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We develop an approach to combining contextuality
with causality, which is general enough to cover causal
background structure, adaptive measurement-based
quantum computation and causal networks. The key
idea is to view contextuality as arising from a game
played between Experimenter and Nature, allowing
for causal dependencies in the actions of both the
Experimenter (choice of measurements) and Nature
(choice of outcomes).

This article is part of the theme issue ‘Quantum
contextuality, causality and freedom of choice’.

1. Introduction
Contextuality is a key non-classical feature of quantum
theory. Besides its importance in quantum foundations,
it has been linked to quantum advantage in information-
processing tasks. It also arises beyond quantum
mechanics, cf. [1].

We wish to generalize contextuality to accommodate
causality and adaptivity. These features may arise from:

— fundamental aspects of the physical setting, in
particular the causal structure of spacetime;
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by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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— the causal structure of an experiment, where measurements are performed in some causal
order, and moreover, which measurements are performed may depend on the outcomes
of previous measurements;

— feed-forward in measurement-based quantum computation (MBQC) [2], and more
generally, adaptive computation.

Our objectives include:

— A more fine-grained analysis of contextuality. Signalling should be allowed from
the causal past, i.e. the backward light cone, and thus no-signalling/no-disturbance
should be imposed only from outside it. This in turn modifies the scope of classicality
(non-contextuality), which now becomes relative to this weaker form of no-signalling
constraints.

— A better connection with computational models such as circuits and MBQC. Explicitly
representing causal flows of information, e.g. outputs of gates feeding into inputs of other
gates, enables a deeper analysis of the relationships between contextuality and quantum
advantage.

It turns out that capturing these different manifestations of causality and their interactions
with contextuality is rather subtle. The perspective we adopt here is to view contextuality as
a two-person game played between Experimenter and Nature. The Experimenter’s moves are
the measurements; i.e. the actions of the Experimenter are to choose the next measurement to
be performed. Nature’s moves are the outcomes. We can capture the various forms of causal
dependency which may arise in terms of strategies for Experimenter or for Nature.

The game format is already familiar in the form of non-local games. There, the Verifier plays
the role of the Experimenter, and Nature responds with outcomes according to the probability
distributions corresponding to Alice–Bob strategies. Non-local games are one-shot games, with
a single round of interaction. By considering more general games, causal structure can be
incorporated.

Our treatment builds upon the sheaf-theoretic approach to contextuality. A pleasing feature is
that once one modifies the basic sheaf of events to take causal structure into account, the further
definitions and treatment of contextuality follow automatically. This illustrates the advantages of
a compositional and functorial approach.

2. Previous work
Pearl had already noted the connection with Bell inequalities in his seminal paper on testability
of causal models with latent and instrumental variables [3]. The extension of causal networks
to allow for quantum resources, or more generally the operations offered by Generalized
Probabilistic Theories, has been studied e.g. in [4,5].

Our starting point is the sheaf-theoretic treatment of contextuality introduced in [6], and
extensively developed subsequently. This is a general, mathematically robust approach, which
provides a basis for:

— the contextual fraction as a measure of contextuality [7];
— a general characterization of non-contextuality inequalities in terms of consistency

conditions (‘logical Bell inequalities’, Boole’s ‘conditions of possible experience’) [8,9];
— resource theory of contextuality, and simulations between contextual systems [7,10–13];
— cohomological criteria for contextuality, the topology of contextuality [14–16];
— connections with logic and computation, database theory, constraint satisfaction [17,18];
— generalizations [19,20] and applications [21] of Vorob’ev’s theorem [22].

The aim is to develop a refined version incorporating causality for which all these features will
carry over.
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There have been some prior works in this direction:

— Mansfield [23] introduced a refinement of the sheaf-theoretic approach with an order on
the measurements, and used it to study the two-slit experiment and the Leggett–Garg
scenario.

— Gogioso & Pinzani [24,25] developed a causal refinement of the sheaf-theoretic approach
to non-locality, i.e. for the case of Bell-type scenarios. They introduce an order on the sites
or agents in the Bell scenario.

In both cases, the order is used to refine the no-signalling or no-disturbance condition which
guarantees that joint distributions have consistent marginals. In the presence of causality,
signalling is allowed from within the backwards light cone or causal past of an event, and thus
no-signalling is only required outside it.

