPC-mPFC circuit via the amygdala (Hartley and Phelps, 2010; 295 
Jin and Maren, 2015; Richter-Levin and Akirav, 2000; Yang and Wang, 2017).  296 

 297 

Sensory Processing 298 

Sensory processing (SP) plays an important role in daily life as it synthesizes information from 299 
multiple sensory channels in response to the external environment into coherent behavioural 300 
and emotional patterns. Sensory processing involves a large network of brain areas that 301 
include the sensory cortices, motor cortices and associative areas (Le Merre et al., 2018; 302 
Martin-Cortecero and Nuñez, 2016; Zucchella et al., 2018). With extended studies, it is well 303 
documented that both the HPC and mPFC are involved in multisensory integration and 304 
sensory discrimination (Engel et al., 2012; Grion et al., 2016; Martin-Cortecero and Nuñez, 305 
2016; Pereira Antonio et al., 2007). Moreover, synchronous linkage between these two areas 306 
have been shown to be sensitive to sensory, behavioural, and environmental changes (Hyman 307 
et al., 2005).  308 

The influence of HPC-mPFC pathways on SP is further highlighted in studies where sensory 309 
signals are evaluated for learned motor output. In a study, mice were trained for a whisker-310 
dependent detection task, and correct “licks” following whisker stimulation correlated with 311 
increased sensory-evoked signals in the dorsal CA1 HPC and mPFC (Le Merre et al., 2018). 312 
Inactivation of neural activity in the HPC and mPFC further impaired behavioural performance, 313 
corroborating studies in contextual learning that demonstrate the crucial role of HPC-mPFC 314 
interactions in translating sensory signals to relevant motor behaviour (Martin-Cortecero and 315 
Nuñez, 2016; Ong et al., 2019), and that HPC-mPFC oscillatory synchrony underlie sensory 316 
gating deficits (Dickerson et al., 2010). In addition, studies have shown that HPC-mPFC 317 
oscillatory synchrony at various frequencies including increased θ coherence support auditory 318 
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predictive processing and multisensory attention in humans (Friese et al., 2016; Grunwald et 319 
al., 2003; Recasens et al., 2018). HPC-mPFC interactions are further crucial for supporting 320 
SP during postnatal development, as the HPC provides excitatory signals to drive functional 321 
mPFC maturation during the sensitive period of tactile development (Xu et al., 2020). These 322 
include HPC θ oscillations that boost prefrontal oscillations in the neonatal mouse, and the 323 
emergence of θ-γ oscillations during maturation across the hippocampal-prefrontal network 324 
(Ahlbeck et al., 2018; Bitzenhofer et al., 2017; Brockmann et al., 2011; Xu et al., 2020). Thus, 325 
oscillations across the HPC-mPFC circuitry are not only important for cognition and emotional 326 
processes, but also facilitates normal SP.  327 

 328 

The Impact of Abnormal HPC-mPFC Circuit Dynamics in Neurodevelopmental and 329 
Neurological Disorders 330 

The HPC-mPFC circuit supports cognition, emotion, and sensory processing. These regions 331 
are anatomically and functionally intertwined, and oscillations regulate communication and 332 
information flow to support cognitive and behavioural processes. In this section, we discuss 333 
relevant disorders involving dysfunctional neural dynamics with a focus on the HPC-mPFC 334 
circuit. See Table 2.  335 

 336 

Abnormal HPC-mPFC Circuit Dynamics in Neurodevelopmental Disorders 337 

Abnormal brain development affects the structural and functional connectivity across the HPC-338 
mPFC circuit, resulting in alteration at different spatial scales from cellular levels to network 339 
level. Neurodevelopmental disorders have been associated with maladaptive formation of 340 
cortical networks and faulty programming of synaptic connections, as neural oscillations and 341 
synchrony may have crucial roles in synaptic modifications (Galuske et al., 2019; Zarnadze et 342 
al., 2016). In this section, we highlight aberrant oscillations within and across the HPC-mPFC 343 
network associated with a variety of cognitive and behavioural deficits in several 344 
neurodevelopmental disorders.  345 

 346 

Autism Spectrum Disorder 347 

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by 348 
impairments in memory, executive function, and social skills (Hodges et al., 2020). Disruptions 349 
in oscillatory synchronization are core deficits in ASD, occurring at frequencies involving long 350 
range (δ, θ, α, β) and short range (β, γ) connectivity (Simon and Wallace, 2016). Altered neural 351 
circuitries in numerous brain regions including the orbitofrontal and sensory-motor networks 352 
are observed in ASD individuals, suggesting that cortical asynchronization during sensory and 353 
perceptual processing is a pathological hallmark of ASD (Hull et al., 2017; Oldehinkel et al., 354 
2019; Xu et al., 2019b).  355 

To date, only a few studies have focused on HPC-mPFC pathways in ASD. Cytoskeleton 356 
anomalies including fewer dendrites, smaller dendritic processes, and shorter dendritic 357 
processes in pyramidal neurons of the HPC and mPFC are associated with ASD (Barón-358 
Mendoza et al., 2018). These morphological changes implicate altered synaptic connections, 359 
aberrant HPC-mPFC connectivity and contribute to autistic-like behaviours including impaired 360 
social behaviour (Barón-Mendoza et al., 2019). In addition, they affect pyramidal-mediated 361 
excitatory transmission and disturb the balance of excitation/inhibition (E/I) signals that 362 
support social behaviour. A study found reduced θ synchronization between the vHPC-mPFC 363 
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and loss of excitatory signalling from the vHPC to prefrontal GABAergic interneurons in mice 364 
heterozygous for Pogz (high confidence autism gene) with anxiety-related avoidance 365 
behaviour (Cunniff et al., 2020). This corroborates evidence for the crucial role of vHPC-mPFC 366 
in aberrant social behaviour (Sun et al., 2020), where dysfunctional interactions across this 367 
circuit may alter GABAergic circuits and impair long-range communication between the HPC 368 
and mPFC in the pathophysiology of ASD (Nelson and Valakh, 2015; Sohal and Rubenstein, 369 
2019; Zhao et al., 2022).   370 

