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Abstract 
Identifying large-scale atmospheric patterns that modulate extremes in local-scale 1 
variables such as precipitation has the potential to improve long-term climate 2 
projections as well as extended-range forecasting skill. This paper proposes a 3 
novel probabilistic machine learning method, RMM-VAE, based on a variational 4 
autoencoder architecture for identifying weather regimes targeted to a local-scale 5 
impact variable. The new method is compared to three existing methods in the 6 
task of identifying robust weather regimes that are predictive of precipitation over 7 
Morocco while capturing the full phase space of atmospheric dynamics over the 8 
Mediterranean. RMM-VAE performs well across these different objectives, 9 
outperforming linear methods in reconstructing the full phase space and 10 
predicting the target variable, highlighting the potential benefit of applying the 11 
method to various climate applications such as downscaling and extended-range 12 
forecasting. 13 

1 Introduction 14 

Large-scale atmospheric circulation modulates the occurrence of regional extremes such as heavy 15 
precipitation and heatwaves [1]. These extreme events cause devastating impacts to people and 16 
livelihoods across the planet as recently witnessed in the tragic flooding events in September 2023 17 
in Libya [2]. In a changing climate, preparing for these extreme events becomes even more 18 
important which requires, on the one hand, an understanding of their projected long-term changes 19 
to make well-informed and robust adaptation decisions, and on the other hand, an improvement of 20 
their near-term prediction skill to give people and other stakeholders such as governments and 21 
humanitarian organizations more time to prepare ahead of an upcoming event. 22 
 23 
To achieve this, investigating the low-frequency variability and patterns of the large-scale 24 
atmospheric flow and their link to regional extremes is important, as they can act as mediators 25 
between global patterns of change in the climate system and regional impacts. One common 26 
approach to analyzing this low-frequency variability is the identification of recurrent and persistent 27 
atmospheric states, so-called weather regimes. Typically, weather regimes are identified based on 28 
statistical dimensionality reduction and clustering techniques informed by a physical understanding 29 
of the underlying dynamics [3]. Such atmospheric circulation patterns have been used to disentangle 30 
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dynamic and thermodynamic components of climate change for extreme event attribution, to 31 
downscale or bias-adjust climate models [4]–[6], and to quantify the role of atmospheric internal 32 
variability in observed trends [7], [8]. Moreover, weather regimes have been shown to improve the 33 
usability and skill of forecasts at sub-seasonal-to-seasonal timescales [9]–[12]. 34 
 35 
To identify weather regimes, a combination of dimensionality reduction and clustering is commonly 36 
applied to gridded geopotential height or sea level pressure data of the region of interest. Following 37 
[13], principal component analysis (PCA) and k-means have established themselves as common 38 
choices for dimensionality reduction and clustering respectively, although various other linear 39 
statistical methods have been studied in the field [3]. Recent publications have also explored non-40 
linear [14] and probabilistic [15] methods for identifying weather regimes. 41 
 42 
While the relationship between weather regimes and extremes in local impact variables (e.g. extreme 43 
precipitation) is a key motivation for their investigation, there are no comprehensive methods 44 
available for identifying probabilistic weather regimes targeted to a specific impact variable, without 45 
compromising regime completeness or persistence [16]–[18]. By 'targeting' weather regimes, we 46 
mean identifying patterns in the high-dimensional space of atmospheric dynamics that are 47 
particularly predictive of the local-scale variable in question while still capturing the full dynamics 48 
of the atmospheric phase space. As this last point is particularly relevant for extending the forecast 49 
range of the impact variable through the extended range predictability of the patterns, building a 50 
purely predictive ML model of the impact variable is not useful in this context.  51 
 52 
This paper presents a novel probabilistic machine learning method for identifying weather regimes 53 
that captures the full phase space of atmospheric dynamics in a reduced space while providing 54 
enhanced predictability of a local scale impact variable. The proposed method, which we call RMM-55 
VAE (Regression Mixture Model Variational Autoencoder), integrates both targeted dimensionality 56 
reduction using a variational autoencoder (VAE), and probabilistic clustering using a mixture model 57 
(MM) into one coherent statistical model, extending previous machine learning architectures 58 
reported in [19], abbreviated R-VAE (Regression - VAE) here, that incorporate a co-variate into the 59 
dimensionality reduction step of a VAE model, without combining it with a clustering. 60 
 61 
To demonstrate the performance of the RMM-VAE method, it is compared to existing methods in 62 
the task of identifying weather regimes targeted to precipitation over Morocco, which serves as our 63 
target variable here. To evaluate the performance of RMM-VAE, we compare our method to two 64 
established approaches (PCA + k-means, and CCA + k-means), as well as the R-VAE method 65 
combined with k-means clustering (R-VAE + k-means). The performance of all methods is assessed 66 
on three possible objectives of targeted clustering: reconstruction of the input space, persistent and 67 
well-separated clusters, and predictive skill with respect to the target variable.  68 

