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Abstract

In this thesis we present contributions to the theoretical foundations of large-scale reinforcement

learning (RL) with linear function approximation, with a focus on establishing classes of prob-

lems that are theoretically solvable in polynomial time and ones that are not. The problem classes

differ in learning paradigm and structural assumptions. We start with the problem of planning un-

der 𝑞★-realizability (i.e., when the optimal action-value function lies in the span of a feature map),

and establish exponential statistical hardness of this class. Next, we consider 𝑣★-realizability with a

small constant number of actions, and establish an algorithm that solves the planning problem with a

polynomial query complexity. Next, we present a computationally efficient algorithm that improves

on the state of the art query complexity guarantees for planning under 𝑞𝜋-realizability (i.e., when

𝑞-values for all policies lie in the span of a feature map). Finally, we present the first algorithm that

solves online RL under 𝑞𝜋-realizability with a polynomial query complexity, establishing that this

problem class is statistically tractable.



Impact Statement

All the results presented in this thesis is of a theoretical nature. As such, they do not target any spe-

cific application area. However, these results can inspire further research and algorithms targeting

sequential decision-making and representation learning. As for the impact already observed, our

negative results won the best student paper award at Algorithmic Learning Theory, 2021, and it are

quoted in the book “Reinforcement learning: Theory and algorithms” (Agarwal et al., 2019) as a

“breakthrough result”. In particular, a consequence of these negative results is that reinforcement

learning is fundamentally harder than supervised learning, and one should not expect the structure

of 𝑞★-realizability yield tractable learning problems. In other words, one should not hope that rep-

resentation learning targeting only the optimal action-value function would be the key to scaling up

RL, and different (likely stronger) structural assumptions are required. This finding contrasts with

the algorithms presented for 𝑞𝜋-realizability, which in turn implies that capturing representational

structure for all 𝑞𝜋 functions is sufficient at scaling RL to possibly infinite state-spaces, at least

from a statistical perspective. These results can thus be seen as steps towards establishing the key

structural assumptions that unlock practical scaling of RL methods to real-life problems with large

state spaces.
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Chapter 1

Overview

1.1. Background

For the purposes of this overview, we assume that the reader is familiar with the reinforcement

learning (RL) problem and Markov decision processes (MDPs), and related concepts, for which the

precise definitions are given in Section 1.2. A great many problems of interest can be formulated

as optimal sequential decision making in a stochastic environment. If the model of the environment

is given, perhaps because it has been learned with a sufficient accuracy, one only has to figure out

how to use the model to find good actions. This is the problem addressed by planning algorithms

(Chapter 6 Mausam and Kolobov, 2012). An elegant, minimalist approach to describe such prob-

lems is to adopt the language of MDPs. Dynamic programming methods in MDPs with 𝑆 states, 𝐴

actions and a horizon of 𝐻 can solve the planning problem with poly(𝑆, 𝐴,𝐻) resources (Littman

et al., 1995; Kallenberg, 2002; Ye, 2011; Scherrer, 2016; Sidford et al., 2023). However, in the lack

of extra information, the required resources grow at least as Ω(𝐴𝐻 ) when the number of states is

unbounded (Kearns et al., 2002). The price of simplicity (and thus generality) is therefore that effi-

cient planning in large state-spaces is intractable, a phenomenon pointed out by Bellman (1957) and

today informally referred to as Bellman’s curse of dimensionality. An intriguing approach to avoid

intractability when both 𝑆 and 𝐻 are large is the use of “function approximation” which promises to

empower planners to extrapolate beyond the states that the planner has encountered. This approach

has been proposed shortly after MDPs have been introduced when it was observed that in various

problems of practical interest, value functions that the dynamic programming algorithms aim to

compute can be well approximated with the linear combination of only a few basis functions, which

themselves can be guessed by studying the structure of the problem to be solved (Bellman et al.,

1963; Schweitzer and Seidmann, 1985). This raises the question of whether under such a favorable

condition a provably efficient planner exist, i.e., whether the curse can be lifted.
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While this question was arguably one of the main driving forces behind much of the research

in both operations research and reinforcement learning since the 1960s, most of the early results

focused on the case when the function space underlying the features have a certain completeness

property when dynamic programming algorithms can be successfully adopted (e.g., Bertsekas and

Tsitsiklis, 1996; Tsitsiklis and Van Roy, 1996; Munos, 2003, 2005; Szepesvári and Munos, 2005).

For more recent works in this, and some other related directions, see, e.g., (Du et al., 2019a; Latti-

more et al., 2020; Du et al., 2021) and the references therein.

While interesting, these works left open the question of whether efficient planners exist in the

case when the function space may lack the completeness property but is still able to represent the

optimal value function. Though Wen and Van Roy (2013) addresses this for deterministic systems,

the focus of Chapters 2 and 3 is to investigate this question for stochastic systems. In Chapter 4 we

investigate planning when the function space can represent all value functions, an assumption that is

still weaker than the completeness assumption. Finally, Chapter 5 removes the need for a simulator

and tackles this problem under the setting of online RL.

1.2. Notation and problem setup

The purpose of this section is to introduce the notation we use and the necessary definitions that will

allow us to precisely formulate the problems we study. We start with the notation. This is followed

by a quick review of definitions and basic concepts concerning MDPs. The section will be closed

by describing the main problems considered.

1.2.1. Notation

Let N+ = {1,2, . . . } be the set of positive integers, and N = {0} ∪N+. Let R denote the set of real

numbers, B𝑑 (𝑟) = {𝑥 ∈ R𝑑 : ‖𝑥‖2 ≤ 𝑟} the 𝑑-dimensional ball of radius 𝑟, and let [𝑖] = {1, . . . , 𝑖} be

the set of integers from 1 to 𝑖 for an integer 𝑖 ∈ N+. For 𝑖, 𝑗 ∈ N, we use [𝑖 : 𝑗] = {𝑖, 𝑖 + 1, . . . , 𝑗} if

𝑖 ≤ 𝑗 , and [𝑖 : 𝑗] = {} otherwise. For 𝑥 ∈ R, b𝑥c is the largest integer that is at most 𝑥. For vectors 𝑎

and 𝑏 of compatible sizes, 〈𝑎, 𝑏〉 = 𝑎>𝑏 denotes their inner product. For a True or False statement

𝑋 (possibly depending on random variables), let I{𝑋} take 1 if 𝑋 is True, and 0 otherwise. Let

𝑎 ∧ 𝑏 = min(𝑎, 𝑏) and 𝑎 ∨ 𝑏 = max(𝑎, 𝑏). For an event 𝐸 , let 𝐸𝐶 denote its complementary event.

Let () denote the empty sequence. We use O and Ω from the big-O notation, and we denote by Õ

the variant of O that hides polylogarithmic factors.

For (column) vectors 𝑀1, 𝑀2, . . ., let us denote by [𝑀1, 𝑀2, . . .] their concatenation

(𝑀>1 , 𝑀>2 , . . .)>. Let ♭(𝑀) map a tensor of any rank 𝑚 and any shape 𝑑1 × 𝑑2 × . . . × 𝑑𝑚 to the
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vector of dimension
∏
𝑖∈[𝑚] 𝑑𝑖 by laying out its elements in a canonical order. Let ⊗ denote the

tensor product. We will use the following result to linearize products of vectors:

Lemma 1.2.1. For any positive integer 𝑛 and any vectors 𝑎1, 𝑎2, . . . , 𝑎𝑛 and 𝑏1, 𝑏2, . . . , 𝑏𝑛 of equal

dimension:

〈𝑎1, 𝑏1〉 〈𝑎2, 𝑏2〉 . . . 〈𝑎𝑛, 𝑏𝑛〉 = 〈♭(𝑎1 ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛), ♭(𝑏1 ⊗ 𝑏2 ⊗ · · · ⊗ 𝑏𝑛)〉 .

1.2.2. Episodic Markov decision processes with bounded rewards

A Markov decision process (MDP) is defined by a tuple 𝑀 = (S ,A,𝑄) of states, actions, and

a transition-reward-kernel, respectively. The structure 𝑀 defines a discrete time sequential de-

cision making problem where in time step 𝑡 = 0,1, . . . , an environment responds to an action

𝐴𝑡 ∈ A of an agent by transitioning from its current state 𝑆𝑡 ∈ S to a new random state 𝑆𝑡+1 ∈ S

while also generating a random reward 𝑅𝑡+1 ∈ R so that the distribution of (𝑅𝑡+1, 𝑆𝑡+1) given

𝑆0, 𝐴0, 𝑅1, 𝑆1, . . . , 𝐴𝑡−1, 𝑅𝑡 , 𝑆𝑡 , 𝐴𝑡 is given by𝑄( · | 𝑆𝑡 , 𝐴𝑡 ) regardless of the history before 𝑆𝑡 , 𝐴𝑡 . For-

mally, 𝑄 is a probability kernel from state-action pairs to reward-state pairs. For simplicity, it is

assumed that 𝑅𝑡+1 above is supported in [0,1].

To simplify the presentation, we assume that the state space is finite, noting that all the defini-

tions and results presented in this thesis can be naturally translated to infinite state spaces by using

the more technical definitions of Weisz et al. (2021a) included in Chapter 3, that involve measure

theoretic considerations. Similarly, assume that the set of actions is finite and A = [𝐴] for some

integer 𝐴.

In this thesis we focus on the fixed-horizon undiscounted total expected reward objective.

Denoting the horizon by 𝐻, under this objective, the goal is to find a policy, a way of choosing

actions given the past, such that the total expected reward over 𝐻 steps is maximized regardless of

the initial state of the process. More formally, a policy defines a probability distribution over actions

(A) given the history of 𝑆0, 𝐴0, 𝑅1, 𝑆1, . . . , 𝑆𝑡 for 0 ≤ 𝑡 < 𝐻. The 𝐻 steps of the process is also called

an episode. As it is well known, the optimal policy, which maximizes the stated objective, depends

on the number of steps left before the episode finishes. In this thesis, we will use an equivalent

formulation which avoids this dependence. In this formulation, only the first 𝐻 rewards can be non-

zero, while the process continues indefinitely and the objective is changed to the total undiscounted

expected reward. To emulate the fixed-horizon setting, one can then create 𝐻 disjoint copies of the

state space, each corresponding to one step of the process while copying the transition structure to
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transition from one copy to the next one, and add an extra state (⊥) such that after 𝐻 steps this state

is reached from which point this state is never left while the reward incurred remains zero regardless

of the actions taken. This is summarized below:

Definition 1.2.2 (Fixed-horizon MDP). The state space S satisfies S = ∪𝐻ℎ=0Sℎ with pairwise dis-

joint sets {Sℎ}ℎ∈[0:𝐻 ] , with S𝐻 = {⊥}, and with 𝑄 is such that for any 𝑠 ∈ Sℎ, ℎ ∈ [0 : 𝐻 − 1]

and 𝑎 ∈ A, 𝑄(·|𝑠, 𝑎) is supported on [0,1] × ({⊥} ∪ Sℎ+1), while for ℎ = 𝐻, this support is

{0} ×S𝐻 = {0} × {⊥}.

Thanks to this assumption, when writing definitions, we can consider the infinite horizon total

expected reward criterion. This latter criterion assigns to a policy 𝜋 used in MDP 𝑀 from initial

state 𝑠 ∈ S the value 𝑣𝜋 (𝑠), which is defined as

𝑣𝜋 (𝑠) = E𝜋𝑀,𝑠
[∑∞

𝑡=0 𝑅𝑡+1
]
. (1)

Here E𝜋𝑀,𝑠 is the expectation corresponding to the probability distribution P𝜋𝑀,𝑠 over trajectories

of infinite length composed of state-action-reward triplets where this probability distribution arises

from using policy 𝜋 in every step, with the first state fixed to 𝑠, while next states and rewards

are generated according to 𝑄. We will also need the action-value function of a policy. This is

defined similarly as above, except that one fixes both the initial state and the initial action. Thus, for

(𝑠, 𝑎) ∈ S ×A,

𝑞𝜋 (𝑠, 𝑎) = E𝜋𝑀,𝑠,𝑎
[∑∞

𝑡=0 𝑅𝑡+1
]
. (2)

where E𝜋𝑀,𝑠,𝑎 is the expectation corresponding to the probability distribution P𝜋𝑀,𝑠,𝑎 over the tra-

jectories as before, except that this time the first state-action pair is fixed to (𝑠, 𝑎) instead of just

fixing the first state to 𝑠. Note that by Definition 1.2.2, both 𝑣𝜋 (mapping states to reals, the value

function of 𝜋) and 𝑞𝜋 (mapping state-action pairs to reals, the action-value function of 𝜋) are well

defined and take values in [0, 𝐻] and the infinite sums can be truncated after stage 𝐻.

Define 𝑣★ : S → R and 𝑞★ : S ×A→ R, the optimal value and, respectively, optimal action-

value function as

𝑣★(𝑠) = sup
𝜋
𝑣𝜋 (𝑠), 𝑞★(𝑠, 𝑎) = sup

𝜋
𝑞𝜋 (𝑠), 𝑠 ∈ S , 𝑎 ∈ A . (3)
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A policy 𝜋 is said to be optimal if 𝑣★ = 𝑣𝜋 . It is well known (Puterman, 1994) that in our setting

an optimal policy always exists and in fact the policy that uses any maximizer of 𝑞★(𝑠, ·) when the

state 𝑆𝑡 is 𝑠 is an optimal policy. This policy, as the choice of the action only depends on the last

state, is called memoryless. Since the choice is also deterministic, the policy is also deterministic.

A deterministic memoryless policy can be concisely given as a map from states to actions. By

slightly abusing notation, in what follows, we will identify such policies with such maps and write

𝜋 : S → A to denote a deterministic memoryless policy. Given such a policy 𝜋 : S → A, its value

functions 𝑣𝜋 and 𝑞𝜋 satisfy the following equations:

𝑣𝜋 (𝑠) = 𝑞𝜋 (𝑠, 𝜋(𝑠)) , (4)

𝑞𝜋 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) +
∑
𝑠′∈S

𝑃(𝑠′ |𝑠, 𝑎)𝑣𝜋 (𝑠′) , 𝑠 ∈ S , 𝑎 ∈ A , (5)

where 𝑃(𝑠′ |𝑠, 𝑎), derived from the transition kernel 𝑄, is the probability of arriving at state 𝑠′ when

the process is in state 𝑠 and action 𝑎 is taken while 𝑟 (𝑠, 𝑎) is the expected reward along this transi-

tion. Formally, 𝑃(𝑠′ |𝑠, 𝑎) = 𝑄( [0,1] × {𝑠′}|𝑠, 𝑎) and 𝑟 (𝑠, 𝑎) =
∫
[0,1]×S 𝑟𝑑𝑄(𝑟, 𝑠

′ |𝑠, 𝑎). The coupled

equations Eq. (5) are known as the Bellman equations for 𝜋 (Puterman, 1994).

Oftentimes in MDPs the rewards and the next states are independently chosen. In this case,

𝑄(·|𝑠, 𝑎) takes the form of the “product” of a probability kernel 𝑅 mapping state-action pairs to

[0,1] and the probability kernel 𝑃 mapping state-action pairs to states. In some constructions below,

we will thus specify an MDP with the help of two such kernels.

When the dependence of 𝑣𝜋 , 𝑣★, or 𝑞★ on MDP 𝑀 is to be emphasized, we put 𝑀 in the index

of these symbols. For example, for a policy 𝜋 for 𝑀 , we will write 𝑣𝜋𝑀 to denote its value function

in 𝑀 .

1.2.3. Online RL and planning

We first introduce the setting of online RL, before introducing the more permissive setting of plan-

ning with access to a simulator. Online RL is the suitable framework when a simulator of the MDP

is not available, or when the available simulator does not have the capability to reset the state of

the simulation to any state apart from a dedicated start state. Note that resetting to the start state is

a natural requirement when solving fixed-horizon MDPs (as such a reset happens whenever a new

episode starts), so we consider online RL the most challenging model.

In online RL, given a 𝐻-horizon MDP 𝑀 = (S ,A,𝑄) satisfying Definition 1.2.2, an agent is

given direct access to the MDP by providing its current reward, state, and associated features, and
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the capability for the agent to take any (possibly random) action in the current state of the MDP. The

MDP is initialized and reset to a dedicated initial state 𝑠0 ∈ S0 after every episode (every 𝐻 steps).

The agent 𝑃 may stop at any time and output a memoryless policy 𝜋𝑃, which we recall is a mapping

from the current state to a probability distribution over actions. At this point, the agent may not

learn or update its output policy anymore. The agent 𝑃 is 𝛿-sound for a class of MDPs M, if for any

𝑀 ∈M, when deploying the agent in MDP 𝑀 as described above, its output policy is 𝛿-optimal in

expectation from the 𝑀’s dedicated initial state 𝑠0, that is,

E𝜋𝑃𝑣
𝜋𝑃
𝑀 (𝑠0) ≥ 𝑣

★
𝑀 (𝑠0) − 𝛿 ,

where the expectation is over the agent’s output policy. Another important metric to measure agents

is their their expected number of actions they take on their underlying MDP before returning with a

policy. We call this the query cost of an agent 𝑃 with an MDP 𝑀 .

In contrast with online RL, our setting of planning involves a simulation oracle that can be

queried with state action pairs (𝑠, 𝑎) ∈ S ×A, to which the oracle responds with a reward-state pair

(𝑅′, 𝑆′) generated from 𝑄:

(𝑅′, 𝑆′) ∼𝑄(·|𝑠, 𝑎) .

In our planning setting, a planner is used in a closed-loop configuration: in step 𝑡 ∈ [0 : 𝐻 − 1] of

using the planner, the planner is given access to state 𝑆𝑡 of the process. By convention, 𝑆0 ∈ S0

and thus we also have 𝑆𝑡 ∈ S𝑡 , for every 𝑡, where (Sℎ)0≤ℎ≤𝐻 is the decomposition of S from

Definition 1.2.2. In each step 𝑡 of using the planner, the planner is given access to the simulation

oracle, with the freedom to decide which queries and how many of them to use before it returns.

Eventually, the planner needs to stop querying and return an action 𝐴𝑡 ∈ A, which is then used to

generate the next state in 𝑀 and an associated reward:

(𝑅𝑡+1, 𝑆𝑡+1) ∼𝑄(·|𝑆𝑡 , 𝐴𝑡 ) .

The planner is then called with state 𝑆𝑡+1 for step 𝑡 +1, and the process repeats until the episode is

over (i.e., 𝑡 = 𝐻). Using a planner 𝑃 in this closed-loop configuration is equivalent to running the

planner-induced policy 𝜋𝑃 in MDP 𝑀 , where the planner-induced policy responds to any history

by calling the planner with the current state and relaying its output. Defined in this way, there is
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an important distinction between planner-induced policies and the regular policies defined before:

planner-induced policies, while executing the underlying planner, have access to the simulation

oracle as described above, and to any memory that the planner saves (which is persisted between

calls). In contrast, recall that the memoryless policies that agents are allowed to output in the online

RL setting are simple mappings from states to action distributions. Observe that 𝜋𝑃 is a stochastic

policy (possibly history-dependent, if the planner saves information between its calls), where the

stochasticity comes from the randomness of the entire planner-oracle interaction (and possibly some

independent randomization). However, note that 𝜋𝑃 itself is not a random element, in contrast to

the output policy of an agent in the online RL setting.

When the process is started from the dedicated initial state 𝑠0, the goal of the planner is to max-

imize total expected reward incurred in the episode, or equivalently, to maximize 𝑣𝜋𝑃𝑀 (𝑠0). Analo-

gously to 𝛿-sound agents in the online RL setting, we introduce the concept of 𝛿-sound planners:

a planner 𝑃 is 𝛿-sound for a class M of MDPs if for any 𝑀 ∈M, when deploying the planner in

MDP 𝑀 in the closed-loop fashion described above, its induced policy is 𝛿-optimal from the 𝑀’s

dedicated initial state 𝑠0, that is,

𝑣𝜋𝑃𝑀 (𝑠0) ≥ 𝑣
★
𝑀 (𝑠0) − 𝛿 .

Analogously to agents, a planner 𝑃 also has a query cost with an MDP 𝑀 , which is defined as the

worst-case expected number of queries that the planner uses in a planning step (or call). Here, the

worst-case is over all possible calls to the planner.

1.2.4. Featurized MDPs

As mentioned in the introduction, Without any additional information or structure, for a general

class of MDPs, even 1
2 -sound planners must have a query cost of min{|S |, 𝐴𝐻 } (Kearns et al., 2002).

Intuitively, this is because planners and agents need to learn about every stage separately, and this

knowledge does not transfer to a new, unseen state. To scale our methods to large, possibly infinite

state spaces, we therefore need to introduce additional structure. We do this in the form of a feature

map that comes with an MDP. This maps states or state-action pairs of the MDP to R𝑑 , with the

goal of describing the important aspects of the state or state-action pair, so that the planner or agent

could generalize based on information it acquires in this 𝑑-dimensional space. In this setting, the

number of states can be arbitrarily large, but 𝑑 is manageably small in the sense that a polynomial

query cost in 𝑑 is considered efficient, while a polynomial query cost in |S | is infeasible.
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The agent or algorithm interacting with an MDP has access to its corresponding feature maps

according to an access model. In the case of local access, which can be used either with online RL

or planning, the agent (or planner, respectively) can observe state features (or state-action features,

depending on which is available) corresponding to each state encountered during the process (i.e.,

the state it is called with, and any state returned by the simulator or the MDP). In the case of

planning under local access, another important restriction is that the planner can query the simulator

for transitions and associated features only at states previously encountered. In the alternative

access model of global access (often referred to as generative model), the planner is given the

set of all states and associated features in advance (no queries required), and the option to query

the simulator for transitions and rewards at any state of its choice. This model is only used with

planning and not with online RL, and it is the most permissive setting considered. As we will see,

the access model plays an important role, as there are problems that can be efficiently solved with

global access, but not with local access. Intuitively, this is because global access relies on receiving

(and potentially pre-processing) an amount of data that is polynomial in |S | at a query cost of zero,

a somewhat unrealistic setting.

1.2.5. Query complexity

For some 𝛿 > 0, denote the set of 𝛿-sound agents for some class of featurized MDPs M under the

online RL, local access model by PRL(M, 𝛿). As online RL is only used with the local access

model, in the future we omit specifying local access when the online RL setting is used. Denote

the set of 𝛿-sound agents for M and 𝛿 under the local and global access models by PLA(M, 𝛿) and

PGA(M, 𝛿), respectively.

What primarily differentiates the quality of agents and planners 𝑃 in these sets is the query

cost of the agent or planner 𝑃 with an MDP 𝑀 ∈M, as previously defined. Naturally, a measure of

difficulty of solving a particular class of featurized MDPs to accuracy 𝛿 is the minimax query cost

that 𝛿-sound agents incur on the class. For online RL, and planning with local and global access,

we correspondingly define the query complexity of the class M under each setting as:

C★RL(M, 𝛿) = inf
𝑃∈PRL

(M, 𝛿) sup
𝑀 ∈M

query cost of 𝑃 with 𝑀

C★LA(M, 𝛿) = inf
𝑃∈PLA

(M, 𝛿) sup
𝑀 ∈M

query cost of 𝑃 with 𝑀

C★GA(M, 𝛿) = inf
𝑃∈PGA

(M, 𝛿) sup
𝑀 ∈M

query cost of 𝑃 with 𝑀 .
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As alluded to before, there is a clear order between the permissivity of these settings. It is

easy to see that any 𝛿-sound agent in the online RL setting is also a 𝛿-sound planner under planning

with local access (by converting the agent’s interaction with the MDP into queries to the simulator

until the agent returns with a policy). Similarly, any 𝛿-sound agent in the local access model is also

𝛿-sound in the global access model. It follows that

C★GA(M, 𝛿) ≤ C★LA(M, 𝛿) ≤ C★RL(M, 𝛿) (6)

no matter the choice of M and 𝛿.

1.2.6. Classes of featurized MDPs

So far, we have made no demands that the feature maps corresponding to an MDP are in any way

grounded to the MDP, or useful. The problems we are interested in involve classes of featurized

MDPs where the features satisfy specific requirements, so that we can hope to construct a 𝛿-sound

agent or planner for such classes, with a query cost that is polynomial in 𝑑 (the dimensionality

of the feature map) instead of |S |. In this thesis we are primarily concerned with establishing the

query complexities (C★RL, C★LA, and C★GA) for four classes of featurized MDPs. For 𝐵 ≥ 0 and positive

integers 𝑑,𝐻, 𝐴, these classes are defined as follows:

• 𝑣★-realizable class: M𝑣★

𝐵,𝑑,𝐻 ,𝐴 is the class of 𝐻-horizon (Definition 1.2.2) finite-state-space

featurized MDPs with 𝐴 actions, where the feature-vectors are 𝑑-dimensional. For any (𝑀,𝜑)

in this class, 𝑀 is an MDP with some state space S and random rewards confined to (say)

[0,1], the associated feature-map 𝜑 : S→ R𝑑 with sup𝑠∈S ‖𝜑(𝑠)‖2 ≤ 1 is such that for some

𝜃★ ∈ R𝑑 with ‖𝜃★‖2 ≤ 𝐵, 𝑣★𝑀 (𝑠) = 𝜑(𝑠)>𝜃★ holds for all 𝑠 ∈ S where 𝑣★𝑀 is the optimal value

function in 𝑀 .1

• 𝑞★-realizable class: M𝑞★

𝐵,𝑑,𝐻 ,𝐴 is the class of featurized MDPs as above except that

here for any (𝑀,𝜑) in the class, for [𝐴] := {1, . . . , 𝐴}, 𝜑 : S × [𝐴] → R𝑑 with

sup𝑠∈S ,𝑎∈[𝐴] ‖𝜑(𝑠, 𝑎)‖2 ≤ 1 and 𝜃★ ∈ R𝑑 with ‖𝜃★‖2 ≤ 𝐵, we now require that 𝑞★𝑀 (𝑠, 𝑎) =

𝜑(𝑠, 𝑎)>𝜃★ holds for all states 𝑠 ∈ S and actions 𝑎 ∈ [𝐴], where 𝑞★𝑀 (𝑠, 𝑎) is the optimal

action-value at (𝑠, 𝑎).

1. Recall that according to Definition 1.2.2, the states of the MDP encode the stage index that the process can be at within
an episode. This allows us to use a notation where the dependence on the stage index of values can be suppressed
(as otherwise, e.g. the optimal policy would depend explicitly on this stage index), and also means that we can talk
about the initial states in an MDP.
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• Reachable-𝑣★/𝑞★-realizable class: M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 is the class of featurized MDPs as above

except that here the MDPs 𝑀 are associated with two feature-maps, 𝜑𝑣 : S → R𝑑 and

𝜑𝑞 : S × [𝐴] → R𝑑 (their 2-norms bounded by 1 as before), and it is assumed that there exists

some 𝜃★ ∈ R𝑑 with ‖𝜃★‖2 ≤ 𝐵 such that 𝑣★𝑀 (𝑠) = 𝜑𝑣 (𝑠)>𝜃★ and 𝑞★𝑀 (𝑠, 𝑎) = 𝜑𝑞 (𝑠, 𝑎)>𝜃★ hold

for any action 𝑎 and any state 𝑠 of the MDP that is reachable from the initial states (with

positive probability with some policy).2

• 𝑞𝜋-realizable class: M𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴 is a variation of M𝑞★

𝐵,𝑑,𝐻 ,𝐴 where linear realizability

holds for the action-values of all memoryless policies (stochastic or deterministic). More

precisely, for any (𝑀,𝜑) in the class, for [𝐴] := {1, . . . , 𝐴}, 𝜑 : S × [𝐴] → R𝑑 with

sup𝑠∈S ,𝑎∈[𝐴] ‖𝜑(𝑠, 𝑎)‖2 ≤ 1, we now require that for any memoryless policy 𝜋, there exist

some 𝜃𝜋 ∈ R𝑑 with ‖𝜃𝜋 ‖2 ≤ 𝐵, such that 𝑞𝜋𝑀 (𝑠, 𝑎) = 𝜑(𝑠, 𝑎)>𝜃𝜋 holds for all states 𝑠 ∈ S and

actions 𝑎 ∈ [𝐴], where 𝑞𝜋𝑀 (𝑠, 𝑎) is the action-value at (𝑠, 𝑎) corresponding to policy 𝜋.

1.3. Related work
Planning with simulators: Minor variations of the online planning problem defined in Section 1.2.3

have been investigated by various groups in the literature. It is known as Model Predictive Control

(MPC) in the process control literature (Meyn, 2022), while in Artificial Intelligence (AI) this prob-

lem is called planning (Chapter 6 Mausam and Kolobov, 2012). Without explicitly realizing its

importance at the time, Rust (1997) used online planning in the closed-loop fashion that we adopt

for this thesis. This is the key reason why the corresponding positive result does not contradict the

negative result of Chow and Tsitsiklis (1989), who set up the planner to run offline, and not part

of a closed-loop process. The local planning problem was introduced by Kearns et al. (2002), who

noticed that a planner which is given a simulator and an input state and asked to return a good action

can do so with computation/query time independent of the size of the state space. However, this

runtime is exponential in 𝐻. Munos (2014) gives algorithms that use optimism to improve on this

exponential runtime in benign cases. With linear features, a negative result of Du et al. (2019a) (see

also Van Roy and Dong (2019); Lattimore et al. (2020)) states that an exponential in min{𝐻, 𝑑}

runtime remains for any planner with constant suboptimality, even if the feature map nearly realizes

the action-value functions of all policies but the approximation error is 𝜀 = Ω(
√
𝐻/𝑑). For target

suboptimality O(
√
𝑑𝜀), assuming access to the solution of a feature-map-dependent optimal design

problem, Lattimore et al. (2020) gives a planner with polynomial computational (and query) com-

2. It is without loss of generality that we use that same 𝜃★ in the inner products that yield 𝑣★𝑀 (𝑠) and 𝑞★𝑀 (𝑠, 𝑎): if these
parameters are not shared, we can concatenate them with only a factor 2 increase in 𝑑 and 𝐵.
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plexity. These results are complemented by the lower bound of Weisz et al. (2021b) (presented in

this thesis), showing that an exponential lower bound still holds when only 𝑞★ is realizable even

if there are no approximation errors. When only the optimal value function is well-represented,

Shariff and Szepesvári (2020) give an algorithm for the case where the features are contained in the

convex hull of a “core set” of feature vectors. Their planning algorithm, which builds on top of Lak-

shminarayanan et al. (2017), has computational and query cost that scales polynomially in the size

of the core set and the other relevant quantities. A similar approach appears in Zanette et al. (2019).

By contrast, we only provide a bound only on the query complexity of our algorithm, but our query

complexity is independent of the size of the core set, whose size, in general, is uncontrolled by the

other quantities.

Online learning: Any online learning algorithm that controls regret can also be used for local plan-

ning by recommending the most frequently used action at the start state. Of the sizable literature on

online learning with linear function approximation (Jiang et al., 2017; Du et al., 2019b; Jin et al.,

2020a; Wang et al., 2019; Yang and Wang, 2019; Ayoub et al., 2020; Modi et al., 2020; Wang et al.,

2020b; Zanette et al., 2020a), the most relevant are the works of Wen and Van Roy (2013); Jiang

et al. (2017). Both works give algorithms for the online setting with realizable function approxi-

mation, and are based on the principle of optimism. The algorithm of Wen and Van Roy (2013) is

restricted to MDPs with deterministic rewards and deterministic transitions, and guarantees that at

most 𝑑 trajectories will be suboptimal. Their proof is based on a similar eluder dimension argument.

On the other hand, the algorithm of Jiang et al. (2017) is restricted to the case when a complexity

measure called the Bellman rank is low. In fact, our agnostic guarantee (see Definition 3.2.1) is re-

lated to a similar agnostic guarantee of their algorithm (see their Appendix A.2), where optimism at

the initial state allows them to compete with the best policy whose state-value function is realizable.

Despite the similarities, neither the algorithm nor the analysis applies to our setting.

1.4. Summary of contributions for 𝑞★ and 𝑣★-realizability

Our first contribution, published as (Weisz et al., 2021b), proves an exponential lower bound that

arises due to the stochasticity of the MDP’s rewards, while the transitions are deterministic (such

a result would not be possible if the rewards were also deterministic, see Theorem 1.4.5). To state

this result, let MPdet be the class of featurized MDPs with deterministic transitions:
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Theorem 1.4.1 (Weisz et al., 2021b, Theorem 9, lower bound for exponentially many actions).

There exists 𝛿 > 0 and 𝐵 > 0, such that as 𝐻∧ 𝑑→∞, for 𝐴 = 2Ω(𝑑∧𝐻 ) ,3

C★GA(M
𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
Pdet, 𝛿) = 2Ω(𝑑∧𝐻 ) .

According to this result, as long as there are exponentially many actions, planning remains

intractable even for featurized MDPs where the features provided realize the optimal action-value

function of the associated MDP and even if the MDP’s transitions are deterministic. Note that

the exponential lower bound in this theorem is nontrivial since the query complexity of finding a

good approximation to a function that lies in the span of 𝑑 features from input-output examples is

polynomial in the number of features regardless the cardinality of the input domain of the function,

hence, the intractability in the above result cannot be solely attributed to the presence of a large

action set. Indeed, by setting 𝐻 = 1 we arrive at the linear bandits problem, which has a polynomial

query complexity (Lattimore and Szepesvári, 2020). The same approach fails when a sequential

element is introduced (by setting 𝐻 � 1), as the transition observation of (𝑅′, 𝑆′) ∼ 𝑄(·|𝑠, 𝑎) is

missing the crucial information 𝑞★(𝑆′, ·). This leads to a chicken-and-egg problem, where to find a

near-optimal policy from some stage ℎ it would suffice to know the optimal policy from stage ℎ+1

onwards, but this information is exponentially difficult in 𝐻 to obtain.

Theorem 1.4.1 uncovers the fundamental reason why function approximation in RL

and planning is necessarily much harder than in bandits.

A limitation of this result is that the hardness result only applies to MDPs with exponentially many

actions, where even knowing the entire 𝑞★ function would not necessarily lead to a computationally

efficient implementation of a near-optimal policy (as even solving 𝜋(𝑠) = arg max𝑎∈A 𝑞★(𝑠, 𝑎) may

be computationally inefficient).

An intriguing question is whether planning for the same setting as considered by

that of Theorem 1.4.1 but with polynomial number of actions is tractable.

This question is answered by our next contribution, published as (Weisz et al., 2022b), which

states that even with an action count that is polynomial in 𝑑 and 𝐻, planning remains intractable for

the same class of MDPs:

3. 𝑎∧ 𝑏 = min(𝑎, 𝑏).
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Theorem 1.4.2 (Weisz et al., 2022b, Theorem 1.1, lower bound with global access, at least

poly(𝑑∧𝐻) actions). There exists 𝛿 > 0 and 𝐵 > 0, such that as 𝐻∧ 𝑑→∞, for 𝐴 ≥ 𝑑1/4∧𝐻1/2,

C★GA(M∩M
Pdet, 𝛿) = 2Ω(𝑑

1/4∧𝐻 1/2)

for M ∈ {M𝑣★

𝐵,𝑑,𝐻 ,𝐴,M
𝑞★

𝐵,𝑑,𝐻 ,𝐴,M
𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 } .

Together with Eq. (6) this result also gives a lower bound on the query complexity of planning

when only local access is available to the featurized MDP. Apart from the larger exponential in the

lower bound of Theorem 1.4.1, Theorem 1.4.2 is a more general result, with its proof including all

of the mechanics of the proof of the former result. Thus, in this thesis we only give proof of Theo-

rem 1.4.2 (see Chapter 2), and refer the reader to (Weisz et al., 2022b) for a proof of Theorem 1.4.1.

The remaining problem is whether planning is tractable when 2 ≤ 𝐴 = 𝑜(𝑑1/4 ∧𝐻1/2). For a

constant number of actions, our next contribution published as (Weisz et al., 2021a) answers this

question in the positive when M = M𝑣★

𝐵,𝑑,𝐻 ,𝐴. We present this result and its proof in Chapter 3

as Theorems 3.3.2, 3.3.4 and 3.3.5. We call the planner achieving this result TensorPlan. It learns

directly from the Bellman equations as the transitions are observed. At the core of the proof lies

an argument that the number of learning steps before the near-optimal policy is discovered can be

bounded by the solution to the following self-contained and elegant linear algebraic problem:4

Problem 1.4.3. Given an integer 𝑑 and a 𝑑-dimensional real vector space 𝑉 , what is the largest

positive integer 𝑇 with the property that we can find 𝑇 pairs of vectors (𝑒1, 𝑓1), . . . , (𝑒𝑇 , 𝑓𝑇 ) in 𝑉

such that for all 1 ≤ 𝑡 ≤ 𝑇 ,there are 𝑥𝑖 ∈ {𝑒𝑖 , 𝑓𝑖} for 𝑖 ≤ 𝑡 such that neither 𝑒𝑡 nor 𝑓𝑡 is in the span of

𝑥1, . . . , 𝑥𝑡−1?

Weisz et al. (2022b) extends the polynomial upper bounds to two additional settings, for a fixed

number of actions. As the extension is fairly straight-forward but heavy on notation, for simplicity

we only present the resulting Theorem 1.4.4 in this thesis, and refer the reader to Weisz et al. (2022b)

for its proof:

Theorem 1.4.4 (Weisz et al., 2022b, Theorem 1.2, upper bound with local access). For M ∈

{M𝑣★

𝐵,𝑑,𝐻 ,𝐴,M
𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
Pdet,M𝑣★/𝑞★reach

𝐵,𝑑,𝐻 ,𝐴 }, arbitrary positive reals 𝛿, 𝐵 and arbitrary positive

integers 𝑑,𝐻,

C★LA(M, 𝛿) =𝑂
(
poly

( (
𝑑𝐻
𝛿

)𝐴
, 𝐵

))
.

4. The version of the problem presented here is relevant for the 𝐴 = 2. The solution of this problem is a contribution
due to Barnabás Janzer, a co-author of the paper.
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While the aforementioned query cost upper bound is polynomial when 𝐴 is a small constant,

a corresponding negative result shown by Liu et al. (2023) is that the computational cost of any

𝛿-sound planner has to be exponentially large in 𝑑 or 𝐻 under the Randomized Exponential Time

Hypothesis (rETH) (Dell et al., 2014).

Intriguingly, even the new results leave open whether planning with local access is statistically

tractable under 𝑞★ realizability when the MDPs involved have stochastic transition dynamics and

rewards while the number of actions is constant:

Open problem: for 𝐴 constant, what is C★LA(M
𝑞★

𝐵,𝑑,𝐻 ,𝐴, 𝛿) (the query complexity

of the class of 𝑞★-realizable featurized MDPs)?

In fact, even though our upper bound holds generally for the 𝑣★-realizable and reachable-

𝑣★/𝑞★-realizable classes of MDPs, for the 𝑞★-realizable class our upper bound only holds for MDPs

with deterministic transitions. While our lower bounds (Theorems 1.4.1 and 1.4.2) also only require

deterministic-transition MDPs, the difficulty of the planning or online RL problem immediately col-

lapses when the last remaining source of stochasticity, the rewards, is also set to be deterministic. To

present this result, denote by MPRdet the class of MDPs where in addition to transitions, rewards are

also deterministic. For such MDPs, Optimistic Constraint Propagation (Wen and Van Roy, 2013)

can be used to show a polynomial query (and even computational) complexity for online RL:

Theorem 1.4.5 (Wen and Van Roy (2013)). For any 𝐵, 𝑑,𝐻, 𝐴,

C★RL(M
𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
PRdet,0) ≤ 𝑑𝐻 .

Proof sketch. Let Θ be the set of possible values of 𝜃★ that based on the transitions observed so far

may satisfy 𝑞★(𝑠, 𝑎) = 𝜑(𝑠, 𝑎)>𝜃★ for all 𝑠, 𝑎, and initialize this to B𝑑 (𝐵). At the start of each episode

choose 𝜃 = arg max𝜃′∈Θmax𝑎∈A 𝜑(𝑠0, 𝑎)>𝜃 ′. For this episode, play the policy that in each state 𝑆ℎ

chooses the action 𝐴ℎ = arg max𝑎∈A 𝜑(𝑆ℎ, 𝑎)>𝜃, and observe 𝑅ℎ+1, 𝑆ℎ+1. When the episode is over,

take the largest stage 0 ≤ 𝑖 < 𝐻 such that
∑
𝐻 ≥ 𝑗>𝑖 𝑅 𝑗 ≠ 𝜑(𝑆𝑖 , 𝐴𝑖)>𝜃. If such an 𝑖 does not exist, stop

and return the current policy, which will be an optimal policy. Otherwise, for this deterministic-

reward MDP write the reward as 𝑟 (𝑠, 𝑎) and observe the fact that for 𝑠 ∈ S𝐻−1, 𝑞★(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎).

By an inductive argument using optimism and this property,
∑
𝐻 ≥ 𝑗>𝑖 𝑅 𝑗 = 𝑞

★(𝑆𝑖 , 𝐴𝑖). Therefore the

dimensionality of Θ reduces by 1 when intersecting it with the subspace that satisfies
∑
𝐻 ≥ 𝑗>𝑖 𝑅 𝑗 =

𝑞★(𝑆𝑖 , 𝐴𝑖) = 𝜑(𝑆𝑖 , 𝐴𝑖)>𝜃. This can happen at most 𝑑 − 1 times, so this algorithm returns with the

optimal policy after at most 𝑑 episodes.
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Publications Action count MDP class poly(·) query
complexity?

Wen and Van Roy (2013) any M𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
det 3

Du et al. (2021) any M𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴 3

Weisz et al. (2021a) O(1) M𝑣★

𝐵,𝑑,𝐻 ,𝐴 3

Weisz et al. (2021b) 2Ω(𝑑∧𝐻 ) M𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
Pdet 7

Weisz et al. (2022b) Ω(𝑑1/4∧𝐻1/2) M𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
Pdet 7

—"— —"— M𝑣★

𝐵,𝑑,𝐻 ,𝐴∩M
Pdet 7

—"— —"— M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 ∩M

Pdet 7

—"— O(1) M𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
Pdet 3

—"— —"— M𝑣★

𝐵,𝑑,𝐻 ,𝐴 3

—"— —"— M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 3

Table 1: Comparison of various query complexity results for planning with global access, and features
realizing the optimal value or action-value function. The symbol Mdet stands for the class of finite MDPs
with deterministic transitions and rewards. 3 indicates the existence of a sound planner with query cost
polynomial in relevant parameters (excluding 𝑆 and 𝐴); 7 indicates that such a planner does not exist.

Given that our upper bound is polynomial when the number of actions is fixed, one may spec-

ulate that when the number of actions is large, perhaps one should replace each stage of an episode

with log2(𝐴) stages, where actions would be chosen by determining their “bits” one by one, in a

sequential fashion. The difficulty then is that this calls for an extension of the state space and a new,

suitable feature-map.

Corollary 1.4.6 (of Theorem 1.4.2; informal). Let 𝐵,𝐻, 𝑑, 𝐴 be as in Theorem 1.4.2 (in particu-

lar, 𝐴 ≥ 𝑑1/4 ∧𝐻1/2), let 𝑑 be some polynomial of 𝐻,𝑑, 𝐴, and let M ∈ {M𝑣★

𝐵,𝑑,𝐻 ,𝐴,M
𝑞★

𝐵,𝑑,𝐻 ,𝐴∩

MPdet,M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 }. For any featurized MDP 𝑀 in M, apply the above action binarization pro-

cess to derive a corresponding 2-action MDP 𝑀 ′. Consider the task of deriving a corresponding

𝑑-dimensional feature-map, together with which 𝑀 ′ belongs to 2-action version of the class M.

The local access query complexity of this task is 2Ω(𝑑1/4∧𝐻 1/2) .

Proof sketch. By contradiction, if the query complexity of the featurization task is asymptotically

smaller than the lower bounds of Theorem 1.4.2, one could take any featurized MDP in M, apply

the action binarization and featurization tasks, and apply Theorem 1.4.4 with 𝐴 = 2 to solve the

resulting featurized MDP with query cost 𝑂
(
poly

( (
𝑑𝐻
𝛿

)2
, 𝐵

))
. This approach leads to a total query

cost that contradicts the query complexity lower bound of Theorem 1.4.2.

Recently, the topic of planning and online RL with good features has also seen many new

results. We would like to emphasize two results in this topic closely related to Theorem 1.4.4. For
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the first result, we define the class M𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴 like the class M𝑣★/𝑞★reach

𝐵,𝑑,𝐻 ,𝐴 , except that realizability is

required to hold over the entire state-space, and not only for states reachable from the initial states.

Then, as all the features are given in advance in the case of global access,

Theorem 1.4.7 (Du et al. (2021)).

C★GA(M
𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴, 𝛿) = poly(𝐵, 𝑑,𝐻, 𝛿−1) .

Note that while according to Theorem 1.4.2, planning with global (and thus also local) access

over M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 is intractable, the result just mentioned implies that planning with global access

over M𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴 is tractable. Thus, while it is immediate from the definitions that

M𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴 ⊂M𝑣★/𝑞★reach

𝐵,𝑑,𝐻 ,𝐴 ,

the two results together imply that the class on the right-hand side (RHS) is substantially larger than

the one on the left-hand side (LHS). However, the difference is irrelevant when it comes to local

access, as the following corollary shows:

Corollary 1.4.8 (of Theorem 1.4.2). There exists 𝛿 > 0 and 𝐵 > 0, such that as 𝐻 ∧ 𝑑 →∞, for

𝐴 ≥ 𝑑1/4∧𝐻1/2,

C★LA(M
𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴∩M

Pdet, 𝛿) = 2Ω(𝑑
1/4∧𝐻 1/2)

Sketch proof. For any featurized MDP 𝑀 in M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 ∩M

Pdet, 𝛿), we can derive a featurized

MDP 𝑀 ′ in M𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴∩M

Pdet, 𝛿) by removing the states unreachable from the initial state. As only

the unreachable states are removed, any local access simulator for 𝑀 is also a local access simulator

for 𝑀 ′. Furthermore, every policy in 𝑀 has the same value in 𝑀 ′. Therefore a 𝛿-sound local access

planner for M𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴∩M

Pdet is also a 𝛿-sound local access planner for M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 ∩M

Pdet, and

the lower bound of Theorem 1.4.2 applies.

When combined with Theorem 1.4.7, we arrive at the first exponential information theoretic

separation result in the literature between local and global access:

Corollary 1.4.9. There exists 𝛿 > 0 and 𝐵 > 0, such that as 𝐻∧ 𝑑→∞, for 𝐴 ≥ 𝑑1/4∧𝐻1/2,

poly(𝐵, 𝑑,𝐻, 𝛿−1) = C★GA(M
𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴, 𝛿) � C★LA(M

𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴, 𝛿) = 2Ω(𝑑

1/4∧𝐻 1/2) .



1.5. Summary of contributions for 𝑞𝜋-realizability 17

For convenience, we summarize the results discussed so far in Table 1.

For some 𝜌 > 0 constant, let the class of featurized MDPs where in each state there is a gap of

at least 𝜌 between the 𝑞★-values of the best and second-best actions be M𝜌−gap. The second result

of interest is in online RL, due to Wang et al. (2021), who give an exponential lower bound in the

flavor of Theorem 1.4.1 on C★RL(M
𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
𝜌−gap, 𝛿). They achieve this by adapting the hard

MDP construction of Weisz et al. (2021b) to satisfy the constant suboptimality gap 𝜌. Instead

of exponentially downscaling the values in the more advanced stages, such a result is possible

by implementing this reduction effect through zero-reward transitions to the episode-over stage,

such that the probability of reaching an advanced stage (instead of the value at such a stage) is

exponentially small. This does not lead to a hardness result in our planning setup, at least under

global access, showing an exponential query cost separation result between global access and online

RL:

Theorem 1.4.10 (Du et al., 2019a, Theorem C.1.). For any 𝐵, 𝑑,𝐻, 𝐴, 𝜌 > 0,

C★GA(M
𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
𝜌−gap,0) ≤ poly

(
𝑑,𝐻,

1
𝜌

)
.

On the other hand, we note that we expect similar modifications to the hard MDP class under-

lying our Theorem 1.4.2 to lead to a similar, constant suboptimality gap version of the theorem in

the online RL case.