In addition, social deficits associated with hyperactivity of the vHPC-mPFC signalling were 371 
observed and long-term inhibition of mPFC pyramidal neurons rescued social memory deficits 372 
in a mouse model of Rett syndrome (classified as an ASD disorder) (Phillips et al., 2019). 373 
Another study found that there were monosynaptic connections from HPC pyramidal neurons 374 
to mPFC GABAergic neurons, and inhibition of this pathway negatively impacted social 375 
behaviour in mice (Sun et al., 2020). Importantly, activation of mPFC parvalbumin-positive 376 
(PV+) neurons rescued social memory impairments caused by inhibition of vHPC (Sun et al., 377 
2020). Deficits in hippocampal PV+ interneurons, circuit changes (altered γ oscillations, sharp 378 
wave-ripples, and θ-γ coupling), and impaired spatial discrimination were further found in a 379 
mouse model of ASD, Cntnap2 mice (Paterno et al., 2021). Altered oscillatory θ and α activity 380 
associated with increased memory load have also been demonstrated in individuals with ASD 381 
(Larrain-Valenzuela et al., 2017). In addition, studies have shown substantially reduced 382 
hippocampal functional connectivity with frontal regions during episodic memory retrieval 383 
(Cooper et al., 2017), as well as rest-associated functional abnormalities in the mPFC 384 
correlating with social impairment in individuals with ASD (Kennedy et al., 2006).  385 

These findings from animal models and ASD individuals suggest that ASD phenotypes may 386 
result from HPC cellular and circuit changes that disrupt proper HPC-mPFC communication 387 
during cognitive and behavioural processes (Schmidt and Redish, 2021). Future research 388 
investigating HPC-mPFC interactions will provide insight into the mechanistic links between 389 
aberrant oscillations across the HPC-mPFC network and ASD-associated behaviours.  390 

 391 

Fragile X Syndrome  392 

Aberrant HPC-mPFC connectivity is characteristic of Fragile X Syndrome (FXS), the most 393 
common form of inherited disability and leading cause of ASD. FXS develops from a mutation 394 
to the Fragile X mental retardation-1 gene (FMR1) located on the X chromosome, resulting in 395 
loss or heavy reduction in the Fragile X Mental Retardation Protein (FMRP). The absence of 396 
FMRP is concurrent with characteristic social impairments, learning disabilities and cognitive 397 
dysfunction including memory dysfunction and abnormal sensory processing (Berzhanskaya 398 
et al., 2016; Ciaccio et al., 2017; Huddleston et al., 2014; Razak et al., 2020). These 399 
impairments have been linked to changes in synaptic plasticity and circuitry involving 400 
excitatory and inhibitory activity in Fmr1-KO mice (Gibson et al., 2008; Morin-Parent et al., 401 
2019; Sidorov et al., 2013; Contractor et al., 2015). Evidence from rodents and humans 402 
suggest that abnormal HPC-mPFC oscillatory dynamics are associated with FXS. Major 403 
electrophysiological observations from recordings in the HPC CA1 pyramidal cell layer 404 
included abnormally greater power of θ oscillations associated with increased slow γ, and 405 
decreased spike-count correlations of interneurons hyper-synchronized with θ and slow γ 406 
oscillations in the FXS mouse model (Fmr1-KO) during free exploration (Arbab et al., 2018). 407 
In FXS patients, abnormal oscillatory dynamics including enhanced global θ connectivity and 408 
reduced α and β connectivity between wider network have been characterized (Molen et al., 409 
2014). Deficits in social and sensory processing in FXS patients were further correlated with 410 
abnormal oscillatory activity, including increased γ power and θ-γ coupling (Wang et al., 2017). 411 
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This suggests that altered oscillations such as changes to γ,  are putative substrates for global 412 
and HPC-mPFC circuit hyper-excitability underlying social deficits in FXS (Arbab et al., 2018; 413 
Goswami et al., 2019; Kozono et al., 2020; Liu et al., 2022; Wang et al., 2017).   414 

In Fmr1-KO mice,  changes in mPFC GABAergic signalling were further observed during 415 
crucial time points of postnatal development (Kramvis et al., 2020). At prepubescence, there 416 
was increased inhibition of the mPFC with decreased inhibitory synaptic depression. This 417 
contrasted prolonged synaptic kinetics with reduced inhibition of the mPFC at adolescence, 418 
and dynamic changes to mPFC pathways in Fmr1-KO during development is functionally 419 
relevant for downstream impairments (Kramvis et al., 2020). Since the regulation of social 420 
behaviour relies on long-range GABAergic projections from regions such as the vHPC and 421 
basolateral amygdala (BLA) to the mPFC (Yang et al., 2021), these abnormalities reflect an 422 
imbalance in GABAergic signalling persisting throughout development with consequential 423 
phenotypes in FSX (Van der Aa and Kooy, 2020). D’Hulst et al. (D’Hulst et al., 2015) 424 
demonstrated an average of 10% reduction in GABAA receptor availability and binding 425 
potential throughout the brain in FXS patients. Using FXS human pluripotent stem cells 426 
(hPSCs), Zhang et al., (Zhang et al., 2022) further found delayed maturation of human 427 
GABAergic neurogenesis in hPSCs, and at later stages of GABAergic neurogenesis, including 428 
(1) increased neuronal networks activity, (2) increased proliferation of neuroblast progenitors 429 
and (3) a downregulation of gene expression associated with neuronal GABAergic maturation. 430 
Thus, a delay in GABAergic neuron differentiation may contribute to recognized deficits in the 431 
GABAergic system in FXS patients (Van der Aa and Kooy, 2020), resulting in altered inhibitory 432 
signals and abnormal homeostatic development of excitatory/inhibitory circuits (Paluszkiewicz 433 
et al., 2011). Consequently, altered local and long-range GABA-dependent HPC-mPFC 434 
interactions expressed in the θ and γ ranges (Molen et al., 2014; Wulff et al., 2009; Contractor 435 
et al., 2015) may further lead to impairments in learning (Gao et al., 2018), social behavior 436 
(Black et al., 2021), fear expression (Yang et al., 2021) and working memory (Lanfranchi et 437 
al., 2009). Future work exploring how GABAergic circuit impairments influence oscillations at 438 
various frequency bands across the HPC-mPFC network will provide insight into mechanisms 439 
linking circuit level to behavioural changes in FSX.  440 