2 Proposed RMM-VAE method 69 

Figure 1 (left side) shows a schematic of the proposed method RMM-VAE. We introduce a scalar 70 
co-variate t into the inference model, extending the architecture developed by [19] by conditioning 71 
the dimensionality reduction on a probabilistic cluster assignment [20], [21]. Using the graphical 72 
model shown in Figure 1 (right side), the joint probability distribution of the model is obtained and 73 
the loss function derived using Bayesian Variational Inference [22] (details in appendix A).  74 
 75 
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 76 
Figure 1: Left side: Schematic diagram of the RMM-VAE method which combines a regression VAE (R-VAE, 77 
based on [19]) with probabilistic clustering using mixture models (MM). Right side: RMM-VAE model written 78 
as a probabilistic graphical model in plate notation to facilitate the derivation of the loss function using 79 
Bayesian variational inference. x represents the high-dimensional input data, z the latent space with prior 𝜙! 80 
depending on the cluster assignment, as well as parameters 𝜃 depending on the cluster assignment, t the scalar 81 
target variable, with probabilistic cluster assignment c with prior 𝜋". In both panels, dashed lines indicate the 82 
inference model and solid lines the generative model. 83 

3 Experiments 84 

The performance of RMM-VAE is compared to two more established linear statistical methods, 85 
namely PCA and canonical correlation analysis (CCA), respectively combined with k-means 86 
clustering. The performance of the integrated, probabilistic clustering implemented in RMM-VAE 87 
is also compared with a version that separates targeted dimensionality reduction in an architecture 88 
based on [19] with a separate k-means clustering step (R-VAE + k-means). A description of PCA, 89 
CCA, k-means and a standard VAE architecture can be found in [23], and a derivation of the R-90 
VAE method in [19]. 91 
 92 
Table 1 provides an overview of the compared methods along with relevant hyperparameters. A 10-93 
dimensional latent space was implemented for all the methods, and cluster numbers between 4 and 94 
10 were investigated. For both VAE methods, the inclusion of a hyperparameter 𝛽 [24] which 95 
changes the weight of the reconstruction term in the loss function was investigated (v1 and v2).  96 

Table 1: Overview of the methods applied to the identification of weather regimes and associated 97 
parameter choices 98 

 99 

Abbr. Method 𝛽 Precipitation data 

PCA PCA + k-means - None 

CCA CCA + k-means - Full daily precipitation field at 0.25° 
resolution 

R-VAE v1 R-VAE + k-means 1 Spatially averaged daily precipitation 
(scalar) 

R-VAE v2 R-VAE + k-means 0.1 " - "  

RMM-VAE v1 RMM-VAE 1 " - " 

RMM-VAE v2 RMM-VAE 0.5 " - " 
 100 
To analyze weather regimes over the Mediterranean region (latitude: 25°N — 50°N; longitude: 101 
20°W — 45°E) applying these methods, geopotential height at 500hPa (z500) from ERA5 reanalysis 102 
data, 1940 — 2022 was using as input data x. The data was standardized by subtracting the daily 103 
mean and dividing by the standard deviation over the considered time period. ERA5 reanalysis data 104 
of daily total precipitation data in a region over Morocco (latitude: 30°N — 36°N; longitude: 11°W 105 
— 0°E) over the same time period were used as the target variable. Precipitation data was 106 
normalized by applying a Box-Cox transformation at each grid cell. A three-day average of daily 107 
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total precipitation around each day was taken to mirror methodologies previously applied in the 108 
study of precipitation extremes over the Mediterranean [25]. The same was applied to z500 data to 109 
match the two datasets. 110 