1.5. Summary of contributions for 𝑞𝜋-realizability

Recall that the 𝑞𝜋-realizable class, M𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴, is the class of finite-state-space featurized MDPs

with actions A = [𝐴] := {1, . . . , 𝐴}, where the feature-vectors are 𝑑-dimensional, the length of

the episodes is 𝐻. For any (𝑀,𝜑) in this class, 𝑀 is an MDP with some state space S and

random rewards confined to (say) [0,1], the associated feature-map 𝜑 : S × [𝐴] → R𝑑 with

sup𝑠∈S ,𝑎∈[𝐴] ‖𝜑(𝑠, 𝑎)‖2 ≤ 1 is such that for any memoryless policy 𝜋, there is a 𝜃 𝜋 ∈ R𝑑 with

‖𝜃 𝜋 ‖2 ≤ 𝐵, such that for all states 𝑠 ∈ S and actions 𝑎 ∈ [𝐴] 𝑞𝜋𝑀 (𝑠, 𝑎) = 𝜑(𝑠, 𝑎)>𝜃 𝜋 holds. A relax-

ation of this class with some misspecification 𝜀 ≥ 0 is denoted by M𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴,𝜀 . Here, a maximum

difference of 𝜀 is allowed between the left and right hand sides, over all states and actions:



𝑞𝜋 (𝑠, 𝑎) −𝜑(𝑠, 𝑎)>𝜃 𝜋

 ≤ 𝜀 for all 𝜋 memoryless policies, 𝑠 ∈ S , 𝑎 ∈ A .
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Table 2: Comparison of best achievable suboptimality and corresponding query complexity guarantees of

various planners with misspecification 𝜀 > 0, for the class M𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴,𝜀 . Drawbacks are highlighted with red,
the best bounds with blue.

Algorithm (Publication) Query cost Suboptimality Access model

MC-LSPI (Lattimore et al., 2020) Õ
(
𝑑𝐻4𝜀−2) Õ

(
𝜀
√
𝑑𝐻2) global access

CONFIDENT MC-LSPI (Yin et al., 2022) Õ
(
𝑑2𝐻4𝜀−2) Õ

(
𝜀
√
𝑑𝐻2) local access

CONFIDENT MC-POLITEX (Yin et al., 2022) Õ
(
𝑑𝐻5𝜀−4) Õ

(
𝜀
√
𝑑𝐻

)
local access

CAPI-QPI-PLAN (Weisz et al., 2022a) Õ
(
𝑑𝐻4𝜀−2) Õ

(
𝜀
√
𝑑𝐻

)
local access

It is easy to see that M𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴 is a strictly smaller class than the ones previously considered:

M𝑣★

𝐵,𝑑,𝐻 ,𝐴, M𝑞★

𝐵,𝑑,𝐻 ,𝐴, and M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 . As such, we naturally expect more positive results, such

as a stronger upper bound or upper bounds that holds in less permissive settings. On the other hand,

it is also known that M𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴 is a strictly larger class than the class of linear MDPs (Zanette et al.,

2020b, Proposition 4), for which there are efficient algorithms to find a near-optimal policy in the

online setting (without a simulator) (Jin et al., 2020b), even in the more challenging reward-free

setting where the rewards are only revealed after exploration (Wagenmaker et al., 2022).

In this thesis we also present a planner, called CAPI-QPI-PLAN, for the class of M𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴,𝜀 ,

originally published as Weisz et al. (2022a). This planner (1) works in the most permissive local

access planning setting, and (2) improves on the state of the art query cost and suboptimality guar-

antees. Its guarantees are compared to existing solutions in Table 2. This result is summarized in

Theorem 1.5.1, which is a consequence of the more general theorems Theorems 4.1.2 and 4.1.3

presented in Chapter 4.5. Note the graceful degradation with the aforementioned misspecification 𝜀,

in that effectively it only puts a bound on the best suboptimality 𝛿 achievable by the planner.

Theorem 1.5.1. For arbitrary non-negative reals 𝐵,𝜀, arbitrary positive integers 𝑑,𝐻, and 𝛿 ≥

𝜀
√
𝑑𝐻,

C★LA(M
𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴,𝜀 , 𝛿) = Õ
(
𝑑2𝐻6𝛿−2

)
,

and there is a planner called CAPI-QPI-PLAN achieving this query cost while using a computa-

tional and memory cost that scales polynomially in the relevant parameters.

There is a corresponding lower bound due to Weisz et al. (2022a), presented in this thesis as

Theorem 4.1.4, that shows that CAPI-QPI-PLAN enjoys query cost and best achievable suboptimal-

ity guarantees that are asymptotically optimal in all parameters except 𝐻.

5. In Chapter 4, for generality, we switch to the 𝛾-discounted infinite horizon objective. Theorems 4.1.2 and 4.1.3
together imply Theorem 1.5.1 for the fixed, finite horizon case by letting 𝐻 = Õ(1/(1− 𝛾)) be the effective horizon
and noting that a 𝛿-suboptimal policy for the discounted setting is a 2𝛿-suboptimal policy in the 𝐻-horizon setting.
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Online RL Local access planning
MDP class poly(·) sample poly(·) compute poly(·) sample poly(·) compute

Linear MDP Jin et al. (2020a)
𝑞𝜋-realizable MDP Weisz et al. (2023) Open problem Yin et al. (2022)

Table 3: Comparison of efficiency results for linear MDPs and 𝑞𝜋-realizable MDPs under online RL and local
access planning. Weisz et al. (2023) establishes that 𝑞𝜋-realizable MDPs are also sample efficiently solvable
under online RL. This result is presented in this thesis as Theorem 1.5.2 and Chapter 5. The computational
complexity of this problem remains open.

The largest outstanding gap between linear MDPs and 𝑞𝜋-realizable MDPs (i.e., M𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴)

is that while all previous provably efficient algorithms tackling the latter case required the planning

setting with local or global access, it is known that linear MDPs can be efficiently (with polynomial

query complexity) solved in the more challenging online RL setting too (Jin et al., 2020a). It has

been unclear whether having at least a local access simulator is crucial for achieving an efficient

(polynomial query cost) solution for 𝑞𝜋-realizable MDPs. This was perhaps one of the most impor-

tant differences between the power of the local access planning and online RL regimes (summarized

in Table 3). The final contribution presented in this thesis closes these gaps by showing that efficient

learning of 𝑞𝜋-realizable MDPs is possible even in the online RL setting (see Theorem 5.4.1 for the

formal version of the theorem, and Chapter 5 for the proof):

Theorem 1.5.2 (consequence of Theorem 5.4.1, published as Weisz et al., 2023, Theorem

4.1). For arbitrary positive reals 𝛿, 𝐵 and arbitrary positive integers 𝑑,𝐻, for any 0 ≤ 𝜀 ≤

poly(𝛿, 𝑑,𝐻, log𝐵)−1 (for some fixed polynomial),

C★RL(M
𝑞𝜋

𝐵,𝑑,𝐻 ,𝐴,𝜀 , 𝛿) = Õ
(
𝑑7𝐻11𝛿−2

)
.

The main difficulty of the online RL setting compared to local access is that while in the

latter, any (previously observed) state can be reset to in a single step, the query complexity required

to reach some specific state in the MDP with online RL must scale at least with the inverse of

the maximum reaching probability of the state over any policy. This quantity may be arbitrarily

small. As an illustrative example, take an MDP with a sequence of states, each reachable from the

previous state only, with 1/2-probability by any policy. Under the local access model, each of these

can be discovered in polynomial query cost, while in general the discovery of such a sequence of

states might take at least an exponential (in the length of the sequence) number of samples. This

fundamental challenge renders any method relying on a local access simulator unsuitable to tackle

the online RL regime. Instead, our approach relies on discovering rich structure in 𝑞𝜋-realizable
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MDPs that allows for techniques similar to those applied on linear MDPs to be adaptable to this

regime.

Theorem 1.5.2 leaves two notable open questions: first, Theorem 1.5.2 proves a query complex-

ity result that, while polynomial in the relevant parameters, is less efficient than existing methods

for linear MDPs under online RL or for 𝑞𝜋-realizable MDPs under local access planning. Second,

perhaps most notably, it is unknown whether there exists a method that achieves both polynomial

sample and computational complexity for 𝑞𝜋-realizable MDPs under online RL.



Chapter 2

Exponential lower bound under 𝑞★-realizability

In this section we give the proof of Theorem 1.4.2. We start by introducing the high level ideas

underlying the proof.

2.1. Overview

We prove the lower bound by designing a class of MDPs where by traversing the MDP, the agent

effectively has to pick corners of a 𝑝-dimensional hypercube, in sequence, until either 𝐾 picks were

made or a pick was sufficiently close to the secret “solution” corner 𝑤★. Here, 𝑝 ≈ 𝐻1/2 ∧ 𝑑1/4

(large if both 𝐻 and 𝑑 are large) and 𝐾 ≈ 𝐻/𝑝 (large if 𝐻 is large). If the agent picks a corner close

to the solution, the episode is effectively terminated and the agent receives the highest possible re-

ward achievable from that state. Otherwise, the agent’s next pick has to substantially differ from

the previously picked corner. After each choice, the highest reward achievable shrinks by a penalty

factor that is governed by how different the subsequent picks are: picking dissimilar corners results

in a larger penalty (i.e., a smaller penalty factor). Since subsequent picks need to be substantially

different, this means that 𝑞★ (or 𝑣★) reduces at an exponential rate throughout the episode until

a guess is sufficiently close to the solution or all 𝐾 picks are exhausted, in which case the agent

receives a Bernoulli reward with expectation exp(−Ω(𝐾)). Without additional information, guess-

ing sufficiently close to the solution is a needle-in-a-haystack problem with an exponentially large

haystack: with probability above (say) 3/4, the secret corner will not be found within exp(Ω(𝑝))

guesses. Additional information is not provided to the agent as long as the final reward is 0. Since

the probability that this Bernoulli outcome is identically zero for the first exp(Ω(𝐾)) guesses can be

made to be 3/4 or larger, if a planner uses at most exp(Ω(𝑝∧𝐾)) guesses, with probability at least

1/2, neither blind guessing nor the Bernoulli outcomes will lead to success. Thus, in expectation,

any sound planner has to query more than exp(Ω(𝑝∧𝐾)) times.
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To achieve realizability of 𝑞★ (or 𝑣★), it is sufficient if the value of the optimal policy is a

low-order polynomial of the 𝑝-dimensional secret solution at any state in the MDP. To achieve this,

the mechanics of choosing a guess and the penalty factor are carefully chosen in such a way that

the optimal policy has a simple “greedy” structure that moves any guess as close as possible to the

solution. The value of this greedy optimal policy is then proved to be a 4th-order polynomial of 𝑤★,

which gives rise to a 𝑑 ≈ 𝑝4 dimensional feature-map that can realize the optimal values.

For the sake of simplicity and modularity, rather than defining the MDP, we first define a

simplified “abstract game” where an “abstract planner” has to guess the above-mentioned secret

parameter. This abstract game is essentially what has been described in the previous paragraph.

This construction focuses on the information theoretic aspect of the proof, leaving the construction

of the MDP with the required realizability properties to the subsequent sections.

2.2. Abstract game

The abstract game has a length parameter 𝐾 ∈ N+ and an integer dimensionality parameter 𝑝 ≥ 2,

which are known to the abstract planner. Let𝑊 = {−1,1}𝑝. Let 000 and 111 indicate the 𝑝-dimensional

vectors of all zeros and all ones, respectively. For vectors 𝑥 and 𝑦 from 𝑊 , define diff (𝑥, 𝑦) as the

Hamming distance between 𝑥 and 𝑦, i.e., the number of components where 𝑥 and 𝑦 are different. We

will use the property of the Hamming distance that it can be written as an (affine) bilinear function

of its arguments: for 𝑤1,𝑤2 ∈𝑊 ,

diff (𝑤1,𝑤2) =
1
2
(𝑝− 〈𝑤1,𝑤2〉) . (7)

Note that diff (·, ·) is a metric on the set𝑊 . Let

𝑊★ = {𝑤 ∈𝑊 : 𝑝/4 ≤ diff (111,𝑤) ≤ 3𝑝/4} (8)

be the set that will hold the game’s secret parameter: 𝑤★ ∈𝑊★. For any 𝑘 ∈ N, let

𝑊◦𝑘 = {(𝑤𝑖)𝑖∈[𝑘 ] ∈𝑊 𝑘 : diff (𝑤𝑖−1,𝑤𝑖) ≥ 𝑝/4 for 𝑖 ∈ [𝑘]} , (9)

with 𝑤0 := 111 defined for convenience, be the subset of 𝑘-length sequences of𝑊 where the elements

are “sufficiently far” from each other.

The union of these over 𝑘 ≤ 𝐾 is the action set of the bandit-like game. Given 𝑤★, the re-

ward function 𝑓𝑤★ : {()} ∪⋃
𝑘∈[𝐾 ]𝑊

◦𝑘 → R (index dropped when clear from context) is defined as
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follows (again 𝑤0 := 111):6 𝑓 (()) = 𝑔(diff (𝑤0,𝑤
★)), and for 𝑘 ∈ [𝐾],

𝑓𝑤★

(
(𝑤𝑖)𝑖∈[𝑘 ]

)
=

©­«
∏
𝑖∈[𝑘 ]

𝑔(diff (𝑤𝑖−1,𝑤𝑖))
ª®¬𝑔(diff (𝑤𝑘 ,𝑤★)) where

𝑔(𝑥) = 1− 𝑥
𝑝
+ (𝑥−1)𝑥

2𝑝2 .

The game is sequential. It proceeds in steps where the abstract planner performs a query and

receives a corresponding response (both the query and the response may be randomized). At each

step 𝑡 ∈ N+, the abstract planner randomly chooses whether to continue or not, and what its output

or next query (correspondingly) is. If it continues, it chooses a sequence length 𝐿𝑡 ∈ [𝐾], and a

sequence 𝑆𝑡 = (𝑤𝑡𝑖 )𝑖∈[𝐿𝑡 ] ∈𝑊◦𝐿𝑡 . Otherwise, if it returns, it chooses its output 𝑆𝑡 = (𝑤𝑡𝑖 )𝑖∈[8] ∈𝑊◦8.

Note that the output is confined to have the fixed length of 8.7 To distinguish this from the case

when the planner continues, we let 𝐿𝑡 = 0 denote that the planner wants to return an output. Let

𝑁 = min {𝑡 ∈ N+ : 𝐿𝑡 = 0} indicate the step at which the planner returns. Thus, the planner’s output

is 𝑆𝑁 .

At step 𝑡, denote the choice of the planner by 𝑋𝑡 = (𝐿𝑡 , 𝑆𝑡 ). If the planner is not done yet (𝐿𝑡 > 0,

and thus 𝑡 < 𝑁) then, in response to the planner’s query, a random response 𝑌𝑡 = (𝑈𝑡 ,𝑉𝑡 , 𝑍𝑡 ) ∈

{0,1} × {0,1} × [0,1] is generated as follows:

• 𝑈𝑡 indicates whether the penultimate component of 𝑆𝑡 is close to 𝑤★ (for convenience define

𝑤𝑡0 = 111):

𝑈𝑡 = I{diff (𝑤𝑡𝐿𝑡−1,𝑤
★) < 𝑝/4} .

• 𝑉𝑡 indicates whether the last component of 𝑆𝑡 is close to 𝑤★:

𝑉𝑡 = I{diff (𝑤𝑡𝐿𝑡 ,𝑤
★) < 𝑝/4} .

6. The reason for this form of 𝑓 will become clear only when the MDP corresponding to the abstract game is defined.
For now, let us only note that (1) as the input sequence grows in size, their elements being sufficiently far ensures an
exponential rate of reduction of 𝑓 , and (2) 𝑔(𝑥) is the second-order Taylor expansion of (1− 1/𝑝)𝑥 , which ensures
through some inequalities that the optimal strategy for maximizing 𝑓 is to greedily move towards 𝑤★ in the MDP as
fast as possible. A simple optimal policy with a low-order polynomial expression for 𝑓 allows deriving linear features
for the MDP’s value function.

7. The constant 8 here is sufficiently small to prove that planners cannot guess close enough to 𝑤★ with any of these 8
attempts, yet large enough so that to achieve a small suboptimality in the MDP problem (that will be derived later), it
will be crucial to guess a vector among these 8 vectors that is close to 𝑤★.
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• 𝑍𝑡 is distributed as Ber( 𝑓𝑤★ (𝑆𝑡 )) if either 𝑉𝑡 = 1 (the last component of 𝑆𝑡 is close to 𝑤★)

or 𝐿𝑡 = 𝐾 (all components are used in 𝑆𝑡 ), else 𝑍𝑡 = 0. Here, Ber denotes the Bernoulli

distribution. This is well-defined as 𝑓𝑤★ (𝑆𝑡 ) ∈ [0,1] by Lemma 2.2.2.

If, on the other hand, the planner indicates that it is done (𝐿𝑡 = 0, and thus 𝑡 = 𝑁) then there is

no feedback, but the payoff (reward) to the planner is

𝑅 = 𝑓𝑤★

(
(𝑤𝑁𝑖 )𝑖∈[𝑘★]

)
(10)

where 𝑘★ = 𝑘★(𝑆𝑡 ;𝑤★) denotes the first component of 𝑆𝑡 = (𝑤𝑁𝑘 )𝑘∈[8] that is sufficiently close to

𝑤★, or 8 if none of them are:

𝑘★ = min{𝑘 ∈ [8] : 𝑘 = 8 or diff (𝑤𝑁𝑘 ,𝑤
★) < 𝑝/4} .

For future reference, it will be useful to introduce 𝜏𝑤★ (𝑠) to denote the first 𝑘★(𝑠,𝑤★) components

of 𝑠 = (𝑤𝑖)𝑖∈[8] so that 𝑅 = 𝑓𝑤★ (𝜏𝑤★ (𝑆𝑡 )). While the interaction is over at this stage, for simplifying

notation, we introduce 𝑌𝑡 and define it as 𝑌𝑡 = (0,0,0).

This finishes the description of the abstract game; for a given value of 𝑤★ we will refer it as

“abstract game 𝑤★”. To summarize, in this game, the planner can choose actions from a combina-

torially structured action set to collect information for the final round where it needs to choose an

action from a smaller (but still combinatorially large) subset of the action set. The feedback is non-

linear. The essence of the information theoretic argument that will follow will be that good planners

essentially need to find 𝑤★.

For these information theoretic arguments, as well as the statement of the main result of this

section, some extra definitions are necessary. For 𝑡 ∈ N+, let 𝐹𝑡 = (𝑋𝑖 ,𝑌𝑖)𝑖∈[𝑡−1] . For each step 𝑡

sequentially, if the game is not over yet, i.e., 𝑡 −1 < 𝑁 , the planner A defines the distribution of 𝑋𝑡

given 𝐹𝑡 . Given 𝐹𝑡 and 𝑋𝑡 , the distribution of 𝑌𝑡 is defined as above. Together, A and 𝑤★ define

PA
𝑤★, the probability distribution over interaction sequences (𝑋𝑡 ,𝑌𝑡 )𝑡 ∈[𝑁 ] between the planner and

the game, where the sequence needs to satisfy that 𝐿𝑡 > 0 for 𝑡 < 𝑁 and 𝐿𝑁 = 0.8 The planner

is well-defined if PA
𝑤★ [𝑁 < ∞] = 1. Let EA

𝑤★ be the expectation operator corresponding to PA
𝑤★.

The abstract planner is sound with worst-case query cost 𝑁̄ if for all 𝑤★ ∈ 𝑊★, EA
𝑤★ [𝑁 − 1] ≤ 𝑁̄ ,

8. Luckily for us, 𝐹𝑡 takes values in a finite set, which makes it trivial to show that PA
𝑤★ with the required properties

exist.
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and EA
𝑤★ [𝑅] ≥ max𝑠∈W◦8 𝑓𝑤★ (𝜏𝑤★ (𝑠)) − 0.01. We note in passing that max𝑠∈𝑊 ◦8 𝑓𝑤★ (𝜏𝑤★ (𝑠)) =

𝑓𝑤★ (()), i.e., the maximizing sequence is the empty sequence.

The main result of this section is the following claim, which states that the abstract game is

hard:

Theorem 2.2.1. For any abstract planner that is sound with query cost 𝑁̄ ,

𝑁̄ = 2Ω(𝑝∧𝐾 ) .

The proof is given in a number of lemmas. We start with some elementary properties of 𝑓𝑤★:

Lemma 2.2.2 (Properties of 𝑓𝑤★). For any 𝑤★ ∈𝑊★, 𝑘 ∈ N+, 𝑠 = (𝑤𝑘′)𝑘′∈[𝑘 ] ∈𝑊◦𝑘 , the following

hold:

11
32
≤ 𝑓𝑤★ (()) ≤ 25

32
, (11)

0 < 𝑓𝑤★ (𝑠) ≤
(
25
32

) 𝑘+I{diff (𝑤𝑘 ,𝑤
★) ≥𝑝/4}

(12)

Proof. We prove Eq. 12 by first showing that

0 < 𝑓𝑤★ (𝑠) ≤
(
25
32

) 𝑘
. (13)

This follows since 𝑓 is the product of 𝑘 +1 terms, each defined using the function 𝑔. Now, notice that

𝑔(𝑥) decreases as 𝑥 increases in the range 0 ≤ 𝑥 ≤ 𝑝, so for all 𝑘 ′ ∈ [𝑘], thanks to diff (𝑤𝑘′−1,𝑤𝑘′) ≥

𝑝/4 which holds since by assumption 𝑠 ∈𝑊◦𝑘 , we have

0 < 𝑔(𝑝) ≤ 𝑔(diff (𝑤𝑘′−1,𝑤𝑘′)) ≤ 𝑔(𝑝/4) <
25
32
.

This, together with 0 < 𝑔(0) ≤ 1 proves Eq. 13. To finish the proof of Eq. 12, note that if

diff (𝑤𝑘 ,𝑤★) ≥ 𝑝/4 then, similarly to the previous case, we have 0 < 𝑔(diff (𝑤𝑘 ,𝑤★)) ≤ 𝑔(𝑝/4) < 25
32 ,

which implies Eq. 12. As 𝑤★ ∈ 𝑊★, 1
4 𝑝 ≤ diff (111,𝑤★) ≤ 3

4 𝑝. Hence, 𝑓𝑤★ (()) = 𝑔(diff (111,𝑤★)) ≥

𝑔( 34 𝑝) ≥
11
32 and 𝑓𝑤★ (()) ≤ 𝑔( 14 𝑝) ≤

25
32 .

Let

𝑛 =

⌊
min

(
𝑒

𝑝
8

16
−5,

1
𝜀 −1
7.5

)⌋
, (14)
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where

𝜀 =

(
25
32

)𝐾+1
.

For any 𝑤★ ∈ 𝑊★, let 𝐸𝑤
★

𝑛 be the event when in the first 𝑛 steps the planner does not hit on any

vector that is close to 𝑤★:

𝐸𝑤
★

𝑛 =
⋂
𝑡 ∈[𝑛]

{
𝑡 > 𝑁 or

(
𝑡 = 𝑁 and min

𝑖∈[8]
diff (𝑤𝑁𝑖 ,𝑤★) ≥

𝑝

4

)
or

(
𝑡 < 𝑁 and diff (𝑤𝑡𝐿𝑡−1,𝑤

★) ≥ 𝑝/4 and diff (𝑤𝑡𝐿𝑡 ,𝑤
★) ≥ 𝑝/4

) }
.

We define the “abstract game 0” (and, for any planner A, the associated probability distribution PA0 )

to be a variant of the game where the responses are 𝑌𝑡 ≡ (0,0,0) for all 𝑡 ∈ N+ (irrespective of the

choices of the planner).

Our next lemma claims that the bad event 𝐸𝑤
★

𝑛 happens with large probability in abstract game

𝑤★ whenever it happens with large probability in abstract game 0. The reason for this is that the

probability of ever receiving nonzero feedback on the bad event is a small value, which in fact

can be bounded by 𝜀 (the only way to receive nonzero feedback is by playing to the end, hence 𝜀

appears). From here it will follow that since the number of steps is at most 𝑛 (bad events are defined

for interactions of length at most 𝑛), the probability of 𝐸𝑤
★

𝑛 in game 𝑤★ is at least the probability of

this event in game 0 times (1−𝜀)𝑛, and the latter is lower bounded by an absolute constant because

𝑛 is chosen to be not too large compared to 1/𝜀.

Lemma 2.2.3. Take 𝑛 as defined in Eq. 14. Then, for any abstract planner A and for any 𝑤★ ∈𝑊 ,

PA𝑤★ (𝐸𝑤
★

𝑛 ) ≥
7
8
PA0 (𝐸𝑤

★

𝑛 ) .

Proof. We prove that

PA𝑤★ (𝐸𝑤
★

𝑛 ) ≥ (1− 𝜀)𝑛PA0 (𝐸𝑤
★

𝑛 ) . (15)

Since by its choice, 𝑛 satisfies 𝑛 ≤
(

1
𝜀 −1

)
/7.5, or, equivalently, 1− 𝜀 ≥ 1− 1

1+7.5𝑛 , it follows that

(1− 𝜀)𝑛 ≥
(
1− 1

1+7.5𝑛

)𝑛
≥ lim
𝑛→∞

(
1− 1

1+7.5𝑛

)𝑛
= 𝑒−1/7.5 > 7/8 ,
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which shows that it suffices to prove Eq. 15.

Let (𝑋𝑡 ,𝑌𝑡 )𝑡 ∈[𝑁 ] be a complete interaction history and let 𝐻 denote the first 𝑛∧𝑁 components

of this (thus, 𝐻 is shorter than the complete sequence when 𝑛 < 𝑁). Let H be the set of all possible

values that 𝐻 can take. For ℎ ∈H, let 𝐸ℎ = 𝐸𝑤
★

𝑛 ∩{𝐻 = ℎ}. Clearly, 𝐸𝑤
★

𝑛 is the disjoint union of the

sets {𝐸ℎ}ℎ∈H. Let H+ = {ℎ ∈ H : PA0 (𝐸ℎ) > 0}. Then, PA0 (𝐸𝑤
★

𝑛 ) =
∑
ℎ∈H+ P

A
0 (𝐸ℎ), and we prove

Eq. 15 by showing that for any ℎ ∈H,

𝜌 =
PA
𝑤★ (𝐸ℎ)
PA0 (𝐸ℎ)

≥ (1− 𝜀)𝑛 . (16)

Fix ℎ ∈H+ and let ℎ = (𝑥𝑡 , 𝑦𝑡 )𝑡 ∈[𝑛′] for some 0 < 𝑛′ ≤ 𝑛. Further, let 𝑥𝑡 = (𝑙𝑡 , 𝑠𝑡 ). Note that for 𝑡 < 𝑛′,

𝑙𝑡 > 0 and either 𝑛′ = 𝑛 or 𝑙𝑛′ = 0.

As PA0 (𝐸ℎ) > 0, 𝑦𝑡 = (0,0,0) for all 𝑡 ∈ [𝑛′]. By definition of PA
𝑤★ and PA0 , both the numerator

and denominator factorizes into the product of 𝑛′ terms. Given the same history, the distribution of

𝑋𝑡 under both PA
𝑤★ and PA0 are identical, so the terms that do not cancel remain:

𝜌 =
𝑛′∏
𝑡=1

PA
𝑤★ (𝑌𝑡 = (0,0,0) | 𝑋𝑡 = 𝑥𝑡 )
PA0 (𝑌𝑡 = (0,0,0) | 𝑋𝑡 = 𝑥𝑡 )

=
𝑛′∏
𝑡=1
PA𝑤★ (𝑍𝑡 = 0 | 𝑋𝑡 = 𝑥𝑡 ) ,

where 𝑌𝑡 = (𝑈𝑡 ,𝑉𝑡 , 𝑍𝑡 ). Here, the last equality follows since PA0 [𝑌𝑡 = (0,0,0) | 𝑋𝑡 = 𝑥𝑡 ] = 1 by defi-

nition and PA
𝑤★ (𝑌𝑡 = (0,0,0) | 𝑋𝑡 = 𝑥𝑡 ) = PA𝑤★ (𝑍𝑡 = 0 | 𝑋𝑡 = 𝑥𝑡 ) because on 𝐸ℎ ⊂ 𝐸𝑤

★

𝑛 , 𝑈𝑡 = 𝑉𝑡 = 0

holds PA
𝑤★ almost surely. Now, by definition, PA

𝑤★ (𝑍𝑡 = 1 | 𝑋𝑡 = 𝑥𝑡 ) = 𝑓𝑤★ (𝑠𝑡 )I{diff (𝑤𝑡𝑙𝑡 ,𝑤
★) ≤

𝑝/4 or 𝑙𝑡 = 𝐾}. Since 𝐸ℎ ⊂ 𝐸𝑤
★

𝑛 , diff (𝑤𝑡𝑙𝑡 ,𝑤
★) ≤ 𝑝/4 does not hold. Hence, PA

𝑤★ (𝑍𝑡 = 1 | 𝑋𝑡 = 𝑥𝑡 ) =

𝑓𝑤★ (𝑠𝑡 )I{𝑙𝑡 = 𝐾} ≤ (25/32)𝐾+1 = 𝜀, where the inequality follows from Lemma 2.2.2 using again

that 𝐸ℎ ⊂ 𝐸𝑤
★

𝑛 and thus the last component of 𝑠𝑡 must be “far” from 𝑤★. Putting things together

and using that 𝑛′ ≤ 𝑛 gives that 𝜌 ≥ (1− 𝜀)𝑛, as required.

We plan to argue that the bad event happens with large probability in game 0. In this game, by

definition, the planner needs to guess 𝑤★ blindly (as there is no feedback ever). Hence, the success

of the planner depends on whether they can without any feedback stumble upon 𝑤★. To bound this

success rate, it will be useful to bound the number of vectors close to a given vector in the hypercube

𝑊 :

Lemma 2.2.4. For any 𝑤̃ ∈𝑊 , let𝑊close(𝑤̃) = {𝑤 ∈𝑊 | diff (𝑤, 𝑤̃) < 𝑝/4}. Then,

|𝑊close(𝑤̃) | ≤ 2𝑝 exp
(
− 𝑝

8

)
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Proof. By symmetry of the 𝑝-dimensional hypercube, without loss of generality, let 𝑤̃ = 111 and

𝑊close =𝑊close(𝑤̃). Let 𝑋 = (𝑋𝑖)𝑖 ∈𝑊 be a uniformly distributed random variable on 𝑊 . Note that

the components 𝑋𝑖 of 𝑋 are independent Rademacher random variables. We have

|𝑊close | =
∑
𝑤 ∈𝑊

I{〈𝑤,111〉 > 𝑝/2} = |𝑊 |P(〈𝑋,111〉 > 𝑝/2)

= 2𝑝 P

(∑
𝑖∈𝑝

𝑋𝑖 > 𝑝/2
)
≤ 2𝑝 exp

(
−2(𝑝/2)2

4𝑝

)
= 2𝑝 exp

(
− 𝑝

8

)
,

where the second inequality holds by Hoeffding’s inequality.

Our next lemma shows that for any planner the probability of a bad event has an absolute

lower bound. We use the previous lemma to show that for any planner there exists a 𝑤★ such that

the probability of the corresponding bad event is lower bounded in game 0, and then we apply

Lemma 2.2.3 to get a lower bound for the same event in game 𝑤★.

Lemma 2.2.5. For any abstract planner A there exists 𝑤★ ∈𝑊★ such that

PA𝑤★ (𝐸𝑤
★

𝑛 ) ≥
(
7
8

)2
.

Proof. For any 𝑤̂ ∈ 𝑊★, under event
(
𝐸 𝑤̂𝑛

)𝑐 , either there exists 𝑡 ∈ [𝑛 ∧ (𝑁 − 1)] such that

diff (𝑤𝑡𝐿𝑡−1, 𝑤̂) < 𝑝/4 or diff (𝑤𝑡𝐿𝑡 , 𝑤̂) < 𝑝/4, or for some 𝑖 ∈ [8], diff (𝑤𝑁𝑖 , 𝑤̂) < 𝑝/4. That is,(
𝐸 𝑤̂𝑛

)𝑐 ⊂ {𝑤̂ ∈ 𝑍} where

𝑍 :=
⋃

𝑡 ∈[𝑛∧(𝑁−1) ]

(
𝑊close(𝑤𝑡𝐿𝑡−1) ∪𝑊close(𝑤𝑡𝐿𝑡 )

) ⋃©­«
⋃
𝑖∈[8]

𝑊close(𝑤𝑁𝑖 )
ª®¬ .

By Lemma 2.2.4,

|𝑍 | ≤ (2𝑛+8)2𝑝 exp
(
− 𝑝

8

)
. (17)

We also have that𝑊★ =𝑊 \𝑊close(111) \𝑊close(−111), so |𝑊★| ≥ 2𝑝
(
1−2exp

(
− 𝑝8

) )
. As 𝑤★ ∈ 𝑍 is the

good event for the planner, we define

𝑤★ = arg min
𝑤̂ ∈𝑊★

PA0 (𝑤̂ ∈ 𝑍) . (18)
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Putting things together and using that 𝑍 ⊆𝑊 , we get

2𝑝
(
1−2exp

(
− 𝑝

8

))
PA0

(
𝑤★ ∈ 𝑍

)
≤ |𝑊★|PA0

(
𝑤★ ∈ 𝑍

)
≤

∑
𝑤̂ ∈𝑊★

PA0 (𝑤̂ ∈ 𝑍) ≤
∑
𝑤̂ ∈𝑊

PA0 (𝑤̂ ∈ 𝑍) = EA0 [|𝑍 |] ≤ (2𝑛+8)2𝑝 exp
(
− 𝑝

8

)
,

Rearranging and using (𝐸𝑤★

𝑛 )𝑐 ⊂ {𝑤★ ∈ 𝑍}, we get

PA0

((
𝐸𝑤

★

𝑛

)𝑐)
≤ PA0

(
𝑤★ ∈ 𝑍

)
≤
(2𝑛+8)2𝑝 exp

(
− 𝑝8

)
2𝑝

(
1−2exp

(
− 𝑝8

) ) ≤ 2(𝑛+5) exp
(
− 𝑝

8

)
≤ 1

8
,

where the last two inequalities follow by our choice of 𝑛. Combining this with Lemma 2.2.3 finishes

the proof.

With this, we are ready to prove Theorem 2.2.1. In fact, all that is left to show is that if the

planner is sound, then the probability of the bad event cannot be too high. That is, connecting the

bad event to poor performance.

Proof of Theorem 2.2.1. Take a sound abstract planner A with query cost 𝑁̄ . Let 𝑤★ be the vector

whose existence is guaranteed by the previous lemma. By Markov’s inequality,

PA𝑤★ [𝑁 −1 ≥ 𝑛] ≤ 1
𝑛
𝑁̄ .

Let 𝐸 ′ be the event under which both 𝑁 − 1 < 𝑛 and 𝐸𝑤
★

𝑛 hold: 𝐸 ′ = {𝑁 − 1 < 𝑛} ∩ 𝐸𝑤★

𝑛 . By the

union bound and Lemma 2.2.5,

PA𝑤★ [𝐸 ′] ≥
(
7
8

)2
− 1
𝑛
𝑁̄ . (19)

Under the event 𝐸 ′, the output of the planner (𝑤𝑁𝑖 )𝑖∈[8] satisfies diff (𝑤𝑁𝑖 ,𝑤★) ≥ 𝑝/4 for 𝑖 ∈ [8],

and therefore 𝑘★ = 8 and, by Lemma 2.2.2, the reward 𝑅 of the game satisfies 𝑅 <
(

25
32

)9
. Therefore,

combined with the soundness of A, we get

11
32
−0.01 ≤ 𝑓𝑤★ (()) −0.01 ≤ EA𝑤★ [𝑅] ≤

(
25
32

)9
+ (1−PA𝑤★ [𝐸 ′])

25
32

≤
(
25
32

)9
+

(
1−

(
7
8

)2
)

25
32
+ 𝑁̄
𝑛

25
32
,



30 Chapter 2. Exponential lower bound under 𝑞★-realizability

where we used Lemma 2.2.2 to bound 𝑓𝑤★ (()), and the maximum value of 𝑅 (maximum value of

𝑓 ) by 25
32 . To satisfy this inequality, we must have 𝑁̄ > 0.05𝑛, and thus by substituting Eqs. 14 and

simplifying we get

𝑁̄ = Ω

(
min

(
𝑒

𝑝
8

16
−5,

1
𝜀 −1
7.5

))
= min

(
2Ω(𝑝) ,Ω

((
32
25

)𝐾+1))
= 2Ω(𝑝∧𝐾 ) .

2.3. Description of the hard MDP class

Given a large enough horizon 𝐻 and a large enough dimension 𝑑, in this section we construct a class

of featurized MDPs with horizon 𝐻 and feature-space dimension 𝑑, such that (i) each featurized

MDP in the class corresponds to an abstract game with parameters (𝐾, 𝑝) such that 𝐻 ≈ 𝐾𝑝, 𝐴 =

𝑝 ≈ 𝑑1/4∧𝐻1/2 (ii) each MDP 𝑀𝑤★ is associated with some abstract game 𝑤★ ∈𝑊★ ⊂𝑊 = {−1,1}𝑝;

(iii) the feature-maps associated with the MDPs do not depend on 𝑤★; (iv) the respective realizability

assumptions are satisfied by the featurized MDPs in the class; (v) a planner that is guaranteed to

achieve a high value in the MDPs can be used to achieve high values in the associated abstract

game, which also means that (vi) for every 𝑤★ ∈𝑊★, one should be able to emulate the queries in

the featurized MDP associated with 𝑤★ using queries that are available in the abstract game with 𝑤★,

while the MDP planner should not get any information about 𝑤★ by any other means than through

these queries.

In the abstract game, at the end the planner needs to choose a sequence (𝑤𝑖)𝑖∈[8] ∈𝑊◦8. This

will correspond to the first 8𝑝 steps of the path that the MDP planner traverses in the MDP, which

will have deterministic dynamics. To guarantee that the number of actions is small, choosing such

a weight sequence will be implemented in the MDP by first choosing 𝑤1 in 𝑝 steps, then choosing

𝑤2 in another 𝑝 steps, etc. In each of the 𝑝 steps of these rounds, choosing an action 𝑎 ∈ [𝑝] will

allow the MDP planner to flip component 𝑎 of the weight associated with the round. In particular,

in the first 𝑝 steps, the components of 𝑤1 are chosen this way, starting from the weight vector

𝑤0 = 111. In the next 𝑝 steps, the components of 𝑤2 are chosen this way, but this time starting with

𝑤1. The process is identical for choosing 𝑤𝑘 based on 𝑤𝑘−1, where we let 1 ≤ 𝑘 ≤ 𝐾 go up to 𝐾

to support arbitrary queries in the abstract game. To guarantee that the path chosen is in ∪𝑘𝑊◦𝑘 ,

further rules are necessary. In particular, since we need to guarantee that 𝑤𝑘 differs from 𝑤𝑘−1 by

at least 𝑝/4 positions, the dynamics is chosen so that in the first d𝑝/4e steps within the 𝑘th round,

if an action is repeated then it is called illegal, and leads to the end-state ⊥, while in the remaining
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𝑝− d𝑝/4e ≈ 3𝑝/4 steps an action repeat is called legal and leads to a “frozen” weight, i.e., starting

from the first such repeated action the weight associated with the path cannot be changed until

the round is over. These rules guarantee that if a path of length 𝑘 𝑝 does not end up in ⊥, the

path uniquely determines an element of 𝑊◦𝑘 (in fact, the last state alone uniquely determines such

an element). We associate with every action sequence subject to the constraints just described a

unique state, which can be seen as a node on the action tree. We will say that a state 𝑠 ≠ ⊥ belongs

to some round 𝑘 ∈ [0 : 𝐾 − 1], if the length 𝑙 of the associated action sequence (𝑎𝑖)𝑖≤𝑙 satisfies

𝑘 𝑝 ≤ 𝑙 < (𝑘 +1)𝑝. We say that the state is in step 𝑖 of round 𝑘 if also 𝑙 = 𝑘 𝑝 + 𝑖.

Normally, the transitions of the MDP follow the path in the action tree just described, and the

rewards are zero. However, there are two exceptions that depend on 𝑤★. To describe them, note

that a state 𝑠 ≠ ⊥ that is in step 𝑝 − 1 of some round 𝑘 is one step away from finalizing the choice

of weight vector 𝑤𝑘+1. Indeed, such a state, together with the action performed in that state, defines

the weight sequence (𝑤𝑖)𝑖∈[𝑘+1] ∈𝑊◦𝑘+1, while a shorter sequence (𝑤𝑖)𝑖∈[𝑘 ] ∈𝑊◦𝑘 is defined by

all states 𝑠 ≠ ⊥ that are in any step 𝑖 of some round 𝑘 .

For a state that is in some step 𝑖 of some round 𝑘 , the aforementioned exceptions to the MDP

dynamics are: (i) if 𝑘 > 0 and diff (𝑤𝑘 ,𝑤★) < 𝑝/4; (ii) else if 𝑖 = 𝑝−1, and either 𝑘 = 𝐾 −1 (last step

of episode), or diff (𝑤𝑘+1,𝑤★) < 𝑝/4. In case (i), the next state is ⊥, and the reward is determinis-

tically set to 〈𝜑, 𝜃★〉, where 𝜑 is the feature-vector associated with the state or the state-action pair

(depending on which class of featurized MDPs are considered), and 𝜃★ is a hidden weight vector

corresponding to 𝑤★. In case (ii), a Bernoulli reward with parameter 𝑓𝑤★ ((𝑤𝑖)𝑖∈[𝑘+1]) is generated,

while also transitioning to ⊥. Note that the states associated with case (i) are unreachable from the

initial state as any path to such state goes through a state that satisfies (ii). While there is much

information to be gained from any query where the state is of this type, planners with local access

can never issue such queries, while planners with global access still have very little chance of en-

countering such a state (the proportion of these states is exponentially small as can be seen from,

e.g., the result of Lemma 2.2.4). We refer the reader to Figure 1 for an illustration of the MDP

dynamics and the associated reward structure, and to Eq. 23 for a more precise definition.

The next step is to show that one can define appropriate feature-maps such that the respective

realizability conditions hold, which also means that we will need to compute the optimal value

(or action-value) functions and then we will also need to show that a sound MDP planner for the

appropriate class of MDPs can be used to derive a sound planner for the abstract game.
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Figure 1: Illustration of an MDP associated with a weight vector 𝑤★. The nodes represent states, which
are members of the action tree. Subtrees are illustrated with triangles. Edges represent actions, red edges
transit to the episode-over state ⊥. Unless the action was illegal, there are next-states that an MDP with some
other 𝑤★ would have transited to. These states still exist in 𝑀 , but are unreachable, and illustrated with a red
triangle. The blue triangle represents a part of the action tree where a legal repeated action freezes the weight
corresponding the round. Unless written on the edge, there is no reward for the action. In the figure, (𝑠𝑘𝑖)𝑘𝑖
represents a path through the state space, while for 𝑘 , 𝑖 fixed, 𝑤𝑘𝑖 represents the weight vector of step 𝑖 of
round 𝑘 .

Here, the main idea is that the optimal value corresponding to a state 𝑠 that is in some step

0 ≤ 𝑖 ≤ 𝑝−1 of round 0 ≤ 𝑘 ≤ 𝐾 −1 takes the form

𝑣∗(𝑠) = 𝑓𝑤★ ((𝑤𝑖)𝑖∈[𝑘 ]) = 𝑔(diff (𝑤0,𝑤1)) . . . 𝑔(diff (𝑤𝑘−1,𝑤𝑘))𝑔(diff (𝑤𝑘 ,𝑤★)) ,

where 𝑤0 = 111 by convention, 𝑤𝑖 for 1 ≤ 𝑗 < 𝑘 is the weight vector for the corresponding round,

while 𝑤𝑘 is obtained by performing the component manipulations on 𝑤𝑘−1 prescribed by the action

in round 𝑘 until step 𝑖, after which, the weight obtained is moved as much as possible towards 𝑤★.

Note that 𝑤𝑘 here depends on both 𝑠 and 𝑤★, while the other weight vectors only depend on 𝑠. In

fact, one can write 𝑤𝑘 = 𝐴(𝑠)𝑤★ + 𝑏(𝑠) for some matrix 𝐴(𝑠) and vector 𝑏(𝑠) that depend on 𝑠.

Therefore,

𝑣∗(𝑠) = ℎ(𝑠)𝑔(diff (𝑤𝑘−1(𝑠), 𝐴(𝑠)𝑤★+ 𝑏(𝑠)))𝑔(diff (𝐴(𝑠)𝑤★+ 𝑏(𝑠),𝑤★)) (20)
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where ℎ(𝑠) = 𝑔(diff (𝑤0,𝑤1)) . . . 𝑔(diff (𝑤𝑘−2,𝑤𝑘−1)) is a scalar that depends only on 𝑠. The ex-

pression in Eq. 20 is a fourth-order expression of 𝑤★ since 𝑔 is a quadratic function, and while

diff is (affine) bilinear in its two arguments and so it appears that diff (𝐴(𝑠)𝑤★ + 𝑏(𝑠),𝑤★) could

be quadratic itself, due to the special structure, this expression is still linear in 𝑤★. As such, 𝑣∗(𝑠)

is (roughly9) a linear function of (𝑤★)⊗4, the fourth-order tensor product of this vector with itself,

which gives rise to the definition of 𝜑𝑣 and 𝜃★, which is (roughly) the flattening of (𝑤★)⊗4. Of

course, it remains to verify that 𝜑𝑣 (𝑠) and 𝜃★ have small norms as required and also that this defi-

nition extends to states that are not reachable from the initial state (to prove the result with global

accessibility). In fact, it is exactly this second requirement that made us define the deterministic

rewards of 〈𝜑𝑣 (𝑠), 𝜃★〉 and the associated transitions to ⊥. (In this case it will be necessary to show

that this reward is indeed in the [0,1] interval.)

A similar argument can be used for 𝑞∗ realizability, and also for 𝑣∗/𝑞∗ reachable realizability

(in which case the reward at unreachable states could be arbitrary). To finish, one needs to show

that a sound MDP planner can be used to implement a sound abstract planner. For this, note that the

steps that an MDP planner makes in the first 8 rounds of an episode can be directly translated into

an admissible weight sequence of length 8. Further, by construction, the value achieved with this

weight sequence is at least as high as the value that the MDP planner would achieve by completing

the episode (the function 𝑓𝑤★ and the MDP are such that cutting short a weight sequence obtained

from a path in the MDP increases the value of the sequence).

In the remainder of this section, we fill in the gaps of this argument.

2.4. The MDP construction

We start with defining 𝐴, 𝑝 and 𝐾 as a function of the horizon 𝐻 ≥ 81 and dimension 𝑑 ≥ 31:

𝐴 = 𝑝 = min
(
max{𝑥 ∈ N+ : 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 +1 ≤ 𝑑},

⌊
𝐻1/2

⌋)
, (21)

𝐾 = b𝐻/𝑝c ,

𝐻 ′ = 𝐾𝑝 .

By our definition of 𝐻-horizon MDPs, any 𝐻 ′-horizon MDP for 𝐻 ′ ≤ 𝐻 is also a 𝐻-horizon MDP

(cf. Definition 1.2.2). Hence, we shall construct a 𝐻 ′-horizon MDP with 𝐻 ′ defined above. For

9. The precise argument will also include lower-order tensor products.
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future reference, it will be useful to note that

𝐴( = 𝑝) = Θ
(
𝐻1/2∧ 𝑑1/4

)
, 𝐾 = Θ(𝐻1/2∨𝐻/(𝑑1/4)) ,

𝑝 ≥ 2 and 𝐾 ≥ 9 .
(22)

Similarly to the abstract game, we fix some 𝑤★ ∈𝑊★ (Eq. 8). In what follows, we define two

MDPs 𝑀 𝑣
𝑤★ = (S ,A,𝑄𝑣

𝑤★) and 𝑀𝑞
𝑤★ = (S ,A,𝑄𝑞

𝑤★).

The state and action spaces are the same for all these MDPs. The superscript 𝑣 and 𝑞 indicates

which realizability setting the MDP is tailored for. Together with the indices, we drop them and

just use 𝑀 and 𝑄 to minimize clutter. The difference between 𝑀 𝑣
𝑤★ and 𝑀𝑞

𝑤★ is minuscule (see

Case 23a). As noted beforehand, A = [𝑝].

Apart from ⊥, states in S are uniquely identifiable with an action sequence of length at most

𝐾𝑝−1. Of all action sequences, we need to remove any action sequence that has a “repeated” action

in the critical first d𝑝/4e steps of any round. For 𝑘 ≥ 0, let 𝑈𝑘 ⊂ A𝑘 be those sequences of in A𝑘

which do not have any repeated elements. Then, letting 𝑟 = d𝑝/4e, 𝑉 = (⋃𝑖∈[𝑟 ]𝑈𝑖) ∪ (
⋃
𝑖∈[𝑝−𝑟 ]𝑈𝑟 ×

A𝑖), we define

S = {⊥, ()} ∪
⋃

0≤𝑘≤𝐾−1
(𝑈𝑟 ×A𝑝−𝑟 )𝑘 ×𝑉 ,

where () denotes the empty sequence. The elements of S (other than ⊥) can thus be uniquely

identified with a sequence of actions (𝑎00, . . . , 𝑎0, 𝑝−1, . . . , 𝑎𝑘0, . . . , 𝑎𝑘𝑖) with 0 ≤ 𝑘 ≤ 𝐾 − 1 and 0 ≤

𝑖 ≤ 𝑝 − 1, where the double indexing emphasizes that the steps are grouped into rounds of length

𝑝, and commas between indices are often dropped to minimize clutter. For convenience, we let

[< 𝑘, 𝑖] = {(𝑛,𝑚) : 𝑛 ∈ [0 : 𝐾 − 1],𝑚 ∈ [0 : 𝑝 − 1], 𝑛𝑝 +𝑚 < 𝑘𝑝 + 𝑖} denote the index set in this

double indexing, so that we can write (𝑎𝑛𝑚) (𝑛,𝑚) ∈[<𝑘,𝑖 ] for the above action sequence. Here, we

can think of 𝑎𝑛𝑚 as the action performed in step 𝑚 of round 𝑛.