 441 

Down Syndrome  442 

Down syndrome (DS) is a complex genetic disorder characterized by altered HPC and mPFC 443 
neural dynamics associated with cognitive deficits in rodent models (Cramer and Galdzicki, 444 
2012; Witton et al., 2015; Zorrilla de San Martin et al., 2020). We have previously 445 
demonstrated in DS mouse models atypical neural circuitry involving altered θ frequency, 446 
altered hippocampal phase-amplitude coupling, modulation of hippocampal high γ, and altered 447 
HPC-mPFC θ coherence (Chang et al., 2020). These abnormalities were segregated with 448 
behavioural changes associated with impaired spatial working memory and prolonged 449 
decision-making (Chang et al., 2020). Recent evidence further demonstrates increased 450 
hypersynchrony, altered θ oscillations, altered cross-frequency coupling, and reduced HPC 451 
SPW-Rs in the Ts65Dn mouse model of DS (Alemany-González et al., 2020). As HPC SPW-452 
Rs are coupled to cortical networks including the mPFC to facilitate cognitive processes 453 
(Buzsáki, 2015; Schmidt and Redish, 2021), a reduction in HPC SPW-Rs potentially disrupts 454 
proper communication between the HPC and mPFC to mediate memory impairments and 455 
intellectual disabilities (Martin-Cortecero and Nuñez, 2016). These findings suggest that 456 
atypical neural circuitries associated with aberrant HPC-mPFC pathways are important 457 
mechanisms in the pathophysiology of DS (Chang et al., 2020).  458 
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Abnormal brain synchrony is well established in people with DS. Notably, enhanced 459 
synchronization between adjacent brain regions and widespread alterations in default mode 460 
network (DMN) connectivity including weakened long range connections are largely 461 
characterized (Anderson et al., 2013; Rosas et al., 2021; Wilson et al., 2019). Recently, 462 
reduced long-range DMN connectivity associated with cognitive decline were found in DS 463 
individuals, providing evidence that altered connectivity between the HPC and prefrontal 464 
cortices underlie cognitive impairments in DS (DiProspero et al., 2022). In addition, the 465 
attenuation of early exploratory behaviour associated with developmental delays in DS (Fidler 466 
et al., 2019) may be the consequence of abnormal HPC-mPFC interactions. A recent study 467 
demonstrated that direct long-range GABAergic projections from the PFC regulate 468 
disinhibitory HPC microcircuits to facilitate object-related spatial encoding and exploratory 469 
behaviours (Malik et al., 2022). Long-range GABAergic projections promoted network 470 
oscillations that facilitate object exploration such as increased PFC-HPC low-γ synchrony and 471 
greater high-γ and θ power (Malik et al., 2022). These findings implicate that dysfunctional 472 
GABAergic innervation may alter HPC-mPFC oscillatory synchrony and mediate cognitive and 473 
behavioural deficits in DS (Alemany-González et al., 2020; Chang et al., 2020). Therefore, 474 
aberrant HPC-mPFC connectivity may be a potential biomarker predicting clinical conversion 475 
to Alzheimer’s Disease (AD)  in people with DS (DiProspero et al., 2022; Koenig et al., 2021; 476 
Liang et al., 2020).  477 

 478 

Abnormal HPC-mPFC Circuit Dynamics in Neurological Disorders  479 

Aging is associated with alterations in cognitive processing and brain neurophysiology. 480 
Studies demonstrate that physiological aging represent  a global alteration in oscillation and 481 
disruption of brain functional connectivity (Murty et al., 2020; Rondina et al., 2016). 482 
Pathological changes of synaptic integrity and coordinated network activity has been 483 
associated with neurodegenerative and age-related neural disorders. Recent research further 484 
suggests that altered oscillatory activity in the brain may be an early warning sign of age-485 
related neurological diseases (Murty et al., 2021). As the HPC and mPFC have well-486 
established roles in cognitive and memory functions, we discuss relevant age-related 487 
neurological disorders that have aberrant HPC-mPFC circuitry.   488 