4 Results 111 

Analyzing the latent space of the four methods shown in Figure 2 (top row), we find that both of the 112 
targeted VAE methods, RMM-VAE and R-VAE + k-means, disentangle the dimension in the latent 113 
space associated with the target variable, which is in line with the findings presented by [19] for the 114 
R-VAE method. However, what is interesting is that the cluster assignment (Figure 2, bottom row) 115 
differs between the two methods: R-VAE + k-means, which carries out the cluster assignment in a 116 
separate step, identifies the clusters in bands along the dimension associated with the target variable. 117 
In contrast, RMM-VAE, which integrates a probabilistic cluster assignment with the targeted 118 
dimensionality reduction, shows less organization of the clusters with respect to the target variable. 119 
 120 
The performance of the dimensionality reduction component was analyzed by computing the root 121 
mean square error between the reconstructed space and the original input data. We find that both 122 
VAE methods outperform the two linear statistical methods, and that decreasing the weight of the 123 
reconstruction loss term (𝛽 < 1) in the v2 versions increases the reconstruction loss. When 124 
investigating the reconstruction of individual data points, we find that decreasing the 𝛽-parameter 125 
focuses the dimensionality reduction on the region immediately surrounding Morocco. The 126 
figures to support these results are shown in the supplementary appendix B. 127 
 128 

 129 
Figure 2: Visualization of the 10-dimensional latent space reduced to two dimensions using t-distributed 130 
stochastic nearest-neighbor embedding (t-SNE). Different values of perplexity were tested and perplexity=10 131 
was chosen as it shows representative results. Embedded data points are colored first according to the target 132 
variable, total mean precipitation (top row) with darker colors referring to stronger precipitation, and then 133 
according to the cluster they are subsequently assigned to in the corresponding clustering method (bottom 134 
row).  135 

Investigating the predictive performance of the clusters using the Ranked Probability Skill 136 
Score (supporting derivation and figures shown in supplementary appendix C), we find that 137 
both VAE methods outperform both CCA and PCA up to a cluster number of 9, which shows 138 
the potential of targeting weather regimes to a local impact variable by introducing a co-variate 139 
to a VAE architecture. While the R-VAE + k-means method outperforms RMM-VAE in terms 140 
of predictive skill, the R-VAE + k-means clusters are less persistent and separable compared 141 
to RMM-VAE, assessed using the silhouette score. In both methods, the v2 versions which 142 
deprioritize the reconstruction term in the loss function (𝛽 < 1) identify clusters with higher 143 
predictive skill but lower cluster persistence and separability, compared to the respective v1 144 
versions (𝛽 = 1). This finding highlights the trade-off between the predictive skill of weather 145 
regimes for a given target variable, which would be maximized in a purely predictive model, 146 
and identifying robust clusters, which is important for using the weather regimes for extended-147 
range prediction and for linking regional extremes to global patterns of climate change.  148 
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5 Conclusion 149 

The paper introduced a novel machine learning method, RMM-VAE, for the identification of 150 
weather regimes with respect to a scalar target variable. The novelty of this method lies in 151 
developing an architecture that combines non-linear, probabilistic, and targeted dimensionality 152 
reduction with probabilistic clustering using mixture models in a coherent Bayesian probabilistic 153 
framework. The new method performs well across all the different objectives analyzed, 154 
outperforming the linear methods in reconstructing the full phase space and in predicting the target 155 
variable. Compared to the other machine learning method, R-VAE + k-means, the proposed RMM-156 
VAE method loses in predictive skill but identifies more persistent and separable clusters, which is 157 
relevant for various climate applications such as extended-range forecasting or the downscaling of 158 
climate models, highlighting the potential benefit of applying the RMM-VAE method to these use-159 
cases. In future work, we are planning to analyze the dynamical processes captured by the targeted 160 
clusters and extend the architecture to identify joint clusters between two high-dimensional spaces.  161 
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Supplementary Appendices 244 

