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A B S T R A C T

A survey of the huge number of measured rovibrational transitions of the 14N 16
2 O isotopologue of nitrous oxide

is performed which either confirms the positions, the assignments, and the uncertainties of the measurements
or refutes at least one of them. Data from 95 literature sources are analyzed and their assignments adjusted to
a uniform set of polyads and associated counting numbers. This is an important result of the present study and
this canonical set of vibrational state assignments is recommended for future studies. The adjusted list of 67 930
transitions (43 246 unique ones) then underwent a thorough Marvel (Measured Active Rotational–Vibrational
Energy Levels) analysis, yielding 17 561 empirical rovibrational energy levels. Uncertainties for these levels
are determined using a newly implemented bootstrap approach. The bootstrap uncertainties indicate that the
uncertainties for about 1.5% of the energy levels had to be increased significantly, often by more than 10 times
compared to previous level uncertainty estimates. This study yields empirical values for 78 band origins of
14N 16

2 O for states with 𝓁 = 0, where 𝓁 is the vibrational angular momentum quantum number. The measured
transitions and the empirical energy levels are compared to the SISAM and the recent NOSL-296 line lists with
the result that while the overall agreement is good, there are still a number of issues requiring further careful
experimental and modeling studies.
1. Introduction

Nitrous oxide, commonly known as laughing gas due to its medical
applications in surgery and dentistry, is a linear asymmetric triatomic
molecule with the formula N2O. N2O is a trace atmospheric species
on Earth, whose atmospheric concentration has been slowly growing
in recent decades and it is thought to be a current major remaining
destroyer of stratospheric ozone [1]. N2O has been proposed as an ob-
servable species in Earth-like exoplanets [2] and its spectrum has been
considered as a possible bio-signature [3]. Therefore, N2O is included
in the list of target species in exoplanet characterization missions [4,5].

The rotation–vibration spectrum of the linear N2O molecule has
been thoroughly investigated [6–180]. These studies often addressed
issues related to the atmospheric presence of N2O and also involved
fundamental questions related to the dynamics and spectroscopy of the
molecule itself. High-accuracy studies of the spectra of N2O have also
played an important role in providing infrared frequency calibration
standards [20,62,66,68–70,84,108].

This work concentrates on the main isotopologue of nitrous oxide,
14N2

16O. There have been many experimental studies of the spectrum
of 14N 16

2 O yielding high-resolution (rotationally-resolved) data that

∗ Corresponding author at: Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
E-mail address: j.tennyson@ucl.ac.uk (J. Tennyson).

could be used during the present study. There are a similarly large
number of papers [8,11,13–16,19,21,25,26,29,34–37,39–42,45,47,
48,50,52,53,61,62,65,75,76,78,79,83,84,86–92,94–96,98,103,104,106,
109,112,115,117,121–123,126,130,131,135,138,139,143,144,147,149,
151,152,154,160–163,165–167,171,172,177] which do not provide
transition data on N2O of direct use for the present study. Impor-
tantly, some of these papers provide line list compilations, both
(semi-)empirical ones [125,151,179,181,182] and those based on the
use of variational nuclear-motion calculations [177]. The most recent
line list relevant for the present study is NOSL-296 [179], which was
published while this work was nearing completion.

There are a number of theoretical studies, performed at various
levels of sophistication, related to the representation of the potential en-
ergy surface [183–189] and the (ro)vibrational spectra [177,188,190–
192] of nitrous oxide. These studies, the best of which yield a very large
set of rovibrational energies, though with relatively large discrepancies
with respect to the experimental information, and enormous line lists,
are important to understand the rotational–vibrational spectroscopy of
N2O and, in particular, the ordering of its vibrational states.
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At the beginning of the project described here, we collected all the
experimental rovibrational transitions data available for 14N 16

2 O, with
the available assignments and uncertainties, and placed them into a
database. This initial phase identified issues with bands given different
vibrational assignments in different papers. It was therefore necessary
to develop a unique set of vibrational labels to allow the data to be
processed. Following this relabeling, a spectroscopic network [193–
195] was formed from the lines observed. This allowed the validation
of the vast majority of the measured transitions. Occasionally, the
same procedure allowed the identification of conflicting or incorrect
measurements. After the survey of the measured transitions and the
cleansing of the database, we calculated empirical rovibrational ener-
gies for the states involved in the measured transitions with the help of
the latest version of the Measured Active Rotational–Vibrational Energy
Levels (Marvel) algorithm and code [193,195–197]. The set of mea-
sured transitions and the empirical rovibrational energy levels obtained
are made available in the Supplementary Information accompanying
this paper. The empirical rovibrational energy levels deduced at the
end of this study are compared to previous literature results [125,179],
revealing several issues.

2. Theoretical details

2.1. Marvel

The Marvel algorithm, used extensively during this study, is based
on the theory of spectroscopic networks (SN) [193–195]. The SN of
a molecule is a graph 𝐺(𝑉 ,𝐸), in which the vertex set 𝑉 represents
the discrete quantum states of the molecule, and the edge set 𝐸 cor-
responds to (allowed) transitions between the quantum states. When
a large number of accurately measured and assigned, interconnected
transitions are available for a given isotopologue of a molecule, Marvel
ields empirical rovibrational energies for the 𝑉 set.

The latest version of the Marvel code, based on the Marvel
lgorithm, is used to obtain empirical rotational–vibrational energy
evels of 14N 16

2 O, all characterized with well-defined uncertainties.
he energies and the uncertainties of the 𝑉 set are derived from a
ollection of previously measured [6,7,9,10,12,17,18,22–24,27,28,30–
3,38,43,44,46,49,51,54–60,63,64,66–74,77,80–82,85,93,97,99–102,105,107
08,110,111,113,114,116,118–120,124,125,127–129,132–134,136,137,140–
42,145,146,148,150,153,155–159,164,168–170,173–176,178] rotational-
ibrational transitions with appropriate labels and uncertainties.
ote that the uncertainties of the empirical energies reflect not only

he accuracy of the individual measurements but also the topology
f the SN; for example, how the most accurately determined
ransitions are connected.

.2. Labeling

Low-lying vibrational states of semirigid molecules can be charac-
erized using the standard harmonic oscillator (HO) notation [198]. In
he case of the N2O molecule, the standard way to denote the funda-
entals is as follows: 𝜈1 (NO stretch), with a harmonic/anharmonic
avenumber of 1298/1285 cm−1, 𝜈2 (degenerate bend), with wavenum-
ers close to 596/590 cm−1, and 𝜈3 (NN stretch), at 2282/2224 cm−1

83,190]. Upon excitation of the 𝜈2 mode, the bendings in the two, or-
hogonal planes can have different phases. Thus, an angular momentum
rises as if the bent molecule rotated about the molecular axis. This
o-called vibrational angular momentum quantum number, 𝓁, takes
ositive values with 𝓁 = 𝑣2, 𝑣2 − 2, 𝑣2 − 4,… . Therefore, the vibrational

states could be labeled as (𝑣1𝑣𝓁2 𝑣3); thus, the label for the vibrational
ground state is (𝑣1𝑣𝓁2𝑣3) = (0000).

The (harmonic and anharmonic) vibrational fundamentals obey the
approximate relationship 𝜈3 ≈ 2𝜈1 ≈ 4𝜈2. These relationships lead

14 16
2

to many resonances among the excited vibrational states of N2 O,
meaning that they are best represented using a polyad notation (𝑃 𝓁𝑁)
[199,200], whereby the polyad number 𝑃 is given by

𝑃 = 2𝑣1 + 𝑣2 + 4𝑣3 (1)

and 𝑁 is the polyad counting number (the best way of defining 𝑁 is
iscussed below). In addition, states with 𝓁 > 0 can occur with both ‘e’

and ‘f’ rotationless parity, while those with 𝓁 = 0 only correspond to ‘e’
states. Finally, all states are characterized by a total angular momentum
quantum number, 𝐽 , which has to satisfy 𝐽 ≥ 𝓁 for a given vibrational
state. A surprising number of sources contained lines assigned to states
with 𝐽 < 𝓁. These lines were all removed from further analysis during
the initial phase of our study.

Note that from this set of labels the only rigorous quantum numbers
are 𝐽 and the rotationless parity 𝑝; these also give the total parity as
(−1)𝐽+𝑝, where 𝑝 = 0 for ‘e’ states and 1 for ‘f’ states. In what follows,
rovibrational states are labeled with the quintuplet (𝑃 𝓁𝑁 𝑝𝐽 ), with 𝑝 =
e/f.

While in principle it is straightforward to assign vibrational states to
a given polyad, from about 𝑃 > 10 the number of cases with significant
nterpolyad interactions [175,178] increases, which leads to resonances
etween states with different polyad numbers. Allocation of counting
umbers 𝑁 to vibrational states is also complicated. For states with 𝓁 =
there is reasonable agreement in the literature about the appropriate

ounting numbers for particular vibrational bands. However, this is
ot true for states with 𝓁 > 0, which show significant variation on
he choice of 𝑁 for the same state between different sources; these
ariations are particularly marked for states with 𝓁 = 2.