 489 

Alzheimer’s Disease 490 

Alzheimer’s Disease is a progressive neurodegenerative disorder with widely characterized 491 
abnormalities in neural oscillations and cognitive deficits (Byron et al., 2021; Hamm et al., 492 
2015; Isla et al., 2021; Kitchigina, 2018). It has been shown that prominent neural HPC-mPFC 493 
oscillations, particularly slow-frequency θ and fast-frequency γ, are significantly altered in 494 
mouse models of AD (Kitchigina, 2018; Mehak et al., 2022) and in patients with early and late 495 
stage AD (Başar et al., 2017; Goodman et al., 2018; McDermott et al., 2018). Additionally, 496 
abnormal oscillations across the HPC-mPFC circuit are associated with AD pathology such 497 
as extracellular insoluble β-amyloid (Aβ) plaques, intracellular neurofibrillary tangles (NFTs), 498 
and tau aggregation (Ahnaou et al., 2017). A study found that Aβ significantly reduces synaptic 499 
inputs of hippocampal fibres to the PFC at different frequencies (5–50 Hz) measured by mean 500 
amplitudes of field excitatory postsynaptic potentials (fEPSPs) in vitro (Flores-Martínez and 501 
Peña-Ortega, 2017). Intracranial recordings from the HPC and mPFC of TgF344-AD rats 502 
reveal impaired HPC-mPFC θ-γ coherence and attenuated phase-amplitude coupling 503 
concomitant to Aβ deposition and NFTs (Bazzigaluppi et al., 2018). In tau-expressing rats, 504 
Tanninen and colleagues revealed a significant attenuation of inter-region θ and γ phase-505 
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phase and amplitude-amplitude oscillatory coupling between the HPC and prelimbic mPFC 506 
during associative learning (Tanninen et al., 2017). Notably, these changes in neural 507 
oscillations were observed prior to cognitive deficits, implicating oscillatory changes detectable 508 
in preclinical AD. Further evidence from rodents reveal the crucial role of mPFC spindle-band 509 
coupling with hippocampal ripples (Maingret et al., 2016; Zhurakovskaya et al., 2019).  510 

The significance of HPC-mPFC in AD is further understood through studies of memory. 511 
Episodic memory is one of the first systems to decline in AD, and affected individuals show 512 
deficits in object and spatial recognition memory consolidation (Tromp et al., 2015). These 513 
processes rely on concurrent activity in the dHPC and mPFC, and chemogenetic inactivation 514 
of these regions impairs memory consolidation in mice (Tuscher et al., 2018). Recent work 515 
demonstrates that CA1 and mPFC θ sequences are temporally coordinated to support 516 
memory-guided decision-making processes in rats (Tang et al., 2021), and synchronization of 517 
θ and γ oscillations regulate HPC-mPFC communication during cognitive processes 518 
particularly learning and memory (Colgin, 2011; Hyman et al., 2005; Wirt et al., 2021; Buzsáki 519 
and Draguhn, 2004). Low levels of θ-γ coupling associated with working memory deficits are 520 
further reported in patients with mild cognitive impairment (MCI) and AD (Abubaker et al., 521 
2021; Goodman et al., 2018; Kitchigina, 2018). Although it is well established that aberrant 522 
HPC-mPFC circuit dynamics are found in AD, it remains unclear whether oscillatory 523 
abnormalities cause cognitive deficits or are a by-product of cellular changes. Nevertheless, 524 
pathological circuits in AD include abnormal θ and γ oscillatory activity across the HPC-mPFC 525 
circuit that leads to impairments in cognition and memory (Mably and Colgin, 2018).   526 

 527 

Epilepsy  528 

Epilepsy is a common neurological disorder that is characterized by frequent seizures. It 529 
affects nearly 1% of the population with substantial morbidity and mortality (Fiest et al., 2017) 530 
There is increasing interest to study the pathophysiological mechanisms underpinning seizure 531 
generation in epilepsy, particularly abnormal connectivity in certain brain regions (Engel et al., 532 
2013; Englot et al., 2016; Jiruska et al., 2013). Studies in patients with focal epilepsy showed 533 
widespread network alterations that extend beyond the epileptogenic zone (Braakman et al., 534 
2013; Luo et al., 2012; Widjaja et al., 2015). In rodent and human studies, altered connectivity 535 
between the HPC and mPFC has been correlated with epilepsy conditions (Englot et al., 2015; 536 
Jin and Maren, 2015). Individuals with temporal lobe epilepsy (TLE) show HPC-mPFC 537 
hypersynchrony and abnormally greater coherence in θ bands (Holmes, 2015), suggesting 538 
that epileptiform events are facilitated by the slow oscillation state biasing hippocampal 539 
pathways towards hyperexcitability and enhancing hypersynchrony across HPC and cortical 540 
networks (Nazer and Dickson, 2009). In a rat model of TLE, coherence in θ band synchrony 541 
between the dHPC and mPFC was further found to be increased in the pre-ictal period 542 
preceding seizures, suggesting that altered HPC-mPFC connectivity may promote seizure 543 
generation (Broggini et al., 2016).  544 

Further evidence revealed that prolonged or recurrent seizures can cause or exacerbate 545 
cognitive impairments (Blake et al., 2000; Butler and Zeman, 2008; Butler et al., 2009). 546 
Numerous studies suggest that altered HPC-mPFC connectivity may be related to 547 
neurocognitive deficits in patients with epilepsy (Doucet et al., 2013; Voets et al., 2014). One 548 
study found fewer physiological hippocampal ripples, greater spontaneous HPC interictal 549 
epileptiform discharges (IEDs), and impaired spatial memory consolidation associated with 550 
strongly coupled HPC IEDs-mPFC spindles during sleep and awake states in a rat model of 551 
TLE (Gelinas et al., 2016). In patients with focal epilepsy, the coupling of IEDs with spindles 552 
in regions distinct from the epileptic network were further shown to alter spatiotemporal 553 
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oscillatory properties and mediate abnormal patterns of brain connectivity (Dahal et al., 2019). 554 
It is becoming increasingly clear that precisely coordinated HPC IEDs-prefrontal cortex 555 
spindles exacerbate aberrant HPC θ-γ coupling during rapid eye movement (REM) in the 556 
epileptic brain (Jansen et al., 2021; Mendes et al., 2021). Consequently, the generation of 557 
pathological HPC oscillations and IED-mediated abnormal coupling of oscillations may alter 558 
HPC-mPFC network activity and disrupt normal HPC ripples-mPFC spindles coupling crucial 559 
for supporting memory processes in the epileptic brain (Azimi et al., 2021; Mendes et al., 2021; 560 
Siapas and Wilson, 1998; Xia et al., 2017). Overall, connectivity studies in epilepsy are critical 561 
endeavours that may lead to improved strategies for localization epileptogenic area, aid 562 
surgical intervention and outcome prediction in epilepsy.  563 