One may contrast this with the Contextuality-by-Default (CbD) approach introduced by
Dzhafarov and co-workers [26,27]. In CbD, every variable is regarded as contextual, differently
labelled in each context. Classicality is characterized by the existence of a joint distribution under
which different occurrences of variables with the same ‘content’ have the same value with the
maximum probability consistent with their individual marginals. This allows for the analysis
of arbitrary signalling systems, which has applications, e.g. in the behavioural sciences, where
signalling is the norm. Moreover, this signalling may in general be impossible to characterize or
control.

By contrast, both in the above work by Mansfield and Gogioso–Pinzani (GP) and in the present
paper, the aim is to explicitly describe a given causal background—which might arise from the
structure of an experiment, circuit or physical system—and to characterize contextuality relative
to such a background.

In this paper, we extend the scope of previous work in several directions. First, we allow more
general dependencies of events on their prior causal histories. In particular, the choice of which
measurement to perform can depend on previous outcomes as well as on which measurements
have been performed. This is an important feature of MBQC (feed-forward), and more generally
of adaptive computation. Second, we extend general contextuality scenarios with causality, not
just the non-locality Bell scenarios as in the GP approach. Finally, and most subtly, we recognize
the different roles played by Nature and Experimenter in their causal interactions, highlighting
an important difference between causal background and adaptivity.

An interesting feature of our approach, in common with that of GP, is that it proceeds
essentially by modifying the sheaf of events from Abramsky & Brandenburger [6] to reflect
the refined signalling constraints in the presence of causality. Once this has been done, the
remainder of the analysis of contextuality follows exactly the same script as in [6]. In particular,
the appropriate definition of empirical model, the relaxed no-signalling constraints, and the
notion of classicality/non-contextuality follow automatically.

3. Examples
As we have already suggested, causality in relation to contextuality has dual aspects. It may be
imposed by Nature, in the form of a causal background against which the contextual behaviour
plays out; or it may be imposed by the Experimenter, e.g. to achieve computational effects
(adaptive computation). We illustrate these two sources of causality in two basic examples.

(a) Example I: causal background à la GP
Consider a standard bipartite non-locality scenario, e.g. the Bell–CHSH scenario: two
experimenters, Alice and Bob, with sets of local measurements IA and IB, and outcome sets OA

and OB. We may think of these as ‘inputs’ and ‘outputs’.
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We now introduce a variation, in which we assume that Alice’s events causally precede those
of Bob. Thus Bob’s backward light cone includes the events where Alice chooses a measurement
and observes an outcome.

Whereas in a standard, causally ‘flat’ scenario, we would have deterministic outcomes given
by functions

sA : IA → OA and sB : IB → OB,

with these causal constraints, we have functions

sA : IA → OA and sB : IA × IB → OB.

That is, the responses by Nature to Bob’s measurement may depend on the previous measurement
made by Alice.1

If we have measurements x1, x2 ∈ IA, y ∈ IB, then {(x1, 0), (y, 0)} and {(x2, 0), (y, 1)} are valid
histories in a single deterministic model. If we now go to distributions over such histories, say
d{x,y} as a distribution over outcomes for the Alice measurement x and the Bob measurement y,
then of the usual no-signalling/compatibility equations

d{x,y}|{x} = d{x} (3.1)

and
d{x,y}|{y} = d{y}, (3.2)

only (3.1) remains. In fact, d{y} is not even defined, since {y} is not a ‘causally secured’ context: the
measurement y can never occur on its own without a preceding Alice measurement.

Thus no-signalling is relaxed in a controlled fashion.

(b) Example II: Anders–Browne
The Anders–Browne construction [28] shows how we can use a form of Experimenter-imposed
causality to promote two sub-universal computational models (Pauli measurements and mod-2
linear classical processing) to universal MBQC.

It uses the GHZ state as a resource state:

GHZ = |↑↑↑〉+ |↓↓↓〉√
2

.

Performing local Pauli X and Y measurements, we obtain the following table of possible joint
outcomes2

+ + + + + − + − + + − − − + + − + − − − + − − −
X X X 1 0 0 1 0 1 1 0
X Y Y 0 1 1 0 1 0 0 1
Y X Y 0 1 1 0 1 0 0 1
Y Y X 0 1 1 0 1 0 0 1

In terms of parities, i.e. products of ±1 outputs under the correspondence given by the group
isomorphism 〈{0, 1}, ⊕〉 ∼= 〈{+1, −1}, ·〉, the support satisfies the following equations:

X1 X2 X3 = +1
X1 Y2 Y3 = −1
Y1 X2 Y3 = −1
Y1 Y2 X3 = −1.