In order to achieve a unique set of quantum numbers, required for
he derivation of empirical energies via a Marvel analysis, we adopted a
wo-step procedure. In order to be able to process the data successfully
e grouped bands according to the stated band origins, adopting the
alue of 𝑁 most commonly used in the literature. Once the complete
ransition set had been assembled and validated, we then renumbered
ll the polyads assuming that the lowest vibrational state for each (𝑃 ,𝓁)
ombination was labeled 𝑁 = 1, that states with 𝓁 ≥ 1 had a single
and origin for the (quasi)-degenerate ‘e/f’ pair, and allowance was
ade for so-far unobserved vibrational levels. To get a master set we
sed the recent ‘Ames’ variational nuclear motion calculations of Huang
t al. [177]. For this purpose we simply used the computed energy
evels to give the lowest energy level for each vibrational band and
hen determined counting numbers from this list. The polyad number

for a given vibrational band, for which there were no disagreements
etween different experimental papers, were retained. This method
voided relying on quantum number assignments from either of the
wo variational nuclear motion calculations [177,201] we considered
uring this project; such assignments are also known to have difficulties
or higher vibrational states and, indeed, the two studies do not always
gree.

We note that these variational calculations do not actually give
ibrational band origins for states with 𝓁 ≥ 1 as the 𝐽 = 0 state is
nphysical for these vibrational states; in this case we used the lowest

e’ level with 𝐽 = 𝓁 for a given vibrational band. In practice, we found
hat the above procedure gave a canonical numbering scheme, which
e provide below, without any significant problems or ambiguities. The

ull set of vibrational state labels with vibrational band origins and/or
owest state energies plus associated polyad and counting numbers are
iven in the Supplementary Material. We suggest that this numbering
cheme should be adopted for future studies of the spectroscopy of N2O.

.3. Uncertainty quantification of energy levels: a bootstrap approach

It is important to transfer the (supposedly high) accuracy of high-
esolution spectroscopic line-center measurement results to the em-
irical energy values derived through Marvel. Due to issues one can
egitimately raise with respect to the accuracy of many of the line
ncertainties reported in experimental high-resolution spectroscopic
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Table 1
Two examples illustrating how the bootstrap method applied works in determining uncertainties, with 95% confidence intervals, of empirical energy levels.

Energy level
(𝑃 𝓁𝑁 e/f 𝐽 )

MARVEL energy
/cm−1

Original unc.
/cm−1

Bootstrap unc.
/cm−1

Tag of line Initial unc.
/cm−1

Predicted energy
/cm−1

(17 1 14 e 36) 10 425.772 0.001 0.028 16KaCaKaPe.1421 0.001 10 425.772
04BeCaPeTa.409 0.005 10 425.814

(16 2 10 e 25) 9374.588 0.001 0.022 22KaTaKaCab.2193 0.001 9374.588
04BeCaPeTa.84 0.005 9374.635
04BeCaPeTa.85 0.005 9374.634
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investigations, the uncertainty associated with the empirical rovibra-
tional energy levels must be determined with special care. There are
cases where one can even question the true meaning of the uncertainty
of an empirical energy level. In this study, we utilize a bootstrap
method [202,203] to derive the final uncertainties of the empirical
energy levels. In what follows we briefly explain why we switched from
our previous best practice [204] to the bootstrap technique.

We have been testing various methods of generating uncertainties
using the Marvel procedure, including a robust method advocated by

atson [205], and the processing of transitions in segments, based
n their claimed uncertainty [204] (this type of uncertainty is called
ere and later the original uncertainty). To obtain a self-consistent

spectroscopic database, in all previous Marvel-based studies it has
proved necessary to manually increase the uncertainties of some of the
measured transitions. Nevertheless, choosing the transitions for which
the stated uncertainty needs to be increased is far from being straight-
forward. The principal reason for this is that the precision with which
initial uncertainties are given by experimental spectroscopists can often
be questioned. For example, it is easy to imagine cases where Marvel
eaves unchanged a relatively inaccurate measurement result because
n overly-optimistic initial uncertainty was assigned to it and increases
he uncertainty of a more accurate transition whose uncertainty was
stimated pessimistically. As a result, even if several measurements are
vailable the quantum state may become characterized by an incor-
ect energy value and an incorrect uncertainty. Unfortunately, without
etailed knowledge of the measured spectra (actual spectra are very
arely published as supplementary material to spectroscopic papers), it
s almost impossible to determine whether the initial uncertainties are
ptimistic or perhaps pessimistic; thus, this source of error is almost
lways present during a Marvel-type joint analysis of the complete set
f measured transitions. The only thing one can do is to increase the
ncertainty of the energy levels where Marvel has the chance, or even

a tendency, to make an incorrect choice.
‘‘Bootstrap’’ approaches [202,203] are suitable to obtain reasonable

uncertainties in the case of conflicting measurements, where with-
out this approach too small uncertainties would be given for energy
levels if some of the measurement results were rejected. The variant
of the bootstrap procedure we use is as follows: bootstrap samples
are generated by multiplying the uncertainty of each transition by a
random number between 1 and 10, and then we rerun Marvel for
each sample. After a hundred or more such runs, we check whether
the average of the bootstrapped energies is different from the original
Marvel energy. If the energies calculated by the two methods differ by
a prescribed amount, the uncertainty of the Marvel energy is increased.
If the energies calculated by the two methods are close but the standard
deviation of the bootstrap energies is larger than the uncertainty of the
original Marvel energy, the uncertainty of the Marvel energy will also
be increased.

To illustrate how our version of the bootstrap method works, we
present in Table 1 results for the two quantum states for which the
ratio of the bootstrap uncertainty to the original uncertainty is the
largest. The first quantum state, (𝑃 𝓁𝑁 e/f 𝐽 ) = (17 1 14 𝑒 36),
s determined by two measured transitions, 16KaCaKaPe.1421 [150]
nd 04BeCaPeTa.409 [123]. The difference between the two predicted
nergy values is as large as 0.042 cm−1, significantly larger than the
3

eported experimental uncertainty of either line. Since the original
ncertainty of the supposedly more accurately measured transition is
ive times smaller than that of the other one, Marvel increased the
ncertainty of the second transition. However, without actually seeing
he original spectra, it is impossible to decide whether the initial
ncertainty of 16KaCaKaPe.1421 [150] is too optimistic or not. This
ine can be very weak, or saturated, or may also be subject to other
easurement issues; therefore, based on the available experimental

esults the 0.001 cm−1 measurement uncertainty is too small. The boot-
trap method detects the inconsistency between the predicted energy
alues and significantly increases the original uncertainty determined
y Marvel, reflecting better the present situation. In the second case,
he energy of the (16 2 10 e 25) state is determined by three measured
ransitions coming from two sources [123,175]. Two of the transitions,
oming from the same but older source, 04BeCaPeTa [123], predict
he same empirical energy, but the third transition, with the smallest
nitial uncertainty from a very recent source, 22KaTaKaCab [175],
redicts an energy value different by as much as 0.04 cm−1. Thus,

we are faced with the ‘philosophical’ question which measurements
and which sources are more reliable. Unfortunately, without seeing the
measured but unpublished spectra it is impossible to decide whether
the stand-alone recent measurement, with lower uncertainty, or the
transitions which are perceived to be less accurate but confirm each
other are more accurate. If one were to accept the literature results,
the lower-uncertainty choice would determine the energy value of the
quantum state; therefore, Marvel increased the uncertainties of the two
other transitions. However, if the transition assumed to be the best is
not as good as claimed by its ‘original’ uncertainty, we end up with
an energy value with a much too small associated uncertainty. The
bootstrap approach solves the dilemma by providing a significantly
increased uncertainty for the energy level. Given the data available,
this appears to be the better choice and the uncertainties reported in the
Supplementary Material for the empirical energy levels were obtained
with our version of the bootstrap technique.

3. Results and discussion

3.1. Data sources

During this study, a concerted effort was made to collate all mea-
sured and assigned rovibrational transitions of the 14N 16

2 O molecule
available in the literature. The number of rovibrational transitions
collected from the literature, based on 91 sources [6,7,9,10,12,17,22,
27,30–33,38,43,44,46,49,51,54–60,63,64,66–74,77,80–82,85,93,97,99–102,
105,107,108,110,111,113,114,116,118–120,123–125,127–129,132–134,136
140–142,145,146,148,150,153,155–159,164,168–170,173–176,178,180], is
7 930. We were able to validate 66 707 of these transitions via

detailed Marvel-based analysis and a systematic check against
he very recent variational nuclear motion calculations of Zobov
t al. [201]. This check led to the removal of a small number
f transitions which were inconsistent with these calculations. It is
mportant to note that if a transition is not part of the principal
omponent of the spectroscopic network of 14N 16

2 O, we are not able
o validate it. It is impressive that these experimental studies involved
ltogether 174 vibrational bands.

Some older sources, including 61RaWiRaEa [18], 64PlTiMa [24],
4Pliva [23], and 68Plivaa [28], were considered insufficiently accu-
ate to be included in the compilation of transitions data used during
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Fig. 1. Overview of the energy levels determined in this work designated by the 𝓁 and 𝐽 quantum numbers.
the Marvel analysis. We were unable to obtain a copy of the source
09SuDiZo [137].