 564 

Therapeutic Strategies for Targeting HPC-mPFC Circuit Dynamics  565 

Medical treatments and neural substrates for therapeutic approaches can be guided by the 566 
study of brain oscillations. Oscillotherapeutics is an exciting area of therapy that uses 567 
oscillations as biomarkers or therapeutic targets to treat disorders with brain network 568 
dysfunction (Takeuchi and Berényi, 2020). Here, we discuss advancements in brain 569 
stimulation, gene therapy, and pharmacotherapy, highlighting evidence for the use of 570 
oscillotherapeutics to treat disorders with aberrant HPC-mPFC circuit dynamics.  571 

 572 

Brain Stimulation 573 

An emerging application in brain stimulation therapy is the use of neuromodulation to restore 574 
network abnormalities in cognitive disorders such as AD (Chan et al., 2021a). Methods include 575 
non-invasive and invasive approaches that stimulate the brain at targeted sites to restore 576 
balance of neural circuits via manipulation of oscillatory activity in local and network-wide 577 
activity. In this section, we highlight Non-invasive Gamma Entrainment Using Sensory 578 
Stimulation (GENUS) and deep brain stimulation (DBS) as promising approaches in disorders 579 
with aberrant neural oscillations.  580 

Since γ brain activity has well-established roles in cognition, γ entrainment therapy has been 581 
explored for neurological disorders such as AD (Adaikkan and Tsai, 2020; Traikapi and 582 
Konstantinou, 2021). Visual GENUS at 40 Hz entrained γ oscillatory activity in the HPC and 583 
prefrontal cortices and enhanced inter-regional γ oscillatory activity in mouse models of 584 
neurodegeneration (Adaikkan and Tsai, 2020; Adaikkan et al., 2019). Auditory and audiovisual 585 
GENUS at 40 Hz further reduced amyloid load in the HPC and mPFC respectively, and 586 
hippocampal-dependent recognition and spatial memory tasks were also improved by auditory 587 
GENUS at 40 Hz in the neurodegeneration mouse model, 5XFAD mice (Martorell et al., 2019). 588 
These findings demonstrate the potential for GENUS to ameliorate AD pathology and improve 589 
cognitive function (Iaccarino et al., 2016).  590 

Preliminary data from human studies highlights its potential application in treatment for AD. 591 
Chan et al. (Chan et al., 2021b) conducted a randomized, placebo-controlled trial in 592 
participants with mild AD dementia and found that one-hour daily treatment of audio-visual 593 
GENUS at 40 Hz delivered over 3 months improved memory performance and reduced brain 594 
atrophy in the active group. Fatemi et al. (2022) employed simultaneous auditory and visual 595 
stimulation in cognitive healthy participants and found significantly enhanced θ-γ phase-596 
amplitude coupling (PAC). This corroborates evidence for GENUS as a potential treatment for 597 
AD, as it may be able to correct abnormal oscillations across the HPC-mPFC circuitry and 598 
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restore cognitive functions (Belluscio et al., 2012; Chan et al., 2021b; Fatemi et al., 2021; 599 
Lisman & Jensen, 2013; Tort et al., 2009).   600 

The application of DBS to target HPC-mPFC circuit dynamics is hypothesized in its ability to 601 
modulate oscillations in these regions (Cervera‐Ferri et al., 2016; Muthuraman et al., 2020; 602 

Zhu et al., 2019). DBS therapy is a neurosurgical intervention where electrical activity is 603 
constantly or intermittently delivered to the brain through electrodes. The ability for DBS to 604 
modulate oscillatory rhythms is actively explored in diseases with pathological brain circuitries 605 
(Herrington et al., 2016; Lozano et al., 2019). DBS of the subthalamic nucleus (STN) and 606 
globus pallidus interna (GPi) was shown to effectively reduce pathological β band activity (13-607 
30 Hz) in the corticothalamic-basal ganglia network responsible for hallmark Parkinsonian 608 
rhythms (Müller and Robinson, 2018). Central thalamus-DBS (CT-DBS) increased 609 
hippocampal θ oscillations and improved SWM in SD rats (Chang et al., 2019), and ventral 610 
internal capsule/ventral striatum DBS therapy increased mPFC θ oscillations and improved 611 
cognitive control in human subjects with MDD Obsessive Compulsory Disorder (Widge et al., 612 
2019). Recent work further demonstrated that acute DBS in the mPFC with 130 Hz improved 613 
mPFC-vHPC θ and γ coupling in a rat model of developmental schizophrenia (Lippmann et 614 
al., 2021).  615 

Insight from DBS for epilepsy further implicates its beneficial impact in treating disorders with 616 
pathological neural circuitries (Laxpati et al., 2014; Wu et al., 2021). Recent evidence found 617 
that DBS in the medial septum entrained the hippocampal θ rhythm to facilitate anti-seizure 618 
effects in patients with temporal lobe epilepsy (TLE), (Wang et al., 2021). In another large, 619 
prospective double-blind study, HPC-DBS significantly reduced seizures in patients with 620 
refractory TLE, and 50% of these patients became seizure-free 8 months post-surgery (Cukiert 621 
et al., 2017). Given that prominent oscillations regulate communication between the HPC and 622 
mPFC, the ability for DBS to entrain oscillations in the HPC may restore normal HPC-mPFC 623 
oscillatory coupling disturbed in neurological disorders with global network dysfunction such 624 
as epilepsy. With increasing evidence that IED-spindle coupling is associated with aberrant 625 
hippocampal-cortical connectivity in epilepsy, future work using DBS to restore physiological 626 
HPC ripple-mPFC spindles may improve cognitive deficits found in patients with epilepsy. 627 
Further studies examining the ability for DBS to alter HPC-mPFC oscillations at different 628 
frequencies will significantly contribute to advancing progress in using DBS to treat 629 
neurological disorders with aberrant HPC-mPFC circuitry.  630 