As described beforehand, we associate a “weight”, an element of 𝑊 , to each state 𝑠 ≠ ⊥ that

corresponds to all the “flips” described by the action sequence for 𝑠. Let 𝑤 : S →𝑊 be the cor-

responding map, where we let 𝑤(⊥) = 111. We will also find it useful to introduce 𝑤 : S ×A→𝑊 ,

where for (𝑠, 𝑎) ∈ S ×A, 𝑤(𝑠, 𝑎) is the weight sequence where component 𝑎 of the last weight vec-

tor of 𝑤(𝑠) is flipped, except when 𝑠 is a frozen state or 𝑠 = ⊥, in which case 𝑤(𝑠, 𝑎) = 𝑤(𝑠) (𝑠 is a

frozen state when there is a legal repeated action in the actions that correspond to the current round

of the state).
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In what follows, we will often find it useful to fix a path, i.e., a complete action sequence

of the form (𝑎𝑘𝑖) (𝑘,𝑖) ∈[0:𝐾−1]×[0:𝑝−1] ∈ A𝐾 𝑝. Note that here we allow all action sequences. We

then describe the behavior of the MDP in terms of its transitions and rewards encountered during

this fixed action sequence. Notationally, we refer to the state (deterministically) reached in round

𝑘 , step 𝑖 for the fixed action sequence as 𝑠𝑘𝑖 . This means that 𝑠00 = (), and for 0 ≤ 𝑖 ≤ 𝑝 − 1,

𝑠𝑘,𝑖+1 = 𝛾𝑤★ (𝑠𝑘𝑖 , 𝑎𝑘𝑖) and for 0 ≤ 𝑘 ≤ 𝐾 − 1, 𝑠𝑘+1,0 = 𝑠𝑘 𝑝, where 𝛾𝑤★ is the transition function of

the MDP. Note that the state sequence has extra elements, to help with the notation. In particular,

𝑠𝐾0 = 𝑠𝐾−1, 𝑝 = ⊥. By a slight abuse of notation, for the fixed action sequence, we also let 𝑤𝑘𝑖 =

𝑤(𝑠𝑘−1,𝑖 , 𝑎𝑘−1,𝑖) (if 𝑠𝑘𝑖 ≠ ⊥, 𝑤𝑘𝑖 = 𝑤(𝑠𝑘𝑖)). To disambiguate, the notation 𝑤𝑘𝑖 always uses two

indices for 𝑤, while the notation in the abstract game always uses one. To match the weight values

of the MDP with those of the abstract game, we introduce the shorthand 𝑤𝑘 = 𝑤𝑘0. To complete the

definition of 𝑤𝑘𝑖 , we define 𝑤00 = 111 (similarly to the abstract game’s definition of 𝑤0 = 111). We will

also find it useful to introduce the function 𝑤last : S→𝑊 which to a given state 𝑠 = 𝑠𝑘𝑖 ≠⊥ at step 𝑖

or round 𝑘 assigns the “last complete weight” 𝑤𝑘 = 𝑤𝑘0 while 𝑤last(⊥) = 111.

The (𝑘, 𝑖)-indexed notation, such as 𝑠𝑘𝑖 and 𝑤𝑘𝑖 (along with other similarly in-

dexed quantities introduced later) is designed to avoid clutter by hiding the implicit

dependence on the action sequence, which is assumed to be fixed whenever we use

such notations. The action sequence that is fixed should always be clear from the con-

text. Whenever we state a result concerning these symbols, the result is meant to hold

for an arbitrary action sequence.

For a state 𝑠 ∈ S , 𝑠 ≠ ⊥ that is in step 𝑖 of round 𝑘 , and an action 𝑎 ∈ [𝐴], the transition and

reward of taking action 𝑎 in state 𝑠 leads to the following reward-next state pair (𝑅′, 𝑆′) (which

specifies the kernel 𝑄 of the MDP):

(
𝑅′, 𝑆′

)
=



(〈
𝜑, 𝜃★

〉
,⊥

)
, if 𝑘 > 0 and diff (𝑤𝑘 ,𝑤★) < 𝑝/4 (23a)

(𝑍,⊥) , else if 𝑖 = 𝑝−1,diff (𝑤𝑘+1,𝑤★) < 𝑝/4 (23b)

(𝑍,⊥) , else if 𝑘 = 𝐾 −1, 𝑖 = 𝑝−1 (last step) (23c)

(0, 𝑠𝑘,𝑖+1) , otherwise , (23d)

Here, the symbols not yet introduced beforehand are defined as follows: (i) (𝑤𝑘′)𝑘′∈[𝑘+I{𝑖=𝑝−1}] is

the sequence of round-start weights (𝑤𝑘′,0)𝑘′∈[𝑘+I{𝑖=𝑝−1}] that correspond to state 𝑠 and action 𝑎.

If 𝑖 = 𝑝 − 1, this sequence also includes the newly “compiled” weight 𝑤𝑘+1,0 = 𝑤(𝑠, 𝑎). (ii) 𝑍 has

distribution Ber( 𝑓𝑤★ ((𝑤𝑘′)𝑘′∈[𝑘+I{𝑖=𝑝−1}])). (iii) 𝜃★ will be defined in Eq. 31. (iv) for feature-maps
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𝜑𝑣 and 𝜑𝑞 (defined in Eqs. 32, 37), 𝜑 = 𝜑𝑣 (𝑠𝑘𝑖) if we are in the 𝑣★-realizable setting (MDP 𝑀 𝑣
𝑤★)

and 𝜑 = 𝜑𝑞 (𝑠𝑘𝑖 , 𝑎) otherwise. In either case, the reward in Case 23a is in [0,1] by Eq. 35 and Eq. 39.

Later in the proof, the following lemma will be useful to convert a sound planner for the MDP

into a sound planner for the abstract game:

Lemma 2.4.1. We can simulate an outcome of (𝑅′, 𝑆′) in the MDP using at most one query to the

abstract game, if the length, dimensionality, and secret parameters of the game are 𝐾 , 𝑝, and 𝑤★,

respectively.

Proof. For 𝑘 = 0, 𝑖 < 𝑝 − 1, we fall under Case 23d and no query to the abstract game is required.

Otherwise, let 𝑙 = 𝑘 + I{𝑖 = 𝑝 − 1} > 0, and query the abstract game with (𝑙, (𝑤𝑘′)𝑘′∈[𝑙 ]). This is

a valid query as (𝑤𝑘′)𝑘′∈[𝑙 ] ∈ 𝑊◦𝑘 . The result to this query allows to determine which case the

transition falls under, and it also contains 𝑍 (with the required distribution) when the case calls for

it.

As alluded to before, Case 23a is somewhat pathological: the transitions are such that if at the

end of round 𝑘 the newly “compiled” weight 𝑤𝑘+1,0 is close to 𝑤★ (diff (𝑤𝑘+1,0,𝑤★) < 𝑝/4) then

the next state is ⊥. This means that by following the transitions, it is impossible to arrive at a state

𝑠 ∈ S , where Case 23a would apply.

Lemma 2.4.2 (Case 23a is unreachable in 𝑀). In MDP 𝑀 , for all 𝑠 ∈ Sr and 𝑠′ ∈ S¬r,

𝑠′ ∉ Reach𝑀 (𝑠)

where

S¬r = {𝑠 ∈ S : 𝑠 ≠ ⊥ and diff (𝑤last(𝑠),𝑤★) < 𝑝/4} , Sr = S \S¬r . (24)

We will find some further notation useful to describe essential properties of the MDP states.

Take any path in the MDP and the corresponding states (𝑠𝑘𝑖). Pick 𝑘 and 𝑖 such that 𝑠𝑘𝑖 ≠ ⊥. Let

the “bit mask” fix𝑘𝑖 ∈ {0,1}𝑝 indicate for each component of 𝑤𝑘𝑖 whether it is fixed (1) in round 𝑘

at step 𝑖 or not (0). Recall that a component is fixed if either the corresponding action is performed

in round 𝑘 before step 𝑖, or there was a legal repeated action, in which case all the components are

frozen. Let ctflip
𝑘𝑖 be the number of components flipped in round 𝑘 by step 𝑖. Because each component
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can only be flipped at most once in a round, this satisfies

ctflip
𝑘𝑖 = diff (𝑤𝑘0,𝑤𝑘𝑖) .

Let efix
𝑘𝑖 (and e¬fix

𝑘𝑖 ) be the number of components that are fixed (and not fixed, respectively) at step

𝑖 and have the opposite sign of the respective components of 𝑤★. These are “error counts”. (As

opposed to ctflip
𝑘𝑖 and fix𝑘𝑖 , the error counts obviously depend on 𝑤★). Let the operator · : R𝑑 ×R𝑑→

R𝑑 return the componentwise product of its inputs. For 𝑖 ∈ {0,1}, let ¬𝑖 = 1− 𝑖, which is also

extended to binary-valued vectors in a componentwise manner. The definitions imply the following

identities:

efix
𝑘𝑖 =

1
2

(
〈111,fix𝑘𝑖〉 −

〈
fix𝑘𝑖 ·𝑤𝑘𝑖 ,𝑤★

〉)
, (25)

e¬fix
𝑘𝑖 =

1
2

(
〈111,¬fix𝑘𝑖〉 −

〈
¬fix𝑘𝑖 ·𝑤𝑘𝑖 ,𝑤★

〉)
. (26)

Consider the case when fix𝑘𝑖 ≠ 111. Thanks to 𝑠𝑘𝑖 ≠ ⊥, the first 𝑖 actions of round 𝑘 are unique.

Therefore, in this case, ctflip
𝑘𝑖 = 𝑖. Furthermore, each unique action adds 1 to 〈111,fix𝑘𝑖〉, thus efix

𝑘𝑖 ≤

〈111,fix𝑘𝑖〉 = 𝑖 = ctflip
𝑘𝑖 . Similarly, e¬fix

𝑘𝑖 ≤ 〈111,¬fix𝑘𝑖〉 = 𝑝− 𝑖 = 𝑝− ctflip
𝑘𝑖 . If on the other hand, fix𝑘𝑖 = 111,

then e¬fix
𝑘𝑖 = 0. This leads to the following result, which will be useful for our calculations:

Lemma 2.4.3. Assuming 𝑠𝑘𝑖 ≠ ⊥, e¬fix
𝑘𝑖 ≤ 𝑝− ctflip

𝑘𝑖 , and e¬fix
𝑘𝑖 ≤ 𝑝− 𝑖. Furthermore, if fix𝑘𝑖 ≠ 111, then

the following also hold: ctflip
𝑘𝑖 = 𝑖 = 〈111,fix𝑘𝑖〉, and efix

𝑘𝑖 ≤ ctflip
𝑘𝑖 .

2.5. Defining a policy and calculating its value function

We now define a deterministic policy 𝜋𝑤★ : S → [𝐴], which later will be shown to be the optimal

policy. The purpose of the current section is merely to compute the value function of this policy.

The policy is defined as follows: Let 𝑠𝑘𝑖 ∈ Sr be a state along step 𝑖 of round 𝑘 and assume that

𝑠𝑘𝑖 ≠ ⊥. Then 𝜋𝑤★ greedily flips all the components of 𝑤𝑘𝑖 that have the wrong sign and are not

fixed yet. Once this is done, 𝜋𝑤★ freezes the round by repeating an action. Ties are resolved in a

systematic fashion.

More formally, let A1 be the set of actions where the component of 𝑤𝑘𝑖 has not been fixed yet

and where 𝑤𝑘𝑖 disagrees in sign with 𝑤★; let A2 be the set of actions where the component has been
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fixed:

A1 = {𝑎 ∈ [𝐴] : (fix𝑘𝑖)𝑎 = 0 and (𝑤𝑘𝑖)𝑎 ≠ 𝑤★𝑎}

A2 = {𝑎 ∈ [𝐴] : (fix𝑘𝑖)𝑎 = 1}
(27)

Then,

𝜋𝑤★ (𝑠𝑘𝑖 , ·) =



1 , if 𝑠𝑘𝑖 = ⊥ ; (28a)

arg max
𝑎∈[𝑝]

〈
𝜑𝑞 (𝑠𝑘𝑖 , 𝑎), 𝜃★

〉
, else if diff (𝑤𝑘0,𝑤

★) > 𝑝/4; (28b)

minA1 , else if |A1 | = e¬fix
𝑘𝑖 > 0; (28c)

minA2 , else if |A2 | = ctflip
𝑘𝑖 > 0 , (28d)

where 𝜑𝑞 is the state-action feature-map defined in Eq. 37, and 𝜃★ is defined in Eq 31. Note that

𝑠𝑘𝑖 ∈ Sr and 𝑠𝑘𝑖 ≠ ⊥ implies that either Case 28c or 28d must apply.

With this, the promised result of the section is as follows.

Lemma 2.5.1. Assuming 𝑠𝑘𝑖 ∈ Sr and 𝑠𝑘𝑖 ≠ ⊥, we have

𝑣𝜋𝑤★ (𝑠𝑘𝑖) =
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0))
ª®¬𝑔(ctflip

𝑘𝑖 + e¬fix
𝑘𝑖 )𝑔(efix

𝑘𝑖 ) .

The high level argument underlying this lemma is that the policy reaches the end state ⊥, either

after reaching the last step of the current, or the next round. In either cases, the only reward incurred

from the current state to the end is when the transition to the end state happens. The definition of

this reward can then be invoked to show the result. The detailed proof is as follows:

Proof. Starting from round 𝑘 step 𝑖 and letting A1 be as in Eq. 27, the policy 𝜋𝑤★ flips all the

components in A1 (that have the wrong sign and are not fixed yet). We note that A1 = {} if there

was a repeated action in this round (which freezes the components). In this case, e¬fix
𝑘𝑖 = 0 and

𝑠𝑘𝑖 ≠ ⊥ implies the repeated action was legal, i.e., 𝑖 = 𝑖 + e¬fix
𝑘𝑖 ≥ d𝑝/4e, and therefore 𝑤𝑘𝑖 is frozen,

thus regardless of 𝜋𝑤★, 𝑤𝑘+1,0 = 𝑤𝑘𝑖 , so diff (𝑤𝑘0,𝑤𝑘+1,0) = ctflip
𝑘𝑖 = ctflip

𝑘𝑖 + e¬fix
𝑘𝑖 .

Otherwise, by definition the first 𝑖 + |A1 | = 𝑖 + e¬fix
𝑘𝑖 = ctflip

𝑘𝑖 + e¬fix
𝑘𝑖 ≤ 𝑝 actions in round 𝑘 are

unique (noting the inequality comes from Lemma 2.4.3). Furthermore, in this case observe that

all components where 𝑤𝑘0 differs in sign from 𝑤★ are flipped in round 𝑘 by step 𝑖 + e¬fix
𝑘𝑖 : either

because it was flipped in the first 𝑖 steps (and thus setting the relevant component of fix𝑘𝑖 to 1), or

because the action corresponding to the component is in A1, and thus flipped by 𝜋𝑤★. Therefore
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𝑖 + e¬fix
𝑘𝑖 ≥ diff (𝑤𝑘0,𝑤

★) As ⊥ ≠ 𝑠𝑘𝑖 ∈ Sr, diff (𝑤𝑘0,𝑤
★) ≥ 𝑝/4. As 𝑖 + e¬fix

𝑘𝑖 is an integer, 𝑖 + e¬fix
𝑘𝑖 ≥

d𝑝/4e. At step 𝑖 + e¬fix
𝑘𝑖 ≥ d𝑝/4e, all the actions in A1 are exhausted, and if there are any remaining

steps in the round, 𝜋𝑤★ freezes the round by repeating an action (Case 28d). This is a legal action

as 𝑖 + e¬fix
𝑘𝑖 ≥ d𝑝/4e. Therefore 𝑤𝑘+1,0 = 𝑤𝑘,𝑖+e¬fix

𝑘𝑖
.

Regardless of whether 𝑤𝑘𝑖 is fixed at step 𝑖, the number of components that have the wrong

sign that are not flipped in round 𝑘 is exactly efix
𝑘𝑖 , and therefore

diff (𝑤𝑘0,𝑤𝑘+1,0) = ctflip
𝑘𝑖 + e¬fix

𝑘𝑖

diff (𝑤𝑘+1,0,𝑤★) = efix
𝑘𝑖

At the end of round 𝑘 , at step 𝑝−1, either Case 23b or 23c applies and the expectation of the

reward is

𝑓𝑤★

(
(𝑤𝑘′0)𝑘′∈[𝑘+1]

)
=

©­«
∏

𝑘′∈[𝑘+1]
𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)

ª®¬𝑔(diff (𝑤𝑘+1,0,𝑤★))

=
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)
ª®¬𝑔(ctflip

𝑘𝑖 + e¬fix
𝑘𝑖 )𝑔(efix

𝑘𝑖 ) ,

or Case 23d applies and the episode continues with round 𝑘 + 1. In this latter case, fix𝑘+1,0 = 000,

ctflip
𝑘+1,0 = 0, e¬fix

𝑘+1,0 = diff (𝑤𝑘+1,0,𝑤★) = efix
𝑘𝑖 , and so in round 𝑘 +1, 𝜋𝑤★ sets all the remaining compo-

nents to match 𝑤★, i.e., 𝑤𝑘+2,0 = 𝑤★. The transition at the end of round 𝑘 +1, at step 𝑝−1, then falls

either under Case 23b or 23c, and the expectation of the reward is the same as before as 𝑔(0) = 1:

𝑓𝑤★

(
(𝑤𝑘′0)𝑘′∈[𝑘+2]

)
=

©­«
∏

𝑘′∈[𝑘+2]
𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)

ª®¬𝑔(diff (𝑤𝑘+2,0,𝑤★))

=
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)
ª®¬𝑔(ctflip

𝑘𝑖 + e¬fix
𝑘𝑖 )𝑔(efix

𝑘𝑖 )𝑔(0) ,

As in MDP 𝑀 any transition with a positive reward expectation transitions to state ⊥, the value of

𝜋𝑤★, the expected sum of rewards along the episode, reduces to the expectation of this single reward

in the episode.
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2.6. Showing that 𝜋𝑤★ is an optimal policy
We start with a lemma that will be used to optimize the attainable reward, given the constraints of

the MDP.

Lemma 2.6.1. For 𝑝 ≥ 2, 𝑙 ≥ 2 integer, let (𝑥 𝑗) 𝑗∈[𝑙 ] be integers 0 ≤ 𝑥 𝑗 ≤ 𝑝, and let 0 ≤ 𝑐1, 𝑐2, 𝑐3 ≤ 𝑝

be further integers such that the following all hold:

• 𝑐2 ≤ 𝑐1 or 𝑐3 = 0;

• 𝑐1 + 𝑐3 ≤ 𝑝;

• 𝑐1 + 𝑐2 + 𝑐3 ≤
∑
𝑗∈[𝑙 ] 𝑥 𝑗;

• 𝑐2 ≤
∑
𝑗∈[2:𝑙 ] 𝑥 𝑗;

• 𝑐1 ≤ 𝑥1.

Then, ∏
𝑗∈[𝑙 ]

𝑔(𝑥 𝑗) ≤ 𝑔(𝑐1 + 𝑐3)𝑔(𝑐2) .

Proof. Note that 𝑔(𝑥) > 0 and decreases monotonically for 𝑥 ∈ [0, 𝑝]. First we prove for integers

𝑥 ≥ 𝑦 such that 1 ≤ 𝑥, 𝑦 ≤ 𝑝−1, it holds that

𝑔(𝑥)𝑔(𝑦) ≤ 𝑔(𝑥 +1)𝑔(𝑦−1) . (29)

Note that 𝑔(𝑥)𝑔(𝑦) − 𝑔(𝑥 + 1)𝑔(𝑦 − 1) = − 𝑥−𝑦+12𝑝4 (𝑝(𝑥−2) + 𝑦(𝑝− 𝑥) + 𝑥), and as 𝑥 ≥ 𝑦, it only re-

mains to prove that 𝑝(𝑥−2) + 𝑦(𝑝−𝑥) +𝑥 ≥ 0. If 𝑥 = 1 then 𝑦 = 1 and the above holds with equality.

Otherwise 𝑥 ≥ 2 and all terms are non-negative, finishing the proof of Eq. 29.

We now claim that for any 0 ≤ 𝑦 ≤ 𝑥 ≤ 𝑝 integers, 𝑔(𝑥)𝑔(𝑦) ≤ 𝑔((𝑥 + 𝑦) ∧ 𝑝). Since over

[0, 𝑝], 𝑔 takes values in [0,1], this clearly holds when either 𝑦 = 0 or when 𝑥 = 𝑝. Furthermore, if

1 ≤ 𝑦 ≤ 𝑥 ≤ 𝑝−1, then from Eq. 29 it follows that 𝑔(𝑥)𝑔(𝑦) ≤ 𝑔(𝑥 +1)𝑔(𝑦−1) ≤ 𝑔(𝑥 +2)𝑔(𝑦−2) ≤

𝑔((𝑥 + 𝑦) ∧ 𝑝)𝑔((𝑥 + 𝑦 − 𝑝) ∨ 0) ≤ 𝑔((𝑥 + 𝑦) ∧ 𝑝) where the last inequality follows again because

𝑔(𝑢) ∈ [0,1] when 𝑢 ∈ [0, 𝑝].

Now, 𝑔(𝑥2)𝑔(𝑥3)𝑔(𝑥4) ≤ 𝑔((𝑥2 + 𝑥3) ∧ 𝑝)𝑔(𝑥4) ≤ 𝑔((((𝑥2 + 𝑥3) ∧ 𝑝) + 𝑥4) ∧ 𝑝) = 𝑔((𝑥2 + 𝑥3 +

𝑥4) ∧ 𝑝). Continuing this way, letting 𝑥≥2 =
∑
𝑗∈[2:𝑙 ] 𝑥 𝑗 , we get

∏
𝑗∈[2:𝑙 ]

𝑔(𝑥 𝑗) ≤ 𝑔(𝑥≥2∧ 𝑝) .
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Thus,
∏
𝑗∈[𝑙 ] 𝑔(𝑥 𝑗) ≤ 𝑔(𝑥1)𝑔(𝑥≥2∧ 𝑝).

Consider first the case when 𝑐3 = 0. Then, by monotonicity of 𝑔, as 𝑥1 ≥ 𝑐1 = 𝑐1 + 𝑐3 and

𝑐2 ≤ 𝑥≥2,
∏
𝑗∈[𝑙 ] 𝑔(𝑥 𝑗) ≤ 𝑔(𝑐1 + 𝑐3)𝑔(𝑐2) and we are done.

Now, if 𝑐3 > 0, by assumption 𝑐2 ≤ 𝑐1. In this case, 𝑐1 + 𝑐2 + 𝑐3− (𝑥1∧ (𝑐1 + 𝑐3)) ≤ 𝑥≥2∧ 𝑝, as

(1) 𝑐1 ≤ (𝑥1∧(𝑐1+𝑐3)) and thus 𝑐1+𝑐2+𝑐3− (𝑥1∧(𝑐1+𝑐3)) ≤ 𝑐2+𝑐3 ≤ 𝑐1+𝑐3 ≤ 𝑝, while (2) by our

assumptions, 𝑥≥2 ≥ 𝑐2 and 𝑥1 + 𝑥≥2 ≥ 𝑐1 + 𝑐2 + 𝑐3, and therefore (𝑥1∧ (𝑐1 + 𝑐3)) + 𝑥≥2 ≥ 𝑐1 + 𝑐2 + 𝑐3.

By the monotonicity of 𝑔, we can then conclude that

∏
𝑗∈[𝑙 ]

𝑔(𝑥 𝑗) ≤ 𝑔(𝑥1∧ (𝑐1 + 𝑐3))𝑔(𝑐1 + 𝑐2 + 𝑐3− (𝑥1∧ (𝑐1 + 𝑐3))) .

Let 𝑥 ′1 and 𝑥 ′2 be the above arguments of 𝑔 in decreasing order, i.e., 𝑥 ′1 = (𝑥1 ∧ (𝑐1 + 𝑐3)) ∨ (𝑐1 +

𝑐2 + 𝑐3− (𝑥1∧ (𝑐1 + 𝑐3))) and 𝑥 ′2 = (𝑥1∧ (𝑐1 + 𝑐3)) ∧ (𝑐1 + 𝑐2 + 𝑐3− (𝑥1∧ (𝑐1 + 𝑐3))), so that we have∏
𝑗∈[𝑙 ] 𝑔(𝑥 𝑗) ≤ 𝑔(𝑥 ′1)𝑔(𝑥 ′2) with 𝑥 ′1 ≤ 𝑐1 + 𝑐3 and 𝑥 ′1 + 𝑥 ′2 = 𝑐1 + 𝑐2 + 𝑐3. Applying Eq. 29 on this

product 𝑐1 + 𝑐3− 𝑥 ′1 times, we get that

∏
𝑗∈[𝑙 ]

𝑔(𝑥 𝑗) ≤ 𝑔(𝑥 ′1)𝑔(𝑥 ′2) ≤ 𝑔(𝑐1 + 𝑐3)𝑔(𝑐2) .

We now show that 𝜋𝑤★ is an optimal policy by arguing that its value function matches the

optimal value function.

Lemma 2.6.2 (𝜋𝑤★ is an optimal policy). In MDP 𝑀 ,

∀𝑠 ∈ S , 𝑎 ∈ [𝐴], 𝑣𝜋𝑤★ (𝑠) = 𝑣★(𝑠) .

Proof. For 𝑠 = ⊥, the claim holds by definition as 𝑣𝜋𝑤★ (⊥) = 𝑣★(⊥) = 0. Otherwise, let 𝑠 = 𝑠𝑘𝑖

be a state along step 𝑖 of round 𝑘 . Let us first consider the case when 𝑠𝑘𝑖 ∈ S¬r. For any action

𝑎 performed, the transition will happen under Case 23a, and the deterministic reward given equals

𝑞★(𝑠𝑘𝑖 , 𝑎). If we are in the 𝑣★-realizable setting (for MDP 𝑀 𝑣
𝑤★), this reward does not depend on the

action and therefore 𝑣𝜋𝑤★ (𝑠) = 𝑣★(𝑠) regardless of 𝜋𝑤★. Otherwise, 𝜋𝑤★ chooses an action under

Case 28b, which by definition maximizes the reward, so again 𝑣𝜋𝑤★ (𝑠) = 𝑣★(𝑠) in this case as well.

Let us turn to the case where 𝑠𝑘𝑖 ∈ Sr. There is at most one reward with positive expectation

in any round (or none, if an illegal action is taken). As no state in S¬r is reachable from 𝑠𝑘𝑖 (by

Lemma 2.4.2), this reward is collected at the end of some round 𝐾 ′ ∈ [0 : 𝐾 −1], at step 𝑝−1, and
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has expectation

𝑓𝑤★

(
(𝑤𝑘′0)𝑘′∈[𝐾 ′+1]

)
=

©­«
∏

𝑘′∈[𝐾 ′+1]
𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0))

ª®¬𝑔(diff (𝑤𝐾 ′+1,0,𝑤★))

=
∏

𝑘′∈[𝐾+1]
𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)) ,

where, for convenience, we let 𝑤𝑘′0 = 𝑤★ for 𝑘 ′ ≥ 𝐾 ′ +2 (as 𝑔(0) = 0). This reward expectation is

strictly positive (by Lemma 2.2.2), so the optimal policy will never take an illegal action.

At round 𝑘 , 𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)) is fixed for 𝑘 ′ ∈ [𝑘], and the policy can only influence the

terms 𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)) for 𝑘 ′ ∈ [𝑘 +1 : 𝐾 +1]. We have by definition that 0 ≤ diff (·, ·) ≤ 𝑝. In

any round, once a component is flipped it cannot be flipped back in the same round. This implies

that

diff (𝑤𝑘0,𝑤𝑘+1,0) = diff (𝑤𝑘0,𝑤𝑘𝑖) +diff (𝑤𝑘𝑖 ,𝑤𝑘+1,0) ≥ diff (𝑤𝑘0,𝑤𝑘𝑖) = ctflip
𝑘𝑖 .

On top of this, efix
𝑘𝑖 + e¬fix

𝑘𝑖 components differ in sign between 𝑤𝑘𝑖 and 𝑤★. By the triangle inequality,

as 𝑤𝐾+1,0 = 𝑤★, this implies that

∑
𝑘′∈[𝑘+1:𝐾+1]

diff (𝑤𝑘′−1,0,𝑤𝑘′,0) ≥ diff (𝑤𝑘0,𝑤𝑘𝑖) +diff (𝑤𝑘𝑖 ,𝑤★) = ctflip
𝑘𝑖 + efix

𝑘𝑖 + e¬fix
𝑘𝑖 .

Finally, efix
𝑘𝑖 of these have already been flipped in round 𝑘 by step 𝑖. These cannot be flipped again

in the same round 𝑘 , so they need to be included in some future round, i.e., in diff (𝑤𝑘′−1,0,𝑤𝑘′,0))

for 𝑘 ′ ≥ 𝑘 +2: ∑
𝑘′∈[𝑘+2:𝐾+1]

diff (𝑤𝑘′−1,0,𝑤𝑘′,0) ≥ diff (𝑤𝑘+1,1,𝑤★) ≥ efix
𝑘𝑖 .

By Lemma 2.4.3,

e¬fix
𝑘𝑖 ≤ 𝑝− ctflip

𝑘𝑖 ,

and either fix𝑘𝑖 = 111, implying e¬fix
𝑘𝑖 = 0, or efix

𝑘𝑖 ≤ ctflip
𝑘𝑖 :

efix
𝑘𝑖 ≤ ctflip

𝑘𝑖 or e¬fix
𝑘𝑖 = 0 .
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Therefore, we can apply Lemma 2.6.1 with 𝑐1 = ctflip
𝑘𝑖 , 𝑐2 = efix

𝑘𝑖 , 𝑐3 = e¬fix
𝑘𝑖 to optimize the parameters

(𝑥 𝑗) 𝑗∈[𝐾−𝑘+1] where 𝑥 𝑗 = diff (𝑤 𝑗+𝑘−1,𝑤 𝑗+𝑘), to get that

∏
𝑘′∈[𝑘+1:𝐾+1]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)) ≤ 𝑔(ctflip
𝑘𝑖 + e¬fix

𝑘𝑖 )𝑔(efix
𝑘𝑖 ) .

Therefore, the optimal policy’s expected value (which equals the expectation of the only reward in

the episode) is upper bounded as:

𝑣★(𝑠𝑘𝑖) ≥
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)
ª®¬𝑔(ctflip

𝑘𝑖 + e¬fix
𝑘𝑖 )𝑔(efix

𝑘𝑖 ) = 𝑣𝜋𝑤★ (𝑠𝑘𝑖) ,

by Lemma 2.5.1. Therefore 𝑣𝜋𝑤★ (𝑠𝑘𝑖) = 𝑣★(𝑠𝑘𝑖).

2.7. Defining 𝜃★, 𝜑𝑣, and 𝜑𝑞, and showing realizability

By Lemma 2.4.2, and because 𝑀 𝑣
𝑤★ and 𝑀𝑞

𝑤★ have the same transitions and rewards for any state

𝑠 ∈ Sr, we do not notationally distinguish between 𝑀 𝑣
𝑤★ and 𝑀𝑞

𝑤★ when describing the value or

action-value functions of these MDPs on states 𝑠 ∈ Sr, as these are the same in the two MDPs.

We define the feature-map 𝜑𝑣 : S→B𝑑 (1) and 𝜑𝑞 : S× [𝐴] →B𝑑 (1). For state ⊥, let 𝜑𝑣 (⊥) =

000 and for all actions 𝑎 ∈ [𝐴], 𝜑𝑞 (⊥, 𝑎) = 000. Realizability immediately holds as 𝑣★(⊥) = 𝑞★(⊥, 𝑎) =

0 = 〈000, 𝜃★〉. For any state 𝑠 ∈ S , 𝑠 ≠⊥, let 𝑠 = 𝑠𝑘𝑖 be a state along step 𝑖 of round 𝑘 . Let us introduce

the function

𝑣′(𝑠𝑘𝑖) =
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)
ª®¬𝑔(ctflip

𝑘𝑖 + e¬fix
𝑘𝑖 )𝑔(efix

𝑘𝑖 ) . (30)

By Lemmas 2.6.2 and 2.5.1, it holds that 𝑣′(𝑠𝑘𝑖) = 𝑣★(𝑠𝑘𝑖) if 𝑠𝑘𝑖 ∈ Sr. Observe that out of the terms

above, only e¬fix
𝑘𝑖 and efix

𝑘𝑖 depends on 𝑤★, and this dependence is linear. In particular, recall that

ctflip
𝑘𝑖 depends only on the actions, and not on 𝑤★. Combined with the fact that 𝑔 is a second-order

polynomial, 𝑣′(𝑠𝑘𝑖) is a fourth-order expression in 𝑤★, which can thus be linearized in 1+ 𝑝 + 𝑝2 +

𝑝3 + 𝑝4 ≤ 𝑑 dimensions. Let 𝑤̄★ = 𝑤★/‖𝑤★‖2 = 𝑤★/
√
𝑝, and

𝜃★ = 63
[
1 , 𝑤̄★ , (𝑤̄★)⊗2 , (𝑤̄★)⊗3 , (𝑤̄★)⊗4, 000𝑑−(1+𝑝+𝑝

2+𝑝3+𝑝4)
]
, (31)
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where 000𝑑−(1+𝑝+𝑝
2+𝑝3+𝑝4) is a vector of zeros of dimensionality 𝑑− (1+ 𝑝+ 𝑝2+ 𝑝3+ 𝑝4), serving the

purpose to pad the vector to exactly 𝑑 dimensions, as required by the definition. As ‖𝑤̄★‖2 = 1, we

have that



𝜃★

2 ≤ 63 ·5 = 315 := 𝐵 .

Finally, for 𝑍 (0) , 𝑍 (1) , 𝑍 (2) , 𝑍 (3) , 𝑍 (4) calculated in Appendix 2.A.1, if we let

𝜑𝑣 (𝑠𝑘𝑖) =
1
63

©­«
∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0))
ª®¬
[
𝑍 (0) , 𝑍 (1) , 𝑍 (2) , 𝑍 (3) , 𝑍 (4) ,000𝑑−(1+𝑝+𝑝

2+𝑝3+𝑝4)
]
,

(32)

then by Eq. 41,

〈
𝜑𝑣 (𝑠𝑘𝑖), 𝜃★

〉
=

©­«
∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)
ª®¬𝑔(ctflip

𝑘𝑖 + e¬fix
𝑘𝑖 )𝑔(efix

𝑘𝑖 ) = 𝑣′(𝑠𝑘𝑖) (33)

(34)

Eq. 32 completes the definition of 𝜑𝑣 , while Eq. 33 implies that

0 ≤
〈
𝜑𝑣 (𝑠𝑘𝑖), 𝜃★

〉
≤ 1 , (35)

as 𝑣′(𝑠𝑘𝑖) is a product of 𝑔(·) ∈ [0,1] terms (as diff (·, ·) ∈ [0, 𝑝]). Furthermore, combining this with

[𝑍 (0) , 𝑍 (1) , 𝑍 (2) , 𝑍 (3) , 𝑍 (4) ]

2 ≤ 63 (by Eq. 41), we have that

‖𝜑𝑣 (𝑠)‖2 ≤ 1 for all 𝑠 ∈ S ,

which ensures that 𝜑𝑣 : S→ B𝑑 (1). We stress that, as required, 𝜑𝑣 (𝑠𝑘𝑖) does not depend on 𝑤★.

To show 𝑣★-realizability with these features, i.e., that 𝑣★(𝑠𝑘𝑖) = 〈𝜑𝑣 (𝑠𝑘𝑖), 𝜃★〉, we start by

pointing out that if 𝑠𝑘𝑖 ∈ S¬r then this immediately holds:

Lemma 2.7.1. For any state 𝑠 ∈ S¬r and action 𝑎 ∈ [𝐴], regardless of the values of 𝜑𝑣 (𝑠), 𝜑𝑞 (𝑠, 𝑎),

and 𝜃★, 𝑣★-realizability for 𝑀 𝑣
𝑤★ and 𝑞★-realizability for 𝑀𝑞

𝑤★ immediately holds as the transition
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falls under Case 23a:

𝑣★𝑀 𝑣
𝑤★
(𝑠) =

〈
𝜑𝑣 (𝑠), 𝜃★

〉
𝑞★
𝑀

𝑞

𝑤★
(𝑠, 𝑎) =

〈
𝜑𝑞 (𝑠, 𝑎), 𝜃★

〉
Otherwise 𝑠𝑘𝑖 ∈ Sr, and 𝑣★-realizability follows from Eq. 33 by recalling that 𝑣′(𝑠𝑘𝑖) = 𝑣★(𝑠𝑘𝑖)

in this case. We conclude the following lemma from this:

Lemma 2.7.2. 𝑀 𝑣
𝑤★ is 𝑣★-realizable with features 𝜑𝑣 : (𝑀 𝑣

𝑤★, 𝜑𝑣 ) ∈M𝑣★

𝐵,𝑑,𝐻 ,𝐴∩M
Pdet.

We move on to defining 𝜑𝑞 and showing 𝑞★-realizability for 𝑀𝑞
𝑤★. For any state 𝑠 ∈ S , 𝑠 ≠ ⊥

and action 𝑎 ∈ [𝐴], let 𝑠 = 𝑠𝑘𝑖 be a state along step 𝑖 of round 𝑘 . Let 𝑠𝑎𝑘,𝑖+1 denote the value taken

by 𝑠𝑘,𝑖+1 if 𝑎𝑘𝑖 = 𝑎, and similarly for 𝑤𝑎𝑘,𝑖+1. For 𝑖 = 𝑝−1 only, let us introduce

𝑞′(𝑠𝑘, 𝑝−1, 𝑎) =
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)
ª®¬𝑔(diff (𝑤𝑘0,𝑤

𝑎
𝑘+1,0))𝑔(diff (𝑤𝑎𝑘+1,0,𝑤

★)) . (36)

Let

𝑐(𝑠𝑘𝑖 , 𝑎) =
1
63

©­«
∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)
ª®¬𝑔(diff (𝑤𝑘0,𝑤

𝑎
𝑘+1,0)) .,

which is a scalar that does not depend on 𝑤★. The only remaining term in 𝑞′ has a second-order

dependence on 𝑤★. For 𝑋(0) , 𝑋(1) , 𝑋(2) calculated in Appendix 2.A.2, we let

𝜑𝑞 (𝑠𝑘𝑖 , 𝑎) =

𝜑𝑣 (𝑠𝑎𝑘,𝑖+1) else if 𝑖 < 𝑝; (37a)

𝑐(𝑠𝑘𝑖 , 𝑎)
[
𝑋(0) , 𝑋(1) , 𝑋(2) , 000𝑑−(1+𝑝+𝑝

2)
]

otherwise, (37b)

where 000𝑑−(1+𝑝+𝑝
2) is a vector of zeros of dimensionality 𝑑− (1+ 𝑝+ 𝑝2). Then by Eq. 44, for 𝜃★ set

according to Eq. 31,

〈
𝜑𝑞 (𝑠𝑘, 𝑝−1, 𝑎), 𝜃★

〉
= 𝑞′(𝑠𝑘, 𝑝−1, 𝑎) . (38)

Eq 37 completes the definition of 𝜑𝑞, while Eq. 38 together with Eq. 35 implies that

0 ≤
〈
𝜑𝑞 (𝑠𝑘𝑖 , 𝑎), 𝜃★

〉
≤ 1 for all 𝑎 ∈ [𝐴], 𝑠𝑘𝑖 ∈ S , 𝑠𝑘𝑖 ≠ ⊥ , (39)
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as 𝑞′(𝑠𝑘, 𝑝−1, 𝑎) is a product of 𝑔(diff (·, ·)) ∈ [0,1] terms. Furthermore, combining this with

[𝑋(0) , 𝑋(1) , 𝑋(2) ]

2 ≤ 8 (by Eq. 44), we have that.



𝜑𝑞 (𝑠, 𝑎)

2 ≤ 1 for all 𝑠, 𝑎 ∈ S × [𝐴] ,

which ensures that 𝜑𝑞 : S× [𝐴] →B𝑑 (1), as required. Again we stress that 𝜑𝑣 (𝑠𝑘𝑖) does not depend

on 𝑤★.

To show 𝑞★-realizability, we first consider the case when 𝑠𝑘𝑖 ∈ Sr and 𝑖 = 𝑝−1 i.e., 𝜑𝑞 (𝑠𝑘𝑖 , 𝑎)

falls under Case 37b. In this case,

〈
𝜑𝑞 (𝑠𝑘, 𝑝−1, 𝑎), 𝜃★

〉
= 𝑞′(𝑠𝑘, 𝑝−1, 𝑎)

=
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0,𝑤𝑘′,0)
ª®¬𝑔(diff (𝑤𝑘0,𝑤

𝑎
𝑘+1,0))𝑔(diff (𝑤𝑎𝑘+1,0,𝑤

★))

= 𝑞★(𝑠𝑘, 𝑝−1, 𝑎) ,

where the first equality comes from Eq 38. The last equality holds by definition if the transition and

reward follows Case 23b or 23c; otherwise under Case 23d, it holds since

𝑞★(𝑠𝑘, 𝑝−1, 𝑎) = 𝑣★(𝑠𝑎𝑘+1,0) = 𝑞
′(𝑠𝑘, 𝑝−1, 𝑎) ,

where the second equality follows from Lemmas 2.5.1 and 2.6.2.

Turning to the case where 𝑠𝑘𝑖 ∈ Sr and 𝑖 < 𝑝−1, we note that 𝜑𝑞 (𝑠𝑘𝑖 , 𝑎) falls under Case 37a,

while the transition and reward follows Case 23d. Therefore

𝑞★(𝑠𝑘𝑖 , 𝑎) = 𝑣★(𝑠𝑎𝑘,𝑖+1) =
〈
𝜑𝑣 (𝑠𝑎𝑘,𝑖+1), 𝜃

★
〉
=

〈
𝜑𝑞 (𝑠𝑘,𝑖+1, 𝑎), 𝜃★

〉
,

where the second equality follows from Lemma. 2.7.2.

Together with Lemma 2.7.1 that proves 𝑞★-realizability for the case of 𝑠𝑘𝑖 ∈ S¬r, we conclude

that the following holds:

Lemma 2.7.3. 𝑀𝑞
𝑤★ is 𝑞★-realizable with features 𝜑𝑞: (𝑀𝑞

𝑤★, 𝜑𝑞) ∈M𝑞★

𝐵,𝑑,𝐻 ,𝐴∩M
Pdet.

Recall that Reach(𝑠00) ⊆ Sr under either MDP 𝑀 𝑣
𝑤★ or 𝑀𝑞

𝑤★ (by Lemma 2.4.2), and that value

and action-value functions on such states take the same value for the two MDPs. Then, combining

Lemmas 2.7.2 and 2.7.3, we have the following result:
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Lemma 2.7.4. 𝑀 𝑣
𝑤★ is reachable-𝑣★/𝑞★-realizable with features 𝜑𝑣 and 𝜑𝑞: (𝑀 𝑣

𝑤★, 𝜑𝑣 , 𝜑𝑞) ∈

M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 ∩M

Pdet.

2.8. Reduction to planning in the abstract game

Proof of Theorem 1.4.2. Let 𝛿 ≥ 0.01, 𝐵 ≥ 315, 𝑑 ≥ 31, 𝐻 ≥ 81. In what follows, we prove the

theorem only for 𝐴 (and 𝑝) set according to Eq. 21. This is sufficient to prove the result for 𝐴 ≥⌊√
𝐻

⌋
∧ 0.8𝑑14 ≥ 𝑝 (Eq. 21) as soundness with a lower action count cannot be harder to achieve,

since it is always possible to duplicate some actions without changing the difficulty of the problem.

Let P be any 𝛿-sound planner with worst-case query cost 𝑁̄ for some class class M∩MPdet,

where

M ∈ {M𝑣★

𝐵,𝑑,𝐻 ,𝐴,M
𝑞★

𝐵,𝑑,𝐻 ,𝐴,M
𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 } .

We show that P gives rise to a sound abstract planner for the abstract game of Section 2.2 and

therefore, by Theorem 2.2.1, it must use exponentially many queries.

Lemmas 2.7.2, 2.7.3, and 2.7.4 show that MDPs
(
𝑀 𝑣
𝑤★

)
𝑤★∈𝑊★

,
(
𝑀𝑞
𝑤★

)
𝑤★∈𝑊★

, and(
𝑀 𝑣
𝑤★

)
𝑤★∈𝑊★

respectively, together with feature-maps 𝜑𝑣 and 𝜑𝑞, belong to these classes. There-

fore, the 𝛿-sound planner P satisfies, for any MDP 𝑀 with parameter 𝑤★ in its class:

𝑣𝜋𝑀𝑀 (𝑠00) ≥ 𝑣★𝑀 (𝑠00) −0.01 ,

where 𝑠00 is the initial state in 𝑀 and 𝜋𝑀 is the policy induced by the interconnection of P and MDP

𝑀 in a closed-loop fashion, according to Section 1.2.3. Let P and E be the probability measure and

expectation, respectively, induced by this interconnection. Then,

𝑣𝜋𝑀𝑀 (𝑠00) = E
[
𝐻∑
𝑡=1

𝑅𝑡
��𝑆0 = 𝑠00

]
≥ 𝑣★(𝑠00) −0.01

E

[ 8𝑝∑
𝑡=1

𝑅𝑡 + 𝑣★(𝑆8·𝑝)
��𝑆0 = 𝑠00

]
≥ E

[
𝐻∑
𝑡=1

𝑅𝑡
��𝑆0 = 𝑠00

]
≥ 𝑣★(𝑠00) −0.01 ,

where we put · in the index of 𝑆 to signify multiplication: as opposed to 𝑠, 𝑆 only has a single

index. It is valid to refer to the state 𝑆8·𝑝 as 𝐾 ≥ 9 by Eq. 22. Let us map any partial trajectory

𝑆0, 𝐴0, 𝑆1, 𝐴1, . . . , 𝑆8·𝑝−1, 𝐴8·𝑝−1 to the sequence (𝑤̃𝑖)𝑖∈[8] ∈ 𝑊◦8 as follows. Let 𝑗 ∈ [8] be the

smallest index for which 𝑆 𝑗 ·𝑝−1 = ⊥, or let 𝑗 = 9 if no such index exist in [8]. For 𝑖 ∈ [ 𝑗 − 1],
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let 𝑤̃𝑖 = 𝑤(𝑆𝑖 ·𝑝−1, 𝐴𝑖 ·𝑝−1); for 𝑖 ∈ [ 𝑗 : 8], let 𝑤̃𝑖 be any values such that (𝑤̃𝑖)𝑖∈[8] ∈𝑊◦8 (which is

always possible as (𝑤̃𝑖)𝑖∈[ 𝑗−1] ∈𝑊◦ 𝑗−1 when 𝑗 > 1). Let

𝑘★ = min{𝑖 ∈ [8] : 𝑖 = 8 or diff (𝑤̃𝑖 ,𝑤★) < 𝑝/4} .

Let 𝑅 be the final reward of an abstract game (with the same parameters 𝐾, 𝑝,𝑤★) for this sequence

(𝑤̃𝑖)𝑖∈[8] . By Eq. 10,

𝑅 = 𝑓𝑤★ (𝑤(𝑆𝑖 ·𝑝))𝑖∈[𝑘★] .

Observe that if there is an illegal action in the sequence 𝐴0, . . . , 𝐴8·𝑝−1, then
∑8𝑝
𝑡=1 𝑅𝑡 + 𝑣

★(𝑆8·𝑝) =

0. Otherwise, if diff (𝑤̃𝑖 ,𝑤★) ≥ 𝑝/4 for all 𝑖 ∈ [8], then all transitions leading to 𝑆8·𝑝 fall under

Case 23d as 𝐾 ≥ 9, and by Lemmas 2.5.1 and 2.6.2, 𝑅 = 𝑣★(𝑆8·𝑝) =
∑8𝑝
𝑡=1 𝑅𝑡 + 𝑣

★(𝑆8·𝑝). Finally, if

diff (𝑤̃𝑘★,𝑤★) < 𝑝/4, then 𝑆𝑘★ ·𝑝 =⊥, 𝑣★(𝑆𝑘★ ·𝑝) = 0, 𝑅 = 𝑅𝑘★ ·𝑝, and the rest of the rewards are zero.