A - RMM-VAE method: loss function 245 
The assumptions of the model can be expressed in a probabilistic graphical model and the joint 246 
probability distributions of the model can then be written as:  247 
𝑝!(𝑥, 𝑧, 𝑡, 𝑐") = 𝑝!(𝑥|𝑧)𝑝(𝑧|𝑡)𝑝(𝑡)	𝑝(𝑧|𝑐")𝑝(𝑐") 248 
𝑞#(𝑧, 𝑡, 𝑐"|𝑥) 	= 	𝑞$(𝑧|𝑥)𝑞$(𝑡|𝑥)	𝑞$(𝑐"|𝑥) 249 
 250 
The loss function can then be derived as: 251 
ℒ(𝑥) = −𝐷%&3𝑞$(𝑧, 𝑐, 𝑡|𝑥)4	𝑝!(𝑥, 	𝑧, 	𝑡, 	𝑐)) 252 

=	5𝑞$(𝑐"|𝑥)	
"

6𝐸'!()|+)8log3𝑝!(𝑥|𝑧)<= − 		𝐸'!(.|+)	8𝐷%&3𝑞#(𝑧|𝑥)4𝑝(𝑧|𝑡))=	253 

−	𝐷%&3𝑞#(𝑡|𝑥)4𝑝(𝑡)) 	−	𝐷%&3𝑞#(𝑧|𝑥)4𝑝(𝑧|𝑐"))	> −	𝐷%&	3𝑞#(𝑐"|𝑥)4𝑝(𝑐")). 254 

B - Additional figures - reconstruction loss 255 

 256 
Figure 3: Distribution of root mean squared error (RMSE) between original input data and data reconstructed 257 
from dimensionality-reduced space over all data points, for the different methods. 258 

 259 
Figure 4: Gridded and normalized z500 anomalies, as detailed in section 2, on an example day 1940-01-04, 260 
showing the original data on the left and the reconstructions using different methods on the right. 261 

C - Assessment of predictive skill 262 
To evaluate the informativeness of the weather regimes with respect to the target variable, and in 263 
particular their utility for extended-range forecasting, we analyze the Ranked Probability Skill Score 264 
(RPSS) which is widely used in forecast evaluation. The RPS is defined as 𝑅𝑃𝑆 =265 
/
0
	 ∑ ∑ 3	𝛿1"2 − 𝑝2<

3 = − /
0
	 ∑ (1 − 2𝑝1" +∑ 𝑝23	)	4

25/
0
65/

4
25/

0
65/ , and the score (RPSS) calculated 266 

with respect to a reference forecast, chosen here to be the climatology over the entire period: 267 
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𝑅𝑃𝑆𝑆 = 1	 − 	 789#$%&'()*
789'+,-(*$+$./

 , with m forecast categories and N timesteps. 𝛿1"2 is the Kronecker delta 268 

and equals 1 if the observation i at timestep n corresponds to category j, and 0 otherwise. The RPSS 269 
is a strictly proper scoring rule to measure the accuracy of a probabilistic prediction of mutually 270 
exclusive discrete outcomes [26]. A RPSS of 1 indicates a perfect forecast while low values indicate 271 
little, or no skill compared to the reference forecast. Here, we construct a forecast of the target 272 
variable given the occurrence of a weather regime and the conditional probability of the target 273 
variable given that weather regime: each discrete target is forecast with a probability corresponding 274 
to the probability of the weather regime at this given day, multiplied by the climatological 275 
conditional probability of the target given the weather regime. 276 
 277 

 278 
Figure 5: Ranked Probability Skill Score for forecast of mean precipitation over Morocco given weather 279 
regimes at zero lead time for different numbers of weather regimes. a) Skill score for binary forecast above or 280 
below 95th percentile and c) Skill score for forecast of the tercile of the precipitation distribution. For 281 
probabilistic clustering, this skill score is computed using the most likely cluster at the given data point. 282 

 283 