 631 

Gene Therapy 632 

The use of gene therapy to modulate HPC-mPFC circuit dynamic is a relatively new area of 633 
research. However, preliminary findings from clinical trials suggest that gene therapy can 634 
target diseases like AD that have aberrant neural circuitries. There are over 40 ongoing clinical 635 
trials in treatment for neurodegenerative diseases (Sun and Roy, 2021) and for example, 636 
currently, much optimism surrounds the Phase 1 clinical trial of the AAV2-Brain Derived Nerve 637 
Growth Factor (BDNF) gene therapy to treat AD or MCI (National Institute of Health (NIH), 638 
NCT05040217). Since BDNF regulates key memory circuits involving the HPC and mPFC 639 
(Rosas-Vidal et al., 2014), AAV2-BDNF gene therapy represents a promising therapeutic 640 
approach to treating neurodegenerative diseases like AD by targeting the modulation of 641 
synaptic signalling (Gao et al., 2022); National Institute of Health (NIH), NCT05040217). A 642 
recent study further demonstrated that SynCav1 gene therapy may also be a promising 643 
therapy for AD. First, the authors demonstrated that PSAPP AD model mice at 9 and 11 644 
months of age exhibited deficits in caveolin-1 (Cav-1), a protein essential for synaptic and 645 
neuroplasticity and associated learning and memory impairments (Wang et al., 2021). Then, 646 
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they found that delivery of SynCav1 to the HPC at 3 months using adeno-associated virus 647 
serotype 9 (AAV9) improved memory and improved morphological changes including a 648 
greater number of CA1 dendritic spines and dendritic arborization which support important 649 
rhythms like θ in the HPC-mPFC circuit (Nuñez and Buño, 2021; Wang et al., 2021). 650 
Interestingly, these effects were seen without the reduction of amyloid deposits and implicates 651 
the role of this novel gene therapy for later stages of neurodegeneration where there may be 652 
high levels of amyloid deposition (Wang et al., 2021).  653 

The application of gene therapy for neural circuit disorders is further highlighted in its potential 654 
to treat developmental disorders with heritable components (Mirzayi et al., 2022; Sahin and 655 
Sur, 2015; Sternson and Bleakman, 2020). There is increasing evidence that gene therapy 656 
technologies including chemogenetics (Sternson and Bleakman, 2020), optogenetics (Mirzayi 657 
et al., 2022) and CRISPR-based gene editing (Heidenreich and Zhang, 2016) are viable tools 658 
for dissecting and restoring neuronal circuits fundamental to developmental and neurological 659 
diseases. In a recent study, adeno-associated viruses (AAV)-mediated expression of human 660 
FMRP isoform 17 orthologs corrected abnormal γ activity and autism-related behaviours in 661 
Fmr1 KO rodents (Hooper et al., 2021), and AAV-FMRP-injected mice demonstrated the ability 662 
to restore cellular expression in hippocampal and cortical neurons to 50% WT levels 56 days 663 
after injection (Gholizadeh et al., 2014). These findings implicate the potential for gene therapy 664 
to restore cellular changes (e.g. GABAergic deficits) and correct circuit imbalances (neuronal 665 
hyperexcitability) associated with  learning disabilities, sensory hypersensitivities, and social 666 
deficits in FXS and other neurodevelopmental disorders (Bülow et al., 2022; Contractor et al., 667 
2015). As of now, the efficacy of gene therapy in restoring abnormal HPC-mPFC circuitry 668 
remains unclear and clinical trials are warranted. Future work to improve gene delivery and 669 
increase understanding of post-transcriptional regulation systems will further optimize gene 670 
therapy to correct aberrant HPC-mPFC circuitry associated with developmental and 671 
neurological disorders (Ingusci et al., 2019).   672 

 673 

Pharmacotherapy 674 

In pharmacotherapy for AD, there is an emerging paradigm shift from solely targeting 675 
pathological hallmarks like amyloid plaques to modulating neural circuitries. Considerable 676 
evidence demonstrates that critical oscillatory rhythms (θ and γ) supporting memory 677 
processes are altered from early stages of AD (Başar et al., 2016; Grunwald et al., 2001; 678 
Traikapi and Konstantinou, 2021). Several AD drugs have been shown to modulate these 679 
rhythms (Isla et al., 2021). Notably, the AChE inhibitor donepezil was found to increase 680 
stimulation-induced hippocampal θ oscillation power, enhance θ phase to γ amplitude 681 
coupling, reduce cortical hyperexcitability and reduce occurrences of high-voltage spindle 682 
activity in a transgenic AD mouse model (Stoiljkovic et al., 2018). In addition, current drugs 683 
approved for the symptomatic treatment of dementia (rivastigmine, tacrine, galantamine and 684 
memantine) have been shown to enhance cortical slow θ (4.5-6 Hz) and γ (30.5-50 Hz) 685 
oscillations (Ahnaou et al., 2014; Drinkenburg et al., 2015). Recently, the histone deacetylase 686 
inhibitor (HDAC) suberoylanilide hydroxamic acid (SAHA), was found to rescue impairment of 687 
hippocampal γ (20-40 Hz) oscillations and restore activity of fast spiking interneurons in basal 688 
and active states in a model of AD (PSAPP transgenic mice) (Takasu et al., 2021). These 689 
findings implicate the ability for SAHA to modulate hippocampal γ oscillations through its effect 690 
on fast-spiking PV+ GABA-containing interneurons (Bartos et al., 2007). Since PV+ 691 
interneurons mediate crucial HPC-mPFC interactions underlying memory consolidation 692 
(ripple-spindle oscillatory coupling) (Xia et al., 2017), SAHA represents the crucial role of 693 
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pharmacotherapies in targeting HPC-mPFC circuit dynamics for treating cognitive 694 
impairments in AD.  695 