Therefore, either way,

E[𝑅] ≥ E
[ 8𝑝∑
𝑡=1

𝑅𝑡 + 𝑣★(𝑆8·𝑝)
��𝑆0 = 𝑠00

]
≥ 𝑣★(𝑠00) −0.01 = 𝑓𝑤★ (()) . (40)

Recall that each response to P’s query to the MDP’s simulator, as well as the transitions

(𝑅𝑡+1, 𝑆𝑡+1) ∼ 𝑄(·|𝑆𝑡 , 𝐴𝑡 ) (for 𝑡 ∈ [0 : 𝐻 − 1]) can be implemented with at most one simulator call

(respectively) to the abstract game (with the same parameters 𝐾, 𝑝,𝑤★; see Lemma 2.4.1). In ex-

pectation, this results in at most 8𝑝𝑁̄ + 8𝑝 such queries to the abstract game simulator. Together

with Eq. 40, and noting that the choice of 𝑤★ ∈ 𝑊★ was arbitrary, we see that P can be used to

construct an abstract planner A that is sound with worst-case query cost 8𝑝𝑁̄ + 8𝑝. Therefore, by

Theorem 2.2.1, and using Eq. 22,

8𝑝𝑁̄ +8𝑝 = 2Ω(𝑝∧𝐾 )

𝑁̄ = 2Ω(𝐻 1/2∧𝑑1/4) .



Appendix

2.A. Calculating the linear features

2.A.1. Calculating feature components of 𝜑𝑣

We follow the notation of Section 2.7. In particular, for any state 𝑠 ∈ S , 𝑠 ≠ ⊥, let 𝑠 = 𝑠𝑘𝑖 be a state

along step 𝑖 of round 𝑘 . We intend to linearize the expression 𝑔(ctflip
𝑘𝑖 + e¬fix

𝑘𝑖 )𝑔(efix
𝑘𝑖 ).

Let 𝑥 = ctflip
𝑘𝑖 + e¬fix

𝑘𝑖 and 𝑦 = efix
𝑘𝑖 . Then, 𝑥 and 𝑦 can be written according to Eqs. 25, 26 as:

𝑦 =
1
2

(
〈111,fix𝑘𝑖〉 −

〈
fix𝑘𝑖 · 𝑤̄𝑘𝑖 , 𝑤̄★

〉)
=

〈
𝑦 (1,0) ,1

〉
+
〈
𝑦 (1,1) , 𝑤̄

★
〉

for 𝑦 (1,0) =
1
2
〈111,fix𝑘𝑖〉 and 𝑦 (1,1) = −

√
𝑝

2
fix𝑘𝑖 · 𝑤̄𝑘𝑖

with


𝑦 (1,0)

2 ,



𝑦 (1,1)

2 ≤ 𝑝

𝑥 = ctflip
𝑘𝑖 +

1
2

(
〈111,¬fix𝑘𝑖〉 −

〈
¬fix𝑘𝑖 · 𝑤̄𝑘𝑖 , 𝑤̄★

〉)
=

〈
𝑥 (1,0) ,1

〉
+
〈
𝑥 (1,1) , 𝑤̄

★
〉

for 𝑥 (1,0) = ctflip
𝑘𝑖 +

1
2
〈111,¬fix𝑘𝑖〉 and 𝑥 (1,1) = −

√
𝑝

2
¬fix𝑘𝑖 · 𝑤̄𝑘𝑖

with


𝑥 (1,0)

2 ,



𝑥 (1,1)

2 ≤ 𝑝
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Notice that 𝑥 ( ·, ·) and 𝑦 ( ·, ·) do not depend on 𝑤★, only on the current state 𝑠𝑘𝑖 . Furthermore, using

Lemma 1.2.1

𝑥2 =
〈
𝑥2
(1,0) ,1

〉
+
〈
2𝑥 (1,0)𝑥 (1,1) , 𝑤̄★

〉
+
〈
♭(𝑥 (1,1) ⊗ 𝑥 (1,1) ), ♭(𝑤̄★⊗ 𝑤̄★)

〉
=

〈
𝑥 (2,0) ,1

〉
+
〈
𝑥 (2,1) , 𝑤̄

★
〉
+
〈
𝑥 (2,2) , (𝑤̄★)2

〉
for 𝑥 (2,0) = 𝑥2

(1,0) , 𝑥 (2,1) = 2𝑥 (1,0)𝑥 (1,1) , 𝑥 (2,2) = ♭(𝑥 (1,1) ⊗ 𝑥 (1,1) ),

and (𝑤̄★)⊗2 = ♭(𝑤̄★⊗ 𝑤̄★)

with


𝑥 (2,0)

2 ,



𝑥 (2,1)

2 ,


𝑥 (2,2)

2 ≤ 2𝑝2

𝑔(𝑥) = 1+ 𝑥−2𝑝−1
2𝑝2 + 𝑥2 1

2𝑝2 =
〈
𝑋(0) ,1

〉
+
〈
𝑋(1) , 𝑤̄

★
〉
+
〈
𝑋(2) , (𝑤̄★)2

〉
for 𝑋(0) = 1+ −2𝑝−1

2𝑝2 𝑥 (1,0) +
1

2𝑝2 𝑥 (2,0) ,

𝑋(1) =
−2𝑝−1

2𝑝2 𝑥 (1,1) +
1

2𝑝2 𝑥 (2,1) , and 𝑋(2) =
1

2𝑝2 𝑥 (2,2)

with


𝑋(0)

2 ≤ 4,



𝑋(1)

2 ≤ 3,


𝑋(2)

2 ≤ 1.

and by a similar calculation,

𝑦2 =
〈
𝑦 (2,0) ,1

〉
+
〈
𝑦 (2,1) , 𝑤̄

★
〉
+
〈
𝑦 (2,2) , (𝑤̄★)2

〉
for 𝑦 (2,0) = 𝑦2

(1,0) , 𝑦 (2,1) = 2𝑦 (1,0) 𝑦 (1,1) , 𝑦 (2,2) = ♭(𝑦 (1,1) ⊗ 𝑦 (1,1) )

with


𝑦 (2,0)

2 ,



𝑦 (2,1)

2 ,


𝑦 (2,2)

2 ≤ 2𝑝2

𝑔(𝑦) =
〈
𝑌(0) ,1

〉
+
〈
𝑌(1) , 𝑤̄

★
〉
+
〈
𝑌(2) , (𝑤̄★)2

〉
for 𝑌(0) = 1+ −2𝑝−1

2𝑝2 𝑦 (1,0) +
1

2𝑝2 𝑦 (2,0) ,

𝑌(1) =
−2𝑝−1

2𝑝2 𝑦 (1,1) +
1

2𝑝2 𝑦 (2,1) , and 𝑌(2) =
1

2𝑝2 𝑦 (2,2)

with


𝑌(0)

2 ≤ 4,



𝑌(1)

2 ≤ 3,


𝑌(2)

2 ≤ 1.



2.A. Calculating the linear features 51

Therefore, again using Lemma 1.2.1,

𝑔(ctflip
𝑘𝑖 + e¬fix

𝑘𝑖 )𝑔(efix
𝑘𝑖 ) = 𝑔(𝑥)𝑔(𝑦)

=
〈
♭
(
𝑋(0) ⊗𝑌(0)

)
,1

〉
+
〈
♭
(
𝑋(0) ⊗𝑌(1) + 𝑋(1) ⊗𝑌(0)

)
, 𝑤̄★

〉
+
〈
♭
(
𝑋(0) ⊗𝑌(2) + 𝑋(1) ⊗𝑌(1) + 𝑋(2) ⊗𝑌(0)

)
, (𝑤̄★)⊗2〉

+
〈
♭
(
𝑋(1) ⊗𝑌(2) + 𝑋(2) ⊗𝑌(1)

)
, (𝑤̄★)⊗3〉 + 〈

♭
(
𝑋(2) ⊗𝑌(2)

)
, (𝑤̄★)⊗4〉

=
〈
𝑍 (0) ,1

〉
+
〈
𝑍 (1) , 𝑤̄

★
〉
+
〈
𝑍 (2) , (𝑤̄★)⊗2〉 + 〈

𝑍 (3) , (𝑤̄★)⊗3〉 + 〈
𝑍 (4) , (𝑤̄★)⊗4〉

for 𝑍 (0) = ♭
(
𝑋(0) ⊗𝑌(0)

)
,

𝑍 (1) = ♭
(
𝑋(0) ⊗𝑌(1) + 𝑋(1) ⊗𝑌(0)

)
,

𝑍 (2) = ♭
(
𝑋(0) ⊗𝑌(2) + 𝑋(1) ⊗𝑌(1) + 𝑋(2) ⊗𝑌(0)

)
,

𝑍 (3) = ♭
(
𝑋(1) ⊗𝑌(2) + 𝑋(2) ⊗𝑌(1)

)
,

(𝑤̄★)⊗3 = ♭
(
𝑤̄★⊗ 𝑤̄★⊗ 𝑤̄★

)
,

(𝑤̄★)⊗4 = ♭
(
𝑤̄★⊗ 𝑤̄★⊗ 𝑤̄★⊗ 𝑤̄★

)
with



𝑍 (0)

2 ≤ 16,


𝑍 (1)

2 ≤ 24,



𝑍 (2)

2 ≤ 17,


𝑍 (3)

2 ≤ 6.

(41)

2.A.2. Calculating feature components of 𝜑𝑞

We follow the notation of Section 2.7. In particular, for any state 𝑠 ∈ S , 𝑠 ≠ ⊥ and action 𝑎 ∈ [𝐴],

let 𝑠 = 𝑠𝑘𝑖 be a state along step 𝑖 of round 𝑘 . Let 𝑠𝑎𝑘,𝑖+1 denote the value taken by 𝑠𝑘,𝑖+1 if 𝑎𝑘𝑖 = 𝑎,

and similarly for 𝑤𝑎𝑘,𝑖+1. We intend to linearize the expression 𝑔(diff (𝑤𝑎𝑘+1,0,𝑤
★)).

Let 𝑥 = diff
(
𝑤𝑎𝑘+1,0,𝑤

★
)
. By Eq. 7,

𝑥 =
1
2

(
𝑝−

〈
𝑤𝑎𝑘+1,1,𝑤★

〉)
=

〈
𝑥 (1,0) ,1

〉
+
〈
𝑥 (1,1) ,𝑤

★
〉

for 𝑥 (1,0) =
1
2
𝑝 and 𝑥 (1,1) = −

1
2
𝑤𝑎𝑘+1,1

with


𝑥 (1,0)

2 ,



𝑥 (1,1)

2 ≤ 𝑝

(42)
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By a similar calculation to the previous case,

𝑥2 =
〈
𝑥2
(1,0) ,1

〉
+
〈
2𝑥 (1,0)𝑥 (1,1) ,𝑤★

〉
+
〈
♭(𝑥 (1,1) ⊗ 𝑥 (1,1) ), ♭(𝑤★⊗𝑤★)

〉
=

〈
𝑥 (2,0) ,1

〉
+
〈
𝑥 (2,1) ,𝑤

★
〉
+
〈
𝑥 (2,2) , (𝑤★)2

〉
for 𝑥 (2,0) = 𝑥2

(1,0) , 𝑥 (2,1) = 2𝑥 (1,0)𝑥 (1,1) , 𝑥 (2,2) = ♭(𝑥 (1,1) ⊗ 𝑥 (1,1) ),

and (𝑤★)⊗2 = ♭(𝑤★⊗𝑤★)

with


𝑥 (2,0)

2 ,



𝑥 (2,1)

2 ,


𝑥 (2,2)

2 ≤ 2𝑝2

(43)

𝑔(𝑥) = 1+ 𝑥−2𝑝−1
2𝑝2 + 𝑥2 1

2𝑝2 =
〈
𝑋(0) ,1

〉
+
〈
𝑋(1) ,𝑤

★
〉
+
〈
𝑋(2) , (𝑤★)2

〉
for 𝑋(0) = 1+ −2𝑝−1

2𝑝2 𝑥 (1,0) +
1

2𝑝2 𝑥 (2,0) ,

𝑋(1) =
−2𝑝−1

2𝑝2 𝑥 (1,1) +
1

2𝑝2 𝑥 (2,1) , and 𝑋(2) =
1

2𝑝2 𝑥 (2,2)

with


𝑋(0)

2 ≤ 4,



𝑋(1)

2 ≤ 3,


𝑋(2)

2 ≤ 1.

(44)



Chapter 3

TensorPlan: efficient planning for few actions

3.1. Introduction

This chapter focuses on proving the upper bound of Theorem 1.4.4. We start by considering the

MDP class M𝑣★

𝐵,𝑑,𝐻 ,𝐴. Despite the fact that linear function approximation reduces the number of

unknowns to 𝑑 (from the unbounded size of the state space), it is not clear at all whether this setting

is tractable.

In fact, the lower bound (Theorem 1.4.2) proved in the previous chapter establishes that the

related problem when the action-value function of the optimal policy is linearly realizable requires

an exponential number of queries, either in 𝐻 (the horizon of the MDP) or 𝑑 (the dimension of the

feature mapping). The construction however crucially relies on having an action set that scales as

a polynomial in the relevant parameters. In contrast, in this chapter, we establish that poly(𝐻,𝑑)

planning is possible with state value function realizability whenever the action set has a constant size.

In particular, we present the TensorPlan algorithm which uses poly((𝑑𝐻/𝛿)𝐴) simulator queries to

find a 𝛿-optimal policy relative to any deterministic policy for which the value function is linearly

realizable with some bounded parameter (with a known bound).

This is the first algorithm to give a polynomial query complexity guarantee using only linear-

realizability of a single competing value function. We extend the upper bound to the near-realizable

case, to the infinite-horizon discounted MDP setup, and finally to the MDP classes M𝑞★

𝐵,𝑑,𝐻 ,𝐴∩

MPdet and M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴 .

To summarize, the central question we address first in this chapter is the following:

Is a polynomial query complexity achievable under linear realizability of 𝑣★, when the number of

actions is 𝐴 =O(1)?
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We provide a positive result to this question in the fixed-horizon setting, where our algorithm

TensorPlan enjoys a per-call query complexity poly((𝑑𝐻/𝛿)𝐴), where 𝐻 is the horizon and 𝛿 is

the suboptimality target that the policy induced by continuously running the planning algorithm

at every state encountered needs to satisfy. Given an input state at the beginning of the horizon,

in its initialization phase, TensorPlan uses simulations to estimate the parameters of 𝑣★. In this

and subsequent calls, given an input state, the estimated 𝑣★ is used by another procedure that uses

additional simulations to compute one-step lookahead action-value estimates. We prove that the

resulting policy loses at most 𝛿 total expected reward compared to optimality, regardless of the

choice of the initial state, while the number of queries both for the initialization and the subsequent

steps stays below the quoted polynomial bound.

In fact, TensorPlan enjoys a stronger guarantee – it will automatically compete with the best

deterministic policy whose value function is realizable by the features. This recovers the previously

mentioned “classic” setting: when 𝑣★ is realizable the best deterministic policy is an optimal policy

𝜋★.

Loosely, the initialization phase of our algorithm works in the following way: The algorithm

keeps track of a list of critical data that is used to refine a hypothesis set that contains those 𝑑-

dimensional parameter vectors that (may) induce a value function for some deterministic policy.

Call these parameter vectors consistent. The algorithm refines its hypothesis set in a number of

phases. For this, at the beginning of a phase, it chooses a parameter vector from the hypothesis

set that maximizes the total predicted value at the initial state; an “optimistic choice”. Next, the

algorithm runs a fixed number of tests to verify that the parameter vector chosen gives a value

function of some policy. If this consistency is satisfied, it also follows that the predicted value

is almost as high as the actual value of the parameter-induced policy. As such, by its optimistic

choice, the parameter vector gives rise to the policy whose value function is linearly realizable and

whose value is the highest in the initial state. When the test fails, the hypothesis set is shrunk

by expanding the list of critical data with data from the failed test. To show that the hypothesis

set shrinks rapidly, we introduce a novel tensorization device that lifts the consistency checking

problem to a 𝑑𝐴-dimensional Euclidean space where the tests become linear. This tensorization

device allows us to prove that at most O(𝑑𝐴) constraints can be added (in the noise-free case) if

there exist a deterministic policy with linearly realizable value function.

The rest of the chapter is structured as follows. The upcoming section (Section 3.2) introduces

notations, definitions, and the formal problem definition. This is a slight variation of the definitions
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introduced in Chapter 1 that better suits the specific problem class of M𝑣★

𝐵,𝑑,𝐻 ,𝐴. Then, Section 3.3

presents the TensorPlan algorithm for efficient planning in the finite-horizon setting, and states

the query complexity guarantee (Theorem 3.3.2), as well as an extension of this result to the near-

realizable case (Theorem 3.3.4) and infinite-horizon discounted case (Theorem 3.3.5). Finally, we

conclude in Section 3.4.

3.2. Preliminaries

We recall the most important facts about MDPs and introduce a slight variation of our previous

notation that allows infinite state spaces. Given a measurable space (X ,Σ), we write M1(X ) for

the set of probability measures on that space (the 𝜎-algebra will be understood from context). Here,

an MDP is given by a tuple ℳ = (S ,Σ,A,𝑄), where (S ,Σ) is a measurable state space, A is a set

of actions and for each (𝑠, 𝑎) ∈ S ×A, 𝑄𝑠,𝑎 ∈M1( [0,1] ×S) is a probability measure on rewards

and next-state transitions received upon taking action 𝑎 at state 𝑠. Note that it follows that the

random rewards are bounded in [0,1]. We denote by 𝑟𝑠𝑎 the expected reward when using action

𝑎 in state 𝑠: 𝑟𝑠𝑎 = E(𝑅′,𝑆′)∼𝑄 ( · |𝑠,𝑎)𝑅′. Further, we let 𝑃𝑠𝑎 denote the distribution of the next-state:

𝑃𝑠𝑎 (𝑠′) = P(𝑅′,𝑆′)∼𝑄 ( · |𝑠,𝑎) (𝑆′ = 𝑠′). We assume that A is finite, and thus without loss of generality

we let A = [𝐴] for some integer 𝐴 ≥ 2. For notational simplicity, in this chapter, for any two

tensors 𝐴, 𝐵 of compatible shapes, let 〈𝐴, 𝐵〉 denote their flattened inner product, i.e., 〈𝐴, 𝐵〉 =

〈♭(𝐴), ♭(𝐵)〉 = ♭(𝐴)>♭(𝐵).

In the fixed-horizon setting with horizon 𝐻 ≥ 1 the agent (a decision maker) interacts with the

MDP in an 𝐻-step sequential process as follows: The process is initialized at a random initial state

𝑆1 ∈ S . In step ℎ ∈ [𝐻], the agent first observes the current state 𝑆ℎ ∈ S , then chooses an action

𝐴ℎ ∈ A based on the information available to it. The MDP then gives a reward 𝑅ℎ and transitions

to a next-state 𝑆ℎ+1, where (𝑅ℎ, 𝑆ℎ+1) ∼𝑄𝑆ℎ ,𝐴ℎ . After time-step 𝐻, the episode terminates.

The goal of the agent is to maximize the total expected reward
∑
ℎ∈[𝐻 ] 𝑅ℎ for the episode by

choosing the actions based on the observed past states and actions in the episode. A (memoryless)

policy 𝜋 takes the form (𝜋 (ℎ) )ℎ∈[𝐻 ] where ∀ℎ ∈ [𝐻], 𝜋 (ℎ) : S→M1(A). A deterministic policy 𝜋

further satisfies that for any ℎ ∈ [𝐻] and 𝑠 ∈ S there exists 𝑎 ∈ A such that 𝜋 (ℎ) (𝑠) = 𝛿𝑎 where 𝛿 is

the Dirac delta distribution. Given a memoryless policy 𝜋, a state 𝑠 ∈ S and step ℎ ∈ [𝐻] within an

episode, the value 𝑣𝜋ℎ (𝑠) is defined as the total expected reward incurred until the end of the episode

when the MDP is started from 𝑠 in step ℎ and 𝜋 is followed throughout. Writing 𝜇 𝑓 =
∫
𝑓 (𝑠′)𝜇(𝑑𝑠′)

for the expected value of a measurable function 𝑓 : S→ R with respect to 𝜇 ∈M1(S), these values
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are known to satisfy

𝑣𝜋ℎ (𝑠) = 𝑟𝜋 (𝑠) +𝑃𝜋 (𝑠)𝑣
𝜋
ℎ+1 , 𝑠 ∈ S ,

where 𝑣𝜋𝐻+1 = 0, 𝑟𝜋 (𝑠) =
∑
𝑎∈A 𝜋(𝑎 |𝑠)𝑟𝑠𝑎, and 𝑃𝜋 (𝑠) (𝑑𝑠′) =

∑
𝑎∈A 𝜋(𝑎 |𝑠)𝑃𝑠𝑎 (𝑑𝑠′). The maximum

value achievable from a state 𝑠 ∈ S when in step ℎ ∈ [𝐻] is denoted by 𝑣★ℎ (𝑠). We also define

𝑣★𝐻+1(𝑠) = 0, for convenience. We let 𝑣★ = (𝑣★ℎ)ℎ∈[𝐻+1] and call 𝑣★ the optimal value function. It is

known that 𝑣★ satisfies the recursive Bellman optimality equations:

𝑣★ℎ (𝑠) = max
𝑎∈A

{
𝑟𝑠𝑎 +𝑃𝑠𝑎𝑣★ℎ+1

}
, 𝑠 ∈ S . (45)

As is well known, the policy that in state 𝑠 ∈ S chooses an action that maximizes the right-hand

side of Eq. (45), is optimal. It also follows that there is always at least one optimal deterministic

memoryless policy.

3.2.1. Featurized MDPs, feature map compatible optimal values

As noted earlier, we provide the planner with a feature mapping which captures the optimal value

function. In the finite-horizon setting this translates to the existence of some 𝜃★ such that

𝑣★ℎ (𝑠) =
〈
𝜑ℎ (𝑠), 𝜃★

〉
, for all ℎ ∈ [𝐻] and 𝑠 ∈ S . (46)

We also consider the nearly-realizable case, where for some “misspecification” parameter 𝜂 ≥ 0

there exists some 𝜃★ such that

��𝑣★ℎ (𝑠) − 〈
𝜑ℎ (𝑠), 𝜃★

〉�� ≤ 𝜂 , for all ℎ ∈ [𝐻] and 𝑠 ∈ S . (47)

The parameter 𝜃★ is unknown to the planner in both cases. Here, 𝜑ℎ : S → R𝑑 is the so-called

feature map. As will be described in more details in the next section, the planner is given local

access to the feature map. That is, the planner can access 𝜑ℎ (𝑠) for all the states 𝑠 ∈ S that it has

previously encountered while interacting with the simulator, but has no access to the features of

other states. For convenience, in the finite horizon-setting we will also define 𝜑𝐻+1(𝑠) = 000 for all

𝑠 ∈ S , regardless of the other maps. An MDP together with a feature map 𝜑 = (𝜑ℎ)ℎ∈[𝐻 ] on its

state-space is called a featurized MDP. When Eq. (46) holds we say that 𝑣★ is (linearly) realizable

by the feature map 𝜑.
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In this chapter we consider a setting that relaxes linear realizability of the optimal value func-

tion. To define this setting we need the notion of 𝑣-linearly realizable policies:

Definition 3.2.1 (𝑣-linearly realizable policies). We say that a policy 𝜋 is 𝑣-linearly realizable with

misspecification 𝜂 ≥ 0 under the feature map 𝜑 = (𝜑ℎ)ℎ∈[𝐻 ] if there exists some 𝜃 ∈ R𝑑 such that its

value function satisfies
��𝑣𝜋ℎ (𝑠) − 〈𝜑ℎ (𝑠), 𝜃〉�� ≤ 𝜂 for all ℎ ∈ [𝐻] and 𝑠 ∈ S . Furthermore, if 𝜃 satisfies

‖𝜃‖2 ≤ 𝐵 we say that 𝜋 is 𝐵-boundedly 𝑣-linearly realizable with misspecification 𝜂 under 𝜑.

In what follows we will be concerned with designing a planning algorithm that, given local ac-

cess to a feature map, competes with the best 𝑣-linearly realizable memoryless deterministic (MLD)

policy under that feature map (if one exists) in the following sense: For 𝐵 > 0 and 𝜂 ≥ 0, define the

function 𝑣◦𝐵,𝜂 : S→ R as

𝑣◦𝐵,𝜂 (𝑠) = sup
{
𝑣𝜋1 (𝑠) :𝜋 is MLD and is 𝐵-boundedly 𝑣-linearly realizable

with misspecification 𝜂 given 𝜑
}
.

(48)

We call will 𝑣◦𝐵,𝜂 the 𝜑-compatible optimal value function at scale 𝐵 and misspecification 𝜂. Note

that if there are no 𝑣-linearly realizable policies with misspecification 𝜂 in an MDP, 𝑣◦𝐵,𝜂 (𝑠) ≡ −∞

for each state 𝑠 ∈ S of the MDP. Competing with the best 𝑣-linearly realizable MLD policy (at scale

𝐵 > 0 and misspecification 𝜂 ≥ 0) means the ability to generate actions of a policy whose value

function is close to 𝑣◦𝐵,𝜂 (for the fully formal definition, see the next section). Note that if the optimal

value function of an MDP is linearly realizable with parameter vector 𝜃★ and misspecification 𝜂′

then for any 𝐵 ≥ ‖𝜃★‖2, 𝑣◦𝐵,𝜂 = 𝑣★ for any 𝜂 ≥ 𝜂′. Hence, the setting we introduce generalizes

the one where the optimal value function is exactly or near-realizable with 𝐵-bounded parameter

vectors.

3.2.2. Local Planning

In the fixed-horizon local planning problem, a planner is given an input state and is tasked with

computing a near-optimal action for that state while interacting with a black-box that simulates the

MDP. In the (state-)featurized local planning problem, the black-box also returns the feature-vector

of the next state. Access to the black-box is provided by means of calling a function SIMULATE,

whose semantics is essentially as just described, but will be further elaborated on below.

More formally, the planner needs to “implement” a function, which we call GetAction and

whose semantics, in the context of fixed-horizon MDPs, is as follows:
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Definition 3.2.2 (GetAction(𝑑, 𝐴,𝐻,SIMULATE, 𝑠, ℎ, 𝜑ℎ (𝑠), 𝛿, 𝐵)). The meaning of inputs is as

follows: 𝑑 is the dimension of the underlying feature map, 𝐴 is the number of actions, 𝐻 is the

episode length, SIMULATE is a function that provides access to the oracle that simulates the MDP,

𝑠 is the state where an action is needed at stage ℎ ∈ [𝐻], 𝛿 > 0 is a suboptimality target, and 𝐵 is

the parameter vector bound. This function needs to return an action in A with the intent that this is

a “good action” to be used at stage ℎ when the state is 𝑠.

Given a featurized MDP and a planner as described above, the planner induces a (randomized,

possibly memoryful) policy, which is the policy that results from calling GetAction along a tra-

jectory and following its recommended actions. If the initial state is 𝑆1 = 𝑠0 ∈ S , the first action taken

by this policy is 𝐴1 = GetAction(. . . , 𝑆1,1, . . . ), the second is 𝐴2 = GetAction(. . . , 𝑆2,2, . . . )

where 𝑆2 ∼ 𝑃𝑆1,𝐴1 , etc. If GetAction does not save data between the calls, the resulting policy

would be memoryless, but this is not a requirement. In fact, we require that GetAction is first

called with ℎ = 1 and then ℎ = 2, etc. A practical planner which is used across multiple episodes

can also save data between episodes. In this case GetAction can be called with ℎ = 1 after being

called with ℎ = 𝐻, designating the start of a new episode. For now, we assume that this is not the

case, as this allows for cleaner definitions.10

Inside GetAction the planner can issue any number of calls to SIMULATE. The function

SIMULATE takes as inputs a state-stage-action triplet (𝑠, ℎ, 𝑎). In response, SIMULATE returns a

triplet (𝑅, 𝑆′, 𝜑ℎ+1(𝑆′)) where (𝑅, 𝑆′) is a “fresh” random draw from𝑄(𝑠, 𝑎). For generality the sim-

ulator is also allowed some inaccuracy, in the sense that it returns (clip[0,1] (𝑅 +Λ𝑠𝑎), 𝑆′, 𝜑ℎ+1(𝑆′))

where Λ𝑠𝑎 ∈ R is a constant satisfying |Λ𝑠𝑎 | ≤ 𝜆, for some 𝜆 ≥ 0 that we call the simulator’s accu-

racy, and clip[0,1] (𝑥) = max(0,min(1, 𝑥)) (ie. inaccurate rewards are clipped in [0,1]). Neither Λ𝑠𝑎

nor 𝜆 are known to the planner. The planner can only access states that it is given access to either

when GetAction is called, or returned by a call to SIMULATE. The same holds for the features

of the states. We note that this is essentially the same setting as what is called sampling with state

revisiting by Li et al. (2021).

The quality of a planner is, on one hand, assessed based on the quality of the policy that

it induces and, on the other hand, by its worst-case (per-episode) query-cost, which is defined as

the largest total query-cost (ie. number of calls to SIMULATE made by GetAction) encountered

while running the planner for the 𝐻 stages of an episode, starting at stage ℎ = 1.

10. Jumping a bit ahead of ourselves, if we cared about long-run average per-state query-complexity, one could perhaps
do better by allowing planners to save data between episodes.
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Definition 3.2.3 (Sound planner). Let 𝐵, 𝛿 > 0, 𝜆, 𝜂 ≥ 0, 𝐻 ≥ 1. A planner is (𝛿, 𝐵)-sound with

simulator accuracy 𝜆 and misspecification 𝜂 if for any featurized 𝐻-horizon MDP (ℳ, 𝜑) with

rewards bounded in [0,1] and with 1-bounded feature maps (i.e. for all ℎ ∈ [𝐻], 𝑠′ ∈ 𝑆, ‖𝜑ℎ (𝑠′)‖2 ≤

1), the (random) 𝐻-horizon policy 𝜋 that the planner induces while interacting with the 𝜆-accurate

simulation oracle satisfies

𝑣𝜋1 (𝑠) ≥ 𝑣
◦
1(𝑠) − 𝛿 for all 𝑠 ∈ S , (49)

where 𝑣𝜋 is the 𝐻-horizon value function of 𝜋 in ℳ and 𝑣◦ = 𝑣◦𝐵,𝜂 is the 𝐻-horizon 𝜑-compatible

optimal value function of ℳ (cf. Equation (48)).

Further notations For 𝑣 ∈ R𝑑 , and 𝑎 ≤ 𝑏 ≤ 𝑑 positive integers, let 𝑣𝑎:𝑏 ∈ R𝑏−𝑎+1 be the vector

corresponding to the entries with indices in {𝑎, 𝑎 +1, . . . , 𝑏}, i.e., (𝑣𝑎:𝑏)𝑖 = 𝑣𝑎+𝑖−1.

3.3. Efficient planning for the finite-horizon setting

In this section, we present TensorPlan (Algorithm 1) and prove its soundness (cf. Definition 3.2.3)

and efficiency (Theorem 3.3.2). We start with a high-level description of the main ideas underlying

the planner. Initially, we only prove soundness for exact realizability (ie. 𝜂 = 0), which we later

generalize in Theorem 3.3.4.

The planner belongs to the family of generate-and-test algorithms. To describe it, let ℳ =

(S ,Σ,A,𝑄) denote the MDP that the planner interacts with and let 𝜑 = (𝜑ℎ)ℎ∈[𝐻 ] be the underly-

ing feature map. Further, let Θ◦ ⊂ R𝑑 be the set which collects the parameter vectors of the value

functions of 𝐵-boundedly 𝑣-linearly realizable DML policies with misspecification 𝜂 = 0 (Defini-

tion 3.2.1). That is, Θ◦ is such that for any 𝜃 ∈ Θ◦, ‖𝜃‖2 ≤ 𝐵 and for some DML policy 𝜋 of ℳ,

𝑣𝜋ℎ (𝑠) = 〈𝜑ℎ (𝑠), 𝜃〉 for all ℎ ∈ [𝐻] and 𝑠 ∈ S . (50)

Let 𝑠0 be the state which the planner is called for. The algorithm will maintain a subset Θ of

R𝑑 such that, with high probability, Θ◦ ⊂ Θ. The set is initialized to the ℓ2-ball of radius 𝐵, which

obviously satisfies this constraint. Given the set Θ of admissible parameter vectors and 𝑠0 ∈ S , the

planner finds the optimistic parameter vector 𝜃+ = arg maxΘ 〈𝜑1(𝑠0), 𝜃〉 from the set Θ. Let us write

𝑣ℎ (𝑠;𝜃) B 〈𝜑ℎ (𝑠), 𝜃〉. If 𝜃 ∈ Θ◦ then for any ℎ ∈ [𝐻] and 𝑠 ∈ S , since the policies defining Θ◦ are
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deterministic, it follows that there exists an action 𝑎 ∈ A such that

𝑣ℎ (𝑠;𝜃) = 𝑟𝑠𝑎 +𝑃𝑠𝑎𝑣ℎ+1(·;𝜃) . (51)

For any 𝜃, let 𝜋𝜃 denote the policy which chooses the action satisfying the above equation when

in state 𝑠 and stage ℎ (when there is no action that satisfies the consistency condition Eq. (51), the

policy can choose any action).

To test whether 𝜃+ ∈ Θ◦, the algorithm aims to “roll out” 𝜋𝜃+ . By this, we mean that upon

encountering a state 𝑠 in stage ℎ in such a rollout, the algorithm checks whether there is an action 𝑎

that satisfies Eq. (51). If such an action is found, it is sent to the simulator, which responds with the

next state. If no such action is found, the test fails – this means that 𝜃+ ∉ Θ◦. When this happens,

the data corresponding to the transition where the test failed is used to refine the set of admissible

parameter vectors and a new admissible set Θ′ is established. Assuming that the test failed at stage

ℎ★ and state 𝑠★, this new set is

Θ′ = {𝜃 ∈ Θ : ∃𝑎 ∈ A s.t. 𝐸𝑞. (51) holds with 𝑠 = 𝑠★ and ℎ = ℎ★} .

Then the testing of 𝜃+ is abandoned, Θ is updated to Θ′, and the process is repeated. Clearly, Θ◦ ⊂Θ′

still holds, so Θ◦ ⊂ Θ also holds after the update.

When a rollout continues up to the end of the episode without failure, the algorithm is given

some evidence that 𝜃+ ∈ Θ◦, but this evidence is weak. This is because the states encountered in a

rollout are random, and the trajectory generated may just happen to avoid the “tricky” states where

the consistency test would fail. Luckily though, if the algorithm keeps testing with multiple rollouts

and the tests do not fail for a sufficiently large (but not too large) number of such rollouts, this can

be taken as evidence that 𝜋𝜃+ is indeed a good policy in starting state 𝑠0. It may happen that 𝜃+ is

still not in Θ◦, but the value of 𝜋𝜃+ cannot be low.

This is easy to see, if for the moment we add a further, (seemingly) stronger test. This test

checks whether 𝑣1(𝑠0;𝜃+) correctly predicts the value of 𝜋𝜃+ in state 𝑠0. To this end, the test simply

takes the average sum of rewards along the rollouts. If we detect that 𝑣1(𝑠0;𝜃+) is not sufficiently

close to the measured average value, the test fails. If this strengthened test does not fail either then

this is strong evidence that 𝑣𝜋𝜃+1 (𝑠0) is as high as 𝑣1(𝑠0;𝜃+). Now, since Θ◦ ⊂Θ holds throughout the

execution of the algorithm, 𝑣1(𝑠0;𝜃+) ≥ max𝜃 ∈Θ◦ 𝑣𝜋𝜃1 (𝑠0) = 𝑣
◦
𝐵 (𝑠) (since we pick 𝜃+ optimistically),
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and hence policy 𝜋𝜃+ can successfully compete with the best 𝑣-linearly realizable policy in ℳ under

𝜑 and at scale 𝐵 (Eq. (48)).

To complete the description of the algorithm, there are three outstanding issues. The first is

that due to the randomizing simulation oracle, for any given state 𝑠 ∈ S , one can only check whether

Eq. (51) holds up to some fixed accuracy and only with high probability. Luckily, this does not

cause any issues – when the tests fail, the parameters can be set so that Θ◦ ⊂ Θ is still maintained.

The second issue is whether the algorithm is efficient. (So far we have been concerned only

with soundness.) This is addressed by “tensorizing” the consistency test. For 𝜓 : S → R𝑑 , we let

𝑃𝑠𝑎𝜓 =
∫
𝜓(𝑠′)𝑃𝑠𝑎 (𝑑𝑠′). Using Lemma 1.2.1 we then observe that the existence of an action such

that Eq. (51) holds is equivalent to:

0 =
∏
𝑎∈A

𝑟𝑠𝑎 + 〈𝑃𝑠𝑎𝜑ℎ+1−𝜑ℎ (𝑠), 𝜃〉 =
∏
𝑎∈A
〈[𝑟𝑠𝑎, 𝑃𝑠𝑎𝜑ℎ+1−𝜑ℎ (𝑠)], [1, 𝜃]〉

= 〈⊗𝑎∈A [𝑟𝑠𝑎, 𝑃𝑠𝑎𝜑ℎ+1−𝜑ℎ (𝑠)],⊗𝑎∈A [1, 𝜃]〉 .

Now, defining 𝑀𝜃 = ⊗𝑎∈A [1, 𝜃] and 𝑇𝑠 = ⊗𝑎∈A [𝑟𝑠𝑎, 𝑃𝑠𝑎𝜑ℎ+1−𝜑ℎ (𝑠)], we see that 𝜃 ∈ Θ◦ is equiva-

lent to that 〈𝑇𝑠, 𝑀𝜃 〉 = 0 holds for all 𝑠 ∈ S . Testing a parameter vector at some state is equivalent to

checking whether 𝑀𝜃 is orthogonal to 𝑇𝑠. Clearly, the maximum number of tests that can fail before

identifying an element of Θ◦ is at most 𝑑𝐴, the dimension of 𝑀𝜃 . Since our tests are noisy, we use

an argument based on eluder dimensions (which allow imperfect measurements) to complete our

efficiency proof (Russo and Van Roy, 2014).

The final issue is really an optimization opportunity. In our proposed algorithm we do not

separately test if the value estimates at 𝑠0 are close to the empirical return over the rollouts, and

instead rely only on the consistency tests. This can be done since, when consistency holds, the

expected total reward in an episode is close to the predicted value. This follows from a telescoping

argument. Let 𝑆1 = 𝑠0, 𝐴1, 𝑆2, 𝐴2, . . . , 𝑆𝐻 , 𝐴𝐻 , 𝑆𝐻+1 be the state-action pairs in a rollout where the

tests do not fail, and note that

𝑣
𝜋𝜃+
1 (𝑠0) = E𝜋𝜃+

[
𝐻∑
ℎ=1

𝑟𝑆ℎ ,𝐴ℎ

]
= E𝜋𝜃+

[
𝐻∑
ℎ=1

𝑣ℎ (𝑆ℎ;𝜃+) − 𝑣ℎ+1(𝑆ℎ+1;𝜃+)
]
= 𝑣1(𝑠0;𝜃+) ,

where the first equality uses the definition of 𝑣𝜋𝜃+ , the second equality uses 𝑟𝑆ℎ ,𝐴ℎ = 𝑣ℎ (𝑆ℎ;𝜃+) −

𝑃𝑆ℎ𝐴ℎ𝑣ℎ+1(·;𝜃+), and the last equality uses that 𝑣𝐻+1 ≡ 0. When measurements are noisy, a similar



62 Chapter 3. TensorPlan: efficient planning for few actions

telescoping argument gives that with high probability, 𝑣𝜋𝜃+1 (𝑠0) is almost as high as 𝑣1(𝑠0;𝜃+) when

consistency tests do not fail for a number of rollouts.

3.3.1. The TensorPlan algorithm

The pseudocode of GetAction of TensorPlan is shown in Algorithm 1.

Algorithm 1 TensorPlan.GetAction
1: Inputs: 𝑑, 𝐴,𝐻,SIMULATE, 𝑠, ℎ, 𝜑ℎ (𝑠), 𝛿, 𝐵
2: if ℎ = 1 then ⊲ Initialize global 𝜃+

3: TensorPlan.Init(
𝑑, 𝐴,𝐻,SIMULATE, 𝑠, 𝜑1(𝑠), 𝛿)

4: end if
5: Δ·← ApproxTD(𝑠, ℎ, 𝜑ℎ (𝑠), 𝐴, 𝑛2,SIMULATE)
6: Access 𝜃+ saved by TensorPlan.Init
7: return arg min𝑎∈[𝐴]

���〈Δ𝑎, [1, 𝜃+]〉���

Algorithm 2 ApproxTD

1: Inputs: 𝑠, ℎ, 𝜑ℎ (𝑠), 𝐴, 𝑛,SIMULATE

2: for 𝑎 = 1 to 𝐴 do
3: for 𝑙 = 1 to 𝑛 do
4: (𝑅𝑙, 𝑆′𝑙 , 𝜑ℎ+1(𝑆′𝑙)) ←

(
SIMULATE(𝑠, ℎ, 𝑎)

)
5: Δ̃𝑙← [𝑅𝑙, 𝜑ℎ+1(𝑆′𝑙) −𝜑ℎ (𝑠)]
6: end for
7: Δ𝑎 := 1

𝑛

∑
𝑙∈[𝑛] Δ̃𝑙

8: end for
9: return (Δ𝑎)𝑎∈[𝐴]

The main workhorse of TensorPlan is the initialization routine, TensorPlan.Init (Algo-

rithm 3), which generates a global variable 𝜃+ ∈ R𝑑 that is an estimate for the parameter of the

best realizable value function 𝑣◦𝐵. Within an episode, this parameter is used by the current and sub-

sequent calls to GetAction. In particular, given 𝜃+, GetAction approximately implements 𝜋𝜃+

of the previous section. For this, GetAction calls ApproxTD11 (Algorithm 2), which produces

an estimate of [𝑟𝑠𝑎, 𝑃𝑠𝑎𝜑ℎ+1−𝜑ℎ (𝑠)] for all actions 𝑎 ∈ A.

The Init function uses

Sol (Δ1, . . . ,Δ𝜏) =
{
𝜃 ∈ R𝑑 : ‖𝜃‖2 ≤ 𝐵,∀𝑖 ∈ [𝜏] :

��〈Δ𝑖 , ⊗𝑎∈[𝐴] [1, 𝜃]〉�� ≤ 𝐻𝐴𝜀

2
√
𝐸𝑑

}
. (52)

where 𝜀 is a function of the target suboptimality and 𝐸𝑑 = Õ
(
𝑑𝐴𝐴

)
, defined in Eq. (58), is an

upper bound on the the eluder dimension of a tensorized clipped-linear function class (cf. Eq. (59)).

The Sol(·) set stands for the successfully refined sets Θ of the previous section and its arguments

Δ𝑖 ∈ R(𝑑+1)
𝐴

correspond to estimates of ⊗𝑎∈A [𝑟𝑠𝑎, 𝑃𝑠𝑎𝜑ℎ+1 − 𝜑ℎ (𝑠)] for the various states 𝑠 and

stages ℎ where the algorithm detects a failure of the consistency test it runs. Estimates of these in

Init are obtained by calls to ApproxTD.

11. Thusly named since 〈[𝑟𝑠𝑎 , 𝑃𝑠𝑎𝜑ℎ+1 −𝜑ℎ (𝑠)], [1, 𝜃]〉 corresponds to the “temporal difference” error of value function
𝑣 𝜃 at state-action pair (𝑠, 𝑎) (Sutton, 1988).
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Algorithm 3 TensorPlan.Init

1: Inputs: 𝑑, 𝐴,𝐻,SIMULATE, 𝑠0, 𝜑1(𝑠0), 𝛿
2: 𝑋← {} ⊲ 𝑋 is a list
3: Initialize 𝜁, 𝜀, 𝑛1, 𝑛2, 𝑛3 via equations (53), (54), (55), (56), (57), respectively.
4: for 𝜏 = 1 to 𝐸𝑑 +2 do
5: Choose any 𝜃𝜏 ∈ arg max𝜃 ∈Sol(𝑋 ) 〈𝜑1(𝑠0), 𝜃〉 ⊲ Optimistic choice
6: CleanTest← true
7: for 𝑡 = 1 to 𝑛1 do ⊲ 𝑛1 rollouts with 𝜃𝜏-induced policy
8: 𝑆𝜏𝑡1 = 𝑠0 ⊲ Initialize rollout
9: for 𝑗 = 1 to 𝐻 do ⊲ Stages in episode

10: Δ𝜏𝑡 𝑗, ·← ApproxTD(𝑆𝜏𝑡 𝑗 , 𝑗 , 𝜑 𝑗 (𝑆𝜏𝑡 𝑗), 𝐴, 𝑛2,SIMULATE)
11: if CleanTest and min𝑎∈[𝐴]

���〈Δ𝜏𝑡 𝑗𝑎, [1, 𝜃𝜏]〉��� > 𝛿
4𝐻 then ⊲ Consistency failure?

12: Δ̂𝜏𝑡 𝑗, ·← ApproxTD(𝑆𝜏𝑡 𝑗 , 𝑗 , 𝜑 𝑗 (𝑆𝜏𝑡 𝑗), 𝐴, 𝑛3,SIMULATE) ⊲ Refined data

13: 𝑋 .append
(
⊗𝑎∈[𝐴]Δ̂𝜏𝑡 𝑗𝑎

)
⊲ Save failure data

14: CleanTest← false ⊲ Not clean anymore
15: end if
16: 𝐴𝜏𝑡 𝑗 ← arg min𝑎∈[𝐴]

���〈Δ𝜏𝑡 𝑗𝑎, [1, 𝜃𝜏]〉��� ⊲ Find most consistent action
17: (𝑅𝜏𝑡 𝑗 , 𝑆𝜏𝑡 𝑗+1, 𝜑 𝑗+1(𝑆𝜏𝑡 𝑗+1)) ← SIMULATE(𝑆𝜏𝑡 𝑗 , 𝑗 , 𝐴𝜏𝑡 𝑗) ⊲ Roll forward
18: end for
19: end for
20: if CleanTest then break ⊲ Success?
21: end for
22: Save into global memory 𝜃+← 𝜃𝜏

Note that Init as described continues to generate rollout data even after a consistency test

fails. This is clearly superfluous and in an optimized implementation one could break out of the

test loop to generate the next candidate immediately after a failure happens. The only reason the

algorithm is described in the way it is done here is because this allows for a cleaner analysis: every

policy will have access to data from 𝑛1 rollouts, even if the policy fails a consistency test.

Remark 3.3.1. The reader might wonder why TensorPlan follows the most consistent action

in Line 7 of GetAction, instead of the best action according to its 𝜃+, which would be

arg max𝑎∈[𝐴]
〈
Δ𝑎, [1, 𝜃+]

〉
. Indeed, a practical implementation might adopt this, together with the

same change to Line 16 of Init, and a strengthening of the consistency test of Init’s Line 11

to require that the best action (according to 𝜃𝜏) be consistent, instead of any action. This test

would fail if
���max𝑎∈[𝐴]

〈
Δ𝜏𝑡 𝑗𝑎, [1, 𝜃𝜏]

〉��� > 𝛿
4𝐻 . One might hope that this strengthened consistency

test improves sample efficiency, and indeed the proofs go through (giving the same query complex-

ity bounds), albeit with a significant weakening of the final guarantee: this version of TensorPlan

could only compete with optimal policies that are realizable, instead of the best of all realizable
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DML policies. TensorPlan, as presented, is able to compete with the latter, with its only source of

pressure to do well coming from the optimistic choice of 𝜃𝜏 in Line 5 of Init.

The following theorem gives a query complexity guarantee on using TensorPlan to find a near-

optimal policy. The precise values of 𝜁, 𝜀, 𝑛1, 𝑛2, and 𝑛3 mentioned in the theorem can be found in

Section 3.A. For the theorem statement recall that 𝐵 is the bound on the 2-norm of value-function

parameter vectors that the algorithm competes with.

Theorem 3.3.2. [Weisz et al., 2021a, Theorem 4.2] For any 𝛿 > 0 and 𝐵 > 0, there exists values

of 𝜁, 𝜀, 𝑛1, 𝑛2, and 𝑛3 such that the TensorPlan algorithm (Algorithm 1) is (𝛿, 𝐵)-sound (Defini-

tion 3.2.3) with misspecification 𝜂 = 0 and simulator accuracy 𝜆 ≤ 𝜀/(4
√
𝐸𝑑) = Õ

((
𝛿

12
√
𝑑𝐻 2

)𝐴
/
√
𝐴

)
for the 𝐻-horizon planning problem with worst-case per-episode query-cost

Õ
(
𝑑𝐴𝐴4𝐵2/𝛿2

(
𝐻5𝐵2𝑑/𝛿2 + 𝑑𝐴𝐴𝐻4(𝐴+1)122𝐴/𝛿2𝐴

))
= poly

(
(𝑑𝐻/𝛿)𝐴 , 𝐵

)
.

Corollary 3.3.3 (Weisz et al., 2021a, Corollary 4.3). When the optimal value function 𝑣★ is linearly

realizable with the given feature map with misspecification 𝜂 = 0, then TensorPlan, given access

to a simulator with accuracy 𝜆 ≤ 𝜀/(4
√
𝐸𝑑) induces a policy 𝜋 within the budget constraints of

Theorem 3.3.2 for which 𝑣𝜋1 (𝑠0) ≥ 𝑣
★
1 (𝑠0) − 𝛿.