Some of the older sources either explicitly mention that calibration
is an issue, e.g., 50HeHe [7], or subsequent studies have identified
the need for recalibration, e.g., for 82Guelachv [63]. Therefore, we
tested a number of sources against the other available data to see
which required recalibration. In the end, we recalibrated three data
sets: the wavenumbers due to 50HeHe [7], 82Guelachv [63], and
95CaPeBaTe [93] were scaled by calibration factors of 0.999 998 11,
0.999 999 890, and of 1.000 003 08, respectively. Somewhat detailed
notes on various sources are given in Appendix A to this paper.

The experimental sources used to construct the 14N 16
2 O spectro-

scopic network of this study are listed in Table 2. Table 2 also con-
tains the information how many transitions have been validated and
how many transitions we had to delete from each source (see the
available(𝐴) / validated(𝑉 ) / deleted(𝐷) column). The AOU (average
original uncertainty) column shows the average of the measurement
uncertainty of the given source and the values of AMR (average Marvel
reproduction) shows how well, in an average sense, the empirical (Mar-
vel) energy levels are able to reproduce the experimentally measured
lines of the given source. The last column of Table 2, MR, shows the
maximum reproduction of the given source, i.e., the largest difference
between the experimentally measured wavenumber and the transition
predicted by Marvel. For most sources all measured transitions have
been validated. Nevertheless, we did identify a number of incompat-
ibilities in between some of the sources, which led us to delete a
number of lines. The largest number of deleted transitions, 121, 112,
and 88 concern the sources 60TiPlBe [17], 06HePiGuSo [128], and
50HeHe [7], respectively. It is noteworthy that for 60TiPlBe [17] this
means that almost one fourth of the measured lines in the infrared
region had to be deleted.

The SN of 14N 16
2 O has a single principal component. This is due to

the rigidity of the NN unit. Altogether, out of the 67 930 transitions
considered, we could validate 66 707, all belonging to the principal
component. 635 transitions, which should belong to the principal com-
ponent, were removed during our Marvel analysis. While some of these
transitions have been misassignments (or have 𝐽 < 𝓁), most were
removed on the ground of accuracy. The remaining 616 transitions
belong to 167 floating components; we did not make an attempt to
attach these to the principal component of the SN of 14N 16

2 O. It is also
worth emphasizing that among the 67 930 transitions considered there
are only 43 246 unique ones. This means that a significant number of
transitions have been measured more than once; in fact, the number
4

of transitions measured just one time is 27 444, while there are 4 and
142 transitions which were measured 7 and 6 times, respectively (the
number of empirical rovibrational energy levels determined, 17 561, is
significantly closer to 43 000 than to 68 000).

Note also that in SNs the degrees of the energy levels display an
inverse-power-law-like distribution [194,195], implying the presence
of a small number of high-degree quantum states, called hubs, in
the SN. The highest-degree hubs of 14N 16

2 O have the general label
(0 0 1 e 𝐽 ) with 𝐽 = 11, 12, 13, 15, 16, 17, and 18, and these vertices
have as many as 500 connecting edges each. This means that if hubs
are defined as the top 1% of the vertices with the highest degrees
(this translates to 174 hubs for the present dataset), than slightly more
than 60% of the transitions are connected to less than 1% of the
vertices (apart from a diminishing number of exceptions, hubs are the
lower states of the measured transitions). These observations are of
interest especially for future high-resolution and precision-spectroscopy
experiments, including those aiming at the presently readily available
accuracy of a few kHz [206–208] rather than several MHz.

Fig. 1 shows the distribution of the 17 561 empirical energy levels
determined as a function of the 𝐽 rotational quantum number. To
provide additional information, the states with different 𝓁 values are
indicated with different colors. As seen in Fig. 1, our network includes
levels with 𝓁 ≤ 3. In practice, 01BaVe [113] and 22KaTaKaCaa [174]
contain a combined total of 223 transitions to states with 𝓁 = 4 and
01BaVe [113] gives 224 transitions to states with 𝓁 = 5, meaning that
all but two of the transitions not attached to the principal component
are associated with states with 𝓁 > 3.

3.2. Level uncertainties

As mentioned in Section 2.3, in this study we employed a method
new to MARVEL, called bootstrap, which does not alter the uncertain-
ties of the measured transitions but improves the uncertainties of the
empirical (Marvel) energy levels. The bootstrap approach applied can
only increase the uncertainties.

Fig. 2 shows the ratio of the ‘bootstrap’ and the ‘original’ uncer-
tainties of the empirical rovibrational energy levels. In most cases, the
bootstrap algorithm barely raises the original Marvel uncertainties. In
92% of cases the ratio is less than 5 and in only 1.5% of cases the ratio
is larger than 10. These numbers suggest that the ‘original’ uncertainty
estimation employed within Marvel is a good approximation in most
cases, but in about 1-2% of the cases it is necessary to increase the
uncertainty of the empirical energy levels significantly. The ratio above
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Table 2
Experimental sources used to construct the 14N 16

2 O rovibrational spectroscopic network of this study. The data given include, for each source, the wavenumber ranges of the
alidated transitions (in cm−1), the number of actual (𝐴), validated (𝑉 ), and deleted (𝐷) transitions, and selected uncertainty statistics (in cm−1), where AOU = average original
ncertainty, AMR = average MARVEL reproduction of the source’s lines, and MR = maximum reproduction in the source. RC (in the tag) = recalibrated source (see text).
Segment tag Range 𝐴∕𝑉 ∕𝐷 AIU AMR MR