1Note that, in a deterministic model, Nature ‘knows’ what response it would have given for Alice’s measurement, so there is
no real dependency on this outcome.
2The table shows only the possibilistic information, i.e. the supports of the probability distributions on joint outcomes, which
are uniform on each row.
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The idea is to use an Experimenter causal flow to implement OR.3 Taking X as 0, Y as 1, we
consider the measurements for Alice and Bob as inputs to an OR gate. We then use the following
simple mod-2 linear mapping (XOR on the bit representations) from the Alice–Bob measurements
to determine Charlie’s measurement:

0, 0 �→ 0
0, 1 �→ 1
1, 0 �→ 1
1, 1 �→ 0

and

X, X �→ X
X, Y �→ Y
Y, X �→ Y
Y, Y �→ X.

The output of the OR function is read off from the XOR of the three outcome bits.
We draw attention to the following two remarks.

— This example illustrates causality that is purely employed by the Experimenter. From
Nature’s point of view, it is just the standard (causally flat) GHZ construction.

— The above describes a simplified ‘one-shot’ implementation of a single OR gate. To
represent general logical circuits with embedded OR gates, using this construction as
a building block, really requires (classically computed) feed-forward of measurement
settings. This means that there is full adaptivity at work, i.e. dependence of measurement
choices on prior measurement outcomes.

4. Game semantics of causality
We conceptualize the dual nature of causality as a two-person game, played between
Experimenter and Nature:

— Experimenter’s moves are measurements to be performed;
— Nature’s moves are the outcomes.

By formalizing this, we develop a theory of causal contextuality that recovers:

— the usual theory of contextuality in the ‘flat’ case,
— the GP theory of non-locality in a causal background,
— MBQC with adaptive computation,
— classical causal networks,

as special cases, and more.

(a) Measurement scenarios
We begin by briefly reviewing some basic ingredients of the sheaf-theoretic formulation of
contextuality. For further details, see e.g. [6].

A (flat) measurement scenario is a pair (X, O), where:

— X is a set of measurements.
— O = {Ox}x∈X is the set of possible outcomes for each measurement.

An event has the form (x, o), where x ∈ X and o ∈ Ox. It corresponds to the measurement x being
performed, with outcome o being observed.

3Anders–Browne in fact implemented NAND, using a different version of the GHZ state. Implementing any nonlinear
Boolean function in this setting suffices to achieve universality.
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Given a set of events s, its domain is the set of measurements performed:

dom(s) := π1s = {x | ∃o. (x, o) ∈ s}.

We say that s is consistent if (x, y), (x, y′) ∈ s implies y = y′. In this case, s defines a function from the
measurements in its domain to outcomes.

A consistent set of events is a section. We define the event sheaf E over sets of measurements:
for each set U ⊆ X of measurements, E (U) is the set of sections whose domain is U; when U ⊆ V,
there is a restriction map E (V) → E (U). The functoriality of these restriction maps formalizes
the no-disturbance condition, or ‘generalized no-signalling’, at the level of deterministic models.
Generalized no-signalling of probabilistic (or possibilistic) models will then follow automatically
when we compose with the appropriate distribution monad, cf. [6].

The sheaf property of the event sheaf—that compatible families of local sections glue
together to yield unique global sections—corresponds to the fact that deterministic models are non-
contextual.4 When we pass to distributions over the event sheaf, the sheaf property no longer
holds, and this is exactly how contextuality arises. More precisely, we extend the measurement
scenario to a contextuality scenario by specifying a cover of X; a failure of the sheaf property with
respect to this cover constitutes a witness to contextuality.

Our general strategy to accommodate causality is to modify the definition of the event sheaf.
After this, we essentially follow the same script as above to give an account of contextuality in the
causal setting. A similar procedure is followed in [24,25].

(b) Causal measurement scenarios
A causal measurement scenario is a tuple M = (X, O, �), where the additional ingredient is an
enabling relation that expresses causal constraints. The intended interpretation of s � x, where s ∈
⋃

U⊆X E (U) is a consistent set of events and x ∈ X a measurement, is that it is possible to perform x
after the events in s have occurred. Note that this constraint refers to the measurement outcomes
as well as the measurements that have been performed. This allows adaptive behaviours to be
described.