Proof (of Theorem 3.3.2). We provide here a very brief sketch, and defer the full proof to Appendix

3.A. The proof proceeds in a few steps. First, fix any starting state 𝑠0 ∈ S and any 𝜃◦ ∈ Θ◦. Sec-

tion 3.A.1 establishes that despite the simulator’s inaccuracy, the estimates Δ̂ and Δ are close to

their respective expected values (Lemma 3.A.1) and that
〈
Δ, 𝜃◦

〉
is close to its expected value

(Lemma 3.A.2). This entails that 𝜃◦ does not get eliminated from the solution set (Lemma 3.A.3).

In Section 3.A.2, we use the eluder dimension to bound the maximal length of 𝑋 (essentially, the list

of states where consistency is broken). It follows that, with high probability, the iteration over 𝜏 will

be exited in Line 20 with CleanTest being true for 𝜏 ≤ 𝐸𝑑 +1. The last subsection (Section 3.A.3)

bounds the suboptimality of the policy induced by 𝜃+ in terms of the inner product between 𝜃+ and

the measured TD vectors (Lemma 3.A.6). We then bound these suboptimalities by the desired sub-

optimality (Corollary 3.A.7) and finally establish in Corollary 3.A.8 that the policy induced by the

planner is 𝛿-optimal compared to 𝑣1(𝑠0;𝜃◦). Since this argument holds for any 𝑠0 ∈ S and 𝜃◦ ∈ Θ◦,

the planner is (𝛿, 𝐵)-sound according to Definition 3.2.3.

Our next theorem generalizes the previous results to the misspecified case (ie. 𝜂 > 0) by trading

off simulator accuracy for misspecification. Formally, we provide a reduction to the realizable
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case and run TensorPlan with a slightly modified simulation oracle SIMULATE′ which requires

no additional information beyond that provided by the original simulator. The proof is deferred

to Section 3.B. The main idea of the proof is to define an alternate MDP with an expanded state

space where states are indexed by which stage they belong to so that the misspecification error of

a target policy can be “pushed” into the rewards of the new MDP. This way, the target policy will

not have misspecification errors. The simulator for the new MDP still reports the rewards from the

original MDP, but this is allowed since the previous result was stated for the case when the simulator

introduces (small) errors when reporting the rewards.

Theorem 3.3.4. [Weisz et al., 2021a, Theorem 4.4] For any 𝛿, 𝐵 > 0, TensorPlan is (𝛿, 𝐵)-sound

with misspecification 𝜂 ≤ 𝜀/(12
√
𝐸𝑑) and simulator accuracy 𝜆 ≤ 𝜀/(12

√
𝐸𝑑) with worst-case

per-episode query-cost poly
(
(𝑑𝐻/𝛿)𝐴 , 𝐵

)
, when run with input 𝛿′ = 0.98𝛿 and simulation oracle

SIMULATE′.

3.3.2. Discounted MDPs

In the discounted MDP setting, instead of maximizing the expected value of the reward
∑
ℎ∈[𝐻 ] 𝑅ℎ

over a horizon 𝐻, the goal of the agent is to maximize the expected value of the discounted total

reward,
∑
ℎ∈N+ 𝛾

ℎ−1𝑅ℎ, over an infinite horizon, where 0 ≤ 𝛾 < 1 is a fixed discount factor, given to

the agent. The value function for a policy 𝜋, 𝑣𝜋 : S→ R is defined as 𝑣𝜋 (𝑠) = 𝑟𝜋 (𝑠) +𝛾𝑃𝑠𝑎𝑣𝜋 . The

stage index ℎ is dropped from the feature mapping (𝜑 : S → R𝑑), and the definition of v-linearly

realizable policies (Definition 3.2.1) changes from requiring
��𝑣𝜋ℎ (𝑠) − 〈𝜑ℎ (𝑠), 𝜃〉�� ≤ 𝜂 to requiring

|𝑣𝜋 (𝑠) − 〈𝜑(𝑠), 𝜃〉| ≤ 𝜂 for all 𝑠 ∈ S .

Soundness is otherwise defined identically to the 𝐻-horizon case, except for swapping the value

function to 𝑣𝜋 . Importantly, value guarantees are only required for the initial state the planner is

called with, and not for every state that the planner ever encounters. As the episodes are infinitely

long in this setting, we use the per-state (instead of per-episode) query-cost.

We use a reduction of the discounted case to the finite-horizon case with an “effective horizon”

𝐻𝛾, 𝛿 . Our next theorem shows that the guarantees of TensorPlan in the 𝐻𝛾, 𝛿-horizon setting trans-

fer to the discounted setting if it is run with a slightly modified simulation oracle SIMULATE𝛾, 𝛿 ,

which once again does not require any additional information beyond that of the original simulation

oracle. As this is a reduction, the input ℎ given to TensorPlan’s GetAction should be incremented
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for each transition, exactly as in the finite-horizon case. The definition of 𝐻𝛾, 𝛿 and SIMULATE𝛾, 𝛿 ,

as well as the proof can be found in Section 3.C.

Theorem 3.3.5. [Weisz et al., 2021a, Theorem 4.5] For any 𝛿, 𝐵 > 0, TensorPlan is (𝛿, 𝐵)-sound

for discounted MDPs with discount factor 0 ≤ 𝛾 < 1, with misspecification 𝜂 ≤ 𝜀/(24
√
𝐸𝑑) and

simulator accuracy 𝜆 ≤ 𝜀/(12
√
𝐸𝑑), with worst-case per-state query-cost poly

( (
𝑑𝐻𝛾, 𝛿/𝛿

)𝐴
, 𝐵

)
,

when run with input 𝛿′ = 0.98𝛿 and simulation oracle SIMULATE𝛾, 𝛿 .

3.4. Conclusions and discussion
We presented TensorPlan, a provably efficient algorithm for local planning in finite-horizon MDPs

which only requires linear realizability of 𝑣★. When the action set is small (i.e. O(1)), TensorPlan

is the first algorithm that enjoys polynomial query complexity without further assumptions. Our

results are also complemented by an extension of the positive result to the near-realizable as well as

the discounted setting.

In contrast to ADP-type algorithms (Schweitzer and Seidmann, 1985), our algorithm does not

use value fitting. In fact, without stronger assumptions such as a core set, ADP algorithms appear

to be susceptible to an exponential blow-up of errors (Tsitsiklis and Van Roy, 1996; Dann et al.,

2018; Zanette et al., 2019; Wang et al., 2020a; Weisz et al., 2021b). For the same reason, our

algorithm works with a weaker simulation oracle that provides access only to states that have been

encountered previously. Learning via local consistency (“bootstrapping”) also allows us to provide

a more agnostic guarantee, which automatically matches the best realizable value function.



Appendix

3.A. Proof of Theorem 3.3.2

To prove that TensorPlan (Algorithm 1) is (𝛿, 𝐵)-sound (Definition 3.2.3) for the 𝐻-dimensional

planning problem, we fix 𝛿 > 0, 𝐵 > 0, 𝐻 > 1, a featurized MDP (ℳ, 𝜑) with 1-bounded feature

maps, a suboptimality target 0 < 𝛿 < 𝐻, and a (starting) state state 𝑠0 ∈ S . We assume that 𝛿 < 𝐻

as otherwise, for 𝛿 ≥ 𝐻, Eq. (49) trivially holds due to the rewards being bounded in [0,1] (and

therefore the values in [0, 𝐻]).

The precise values of hyperparameters used in TensorPlan will be set to:

𝜁 =
1

4𝐻
𝛿 (53)

𝜀 =

(
𝛿

12𝐻2

)𝐴
/
(
1+ 1

2
√
𝐸𝑑

)
(54)

𝑛1 =

⌈
32𝐻2(1+2𝐵)2

𝛿2 log
𝐸𝑑 +1
𝜁

⌉
(55)

𝑛2 =

⌈
1867𝐻2(𝐵+1)2(𝑑 +1)

2𝛿2 log(4(𝐸𝑑 +1)𝑛1𝐻𝐴(𝑑 +1)/𝜁)
⌉

(56)

𝑛3 =

⌈
max

{
𝑛2,

32(𝐻 +1)2𝐸𝑑
𝜀2 log((2(𝐸𝑑 +1)𝑛1𝐻𝐴))/𝜁

}⌉
(57)

We assume 𝐻 > 1 for simplicity of presentation, as for 𝐻 = 1 the same analysis will apply, replacing

𝐻 with 𝐻 +1 in the above display for 𝜀.

Denote by 𝜏+ the final value of 𝜏 at the end of TensorPlan.Init. For the proof let P de-

note the probability distribution induced by the interconnection of TensorPlan with the MDP when

the initial state of the episode is 𝑠0 and the planner is used for the 𝐻 steps. In particular, P is

defined over some measurable space (Ω,P) that carries the random variables 𝑆1, 𝐴1, 𝑆2, 𝐴2, . . . ,

𝐴𝐻 , 𝑆𝐻+1, where 𝑆1 = 𝑠0, 𝑆𝑖 ∼ 𝑃𝐴𝑖−1 (𝑆𝑖−1) for 𝑖 > 1, and for 𝑗 ∈ [𝐻], 𝐴 𝑗 is the action returned by

GetAction when called with 𝑆 𝑗 and ℎ = 𝑗 . (Ω,P) also carries the random variables Δ̂, Δ̄, Δ̃, and
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(𝑆𝜏𝑡 𝑗 , 𝐴𝜏𝑡 𝑗)𝜏≤𝐸𝑑+2,𝑡 ∈[𝑛1 ], 𝑗∈[𝐻 ] of the TensorPlan algorithm. For the latter, assume for now that

TensorPlan.Init does not break out from the loop over 𝜏 when the test fails, but that it keeps run-

ning, so that we can refer to (𝑆𝜏𝑡 𝑗 , 𝐴𝜏𝑡 𝑗) even for 𝜏 > 𝜏+. Note that all other quantities that appear

in TensorPlan can be written as a function of these. We denote the expectation operator underlying

P by E.

3.A.1. Concentration bounds

This section establishes concentration bounds on the estimated difference vectors Δ̂ and Δ, and then

establishes that the true parameter is unlikely to be eliminated from the solution set.

Lemma 3.A.1. If the simulator’s accuracy 𝜆 ≤ 𝜀
4
√
𝐸𝑑

, then with 𝑛2 samples for Δ and 𝑛3 samples

for Δ̂, with probability greater than 1− 𝜁 , for all 𝜃 ∈ R𝑑 with ‖𝜃‖2 ≤ 𝐵, for all 𝜏 ∈ [𝐸𝑑 +1], 𝑡 ∈ [𝑛1],

𝑗 ∈ [𝐻] and action 𝑎 ∈ [𝐴], Δ𝜏𝑡 𝑗𝑎 and Δ̂𝜏𝑡 𝑗𝑎 satisfy

���〈Δ𝜏𝑡 𝑗𝑎 −Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃]〉��� ≤ 𝛿/(12𝐻) and
��〈Δ̂𝜏𝑡 𝑗𝑎 −Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃]〉�� ≤ 𝛿/(12𝐻) ,

where Δ(𝑆𝜏𝑡 𝑗 , 𝑎) = [𝑟𝑆𝜏𝑡 𝑗 ,𝑎, 𝑃𝑆𝜏𝑡 𝑗𝑎𝜑 𝑗+1−𝜑 𝑗 (𝑆𝜏𝑡 𝑗)].

Proof. We show this for Δ𝜏𝑡 𝑗𝑎, i,e., that the first inequality holds with probability at least 1−𝜁/2. As

𝑛3 ≥ 𝑛2, by a similar argument this statement holds for Δ̂𝜏𝑡 𝑗𝑎 too, and a union bound on the failure

probability finishes the proof. Let us refer here to the measurements Δ̃𝑙 done by ApproxTD called

in Line 10 in Algorithm 3 as (Δ̃𝜏𝑡 𝑗𝑎𝑙)𝑙∈[𝑛2 ] . By the bounded rewards (the simulator’s rewards are

clipped in [0,1] despite its inaccuracy), triangle inequality, and the assumption that ∀ℎ ∈ [𝐻+1], 𝑠 ∈

S , ‖𝜑ℎ (𝑠)‖2 ≤ 1, we have that


Δ̃𝜏𝑡 𝑗𝑎𝑙

∞ ≤ 

Δ̃𝜏𝑡 𝑗𝑎𝑙

2 ≤ 3.

Since Δ𝜏𝑡 𝑗𝑎 is the average of 𝑛2 independent identically distributed bounded samples of the

distribution of Δ̃𝜏𝑡 𝑗𝑎𝑙 , which has expectation Δ′(𝑆𝜏𝑡 𝑗 , 𝑎) = [clip[0,1] (𝑟𝑆𝜏𝑡 𝑗 ,𝑎 +Λ𝑆𝜏𝑡 𝑗 ,𝑎), 𝑃𝑆𝜏𝑡 𝑗𝑎𝜑 𝑗+1−

𝜑 𝑗 (𝑆𝜏𝑡 𝑗)], we can apply Hoeffding’s inequality for each component 𝑖 ∈ [𝑑 +1] of the vector:

P

(���(Δ𝜏𝑡 𝑗𝑎 −Δ′(𝑆𝜏𝑡 𝑗 , 𝑎))
𝑖

��� > 𝛿/(72
5
𝐻 (𝐵+1)

√
𝑑 +1

))
≤ 2exp

©­­«−
2𝑛2𝛿

2(
72
5

)2
𝐻2(𝐵+1)2(𝑑 +1)32

ª®®¬
Setting 𝑛2 =

⌈
1867𝐻 2 (𝐵+1)2 (𝑑+1)

2𝛿2 log(4(𝐸𝑑 +1)𝑛1𝐻𝐴(𝑑 +1)/𝜁)
⌉

allows this probability to be bounded

by 𝜁/(2(𝐸𝑑 + 1)𝑛1𝐻𝐴(𝑑 + 1)). A union bound over 𝜏 ∈ [𝐸𝑑 + 1], 𝑡 ∈ [𝑛1], 𝑗 ∈ [𝐻], 𝑎 ∈ [𝐴],

and 𝑖 ∈ [𝑑 + 1] achieves the 𝜁/2 failure probability bound. Under this high-probability event

we have that



Δ𝜏𝑡 𝑗𝑎 −Δ′(𝑆𝜏𝑡 𝑗 , 𝑎)




∞
≤ 𝛿/

(
72
5 𝐻 (𝐵+1)

√
𝑑 +1

)
, so

���〈Δ𝜏𝑡 𝑗𝑎 −Δ′(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃]〉��� ≤
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Δ𝜏𝑡 𝑗𝑎 −Δ′(𝑆𝜏𝑡 𝑗 , 𝑎)



∞
‖[1, 𝜃] ‖1 ≤




Δ𝜏𝑡 𝑗𝑎 −Δ′(𝑆𝜏𝑡 𝑗 , 𝑎)



∞
‖ [1, 𝜃] ‖2

√
𝑑 +1 ≤ 𝛿/( 72

5 𝐻). By the tri-

angle inequality:

���〈Δ𝜏𝑡 𝑗𝑎 −Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃]〉��� ≤ ���〈Δ𝜏𝑡 𝑗𝑎 −Δ′(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃]〉���+𝜆 ≤ 𝛿/𝐻 (
5
72
+ 1

72

)
= 𝛿/(12𝐻) ,

as 𝜆 ≤ 𝜀
4
√
𝐸𝑑
≤ 𝛿/(12𝐻)/4/(1+ 1

2 ).

Lemma 3.A.2. If the simulator’s accuracy 𝜆 ≤ 𝜀
4
√
𝐸𝑑

, then with 𝑛3 samples for Δ̂, with probability

at least 1− 𝜁 , for all 𝜏 ∈ [𝐸𝑑 +1], 𝑡 ∈ [𝑛1], 𝑗 ∈ [𝐻] and action 𝑎 ∈ [𝐴],

��〈Δ̂𝜏𝑡 𝑗𝑎 −Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃◦]〉�� ≤ 𝜀

2
√
𝐸𝑑

where Δ(𝑆𝜏𝑡 𝑗 , 𝑎) = [𝑟𝑆𝜏𝑡 𝑗 ,𝑎, 𝑃𝑆𝜏𝑡 𝑗𝑎𝜑 𝑗+1−𝜑 𝑗 (𝑆𝜏𝑡 𝑗)].

Proof. Let us refer here to the measurements Δ̃𝑙 done by ApproxTD called in Line 12 in Algo-

rithm 3 as (Δ̃𝜏𝑡 𝑗𝑎𝑙)𝑙∈[𝑛3 ] . Since 𝜃◦ ∈ Θ◦, 𝜃◦ satisfies Eq. (50) for some policy. Furthermore,

due to the bounded rewards, horizon 𝐻, and the simulator’s clipping of rewards into [0,1] (de-

spite its inaccuracy), and the bounded values (of any state for any policy) in [0, 𝐻], we have

that
〈
Δ̃𝜏𝑡 𝑗𝑎𝑙, [1, 𝜃◦]

〉
∈ [−(𝐻 + 1), (𝐻 + 1)]. Since Δ̂𝜏𝑡 𝑗𝑎 is the average of 𝑛3 independent identi-

cally distributed bounded samples of the distribution of Δ̃𝜏𝑡 𝑗𝑎𝑙 , which has expectation Δ′(𝑆𝜏𝑡 𝑗 , 𝑎) =

[clip[0,1] (𝑟𝑆𝜏𝑡 𝑗 ,𝑎 +Λ𝑆𝜏𝑡 𝑗 ,𝑎), 𝑃𝑆𝜏𝑡 𝑗𝑎𝜑 𝑗+1−𝜑 𝑗 (𝑆𝜏𝑡 𝑗)], we can apply Hoeffding’s inequality:

P

(��〈Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃◦]〉− 〈
Δ′(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃◦]

〉�� > 𝜀

4
√
𝐸𝑑

)
≤ 2exp

(
− 𝑛3𝜀

2

32(𝐻 +1)2𝐸𝑑

)
.

Setting 𝑛3 =
⌈
max

{
𝑛2,

32(𝐻+1)2𝐸𝑑

𝜀2 log((2(𝐸𝑑 +1)𝑛1𝐻𝐴))/𝜁
}⌉

allows this probability to be bounded

by 𝜁/((𝐸𝑑 + 1)𝑛1𝐻𝐴). By the triangle inequality, under the high-probability event, the desired

bound with Δ instead of Δ′ is guaranteed as:

��〈Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃◦]〉− 〈
Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃◦]

〉�� ≤ ��〈Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃◦]〉− 〈
Δ′(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃◦]

〉��+ |Λ𝑆𝜏𝑡 𝑗 ,𝑎 | ≤ 2
𝜀

4
√
𝐸𝑑

A union bound over 𝜏 ∈ [𝐸𝑑 + 1], 𝑡 ∈ [𝑛1], 𝑗 ∈ [𝐻], and 𝑎 ∈ [𝐴] achieves the desired probability

bound.



70 Chapter 3. TensorPlan: efficient planning for few actions

Lemma 3.A.3 (𝜃◦ ∈ Sol(𝑋)). For 𝜏 ∈ [𝐸𝑑 + 1], let 𝑋≤𝜏 denote the first 𝜏 elements of 𝑋 , where 𝑋

is defined in Line 2 of Algorithm 3. Then, with probability at least 1− 𝜁 we have that ∀𝜏 ∈ [𝐸𝑑 +1],

𝜃◦ ∈ Sol(𝑋≤𝜏).

Proof. As in Lemma 3.A.2, by MDP reward boundedness,
��〈Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃◦]〉�� ≤ 𝐻 for any

Δ(𝑆𝜏𝑡 𝑗 , 𝑎). Let 𝐴◦𝜏𝑡 𝑗 be the action satisfying Eq. (51) for 𝜃◦ in state 𝑆𝜏𝑡 𝑗 . Then we have that〈
Δ(𝑆𝜏𝑡 𝑗 , 𝐴◦𝜏𝑡 𝑗), [1, 𝜃◦]

〉
= 0. Thus, using Lemma 3.A.2, with probability at least 1 − 𝜁 , for all

𝜏 ∈ [𝐸𝑑 +1], 𝑡 ∈ [𝑛1], 𝑗 ∈ [𝐻], 𝑎 ∈ [𝐴],

��〈Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃◦]〉�� = ��〈Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃◦]〉 + 〈
Δ̂𝜏𝑡 𝑗𝑎 −Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃◦]

〉��
≤

��〈Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃◦]〉��+ ��〈Δ̂𝜏𝑡 𝑗𝑎 −Δ(𝑆𝜏𝑡 𝑗 , 𝑎), [1, 𝜃◦]〉��
≤ I{𝑎 ≠ 𝐴◦𝜏𝑡 𝑗}𝐻 +

𝜀

2
√
𝐸𝑑

,

where I{𝑆} is the indicator of a set 𝑆. We can then bound the product across 𝑎 ∈ [𝐴] as

∏
𝑎∈[𝐴]

〈
Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃◦]

〉
≤

(
𝐻 + 𝜀

2
√
𝐸𝑑

)𝐴−1
𝜀

2
√
𝐸𝑑

=

(
1+ 𝜀

2
√
𝐸𝑑𝐻

)𝐴−1
𝐻𝐴−1 𝜀

2
√
𝐸𝑑

,

and (
1+ 𝜀

2
√
𝐸𝑑𝐻

)𝐴−1
≤ 1+ (2𝐴−1−1) 𝜀

2
√
𝐸𝑑𝐻

< 1+2𝐴𝜀

< 1+2𝐴
𝛿𝐴

(12𝐻2)𝐴
= 1+

(
2𝛿

12𝐻2

)𝐴
< 2 ≤ 𝐻 ,

so
∏
𝑎∈[𝐴]

〈
Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃◦]

〉
< 𝐻𝐴 𝜀

2
√
𝐸𝑑

. Let 𝜏 ∈ [𝐸𝑑 + 1]. The 𝜏th element added to 𝑋 will be

⊗𝑎∈[𝐴]Δ̂𝜏𝑡 𝑗𝑎 computed in Line 12 of Algorithm 3 for some 𝜏 ∈ [𝐸𝑑 + 1], 𝑡 ∈ [𝑛1], 𝑗 ∈ [𝐻], so

𝜃◦ ∈ Sol(𝑋≤𝜏) according to Eq. (52).

3.A.2. Eluder dimension

This subsection uses the eluder dimension to bound the maximal number of iterations. For Θ ∈

R(𝑑+1)
𝐴

and 𝑥 ∈ R(𝑑+1)𝐴, let

𝑓Θ(𝑥) = 〈truncate(𝑥),Θ〉 ,

where truncate(𝑥) = 𝑥
‖𝑥 ‖2 min{‖𝑥‖2 ,3𝐴}. Notice the similarity between these functions and the form

of the constraints we use in Eq. (52) to define the set of parameter vectors Sol(·) consistent with our
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observations. Let

F+ = { 𝑓Θ : Θ ∈ R(𝑑+1)𝐴, ‖Θ‖2 ≤ (𝐵+1)𝐴}

and

𝐸𝑑 =

⌊
3(𝑑 +1)𝐴 𝑒

𝑒−1
ln

{
3+3

(
2(𝐵+1)𝐴3𝐴

𝐻𝐴𝜀

)2}
+1

⌋
= Õ

(
𝑑𝐴𝐴

)
. (58)

By Russo and Van Roy (2014), dim𝐸 (F+, 𝐻𝐴𝜀), the eluder dimension of F+ at scale 𝐻𝐴𝜀 is the

length 𝜏 of the longest eluder sequence 𝑥1, . . . , 𝑥𝜏 , such that for some 𝜀′ ≥ 𝐻𝐴𝜀, for each 𝑙 ∈ [𝜏],

𝑤𝑙 := sup
 | 𝑓1(𝑥𝑙) − 𝑓2(𝑥𝑙) | :

√√√ 𝑙−1∑
𝑖=1
( 𝑓1(𝑥𝑖) − 𝑓2(𝑥𝑖))2 ≤ 𝜀′, 𝑓1, 𝑓2 ∈ F+

 > 𝜀′ .
Also by Russo and Van Roy (2014) (Appendix C.2), dim𝐸 (F+, 𝐻𝐴𝜀) ≤ 𝐸𝑑 . Now let

F = { 𝑓Θ : ∃𝜃 ∈ R𝑑 . ‖𝜃‖2 ≤ 𝐵, Θ = ♭(⊗𝑎∈[𝐴] [1, 𝜃])} . (59)

Since ‖𝜃‖2 ≤ 𝐵 implies


♭(⊗𝑎∈[𝐴] [1, 𝜃])

2 ≤ (𝐵 + 1)𝐴, F ⊆ F+, and so dim𝐸 (F , 𝐻𝐴𝜀) ≤

dim𝐸 (F+, 𝐻𝐴𝜀) ≤ 𝐸𝑑 .

Lemma 3.A.4. With probability at least 1− 2𝜁 , at any point in the execution of Algorithm 3, the

sequence 𝑋≤𝐸𝑑+1 is an eluder sequence for F at scale 𝐻𝐴𝜀.

Proof. Let us assume the event under which 𝜃◦ ∈ Sol(𝑋≤𝜏) for 𝜏 ∈ [𝐸𝑑 +1], which has probability

at least 1− 𝜁 by Lemma 3.A.3. Let us also assume the high-probability event of Lemma 3.A.1. Let

𝜀′ = 𝐻𝐴𝜀. The empty sequence is trivially an eluder sequence. By induction, assume for some 𝜏 ∈

[𝐸𝑑 +1] that 𝑋≤𝜏−1 is an eluder sequence. Let 𝜃◦ = ♭(⊗𝑎∈[𝐴] [1, 𝜃◦]) and let 𝜃 𝑗 = ♭(⊗𝑎∈[𝐴] [1, 𝜃 𝑗]).

𝑤𝜏 = sup
 | 𝑓1(𝑋𝜏) − 𝑓2(𝑋𝜏) | :

√√√𝜏−1∑
𝑖=1
( 𝑓1(𝑋𝑖) − 𝑓2(𝑋𝑖))2 ≤ 𝐻𝐴𝜀, 𝑓1, 𝑓2 ∈ F


≥ sup

{
| 𝑓1(𝑋𝜏) − 𝑓2(𝑋𝜏) | : ∀𝑖 ∈ [𝜏−1] . | ( 𝑓1(𝑋𝑖) − 𝑓2(𝑋𝑖)) | ≤

𝐻𝐴𝜀
√
𝐸𝑑
, 𝑓1, 𝑓2 ∈ F

}
≥

�� 𝑓𝜃𝜏 (𝑋𝜏) − 𝑓𝜃◦ (𝑋𝜏)�� > (𝛿/(4𝐻))𝐴− �� 𝑓𝜃◦ (𝑋𝜏)�� > 𝐻𝐴𝜀 (
1+ 1

2
√
𝐸𝑑

)
− 𝐻𝐴𝜀

2
√
𝐸𝑑

= 𝐻𝐴𝜀 ,

where the first line expands the definition of 𝑤𝜏 , the second comes from proving that ∀𝑖 ∈ [𝜏 −

1] . | ( 𝑓1(𝑋𝑖) − 𝑓2(𝑋𝑖)) | ≤ 𝐻 𝐴𝜀√
𝐸𝑑

implies
√∑𝜏−1

𝑖=1 ( 𝑓1(𝑋𝑖) − 𝑓2(𝑋𝑖))2 ≤ 𝐻𝐴𝜀. We show this by assuming
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the former and letting 𝑣 ∈ R𝜏−1 be 𝑣𝑖 = 𝑓1(𝑋𝑖) − 𝑓2(𝑋𝑖), and then ‖𝑣‖2 ≤ ‖𝑣‖∞
√
𝜏−1 ≤ 𝐻𝐴𝜀 as

𝜏−1 ≤ 𝐸𝑑 by the induction assumption.

The last line comes from substituting 𝑓1 = 𝑓𝜃𝜏 and 𝑓2 = 𝑓𝜃◦ . For this we have to show that

𝑓𝜃𝜏 , 𝑓𝜃◦ ∈ F , and that ∀𝑖 ∈ [𝜏 − 1],
��( 𝑓𝜃𝜏 (𝑋𝑖) − 𝑓𝜃◦ (𝑋𝑖))�� ≤ 𝐻 𝐴𝜀√

𝐸𝑑
. The former holds by definition

(as ‖𝜃◦‖2 ≤ 𝐵 and ‖𝜃𝜏 ‖2 ≤ 𝐵 as 𝜃𝜏 ∈ Sol(𝑋≤𝜏−1)). For the latter, we use that 𝜃◦, 𝜃𝜏 ∈ Sol(𝑋≤𝜏−1),

so for either 𝜃 ∈ {𝜃◦, 𝜃𝜏}, ∀𝑖 ∈ [𝜏 − 1] .
�� 𝑓𝜃 (𝑋𝑖)�� ≤ ��〈𝑋𝑖 , 𝜃〉�� ≤ 𝐻 𝐴𝜀

2
√
𝐸𝑑

, so by the triangle inequality,

∀𝑖 ∈ [𝜏−1] .
�� 𝑓𝜃𝜏 (𝑋𝑖) − 𝑓𝜃◦ (𝑋𝑖)�� ≤ 𝐻 𝐴𝜀√

𝐸𝑑
. Finally, it is left to show that

�� 𝑓𝜃𝜏 (𝑋𝜏) − 𝑓𝜃◦ (𝑋𝜏)�� > 𝐻𝐴𝜀.

For some 𝑡 ∈ [𝑛1], 𝑗 ∈ [𝐻], 𝑋𝜏 = ⊗𝑎∈[𝐴]Δ̂𝜏𝑡 𝑗𝑎. Since


Δ̂𝜏𝑡 𝑗𝑎

2 ≤ 3, ‖𝑋𝜏 ‖2 ≤ 3𝐴, so ∀ 𝑓𝜃 ∈

F , 𝑓𝜃 (𝑋𝜏) =
〈
truncate(𝑋𝜏), 𝜃

〉
=

〈
𝑋𝜏 , 𝜃

〉
. Furthermore, because the algorithm added (𝑋𝜏𝑎)𝑎 =

(Δ̂𝜏𝑡 𝑗𝑎)𝑎 in Line 13, min𝑎∈[𝐴]
���〈Δ𝜏𝑡 𝑗𝑎, [1, 𝜃]𝜏〉��� > 𝛿/(4𝐻) = 3𝐻𝜀1/𝐴

(
1+ 1

2
√
𝐸𝑑

)1/𝐴
. Under the

assumed high-probability event of Lemma 3.A.1, for 𝑎 ∈ [𝐴], since 𝜏 ∈ [𝐸𝑑 + 1] and 𝑡 ∈ [𝑛1],

by Lemma 3.A.1 and the triangle inequality,
���〈Δ𝜏𝑡 𝑗𝑎, [1, 𝜃]𝜏〉���− ��〈Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃]𝜏〉�� ≤ 2𝛿/(12𝐻), so

min𝑎∈[𝐴]
��〈Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃]𝜏〉�� > 𝛿/(12𝐻) =𝐻𝜀1/𝐴

(
1+ 1

2
√
𝐸𝑑

)1/𝐴
, therefore

∏
𝑎∈[𝐴]

��〈Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃]𝜏〉�� >
𝐻𝐴𝜀

(
1+ 1

2
√
𝐸𝑑

)
. We finish by bounding

�� 𝑓𝜃◦ (𝑋𝜏)�� ≤ 𝐻 𝐴𝜀
2
√
𝐸𝑑

as 𝜃◦ ∈ Sol(𝑋≤𝜏) by our high-probability

assumption, so by the triangle inequality, and noting that 𝑓𝜃𝜏 (𝑋𝜏) =
∏
𝑎∈[𝐴]

〈
Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃]𝜏

〉
, we

have that
�� 𝑓𝜃𝜏 (𝑋𝜏) − 𝑓𝜃◦ (𝑋𝜏)�� ≥∏

𝑎∈[𝐴]
��〈Δ̂𝜏𝑡 𝑗𝑎, [1, 𝜃]𝜏〉��− �� 𝑓𝜃◦ (𝑋𝜏)�� > 𝐻𝐴𝜀 (

1+ 1
2
√
𝐸𝑑

)
− 𝐻 𝐴𝜀

2
√
𝐸𝑑

.

By definition of the eluder dimension, we then have:

Corollary 3.A.5. With probability at least 1−2𝜁 , 𝜏+ ≤ dim𝐸 (F , 𝐻𝐴𝜀) +1 ≤ 𝐸𝑑 +1.

Proof. Assume the high-probability statements of Lemma 3.A.4 hold and that 𝜏+ > dim𝐸 (F , 𝐻𝐴𝜀)+

1. Take 𝑋≤dim𝐸 (F ,𝐻 𝐴𝜀)+1 which is of length dim𝐸 (F , 𝐻𝐴𝜀) +1. Also, dim𝐸 (F , 𝐻𝐴𝜀) +1 ≤ 𝐸𝑑 +1.

Therefore, by Lemma 3.A.4, 𝑋≤dim𝐸 (F ,𝐻 𝐴𝜀)+1 is an eluder sequence for F at scale 𝐻𝐴𝜀 of length

> dim𝐸 (F , 𝐻𝐴𝜀), which is a contradiction.

3.A.3. Value bound

Denote by 𝜋TP the policy induced by TensorPlan.

Lemma 3.A.6. With probability 1−2𝜁 , if 𝜏+ ∈ [𝐸𝑑+1], 𝑣𝜋TP
1 (𝑠0) ≥ 〈𝜑1(𝑠0), 𝜃+〉− 1

𝑛1

∑
𝑡 ∈[𝑛1 ]

∑
𝑗∈[𝐻 ]

〈
Δ𝜏+𝑡 𝑗 𝐴𝜏+𝑡 𝑗 , [1, 𝜃+]

〉
−

1
2𝛿.

Proof. Let us denote the state we reach after 𝐻 steps (once the episode is over) by 𝑆𝐻+1 in the

following. For 𝜓 : S→ R𝑑 , we let 𝑃𝑠𝑎𝜓 =
∫
𝜓(𝑠′)𝑃𝑠𝑎 (𝑑𝑠′).
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Recall that under P, the random variables 𝑆1 = 𝑠0, 𝐴1, 𝑆2, 𝐴2, . . . , 𝐴𝐻 , 𝑆𝐻+1 have the distribu-

tion of an episode in the MDP that starts from 𝑠0 and follows the policy 𝜋TP induced by TensorPlan.

𝑣𝜋TP
1 (𝑠0) = E

∑
𝑗∈[𝐻 ]

𝑟𝑆 𝑗 ,𝐴 𝑗 = E

〈
[

∑
𝑗∈[𝐻 ]

𝑟𝑆 𝑗 ,𝐴 𝑗 , 𝜑𝐻+1(𝑆𝐻+1)], [1, 𝜃+]
〉

= E


〈
𝜑1(𝑠0), 𝜃+

〉
+

∑
𝑗∈[𝐻 ]

〈
[𝑟𝑆 𝑗 ,𝐴 𝑗 , 𝜑 𝑗+1(𝑆 𝑗+1) −𝜑 𝑗 (𝑆 𝑗)], [1, 𝜃+]

〉
=

〈
𝜑1(𝑠0), 𝜃+

〉
+

∑
𝑗∈[𝐻 ]

E
〈
[𝑟𝑆 𝑗 ,𝐴 𝑗 , 𝜑 𝑗+1(𝑆 𝑗+1) −𝜑 𝑗 (𝑆 𝑗)], [1, 𝜃+]

〉
=

〈
𝜑1(𝑠0), 𝜃+

〉
+

∑
𝑗∈[𝐻 ]

E
[〈
[𝑟𝑆 𝑗 ,𝐴 𝑗 , 𝑃𝑆 𝑗𝐴 𝑗𝜑 𝑗+1−𝜑 𝑗 (𝑆 𝑗))], [1, 𝜃+]

〉]
≥

〈
𝜑1(𝑠0), 𝜃+

〉
+ 1
𝑛1

∑
𝑡 ∈[𝑛1 ]

∑
𝑗∈[𝐻 ]

[〈
[𝑟𝑆𝜏+𝑡 𝑗 ,𝐴𝜏+𝑡 𝑗 , 𝑃𝑆𝜏+𝑡 𝑗𝐴𝜏+𝑡 𝑗𝜑 𝑗+1−𝜑 𝑗 (𝑆𝜏+𝑡 𝑗)], [1, 𝜃

+]
〉]
− 1

4
𝛿

≥
〈
𝜑1(𝑠0), 𝜃+

〉
+ 1
𝑛1

∑
𝑡 ∈[𝑛1 ]

∑
𝑗∈[𝐻 ]

〈
Δ𝜏+𝑡 𝑗 𝐴𝜏+𝑡 𝑗 , [1, 𝜃

+]
〉
− 1

2
𝛿 ,

where in the first line we used that 𝜑𝐻+1(𝑆𝐻+1) = 000, in the second that 𝑠0 = 𝑆1, in the third that 𝑠0 is

fixed so can be moved out of the expectation, and in the fourth we used the tower rule for expecta-

tions. In the fifth line we replace the outer expectation with an average of rollouts by the algorithm

that is close to the expectation with high probability, while we also switched to the variable notation

used in Algorithm 3. More specifically, we use the fact that for all ℎ ∈ [𝐻+1], 𝑠 ∈ S , and 𝜏 ∈ [𝐸𝑑+1],

we have that ‖𝜑ℎ (𝑠)‖2 ≤ 1 and ‖𝜃+‖2 ≤ 𝐵,
��〈[𝑟𝑆𝜏𝑡 𝑗 ,𝐴𝜏𝑡 𝑗 , 𝑃𝑆𝜏𝑡 𝑗𝐴𝜏𝑡 𝑗𝜑 𝑗+1−𝜑 𝑗 (𝑆𝜏𝑡 𝑗))], [1, 𝜃+]

〉�� ≤
1 + 2𝐵 (as rewards are bounded in [0,1]). We can therefore apply Hoeffding’s inequality on the

𝑛1 independent rollouts:

P

(
1
𝑛1

∑
𝑡 ∈[𝑛1 ]

[ ∑
𝑗∈[𝐻 ]

[ 〈
[𝑟𝑆𝜏𝑡 𝑗 ,𝐴𝜏𝑡 𝑗 , 𝑃𝑆𝜏𝑡 𝑗𝐴𝜏𝑡 𝑗𝜑 𝑗+1−𝜑 𝑗 (𝑆𝜏𝑡 𝑗)], [1, 𝜃+]

〉
−E

〈
[𝑟𝑆𝜏𝑡 𝑗 ,𝐴𝜏𝑡 𝑗 , 𝑃𝑆𝜏𝑡 𝑗𝐴𝜏𝑡 𝑗𝜑 𝑗+1−𝜑 𝑗 (𝑆𝜏𝑡 𝑗)], [1, 𝜃+]

〉 ]]
> 𝛿/4

)
≤ exp

(
− 𝑛1𝛿

2

32𝐻2(1+2𝐵)2

)
≤ 𝜁

𝐸𝑑 +1
,

if 𝑛1 =
⌈
32𝐻2(1+2𝐵)2/𝛿2 log 𝐸𝑑+1

𝜁

⌉
. With an union bound, the probability that any of these bounds

fail for any 𝜏 ∈ [𝐸𝑑 +1] is upper bounded by 𝜁 . We can therefore apply this bound for 𝜏 = 𝜏+, noting
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that

E
〈
[𝑟𝑆𝜏+𝑡 𝑗 ,𝐴𝜏+𝑡 𝑗 , 𝑃𝑆𝜏+𝑡 𝑗𝐴𝜏+𝑡 𝑗𝜑 𝑗+1−𝜑 𝑗 (𝑆𝜏+𝑡 𝑗)], [1, 𝜃

+]
〉
= E

〈
[𝑟𝑆 𝑗 ,𝐴 𝑗 , 𝑃𝑆 𝑗𝐴 𝑗𝜑 𝑗+1−𝜑 𝑗 (𝑆 𝑗)], [1, 𝜃+]

〉
.

This is because 𝜃+ = 𝜃𝜏+ , so for all 𝑡 ∈ [𝑛1], the episode
(
𝑆𝜏+𝑡1, 𝐴𝜏+𝑡1, . . . , 𝐴𝜏+𝑡𝐻 , 𝑆𝜏+𝑡 ,𝐻+1

)
is dis-

tributed identically to the episode (𝑆1, 𝐴1, 𝑆2, 𝐴2, . . . , 𝐴𝐻 , 𝑆𝐻+1). Finally, in the sixth line we replace

the remaining expectation with the average measured by the algorithm, which is close to the expec-

tation with high probability (Lemma 3.A.1) for 𝜏 ∈ [𝐸𝑑 +1], 𝑡 ∈ [𝑛1], 𝑗 ∈ [𝐻], 𝑎 ∈ [𝐴]. By a union

bound, this adds another 𝜁 to the probability that our bound does not hold.

Corollary 3.A.7. With probability at least 1−3𝜁 , 𝑣𝜋TP
1 (𝑠0) ≥ 〈𝜑1(𝑠0), 𝜃+〉 − 3

4𝛿.

Proof. Under the high-probability event of Corollary 3.A.5, 𝜏+ ≤ 𝐸𝑑 + 1. From the proof of

Lemma 3.A.6:

𝑣𝜋TP
1 (𝑠0) ≥

〈
𝜑1(𝑠0), 𝜃+

〉
+ 1
𝑛1

∑
𝑡 ∈[𝑛1 ]

∑
𝑗∈[𝐻 ]

〈
Δ𝜏𝑡 𝑗 𝐴𝜏𝑡 𝑗 , [1, 𝜃+]

〉
− 1

2
𝛿 ≥

〈
𝜑1(𝑠0), 𝜃+

〉
− 3

4
𝛿

where we use the fact that, since 𝜏+ ≤ 𝐸𝑑 + 1, we exited the 𝜏 loop as CleanTest was true in

Line 20, so for 𝜏+, all 𝑡 ∈ [𝑛1] the path in Line 16 was chosen (otherwise we would have finished

with a larger 𝜏+). This directly bounds the inner product of interest. Taking a union bound over

the underlying high-probability events, 𝑣𝜋TP
1 (𝑠0) ≥ 〈𝜑1(𝑠0), 𝜃+〉 − 3

4𝛿 holds with probability at least

1−3𝜁 .

Corollary 3.A.8. 𝑣𝜋TP
1 (𝑠0) ≥ 𝑣1(𝑠0;𝜃◦) − 𝛿.

Proof. Assume all high-probability events introduced so far, which hold with probability at least

1− 3𝜁 . By Corollary 3.A.5, 𝜏+ ≤ 𝐸𝑑 + 1. By Lemma 3.A.3, 𝜃◦ ∈ Sol(𝑋≤𝜏+). Since 𝜃+ was chosen

optimistically in Line 5, 〈𝜑1(𝑠0), 𝜃+〉 ≥ 〈𝜑1(𝑠0), 𝜃◦〉 = 𝑣1(𝑠0;𝜃◦). By Corollary 3.A.7, 𝑣𝜋TP
1 (𝑠0) ≥

〈𝜑1(𝑠0), 𝜃+〉 − 3
4𝛿 ≥ 𝑣1(𝑠0;𝜃◦) − 3

4𝛿. Therefore, with probability at least 1−3𝜁 = 1− 1
4𝐻 𝛿, 𝑣𝜋TP

1 (𝑠0) ≥

𝑣1(𝑠0;𝜃◦)− 3
4𝛿, so 𝑣𝜋TP

1 (𝑠0) ≥
(
1− 1

4𝐻 𝛿
) (
𝑣1(𝑠0;𝜃◦) − 3

4𝛿
)
≥ 𝑣1(𝑠0;𝜃◦)−𝛿 (using that due to bounded

rewards, 𝑣𝜋TP
1 (𝑠0) ≤ 𝐻).

3.A.4. Final bound

We can now combine all the ingredients together to get the final result.
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Theorem 3.3.2. [Weisz et al., 2021a, Theorem 4.2] For any 𝛿 > 0 and 𝐵 > 0, there exists values

of 𝜁, 𝜀, 𝑛1, 𝑛2, and 𝑛3 such that the TensorPlan algorithm (Algorithm 1) is (𝛿, 𝐵)-sound (Defini-

tion 3.2.3) with misspecification 𝜂 = 0 and simulator accuracy 𝜆 ≤ 𝜀/(4
√
𝐸𝑑) = Õ

((
𝛿

12
√
𝑑𝐻 2

)𝐴
/
√
𝐴

)
for the 𝐻-horizon planning problem with worst-case per-episode query-cost

Õ
(
𝑑𝐴𝐴4𝐵2/𝛿2

(
𝐻5𝐵2𝑑/𝛿2 + 𝑑𝐴𝐴𝐻4(𝐴+1)122𝐴/𝛿2𝐴

))
= poly

(
(𝑑𝐻/𝛿)𝐴 , 𝐵

)
.

Proof. Fix 𝛿 > 0 and 𝐵 > 0. By Corollary 3.A.8, 𝑣𝜋TP
1 (𝑠0) ≥ 𝑣1(𝑠0;𝜃◦) − 𝛿 for any 𝜃◦ ∈ Θ◦.

Denoting by 𝑣◦ = 𝑣◦𝐵 the H-horizon 𝜑-compatible optimal value function of ℳ, 𝑣𝜋TP
1 (𝑠0) ≥

sup𝜃◦∈Θ◦ 𝑣1(𝑠0;𝜃◦) − 𝛿 = 𝑣◦1(𝑠0) − 𝛿 by definition, proving soundness. In each episode, 𝐿𝑖𝑛𝑒 5

in TensorPlan.GetAction is called 𝐻 times, and TensorPlan.Init is called once. The for-

mer results in 𝐻𝑛2𝐴 calls to the simulator. We turn our attention to the query complexity of

TensorPlan.Init. The loop variable 𝜏 of Init goes up to 𝐸𝑑 + 2 so 𝜏+ ≤ 𝐸𝑑 + 2. Line 10

can therefore be called at most (𝐸𝑑 + 2)𝑛1𝐻𝐴 times, each performing 𝑛2 interactions with the

simulator. Line 17 can be called at most (𝐸𝑑 + 2)𝑛1𝐻 times, each performing 1 interaction

with the simulator. Line 12 can be called at most (𝐸𝑑 + 2)𝑛1𝐴 times, each performing 𝑛3 in-

teractions with the simulator. Using that 𝐸𝑑 = Õ
(
𝑑𝐴𝐴

)
, 𝜆 = Õ

((
𝛿

12
√
𝑑𝐻 2

)𝐴
/
√
𝐴

)
. Further-

more, using that 𝑛1 = Õ
(
𝐻2𝐵2𝐴/𝛿2) , 𝑛2 = Õ

(
𝐻2𝐵2𝑑𝐴/𝛿2) , 𝑛3 = Õ

(
𝑑𝐴𝐴2𝐻2/𝜀2 +𝐻2𝐵2𝑑𝐴/𝛿2) =

Õ
(
𝑑𝐴𝐴2𝐻4𝐴+2122𝐴/𝛿2𝐴+𝐻2𝐵2𝑑𝐴/𝛿2) , the (worst-case per-episode) query-cost of TensorPlan

(along any episode) is

Õ (𝐻𝑛2𝐴+𝐸𝑑𝑛1𝐴 (𝐻𝑛2 +𝑛3)) = Õ (𝐸𝑑𝑛1𝐴 (𝐻𝑛2 +𝑛3)) = Õ
(
𝑑𝐴𝐴3𝐻2𝐵2/𝛿2 (𝐻𝑛2 +𝑛3)

)
= Õ

(
𝑑𝐴𝐴4𝐵2/𝛿2

(
𝐻5𝐵2𝑑/𝛿2 + 𝑑𝐴𝐴𝐻4(𝐴+1)122𝐴/𝛿2𝐴

))
.

3.B. Proof of Theorem 3.3.4

Theorem 3.3.4. [Weisz et al., 2021a, Theorem 4.4] For any 𝛿, 𝐵 > 0, TensorPlan is (𝛿, 𝐵)-sound

with misspecification 𝜂 ≤ 𝜀/(12
√
𝐸𝑑) and simulator accuracy 𝜆 ≤ 𝜀/(12

√
𝐸𝑑) with worst-case

per-episode query-cost poly
(
(𝑑𝐻/𝛿)𝐴 , 𝐵

)
, when run with input 𝛿′ = 0.98𝛿 and simulation oracle

SIMULATE′.

Proof. Fix 𝛿 > 0, 𝐻 ≥ 1, 𝜂 = 𝜀/(12
√
𝐸𝑑) and 𝜆 = 𝜀/(12

√
𝐸𝑑). We assume that 𝛿 < 𝐻 as soundness

trivially holds otherwise. Let (ℳ, 𝜑) be any featurized MDP with 1-bounded feature maps and

rewards bounded in [0,1]. Let SIMULATE be the 𝜆-accurate simulation oracle for (ℳ, 𝜑). We
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will shortly define a slightly modified simulation oracle SIMULATE′ corresponding to a featurized

MDP (ℳ′, 𝜑′) derived from (ℳ, 𝜑). This oracle will simply use the data returned from calls to

SIMULATE while we will claim that it is a simulator for (ℳ′, 𝜑′) with inaccuracy not more than

𝜀/(4
√
𝐸𝑑).