78ReMeDy [58] 0.002–0.009 3/3/0 5.00×10−9 1.10×10−12 5.00×10−9
64LaLi [22] 0.835–2.521 4/4/0 2.67×10−6 3.60×10−7 3.34×10−6
47CoElGo [6] 0.838–0.838 1/1/0 3.34×10−6 1.34×10−7 3.34×10−6
75CaKu [51] 0.838–0.838 1/1/0 2.07×10−8 2.40×10−11 2.07×10−8
75Bogey [49] 1.662–4.156 4/4/0 4.59×10−6 2.84×10−6 8.34×10−6
52Tetenbau [10] 1.676–1.676 1/1/0 3.34×10−6 1.20×10−5 1.20×10−5
70ScMuLa [32] 1.676–2.514 2/2/0 3.50×10−7 7.34×10−9 4.34×10−7
71LeHoThMa [33] 2.504–2.519 5/4/1 3.34×10−6 3.87×10−7 3.34×10−6
51JoTrGo [9] 3.352–4.190 2/2/0 9.17×10−6 1.07×10−6 1.00×10−5
56BuGo [12] 3.352–10.055 9/9/0 1.33×10−5 5.45×10−6 2.00×10−5
70PeSuFr [30] 4.172–10.082 35/34/1 2.64×10−6 1.50×10−6 1.60×10−5
18LaScAgMe [157] 5.028–5.866 2/2/0 4.00×10−6 2.60×10−6 4.36×10−6
68FrAr [27] 5.028–5.028 1/1/0 6.67×10−6 1.83×10−6 6.67×10−6
14TiChChCh [146] 6.676–2272.183 219/212/0 1.17×10−6 2.03×10−7 1.01×10−5
74BuVaGeKa [43] 10.055–15.918 6/6/0 1.67×10−6 3.62×10−7 1.67×10−6
76AnBuKaKr [56] 12.568–18.518 97/97/0 7.50×10−7 8.04×10−8 3.04×10−6
06DrMa [127] 20.103–55.230 72/71/0 2.50×10−6 6.81×10−7 7.58×10−6
90Yamada [82] 20.103–47.637 32/32/0 1.00×10−4 7.18×10−5 1.64×10−4
03MoYa [120] 20.940–21.776 2/2/0 5.00×10−8 2.05×10−9 5.34×10−8
97MoFaTaYa [102] 20.940–24.285 5/5/0 6.67×10−7 1.40×10−6 1.78×10−6
99MoYaMa [108] 20.862–26.081 60/60/0 6.87×10−7 2.41×10−7 5.80×10−6
89VaJeWeMa [80] 50.129–50.241 3/3/0 6.67×10−6 7.52×10−7 6.67×10−6
83JoKaHo [64] 542.456–645.418 355/355/0 4.00×10−5 1.28×10−4 6.79×10−4
07Horneman [132] 542.920–635.235 533/509/24 1.74×10−5 2.26×10−5 2.26×10−3
92TaLoLu [85] 554.029–619.385 241/241/0 5.00×10−5 1.01×10−4 1.20×10−3
96WeSiRe [101] 557.231–615.994 96/96/0 6.00×10−4 1.27×10−4 6.00×10−4
04Toth [125] 577.760–7232.274 1121/1121/0 5.00×10−4 1.25×10−4 3.33×10−3
89MaWeVa [77] 896.945–989.668 18/18/0 1.74×10−4 6.89×10−5 3.34×10−4
96TaEvZiMa [100] 897.010–1074.417 129/129/0 1.67×10−7 9.99×10−8 2.22×10−6
87Toth [73] 900.926–2392.452 1207/1196/0 6.00×10−5 3.27×10−5 9.44×10−4
72SoJa [38] 922.423–956.347 27/27/0 1.95×10−4 9.13×10−4 1.12×10−3
75WhSuRiHa [54] 925.982–970.092 33/33/0 8.34×10−7 1.45×10−6 3.80×10−6
87ZiWeMa [74] 1037.189–1084.591 9/9/0 1.59×10−4 4.86×10−5 2.67×10−4
85WeJeHiMu [70] 1104.849–1914.718 32/31/0 2.81×10−4 1.63×10−4 7.98×10−4
86Toth [71] 1104.791–1348.351 1061/1047/0 6.00×10−5 4.40×10−5 6.46×10−4
82Guelachv_RC [63] 1118.129–1342.938 649/649/0 5.00×10−5 1.10×10−4 9.99×10−4
84Toth [67] 1133.468–1236.586 54/54/0 2.00×10−4 2.80×10−4 7.83×10−4
85BrTo [68] 1132.024–4749.125 240/240/0 6.00×10−5 5.93×10−5 2.58×10−4
15GaCaCoFa [148] 1161.479–1161.479 1/1/0 3.00×10−7 1.49×10−7 3.00×10−7
18AlLaGaLa [156] 1245.765–1309.847 73/73/0 2.69×10−5 8.41×10−6 1.36×10−4
21HjGeKrHu [168] 1251.600–1318.138 179/179/0 8.07×10−6 5.67×10−6 2.39×10−4
85WeHiMa [69] 1257.316–1339.843 14/14/0 1.57×10−4 1.24×10−4 4.65×10−4
87HiWeMa [72] 1257.509–1335.006 28/24/4 1.69×10−4 1.97×10−4 1.97×10−3
80NaKaYaHa [60] 1295.476–1311.284 4/4/0 5.25×10−4 4.77×10−4 9.13×10−4
89VaScWeMa [81] 1591.326–1672.707 8/8/0 2.59×10−4 1.21×10−4 3.34×10−4
76AmGu [55] 1831.706–3191.180 3944/3861/77 2.00×10−4 3.81×10−4 5.59×10−3
01BaVe [113] 2044.525–2266.349 3242/3071/7 8.00×10−3 7.27×10−4 6.75×10−2
03BaPiVe [118] 2072.675–2200.925 753/444/1 4.00×10−4 2.46×10−4 3.09×10−3
74FaDu [44] 2098.489–2230.678 997/994/3 3.00×10−3 3.97×10−3 4.07×10−2
76VaLeCaBo [57] 2135.289–2268.099 201/134/67 5.00×10−4 8.89×10−4 8.10×10−3
13KnWiGiRa [145] 2189.273–2213.246 24/24/0 2.67×10−5 1.47×10−5 4.02×10−5
21JiMc [169] 2206.659–2208.093 3/3/0 2.00×10−4 1.39×10−5 2.00×10−4
04NeSuVa [124] 2224.588–2251.574 38/38/0 5.00×10−4 6.92×10−5 5.00×10−4
74KrSa [46] 2267.096–2618.035 1838/1825/13 2.00×10−2 3.22×10−3 5.00×10−2
60TiPlBe [17] 2438.220–3502.620 884/763/121 5.10×10−2 3.03×10−2 1.64×10−1
99Toth [110] 3676.940–7795.203 1328/1328/0 2.78×10−4 5.43×10−5 4.49×10−3
06HePiGuSo [128] 3900.809–4041.312 1011/893/112 1.00×10−3 6.19×10−4 1.50×10−2
84PoPeJeWe [66] 4341.141–4753.311 39/39/0 1.97×10−4 5.79×10−5 4.00×10−4
16WeBrSeWe [153] 4418.202–4439.792 41/41/0 4.66×10−5 3.55×10−4 4.29×10−4
20ZhBaFlHo [164] 4415.014–4415.014 1/1/0 2.00×10−5 4.83×10−6 2.00×10−5
80BrCoCuHo [59] 4607.694–4657.886 64/64/0 1.00×10−3 8.71×10−4 1.48×10−3
06WaPeTaGa [129] 5313.693–8987.678 2356/2356/0 5.96×10−3 3.76×10−3 3.13×10−2
19BeMoKaKa [158] 5696.223–5908.020 2166/2166/0 1.11×10−3 5.65×10−4 3.24×10−2
07LiKaPeTa [134] 5906.331–6832.402 2217/2213/4 1.00×10−3 9.73×10−4 1.76×10−2
07LiKaMaRo [133] 6001.771–6884.882 5094/5072/1 1.42×10−3 1.01×10−3 3.08×10−2
00WeKaCaBa [111] 6436.315–12141.237 3578/3538/40 2.69×10−3 4.39×10−3 6.51×10−2
95CaPeBaTe_RC [93] 6436.313–10832.947 3160/3158/2 5.00×10−3 4.43×10−3 8.92×10−2
19LiWaTaKa [159] 6519.115–6597.240 88/88/0 8.86×10−6 4.21×10−6 5.44×10−5
22Iwakuni [173] 6549.562–6596.114 46/46/0 1.83×10−5 1.40×10−5 8.87×10−5
09LiKaPeHu [136] 6789.852–7065.586 1154/1148/6 1.00×10−3 1.11×10−3 2.21×10−2
12LuMoLiPe [142] 6949.767–7725.398 6226/6191/12 1.00×10−3 6.69×10−4 1.33×10−2
23KaMoTaCa [178] 7250.027–7652.630 3329/3307/0 1.00×10−3 6.11×10−4 3.60×10−2
16KaCaKaPe [150] 7601.172–8329.631 2968/2963/5 1.00×10−3 5.88×10−4 2.72×10−2

(continued on next page)
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Table 2 (continued).
11LiKaPeTa [140] 7647.529–7918.173 1746/1742/4 1.00×10−3 9.13×10−4 2.42×10−2
22KaTaKaCab [175] 7647.527–7988.178 2423/2421/2 1.00×10−3 6.57×10−4 2.36×10−2
99HiQu [107] 7783.475–7788.489 8/8/0 1.00×10−3 1.17×10−3 2.03×10−3
50HeHe_RC [7] 7970.763–12898.443 1148/1060/88 3.00×10−2 3.19×10−2 1.51×10−1
22KaTaKaCaa [174] 8272.503–8619.558 3132/3097/3 8.00×10−4 4.07×10−4 1.66×10−2
21KaKaTaCa [170] 8325.774–8622.078 2745/2745/0 1.00×10−3 5.51×10−4 1.66×10−2
03DiPeTaTe [119] 8836.109–10092.626 719/692/27 3.23×10−3 5.12×10−3 3.44×10−2
04BeCaPeTa [123] 9074.119–9621.037 659/658/1 5.10×10−3 4.55×10−3 5.27×10−2
98GaCaKaSt [105] 9362.110–9419.797 68/68/0 5.37×10−3 1.90×10−2 4.68×10−2
24SiSeEmMa [180] 9842.540–11972.969 235/231/4 4.51×10−4 1.34×10−3 1.48×10−2
02BeKaCa [116] 9910.657–9951.791 22/22/0 1.00×10−2 5.79×10−3 2.45×10−2
01CaWeTaPe [114] 10084.048–12021.132 946/943/3 1.76×10−2 5.09×10−3 9.63×10−2
70Pliva [31] 10756.448–10832.966 134/134/0 1.50×10−2 3.81×10−3 1.64×10−2
22LuGo [176] 11233.770–11283.200 53/53/0 1.02×10−2 8.08×10−3 3.85×10−2
96Campargu [97] 11233.777–12221.945 241/241/0 1.50×10−2 9.71×10−3 6.06×10−2
11MiPeTaCa [141] 12764.164–12899.183 140/140/0 1.00×10−2 4.81×10−3 3.31×10−2
17ZhWaLiZh [155] 12857.786–12898.904 41/41/0 2.82×10−3 6.14×10−4 6.42×10−3
Fig. 2. Ratio of the uncertainties of the empirical rovibrational energy levels of the new bootstrap approach and the traditional Marvel estimates.
about 12 000 cm−1 is almost always one. This is due to the fact that the
bootstrap approach will only increase the uncertainty if there are more
than one (conflicting) measurements available.

3.3. Vibrational bands and band origins

Table 3 summarizes the vibrational bands which could be deter-
mined based on the set of measured rovibrational transitions. It is
important to note that we use the 𝓁 = 𝐽 definition for a vibrational
band origin (VBO), i.e., where 𝓁 > 0, we treat the lowest possible
energy level as the VBO. While comparing the 78 VBOs (with 𝑃max =
24) determined through our Marvel analysis to effective Hamiltonian
parameters of 04Toth [125], for the (𝑃 𝓁𝑁) = (1 1 1) VBO we observed
a significant discrepancy. Since this VBO is determined in our Marvel
analysis by a single measured transition, taken from 50HeHe [7], and
the uncertainty of this band is 0.06 cm−1, we finally did not delete this
transition but issue this warning. Future accurate measurements should
be able to settle this simple issue.