Given such a causal measurement scenario M, we use it to generate a set of histories. A history
is a set of events that can happen in a causally consistent fashion. We associate each measurement
x with a unique event occurrence, so histories are required to be consistent.

To formalize this, we first define the accessibility relation � between consistent sets of events s
and measurements x: s � x if and only if x /∈ dom(s) and for some t ⊆ s, t � x. The intuition is that
x may be performed if the events in s have occurred. Now, H (M), the set of histories over M, is
defined inductively as the least family H of consistent sets of events which contains the empty set
and is closed under accessibility, meaning that if s ∈ H and s � x, then for all o ∈ Ox, s ∪ {(x, o)} ∈ H.
Note that if a measurement can be performed, then any of its outcomes may occur, forming a
valid history.

We can give a more explicit description of H (M) as a least fixed point. We define an increasing
family of sets of histories {Hk} inductively:

H0 := {∅}

and

Hk+1 := Hk ∪ {s ∪ {(x, o)} | s ∈ Hk, s � x, o ∈ Ox}.

If X is finite, then for some k we have Hk = Hk+1, and H (M) = Hk for the least such k.

4Note that if we drop no-signalling, as in the CbD approach, this no longer holds.
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(c) Strategies
We regard a causal measurement scenario as specifying a game between Experimenter and
Nature. Events (x, o) correspond to the Experimenter choosing a measurement x, and Nature
responding with outcome o. The histories correspond to the plays or runs of the game.

Given this interpretation, we consider the notion of strategy. We focus first on the player
Nature, whose strategies one may think of as hidden variables. This is in line with the usual
discussion of contextuality, where the experimenter may freely choose which measurements to
perform and such choices are beyond the scope of analysis. Later, in §8, we also consider the
parallel notion of strategy for the Experimenter, which can express adaptivity.

We define a strategy for Nature over the game M as a set of histories σ ⊆ H (M) satisfying the
following conditions:

— σ is downwards closed: if s, t ∈ H (M) and s ⊆ t ∈ σ , then s ∈ σ .
— σ is deterministic and total: if s ∈ σ and s � x, then there is a unique o ∈ Ox such that

s ∪ {(x, o)} ∈ σ .

Thus at any position s reachable under the strategy σ , the strategy determines a unique response
to any measurement that can be chosen by the Experimenter.

We note an important property of strategies.

Proposition 4.1 (Monotonicity). If s, t ∈ σ , s ⊆ t, and s � x, then

s ∪ {(x, o)} ∈ σ ⇒ t ∪ {(x, o)} ∈ σ .

Proof. Under the given assumptions, since t � x, we must have t ∪ {(x, o′)} ∈ σ for some o′ ∈ Ox.
Since s � x, we have that s ∪ {(x, o′)} is a history (i.e. in H (M)), and by down-closure, s ∪ {(x, o′)} ∈
σ . Since σ is deterministic, we must have o = o′. �

Monotonicity says that the outcomes for a measurement x under strategy σ are determined at
the minimal histories at which x can occur. This still leaves open the possibility of σ assigning
different outcomes to x relative to incomparable causal pasts.

We note another useful property, which follows immediately from totality and determinism.

Proposition 4.2 (Maximality). If σ , τ are strategies with σ ⊆ τ , then σ = τ .

(d) The presheaf of strategies
Given a causal measurement scenario M = (X, O, �) and a set of measurements U ⊆ X, we define
MU, the restriction of M to U, as the causal measurement scenario (U, {Ox}x∈U, �U), where s �U x
iff s � x and dom(s) ∪ {x} ⊆ U. Note that MX = M.

Proposition 4.3. If U ⊆ V, then H (MU) is a down-closed subset of H (MV) under set inclusion.

Given a strategy σ over MV , and U ⊆ V, we define σ |U, the restriction of σ to U, as the
intersection σ |U := σ ∩ H (MU).

Proposition 4.4. If σ is a strategy over MV and U ⊆ V, then σ |U is a strategy over MU.