Denote by 𝜋TP the policy while TensorPlan interacts with the simulator SIMULATE′. By the

correspondence between the two MDPs, 𝜋TP can be interpreted as a policy of ℳ. We will then

prove that for all states 𝑠 ∈ S of ℳ,

𝑣𝜋TP
1 (𝑠) ≥ 𝑣

◦
1(𝑠) − 𝛿 ,

where 𝑣𝜋TP is the 𝐻-horizon value function of TensorPlan’s policy 𝜋TP in ℳ and 𝑣◦ = 𝑣◦𝐵,𝜂 is the

𝐻-horizon 𝜑-compatible optimal value function of ℳ (cf. Equation (48)).

Let Π◦𝐵,𝜂 be the set of memoryless, deterministic (MLD) policies that are 𝐵-boundedly

𝑣-linearly realizable with misspecification 𝜂 and features 𝜑. Then, by definition, 𝑣◦𝐵,𝜂 (𝑠) =

sup𝜋∈Π◦𝐵,𝜂
𝑣𝜋1 (𝑠). It is enough to prove that for any 𝜋 ∈ Π◦𝐵,𝜂 ,

𝑣𝜋TP
1 (𝑠) ≥ 𝑣

𝜋
1 (𝑠) − 𝛿 .

Fix a 𝜃 ∈R𝑑 such that
��𝑣𝜋ℎ (𝑠) − 〈𝜑ℎ (𝑠), 𝜃〉�� ≤ 𝜂 for all ℎ ∈ [𝐻] and 𝑠 ∈ S . Such a 𝜃 exists by definition.

We now construct an alternative featurized MDP (ℳ′, 𝜑′) that will mimic ℳ, but with slightly

different rewards and an expanded state-space. The main point of introducing this MDP is that the

value function of 𝜋 (when “used” in ℳ′) will be realizable with 𝜂 = 0. The function SIMULATE′ will

be defined to act as a simulator for (ℳ′, 𝜑′). Then we will use an extension Theorem 3.3.2 to argue

that TensorPlan induces a policy that can compete with 𝜋 in ℳ′ and hence, by the correspondence

between the two MDPs, it also competes with 𝜋 in ℳ. The required extension of Theorem 3.3.2 is

as follows:

Claim 3.B.1. The conclusions of Theorem 3.3.2 remain valid with the following two changes:

(i) The rewards in the MDP are allowed to belong to [−2,2];

(ii) A set S1 ⊂ S is fixed and the requirement of soundness is redefined so that the initial state cho-

sen at the beginning of an episode must belong to S1 while v-realizability (cf. Definition 3.2.1)

of a policy 𝜋 is redefined so that instead of maxℎ∈[𝐻 ] sup𝑠∈S
��𝑣𝜋ℎ (𝑠) − 〈𝜑ℎ (𝑠), 𝜃〉�� ≤ 𝜂 we re-

quire maxℎ∈[𝐻 ] sup𝑠∈Sℎ

��𝑣𝜋ℎ (𝑠) − 〈𝜑ℎ (𝑠), 𝜃〉�� ≤ 𝜂 where Sℎ ⊂ S is defined as the set of states
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that can be reached with positive probability in ℳ from some state in S1 and action sequence

of length ℎ−1.

Proof. For (i) note that shifting the rewards does not impact the proof, while the range of rewards

scales the query cost quadratically (this comes from the use of Hoeffding’s inequality, where ranges

of temporal difference errors appear, which scale linearly with the range of rewards). For (ii) we

only need to check that if 𝜃◦ is a parameter vector of a policy with the modified definition, this

parameter vector will not be eliminated by TensorPlan. A quick look at the proof of Lemma 3.A.3

confirms that this is the case. Indeed, TensorPlan constructs data for checking consistency at stage ℎ

only with states that it reaches through ℎ−1, or ℎ actions from the initial state it is given. Therefore

the states that appear with 𝜑ℎ always belong to Sℎ. As such, Lemma 3.A.3 continues to hold true,

and the result follows.

Let us now return to the definition of ℳ′ = (S ′,Σ′, [𝐴],𝑄 ′) and 𝜑′. We let the states of ℳ′

be S ′ = S × [𝐻] ∪ {⊥}, that is, the state space of ℳ′ contains 𝐻 copies of each state, and a final

absorbing state ⊥. The intention is that only states of the form (𝑠, ℎ + 1) are accessible from states

of the form (𝑠, ℎ). We let Σ′ to be the smallest 𝜎 algebra under which {⊥} and all the sets of the

form 𝑆× {ℎ} are measurable where 𝑆 ∈ Σ and ℎ ∈ [𝐻]. We let 𝜑′ℎ ((𝑠, ·)) = 𝜑ℎ (𝑠) and 𝜑′ℎ (⊥) = 000, a

𝑑-dimensional vector of all zeros.

The transition kernel 𝑄 ′ in ℳ′ will follow that in ℳ, with the appropriate modification to

create the promised “levelled” structure, while the rewards are modified to “cancel out the misspec-

ification” of policy 𝜋. That is, for ℎ < 𝐻, from state (𝑠, ℎ) ∈ S ′ taking action 𝑎 ∈A, kernel 𝑄 ′ gives

(𝑅 + 𝑧(𝑠, ℎ), (𝑆′, ℎ+1)) where (𝑅, 𝑆′) ∼𝑄𝑠𝑎 and

𝑧(𝑠, ℎ) = E𝑎′∼𝜋 (ℎ) (𝑠) [〈𝜑ℎ (𝑠) −𝑃𝑠𝑎′𝜑ℎ+1, 𝜃〉 − 𝑟𝑠𝑎′] .

From state (𝑠,𝐻) ∈ S ′ or ⊥, any action leads deterministically to ⊥ while incurring zero reward.

Notice that any (𝑠′, ℎ) ∈ S ′ can only be reached after exactly ℎ steps when starting from some

other state (𝑠,1), 𝑠 ∈ S . Furthermore, denoting by 𝑟 ′ the immediate rewards in ℳ′, we have

𝑟 ′(𝑠,ℎ) ,𝑎 = 𝑟𝑠𝑎 + 𝑧(𝑠, ℎ). Note that |𝑧(𝑠, ℎ) | ≤ 2𝜂, since
��𝑣𝜋ℎ (𝑠) − 〈𝜑ℎ (𝑠), 𝜃〉�� ≤ 𝜂 for all ℎ ∈ [𝐻] and

𝑠 ∈ S , and E𝑎′∼𝜋ℎ (𝑠)
[
𝑣𝜋ℎ (𝑠) −𝑃𝑠𝑎′𝑣

𝜋
ℎ+1− 𝑟𝑠𝑎′

]
= 0 by the Bellman equation. Hence, the rewards in

ℳ′ are supported on [−2𝜂,1+2𝜂] ⊂ [−2,2] (as 𝜂 < 1/2).

For any (𝑠, ℎ) ∈ S ′, let 𝑣̄′ℎ ((𝑠, ℎ)) =
〈
𝜑′ℎ ((𝑠, ℎ)), 𝜃

〉
= 〈𝜑ℎ (𝑠), 𝜃〉. We claim that 𝑣̄′ℎ satisfies the

Bellman equation of 𝜋 when policy 𝜋 in ℳ′ is taken as a policy of ℳ′ with the understanding that
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in state (𝑠, ℎ) and stage ℎ, following 𝜋 means using 𝜋ℎ (𝑠), while in stage ℎ′ ≠ ℎ, an arbitrary action

can be taken. Indeed, for any (𝑠, ℎ) ∈ S ′ we have

𝑣̄′ℎ ((𝑠, ℎ)) = 〈𝜑ℎ (𝑠), 𝜃〉 = 𝐸𝑎∼𝜋 (ℎ) (𝑠) [𝑟𝑠𝑎 + 〈𝜑ℎ (𝑠) −𝑃𝑠𝑎𝜑ℎ+1, 𝜃〉 − 𝑟𝑠𝑎 + 〈𝑃𝑠𝑎𝜑ℎ+1, 𝜃〉]

= 𝐸𝑎∼𝜋 (ℎ) (𝑠)
[
𝑟𝑠𝑎 +𝐸𝑎′∼𝜋 (ℎ) (𝑠) [〈𝜑ℎ (𝑠) −𝑃𝑠𝑎′𝜑ℎ+1, 𝜃〉 − 𝑟𝑠𝑎′] + 〈𝑃𝑠𝑎𝜑ℎ+1, 𝜃〉

]
= 𝐸𝑎∼𝜋 (ℎ) (𝑠)

[
𝑟 ′(𝑠,ℎ) ,𝑎 + 〈𝑃𝑠𝑎𝜑ℎ+1, 𝜃〉

]
= 𝐸𝑎∼𝜋 (ℎ) (𝑠)

[
𝑟 ′(𝑠,ℎ) ,𝑎 +𝑃

′
(𝑠,ℎ) ,𝑎 𝑣̄

′
ℎ+1

]
= 𝑟 ′𝜋 ((𝑠, ℎ)) +𝑃′𝜋 ((𝑠, ℎ))𝑣̄′ℎ+1 ,

where 𝑃′ is the transition kernel in ℳ′ and 𝑃′𝜋 (𝑟 ′𝜋) is the corresponding kernel (respectively, reward

function) induced by 𝜋. Since 𝑣′𝜋 also satisfies this equation and 𝑣̄′𝐻+1 = 𝑣
′𝜋
𝐻+1 = 000, it follows that

for any (𝑠, ℎ) ∈ S ′, 𝑣′𝜋ℎ ((𝑠, ℎ)) = 𝑣̄
′
ℎ ((𝑠, ℎ)) =

〈
𝜑′ℎ ((𝑠, ℎ)), 𝜃

〉
. Now, define S ′1 = S × {1}. Then, S ′ℎ,

the set of states reachable in ℳ′ with positive probability from S ′1 with an action sequence of length

ℎ−1, is easily seen to be a subset of S × {ℎ}. Therefore, policy 𝜋 is v-realizable with 𝜂′ = 0 in the

sense of the definition of v-realizability given in Part (ii) of Claim 3.B.1.

For state and action 𝑠 ∈ S , 𝑎 ∈ [𝐴], recall that SIMULATE(𝑠, ℎ, 𝑎) is implemented by a 𝜆-

accurate simulator for (ℳ, 𝜑), and that the state transitions of ℳ and ℳ′ are the same apart from

that in the latter the stage counter is incremented in each transition. Hence, we define SIMULATE′ as

follows: SIMULATE′((𝑠, ℎ), ℎ′, 𝑎) for (𝑠, ℎ) ∈ S ′ calls (𝑅, 𝑆′, 𝜑ℎ′+1(𝑆′)) ← SIMULATE(𝑠, ℎ′, 𝑎) and

returns (𝑅, (𝑆′, ℎ+1), 𝜑ℎ′+1(𝑆′)) for ℎ < 𝐻 and (𝑅,⊥,000) otherwise. We also let SIMULATE′(⊥, ·, ·)

deterministically returns (0,⊥,000).

Let 𝜋′ be a policy of ℳ′ that is induced by a planner interacting with ℳ′ using SIMULATE′

where the episode starts in ℳ′ are restricted to S ′1. Then, on the one hand, 𝜋′ can be seen as a policy

in ℳ: For a history in ℳ, one just needs to add the respective stage counters to the states in the

history and then use 𝜋′ to return an action.

Now note that the reward distribution of ℳ′ is shifted by up to 2𝜂 compared to the reward

distribution of ℳ. The distribution of the simulator’s rewards clip[0,1] (𝑅𝑠𝑎 +Λ𝑠𝑎) are shifted by up

to Λ𝑠𝑎 ≤ 𝜆 compared to the reward distribution of ℳ, so by the triangle inequality it is shifted by up

to 2𝜂+𝜆 compared to the reward distribution of ℳ′. Since 2𝜂+𝜆 = 𝜀/(4
√
𝐸𝑑), using the reward of

the simulator call SIMULATE(𝑠, ℎ′, 𝑎) as the output of SIMULATE′((𝑠, ℎ), ℎ′, 𝑎) ensures SIMULATE′

is a simulator for (ℳ′, 𝜑′) with inaccuracy 𝜀/(4
√
𝐸𝑑).
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Therefore, applying Claim 3.B.1 with 𝜂′ = 0, 𝜆′ = 𝜀/(4
√
𝐸𝑑), and 𝛿′ = 0.98𝛿, TensorPlan

is (𝛿′, 𝐵)-sound for ℳ′ and initial states from S ′ when run with the simulator SIMULATE′, with

worst-case per-episode query-cost poly
(
(𝑑𝐻/𝛿)𝐴 , 𝐵

)
. Thus, for all (𝑠,1) ∈ S ′ (ie. all 𝑠 ∈ S),

𝑣′𝜋TP
1 ((𝑠,1)) ≥ 𝑣′◦1 ((𝑠,1)) − 0.98𝛿, where 𝑣′◦ = 𝑣′◦𝐵,0 is the 𝐻-horizon 𝜑-compatible optimal value

function of ℳ′. As 𝜋 is 𝑣-linearly realizable in MDP ℳ′ with no misspecification, 𝑣′◦1 ((𝑠,1)) ≥

𝑣′𝜋1 ((𝑠,1)), so 𝑣′𝜋TP
1 ((𝑠,1)) ≥ 𝑣′𝜋1 ((𝑠,1)) −0.98𝛿. As the state transition distributions of ℳ and ℳ′

are the same except for the stage counter incrementation in ℳ′, the distribution of any policy 𝜋

in ℳ producing an episode (𝑆1, 𝐴1, 𝑆2, 𝐴2 . . . , 𝑆𝐻 , 𝐴𝐻 ) is the same as the distribution of 𝜋 in ℳ′

producing the episode ((𝑆1,1), 𝐴1, (𝑆2,2), 𝐴2, . . . , (𝑆𝐻 , 𝐻), 𝐴𝐻 ). Furthermore, the rewards of ℳ′

are shifted by up to 2𝜂. Therefore, the 𝐻-horizon value functions 𝑣𝜋
′

1 (𝑠) and 𝑣′𝜋
′

1 ((𝑠,1)) for any 𝜋′

differ by at most 2𝐻𝜂, and thus by treating 𝜋TP as a policy of both ℳ and ℳ′, we have

𝑣𝜋TP
1 (𝑠) ≥ 𝑣

′𝜋
1 ((𝑠,1)) −0.98𝛿−2𝐻𝜂 ≥ 𝑣𝜋1 (𝑠) −0.98𝛿−4𝐻𝜂 ≥ 𝑣𝜋1 (𝑠) − 𝛿 ,

as 4𝐻𝜂 = 𝐻 𝜀
3
√
𝐸𝑑
≤
𝐻 𝛿

12𝐻2 /(1+0.5)
3
√
𝐸𝑑

≤ 𝛿
18𝐻 /3 ≤ 0.02𝛿.

We note in passing that the result as stated could be (slightly) strengthened and simplified:

Since SIMULATE′ generates the same data (with some redundancy) as SIMULATE, using TensorPlan

on (ℳ′, 𝜑′) via SIMULATE′ produces the same policy in ℳ as using it directly on (ℳ, 𝜑) via

SIMULATE. Thus, SIMULATE′ is only needed for the proof; the conclusion of the result applies

when TensorPlan directly uses SIMULATE with a near-realizable featurized MDP.

By reiterating the arguments of Claim 3.B.1 in the context of Theorem 3.3.4, we get the fol-

lowing claim, which will be needed in the next section:

Claim 3.B.2. The conclusions of Theorem 3.3.4 remain valid with the following two changes:

(i) The rewards in the MDP are allowed to belong to [−2,2];

(ii) A set S1 ⊂ S is fixed and the requirement of soundness is redefined so that the initial state cho-

sen at the beginning of an episode must belong to S1 while v-realizability (cf. Definition 3.2.1)

of a policy 𝜋 is redefined so that instead of maxℎ∈[𝐻 ] sup𝑠∈S
��𝑣𝜋ℎ (𝑠) − 〈𝜑ℎ (𝑠), 𝜃〉�� ≤ 𝜂 we re-

quire maxℎ∈[𝐻 ] sup𝑠∈Sℎ

��𝑣𝜋ℎ (𝑠) − 〈𝜑ℎ (𝑠), 𝜃〉�� ≤ 𝜂 where Sℎ ⊂ S is defined as the set of states

that can be reached with positive probability in ℳ from some state in S1 and action sequence

of length ℎ−1.

3.C. Proof of Theorem 3.3.5
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Theorem 3.3.5. [Weisz et al., 2021a, Theorem 4.5] For any 𝛿, 𝐵 > 0, TensorPlan is (𝛿, 𝐵)-sound

for discounted MDPs with discount factor 0 ≤ 𝛾 < 1, with misspecification 𝜂 ≤ 𝜀/(24
√
𝐸𝑑) and

simulator accuracy 𝜆 ≤ 𝜀/(12
√
𝐸𝑑), with worst-case per-state query-cost poly

( (
𝑑𝐻𝛾, 𝛿/𝛿

)𝐴
, 𝐵

)
,

when run with input 𝛿′ = 0.98𝛿 and simulation oracle SIMULATE𝛾, 𝛿 .

Proof. Fix a suboptimality target 𝛿 > 0. We assume that 𝛿 < 𝐻 as soundness trivially holds oth-

erwise. Fix 𝜂 = 𝜀/(24
√
𝐸𝑑) and 𝜆 = 𝜀/(12

√
𝐸𝑑); proving soundness and the query-cost bound for

these values implies the same results for smaller 𝜂 or 𝜆. Let (ℳ, 𝜑) be a featurized MDP in the

discounted setting with 1-bounded feature maps and rewards bounded in [0,1]. Take a 𝜆-accurate

simulation oracle SIMULATE for (ℳ, 𝜑). Let

𝐻𝛾, 𝛿 =

⌈
log ((1−𝛾)𝜂) /log𝛾

1−𝛾

⌉
.

In the remainder of the proof we shorten 𝐻𝛾, 𝛿 and will just use 𝐻 (i.e., in what follows 𝐻 = 𝐻𝛾, 𝛿).

We now construct a featurized, fixed-horizon MDP (ℳ′, 𝜑𝛾, 𝛿) with horizon 𝐻. Let the states of

ℳ′ be S ′ = S × [𝐻] ∪ {⊥}, that is, the state space contains 𝐻 copies of each state, and an additional

state ⊥, which will play the role of a final, absorbing state. The 𝜎 algebra for S ′ is constructed as in

the proof of Theorem 3.3.4 (we omit the definition). The action set of ℳ′ remains [𝐴]. The kernel

𝑄 ′ is inherited from ℳ, again, with the appropriate modification to create the promised “levelled”

structure, while the rewards are modified to accommodate discounting: That is, for ℎ < 𝐻, from

state (𝑠, ℎ) ∈ S ′ taking action 𝑎 ∈A, kernel𝑄 ′ gives (𝛾ℎ−1𝑅, (𝑆′, ℎ+1)) where (𝑅, 𝑆′) ∼𝑄𝑠𝑎. From

state (𝑠,𝐻) ∈ S ′ or ⊥, any action leads deterministically to ⊥ while incurring zero reward. In words,

states with associated stage ℎ < 𝐻 lead to respective states with associated stage ℎ + 1, and the

episode is terminated after 𝐻 steps by transitioning to the absorbing state ⊥. By letting 𝑟 ′ denote

the immediate expected rewards in ℳ′, for state (𝑠, ℎ) ∈ S ′ and action 𝑎 we have 𝑟 ′(𝑠,ℎ) ,𝑎 = 𝛾
ℎ−1𝑟𝑠𝑎.

Let 𝜑𝛾, 𝛿ℎ ((𝑠, ·)) = 𝛾
ℎ−1𝜑(𝑠) and 𝜑

𝛾, 𝛿
ℎ (⊥) = 000, a 𝑑-dimensional vector of all zeros. We de-

fine SIMULATE𝛾, 𝛿 as follows: SIMULATE𝛾, 𝛿 is a simulation oracle for (ℳ′, 𝜑𝛾, 𝛿) so that for

(𝑠, ℎ) ∈ S ′ with ℎ < 𝐻, ℎ′ ∈ [𝐻] and 𝑎 ∈ [𝐴], SIMULATE𝛾, 𝛿 ((𝑠, ℎ), ℎ′, 𝑎) first gets (𝑅, 𝑆, 𝜑(𝑆)) ←

SIMULATE(𝑠, ℎ′, 𝑎) to return
(
𝛾ℎ−1𝑅, (𝑆, ℎ+1), 𝜑𝛾, 𝛿ℎ′+1((𝑆, ℎ+1))

)
, while it returns

(
𝛾𝐻−1𝑅,⊥,000

)
when ℎ = 𝐻. Finally, SIMULATE𝛾, 𝛿 (⊥, ·, ·) deterministically returns (0,⊥,000). As 𝛾 < 1, the inaccu-

racy of SIMULATE𝛾, 𝛿 is at most the inaccuracy of SIMULATE, which is at most 𝜆, by assumption.

Next, we prove that the value function of the discounted MDP ℳ is close to the corresponding

values of its 𝐻-horizon counterpart ℳ′. For this, we first need to agree on a way of transporting

policy between ℳ and ℳ′. This is done as follows: Let 𝛼 be a function that maps histories in ℳ
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to histories in ℳ′ by adding stage counters to them. Let 𝛼−1 be the “inverse”, which simply drops

stage indices from histories of ℳ′. For any ℎ history of ℳ, 𝛼−1(𝛼(ℎ)) = ℎ, while 𝛼(𝛼−1(ℎ′)) = ℎ′

holds for all histories ℎ′ of ℳ′ whose start state is from S ′1 = S × {1} and where the states in the

history do not include ⊥. If 𝜋′ is any (possibly memoryful) policy of ℳ′, following 𝜋′ in ℳ means

that given some history ℎ of ℳ, the action 𝐴 ∼ 𝜋′(·|𝛼(ℎ)) should be taken. Conversely, using a

policy 𝜋 of ℳ in ℳ′ means that given a history ℎ′, 𝐴 ∼ 𝜋(·|𝛼−1(ℎ′)) should be taken. This way, we

can view a policy of either ℳ or ℳ′ as a policy of the other MDP.

Now take any policy 𝜋 of ℳ and take any (𝑠, ℎ) ∈ S ′. As 𝜋 is also a policy of ℳ′, we

can talk about its value function in ℳ′, which we denote by 𝑣′𝜋 . By definition, 𝑣′𝜋ℎ ((𝑠, ℎ0)) =

E′
𝜋, (𝑠,ℎ0) [

∑𝐻−ℎ+1
ℎ′=1 𝑟 ′(𝑆ℎ′ ,ℎ0+ℎ′−1) ,𝐴ℎ′

], where E′𝜋,𝑠′ denotes the expectation operator underlying the

distribution P′𝜋,𝑠′ over state-action trajectories induced by the interconnection of 𝜋 and ℳ′ given

the initial state 𝑠′ ∈ S ′. Similarly, we will use E𝜋,𝑠 to denote this operator when the MDP is ℳ and

the initial state is 𝑠 ∈ S , and we let P𝜋,𝑠 denote the underlying distribution. With this note that

P′𝜋, (𝑠,ℎ) (𝑈 ×𝑉) = P𝜋,𝑠 (𝛼(𝑈 ×𝑉)) (60)

holds for any measurable subset 𝑈 of (S × [𝐻] × [𝐴])𝐻−ℎ+1 and where 𝑉 = (S × [𝐻] × [𝐴])N+ is

the set of all histories. We claim that the following holds:

��𝑣′𝜋ℎ ((𝑠, ℎ)) −𝛾ℎ−1𝑣𝜋 (𝑠)
�� ≤ 𝜂 . (61)

We calculate

��𝑣′𝜋ℎ ((𝑠, ℎ)) −𝛾ℎ−1𝑣𝜋 (𝑠)
��

=

�����E′𝜋, (𝑠,ℎ)
[
𝐻−ℎ+1∑
ℎ′=1

𝑟 ′(𝑆ℎ′ ,ℎ+ℎ′−1) ,𝐴ℎ′

]
−𝛾ℎ−1E𝜋,𝑠

[ ∞∑
ℎ′=1

𝛾ℎ
′−1𝑟𝑆ℎ′ ,𝐴ℎ′

] �����
=

�����𝛾ℎ−1E′𝜋, (𝑠,ℎ)

[
𝐻−ℎ+1∑
ℎ′=1

𝛾ℎ
′−1𝑟𝑆ℎ′ ,𝐴ℎ′

]
−𝛾ℎ−1E𝜋,𝑠

[
𝐻−ℎ+1∑
ℎ′=1

𝛾ℎ
′−1𝑟𝑆ℎ′ ,𝐴ℎ′

]
−𝛾ℎ−1E𝜋,𝑠

[ ∞∑
ℎ′=𝐻−ℎ+2

𝛾ℎ
′−1𝑟𝑆ℎ′ ,𝐴ℎ′

] �����
=

�����−𝛾𝐻E𝜋,𝑠
[ ∞∑
ℎ′=𝐻−ℎ+2

𝛾ℎ
′−(𝐻−ℎ+2)𝑟𝑆ℎ′ ,𝐴ℎ′

] ����� (by Eq. (60))

≤ 𝛾𝐻
∞∑
𝑖=0
𝛾𝑖 =

𝛾𝐻

1−𝛾 ≤
𝛾log( (1−𝛾)𝜂)/log𝛾

1−𝛾 = 𝜂 ,
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where in the last line used the fact that rewards are bounded in [0,1]. Now, notice that if 𝜋 was a

policy of ℳ′, Eq. (60) would still hold true, and as such, Eq. (61) also holds for 𝜋.

Take any policy 𝜋 that is 𝑣-linearly realizable in ℳ with misspecification 𝜂 under the feature

map 𝜑. By definition, there exists a 𝜃 ∈ R𝑑 such that |𝑣𝜋 (𝑠) − 〈𝜑(𝑠), 𝜃〉| ≤ 𝜂 for all 𝑠 ∈ S (ie. for all

(𝑠, ℎ) ∈ S ′). By Eq. (61) and the triangle inequality, for all (𝑠, ℎ) ∈ S ′,

���𝑣′𝜋ℎ ((𝑠, ℎ)) − 〈
𝜑
𝛾, 𝛿
ℎ ((𝑠, ℎ)), 𝜃

〉��� = ��𝑣′𝜋ℎ ((𝑠, ℎ)) −𝛾ℎ−1 〈𝜑(𝑠), 𝜃〉
��

≤
��𝑣′𝜋ℎ ((𝑠, ℎ)) −𝛾ℎ−1𝑣𝜋 (𝑠)

��+𝛾ℎ−1 |𝑣𝜋 (𝑠) − 〈𝜑(𝑠), 𝜃〉| ≤ 2𝜂 .

Therefore any such policy 𝜋 is 𝑣-linearly realizable in MDP ℳ′ with misspecification 2𝜂 under the

feature map 𝜑𝛾, 𝛿 for the respective stage ℎ for each state (𝑠, ℎ) ∈ S ′.

Therefore we can apply Claim 3.B.2 for featurized MDP (ℳ′, 𝜑𝛾, 𝛿), initial set S × {1}, and

𝜆-accurate simulator SIMULATE𝛾, 𝛿 , with misspecification 𝜂′ = 2𝜂 and 𝛿′ = 0.98𝛿, which guarantees

that TensorPlan is (𝛿′, 𝐵)-sound for MDP ℳ′ when run with this simulator and features. Further-

more, it has a worst-case per-state query-cost poly
(
(𝑑𝐻/𝛿)𝐴 , 𝐵

)
. Denote by 𝜋TP the policy induced

by TensorPlan while interacting with the simulator SIMULATE𝛾, 𝛿 . We then have that 𝜋TP satisfies

𝑣′𝜋TP
1 ((𝑠,1)) ≥ 𝑣′◦1 ((𝑠,1)) −0.98𝛿 ,

where 𝑣′𝜋TP is the 𝐻-horizon value function of 𝜋TP in ℳ′ and 𝑣′◦ = 𝑣′◦𝐵,2𝜂 is the 𝐻-horizon 𝜑𝛾, 𝛿-

compatible optimal value function of ℳ′ under misspecification 2𝜂 (cf. Equation (48)). Similarly,

let 𝑣◦ = 𝑣◦𝐵,𝜂 be the discounted 𝜑-compatible optimal value function of ℳ under misspecification

𝜂. Let Π′◦𝐵,2𝜂 be the set of MLD policies that are 𝐵-boundedly 𝑣-linearly realizable in MDP ℳ′

with misspecification 2𝜂 and features 𝜑𝛾, 𝛿 , and let Π◦𝐵,𝜂 be the set of MLD policies that are 𝐵-

boundedly 𝑣-linearly realizable in ℳ with misspecification 𝜂 and features 𝜑. Then, by definition,

𝑣′◦𝐵,2𝜂 (𝑠) = sup𝜋∈Π′◦
𝐵,2𝜂

𝑣′𝜋1 ((𝑠,1)) and 𝑣◦𝐵,𝜂 (𝑠) = sup𝜋∈𝜋′◦𝐵,𝜂
𝑣𝜋 (𝑠).

As we have seen, 𝜋 ∈ Π◦𝐵,𝜂 implies 𝜋 ∈ Π′◦𝐵,2𝜂 , in other words, Π◦𝐵,𝜂 ⊆ Π′◦𝐵,2𝜂 . For any policy

𝜋 Eq. (61) applies with any (𝑠,1) ∈ℳ′, and therefore

𝑣◦𝐵,𝜂 (𝑠) = sup
𝜋∈Π◦𝐵,𝜂

𝑣𝜋 (𝑠) ≤ sup
𝜋∈Π′◦

𝐵,2𝜂

𝑣𝜋 (𝑠) ≤ sup
𝜋∈Π′◦

𝐵,2𝜂

𝑣′𝜋1 ((𝑠,1)) +𝜂

= 𝑣′◦𝐵,2𝜂 ((𝑠,1)) +𝜂 ≤ 𝑣
′𝜋TP
1 ((𝑠,1)) +0.98𝛿+𝜂 ≤ 𝑣′𝜋TP (𝑠) +0.98𝛿+2𝜂 ,
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where the last inequality used again Eq. (61) with 𝜋TP. Lastly we use that 𝜂 = 𝜀
24
√
𝐸𝑑
≤

𝛿

12𝐻2 /(1+0.5)
24
√
𝐸𝑑

≤
𝛿

18𝐻 /24 < 0.01𝛿 to obtain 𝑣◦𝐵,𝜂 (𝑠) ≤ 𝑣
′𝜋TP
1 ((𝑠,1)) + 𝛿, which establishes that TensorPlan’s policy

𝜋TP is (𝛿, 𝐵)-sound for the featurized MDP (ℳ, 𝜑) in the discounted setting, with misspecification

𝜂 ≤ 𝜀
24
√
𝐸𝑑

and simulator accuracy 𝜆 ≤ 𝜀
12
√
𝐸𝑑

.



Chapter 4

Planning with 𝑞𝜋-realizability

Switching to 𝑞𝜋-realizability, this chapter focuses on proving Theorem 1.5.1. For generality, for

this chapter only, we switch to the discounted, infinite horizon MDP setting. This requires a slightly

different notational framework, which we introduce in this chapter shortly. The improvement in

generality comes from the fact that in discounted MDPs, the same state can be entered multiple

times in an episode (unlike in our finite horizon setup, where the state space is disjoint for each

stage). In our discounted MDP setup however, the only policies that we require to be 𝑞𝜋-realizable

are the stationary ones, that behave the same way when seeing the same state, regardless of where

in the episode they encounter that state. As a result, 𝑞𝜋-realizability becomes a more permissive

setting for featurized MDPs (as fewer policies need to be realizable), consequently making this a

more challenging setting for planners. Thus, the planner and corresponding guarantees we present

for this discounted setting (Theorems 4.1.2 and 4.1.3) are more powerful than if we had continued

with the finite horizon setting.

We start by considering approximate dynamic programming in 𝛾-discounted Markov decision

processes and apply it to approximate planning with linear value-function approximation. Our first

contribution is a new variant of APPROXIMATE POLICY ITERATION (API), called CONFIDENT AP-

PROXIMATE POLICY ITERATION (CAPI), which computes a deterministic stationary policy with

an optimal error bound scaling linearly with the product of the effective horizon 𝐻 and the worst-

case approximation error 𝜀 of the action-value functions of stationary policies. This improvement

over API (whose error scales with 𝐻2) comes at the price of an 𝐻-fold increase in memory cost. Un-

like Scherrer and Lesner (2012), who recommended computing a non-stationary policy to achieve a

similar improvement (with the same memory overhead), we are able to stick to stationary policies.

This allows for our second contribution, the application of CAPI to planning with local access to

a simulator and 𝑑-dimensional linear function approximation. As such, we design a planning algo-
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rithm that applies CAPI to obtain a sequence of policies with successively refined accuracies on a

dynamically evolving set of states. The algorithm outputs an Õ(
√
𝑑𝐻𝜀)-optimal policy after issuing

Õ(𝑑𝐻4/𝜀2) queries to the simulator, simultaneously achieving the optimal accuracy bound and the

best known query complexity bound, while earlier algorithms in the literature achieve only one of

them. This query complexity is shown to be tight in all parameters except 𝐻. These improvements

come at the expense of a mild (polynomial) increase in memory and computational costs of both the

algorithm and its output policy.

4.1. Introduction
In this chapter we focus on the problem of planning with linear function approximation. Our goal is

to design a planner and prove that it finds and outputs a near-optimal policy with high probability in

response to any call, when given query access to a simulator. Instead of the global access, we adopt

the more practical and challenging local access setting. The efficiency of a planner is measured in

four ways: the suboptimality of the policy found, that is, how far its value is from that of the optimal

policy; the query cost, that is, the number of queries issued to the simulator; the computational cost,

which is the number of operations used; and the memory cost, which is the amount of memory used

(we adopt the real computation model for these costs).

In this chapter, for featurized MDPs, we consider a feature-map to be a “good fit” to an MDP

if the worst-case error of using the feature-map to approximate value functions of all stationary,

deterministic, memoryless policies of the MDP is small:

Definition 4.1.1 (𝑞𝜋-realizability: uniform policy value-function approximation error). Given an

MDP, the uniform policy value-function approximation error induced by a feature map 𝜑, which

maps state-action pairs (𝑠, 𝑎) to the Euclidean ball of radius 𝐿 centered at zero in R𝑑 , over a set of

parameters belonging to the 𝑑-dimensional centered Euclidean ball of radius 𝐵 is

𝜀 = sup
𝜋

inf
𝜃 :‖𝜃 ‖2≤𝐵

sup
(𝑠,𝑎)
|𝑞𝜋 (𝑠, 𝑎) − 〈𝜑(𝑠, 𝑎), 𝜃〉 | ,

where the outermost supremum is over all possible stationary deterministic memoryless policies

(i.e., maps from states to actions) of the MDP.

Our goal is to design algorithms that scale gracefully with the uniform approximation error

𝜀 at the expense of controlled computational cost. To achieve nontrivial guarantees, the uniform

approximation error needs to be “small”. As we recall from Chapter 1, this (implicit) assumption is

stronger than the 𝑞★-realizability assumption (where the approximation error is only considered for
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optimal policies), which Weisz et al. (2021b) showed an exponential query complexity lower bound

for. At the same time, it is (strictly) weaker than the linear MDP assumption (Zanette et al., 2020b),

for which there are efficient algorithms to find a near-optimal policy in the online setting (without

a simulator) (Jin et al., 2020b), even in the more challenging reward-free setting where the rewards

are only revealed after exploration (Wagenmaker et al., 2022).

In the local access setting, the planner learns the features 𝜑(𝑠, 𝑎) of a state-action pair only for

those states 𝑠 that have already been encountered. In contrast, in the global access setting, the whole

feature map 𝜑(·, ·), of (possibly infinite) size 𝑑 |S | |A| (where S and A are the state and action sets,

resp.), is given to the planner as input. In the latter setting, when only the query cost is counted, Du

et al. (2019a) and Lattimore et al. (2020) proposed algorithms (the latter working in the misspecified,

𝜀 > 0 regime) that issue a number of queries that is polynomial in the relevant parameters, but require

a barycentric spanner or near-optimal design of the input features. In the worst case, computing any

of these sets scales polynomially in |S | and |A|, which can be prohibitive.

In the case of local access, considered in this chapter, the best known bound on the subopti-

mality of the computed policy is achieved by CONFIDENT MC-POLITEX (Yin et al., 2022). In the

more permissive global access setting, the best known query cost is achieved by Lattimore et al.

(2020). Our algorithm, CAPI-QPI-PLAN (given in Algorithm 6), achieves the best of both while

only assuming local access. This is shown in the next theorem; in the theorem 𝜀 is as defined in

Definition 4.1.1, 𝛾 is the discount factor, and 𝑣★ and 𝑣𝜋 are the state value functions associated with

the optimal policy and policy 𝜋, respectively (precise definitions of these quantities are given in the

next section). A comparison to other algorithms in the literature is given in Table 2; there the accu-

racy parameter 𝜔 of the algorithms is set to 𝜀, but a larger 𝜔 can be used to trade off suboptimality

guarantees for an improved query cost.

Theorem 4.1.2 (Weisz et al., 2022a, Theorem 1.2). For any confidence parameter 𝛿 ∈ (0,1], ac-

curacy parameter 𝜔 > 0, and initial state 𝑠0 ∈ S , with probability at least 1− 𝛿, CAPI-QPI-PLAN

(Algorithm 6) finds a policy 𝜋 with

𝑣★(𝑠0) − 𝑣𝜋 (𝑠0) = Õ
(
(𝜀 +𝜔)

√
𝑑 (1−𝛾)−1

)
, (62)

while executing at most Õ
(
𝑑 (1−𝛾)−4𝜔−2) queries in the local access setting.

CAPI-QPI-PLAN is based on CONFIDENT MC-LSPI, another algorithm of Yin et al. (2022),

which relies on policy iteration from a core set of informative state-action pairs, but achieves inferior
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performance both in terms of suboptimality and query complexity. However, CAPI-QPI-PLAN’s

improvements come at the expense of increased memory and computational costs, as shown in the

next theorem: compared to CONFIDENT MC-LSPI, the memory and computational costs of our

algorithm increase by a factor of the effective horizon 𝐻 = Õ(1/(1− 𝛾)), and the policy computed

by CAPI-QPI-PLAN uses a 𝑑𝐻 factor more memory for storage and a 𝑑2𝐻 factor more computation

to evaluate.

Theorem 4.1.3 (Weisz et al., 2022a, Theorem 1.3, memory and computational cost). The mem-

ory and computational cost of running CAPI-QPI-PLAN (Algorithm 6) are Õ
(
𝑑2/(1−𝛾)

)
and

Õ
(
𝑑4 |A| (1−𝛾)−5𝜔−2) , respectively, while the memory and computational costs of storing and

evaluating the final policy outputted by CAPI-QPI-PLAN, respectively, are Õ
(
𝑑2/(1−𝛾)

)
and

Õ
(
𝑑3 |A|/(1−𝛾)

)
.

Next we present a lower bound corresponding to Theorem 4.1.2 that holds even in the more

permissive global access setting, and shows that CAPI-QPI-PLAN trades off the query cost and

the suboptimality of the returned policy asymptotically optimally up to its dependence on 1/(1−𝛾).

See Weisz et al. (2022a) for the proof.

Theorem 4.1.4 (Weisz et al., 2022a, Theorem 1.4, query cost lower bound). Let 𝛼 ∈ (0, 0.05𝛾
(1−𝛾) (1+𝛾)2 ),

𝛿 ∈ (0,0.08], 𝛾 ∈ [ 7
12 ,1], 𝑑 ≥ 3, and 𝜀 ≥ 0. Then there is a class M of MDPs with uniform policy

value-function approximation error at most 𝜀 such that any planner that guarantees to find an 𝛼-

optimal policy 𝜋 (i.e., 𝑣★(𝑠0) − 𝑣𝜋 (𝑠0) ≤ 𝛼) with probability at least 1− 𝛿 for all 𝑀 ∈M when used

with a simulator for 𝑀 with global access, the worst-case (over M) expected number of queries

issued by the planner is at least

max
(
exp

(
Ω

( 𝑑𝜀2

𝛼2(1−𝛾)2
))
, Ω

(
𝑑2

𝛼2(1−𝛾)3

))
. (63)

If 𝜔 is set to 𝜀 for CAPI-QPI-PLAN, the first term of Eq. (63) implies that any planner with

an asymptotically smaller (apart from logarithmic factors) suboptimality guarantee than Eq. (62)

executes exponentially many queries in expectation. The second term of Eq. (63), which is shown

to be a lower bound in Weisz et al. (2022a, Theorem H.3) even in the more general setting of linear

MDPs with zero misspecification (𝜀 = 0), matches the query complexity of Theorem 4.1.2 up to an

Õ((1− 𝛾)2) factor. Thus, the lower bound implies that the suboptimality and query cost bounds of

Theorem 4.1.2 are tight up to logarithmic factors in all parameters except the 1/(1−𝛾)-dependence

of the query cost bound.
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At the heart of our method is a new algorithm, which we call CONFIDENT APPROXIMATE

POLICY ITERATION (CAPI). This algorithm, which belongs to the family of approximate dynamic

programming algorithms (Bertsekas, 2012; Munos, 2003, 2005), is a novel variant of APPROXI-

MATE POLICY ITERATION (API) (Bertsekas and Tsitsiklis, 1996): in the policy improvement step,

CAPI only updates the policy in states where it is confident that the update will improve the per-

formance. This simple modification allows CAPI to avoid the problem of “classical” approximate

dynamic programming algorithms (approximate policy and value iteration) of inflating the value

function evaluation error by a factor of 𝐻2 where 𝐻 = Õ(1/(1− 𝛾)) (for discussions of this prob-

lem, see also the papers by Scherrer and Lesner, 2012 and Russo, 2020), and reduce this inflation

factor to 𝐻. A similar result has already been achieved by Scherrer and Lesner (2012), who pro-

posed to construct a non-stationary policy that strings together all policies obtained while running

either approximate value or policy iteration. However, applying this result to our planning problem

is problematic, since the policies to be evaluated are non-stationary, and hence including them in

the policy set we aim to approximate may drastically increase the error 𝜀 as compared to Defini-

tion 4.1.1, which only considers stationary memoryless policies.

While the improvements provided by CAPI allows CAPI-QPI-PLAN to match the perfor-

mance of CONFIDENT MC-POLITEX in terms of suboptimality, it is unlikely that a simple modifica-

tion of CONFIDENT MC-POLITEX would lead to an algorithm which matches CAPI-QPI-PLAN’s

performance in terms of query cost (see Table 2): Both methods evaluate a sequence of policies at

an Õ(𝜀) accuracy each (requiring Õ(1/𝜀2) queries, omitting the dependence on other parameters).

However, while CAPI-QPI-PLAN (and CONFIDENT MC-LSPI) evaluates O(log(1/𝜀)) (again in

terms of 𝜀 only) policies to find one which is Õ(𝜀)-optimal, CONFIDENT MC-POLITEX needs to

compute Õ(1/𝜀2) policies to achieve the same. As a consequence, CONFIDENT MC-POLITEX

only achieves Õ(1/𝜀4) query complexity, and to match CAPI-QPI-PLAN’s Õ(1/𝜀2) complexity,

one would need to come up with either significantly better policy evaluation methods (potentially

using the similarity in the subsequent policies) or a much faster (exponential vs. square-root) con-

vergence rate in the suboptimality of the policy sequence produced by CONFIDENT MC-POLITEX.

The rest of the chapter is organized as follows: The model and notation are introduced in

Section 4.2. CAPI is introduced and analyzed in Section 4.3. Planning with 𝑞𝜋-realizability is

introduced in Section 4.4, with CAPI-QPI-PLAN being built-up and analyzed in Sections 4.4.1

and 4.4.2. In particular, the proof of Theorem 4.1.2 is given in Section 4.4.2. Several proofs are
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relegated to appendices, in particular, Theorem 4.1.3 is proved and implementation details of CAPI-

QPI-PLAN are discussed in Section 4.G.

4.2. Notation and preliminaries

We recall the most important facts about MDPs and introduce a slight variation of our previous

notation. In particular, we switch to the discounted infinite horizon objective. This allows us to

present the advantage of our method that we can stick to stationary policies only. This improves

both the strength of our modification to API, and leads to a more general result for 𝑞𝜋-realizable

MDPs, where only the stationary policies need to be realizable.

For some integer 𝑖, let [𝑖] = {0, . . . , 𝑖−1}. For 𝑥 ∈ R, let d𝑥e denote the smallest integer i such

that 𝑖 ≥ 𝑥. For a positive definite 𝑉 ∈ R𝑑×𝑑 and 𝑥 ∈ R𝑑 , let ‖𝑥‖2𝑉 = 𝑥>𝑉𝑥. For matrices 𝐴 and 𝐵,

we say that 𝐴 � 𝐵 if 𝐴−𝐵 is positive semidefinite. Let I be the 𝑑-dimensional identity matrix. Let

M1(𝑋) denote the space of probability distributions supported on the set 𝑋 (throughout, we assume

that the 𝜎-algebra is implicit). We write 𝑎 ≈𝜀 𝑏 for 𝑎, 𝑏, 𝜀 ∈ R if |𝑎−𝑏 | ≤ 𝜀. We denote by Õ(·) and

Θ̃(·) the variants of the big-O notation that hide polylogarithmic factors.

A Markov Decision Process (MDP) is a tuple 𝑀 = (S ,A,Q), where S is a measurable state

space, A is a finite action space, and Q : S ×A→M1(S × [0,1]) is the transition-reward kernel.

We define the transition and reward distributions 𝑃 : S ×A→M1(S) and R : S ×A→M1([0,1])

as the marginals of Q. By a slight abuse of notation, for any 𝑠 ∈ S and 𝑎 ∈ A, let 𝑃(·|𝑠, 𝑎) and

R(·|𝑠, 𝑎) denote the distributions 𝑃(𝑠, 𝑎) and R(𝑠, 𝑎), respectively. We further denote by 𝑟 (𝑠, 𝑎) =∫ 1
0 𝑥 dR(𝑥 |𝑠, 𝑎) the expected reward for an action 𝑎 ∈ A taken in a state 𝑠 ∈ S . Without loss of

generality, we assume that there is a designated initial state 𝑠0 ∈ S .

Starting from any state 𝑠 ∈ S , a stationary memoryless policy 𝜋 : S →M1(A) interacts with

the MDP in a sequential manner for time-steps 𝑡 ∈ N, defining a probability distribution P𝜋,𝑠

over the episode trajectory {𝑆𝑖 , 𝐴𝑖 , 𝑅𝑖}𝑖∈N as follows: 𝑆0 = 𝑠 deterministically, 𝐴𝑖 ∼ 𝜋(𝑆𝑖), and

(𝑆𝑖+1, 𝑅𝑖) ∼Q(𝑆𝑖 , 𝐴𝑖). By a slight variation, let P𝜋,𝑠,𝑎 denote (for some 𝑎 ∈ A) the distribution of

the trajectory when 𝐴0 = 𝑎 deterministically, while the distribution of the rest of the trajectory is

defined analogously.

This allows us to conveniently define the expected state-value and action-value functions in the

discounted setting we consider, for some discount factor 0 < 𝛾 < 1, respectively, as

𝑣𝜋 (𝑠) = E𝜋,𝑠

[∑
𝑡 ∈N

𝛾𝑡𝑅𝑡

]
and 𝑞𝜋 (𝑠, 𝑎) = E𝜋,𝑠,𝑎

[∑
𝑡 ∈N

𝛾𝑡𝑅𝑡

]
for all (𝑠, 𝑎) ∈ S ×A , (64)
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where throughout the chapter we use the convention that E• is the expectation operator correspond-

ing to a distribution P• (e.g., E𝜋,𝑠 is the expectation with respect to P𝜋,𝑠). It is well known (see,

e.g., Puterman, 1994) that there exists an optimal stationary deterministic memoryless policy 𝜋★

such that

sup𝜋𝑣𝜋 (𝑠) = 𝑣𝜋
★ (𝑠) and sup𝜋𝑞𝜋 (𝑠, 𝑎) = 𝑞𝜋

★ (𝑠, 𝑎) for all (𝑠, 𝑎) ∈ S ×A .

Let 𝑣★ = 𝑣𝜋
★

and 𝑞★ = 𝑞𝜋
★
. For any policy 𝜋, 𝑣𝜋 and 𝑞𝜋 are known to satisfy the Bellman equations

(Puterman, 1994):

𝑣𝜋(𝑠)=
∑
𝑎∈A

𝜋(𝑎 |𝑠)𝑞𝜋(𝑠, 𝑎) and 𝑞𝜋(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) +𝛾
∫
𝑠′∈S

𝑣𝜋(𝑠′) d𝑃(𝑠′ |𝑠, 𝑎) for all (𝑠, 𝑎) ∈S ×A. (65)

Finally, we call a policy 𝜋 deterministic if for all states, 𝜋(𝑠) is a distribution that assigns unit

weight to one action and zero weight to the others. With a slight abuse of notation, for a deterministic

policy 𝜋, we denote by 𝜋(𝑠) the action 𝜋 chooses (deterministically) in state 𝑠 ∈ S .