There are a further number of small but significant discrepancies
among the entries of Table 3, on the order of 0.001 cm−1, not discussed
here. It is worth pointing out the discrepancies larger than 0.01 cm−1.
Such cases include (𝑃 𝓁𝑁) = (11 1 7), (12 2 6), (13 1 7), (15 1 9), and
(17 3 15). For 𝑃 > 19 there are significant discrepancies for most states.
These deviations require further detailed studies, beyond the scope of
the present investigation.
6

3.4. Empirical rovibrational energy levels

From the 67 930 measured rovibrational transitions (43 246 unique
ones) collected we were able to determine 17 561 energy levels from
0 up to 13 790 cm−1. The highest rotational quantum number, 𝐽 ,
in our empirical (Marvel) energy-level set is 88, being part of the
(𝑃 𝓁𝑁) = (4 0 1) vibrational band. The largest polyad number, 𝑃 ,
and polyad counting number, 𝑁 , are 25 and 28, respectively. We note
that 20OgMiMuMu [165] used a novel optical centrifuge technique to
measure transitions involving rotational states up to 𝐽 = 206; however,
they only actually measured 11 between 𝐽 ′′ = 140 and 𝐽 ′′ = 205,
so these data could not be used to form a network. The vibrational
excitations 𝑣1, 𝑣2, and 𝑣3 range up to 9, 16, and 5, respectively.

We note that coverage of the states with 𝓁 = 0, 1, and 2 generally
extends to high energy (polyad number). The coverage is more limited
for states with 𝓁 = 3. While a few transitions involving levels with
𝓁 = 4 and 5 have been observed (vide supra), these do not connect
to the principal component; thus, the empirical energy levels we have
determined are limited to those with 𝓁 ≤ 3.

4. Comparison with previous line lists

This section provides comparisons of our MARVEL-based results
with two line lists, namely the SISAM database, called here 04Toth
[125], and the very recent Nitrous Oxide Spectroscopic Line List (NOSL-
296) [179], designed for atmospheric applications.
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Table 3
Summary of the vibrational states of 14N16

2 O considered in this work. The vibrational states are designated using the polyad-based notation (𝑃 ,𝓁, 𝑁), with 𝑃 = 2𝑣1 + 𝑣2 + 4𝑣3, and
𝓁 and 𝑁 are the vibrational angular momentum quantum number and the polyad counting number, respectively. The lowest, 𝐽 = 𝓁, energy level for each vibrational band given
by the calculations of Huang et al. [177], denoted Ames, and the empirical, effective Hamiltonian (EH) band origins (with citations), are given in cm−1.
𝑃 𝑙 𝑁 MARVEL AMES EH 𝑃 𝑙 𝑁 MARVEL AMES EH 𝑃 𝑙 𝑁 MARVEL AMES EH

0 0 1 0.0(0) 0.00 0.000 [125] 11 1 8 6571.590(1) 6571.60 6571.590 [125] 15 1 5 8425.849(1) 8425.75 8425.847 [175]
1 1 1 589.606223(7) 589.60 589.606 [125] 11 1 9 6631.431(2) 6631.77 6631.429 [133] 15 1 8 8560.0019(8) 8560.05 8560.000 [150]
2 0 1 1168.13237(2) 1168.13 1168.132 [125] 11 1 10 6773.346(7) 6773.61 6773.348 [134] 15 1 9 8666.974(2) 8667.05 8666.938 [129]
2 0 2 1284.903342(5) 1284.91 1284.903 [125] 11 1 11 6893.051(2) 6893.21 6893.051 [133] 15 1 10 8705.236(1) 8705.82 8702.237 [150]
2 2 1 1180.26532(2) 1180.26 1180.265 [125] 11 1 12 6996.842(2) 6996.94 6996.840 [133] 15 1 11 8708.369(1) 8709.61 8705.366 [150]
3 1 1 1749.9042(4) 1749.90 1749.907 [125] 12 0 1 6580.85352(1) 6580.82 6580.854 [125] 15 1 12 8844.271(1) 8844.56 8844.278 [142]
3 1 2 1881.1003(2) 1881.12 1881.101 [125] 12 0 2 6630.434(2) 6630.39 6630.429 [134] 15 1 14 8960.5835(8) 8960.75 8960.588 [150]
3 3 1 1771.9597(3) 1771.97 1771.960 [125] 12 0 4 6768.502(1) 6768.45 6768.502 [125] 15 1 16 9062.1621(8) 9062.26 9062.158 [142]
4 0 1 2223.7567419(3) 2223.76 2223.757 [125] 12 0 6 6868.5498(2) 6868.52 6868.550 [125] 15 1 17 9186.5218(8) 9187.96 9186.521 [178]
4 0 2 2322.57323(6) 2322.56 2322.573 [125] 12 0 7 6882.691(1) 6882.61 6882.692 [158] 15 3 1 8225.739(2) 8225.72 8225.737 [133]
4 0 3 2461.9965(2) 2462.03 2461.996 [125] 12 0 8 7024.091(1) 7024.10 7024.093 [142] 16 0 1 8714.1402(4) 8714.09 8714.139 [133]
4 0 4 2563.3403(2) 2563.32 2563.339 [125] 12 0 9 7029.844(1) 7030.51 7029.843 [142] 16 0 4 8877.042(1) 8877.02 8877.040 [142]
4 2 1 2333.64607(6) 2333.65 2333.646 [125] 12 0 10 7137.127(1) 7137.09 7137.127 [125] 16 0 7 8976.489(1) 8976.47 8976.488 [142]
4 2 2 2477.3089(2) 2477.33 2477.310 [125] 12 0 11 7194.365(1) 7194.95 7194.365 [134] 16 0 10 9108.322(3) 9108.34 9108.323 [150]
5 1 1 2799.1245(2) 2799.13 2799.124 [125] 12 0 12 7214.680(1) 7214.68 7214.680 [125] 16 0 11 9219.056(1) 9218.99 9219.056 [150]
5 1 2 2898.65323(6) 2898.65 2898.657 [125] 12 0 13 7340.792(1) 7341.29 7340.792 [134] 16 0 14 9294.994(1) 9294.98 9294.993 [150]
5 1 3 3047.0490(2) 3047.07 3047.048 [125] 12 0 14 7463.985(1) 7464.32 7463.986 [133] 16 0 15 9398.818(1) 9399.25 9398.817 [150]
5 1 4 3166.68(2) 3166.68 3166.685 [125] 12 0 15 7556.136(1) 7556.36 7556.135 [133] 16 0 17 9517.8741(8) 9518.10 9517.874 [150]
5 3 1 2919.0973(3) 2919.12 2919.098 [125] 12 0 16 7640.474(1) 7640.67 7640.476 [133] 16 0 18 9599.1039(8) 9601.02 9599.103 [174]
6 0 1 3363.9780(2) 3363.98 3363.978 [125] 12 2 1 6640.670(1) 6640.66 6640.667 [134] 16 0 19 9606.336(5) 9606.34 9606.332 [150]
6 0 2 3466.60018(6) 3466.62 3466.600 [125] 12 2 3 6782.826(2) 6782.81 6782.825 [134] 16 0 20 9690.0821(8) 9690.13 9690.082 [170]
6 0 3 3480.81930(6) 3480.82 3480.819 [125] 12 2 5 6894.268(2) 6894.22 6894.268 [158] 16 0 22 9874.2970(8) 9875.91 9874.296 [170]
6 0 4 3620.9430(2) 3620.92 3620.943 [125] 12 2 6 7039.494(2) 7039.73 7039.661 [142] 16 2 2 8749.056(1) 8749.07 8749.056 [133]
6 0 5 3748.2521(2) 3748.25 3748.252 [125] 12 2 7 7040.686(2) 7041.19 7040.685 [158] 16 2 4 8890.970(1) 8891.06 8890.970 [142]
6 0 6 3836.37100(3) 3836.35 3836.371 [125] 12 2 9 7207.024(1) 7207.62 7207.022 [134] 16 2 6 8980.053(1) 8979.95 8980.051 [175]
6 2 1 3375.6413(2) 3375.64 3375.642 [125] 12 2 10 7357.528(2) 7358.04 7357.528 [133] 16 2 7 9123.706(1) 9082.03 9123.706 [150]
6 2 2 3476.97731(6) 3477.01 3476.978 [125] 12 2 11 7491.112(2) 7491.48 7491.113 [133] 16 2 7 9123.706(1) 9123.85 9123.706 [150]
6 2 3 3634.1032(2) 3634.08 3634.104 [125] 12 2 12 7613.098(2) 7613.23 7613.098 [133] 16 2 11 9415.442(1) 9415.97 9415.442 [150]
6 2 4 3768.5551(2) 3768.55 3768.555 [125] 13 1 1 7127.796(1) 7127.77 7127.798 [125] 16 2 13 9545.384(1) 9545.79 9545.384 [170]
7 1 1 3932.0805(6) 3932.08 3932.083 [125] 13 1 7 7443.822(1) 7443.85 7443.746 [134] 16 2 16 9763.7896(8) 9765.71 9763.790 [174]
7 1 3 4062.8091(4) 4062.80 4062.809 [125] 13 1 8 7590.240(1) 7590.39 7590.244 [142] 17 1 1 9246.894(1) 9246.87 9246.893 [142]
7 3 1 3953.2921(2) 3953.29 3953.293 [125] 13 1 10 7715.885(2) 7715.96 7715.886 [134] 17 1 7 9538.070(5) 9538.21 9538.065 [142]
8 0 1 4417.37778(3) 4417.37 4417.378 [125] 13 1 12 7818.651(2) 7818.72 7818.650 [134] 17 1 14 9885.506(1) 9885.65 9885.509 [150]
8 0 4 4630.1613(2) 4630.14 4630.161 [125] 13 1 14 8047.173(1) 8047.85 8047.178 [134] 17 3 4 9445.920(1) 9446.11 9445.919 [142]
8 0 5 4730.82507(3) 4730.81 4730.825 [125] 13 1 15 8160.484(1) 8160.97 8160.484 [134] 17 3 14 9988.527(1) 9989.36 9988.522 [150]
8 0 8 5026.30302(3) 5026.27 5026.303 [125] 13 1 16 8267.106(1) 8268.17 8267.108 [133] 17 3 15 10112.1369(8) 10 016.90 10106.360 [170]
8 0 9 5105.67692(3) 5105.68 5105.677 [125] 13 3 7 7618.257(2) 7618.39 7618.257 [158] 18 0 1 9770.6360(8) 9770.61 9770.636 [170]
8 2 1 4502.1990(4) 4502.21 4502.199 [125] 14 0 1 7665.273(1) 7665.21 7665.273 [133] 18 0 7 10079.556(3) 10 079.59 10079.565 [175]
9 1 1 4978.526(3) 4978.51 4978.524 [125] 14 0 3 7782.662(1) 7782.65 7782.662 [125] 18 0 8 10163.593(1) 10 163.56 10163.598 [114]
9 1 4 5201.61(2) 5201.59 5201.613 [125] 14 0 5 7874.156(1) 7874.08 7874.156 [134] 18 0 12 10204.80(2) 10 204.81 10204.806 [114]
9 1 5 5319.96(3) 5319.98 5320.001 [125] 14 0 8 7998.589(2) 7998.57 7998.585 [134] 18 0 13 10332.02(2) 10 332.06 10332.013 [114]
9 1 8 5618.60187(3) 5618.60 5618.597 [125] 14 0 9 8083.953(1) 8083.91 8083.955 [134] 18 0 16 10429.15(2) 10 428.98 10429.148 [114]
9 1 9 5723.651(1) 5723.66 5723.653 [125] 14 0 12 8276.326(1) 8276.44 8276.325 [142] 18 0 17 10504.41(3) 10 504.45 10504.398 [114]
9 3 1 5074.0908(5) 5074.12 5074.091 [125] 14 0 14 8376.3502(8) 8376.32 8376.350 [142] 18 0 20 10640.61(2) 10 641.28 10640.611 [114]
9 3 3 5227.459(1) 5227.44 5227.460 [125] 14 0 15 8452.6357(8) 8452.70 8452.636 [142] 18 2 1 9781.143(1) 9781.15 9781.143 [170]
10 0 3 5646.74022(3) 5646.73 5646.740 [125] 14 0 16 8475.7282(8) 8476.87 8475.724 [142] 19 1 10 10733.30(2) 10 733.53 10732.908 [114]
10 0 5 5762.372(1) 5762.31 5762.373 [125] 14 0 17 8612.948(1) 8613.96 8612.949 [142] 19 1 17 11000.56(2) 11 000.67 11000.160 [114]
10 0 7 5902.968(2) 5903.19 5902.966 [134] 14 0 18 8725.101(1) 8725.85 8725.100 [142] 19 3 1 10316.845(1) 10 316.93 10316.848 [174]
10 0 8 5974.84501(3) 5974.81 5974.845 [125] 14 0 19 8810.765(1) 8811.42 8810.762 [142] 20 0 1 10815.251(5) 10 815.24 10815.242 [170]
10 0 9 6058.668(2) 6058.81 6058.667 [125] 14 2 1 7676.0959(6) 7676.06 7676.095 [133] 20 0 2 10820.128(5) 10 820.14 10820.142 [114]
10 0 10 6192.270(2) 6192.35 6192.271 [125] 14 2 4 7886.494(1) 7886.49 7886.494 [134] 20 0 11 11271.99(2) 11 271.99 11271.988 [114]
10 0 12 6373.308(2) 6373.38 6373.308 [125] 14 2 7 8017.943(1) 8018.03 8017.945 [134] 21 1 1 11334.685(5) 11 334.79 11334.289 [111]
10 2 1 5540.9177(4) 5540.89 5540.917 [125] 14 2 10 8296.595(1) 8296.81 8296.594 [142] 22 0 4 11964.12(6) 11 964.36 11964.252 [114]
10 2 4 5775.118(1) 5775.09 5775.118 [125] 14 2 12 8417.273(2) 8417.43 8417.273 [142] 22 0 5 12009.05(2) 12 009.20 12009.029 [114]
11 1 1 6084.143(2) 6084.12 6084.143 [134] 14 2 13 8490.353(1) 8491.53 8490.353 [142] 24 0 2 12891.079(5) 12 891.09 12891.153 [114]
11 1 3 6214.638(2) 6214.62 6214.640 [125] 14 2 14 8633.615(1) 8634.68 8633.614 [142]
11 1 5 6327.090(1) 6327.02 6327.312 [142] 14 2 15 8762.569(1) 8763.39 8762.570 [142]
11 1 6 6462.895(2) 6462.90 6462.898 [125] 15 1 1 8206.086(1) 8206.07 8206.090 [133]
11 1 7 6470.361(1) 6470.80 6467.371 [158] 15 1 3 8336.6118(8) 8336.64 8336.611 [133]
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4.1. 04Toth [125]