Proof. The restriction σ |U inherits down-closure from σ . For the second condition, if s ∈ σ |U and
s �U x, then s ∈ σ and s �V x. So, there is a unique o ∈ Ox such that s ∪ {(x, o)} ∈ σ . But since x ∈ U,
we have s ∪ {(x, o)} ∈ H (MU), and so s ∪ {(x, o)} ∈ σ |U. �

Given a causal measurement scenario M = (X, O, �), we can now define a presheaf

Γ : P (X)op → Set,

of strategies over M. For each U ⊆ X, Γ (U) is the set of strategies for MU. Given U ⊆ V, the
restriction map Γ (U ⊆ V) : Γ (V) → Γ (U) is given by σ �→ σ |U.
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The following is immediate:

Proposition 4.5. Γ is a presheaf.

(e) Historical note
Causal measurement scenarios are a renaming and repurposing of Kahn–Plotkin information
matrices [29], which were introduced ca 1975 to represent concrete domains.5

We have changed the terminology to reflect the intuitions and applications motivating the
present paper:

Kahn–Plotkin Here
information matrix causal measurement scenario
cell measurement
value outcome
decision event
configuration history

The interpretation of causal measurement scenarios as Experimenter–Nature games, the notion
of strategy and the presheaf of strategies, are all new to the present paper.

5. Causal contextuality
Our plan now is to follow the script from Abramsky & Brandenburger [6], replacing the event
sheaf E by the presheaf of strategies Γ . Thus local sections are replaced by strategies, whose
assignments of outcomes to measurements are sensitive to the previous history of the game.

A causal contexuality scenario is a structure (M, C), where M = (X, O, �) is a causal measurement
scenario and C is a cover of X, i.e. a family C = {Ci}i∈I of subsets of measurements Ci ⊆ X satisfying
⋃

C = ⋃
i∈I Ci = X. We work with the presheaf Γ of strategies over M, as described in the previous

section.
Recall the distribution monad DR from Abramsky & Brandenburger [6], where R is a semiring.

When R is the non-negative reals, it yields the usual discrete probability distributions. We
construct the presheaf DRΓ , obtained by composing the endofunctor part of the monad with
the sheaf of strategies Γ .

An empirical model on the scenario (M, C) is a compatible family for the presheaf DRΓ

over the cover C = {Ci}i∈I. That is, it is a family {ei}i∈I, where ei ∈ DRΓ (Ci), subject to the
compatibility conditions: for all i, j ∈ I, ei|Ci∩Cj = ej|Ci∩Cj . Each distribution ei assigns probabilities
to the strategies over MCi , i.e. to those strategies over M that only perform measurements drawn
from the context Ci. As usual, the compatibility conditions require that the marginal distributions
agree. This follows the definition of empirical model in [6], replacing the event sheaf by the
presheaf of strategies.

The empirical model is causally non-contextual if this compatible family extends to a global
section of the presheaf DRΓ , i.e. if there is a distribution d ∈ DRΓ (X) such that, for all i ∈ I, d|Ci = ei.

If a causal contextuality scenario is finite, then so is the set of histories and therefore that
of strategies. The causally non-contextual models thus form a convex polytope, the convex hull
of the empirical models on (M, C) corresponding to deterministic strategies σ ∈ Γ (X). This is in
keeping with the usual setup of ‘flat’ non-locality and contextuality (i.e. without causality), where
such classical polytopes are studied. The classicality of a given model, i.e. membership in this
polytope, can be checked by linear programming; and this also suggests a generalization of the
contextual fraction [7] to the causal setting.

Similarly, causal contextuality is witnessed by violations of the linear inequalities defining the
facets of the polytope. An open question is to find a logical characterization of such inequalities
in the spirit of ‘logical Bell inequalities’ [8].

5For a historical perspective, see [30].
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6. Special cases
To check that these notions make sense, we look at two special cases: flat scenarios and GP
scenarios.

(a) Flat scenarios
A contextuality scenario from Abramsky & Brandenburger [6] is (X, O, C). We define the trivial
enabling relation where all measurements are initially enabled: ∅ � x for all x ∈ X. This yields a
causal measurement scenario (M, C), where M = (X, O, �).

For any set of measurements U ⊆ X, the histories over MU have support contained in U. Using
the monotonicity property and the fact that all measurements are enabled by ∅, any strategy σ

in Γ (U) assigns the same outcome to each measurement across all its histories. Hence, it will
correspond to a section in E (U) = ∏

x∈U Ox. In fact, these will be in bijective correspondence.
Because of this bijective correspondence between Γ and E , we see that the notions of empirical

model, global section and contextuality defined for the game-based scenario coincide with the
usual notions in this case.