4.3. Confident Approximate Policy Iteration

In this section we introduce CONFIDENT APPROXIMATE POLICY ITERATION (CAPI), our new

approximate dynamic programming algorithm. In approximate dynamic programming, the methods

are designed around oracles that return either an approximation to the application of the Bellman

optimality operator to a value function (“approximate value iteration”), or an approximation to the

value function of some policy (“approximate policy iteration”). Our setting is the second. The

novelty is that we assume access to the accuracy of the approximation and use this knowledge to

modify the policy update, which leads to improved guarantees on the suboptimality of the computed

policy.

We present the pseudocodes of API (Bertsekas and Tsitsiklis, 1996) and CAPI jointly in Al-

gorithm 4: starting from an arbitrary (deterministic) policy 𝜋0, the algorithm iterates a policy es-

timation (Line 2) and a policy update step (Line 3) 𝐼 times. The policy update for API is greedy

with respect to the action-value estimates 𝑞 and is defined as 𝜋𝑞̂ (𝑠) = arg max𝑎∈A 𝑞(𝑠, 𝑎). We as-

sume that arg max𝑎∈A breaks ties in a consistent manner by ordering the actions (using the notation

A = (A1, . . . ,A |A |)) and always choosing action A𝑖 with the lowest index 𝑖 that achieves the max-

imum. For CAPI, the policy update further relies on a global estimation-accuracy parameter 𝜔,

and a set of fixed-states Sfix ⊆ S . For the purposes of this section, it is enough to keep Sfix = {}.
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Algorithm 4 APPROXIMATE POLICY ITERATION (API) and CONFIDENT APPROXIMATE POLICY

ITERATION (CAPI)
1: for 𝑖 = 1 to 𝐼 do
2: 𝑞← ESTIMATE(𝜋𝑖−1)

3: 𝜋𝑖←
{
𝜋𝑞̂ API
𝜋𝑞̂, 𝜋𝑖−1,Sfix CAPI

4: end for
5: return 𝜋𝐼

CAPI updates the policy to one that acts greedily with respect to 𝑞 only on states that are not in

Sfix and where it is confident that this leads to an improvement over the previous policy (Case 66a);

otherwise, the new policy will return the same action as the previous one (Case 66b). To decide,

𝑞(𝑠, 𝜋(𝑠)) +𝜔 is treated as the upper bound on the previous policy’s value, and max𝑎∈A 𝑞(𝑠, 𝑎) −𝜔

as the lower bound of the action-value of the greedy action (Eq. 66):

𝜋𝑞̂, 𝜋,Sfix (𝑠) =
{ arg max

𝑎∈A
𝑞(𝑠, 𝑎) , if 𝑠 ∉ Sfix and 𝑞(𝑠, 𝜋(𝑠)) +𝜔 < max𝑎∈A 𝑞(𝑠, 𝑎) −𝜔 ; (66a)

𝜋(𝑠) , otherwise. (66b)

Note that 𝜋𝑞̂, 𝜋,Sfix also depends on 𝜔, however, this dependence is omitted from the notation (as 𝜔

is kept fixed throughout).

CAPI can also be seen as a refinement of CONSERVATIVE POLICY ITERATION (CPI) of

Kakade and Langford (2002) with some important differences: While CPI introduces a global

parameter to ensure the update stays close to the previous policy, CAPI has no such parameter, and

it dynamically decides when to stay close to (more precisely, use) the previous policy, individually

for every state, based on whether there is evidence for a guaranteed improvement.

Let 𝜋 be any stationary deterministic memoryless policy, 𝑞𝜋 : S ×A→ R be any function,

𝜔 ∈ R+, and Sfix ⊆ S . First, we show that as long as 𝑞𝜋 is an 𝜔-accurate estimate of 𝑞𝜋 , the CAPI

policy update only improves the policy’s values:

Lemma 4.3.1 (No deterioration). Let 𝜋′ = 𝜋𝑞̂𝜋 , 𝜋,Sfix . Assume that for all 𝑠 ∈ S \Sfix and 𝑎 ∈ A,

𝑞𝜋 (𝑠, 𝑎) ≈𝜔 𝑞𝜋 (𝑠, 𝑎). Then, for any 𝑠 ∈ S , 𝑣𝜋
′ (𝑠) ≥ 𝑣𝜋 (𝑠) .

Proof. Fix any 𝑠 ∈ S . If 𝑠 ∈ Sfix or 𝑞𝜋 (𝑠, 𝜋(𝑠)) +𝜔 ≥ max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) −𝜔, then 𝜋′(𝑠) = 𝜋(𝑠)

and therefore 𝑞𝜋 (𝑠, 𝜋′(𝑠)) = 𝑣𝜋 (𝑠). Otherwise, 𝑠 ∉ Sfix and 𝑞𝜋 (𝑠, 𝜋(𝑠)) +𝜔 ≤ max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) −

𝜔, hence 𝜋′(𝑠) = arg max𝑎∈A 𝑞𝜋 (𝑠, 𝑎), and it follows by our assumptions that 𝑞𝜋 (𝑠, 𝜋′(𝑠)) ≥

𝑞𝜋 (𝑠, 𝜋′(𝑠)) −𝜔 = max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) −𝜔 > 𝑞𝜋 (𝑠, 𝜋(𝑠)) +𝜔 ≥ 𝑞𝜋 (𝑠, 𝜋(𝑠)) = 𝑣𝜋 (𝑠). Therefore, in

any case, 𝑞𝜋 (𝑠, 𝜋′(𝑠)) ≥ 𝑣𝜋 (𝑠). Since this holds for any 𝑠 ∈ S , the Policy Improvement Theorem

(Sutton and Barto, 2018, Section 4.2) implies that for any 𝑠 ∈ S , 𝑣𝜋
′ (𝑠) ≥ 𝑣𝜋 (𝑠).
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Next we introduce two approximate optimality criterion for a policy on a set of states:

Definition 4.3.2 (Policy optimality on a set of states). A policy 𝜋 is Δ-optimal (for some Δ ≥ 0) on

a set of states S ′ ⊆ S , if for all 𝑠 ∈ S ′, 𝑣★(𝑠) − 𝑣𝜋 (𝑠) ≤ Δ .

Definition 4.3.3 (Next-state optimality on a set of states). A policy 𝜋 is next-state Δ-optimal

(for some Δ ≥ 0) on a set of states S ′ ⊆ S , if for all 𝑠 ∈ S ′ and all actions 𝑎 ∈ A,∫
𝑠′∈S (𝑣

★(𝑠′) − 𝑣𝜋 (𝑠′)) d𝑃(𝑠′ |𝑠, 𝑎) ≤ Δ.

Note that in the special case of S ′ = S the first property implies the second, that is, if 𝜋 is

Δ-optimal on S , then it is also next-state Δ-optimal on S . Next, we show that the suboptimality of

a policy updated by CAPI evolves as follows (the proof is relegated to Section 4.A):

Lemma 4.3.4 (Iteration progress). Let 𝜋′ = 𝜋𝑞̂𝜋 , 𝜋,Sfix . Assume that for all 𝑠 ∈ S \Sfix and 𝑎 ∈ A,

𝑞𝜋 (𝑠, 𝑎) ≈𝜔 𝑞𝜋 (𝑠, 𝑎), and that 𝜋 is next-state Δ-optimal on S \Sfix. Then 𝜋′ is (4𝜔 + 𝛾Δ)-optimal

on S \Sfix.

4.3.1. CAPI guarantee with accurate estimation everywhere

To obtain a final suboptimality guarantee for CAPI, first consider the ideal scenario in which we

assume that we have a mechanism to estimate 𝑞𝜋 (𝑠, 𝑎) up to some 𝜔 accuracy for all 𝑠 ∈ S and

𝑎 ∈ A, and for any policy 𝜋:

Assumption 4.3.5. There is an oracle called ESTIMATE that accepts a policy 𝜋 and returns 𝑞𝜋 :

S ×A→ R such that for all 𝑠 ∈ S and 𝑎 ∈ A, 𝑞𝜋 (𝑠, 𝑎) ≈𝜔 𝑞𝜋 (𝑠, 𝑎).

Theorem 4.3.6 (CAPI performance). Assume CAPI (Algorithm 4) is run with Sfix = {}, iteration

count to 𝐼 = dlog𝜔/log𝛾e, and suppose that the estimation used in Line 2 satisfies Assumption 4.3.5.

Then the policy 𝜋𝐼 returned by the algorithm is 5𝜔/(1−𝛾)-optimal on S .

Proof. We prove by induction that policy 𝜋𝑖 is Δ𝑖-optimal on S for Δ𝑖 = 4𝜔
∑
𝑗∈[𝑖 ] 𝛾

𝑗 + 𝛾𝑖

1−𝛾 . This

holds immediately for the base case of 𝑖 = 0, as rewards are bounded in [0,1] and thus 𝑣★(𝑠) ≤ 1/(1−

𝛾) for any 𝑠. Assuming now that the inductive hypothesis holds for 𝑖−1 we observe that 𝜋𝑖−1 is next-

state Δ-optimal on S = S \Sfix. Together with Assumption 4.3.5, this implies that the conditions of

Lemma 4.3.4 are satisfied for 𝜋 = 𝜋𝑖−1, which yields 𝑣★(𝑠) − 𝑣𝜋𝑖 (𝑠) ≤ 4𝜔+𝛾Δ𝑖−1 = Δ𝑖 , finishing the

induction. Finally, by the definition of 𝐼, 𝜋𝐼 is Δ𝐼 -optimal with Δ𝐼 ≤ 4𝜔
1−𝛾 +

𝛾𝐼

1−𝛾 ≤
5𝜔
1−𝛾 .
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4.4. Local access planning with 𝑞𝜋-realizability

Our planner, CAPI-QPI-PLAN, is based on the CONFIDENT MC-LSPI algorithm of Yin et al.

(2022). This latter algorithm gradually builds a core set of state-action pairs whose corresponding

features are informative. The 𝑞-values of the state-action pairs in the core set are estimated using

rollouts. The procedure is restarted with an extended core set whenever the algorithm encounters

a new informative feature. If such a new feature is not encountered, the estimation error can be

controlled, and the estimation is extended to all state-action pairs using the least-squares estimator.

Finally, the extended estimation is used in Line 2 of API.

CAPI-QPI-PLAN improves upon CONFIDENT MC-LSPI in two ways. First, using CAPI

instead of API improves the final suboptimality bound by a factor of the effective horizon. Second,

we apply a novel analysis on a more modular variant of the CONFIDENTROLLOUT subroutine used

in CONFIDENT MC-LSPI, which delivers 𝑞-estimation accuracy guarantees with respect to a large

class of policies simultaneously. This allows for a dynamically evolving version of policy iteration,

that does not have to restart whenever a new informative feature is encountered. Intuitively, this

prevents duplication of work.

4.4.1. Estimation oracle

To obtain an algorithm for planning with local access whose performance degrades gracefully with

the uniform approximation error, we must weaken Assumption 4.3.5. This is because under local

access, we cannot guarantee to cover all states or hope to obtain accurate 𝑞-value estimates for all

states. Instead, we are interested in an accuracy guarantee that holds for 𝑞-values only on some

subset S ′ ⊆ S of states, but holds simultaneously for any policy that agrees with 𝜋 on S ′ but may

take arbitrary values elsewhere. For this, we define the extended set of policies:

Definition 4.4.1. Let Πdet be the set of all stationary deterministic memoryless policies, 𝜋 ∈ Πdet,

and S ′ ⊆ S . For (𝜋,S ′), we define Π𝜋,S′ to be the set of policies that agree with 𝜋 on 𝑠 ∈ S ′:

Π𝜋,S′ = {𝜋′ ∈ Πdet : 𝜋(𝑠) = 𝜋′(𝑠) for all 𝑠 ∈ S ′} .

We aim to first accurately estimate 𝑞𝜋 (𝑠, 𝑎) for some specific (𝑠, 𝑎) pairs, based on which we

extend the estimates to other state-action pairs using least-squares. To this end, we first devise a

subroutine called MEASURE (Algorithm 5). MEASURE is a modularized variant of the CONFIDEN-

TROLLOUT subroutine of Yin et al. (2022). The modularity of our variant is due to the parameter

S ′ that corresponds to the set of states on which the planner is confident for CONFIDENTROLLOUT.
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Algorithm 5 MEASURE

1: Input: state 𝑠, action 𝑎, deterministic policy 𝜋, set of states S ′ ⊆ S , accuracy 𝜔 > 0, failure
probability 𝜁 ∈ (0,1]

2: Initialize: 𝐻← dlog((𝜔/4)(1−𝛾))/log𝛾e , 𝑛←
⌈
(𝜔/4)−2(1−𝛾)−2 log(2/𝜁)/2

⌉
3: for 𝑖 = 1 to 𝑛 do
4: (𝑆, 𝑅𝑖,0) ← SIMULATOR(𝑠, 𝑎) ⊲ Call to the simulator oracle
5: for ℎ = 1 to 𝐻 −1 do
6: if 𝑆 ∉ S ′ then return (discover, 𝑆)
7: end if
8: 𝐴← 𝜋(𝑆)
9: (𝑆, 𝑅𝑖,ℎ) ← SIMULATOR(𝑆, 𝐴)

10: end for
11: end for
12: return (success, 1

𝑛

∑𝑛
𝑖=1

∑𝐻−1
ℎ=0 𝛾

ℎ𝑅𝑖,ℎ)

MEASURE unrolls the policy 𝜋 starting from (𝑠, 𝑎) for a number of episodes, each lasting 𝐻 steps,

and returns with the average measured reward. Throughout, we let 𝐻 = dlog((𝜔/4)(1−𝛾))/log𝛾e

be the effective horizon. At the end of this process, MEASURE returns status success along with

the empirical average 𝑞-value, where compared to Eq. (64), the discounted summation of rewards is

truncated to 𝐻. If, however, the algorithm encounters a state not in its input S ′, it returns with status

discover, along with that state. This is because in such cases, the algorithm could no longer guar-

antee an accurate estimation with respect to any member of the extended set of policies. The next

lemma, proved in Section 4.B, shows that MEASURE provides accurate estimates of the action-value

functions for members of the extended policy set.

Lemma 4.4.2. For any input parameters 𝑠 ∈ S , 𝑎 ∈A, 𝜋 ∈ Πdet,S ′ ⊂ S ,𝜔 > 0, 𝜁 ∈ (0,1), MEASURE

either returns with (discover, 𝑠′) for some 𝑠′ ∉ S ′ (Line 6), or it returns with (success, 𝑞) such that

with probability at least 1− 𝜁 ,

𝑞𝜋
′ (𝑠, 𝑎) ≈𝜔 𝑞 for all 𝜋′ ∈ Π𝜋,S′ . (67)

Suppose we have a list of state-action pairs 𝐶 = (𝑠𝑖 , 𝑎𝑖)𝑖∈[ |𝐶 | ] and corresponding 𝑞-estimates

𝑞 = (𝑞𝑖)𝑖∈ |𝐶 |. We use the regularized least-squares estimator LSE (Eq. 69) to extend the estimates

for all state-action pairs, with regularization parameter 𝜆 = 𝜔2/𝐵2 (recall that 𝐵 is defined in Defini-

tion 4.1.1):

𝑉 (𝐶) = 𝜆I+∑𝑖∈[ |𝐶 | ]𝜑(𝑠𝑖 , 𝑎𝑖)𝜑(𝑠𝑖 , 𝑎𝑖)> , (68)

LSE𝐶,𝑞̄ (𝑠, 𝑎) =
〈
𝜑(𝑠, 𝑎),𝑉 (𝐶)−1∑

𝑖∈[ |𝐶 | ]𝜑(𝑠𝑖 , 𝑎𝑖)𝑞𝑖
〉
. (69)
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For 𝐶 = 𝑞 = () (the empty sequence), we define LSE𝐶,𝑞̄ (·, ·) = 0. This estimator satisfies the guar-

antee below.

Lemma 4.4.3. Let 𝜋 be a stationary deterministic memoryless policy. Let 𝐶 = (𝑠𝑖 , 𝑎𝑖)𝑖∈[𝑛] be se-

quences of state-action pairs of some length 𝑛 ∈ N and 𝑞 = (𝑞𝑖)𝑖∈[𝑛] a sequence of corresponding

reals such that for all 𝑖 ∈ [𝑛], 𝑞𝜋 (𝑠𝑖 , 𝑎𝑖) ≈𝜔 𝑞𝑖 . Then, for all 𝑠, 𝑎 ∈ S ×A,

��LSE𝐶,𝑞̄ (𝑠, 𝑎) − 𝑞𝜋 (𝑠, 𝑎)
�� ≤ 𝜀 + ‖𝜑(𝑠, 𝑎)‖𝑉 (𝐶)−1

(√
𝜆𝐵+ (𝜔+ 𝜀)

√
𝑛
)
, (70)

where 𝜀 is the uniform approximation error from Definition 4.1.1.

The proof is given in Section 4.C. The order of the estimation accuracy bound (Eq. 70) is

optimal, as shown by the lower bounds of Du et al. (2019a) and Lattimore et al. (2020).

We intend to use the LSE estimator given in Eq. (69) and the bound in Lemma 4.4.3 only

for state-action pairs where ‖𝜑(𝑠, 𝑎)‖𝑉 (𝐶)−1 ≤ 1 (and 𝑛 = Õ(𝑑)). We call these state-action pairs

covered by 𝐶, and we call a state 𝑠 covered by 𝐶 if for all their corresponding actions 𝑎, the pair

(𝑠, 𝑎) is covered by 𝐶:

ActionCover(𝐶) = {(𝑠, 𝑎) ∈ S ×A : ‖𝜑(𝑠, 𝑎)‖𝑉 (𝐶)−1 ≤ 1} (71)

Cover(𝐶) = {𝑠 ∈ S : ∀𝑎 ∈ A, (𝑠, 𝑎) ∈ ActionCover(𝐶)} . (72)

We will use the parameter Sfix of CAPI (see CAPI’s update rule in Eq. 66) to ensure policies are

only updated on covered states, where the approximation error is well-controlled by Eq. (70).

4.4.2. Main algorithm

Finally, we are ready to introduce CAPI-QPI-PLAN, presented in Algorithm 6, our algorithm

for planning with local access under approximate 𝑞𝜋-realizability. For this, we define levels

𝑙 = 0,1, . . . , 𝐻, and corresponding suboptimality requirements: For any 𝑙 ∈ [𝐻 +1], let

Δ𝑙 = 8(𝜀 +𝜔)
(√
𝑑 +1

) ∑
𝑗∈[𝑙 ]

𝛾 𝑗 + 𝛾𝑙

1−𝛾 ,

for some 𝑑 = Θ̃(𝑑) defined in Eq. (74). For each level 𝑙, the algorithm maintains a policy 𝜋𝑙 and a set

of covered states on which it can guarantee that 𝜋𝑙 is a Δ𝑙-optimal policy. More specifically, this set

is Cover(𝐶𝑙), where 𝐶𝑙 is a list of state-action pairs with elements 𝐶𝑙,𝑖 = (𝑠𝑖𝑙 , 𝑎
𝑖
𝑙) for 𝑖 ∈ [|𝐶𝑙 |]. The
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algorithm maintains the following suboptimality guarantee below, which we prove in Section 4.E

after showing some further key properties of the algorithm.

Lemma 4.4.4. Assuming that Eq. (67) holds whenever MEASURE returns success, 𝜋𝑙 is Δ𝑙-optimal

on Cover(𝐶𝑙) (Definition 4.3.2) for all 𝑙 ∈ [𝐻 + 1] at the end of every iteration of the main loop of

CAPI-QPI-PLAN.

CAPI-QPI-PLAN aims to improve the policies, while propagating the members of 𝐶𝑙 to 𝐶𝑙+1,

and so on, all the way to 𝐶𝐻 . During this, whenever the algorithm discovers a state-action pair with

a sufficiently new feature direction, this pair is appended to the sequence 𝐶0 corresponding to level

0, as there are no suboptimality guarantees yet available for such a state. However, such a discovery

can only happen Õ(𝑑) times. When, eventually, all discovered state-action pairs end up in 𝐶𝐻 , the

final suboptimality guarantee is reached, and the algorithm returns with the final policy. Note that

in the local access setting we consider, the algorithm cannot enumerate the set Cover(𝐶𝑙), but can

answer membership queries, that is, for any 𝑠 ∈ S it encounters, it is able to decide if 𝑠 ∈ Cover(𝐶𝑙).

The algorithm maintains sequences 𝑞𝑙, corresponding to 𝐶𝑙, for each level 𝑙. Whenever a new (𝑠, 𝑎)

pair is appended to the sequence 𝐶𝑙, a corresponding ⊥ symbol is appended to the sequence 𝑞𝑙, to

signal that an estimate of 𝑞𝜋𝑙 (𝑠, 𝑎) is not yet known.

After initializing 𝐶0 to cover the initial state 𝑠0 (Lines 4 to 6), the algorithm measures 𝑞𝜋ℓ (𝑠, 𝑎)

for the smallest level ℓ for which there still exists a ⊥ in the corresponding 𝑞ℓ . After a successful

measurement, if there are no more ⊥’s left at this level (i.e., in 𝑞ℓ), the algorithm executes a policy

update on 𝜋ℓ (Line 20) using the least-squares estimate obtained from the measurements at this

level, but only for states in Cover(𝐶ℓ) (using Sfix = S \Cover(𝐶ℓ)). Next, Line 21 merges this new

policy 𝜋′ with the existing policy 𝜋ℓ+1 of the next level, setting 𝜋ℓ+1 to be the policy 𝜋′′ defined as

𝜋′′(𝑠) =
{
𝜋ℓ+1(𝑠), if 𝑠 ∈ Cover(𝐶ℓ+1);

𝜋′(𝑠), otherwise.

This ensures that the existing policy 𝜋ℓ+1 remains unchanged by 𝜋′′ (its replacement) on states that

are already covered by 𝐶ℓ+1, and therefore 𝜋′′ ∈ Π𝜋ℓ+1,Cover(𝐶ℓ+1) = Π𝜋′′,Cover(𝐶ℓ+1) . We also observe

that 𝐶𝑙 can only grow for any 𝑙 (elements are never removed from these sequences), thus for any

update where 𝐶𝑙 is assigned a new value 𝐶 ′𝑙 (Lines 5, 13, and 23), 𝑉 (𝐶 ′𝑙 ) � 𝑉 (𝐶𝑙), and therefore

Cover(𝐶 ′𝑙 ) ⊇ Cover(𝐶𝑙) and Π𝜋𝑙 ,Cover(𝐶′
𝑙
) ⊆ Π𝜋𝑙 ,Cover(𝐶𝑙) . Combining these properties yields the

following result:
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Algorithm 6 CAPI-QPI-PLAN

1: Input: initial state 𝑠0 ∈ S , dimensionality 𝑑, parameter bound 𝐵, accuracy 𝜔, failure probability
𝛿 > 0

2: Initialize: 𝐻 ← dlog((𝜔/4) (1−𝛾))/log𝛾e, for 𝑙 ∈ [𝐻 + 1], 𝐶𝑙 ← (), 𝑞𝑙 ← (), 𝜋𝑙 ←
policy that always returns action A1, 𝜆← 𝜔2/𝐵2

3: while True do ⊲ main loop
4: if ∃𝑎 ∈ A, (𝑠0, 𝑎) ∉ ActionCover(𝐶0) then
5: append (𝑠0, 𝑎) to 𝐶0, append ⊥ to 𝑞0
6: break
7: end if
8: let ℓ be the smallest integer such that 𝑞ℓ,𝑚 = ⊥ for some 𝑚; set ℓ = 𝐻 if no such 𝑙 exists
9: if ℓ = 𝐻 then return 𝜋𝐻

10: end if
11: (status, result) ←MEASURE(𝑠𝑚ℓ , 𝑎

𝑚
ℓ , 𝜋ℓ ,Cover(𝐶ℓ),𝜔, 𝛿/(𝑑𝐻)) ⊲ recall 𝐶ℓ,𝑚 = (𝑠𝑚ℓ , 𝑎

𝑚
ℓ )

12: if status = discover then
13: append (result, 𝑎) to 𝐶0 for some 𝑎 such that (result, 𝑎) ∉ ActionCover(𝐶0)
14: append ⊥ to 𝑞0
15: break
16: end if
17: 𝑞ℓ,𝑚← result
18: if �𝑚′ such that 𝑞ℓ,𝑚′ = ⊥ then
19: 𝑞← LSE𝐶ℓ ,𝑞̄ℓ

20: 𝜋′← 𝜋𝑞̂, 𝜋ℓ ,S\Cover(𝐶ℓ )
21: 𝜋ℓ+1← (𝑠 ↦→ 𝜋ℓ+1(𝑠) if 𝑠 ∈ Cover(𝐶ℓ+1) else 𝜋′(𝑠))
22: for (𝑠, 𝑎) ∈ 𝐶ℓ such that (𝑠, 𝑎) ∉ 𝐶ℓ+1 do
23: append (𝑠, 𝑎) to 𝐶ℓ+1, ⊥ to 𝑞ℓ+1
24: end for
25: end if
26: end while

Lemma 4.4.5. If for any 𝑙 ∈ [𝐻], 𝜋𝑙 and 𝐶𝑙 take some values 𝜋old
𝑙 and 𝐶old

𝑙 at any point in

the execution of the algorithm, then at any later point during the execution, 𝜋𝑙 ∈ Π𝜋𝑙 ,Cover(𝐶𝑙) ⊆

Π𝜋old
𝑙
,Cover(𝐶old

𝑙
) .

Any value in 𝑞𝑙 that is set to anything other than ⊥ will never change again. Since as long

as the sample paths generated by MEASURE in Line 11 of CAPI-QPI-PLAN remain in Cover(𝐶𝑙),

their distribution is the same under any policy from Π𝜋𝑙 ,Cover(𝐶𝑙) , the 𝑞𝑙 estimates are valid for these

policies, as well. Combined with Lemma 4.4.5, we get that the accuracy guarantees of Lemma 4.4.2

continue to hold throughout:

Lemma 4.4.6. Assuming that Eq. (67) holds whenever MEASURE returns success, for any level

𝑙 and index 𝑚 such that 𝑞𝑙,𝑚 ≠ ⊥, 𝑞𝜋
′ (𝑠𝑚𝑙 , 𝑎

𝑚
𝑙 ) ≈𝜔 𝑞𝑙,𝑚 for all 𝜋′ ∈ Π𝜋𝑙 ,Cover(𝐶𝑙) throughout the

execution of CAPI-QPI-PLAN.
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Once 𝜋ℓ+1 is updated in Line 21, in Line 23 we append to the sequence 𝐶ℓ+1 all members of 𝐶ℓ

that are not yet in𝐶ℓ+1, while adding a corresponding⊥ to 𝑞ℓ+1 indicating that these 𝑞-values are not

yet measured for policy 𝜋ℓ+1. Thus, whenever all ⊥ values disappear from some level 𝑙 ∈ [𝐻+1], by

the end of that iteration 𝐶𝑙+1 =𝐶𝑙, and hence ActionCover(𝐶𝑙) = ActionCover(𝐶𝑙+1). Together with

the fact that for any 𝑙 ∈ [𝐻 +1], whenever a new state-action pair is appended to 𝐶𝑙, an ⊥ symbol is

appended to 𝑞𝑙, we have by induction the following result:

Lemma 4.4.7. Throughout the execution of CAPI-QPI-PLAN,after Line 8 when ℓ is set,

ActionCover(𝐶0) = ActionCover(𝐶1) = · · · = ActionCover(𝐶ℓ) .

As a result, whenever the MEASURE call of Line 11 outputs (discover, 𝑠) for some state 𝑠,

by Lemma 4.4.2, there is an action 𝑎 ∈ A such that (𝑠, 𝑎) ∉ ActionCover(𝐶ℓ) = ActionCover(𝐶0).

This explains why adding such an (𝑠, 𝑎) pair to 𝐶0 is always possible in Line 13. Consider the 𝑖th

time Line 13 is executed, and denote 𝑠 by 𝑠𝑖 and 𝑎 by 𝑎𝑖 , and 𝑉𝑖 = 𝜆I +∑𝑖−1
𝑡=1 𝜑(𝑠𝑡 , 𝑎𝑡 )𝜑(𝑠𝑡 , 𝑎𝑡 )>.

Observe that as 𝑉𝑖 = 𝑉 (𝐶), (𝑠𝑖 , 𝑎𝑖) ∉ ActionCover(𝐶0) implies ‖𝜑(𝑠𝑖 , 𝑎𝑖)‖𝑉 −1
𝑖
> 1. There-

fore,
∑𝑖
𝑡=1 min{1, ‖𝜑(𝑠𝑡 , 𝑎𝑡 )‖𝑉 −1

𝑡
} = 𝑖, and thus by the elliptical potential lemma (Lattimore and

Szepesvári, 2020, Lemma 19.4), 𝑖 ≤ 2𝑑 log
(
𝑑𝜆+𝑖𝐿2

𝑑𝜆

)
. This inequality is satisfied by the largest value

of 𝑖, that is, the total number of times MEASURE returns with discover. Since any element of 𝐶𝑙

is also an element of 𝐶0 for any 𝑙 ∈ [𝐻 + 1], we have that at any time during the execution of

CAPI-QPI-PLAN,

|𝐶𝑙 | ≤ 4𝑑 log
(
1+ 4𝐿2

𝜆

)
=: 𝑑 = Õ(𝑑) . (74)

When CAPI-QPI-PLAN returns at Line 9 with the policy 𝜋𝐻 , it is Δ𝐻 -optimal on Cover(𝐶𝐻 )

by Lemma 4.4.4 when the estimates of MEASURE are correct. Furthermore, 𝑠0 ∈ Cover(𝐶0) is

guaranteed by Lines 4 to 6, and hence 𝑠0 ∈ Cover(𝐶𝐻 ) by Lemma 4.4.7 when the algorithm finishes.

Hence, bounding Δ𝐻 using the definition of 𝐻 immediately gives the following result:

Lemma 4.4.8. Assuming that Eq. (67) holds whenever MEASURE returns success, the policy 𝜋

returned by CAPI-QPI-PLAN is Δ-optimal on {𝑠0} for

Δ = 9(𝜀 +𝜔)
(√
𝑑 +1

)
(1−𝛾)−1 = Õ

(
(𝜀 +𝜔)

√
𝑑 (1−𝛾)−1

)
.
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To finish the proof of Theorem 4.1.2, we only need to analyze the query complexity and the

failure probability (i.e., the probability of Eq. (67) not being satisfied for some MEASURE call that

returns success) of CAPI-QPI-PLAN:

Proof of Theorem 4.1.2. Both the total failure probability and query complexity of CAPI-QPI-

PLAN depend on the number of times MEASURE is executed, as this is the only source of ran-

domness and of interaction with the simulator. MEASURE can return discover at most |𝐶0 | times,

which is bounded by 𝑑 by Eq. (74). For every 𝑙 ∈ [𝐻], MEASURE is executed exactly once with re-

turning success for each element of𝐶𝑙. Hence, by Eq. (74) again, MEASURE returns success at most

𝑑𝐻 times, each satisfying Eq. (67) with probability at least 1− 𝜁 = 1− 𝛿/(𝑑𝐻) by Lemma 4.4.2. By

the union bound, MEASURE returns success in all occasions with probability at least 1− 𝛿. Hence

Eq. (67) holds with probability at least 1− 𝛿, which, combined with Lemma 4.4.8, proves Eq. (62).

Each successful run of MEASURE executes at most 𝑛𝐻 queries (𝑛 is set in Line 2 of Algo-

rithm 5). Since 𝐻 < (1− 𝛾)−1 log(4𝜔−1(1− 𝛾)−1) = Õ((1− 𝛾)−1), in total CAPI-QPI-PLAN exe-

cutes at most Õ
(
𝑑 (1−𝛾)−4𝜔−2) queries. As this happens at most 𝑑𝐻 times, we obtain the desired

bound on the query complexity.

4.5. Conclusions and future work
In this chapter we presented CONFIDENT APPROXIMATE POLICY ITERATION, a confident version

of API, which can obtain a stationary policy with a suboptimality guarantee that scales linearly with

the effective horizon 𝐻 = Õ(1/(1− 𝛾)). This scaling is optimal as shown by Scherrer and Lesner

(2012).

CAPI can be applied to local planning with approximate 𝑞𝜋-realizability (yielding the CAPI-

QPI-PLAN algorithm) to obtain a sequence of policies with successively refined accuracies on a

dynamically evolving set of states, resulting in a final, recursively defined policy achieving simul-

taneously the optimal suboptimality guarantee and best query cost available in the literature. More

precisely, CAPI-QPI-PLAN achieves Õ(𝜀
√
𝑑𝐻) suboptimality, where 𝜀 is the uniform policy value-

function approximation error. We showed that this bound is the best (up to polylogarithmic factors)

that is achievable by any planner with polynomial query cost. We also proved that the Õ
(
𝑑𝐻4𝜀−2)

query cost of CAPI-QPI-PLAN is optimal up to polylogarithmic factors in all parameters except for

𝐻; whether the dependence on 𝐻 is optimal remains an open question.

Finally, our method comes at a memory and computational cost overhead, both for the final

policy and the planner. It is an interesting question if this overhead necessarily comes with the

API-style method we use (as it is also present in the works of Scherrer and Lesner, 2012; Scherrer,
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2014), or if it is possible to reduce it by, for example, compressing the final policy into one that is

greedy with respect to some action-value function realized with the features.



Appendix

4.A. Proof of Lemma 4.3.4

Take any 𝑠 ∈ S \Sfix.

𝑣★(𝑠) − 𝑣𝜋′ (𝑠) = 𝑣★(𝑠) − 𝑞𝜋′ (𝑠, 𝜋′(𝑠))

= 𝑣★(𝑠) − 𝑞𝜋 (𝑠, 𝜋′(𝑠)) + 𝑞𝜋 (𝑠, 𝜋′(𝑠)) − 𝑞𝜋′ (𝑠, 𝜋′(𝑠))

≤ 𝑣★(𝑠) − 𝑞𝜋 (𝑠, 𝜋′(𝑠)) , (75)

where the first equality holds because 𝜋′ is deterministic, and the inequality is true because

𝑞𝜋 (𝑠, 𝜋′(𝑠)) − 𝑞𝜋′ (𝑠, 𝜋′(𝑠)) = 𝛾
∫
𝑠′∈S

(
𝑣𝜋 (𝑠′) − 𝑣𝜋′ (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝜋′(𝑠)) ≤ 0

by Lemma 4.3.1. Next observe that

𝑞𝜋 (𝑠, 𝜋′(𝑠)) ≥ max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) −2𝜔 (76)

since, as 𝑠 ∉ Sfix, either 𝜋′(𝑠) is defined by Case 66a as 𝜋′(𝑠) = arg max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) and

so 𝑞𝜋 (𝑠, 𝜋′(𝑠)) = max𝑎∈A 𝑞𝜋 (𝑠, 𝑎), or it is defined by Case 66b in which case 𝑞𝜋 (𝑠, 𝜋′(𝑠)) =

𝑞𝜋 (𝑠, 𝜋(𝑠)) ≥ max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) −2𝜔. Combining Eqs. (75) and (76), we obtain

𝑣★(𝑠) − 𝑣𝜋′ (𝑠) ≤ 𝑣★(𝑠) − 𝑞𝜋 (𝑠, 𝜋′(𝑠)) + 𝑞𝜋 (𝑠, 𝜋′(𝑠)) − 𝑞𝜋 (𝑠, 𝜋′(𝑠))

≤ 𝑣★(𝑠) − 𝑞𝜋 (𝑠, 𝜋′(𝑠)) +𝜔

≤ 𝑣★(𝑠) −max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) +3𝜔,

where in the first line we added and subtracted 𝑞𝜋 (𝑠, 𝜋′(𝑠)), and the second inequality holds as

𝑞𝜋 (𝑠, 𝑎) ≈𝜔 𝑞𝜋 (𝑠, 𝑎) for 𝑠 ∉ Sfix and 𝑎 ∈ A by the assumptions of the lemma.
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We continue by adding and subtracting max𝑎∈A 𝑞𝜋 (𝑠, 𝑎):

𝑣★(𝑠) − 𝑣𝜋′ (𝑠) ≤ 𝑣★(𝑠) −max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) +max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) −max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) +3𝜔

≤ 𝑣★(𝑠) −max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) +4𝜔

= max
𝑎∈A

[
𝑟 (𝑠, 𝑎) +𝛾

∫
𝑠′∈S

𝑣★(𝑠′) d𝑃(𝑠′ |𝑠, 𝑎)
]

−max
𝑎∈A

[
𝑟 (𝑠, 𝑎) +𝛾

∫
𝑠′∈S

𝑣𝜋 (𝑠′) d𝑃(𝑠′ |𝑠, 𝑎)
]
+4𝜔

≤ max
𝑎∈A

[
𝛾

∫
𝑠′∈S

(
𝑣★(𝑠′) − 𝑣𝜋 (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝑎)

]
+4𝜔

≤ 4𝜔+𝛾Δ ,

where in the fifth line we used that 𝜋 is next-state Δ-optimal by assumption.

4.B. Proof of Lemma 4.4.2

For an episode trajectory {𝑆ℎ, 𝐴ℎ, 𝑅ℎ}ℎ∈N, let 𝐾 be the smallest positive integer such that 𝑆𝐾 ∉ S ′.

For any 𝑖 ∈ {1, . . . , 𝑛}, let 𝐼𝑖 denote the indicator of the event that at the 𝑖th iteration of the outer loop

of Algorithm 5, the algorithm encounters 𝑆 ∉S ′ in Line 6. Note that E𝜋,𝑠,𝑎 [𝐼𝑖] =P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻].

Then, by Hoeffding’s inequality (see, e.g., Lattimore and Szepesvári (2020)), with probability at

least 1− 𝜁/2, �����P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻] − 1
𝑛

𝑛∑
𝑖=1

𝐼𝑖

����� ≤ 𝜔(1−𝛾)4
.

MEASURE only returns success if all indicators are zero; therefore, the above inequality implies that

if MEASURE returns success then, with probability at least 1− 𝜁/2, we have

P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻] ≤
𝜔(1−𝛾)

4
. (77)

Recall that if MEASURE returns (success, 𝑞), then 𝑞 = 1
𝑛

∑𝑛
𝑖=1

∑𝐻−1
ℎ=0 𝛾

ℎ𝑅𝑖,ℎ. Since

0 ≤ 𝑞𝜋 (𝑠, 𝑎) −E𝜋,𝑠,𝑎
𝐻−1∑
ℎ=0

𝛾ℎ𝑅ℎ = E𝜋,𝑠,𝑎
∞∑
ℎ=𝐻

𝛾ℎ𝑅ℎ ≤
𝛾𝐻

1−𝛾 ≤
𝜔

4
,
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another application of Hoeffding’s inequality yields that 𝑞𝜋 (𝑠, 𝑎) and 𝑞 are close with high proba-

bility: with probability at least 1− 𝜁/2,

|𝑞𝜋 (𝑠, 𝑎) − 𝑞 | =
�����𝑞𝜋 (𝑠, 𝑎) − 1

𝑛

𝑛∑
𝑖=1

𝐻−1∑
ℎ=0

𝛾ℎ𝑅𝑖,ℎ

�����
≤ 𝜔/4+

�����E𝜋,𝑠,𝑎 𝐻−1∑
ℎ=0

𝛾ℎ𝑅ℎ −
1
𝑛

𝑛∑
𝑖=1

𝐻−1∑
ℎ=0

𝛾ℎ𝑅𝑖,ℎ

����� ≤ 𝜔/2 , (78)

where we also used that the range of the sum of the rewards above for every 𝑖 is [0,1/(1−𝛾)].

Pick any 𝜋′ ∈ Π𝜋,S′. Observe that for any 𝑠 ∈ S and 𝑎 ∈ A, the distribution of the trajectory

𝑆0, 𝐴0, 𝑅0, 𝑆1, 𝐴1, 𝑅1, . . . , 𝐴𝐾−1, 𝑅𝐾−1, 𝑆𝐾 is the same under P𝜋′,𝑠,𝑎 and P𝜋,𝑠,𝑎, as 𝜋 and 𝜋′ select

the same actions for states in S ′. By Eqs. (64) to (65), we can write

���𝑞𝜋′ (𝑠, 𝑎) − 𝑞𝜋 (𝑠, 𝑎)��� = ������E𝜋′,𝑠,𝑎

∑
𝑡 ∈[𝐾 ]

𝛾𝑡𝑅𝑡 +𝛾𝐾 𝑣𝜋
′ (𝑆𝐾 )

 −E𝜋,𝑠,𝑎

∑
𝑡 ∈[𝐾 ]

𝛾𝑡𝑅𝑡 +𝛾𝐾 𝑣𝜋
′ (𝑆𝐾 )


������

=
���E𝜋,𝑠,𝑎 [

𝛾𝐾
(
𝑣𝜋
′ (𝑆𝐾 ) − 𝑣𝜋 (𝑆𝐾 )

)] ��� ≤ 1
1−𝛾E𝜋,𝑠,𝑎

[
𝛾𝐾

]
≤ 1

1−𝛾P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻] +
𝛾𝐻

1−𝛾 ≤
1

1−𝛾P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻] +𝜔/4 .

(79)

Combining Eqs. (77) to (79), it follows by the union bound that if MEASURE returns with

(success, 𝑞), then with probability at least 1− 𝜁 ,

���𝑞𝜋′ (𝑠, 𝑎) − 𝑞��� ≤ ���𝑞𝜋′ (𝑠, 𝑎) − 𝑞𝜋 (𝑠, 𝑎)���+ |𝑞𝜋 (𝑠, 𝑎) − 𝑞 | ≤ 𝜔 .
4.C. Proof of Lemma 4.4.3

We start the proof by showing that there exists a 𝜃 ∈ R𝑑 such that

‖𝜃‖2 ≤ 𝐵 and for all 𝑠 ∈ S and 𝑎 ∈ A, 𝑞𝜋 (𝑠, 𝑎) ≈𝜀 〈𝜃, 𝜑(𝑠, 𝑎)〉 . (80)

For any finite set 𝑊 ⊆ S ×A, max(𝑠,𝑎) ∈𝑊 |𝑞𝜋 (𝑠, 𝑎) − 〈𝜑(𝑠, 𝑎), 𝜃 ′〉 | is a continuous function of 𝜃 ′,

hence it attains its infimum on the compact set {𝜃 ′ ∈ R𝑑 : ‖𝜃 ′‖2 ≤ 𝐵}. By Definition 4.1.1, this

infimum is at most 𝜀. Therefore, the compact sets Θ𝑠,𝑎 = {𝜃 ′ ∈ R𝑑 : ‖𝜃 ′‖2 ≤ 𝐵 and |𝑞𝜋 (𝑠, 𝑎) −

〈𝜑(𝑠, 𝑎), 𝜃 ′〉 | ≤ 𝜀} are non-empty for all (𝑠, 𝑎) ∈ S ×A, and any intersection of a finite collection

of these sets is also non-empty. Therefore,
⋂
(𝑠,𝑎) ∈S×AΘ𝑠,𝑎 is non-empty by (Rudin et al., 1976,
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Theorem 2.36), and any element 𝜃 of this set satisfies Eq. (80). For the remainder of this proof, fix

such a 𝜃.

For any 𝑖 ∈ [𝑛], with a slight abuse of notation, we introduce the shorthand 𝜑𝑖 = 𝜑(𝑠𝑖 , 𝑎𝑖),

and let 𝑞𝑖 = 〈𝜃, 𝜑𝑖〉 and 𝜉𝑖 = 𝑞𝑖 − 𝑞𝑖 . Note that by the triangle inequality, |𝜉𝑖 | ≤ |𝑞𝑖 − 𝑞𝜋 (𝑠𝑖 , 𝑎𝑖) | +

|𝑞𝜋 (𝑠𝑖 , 𝑎𝑖) − 𝑞𝑖 | ≤ 𝜔+ 𝜀. Let 𝜃 =𝑉 (𝐶)−1 ∑
𝑖∈[𝑛] 𝜑𝑖𝑞𝑖 and 𝜃 =𝑉 (𝐶)−1 ∑

𝑖∈[𝑛] 𝜑𝑖𝑞𝑖 .

For any 𝑣 ∈ R𝑑 by the Cauchy-Schwarz inequality,

��〈𝜃 − 𝜃, 𝑣〉�� ≤ ��〈𝜃 − 𝜃, 𝑣〉��+ ��〈𝜃 − 𝜃, 𝑣〉�� ≤ ‖𝑣‖𝑉 (𝐶)−1


𝜃 − 𝜃



𝑉 (𝐶) +

������
〈
𝑉 (𝐶)−1

∑
𝑖∈[𝑛]

𝜑𝑖𝜉𝑖 , 𝑣

〉������ .
To bound the first term on the right-hand side above, observe that



𝜃 − 𝜃


𝑉 (𝐶) =







𝑉 (𝐶)−1 ©­«
∑
𝑖∈[𝑛]

𝜑𝑖𝜑𝑖
>ª®¬𝜃 − 𝜃








𝑉 (𝐶)

= 𝜆 ‖𝜃‖𝑉 (𝐶)−1 ≤ 𝜆 ‖𝜃‖ 1
𝜆 I ≤
√
𝜆𝐵 ,

where in the last line we used that 𝑉 (𝐶) � 𝜆I.

The second term can be bounded as������
〈
𝑉 (𝐶)−1

∑
𝑖∈[𝑛]

𝜑𝑖𝜉𝑖 , 𝑣

〉������ ≤ ∑
𝑖∈[𝑛]

��〈𝑉 (𝐶)−1𝜑𝑖𝜉𝑖 , 𝑣
〉��

≤ (𝜔+ 𝜀)
∑
𝑖∈[𝑛]

��〈𝑉 (𝐶)−1𝜑𝑖 , 𝑣
〉��

≤ (𝜔+ 𝜀)
√
𝑛

√ ∑
𝑖∈[𝑛]

(〈
𝑉 (𝐶)−1𝜑𝑖 , 𝑣

〉)2

≤ (𝜔+ 𝜀)
√
𝑛

√√√√
𝑣>𝑉 (𝐶)−1 ©­«

∑
𝑖∈[𝑛]

𝜑𝑖𝜑𝑖>
ª®¬𝑉 (𝐶)−1𝑣 + 𝑣>𝑉 (𝐶)−1𝜆I𝑉 (𝐶)−1𝑣

= (𝜔+ 𝜀)
√
𝑛 ‖𝑣‖𝑉 (𝐶)−1 ,

where the first inequality holds by the triangle inequality, the second by our bound on |𝜉𝑖 |, the third

by the Cauchy-Schwartz inequality, and the fourth by the positivity of 𝜆. Putting it all together, for
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any 𝑠 ∈ S and 𝑎 ∈ A, using the previous bounds with 𝑣 = 𝜑(𝑠, 𝑎),

��LSE𝐶,𝑞̄ (𝑠, 𝑎) − 𝑞𝜋 (𝑠, 𝑎)
�� ≤ |𝑞𝜋 (𝑠, 𝑎) − 〈𝜃, 𝜑(𝑠, 𝑎)〉| + ��〈𝜃 − 𝜃, 𝜑(𝑠, 𝑎)〉��
≤ 𝜀 + ‖𝜑(𝑠, 𝑎)‖𝑉 (𝐶)−1

(√
𝜆𝐵+ (𝜔+ 𝜀)

√
𝑛
)
,

completing the proof.

4.D. Deriving next-state optimality of 𝜋ℓ for Lemma 4.4.4

Lemma 4.D.1. Assume that Eq. (67) holds whenever MEASURE returns success. At any point of

CAPI-QPI-PLAN after Line 19 is executed, for any 𝜋′′ ∈ Π𝜋ℓ ,Cover(𝐶ℓ ) , 𝑠 ∈ Cover(𝐶ℓ), and 𝑎 ∈ A,

���𝑞(𝑠, 𝑎) − 𝑞𝜋′′ (𝑠, 𝑎)��� ≤ (𝜔+ 𝜀) (√𝑑 +1) .

Proof. By Lemma 4.4.6 and Eq. (67), 𝑞𝑙,𝑚 ≈𝜔 𝑞𝜋
′′ (𝐶𝑙,𝑚) for all 𝑚 ∈ [|𝐶ℓ |] (recall that 𝐶𝑙,𝑚 is the

𝑚th state-action pair in 𝐶𝑙). Therefore, applying Lemma 4.4.3 with 𝑞𝜋
′′
, 𝐶ℓ and 𝑞ℓ , as 𝑞 = LSE𝐶ℓ ,𝑞̄ℓ ,

we get that for any 𝑠 ∈ Cover(𝐶ℓ) and all 𝑎 ∈ A,

���𝑞(𝑠, 𝑎) − 𝑞𝜋′′ (𝑠, 𝑎)��� ≤ 𝜀 + ‖𝜑(𝑠, 𝑎)‖𝑉 (𝐶ℓ )−1

(√
𝜆𝐵+ (𝜔+ 𝜀)

√
|𝐶ℓ |

)
≤ (𝜔+ 𝜀) (

√
𝑑 +1) ,

where the second inequality holds because ‖𝜑(𝑠, 𝑎)‖𝑉 (𝐶ℓ )−1 ≤ 1 since 𝑠 ∈ Cover(𝐶ℓ), |𝐶ℓ | ≤ 𝑑 by

Eq. (74), and the definition of 𝜆.