The SISAM database contains 32 637 14N 16
2 O rovibrational lines and

overs the 525 − 7797 cm−1 wavenumber region. While most of these
ransitions were generated using effective Hamiltonians, the original
easured values were retained for those transitions identified as being

ignificantly perturbed by resonances. As a result, 1164 transitions from
he SISAM data were identified as observed rather than calculated.
nspection showed that 43 of these transitions were provided by pre-
ious measurements by Toth [71,73,110]; thus, 1121 transitions were
dded to our compilation. An uncertainty of 0.000 5 cm−1 was used for
hese transitions, based on self-consistency with other transitions in our
ataset.

We used the effective Hamiltonian parameters of 04Toth [125] to
heck our MARVEL energy levels. Results of this comparison can be
een in Fig. 3. Almost all of the differences are smaller than 0.01 cm−1;
he deviations are larger than 0.01 cm−1 only for relatively high 𝐽
alues (𝐽 > 50). We checked how many experimental measurements
etermine those MARVEL energy levels that have large difference from
he 04Toth values and it turned out that most of them are determined
y only one or two measurements (see the red squares in Fig. 3).
7

hile MARVEL levels determined by a single measurement must be
egarded as less trustworthy, it is likely that the issue here is with poor
xtrapolation of the effective Hamiltonian used by 04Toth.

.2. NOSL-296 [179]

The NOSL-296 line list [179] contains almost 900 000 lines, cover-
ng the 0.02 − 13 378 cm−1 wavenumber range. The authors published
either the values of the effective Hamiltonian parameters nor those
f the energy levels; therefore, to make a meaningful comparison, we
ad to calculate them. Using the energy value of the lower quan-
um state of the transition, given in the line list, and values of the
avenumber entries, we could determine 67 028 rovibrational energy

evels. During the comparison of these data with those of the present
tudy, we identified an issue: there are significant differences between
he measurements of 23KaMoTaCa [178] and the NOSL-296 [179]
ine positions. The Supplementary Material of 23KaMoTaCa [178] has
ndicated the presence of such differences. Therefore, we divided our
omparison into two parts: (a) first we checked those MARVEL energy
evels that are determined by at least three measured lines (see the
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Fig. 3. Absolute deviations between the empirical (Marvel) energy levels of this study and those of 04Toth [125]. Blue circles indicate states with MARVEL energies determined
by at least three measured lines, while red squares correspond to the states with MARVEL energies determined by one or two measured lines.
Fig. 4. Absolute deviations between the empirical (MARVEL) energy levels of this study and those of the NOSL-296 line list [179]; see text for the subset of NOSL-296 levels
which could be utilized for this comparison. Blue circles indicate states with MARVEL energies determined by at least three measured lines, while the red squares correspond to
the states with MARVEL energies determined by one or two measured lines.
blue circles in Fig. 4), in this case the average absolute difference
is 0.001 5 cm−1; (b) in the second step we compared those MARVEL
levels with the NOSL-296 energies that are determined by one or two
measured lines (see the red squares in Fig. 4). Although the average
discrepancy is only 0.005 4 cm−1, in this case we get several outliers,
where the differences are larger that 0.01 cm−1. Furthermore, we found
47 MARVEL energy levels which could not be found in the NOSL-296
energy level list within 1.0 cm−1, most of these energy levels have a
large polyad number (𝑃 > 20); these states are all present in both the
Ames and our own variational line lists.