As this example illustrates, the restrictions on which measurements can be performed together
are imposed by the cover, not by the causal structure.

(b) GP scenarios
In recent work, Gogioso & Pinzani [24] studied a causal refinement of the sheaf-theoretic approach
to non-locality over Bell scenarios.

A GP scenario is given by ((Ω , ≤), {Iω}ω∈Ω , {Oω}ω∈Ω ), where:

— Ω is a set of sites or agents (Alice, Bob, etc.), with a causal ordering.
— Iω is the set of inputs (or measurement settings) at ω.
— Oω is the set of outputs (or measurement outcomes) at ω.

Given such a scenario, we define a causal measurement scenario M = (X, O, �). This mirrors the
usual encoding of Bell non-locality scenarios as contextuality scenarios. First, we set:

— X := ∑
ω∈Ω

∏
ω′≤ω Iω′ = {(ω, i) | ω ∈ Ω , i ∈ {i(ω′) ∈ Iω′ }ω′≤ω};

— O(ω,i) := Oω.

Given a set of events
s = {((ω1, i1), o1), . . . , ((ωn, in), on)}

and a measurement (ω, i) ∈ X, we define s � (ω, i) if and only if the support of s has a measurement
for each site strictly preceding ω, i.e. {ω1, . . . , ωn} = {ω′ ∈ Ω | ω′ < ω}, and moreover i(v) = ij(v)
for all v ≤ ωj. The vector i thus encodes all prior choices, as Nature’s strategies are allowed to
depend on them. So, a measurement (ω, i) can only be played after a measurement from each
site in the causal past of ω has been played. Consequently, the support of any history is a set
of measurements per site for some lower subset λ ⊆ Ω . This corresponds to the usual notion of
context for Bell scenarios, refined to ensure that such contexts are ‘causally secured’.

We consider a simple example to illustrate the comparison between Γ defined over (X, O, �),
and the ‘sheaf of sections’ from Gogioso & Pinzani [24].

We take Ω to be the two-chain ω1 < ω2. This is a variation on a standard bipartite Bell–
CHSH type scenario, with Alice causally preceding Bob, and hence allowed to signal to Bob.
We take the standard Bell scenario cover, where the maximal contexts correspond to choosing
one measurement per site, and focus our analysis on the contexts below the cover.6

6The equivalence between sections of Γ and those of the presheaf from Gogioso & Pinzani [24] actually extends more
generally to all subsets of measurements, but this is sufficient to illustrate our main point.
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Now consider a strategy σ ∈ Γ (X). The non-empty histories in M which are compatible in the
standard Bell cover have the form

{(ω1, {ω1 �→ z1}), o1} or {((ω1, {ω1 �→ z1}), o1), ((ω2, {ω1 �→ z1, ω2 �→ z2}), o2)},

where zi ∈ {x, y}, oi ∈ {0, 1}, i = 1, 2. Using monotonicity, the strategy σ assigns a unique o1 for each
(ω1, z1) and a unique o2 for each (ω1, z1) and (ω2, z2). Thus σ determines a pair of functions of type

(Iω1 → Oω1 ) × (Iω1 × Iω2 → Oω2 ).

This accords with the description given in [24]; see in particular the discussion in §5. It extends to
an equivalence between Γ and the sheaf of sections of Gogioso & Pinzani [24].

Thus, if we take the standard Bell cover we obtain the same empirical models and notion of
contextuality as in [24]. In an extended version of the present paper, we show that this analysis
carries over to general GP scenarios. Hence, we recover the GP theory as a special case of our
framework.

7. The sheaf property for the strategy presheaf
The strategy presheaf Γ plays the role in our causal theory of the event sheaf E in [6]. The
sheaf property of E has some conceptual significance since it shows that for deterministic models
local consistency implies global consistency. It is only when we introduce distributions, whether
probabilistic or possibilistic, that the sheaf property fails and contextuality arises. This raises the
question of whether Γ is also a sheaf.

Let {Ui}i∈I be a family of subsets of X covering U = ⋃
i∈I Ui. Suppose we are given a compatible

family {σi}i∈I, with σi ∈ Γ (Ui) and σi|Ui∩Uj = σj|Ui∩Uj for all i, j ∈ I. The sheaf property requires that
there exists a unique strategy σ ∈ Γ (U) such that σ |Ui = σi for all i ∈ I.