The potential for pharmacotherapies to modulate aberrant HPC-mPFC circuit dynamics is 696 
further implicated in treatment for schizophrenia, a complex disorder associated with 697 
significant abnormal neuronal synchrony and impairments in spatial and temporal integration 698 
of brain network activity (Başar et al., 2016; Orellana and Slachevsky, 2013; Rame et al., 699 
2017; Uhlhaas and Singer, 2010). The “pharmaco-EEG” approach has been used in 700 
schizophrenia therapy to study and predict clinical efficacy of drugs through EEG parameters 701 
(Drinkenburg et al., 2015; Galderisi, 2002). Recently, Cariprazine (United States: Vraylar; 702 
Europe: Reagila), a third-generation antipsychotic approved for the treatment of schizophrenia 703 
(Stępnicki et al., 2018), demonstrated evidence for stabilizing the aberrant increase and 704 
accelerating the resynchronization of hippocampal γ oscillations in a rat model of acute first-705 
episode schizophrenia (MK-801) (Meier et al., 2020). Clozapine have also shown efficacy in 706 
restoring hippocampal-prefrontal cortical synaptic plasticity and augmenting long-term 707 
potentiation in the HPC-mPFC pathway via dopaminergic modulation in animal models of 708 
schizophrenia (Matsumoto et al., 2008; Rame et al., 2017; Ruggiero et al., 2021). The 709 
development of effective pharmacotherapies that restore aberrant neural dynamics is a 710 
growing and important area of research. Abnormal neural synchrony significantly contributes 711 
to various pathologies, and further advancements in pharmacotherapies should consider 712 
targeting neural circuitries in treatment, particularly in diseases with prominent aberrant HPC-713 
mPFC circuit dynamics like AD and schizophrenia to restore normal function (Canter et al., 714 
2016).  715 
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Table 2 Overview of neurodevelopmental and neurological disorders associated with 734 
abnormal hippocampus-medial prefrontal cortex circuit dynamics. For a more thorough 735 
discussion, refer to text. (AD=Alzheimer’s Disease; dHPC=dorsal hippocampus; 736 
DMN=default mode network; HPC=hippocampus; HPC-mPFC=hippocampal-medial 737 
prefrontal cortex; human pluripotent stem cells=hPSCs; interictal epileptiform 738 
discharges=IEDs; MCI=mild cognitive impairment; mPFC=medial prefrontal cortex; 739 
PV+=parvalbumin-positive; SPW-Rs=sharp wave-ripples; vHPC=ventral hippocampus) 740 
 741 

Category  Disorder Species Relevant Findings  Reference 

Neurodevelopmental 
Disorders 
 

Autism 
Spectrum 
Disorder 
 
 

Rodents Dendritic changes in 
the HPC and mPFC 
pyramidal neurons. 
 

(Barón-
Mendoza et 
al., 2018, 
2019) 

Rodents (1) Reduced θ 
synchronization 
between the 
vHPC and mPFC. 

(2) Loss of excitatory 
signalling from the 
vHPC to prefrontal 
GABAergic 
interneurons. 

 

(Cunniff et al., 
2020)  

Rodents  Hyperactivity of vHPC 
to mPFC projections 
impaired social 
memory.  
 

(Phillips et al., 
2019) 

Rodents Altered mPFC 
GABAergic 
innervation from 
vHPC negatively 
impacted social 
behaviour. 
 

(Sun et al., 
2020) 

Rodents 
and 
Humans   

Dysfunctional sensory 
oscillations at 
frequency ranges 
associated with long 
range (δ, θ, α, β) and 
short range (β, γ) 
connectivity. 
 

(Simon and 
Wallace, 2016) 
 

Rodents 
and 
Humans 

Impaired θ and α 
oscillatory activity 
associated with 
working memory 
deficits. 
 

(Larrain-
Valenzuela et 
al., 2017)  

Humans Altered short- and 
long-range 
(hippocampal-frontal 
cortices) connectivity.  

(Hull et al., 
2017; 
Oldehinkel et 
al., 2019) 
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Fragile X 
Syndrome 

Rodents 
and 
Humans 

Altered GABAergic 
signalling due to 
dysfunctional vHPC-
mPFC long-range 
GABAergic 
projections crucial for 
regulating social 
behaviour.  
 

(Kramvis et al., 
2020; Van der 
Aa and Kooy, 
2020; Yang et 
al., 2021) 
 

Rodents Oscillatory changes in 
the HPC that 
potentially disrupts 
HPC-mPFC circuitry:  
 
(1) Abnormally 

greater power of θ 
associated with 
increased slow γ. 

(2) Decreased spike-
count correlations 
of interneurons 
hyper-
synchronized with 
θ and slow γ.  

 

(Arbab et al., 
2018) 

Humans Evidence suggesting 
impaired GABAergic 
HPC-mPFC signalling 
in FXS patients: 
 
(1) A 10% reduction 

in GABAA receptor 
availability.  

(2) Reduced GABA 
binding potential 
throughout the 
brain.  

 

(D’Hulst et al., 
2015) 

Humans Evidence suggesting 
impaired HPC-mPFC 
local and long-range 
GABA-dependent 
interactions:  
 
(1) Delayed 

maturation of 
GABAergic 
neurogenesis in 
hPSCs  

(2) Increased 
neuronal networks 
activity. 

(3) Increased 
proliferation of 

(Zhang et al., 
2022) 
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neuroblast 
progenitors. 

(4) Downregulation of 
proteins 
associated with 
GABAergic 
neuronal 
maturation. 