Using the first set of MARVEL energy list, we checked the NOSL-296
lines and collected those lines where the difference in the line positions
is larger the 0.005 cm−1. We found only 392 NOSL-296 lines that the
MARVEL energies cannot reproduce within this limit. This list be can
found in the Supplementary Material. These lines should be checked by
the authors of NOSL-296.
8

5. Summary and conclusions

The present study has provided a comprehensive analysis of all the
measured and assigned rovibrational lines of the parent isotopologue
of nitrous oxide, 14N 16

2 O. There are 91 sources considered in our final
compilation, containing experimental wavenumbers with uncertainties
and assignments. The experimental line data were analyzed and their
assignments adjusted to a uniform set of polyads (𝑃 ) and associated
counting numbers (𝑁). This canonical set of vibrational state assign-
ments is recommended for future studies on the spectroscopy of nitrous
oxide. The full list is given in the Supporting Material.

The corrected, self-consistent list of 67 930 rovibrational transitions
contains 43 246 unique entries. This dataset underwent a Measured
Active Rotational–Vibrational Energy Levels (Marvel) analysis, yielding
17 561 empirical energy levels. These energy levels were validated
using variational nuclear-motion calculations [177,201], the full details
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of which will be published elsewhere [201]. Uncertainties for the
empirical rovibrational energy levels were determined using a newly
implemented bootstrap approach. We believe this approach yields more
realistic uncertainties and, at least in part, compensates for both under-
and overestimates of the published uncertainties of the transitions
observed.

This study investigated more than 200 vibrational bands and yielded
empirical energy values for 77 vibrational band origins (those with
𝓁 = 0, where 𝓁 is the vibrational angular momentum quantum num-
ber). Our newly determined energy levels are being used to improve
the 14N 16

2 O line list currently under construction both by providing
energies to which an improved potential energy surface can be fit to
and, in due course, which can be used to replace computed energies in
the final line list.

Comparison with entries of the line lists SISAM [125] and NOSL-
296 [179] revealed good overall agreement but also pointed out several
minor issues with the data. Resolution of these problems requires future
careful experimental and modeling studies.
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Appendix A. Notes on data sources

Some sources, notably 60TiPlBe [17], 70PeSuFr [30], 74FaDu
[44], and 18LaScAgMe [157], used the (c,d) notation instead of the
(e,f) one [209]. We assumed that c corresponds to e and d to f. All
other comments are listed source by source.

50HeHe [7]: This older source was the first detailed study of the
near-infrared transitions in N2O. By modern standards, it is relatively
inaccurate, claiming a precision of 0.03 cm−1 for unblended lines.
The source gives a calibration uncertainty of 0.08 cm−1. However,
there appears to be no subsequent high resolution measurements of the
(𝑃 𝓁𝑁) = (22 0 4) band centered at 11 964.3 cm−1. Recalibration of this

−1
9

source by a factor of 0.999 998 11 corresponds to a shift of −0.02 cm . f
Therefore, we adopted an uncertainty of 0.03 cm−1, which was doubled
for lines marked as blended with either other N2O transitions or water
lines.

60TiPlBe [17]: This source presents measurements of 2522 lines
for a large number of vibrational bands. However, for most bands the
values given are calculated with an unsigned obs−calc, meaning that it
is not possible to reliably recover the experimental wavenumbers. Only
884 lines (for which there is no effective Hamiltonian fit given) were
retained as these correspond to the actual measured wavenumbers:
these lines are in any case for the more interesting (i.e., less studied)
bands. The paper implies an uncertainty of 0.002 cm−1 but the lines
retained are only given to two decimal digits; thus, these uncertainties
were increased.

64LaLi [22]: No ‘e’/‘f’ designation was given for transitions within
the 0220 [(𝑃 𝓁𝑁) = (2 2 1)] state; thus, these transitions were assumed
to be degenerate and each line was included twice in our Marvel
database.

71LeHoThMa [33]: This source gives five transitions correspond-
ing to 𝐽 = 3 − 2 transitions in low-lying vibrational bands. As no
uncertainties were given, 100 kHz was assumed by us. One of these
measurements was not consistent with subsequent studies and had to
be removed.

74FaDu [44]: Provides an unusual early fluorescence spectrum.
The tables which were scanned are of poor quality, which gives some
uncertainty over precise values for some of the lines.

74KrSa [46]: The authors did not specify uncertainties; thus, 0.02
cm−1 was assumed, with 0.04 cm−1 for blended lines, based on the use
of combination differences. Transitions involving degenerate bands did
not give ‘e’/‘f’ parities; thus, they were included twice.

74BuVaGeKa [43]: The uncertainties attached to the transitions of
his source were doubled, as suggested in 78Lovas [210].
75Bogey [49]: This source gives pure rotational transitions within

he (𝑃 𝓁𝑁) = (4 0 1) vibrational state. As suggested by 14TiChChCh
146], the uncertainties of this source should be increased as there are
alibration issues with the data. The uncertainties were increased by a
actor of three compared to the original values quoted in the paper.
75WhSuRiHa [54]: An uncertainty of 25 kHz was assumed.
76AmGu [55]: This publication is an early example of a high-

ccuracy infrared spectrum (with an uncertainty of 0.000 2 cm−1). The
ransitions are given as a comprehensive table in the paper but, unfor-
unately, with poor print quality. The results were extensively cleaned
ut even then there were many cases where the transition wavenumber
ould not be read with certainty. These cases were marked as not
alidated. The (7 3 1) – (3 3 1) band was not given a parity, so it was
ssumed to represent both parities and duplicated. Transitions in the
egion where the (6 0 2) and (6 0 3) states interact were not consistent
ith those measured subsequently; therefore, they were removed from

he analysis. Calibration tests suggested that the calibration of the
pectrum was in line with more modern sources.
76AnBuKaKr [56]: This source contains a number of high-resolution

ure rotational transitions. The fine structure (e/f) splitting within
he (3 3 1) state was not resolved, each line is given twice, and the
ncertainties were increased to 35 kHz.
78ReMeDy [58]: This paper presents hyperfine-resolved rotational

ransitions. A simple average was performed over the hyperfine com-
onents and the uncertainty was set to 150 Hz.
82Guelachv [63]: The wavenumbers of this study were scaled

y a calibration factor of 0.999 999 890, which is in line with later
uggestions that the spectrum needs recalibration by about 15 MHz.
84Toth [67]: A wavenumber uncertainty of 0.000 2 cm−1 was

hosen based on combination differences.
87HiWeMa [72]: The fine structure (e/f) splitting within the (3 3 1)

tate was not resolved; thus, each line is given twice and the uncertain-
ies were increased to 35 kHz.
95CaPeBaTe [93]: The wavenumbers were scaled by a calibration
actor of 1.000 003 08.
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96TaEvZiMa [100]: As suggested by 14TiChChCh [146], the un-
certainties were increased by a factor of 1.6. The 𝑣1 and 𝑣3 vibrational
state labels were swapped.

96MaRaHeVa [99]: The authors studied pressure shifts for two
lines in the 𝜈3 or (2 0 2) band. However, the stated zero pressure line
positions do not agree well with other measurements; thus, these lines
were not validated.

96WeSiRe [101]: An uncertainty of 0.000 6 cm−1 was assumed.
98GaCaKaSt [105]: The authors declare an uncertainty of 0.005

cm−1; this was doubled to 0.01 cm−1 for lines blended with water lines.
It was necessary to reassign the P branch lines.

99Toth [110]: This paper reports a number of resonance inter-
actions. Those involving the (8 0 3) and (8 0 4) bands do not give
consistent combination differences and the associated transitions were
removed. For other resonance pairs the uncertainties were increased.

00WeKaCaBa [111]: This source reports both ICLAS and FTS tran-
sition wavenumbers. For the ICLAS data an uncertainty of 0.005
cm−1 is given; lines marked as blended or weak were given an un-
certainty of 0.01 cm−1. For the FTS data, 0.000 5 cm−1 was used
below 6300 cm−1, which was linearly increased to 0.005 5 cm−1 at
11 300 cm−1 as suggested in the paper. The 𝐽 ’s in the (18 0 3) –
(0 0 1) band’s R branch transitions were renumbered. Resonance lines
in the (13 1 7) – (1 1 1) hot band were assigned to (13 1 6) – (1 1 1).
The P(12) line in the (20 0 2) – (0 0 1) band (line 00WeKaCaBa.12)
was changed from 10 818.209 0 to 10 808.209 0. Extra resonance lines
P(32) (06WaPeTaGa.2327) and P(33) (06WaPeTaGa.2328) in the band
(16 0 7) − (0 0 1) were assigned to (16 0 6) − (0 0 1).

01BaVe [113]: Bands for which the e/f splitting was unresolved
were duplicated. An uncertainty of 0.008 cm−1 (given as the upper limit
in the paper) was adopted.

01CaWeTaPe [114]: An uncertainty of 0.015 cm−1 was assumed,
except for lines designated as lines overlapping with atmospheric water
lines, lines overlapping with other N2O lines, or very weak lines, for
which an uncertainty of 0.030 cm−1 was adopted.