From the definition of restriction, if such a gluing σ exists, it must contain the union σ ′ :=
⋃

i∈I σi. So, if this σ ′ happens to be a strategy, by maximality it must be the required unique gluing
of the family {σi}i∈I. The union of down-closed sets is down-closed. Thus σ ′ can only fail to be a
strategy if determinacy or totality fails. We show that the first of these can never arise.

Proposition 7.1. If {σi}i∈I is a compatible family for the presheaf Γ , then σ ′ := ⋃
i∈I σi is deterministic.

Proof. Suppose that s ∪ {(x, ok)} ∈ σ ′ for k = 1, 2. For some i, j ∈ I we have s ∪ {(x, o1)} ∈ σi and
s ∪ {(x, o2)} ∈ σj. This implies that dom(s) ∪ {x} ⊆ Ui ∩ Uj, and hence s ∪ {(x, o1)} ∈ σi|Ui∩Uj and s ∪
{(x, o2)} ∈ σj|Ui∩Uj . By compatibility and determinacy of σi and σj, this implies o1 = o2. �

In general, it may not be possible to complete σ ′ to a total strategy, and if such an extension
does exist, it may not be unique. We give simple examples to show how these can happen.

Example 7.2. Fix X = {x, y, z}, Ow = {0, 1} for all w ∈ {x, y, z}, and the following enabling relation:

∅ � x, ∅ � y, {(x, 0)} � z, {(y, 0)} � z.

Consider the cover consisting of U1 := {x, z} and U2 := {y, z}, and take strategies

σ1 := {∅, {(x, 0)}, {(x, 0), (z, 0)}} and σ2 := {∅, {(y, 0)}, {(y, 0), (z, 1)}}.

Note that σ1 and σ2 are compatible since they both restrict to the empty strategy over U1 ∩ U2 =
{z}, as the measurement z is not enabled. Similarly, σ1 and σ2 are both total. However, σ1 ∪ σ2 is
not total, nor can it be completed to a total strategy. Note that y is accessible from s = {(x, 0), (z, 0)}
so an extension of s must assign an outcome to y, which must be equal to zero due to downward-
closedness. Following the same reasoning for x, we are forced to include both {(x, 0), (y, 0), (z, 0)}
and {(x, 0), (y, 0), (z, 1)} in the strategy, contradicting determinism.
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Example 7.3. Fix X = {x, y, z}, Ow = {0, 1} for all w ∈ {x, y, z}, and the following enabling relation:

∅ � x, ∅ � y, {(x, 0), (y, 0)} � z.

Consider the cover consisting of U1 := {x, z} and U2 := {y, z}, and take strategies

σ1 := { ∅, {(x, 0)} } and σ2 := { ∅, {(y, 0)} } .

Note that σ1 and σ2 are compatible since they both restrict to the empty strategy over U1 ∩ U2 =
{z}, as the measurement z is not enabled. Similarly, σ1 and σ2 are both total, since z is not accessible
from any history over U1 or U2. However, σ1 ∪ σ2 is not total, since y is accessible from {(x, 0)} and
x is accessible from {(y, 0)}. There is a unique choice of outcomes that can be assigned to these
variables leading to restrictions to σ1 and σ2 as required for a gluing. Both lead to the history
{(x, 0), (y, 0)}. However, z is now accessible from this history, and there are no constraints on the
value assigned to it, so we lose uniqueness.

This example is rather pathological, as it hinges on the inaccessibility of z in the cover, leading
to the following question.

Question 7.4. Is there a notion of ‘good cover’ which implies that gluings exist and are unique?

Note added in proof. We have found a positive answer to this question. If we require that the
cover comprises sets of measurements which are causally secured in an appropriate sense, then
the sheaf property holds. This will be described in detail in a sequel to the present paper.

8. Experimenter strategies and adaptive computation
The strategies considered so far have been strategies for Nature. These prescribe a response—
an outcome—for each measurement that can be chosen by the Experimenter. Using the duality
inherent in game theory, there is also a notion of strategy for Experimenter. To formulate this, we
use the following observation.

Proposition 8.1. For a history s ∈ H (M), the following are equivalent:

(1) s is maximal in (H (M), ⊆);
(2) no measurement is accessible from s, i.e. for all x ∈ X, ¬(s � x).