 

Down 
Syndrome 
 

Rodents Altered HPC-mPFC 
neural dynamics:  
 
(1) θ frequency  
(2) HPC phase-

amplitude 
coupling 

(3) modulation of 
HPC high γ 

(4) θ coherence 
 

(Chang et al., 
2020) 

Rodents Reduced HPC SPW-
Rs coupling with 
cortical networks and 
impaired working 
memory.  
 

(Alemany-
González et 
al., 2020)  

Rodents  Altered GABAergic 
signalling; loss of fast-
spiking phenotypic 
PV+ cells and 
increased excitability. 
 

(Zorrilla de 
San Martin et 
al., 2020)  

Rodents 
and 
Humans  

Abnormal 
coordination of θ 
oscillatory activity 
across the HPC and 
mPFC.  
 

(Goodman et 
al., 2018; Wirt 
et al., 2021)  

Humans  Widespread 
alterations in DMN 
connectivity and 
weakened DMN- 
frontal cortices 
connectivity 
 

(Anderson et 
al., 2013; 
Wilson et al., 
2019) 

Humans Reduced long-range 
hippocampal-
prefrontal connectivity 
associated with 
cognitive decline in 
people with DS 
converting to AD.  

(DiProspero et 
al., 2022)  
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Neurological 
Disorders 

Alzheimer’s 
Disease 
 

Rodents 
and 
Humans 

Abnormal mPFC 
spindle-band coupling 
with HPC ripples. 

(Maingret et 
al., 2016; 
Zhurakovskay
a et al., 2019) 

Rodents Inactivation of the 
dHPC and mPFC 
impaired object and 
spatial recognition 
memory 
consolidation.  
 

(Tuscher et al., 
2018)  

Rodents Altered CA1 HPC-
mPFC θ temporal 
synchronization.  
 

(Tang et al., 
2021) 

Rodents HPC-mPFC 
hypersynchrony 
associated with 
cognitive impairments. 
 

(Holmes, 
2015)  

Humans Reduced θ-γ coupling 
associated with 
working memory 
deficits in patients 
with MCI and AD. 
 

(Abubaker et 
al., 2021; 
Goodman et 
al., 2018; 
Kitchigina, 
2018)  

Epilepsy 
 

Rodents Increased coherence 
at θ band synchrony 
between the dHPC 
and mPFC in pre-ictal 
seizure periods.  
 

(Broggini et al., 
2016)  

Rodents 
and 
Humans 

Altered hippocampal-
cortical coupling:  

(1) Aberrant HPC 
IEDs induce 
mPFC spindles. 

(2) Degree of HPC 
IEDs-mPFC 
spindles coupling 
correlated with 
memory 
impairments. 

(Gelinas et al., 
2016; Mendes 
et al., 2021)  

Rodents 
and 
Humans 

Increased HPC-mPFC 
θ asynchrony and 
atypical γ oscillations 
associated with 
cognitive impairments.  

(Bowie and 
Harvey, 2006; 
Chang et al., 
2019; Choi et 
al., 2016; 
Skirzewski et 
al., 2018)  

 742 
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Conclusion 743 

Considerable evidence from neuroanatomical and physiological studies demonstrates that the 744 
HPC and mPFC are anatomically and functionally intertwined. The HPC-mPFC circuit includes 745 
direct and indirect pathways that have well-established roles in supporting cognitive, emotional 746 
and sensory processes. For example, critical HPC-mPFC oscillatory rhythms facilitate 747 
episodic memory and spatial memory, persistent HPC-mPFC interactions promote long-term 748 
memory through context-based differentiation, and emotional processes are closely 749 
associated with oscillatory coupling of the HPC and BLA receiving direct projections from the 750 
mPFC. In this review, we have highlighted several neurodevelopmental (ASD, DS, FXS) and 751 
neurological disorders (AD, epilepsy) with altered HPC-mPFC circuit dynamics. Since 752 
oscillations across the HPC-mPFC circuit are crucial for supporting cognitive and behavioural 753 
functions, oscillotherapeutics that modulate pathological brain rhythms in neurodevelopmental 754 
and neurological disorders should be thoroughly explored (Földi et al., 2021; Widge et al., 755 
2019; Traikapi and Konstantinou, 2021; Takeuchi and Berényi, 2020). However, the current 756 
body of research on oscilliotherapeutics for abnormal HPC-mPFC circuitry is limited by the 757 
use of singular modalities (Liang and Mody, 2022). Since EEG and MEG presents with spatial 758 
resolution limitations, it makes it difficult to pinpoint sources of abnormal neural circuitry. 759 
Future research should employ multimodal imaging, combining EEG, MEG, and fMRI to better 760 
integrate spatial and temporal information of aberrant circuitries underlying disorders such as 761 
AD with cognitive and behavioural deficits. Furthermore, disorders such as ASD with 762 
heterogeneous pathophysiology makes it difficult to assess the extent by which aberrant 763 
oscillations contribute to cognitive/behavioural deficits. This can be improved by disease 764 
stratification (genetics and behavioural) and breaking down heterogenous disorders into 765 
smaller parts, making it easier to investigate oscillatory dynamics associated with specific 766 
phenotypes. In conclusion, oscillatory dynamics across the HPC-mPFC circuit could be useful 767 
biomarkers for assessing interventions in neurodevelopmental and neurological disorders, 768 
and advancements in brain stimulation, gene therapy and pharmacotherapy will accelerate 769 
effective treatments for various disorders with aberrant HPC-mPFC circuitry. For a graphical 770 
summary, see Figure 2.  771 
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Oscillatory synchrony
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Neurological disorders

-Autism Spectrum Disorder
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Figure 2 Graphical Summary. Oscillatory synchrony across the hippocampal-medial 

prefrontal cortex (HPC-mPFC) network facilitates normal brain function including 

cognition, emotion, and sensory processing. Aberrant oscillatory synchrony across 

the HPC-mPFC network contributes to brain dysfunction and facilitates a variety of 

neurodevelopmental and neurological disorders. 
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