03BaPiVe [118]: This source gives three bands with unresolved
e/f splitting, each were included in our analysis twice. Uncertainty
estimated as 0.000 4 cm−1, based on data in the paper.

03DiPeTaTe [119]: An uncertainty of 0.003 cm−1 was adopted
from the paper, except for blended or degenerate lines, for which an
uncertainty of 0.006 cm−1 was used. For band (16 0 17) − (0 0 1), the
lines R(32) – R(36) were removed, as they have been reasigned by
04BeCaPeTa.

04BeCaPeTa [123]: An uncertainty of 0.005 cm−1 was taken from
he paper; for lines marked as blended with water lines this uncertainty
as doubled. The paper includes correction of a few misprints in the

ovibrational parameters and the reconsideration of the analysis of an
nter-polyad Coriolis interaction system given in 03DiPeTaTe [119].
esonance lines in (16 0 17)− (0 0 1) were re-assigned to the e branch of
17 1 6)−(0 0 1). Three lines overlapping with water lines were removed
s they were inconsistent with other sources.
04NeSuVa [124]: An uncertainty of 0.000 5 cm−1 was adopted from

he paper.
04Toth [125]: This source is discussed in Section 4.1.
06HePiGuSo [128]: Q branches (both e – f and f – e) in the (9 1 9)−

3 1 1) band were removed as they are inconsistent with other transi-
ions given in this source and elsewhere, such as 19BeMoKaKa [158].
leven lines were removed as they involve 𝐽 values lower than the
value of the given vibrational state, which is unphysical. The six

ighest P(𝐽 ) lines from the (10 2 4)e − (3 1 1)e band were removed as
hey disagree with other sources, notably 19BeMoKaKa [158], where
he assignments are confirmed by combination differences. The (2 2 1)f
and was removed as it was assigned using an incorrect value for
he 𝐷 centrifugal distortion constant, taken from Toth [125], and
herefore gave wavenumbers which disagree with other sources. This
ource also includes corrections of a few misprints in the rovibrational
10
arameters and the reconsideration of the analysis of an interpolyad
oriolis interaction system given in 03DiPeTaTe [119].
06WaPeTaGa [129]: An uncertainty of 0.005 cm−1 was adopted

rom the paper, except for lines blended with water lines, for which
n uncertainty of 0.01 cm−1 was assumed. The band (14 0 8) – (0 0 1)
entered at 7998.59 cm−1 has extra lines for 𝐽 = 28 and 29, presumably
ue to resonances. The interacting state is unassigned so the extra lines
ere removed. The R(28) and R(29) lines in the (11,1,11) f – (1,1,1) f
and were reassigned to R(29) and R(30), respectively. This source
ontains 908 lines which are exactly the same as in 00WeKaCaBa [111].
ince lists of co-authors of these two publications contain no overlaps,
oth sets of lines were kept.
07Horneman [132]: Following 14TiChChCh [146], all transitions

n the (1 1 1) − (0 0 1) band were retained, even those with zero weights
n the fit. Nevertheless, 24 lines had to be removed, on the basis of
nconsistency with other sources, including transitions in the (2 0 0) −
1 1 1) and (2 2 1) − (1 1 1) bands, which were zero-weighted in the
riginal paper. 14TiChChCh [146] states it is necessary to remove 38
ines from 07Horneman but does not specify which.
07LiKaMaRo [133]: Q branches for bands with 𝓁 > 0 for both

pper and lower states have the wrong selection rules (e – e or f –
). We assumed that the parity of the lower state is given correctly on
he basis of consistency with other sources. On this basis the following
orrections were made (in the harmonic oscillator notation used in the
riginal source): 5220f – 0220f to 5220e – 0220f; 3510e – 0110e to 3510f
0110e; 3510f – 0110f to 3510e – 0110f; 0223e – 0220e to 0223f – 0220e;
223f – 0220f to 0223e – 0220f; 5110e – 0110e to 5110f – 0110e; 5110f
0110f to 5110e – 0110f. The 3620 – 0220 band does not have the

-doubling resolved; thus, it was given twice with the correct selection
ules. Lines P(19)−P(36) in the 3201e – 0200e band were reassigned
o P(18)−P(35); lines P(16)−P(18) in the 3620e – 0220e band were
eassigned to P(15)−P(17). Line Q(22) in the 3501f – 0110f band was
eassigned to Q(23). Lines Q(16)−Q(18) in the 5110e – 0110f band were
eassigned to Q(17)−Q(19). Finally, the Q(10) line at 6302.655 1 cm−1

n the (11 1 11)e − (1 1 1)f band was reassigned to the (12 2 12)e − (1 1 1)f
and. This source contains 90 lines which appear to be duplicates
f lines in 99Toth [110]. These duplicate lines were kept during the
arvel analysis. Furthermore, this source contains 47 lines which also

ppear in 09LiKaPeHu [136]. These duplicate lines were kept only here.
07LiKaPeTa [134]: The band centered at about 6770 cm−1 given as

*10e – 0000e is assumed to be 0(11)0e – 0000e, which is (11 1 10)e −
0 0 1)e in polyad notation. In the R branch of the (10 0 9)e − (0 0 1)e
and lines R(51)–R(55) were reassigned to R(50)–R(54). This source
ontains 172 lines which also appear in the source 09LiKaPeHu [136].
he identical lines were only kept here.
09LiKaPeHu [136]: Both the e and f components of the (14 2 15) −

2 2 1) band contained an unresolved P(2) line at 6836.036 5 cm−1,
hich are unphysical and thus were removed. Line R(58) in the
13 1 7)e − (1 1 1)e band was reassigned to R(57). Line R(42) in the
14 2 5)e − (2 2 1)e band was reassigned as R(42)f. This source contains
5 lines which also appear in the source 12LuMoLiPe [142]. These
dentical lines were only kept here.
11LiKaPeTa [140]: This source contains 391 lines which also ap-

ear in the source 12LuMoLiPe [142]. These lines were deleted in the
ist of lines of 12LuMoLiPe.
12LuMoLiPe [142]: Line 12LuMoLiPe.3047, assigned as P(1) (13 1 4)

− (0 0 1)e, was removed as being unphysical.
16KaCaKaPe [150]: The R(39) line at 7989.890 25 cm−1, assigned

s 3511f – 0110f in the original paper, was reassigned to 3111f − 0110f
or (15 1 8)f, in line with its neighboring transitions. Four lines reassigned
and given by 22KaTaKaCab [175] were removed. 526 lines recorded
by 16KaCaKaPe but assigned by 22KaTaKaCab were added. Lines
16KaCaKaPe.3134 and 16KaCaKaPe.3135 denoted as ‘‘extra lines’’ by
22KaTaKaCab were assigned to the band (15 1 7)e−(1 1 1)e. This source
contains 171 duplicate transitions, we kept one of the duplicate entries.



Journal of Quantitative Spectroscopy and Radiative Transfer 316 (2024) 108902J. Tennyson et al.

b

s

(
(
[
R
3
T
d

f

n
p
(
i
d

A

a
w

i

R

19BeMoKaKa [158]: Assignments of the (10 0 5) e and (10 0 6) e
ands were swapped.
20ZhBaFlHo [164]: The stated frequencies were doubled to allow

for two-photon transitions; the corresponding uncertainties were also
doubled.

21KaKaTaCa [170]: No uncertainty is stated; a value of 0.001 cm−1

was assumed.
22KaTaKaCaa [174] Nine lines in the range 22KaTaKaCaa.2461 to

22KaTaKaCa.2505 were reassigned to (16 0 19)e instead of (16 0 17).
The P(36) line at 8556.241 90 cm−1 was reassigned from (18 0 4)e −
(2 0 2)e to (17 1 1)e − (2 0 2)e. This source contains two duplicated tran-
itions, we deleted one of the duplicated entries.
22KaTaKaCab [175]: Ten lines identified as in resonance with

15 1 8) assigned to (15 1 7); six lines identified as in resonance with
16 0 10) assigned to (16 2 16). 526 lines measured by 16KaCaKaPe
150] were assigned; these are the last lines labeled as 16KaCaKaPe.
esonances lines in the (16 2 7) – (2 2 1) band involving 𝐽 ′ = 35 and
6 were reassigned to (15 1 13) – (2 2 1), as suggested in the paper.
his source contains 28 duplicated transitions, we had to delete one
uplicate entry.
22LuGo [176]: An uncertainty of 0.01 cm−1 was assumed, except

or lines marked as blended, for which 0.02 cm−1 was used.
24SiSeEmMa [180]: After the original submission of our paper, this

ew source became available and was added as part of the revision
rocess. Bands (18 0 4), (18 0 8) and (18 0 9) were relabeled (18 0 3),
18 0 7) and (18 0 8), respectively, in line with our proposed canon-
cal numbering scheme. Four lines which do not obey combination
ifferences, even within the 24SiSeEmMa dataset, were removed.

ppendix B. Supplementary material

See supplementary material for the MARVEL input (transitions) file
nd output (energy) file. A comprehensive table of vibrational levels
ith associated polyad quantum number is also given.

Supplementary material associated with this article can be found,
n the online version, at https://doi.org/10.1016/j.jqsrt.2024.108902.
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