We now define a strategy for Experimenter over the game M to be a set of histories τ ⊆ H (M)
satisfying the following conditions:

— τ is downwards closed: if s, t ∈ H (M) and s ⊆ t ∈ τ , then s ∈ τ .
— τ is co-total: if s ∈ τ and s is not maximal, then there is a measurement x with s � x such

that s ∪ {(x, o)} ∈ τ for some o ∈ Ox. Moreover, for all such x, s ∪ {(x, o′)} ∈ τ for all o′ ∈ Ox.

Thus at each stage, the strategy determines which measurements may be performed. Note that it
may allow more than one measurement, so some nondeterminism remains.

For each such measurement, it must then accept any possible response from Nature. The
future choices of the Experimenter can then depend on Nature’s responses, allowing for adaptive
protocols.

If we are given a strategy for Nature σ and a strategy for the Experimenter τ , we can play
them off against each other, resulting in 〈σ | τ 〉 := σ ∩ τ . This is the down-set of a set of maximal
histories. This operation can be extended to distributions on strategies, i.e. to mixed strategies, in a
bilinear fashion.7

We refer to strategies for Nature as N-strategies, and to strategies for Experimenter as
E-strategies.

7The extension to mixed strategies hinges on the fact that the distribution monad is commutative.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 F

eb
ru

ar
y 

20
24

 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A382:20230002

...............................................................

(a) Anders–Browne revisited
We now show how the Anders–Browne construction of an OR gate discussed in §3b can be
formalized using an Experimenter strategy.

First, we have the description of the standard GHZ construction. This is given by a flat
measurement scenario with X = {Ai, Bj, Ck | i, j, k ∈ {0, 1}}, and Ox = {0, 1} for all x ∈ X. The maximal
compatible sets of measurements are all sets of the form {Ai, Bj, Ck} with i, j, k ∈ {0, 1}, i.e. a choice
of one measurement per each site or agent. We regard each measurement as initially enabled.
The N-strategies for this scenario form the usual sections assigning an outcome to each choice of
measurement for each site, and the GHZ model assigns distributions on these strategies as in the
table shown in §3b.

To get the Anders–Browne construction, we consider the E-strategy which initially allows
any A or B measurement to be performed, and after a history {(Ai, o1), (Bj, o2)} chooses the C-
measurement Ci⊕j. Playing this against the GHZ model results in a strategy that computes the
OR function with probability 1.

The full power of adaptivity is required when using this as a building block to implement
a more involved logical circuit. Suppose that the output of the OR gate above is to be fed as
the first input of a second OR gate, built over a GHZ scenario with measurements labelled
{A′

i, B′
j, C′

k | i, j, k ∈ {0, 1}}. The E-strategy implements the first OR gate as above, with any B′

measurement also enabled, being a free input. After that, the A′-measurement can be determined:
after a history containing {(Ai, o1), (Bj, o2), (Ci⊕j, o3)}, the E-strategy chooses the A′-measurement
A′

o1⊕o2⊕o3
. The second OR gate is then implemented like the first. Note that the choice of A′-

measurement depends not only on previous measurement choices, but on outcomes provided by
Nature.

9. Outlook
In a forthcoming extended version of this paper, we show how a number of additional examples,
including Leggett–Garg, can be handled in our approach. We also show that our formalism
faithfully represents a number of others, including GP scenarios, adaptive MBQC and causal
networks. In forthcoming related work, we incorporate a form of memory (or look-back)
restriction in some simple scenarios whereby Nature may only remember the k most recent events,
and obtain a Vorob’ev-type theorem [19,22] in that setup.

In future work, we aim to employ our formalism to describe unconditional quantum
advantage in shallow circuits, building on [31,32]. We will also investigate other applications to
quantum advantage.

We also aim to clarify how our approach can be related to the currently very active study of
indefinite causal orders [33,34].

The game formulation opens up the possibility of tapping into the sophisticated literature in
game theory, e.g. on properties of game trees [35,36]. This is likely to offer important pointers for
further development of our framework. For example, the concepts of randomized strategies (and
the relationship between global and local randomizations) or memory properties are likely to be
fruitful. A similar source of potential inspiration is the literature on game semantics, where game
concepts are used to model a wide array of programming language features; see e.g. [37] for a
recent overview.
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