Lemma 4.D.2. Assume that Eq. (67) holds whenever MEASURE returns success. Consider a time

when Lines 20 to 23 of CAPI-QPI-PLAN are run and assume that at this time, for all 𝑙 ∈ [𝐻+1], 𝜋𝑙
is Δ𝑙-optimal on Cover(𝐶𝑙). Then, 𝜋ℓ is next-state (Δℓ +4(𝜔+𝜀) (

√
𝑑+1)/𝛾)-optimal on Cover(𝐶ℓ).

Proof. Let 𝜋+ℓ be defined as in Eq. (83). As 𝜋+ℓ ∈ Π𝜋ℓ ,Cover(𝐶ℓ ) , by Lemma 4.D.1, for any 𝑠 ∈

Cover(𝐶ℓ) and all 𝑎 ∈ A,

���𝑞(𝑠, 𝑎) − 𝑞𝜋+ℓ (𝑠, 𝑎)��� ≤ (𝜔+ 𝜀) (√𝑑 +1) .

Similarly, applying Lemma 4.D.1 with 𝜋ℓ (which trivially belongs to Π𝜋ℓ ,Cover(𝐶ℓ ) ), we also have

|𝑞(𝑠, 𝑎) − 𝑞𝜋ℓ (𝑠, 𝑎) | ≤ (𝜔+ 𝜀) (
√
𝑑 +1) .
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Therefore, ���𝑞𝜋+ℓ (𝑠, 𝑎) − 𝑞𝜋ℓ (𝑠, 𝑎)��� ≤ 2(𝜔+ 𝜀) (
√
𝑑 +1). (81)

Since 𝜋ℓ is Δℓ-optimal on Cover(𝐶ℓ) by assumption, this makes 𝜋+ℓ Δ-optimal on Cover(𝐶ℓ) for

Δ = Δℓ +2(𝜔+ 𝜀) (
√
𝑑 +1). (82)

For a trajectory in the MDP, let the random variable 𝜏 be the first time the state is in Cover(𝐶ℓ):

𝜏 = min{𝑡 ∈ N | 𝑆𝑡 ∈ Cover(𝐶ℓ)} .

Since 𝜋+ℓ agrees with 𝜋★ on states not in Cover(𝐶ℓ), the distribution of the trajectory up to and

including 𝑆𝜏 is the same under both policies, starting from any state 𝑠 ∈ S . Therefore, for any 𝑠 ∈ S ,

𝑣★(𝑠) − 𝑣𝜋+ℓ (𝑠) = E𝜋★,𝑠

[∑
𝑡 ∈N

𝛾𝑡𝑅𝑡

]
−E𝜋+

ℓ
,𝑠

[∑
𝑡 ∈N

𝛾𝑡𝑅𝑡

]
= E𝜋+

ℓ
,𝑠

[
𝛾𝜏

(
𝑣★(𝑆𝜏) − 𝑣𝜋

+
ℓ (𝑆𝜏)

)]
≤ Δ ,

as 𝛾𝜏 ≤ 1 and 𝜋+ℓ is Δ-optimal on Cover(𝐶ℓ). That is, 𝜋+ℓ is also Δ-optimal on S (with Δ defined in

Eq. 82). Using this, for any 𝑠 ∈ Cover(𝐶ℓ), and 𝑎 ∈ A, we have∫
𝑠′∈S

(
𝑣★(𝑠′) − 𝑣𝜋ℓ (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝑎)

≤
∫
𝑠′∈S

(
𝑣★(𝑠′) − 𝑣𝜋+ℓ (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝑎) +

����∫
𝑠′∈S

(
𝑣𝜋
+
ℓ (𝑠′) − 𝑣𝜋ℓ (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝑎)

����
≤ Δℓ +2(𝜔+ 𝜀) (

√
𝑑 +1) + 1

𝛾

���𝑞𝜋+ℓ (𝑠, 𝑎) − 𝑞𝜋ℓ (𝑠, 𝑎)���
≤ Δℓ +2(𝜔+ 𝜀)(

√
𝑑 +1) +2(𝜔+ 𝜀)(

√
𝑑 +1)/𝛾

= Δℓ +4(𝜔+ 𝜀)(
√
𝑑 +1)/𝛾 ,

where the third inequality holds by Eq. (81). Therefore 𝜋ℓ is next-state (Δℓ +4(𝜔+ 𝜀) (
√
𝑑 +1)/𝛾))-

optimal on Cover(𝐶ℓ).
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4.E. Poof of Lemma 4.4.4

Proof of Lemma 4.4.4. We prove by induction on the iterations of the main loop of CAPI-QPI-

PLAN the inductive hypothesis: at the start of iteration 𝑖, for all 𝑙 ∈ [𝐻 + 1], 𝜋𝑙 is Δ𝑙-optimal on

Cover(𝐶𝑙). We first observe that after initialization, 𝐶𝑙 is the empty sequence for every 𝑙, so we

can apply Lemma 4.4.3 with 𝑞★ and empty sequences (𝑛 = 0) to get that for any 𝑠 ∈ Cover(()) and

𝑎 ∈A, 𝑞★(𝑠, 𝑎) ≤ 𝜀+
√
𝜆𝐵 = 𝜀+𝜔. Then, 𝑣★(𝑠) ≤ 𝜀+𝜔 ≤ Δ𝑙. Therefore, at initialization, any policy

is Δ𝑙-optimal on Cover(𝐶𝑙) for any 𝑙 ∈ [𝐻 +1].

Assuming that the inductive hypothesis holds at the start of some iteration, it is left to prove

that it continues to hold at the end of the iteration (assuming Eq. (67) holds whenever MEASURE

returns success); this implies that the hypothesis also holds at the start of the next iteration and hence

also proves the lemma. For any (𝑠, 𝑎) appended to 𝐶0, the inductive hypothesis trivially continues

to hold as Δ0 = 1/(1−𝛾) ≥ 𝑣★(𝑠) for any 𝑠 ∈ S because the rewards are bounded in [0,1]. The only

other case in which 𝐶𝑙 or 𝜋𝑙 changes for any 𝑙 is in Lines 21 and 23, where the changes happen only

for 𝑙 = ℓ +1.

We will use Lemma 4.3.4 to analyze the effect of these updates, thus next we show that the

conditions of the lemma are satisfied:

(a) In Lemma 4.D.2 we show that 𝜋ℓ is next-state (Δℓ + 4(𝜔 + 𝜀)(
√
𝑑 + 1)/𝛾)-optimal on

Cover(𝐶ℓ). In the proof of the lemma, we introduce a policy in Eq. (83) that acts as 𝜋ℓ on states in

Cover(𝐶ℓ), and as an optimal stationary deterministic memoryless policy 𝜋★ otherwise:

𝜋+ℓ (𝑠) =

𝜋ℓ (𝑠) if 𝑠 ∈ Cover(𝐶ℓ);

𝜋★(𝑠) otherwise.
(83)

Intuitively, this policy corrects 𝜋ℓ on the low-confidence states. The proof of Lemma 4.D.2 then

uses the fact that this policy is also 𝑞𝜋-realizable (Definition 4.1.1) and satisfies 𝜋+ℓ ∈Π𝜋ℓ ,Cover(𝐶ℓ ) to

show (i) that the 𝑞-values of 𝜋ℓ and 𝜋+ℓ are close on the measured state-action pairs (via Lemma 4.4.6

and Lemma 4.D.1); (ii) an optimality guarantee on 𝜋+ℓ for all 𝑠 ∈ S; and, as a consequence, (iii) the

next-state optimality of 𝜋ℓ .

(b) Next, to analyze the effect of Line 21, we introduce hypothetical 𝑞-approximators 𝑞𝑙 for

𝑙 ∈ [𝐻 +1], defined as follows: At initialization, 𝑞𝑙 (𝑠, 𝑎) = 0 for all 𝑙 ∈ [𝐻 +1], 𝑠 ∈ S , and 𝑎 ∈ A. It
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is updated every time after Line 19 of the algorithm is executed as

𝑞ℓ (𝑠, 𝑎) ←
{
𝑞ℓ (𝑠, 𝑎) if 𝑠 ∈ Cover(𝐶ℓ+1); (84a)

𝑞(𝑠, 𝑎) otherwise. (84b)

In other words, 𝑞ℓ is only updated to the newly computed 𝑞 for states that are not in Cover(𝐶ℓ+1),

and stays unchanged for other states. We show in Lemma 4.F.2 that the new policy that 𝜋ℓ+1 is

updated to, which is constructed in two steps (Lines 20–21), can be expressed as the result of a

single CAPI policy update that uses 𝑞:

𝜋ℓ+1← 𝜋𝑞̃ℓ , 𝜋ℓ ,S\Cover(𝐶𝑙) .

We show in Lemma 4.F.1 that 𝑞ℓ ≈𝜔′ 𝑞𝜋ℓ with 𝜔′ = (𝜔+ 𝜀) (
√
𝑑 +1) on Cover(𝐶ℓ).

By the above, we can apply Lemma 4.3.4 with policy 𝜋ℓ , 𝑞-approximation 𝑞ℓ (with approx-

imation error guarantee 𝜔′ on Cover(𝐶ℓ), and Sfix = S \Cover(𝐶ℓ) to get that the new value of

𝜋ℓ+1 is a Δℓ+1 = (8(𝜔 + 𝜀) (
√
𝑑 +1) + 𝛾Δℓ)-optimal policy on Cover(𝐶ℓ). By the end of the loop in

Line 23, Cover(𝐶ℓ+1) = Cover(𝐶ℓ), so 𝜋ℓ+1 is Δℓ+1-optimal on Cover(𝐶ℓ+1). This finishes the proof

that the inductive hypothesis continues to hold at the end of the iteration, finishing the proof of the

lemma.

4.F. Auxiliary results for Lemma 4.4.4 about 𝑞𝑙

Throughout the execution of CAPI-QPI-PLAN, for 𝑙 ∈ [𝐻 +1], let 𝑞−𝑙 , 𝜋−𝑙 , 𝐶−𝑙 denote the values of

variables 𝑞ℓ , 𝜋ℓ , 𝐶ℓ , respectively, at the time when Lines 19–23 were most recently executed with

ℓ = 𝑙 in a previous iteration of the main loop of CAPI-QPI-PLAN. If such a time does not exist, let

their values be the initialization values. Thus, 𝐶−𝑙 may (only) change at the start of some iteration 𝑖

if Lines 19–23 were executed with ℓ = 𝑙 in the previous iteration 𝑖− 1. Observe that whenever this

happens, Lines 19–23 may also change 𝐶ℓ+1 in iteration 𝑖 − 1, and this is the only time 𝐶𝑙+1 can

be changed for any 𝑙 ∈ [𝐻]. After this, at the beginning of iteration 𝑖, 𝐶𝑙+1 always has the same

elements as 𝐶−𝑙 . Therefore, since it also holds at the initialization of the algorithm, we conclude that

at the start of each iteration,

Cover(𝐶𝑙+1) = Cover(𝐶−𝑙 ) . (85)
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Lemma 4.F.1. Assume that Eq. (67) holds whenever MEASURE returns success. Then, whenever

Line 21 of CAPI-QPI-PLAN is executed, for all 𝑠 ∈ Cover(𝐶ℓ) and 𝑎 ∈ A,

���𝑞ℓ (𝑠, 𝑎) − 𝑞𝜋′′ (𝑠, 𝑎)��� ≤ (𝜔+ 𝜀) (√𝑑 +1) for all 𝜋′′ ∈ Π𝜋ℓ ,Cover(𝐶ℓ ) . (86)

Proof. We prove this by induction for every time Line 21 is executed with any value of ℓ. We first

observe that after initialization, 𝐶𝑙 is the empty sequence for every 𝑙, so we can apply Lemma 4.4.3

with 𝑞★ and empty sequences (𝑛 = 0) to get that for any 𝑠 ∈ Cover(()) and 𝑎 ∈ A, 𝑞𝜋
′′ (𝑠, 𝑎) ≤

𝑞★(𝑠, 𝑎) ≤ 𝜀 +
√
𝜆𝐵 = 𝜀 +𝜔. Also, 𝑞𝑙 (·, ·) = 0 at initialization, so Eq. (86) holds for any value of ℓ.

Consider a time when Line 21 is executed and assume the inductive hypothesis holds for the

previous time Line 21 was executed with the same value of ℓ (or at the initialization if this is the

first time), that is,

���𝑞−ℓ (𝑠, 𝑎) − 𝑞𝜋′′ (𝑠, 𝑎)��� ≤ (𝜔+ 𝜀)(√𝑑 +1) for all 𝜋′′ ∈ Π𝜋−
ℓ
,Cover(𝐶−

ℓ
) , 𝑠 ∈ Cover(𝐶−ℓ ) .

To prove that the statement now holds for any 𝑠 ∈ Cover(𝐶ℓ), first consider any 𝑠 ∈ Cover(𝐶ℓ+1) =

Cover(𝐶−ℓ ). For such an 𝑠, by Lemma 4.4.5 we have that Π𝜋ℓ ,Cover(𝐶ℓ ) ⊆ Π𝜋−
ℓ
,Cover(𝐶−

ℓ
) . Also,

by definition, 𝑞ℓ (𝑠, ·) = 𝑞−ℓ (𝑠, ·) for 𝑠 ∈ Cover(𝐶ℓ+1). Combining with the inductive hypothesis, it

follows that Eq. (86) holds for 𝑠 ∈ Cover(𝐶ℓ+1).

It remains to show that Eq. (86) also holds for 𝑠 ∈ Cover(𝐶ℓ) \Cover(𝐶ℓ+1). For such an 𝑠,

𝑞ℓ (𝑠, ·) = 𝑞(𝑠, ·) by definition, and hence Lemma 4.D.1 implies that Eq. (86) holds in this case.

Combining the two cases, it follows that the inductive hypothesis continues to hold when

Line 21 is executed.

Lemma 4.F.2. Throughout the execution of CAPI-QPI-PLAN, at the start of any iteration, for all

𝑙 ∈ [𝐻],

𝜋𝑙+1 = 𝜋𝑞̃−
𝑙
, 𝜋−

𝑙
,S\Cover(𝐶−

𝑙
) . (87)

Proof. We prove this by induction for the start of any iteration. Eq. (87) holds at the start of the

algorithm due to its initialization (because at initialiaztion, 𝑞−𝑙 (𝑠, 𝑎) = 0 for all 𝑠, 𝑎, and hence by our

tie-breaking rule, the policy on the right-hand side of Eq. (87) always chooses action A1, which is

the initial policy for 𝜋𝑙).
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In what follows, we use the fact that for any 𝑞 : S ×A→ R, policy 𝜋, and Sfix ⊆ S , the CAPI

policy update 𝜋𝑞,𝜋,Sfix is a policy whose value at any 𝑠 ∈ S only depends on 𝑞(𝑠, ·), 𝜋(𝑠), and

whether or not 𝑠 ∈ Sfix, by definition (Eq. 66). Therefore, for an alternative 𝑞′, 𝜋′, S ′fix, for any 𝑠 ∈ S ,

𝜋𝑞,𝜋,Sfix (𝑠) = 𝜋𝑞′, 𝜋′,S′fix
(𝑠) whenever the following three conditions hold: (C1) 𝑞(𝑠, 𝑎) = 𝑞′(𝑠, 𝑎) for

all 𝑎 ∈ A; (C2) 𝜋(𝑠) = 𝜋′(𝑠); and (C3) either both or none of Sfix and S ′fix include 𝑠.

Assume the inductive hypothesis holds at the beginning of some iteration. Let 𝜋′′ be the policy

Line 21 updates 𝜋ℓ+1 to, noting that this is the only place where policies are updated. All we need

to prove is that 𝜋′′ is equal to

𝜋̃ = 𝜋𝑞̃ℓ , 𝜋ℓ ,S\Cover(𝐶ℓ ) .

First, for any 𝑠 ∉ Cover(𝐶ℓ+1), 𝜋′′(𝑠) = 𝜋′(𝑠) = 𝜋𝑞̂, 𝜋ℓ ,S\Cover(𝐶ℓ ) (𝑠) and 𝑞(𝑠, ·) = 𝑞ℓ (𝑠, ·) by

definition. Hence, 𝜋′′(𝑠) = 𝜋𝑞̂, 𝜋ℓ ,S\Cover(𝐶ℓ ) (𝑠) = 𝜋𝑞̃ℓ , 𝜋ℓ ,S\Cover(𝐶ℓ ) (𝑠) = 𝜋̃(𝑠), as all of conditions

(C1)-(C3) are satisfied for 𝑠 (C2 and C3 hold trivially).

Next, take any 𝑠 ∈ Cover(𝐶ℓ+1) = Cover(𝐶−ℓ ). Then, by Line 21, 𝜋′′(𝑠) = 𝜋ℓ+1(𝑠). By the in-

ductive hypothesis, the current value of 𝜋ℓ+1 can be written as 𝜋𝑞̃−
ℓ
, 𝜋−

ℓ
,S\Cover(𝐶−

ℓ
) . We prove that this

policy takes the same value as 𝜋̃ at 𝑠, by showing conditions (C1)-(C3). First, by Lemma 4.4.5,

𝜋ℓ ∈ Π𝜋−
ℓ
,Cover(𝐶−

ℓ
) . Thus, as 𝑠 ∈ Cover(𝐶−ℓ ), 𝜋ℓ (𝑠) = 𝜋−ℓ (𝑠), showing condition (C2). Further-

more, as 𝑠 ∈ Cover(𝐶ℓ+1), by definition, 𝑞ℓ (𝑠, ·) = 𝑞−ℓ (𝑠, ·), showing condition (C1). Finally, as

𝑠 ∈ Cover(𝐶ℓ+1) = Cover(𝐶−ℓ ) ⊆ Cover(𝐶ℓ), 𝑠 ∉ S \Cover(𝐶−ℓ ) and 𝑠 ∉ S \Cover(𝐶ℓ), showing

condition (C3).

Combining the two cases, 𝜋′′(𝑠) = 𝜋̃(𝑠) for any 𝑠 ∈ S , finishing the induction.

4.G. Efficient implementation and proof of Theorem 4.1.3

In this section we consider the efficient implementation of CAPI-QPI-PLAN in terms of memory

and computational costs of both the algorithm itself and the final policy it outputs.

Focusing on the memory cost, first we can observe that throughout the execution of the algo-

rithm, 𝐶𝑙 for all 𝑙 ∈ [𝐻 +1] only stores up to 𝑑 unique state-action pairs altogether (cf. Eq. (74)), as

they use the same pairs; let 𝑊 = (𝑠𝑖 , 𝑎𝑖)𝑖∈𝑑 denote these for some 𝑑 ≤ 𝑑. Furthermore, throughout

the execution of the algorithm, for any level 𝑙, the only features that 𝜋𝑙 depends on are the features

associated with members of 𝑊 . Storing all these features takes 𝑑𝑑 memory. Denote all the policies

that CAPI-QPI-PLAN constructs in Line 21, in order, as 𝜋 (0) , 𝜋 (1) , . . . , 𝜋 (𝑛−1) , where 𝑛 is the num-

ber of times Line 21 is executed. Recall from the proof of Theorem 4.1.2 that the number of times

MEASURE returns success, which is an upper bounds on 𝑛, is itself bounded by 𝑑𝐻, hence 𝑛 ≤ 𝑑𝐻.
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Together, Lines 20-21 construct a policy that, for an 𝑠 ∈ S , decides whether the action should be

arg max𝑎∈A 〈𝜑(𝑠, 𝑎), 𝜃〉 for some 𝜃 given by LSE (Eq. (69)), or the value of the policy should be de-

termined by a recursive call to a previously constructed policy, either 𝜋ℓ+1 or 𝜋ℓ (through 𝜋′). Now

there exist some 𝑎, 𝑏 ∈ [𝑛] such that 𝜋 (𝑎) = 𝜋ℓ and 𝜋 (𝑏) = 𝜋ℓ+1 before the new policy is constructed

in Line 21. To implement the new 𝜋ℓ+1 constructed policy, it is enough therefore to store, in addition

to the existing policies, 𝜃 (from 𝑞), the decision rules, and the indices 𝑎 and 𝑏. The decision rules

are fully defined by 𝜃, 𝐶ℓ , and 𝐶ℓ+1. It is therefore enough to further store 𝐶ℓ ,𝐶ℓ+1 ⊆ 𝑊 , which

can be encoded as 𝑑-dimensional vectors each, storing the bitmask of which state-action pairs are

included. We also store the current value of ℓ (the level) for the newly constructed policy. Together,

a policy thus consumes 3+𝑑+2𝑑 memory. We store all policies constructed, along with the features

of𝑊 , and the final value of 𝑉 (𝐶𝐻 )−1, at a memory cost of 𝑑𝑑 + 𝑑𝐻 (3+ 𝑑 + 𝑑) + 𝑑2 = Õ(𝑑2/(1−𝛾)).

This is the memory cost of the final policy outputted by CAPI-QPI-PLAN. The memory cost of

running CAPI-QPI-PLAN itself is of the same order, as additionally storing 𝐶𝑙, 𝑞𝑙, and 𝑉 (𝐶𝑙)−1 for

𝑙 ∈ [𝐻 +1] takes Õ(𝑑2/(1−𝛾)) memory.

To efficiently implement the final policy found by CAPI-QPI-PLAN with the stored informa-

tion described above, we start from evaluating the last policy constructed, 𝜋 (𝑖) for 𝑖 = 𝑛− 1. We

introduce auxiliary variables 𝑉̃ (𝐶𝑙)−1 and 𝐶̃𝑙 for 𝑙 ∈ [𝐻 + 1] to efficiently track the required val-

ues of 𝑉 (𝐶𝑙)−1 and 𝐶𝑙. We keep updating these variables so that for 𝑙 ∈ {ℓ, ℓ + 1}, they match

the values of 𝑉 (𝐶𝑙)−1 and 𝐶𝑙, respectively, at the time of construction of the current policy 𝜋 (𝑖)

under consideration, where ℓ is the (saved) level of 𝜋 (𝑖) . For 𝑖 = 𝑛− 1, observe that when it was

constructed, 𝐶0 = 𝐶1 = · · · = 𝐶𝐻 by Lemma 4.4.7. We therefore start by initializing variables

𝑉̃ (𝐶0)−1, . . . ,𝑉̃ (𝐶𝐻 )−1 to the saved final value of 𝑉 (𝐶𝐻 )−1, and variables 𝐶̃0, . . . , 𝐶̃𝐻 to 𝑊 . Im-

plementing the decisions of a policy takes an order of |A|𝑑2 computation (|A| vector and matrix

multiplications), after which we recover either the policy output or a previously constructed policy

to recurse into. For the latter case, we have to consider the evaluation of this policy, denoted by

𝜋 (𝑖
′) . Let the (saved) level of 𝜋 (𝑖

′) be ℓ′. Before we set 𝑖 to 𝑖′ and start evaluating it, we need

to update the values of 𝑉̃ (𝐶𝑙) and 𝐶𝑙 for 𝑙 ∈ {ℓ′, ℓ′ + 1}. The updates are needed for these two

levels only, as the decision rule of policy 𝑖′ only depends on these levels, as shown before. Let

us describe the update procedure for some 𝑙 ∈ {ℓ′, ℓ′ + 1}: Since 𝜋 (𝑖
′) was constructed earlier than

𝜋 (𝑖) (i.e., 𝑖′ < 𝑖), and 𝐶𝑙′ can only grow during the algorithm for any 𝑙 ′ ∈ [𝐻 + 1], we only need

to remove members of the variable 𝐶̃𝑙 to match the value of 𝐶𝑙 at the time of construction of 𝜋 (𝑖
′) .

The members to be removed are given by the difference of the members of 𝐶̃𝑙 and the bitmasks
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stored for 𝜋 (𝑖
′) for level 𝑙. For each state-action pair (𝑠, 𝑎) removed, we also need to update 𝑉̃ (𝐶𝑙)−1

to
(
𝑉̃ (𝐶𝑙) −𝜑(𝑠, 𝑎)𝜑(𝑠, 𝑎)>

)−1, which can be done in order 𝑑2 computation using the Sherman-

Morrison-Woodbury formula (Max, 1950). The total number of such removal operations for any

level 𝑙 is bounded by the sum of the number of state-action pairs in the initialization of 𝐶̃𝑙′ (for

𝑙 ′ ∈ [𝐻 + 1]), that is, by (𝐻 + 1)𝑑. As a result, the computational cost of the final policy of CAPI-

QPI-PLAN is Õ((𝐻 +1)𝑑𝑑2) +𝑛Õ( |A|𝑑2) = Õ(𝑑3 |A|/(1−𝛾)).

Finally, we consider the computational cost of running CAPI-QPI-PLAN. The number of

iterations of the outer loop is bounded by Õ(𝑑𝐻) = Õ(𝑑/(1−𝛾)), as each iteration involves either a

MEASURE call that returns success, or a new member added to some 𝐶𝑙. For each iteration, Line 4

takes Õ(𝑑2 |A|), Line 8 takes Õ(𝑑/(1− 𝛾)), Line 13 takes Õ(𝑑2 |A|) computation; for Line 19,

calculating 𝜃, the second component of the inner product of the least-squares predictor in Eq. (69)

takes Õ(𝑑2) computation, and if 𝐶𝑙 ever changes for some 𝑙, updating 𝑉 (𝐶𝑙)−1 by the Sherman-

Morrison-Woodbury takes Õ(𝑑2) computation. Overall, all the operations except those associated

to the MEASURE call of Line 11 take Õ(𝑑3 |A|/(1− 𝛾)) computation in total. We conclude our

calculations by considering the computational cost of the MEASURE calls, which will dominate

the overall computational cost. Line 6 of Algorithm 5 has a computational cost of order 𝑑2 |A|,

while the majority of the computational cost comes from evaluating the policy at Line 8. By our

previous calculations, this takes Õ(𝑑3 |A|/(1−𝛾)) computation and happens (at most) once for each

simulator call. Using the query cost bound of Theorem 4.1.2, we conclude that the computational

cost of CAPI-QPI-PLAN is Õ(𝑑4 |A| (1−𝛾)−5𝜔−2).



Chapter 5

Online RL with 𝑞𝜋-realizability

In the final chapter of this thesis, we tackle online RL, the most challenging setting considered. The

goal of this chapter is to prove Theorem 1.5.2. To do this, we switch back to finite-horizon episodic

Markov decision processes (MDPs), and employ the linear 𝑞𝜋-realizability assumption. Recall

that the class of 𝑞𝜋-realizable MDPs is known to be more general than linear MDPs (where the

transition kernel and the reward function are assumed to be linear functions of the feature vectors).

As our first contribution, we show that the difference between the two classes is the presence of

states in linearly 𝑞𝜋-realizable MDPs where for any policy, all the actions have approximately equal

values, and skipping these states by following an arbitrarily fixed policy in those states transforms

the problem to a linear MDP. Based on this observation, we derive a novel learning algorithm for

linearly 𝑞𝜋-realizable MDPs that simultaneously learns what states should be skipped and runs

another learning algorithm on the linear MDP hidden in the problem. The new algorithm returns

an 𝜀-optimal policy after polylog(𝐻,𝑑)/𝜀2 interactions with the MDP, where 𝐻 is the time horizon

and 𝑑 is the dimension of the feature vectors, giving the first polynomial-sample-complexity online

RL algorithm for this setting. The results are proved for the misspecified case, where the query

complexity is shown to degrade gracefully with the misspecification error.

5.1. Introduction

There are several sample-efficient algorithms discovering near-optimal policies in linear MDPs un-

der various MDP access models and settings (online RL: Jin et al. (2020a); batch setting: Jin et al.

(2021); reward-free setting: Wagenmaker et al. (2022)). The best known sample-complexity bound

for the online RL setting is achieved by the computationally inefficient algorithm of Zanette et al.

(2020b), called ELEANOR, which serves as a starting point of our work.

As opposed to linear MDPs, before the work of Weisz et al. (2023), sample efficient solutions

were only known for 𝑞𝜋-realizable MDPs when the MDP is accessed through a simulator that
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implements some form of a state-reset function (Lattimore et al., 2020; Yin et al., 2022; Weisz et al.,

2022a). In this thesis we present the work of Weisz et al. (2023), showing that having access to a

state-reset is not essential in this setting. To this end, we present SKIPPYELEANOR (Algorithm 7)

and a corresponding theorem (Theorem 5.4.1) that shows that SKIPPYELEANOR, which uses online

interactions only, is a provably sample-efficient solution to this problem. The rest of this chapter

is organized as follows. In Section 5.2 we introduce the basic definitions. In Section 5.3 we give

an insight into the difference between linear 𝑞𝜋-realizability and linear MDPs, which motivates

our approach. In Section 5.4 we describe our algorithm and the most important technical tools

we discovered for its analysis. Notably, we develop a novel, modular theory in Section 5.4.2 that

establishes a rich structure inherent in 𝑞𝜋-realizable MDPs, which acts as the technical foundation

to the main results of the chapter, and may be of independent interest. Finally, Section 5.5 gives a

summary of the proof of the main result (Theorem 5.4.1).

5.2. Preliminaries

For a linear subspace 𝑋 ofR𝑑 , let Proj𝑋 denote the orthogonal projection matrix onto 𝑋 . Throughout

we fix 𝑑 ∈ N+. For 𝐿 > 0, let B(𝐿) = {𝑥 ∈ R𝑑 : ‖𝑥‖2 ≤ 𝐿} denote the 𝑑-dimensional Euclidean ball

of radius 𝐿 centered at the origin, where ‖ · ‖2 denotes the Euclidean norm. Let PD denote the set

of positive definite matrices in R𝑑×𝑑 . We write 𝑎 ≈𝜀 𝑏 for 𝑎, 𝑏, 𝜀 ∈ R if |𝑎− 𝑏 | ≤ 𝜀. Let I{𝐵} be the

indicator function on boolean-valued (possibly random) 𝐵 taking value 1 if 𝐵 is true, 0 if false. We

let M1(𝑋) denote the set of probability distributions supported on set 𝑋 .12 The rest of our notation

is standard, but described in Section 5.A for completeness.

We recall the most important facts about MDPs and introduce a slight variation of our previous

notation. For the setting of episodic finite horizon RL, with horizon 𝐻, a finite-action Markov

Decision Process (MDP) describes an environment for sequential decision-making. It is defined

by a tuple (S , [A], 𝑃,R) as follows. The state space S is split across stages: S = (S𝑡 )𝑡 ∈[𝐻 ] with

S1 = {𝑠1} for some designated initial state 𝑠1. Without loss of generality, we assume the (S𝑡 )𝑡 ∈[𝐻 ]
are disjoint sets. We define the function stage : S → [𝐻] as stage(𝑠) = 𝑡 if 𝑠 ∈ S𝑡 . We consider

finite action spaces of size A for some A ∈ N, and without loss of generality, define the set of

actions to be [A] := {1, . . . ,A}. The transition kernel is 𝑃 :
(⋃

𝑡 ∈[𝐻−1] S𝑡
)
× [A] →M1(S), with

the property that transitions happen between successive stages, that is, for any 𝑡 ∈ [𝐻 − 1], state

𝑠𝑡 ∈ S𝑡 , and action 𝑎 ∈ [A], 𝑃(𝑠𝑡 , 𝑎) ∈M1(S𝑡+1). The reward kernel is R : S × [A] →M1([0,1]).

An agent interacts sequentially with this environment in an episode lasting 𝐻 steps by taking some

12. Here, and in what follows, we assume the availability of appropriate measurability structures when necessary.
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action 𝑎 ∈ [A] in the current state. The environment responds by transitioning to some next-state

according to 𝑃, and giving a reward in [0,1] according to R.13

We describe an agent interacting with the MDP by a policy 𝜋, which, to each history of in-

teraction (including states, actions and rewards) assigns a probability distribution over the actions.

Policies where this distribution only depend on the last state in the history are called memoryless,

and these are identified with elements of the set Π= {𝜋 : S→M1([A])}. Using a policy 𝜋, starting

at some state 𝑠 in an MDP induces a probability distribution over histories, which we denote by P𝜋,𝑠.

For any 𝑎 ∈ [A], P𝜋,𝑠,𝑎 is the distribution over the histories when first action 𝑎 is used in state 𝑠,

after which policy 𝜋 is followed. E• is the expectation operator corresponding to a distribution P•

(e.g., E𝜋,𝑠 is the expectation with respect to P𝜋,𝑠). The state- and action-value functions 𝑣𝜋 and 𝑞𝜋

are defined as the expected total reward within the first episode while 𝜋 is used:

𝑣𝜋 (𝑠) = E𝜋,𝑠
𝐻∑

𝑢=stage(𝑠)
𝑅𝑢 for 𝑠 ∈ S and 𝑞𝜋 (𝑠, 𝑎) = E𝜋,𝑠,𝑎

𝐻∑
𝑢=stage(𝑠)

𝑅𝑢 for 𝑠 ∈ S , 𝑎 ∈ [A] .

Let 𝜋★ ∈Π be an optimal policy, satisfying 𝑞𝜋
★ (𝑠, 𝑎) = sup𝜋∈Π 𝑞𝜋 (𝑠, 𝑎) = sup𝜋∈all policies 𝑞

𝜋 (𝑠, 𝑎)

for all (𝑠, 𝑎) ∈ S × [A]. Let 𝑞★(𝑠, 𝑎) = 𝑞𝜋★ (𝑠, 𝑎) and 𝑣★(𝑠) = sup𝑎′∈[A] 𝑞★(𝑠, 𝑎) for all (𝑠, 𝑎) ∈

S × [A].

5.3. From linear 𝑞𝜋-realizability to linear MDPs

As described in the introduction, we endow our MDP with a feature map 𝜑 : S × [A] → B(𝐿) for

some 𝐿1 > 0. For reference, we start with a definition of linear MDPs with a parameter norm bound

𝐵 > 0, formalizing that the transition kernel and the expected rewards are approximately linear

functions of the features:14

Definition 5.3.1. [𝜅-approximately linear MDP] For any 𝜅 ≤ 1, an MDP is a 𝜅-approximately

linear MDP if (i) there exists 𝜃1, . . . , 𝜃𝐻 ∈ B(𝐵) such that for any ℎ ∈ [𝐻] and (𝑠, 𝑎) ∈ Sℎ × [A],

|E𝑅∼R(𝑠,𝑎)𝑅− 〈𝜑(𝑠, 𝑎), 𝜃ℎ〉 | ≤ 𝜅 and (ii) for any 𝑓 : S → [0, 𝐻] and ℎ ∈ [𝐻 −1], there exists 𝜃 ′ℎ ∈

B(𝐵) such that for all (𝑠, 𝑎) ∈ Sℎ × [A], |E𝑆′∼𝑃 (𝑠,𝑎) 𝑓 (𝑆′) −
〈
𝜑(𝑠, 𝑎), 𝜃 ′ℎ

〉
| ≤ 𝜅.

13. Here, the reward and next-state are independent, given the current state and last action. Independence is nonessential
and is assumed only to simplify the presentation.

14. Compared to the definition of Jin et al. (2020b), our definition does not require the existence of a vector-valued
measure to represent the transition kernel. This is a generalization that is compatible with all existing algorithms for
linear MDPs.
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A key consequence of the linear MDP assumption is that the inherent Bellman error

sup
𝜃ℎ+1∈B (𝐵)

inf
𝜃ℎ ∈B (𝐵)

sup
(𝑠,𝑎) ∈Sℎ×[A]

���E𝑅∼R(𝑠,𝑎) ,𝑆′∼𝑃 (𝑠,𝑎)𝑅(𝑠, 𝑎) + max
𝑎′∈[A]

〈𝜑(𝑆′, 𝑎′), 𝜃ℎ+1〉 − 〈𝜑(𝑠, 𝑎), 𝜃ℎ〉
��� ,

scales with the misspecification 𝜅. This property is also referred to as the closedness to the Bellman

operator, and is a crucial component in the analysis of approximation errors for algorithms tackling

linear MDPs.

In this thesis we consider a weaker linearity assumption where we only assume that the action-

value functions are approximately linear:

Definition 5.3.2 (𝑞𝜋-realizability: uniform linear function approximation error of value-functions).

Given an MDP, the uniform value-function approximation error (or misspecification) induced by a

feature map 𝜑 : S × [A] → B(𝐿), over a set of parameters in B(𝐵) is

𝜂 = sup
𝜋∈Π

max
ℎ∈[𝐻 ]

inf
𝜃 (ℎ) ∈B (𝐵)

sup
(𝑠,𝑎) ∈Sℎ×[A]

|𝑞𝜋 (𝑠, 𝑎) −
〈
𝜑(𝑠, 𝑎), 𝜃 (ℎ)

〉
| .

For the MDP and the corresponding feature map, for all ℎ ∈ [𝐻] fix any 𝜃ℎ : Π→ B(𝐵) mapping

each memoryless policy 𝜋 ∈ Π to its “parameter”, such that

𝑞𝜋 (𝑠, 𝑎) ≈𝜂 〈𝜑(𝑠, 𝑎), 𝜃ℎ (𝜋)〉 for all 𝜋 ∈ Π, 𝑠 ∈ Sℎ, and 𝑎 ∈ [A] . (88)

The set of all parameters Θℎ ⊆ B(𝐵) for a stage ℎ ∈ [𝐻] is given by Θℎ = {𝜃ℎ (𝜋) : 𝜋 ∈ Π} .

Note that 𝜃ℎ satisfying Eq. (88) always exist (Weisz et al., 2022a, Appendix C). We focus

on the feasible regime where 𝜂 is polynomially small in the relevant parameters. Specifically, we

assume that 𝜂 is bounded according to Eq. (108). The main problem of interest in this thesis is the

following:

Problem 5.3.3 (informal). For any 𝜀, 𝜁 > 0 and any MDP with corresponding uniform value-

function approximation error 𝜂, derive an algorithm that, with probability at least 1− 𝜁 , will find

an 𝜀-optimal policy (i.e., a policy 𝜋 such that 𝑣𝜋 (𝑠1) ≥ 𝑣★(𝑠1) − 𝜀) by interacting with the MDP

online for 𝑇 steps with 𝑇 bounded by a polynomial function of (𝑑,𝐻,𝜀−1, log 𝜁−1, log𝐿, log𝐵). That

the interaction with the MDP is online means that it is only possible to observe the features corre-

sponding to the current state, and to take an action and subsequently observe the resulting reward

and next state, which then becomes the current state. We consider the fixed horizon episodic setting,

that is, the next state is reset to the initial state 𝑠1 after every 𝐻 steps.
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Figure 5.3.1: Left: MDP with deterministic transitions and rewards (edges are labeled with action/reward).
Right: The same MDP with the red “low-range” states “skipped” over. 𝜑(𝑠1, ·) = (1), 𝜑(𝑠3, ·) = (0.5), 𝜑(·, ·) =
(0) otherwise. Both MDPs are 𝑞𝜋-realizable, but only the right MDP is linear.

Algorithms developed for linear MDPs are not directly applicable to Problem 5.3.3 when the

MDP is only 𝑞𝜋-realizable: While a linear MDP is also 𝑞𝜋-realizable, a 𝑞𝜋-realizable MDP may

be neither a linear MDP, nor one with a low inherent Bellman error (Zanette et al., 2020b). As an

illustrative example, Fig. 5.3.1, left shows an MDP that is 𝑞𝜋-realizable but not linear. To see this,

observe that the features for both actions in 𝑠1 are identical, but their transitions and rewards are not.

As illustrated in the figure however, if we skip over the red states (with identical actions) by taking

the first action on them and summing up the rewards received until we reach a black state, we arrive

at a linear MDP. This serves as the main intuition behind our work: the red states have no bearing

on action-values, so they can be skipped, and the resulting MDP is linear.

More generally, we can define the range of any state as the maximum possible difference in

action-value that the choice of action in that state can make:

range(𝑠) = sup
𝜃 ∈Θstage(𝑠)

max
𝑖, 𝑗∈[A]

〈𝜑(𝑠, 𝑖, 𝑗), 𝜃〉 for all ℎ ∈ [𝐻], 𝑠 ∈ Sℎ , (89)

where 𝜑(𝑠, 𝑖, 𝑗) = 𝜑(𝑠, 𝑖) −𝜑(𝑠, 𝑗) is the notation for feature differences. Clearly, the choice of action

in low-range states is not too important, as

𝑣𝜋 (𝑠) − 𝑞𝜋 (𝑠, 𝑎) ≤ range(𝑠) +2𝜂 for any 𝜋 ∈ Π and all 𝑎 ∈ [A]. (90)

Not only are the action choices in low-range states unimportant for the task of finding a near-optimal

policy for the MDP, these choices can affect transitions and rewards in a nonlinear way. Interestingly,

the existence of low-range states is the reason why 𝑞𝜋-realizable MDPs are not necessarily linear,

as shown by the next result (proved in Section 5.C), which follows easily from Lemma 5.4.7.

Proposition 5.3.4. Consider an MDP with uniform value-function approximation error 𝜂 ≥ 0. If

there are no states 𝑠 ∈ S with range(𝑠) < 𝛼 for some 𝛼 > 0, then the transitions and rewards of
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the MDP are linear (Definition 5.3.1) with misspecification scaling with 𝜂, and parameter norms

scaling inversely with 𝛼.

Our approach. The above result immediately offers a strategy to learn under the (linear) 𝑞𝜋-

realizability assumption. Assuming access to an oracle that can determine whether or not range(𝑠) <

𝛼 for any state 𝑠, the MDP could be “converted” to one that has no low-range states but has near-

identical state and action-value functions of any policy (compared to the original MDP), by skipping

over low-range states (by executing an arbitrary action) until a state with a range at least 𝛼 is reached.

We will call such a multi-state transition a skippy step and refer to such a policy as a skippy policy.

The reward presented for a skippy step is the cumulative reward over the skipped states. When the

oracle is correct, the new MDP is a linear MDP, allowing techniques such as ELEANOR to efficiently

learn a near-optimal policy. This conversion argument is part of the intuition of our method, but it

is not strictly part of the proof, so we defer the details to Section 5.C. The only missing piece for

solving the general case, Problem 5.3.3, is learning an oracle that can suggest when to skip over a

state, and combining it with the learning algorithm for the linear MDP. This general approach leads

to our algorithm, SKIPPYELEANOR, which runs a modified version of ELEANOR with guessed or-

acles. During the algorithm, we detect when an incorrect oracle leads to suboptimal results, and

refine the oracle accordingly. The details of the algorithm are explained in the next section.

5.4. Algorithm

In this section we present our main results following our plan outlined above. We first give Algo-

rithm 7, along with a high-level overview of the algorithm; the details are explained throughout the

section. The parameters of the algorithm are presented in Section 5.B.

For every stage ℎ ∈ [𝐻], the algorithm keeps a progressively refined estimate of the geometry

of the parameter space Θℎ, by maintaining an ever shrinking ellipsoid enclosing Θℎ. This ellipsoid

is parametrized by an ’inverse covariance matrix’-like quantity Qℎ, determined by Õ(𝑑) vectors,

which guarantees max𝜃ℎ ∈Θℎ ‖𝜃ℎ ‖Q−2
ℎ
= Õ(

√
𝑑). Looking at the definition of range in Eq. (89), it is

clear that the smaller the ellipsoid becomes, the better estimate we can give for the ranges.

Given some data collected so far and (𝑄ℎ)ℎ∈[𝐻 ] , SKIPPYELEANOR computes optimistic esti-

mates of the action-values by calculating an optimistic policy parameter 𝜃, as well as a guess 𝐺̂ to

a near-optimal design which is used to estimate the range for the states (due to technical reasons, 𝐺̂

will guess a near-optimal design for the transformed parameter space 𝑄−1
ℎ Θℎ).
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Algorithm 7 SKIPPYELEANOR

1: Input: accuracy 𝜀 > 0, failure probability 𝜁 > 0
2: Initialize 𝑚← 0, 𝑚′← 0, Qℎ = 𝐵𝐼 for ℎ ∈ [𝐻], 𝜋0 = (𝑠 ↦→ 1)
3: while 𝑚′ ≤ 𝑚′max do
4: 𝑚← 𝑚 +1, 𝑚′← 𝑚′+1 ⊲ 𝑚′ also counts iterations repeated due to Line 15
5: Estimate optimistic problem parameters 𝐺̂, 𝜃 by solving Optimization Problem 5.4.10
6: for 𝑘 ∈ [𝐻] do
7: Let 𝜋𝑚𝑘 be the policy defined by SKIPPYPOLICY(𝐺̂, 𝜃, 𝑘)
8: Sample 𝑛 trajectories by executing 𝜋𝑚𝑘 from 𝑠1 for 𝑛 episodes
9: Record data (𝑆𝑚𝑘 𝑗ℎ , 𝐴

𝑚𝑘 𝑗
ℎ , 𝑅

𝑚𝑘 𝑗
ℎ )ℎ∈[𝐻 ], 𝑗∈[𝑛] and stage-mapping functions (𝑝𝑚𝑘 𝑗) 𝑗∈[𝑛]

10: end for
11: Solve Optimization Problem 5.4.12 with input (𝐺̂, 𝜃), ⊲ Consistency check

record its value 𝑥 (maximum discrepancy), and arguments 𝑣 (direction) and 𝑖 (stage).
12: Calculate useful component 𝑤← Proj𝑍 (Q,𝑖) 𝑣 ⊲ Definition 5.4.2
13: if 𝑥 > discrepancy_threshold then
14: Q𝑖←

(
Q−2
𝑖 +Q−1

𝑖 𝑤𝑤
>Q−1

𝑖

)− 1
2 ⊲ append Q−1

𝑖 𝑤 to 𝐶𝑖 according to Eq. (91)
15: 𝑚← 𝑚−1 ⊲ redo this iteration
16: continue
17: end if
18: if average_uncertainty ≤ uncertainty_threshold then
19: return policy 𝜋𝑚𝐻

20: end if
21: end while

Data is collected by running stochastic versions of skippy policies on the MDP, where the

states to be skipped over are determined based on the range estimates; when a state is skipped,

an action is selected using a deterministic policy 𝜋0 that always chooses the first action in every

state. To ensure that the estimation problem is smooth in terms of 𝐺̂, we use a smoothed version

of skippy policies, where states are skipped randomly, and the probability of skipping is larger for

states with lower ranges, while high-range states are never skipped. Similarly to ELEANOR, we

aim to estimate the action-value function of a state-action pair by adding the estimated one-step

reward to the estimated value-function of the next state. However, unlike ELEANOR, we would

like to do this in the reduced MDP, where the low-range states that are skipped over are removed

(and the corresponding transitions are replaced by skippy steps). Since we do not know these states

in advance, we run exploratory policies that skip over next states starting from any state: namely,

we run SKIPPYPOLICY(𝐺̂, 𝜃, 𝑘) for all 𝑘 ∈ [𝐻] with a maximum number of unskipped states 𝑘

(Phase I), and once this is skip budget is exhausted, all remaining states are skipped over by rolling

out 𝜋0 (Phase II), which ensures that we collect enough data at every stage of the MDP to be able

to estimate the one-skippy-step reward of any skipping mechanism. Compared to ELEANOR, this

introduces an additional loop in Line 6 of SKIPPYELEANOR; see Section 5.D for additional details.
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Algorithm 8 SKIPPYPOLICY

1: Input: 𝐺̂, 𝜃, 𝑘
2: Initialize 𝑆1← 𝑠1, 𝑗 ← 1, 𝜋0← (𝑠 ↦→ 1), stage mapping 𝑝
3: for 𝑖 = 1 to 𝐻 do
4: Compute skip probabilities 𝜏𝑖← 𝜏𝐺̂ (𝑆𝑖) and non-skip action 𝑎+← 𝜋+

𝜃
(𝑆𝑖) from Eq. (95)

5: Sample independently 𝐵𝑖 ∼ Bernoulli(𝜏𝑖)
6: if 𝐵𝑖 = 0 then 𝐴𝑖← 1 ⊲ skip (follow 𝜋0) with probability 1− 𝜏𝑖
7: else
8: 𝑝( 𝑗) ← 𝑖, 𝑗 ← 𝑗 +1
9: if 𝑗 ≤ 𝑘 then 𝐴𝑖← 𝑎+ (Phase I) else 𝐴𝑖← 1 (Phase II)

10: end if
11: end if
12: if 𝑖 = 𝐻 then
13: 𝑝( 𝑗 ′) = 𝐻 +1 for 𝑗 ′ = 𝑗 , . . . , 𝐻
14: end if
15: end for

For any execution, SKIPPYPOLICY maintains a stage-mapping function 𝑝, which, for any stage ℎ of

the trajectory in the reduced MDP gives the stage index in the original MDP. In other words, 𝑝( 𝑗)

is the stage of the landing state of the 𝑗 𝑡ℎ skippy step.

Finally, we check if the data collected is consistent with our estimates 𝐺̂ and 𝜃, by calculating

the maximal discrepancy of the estimates of the action-value difference at the last non-skipped state

of 𝜋𝑚𝑘 = SKIPPYPOLICY(𝐺̂, 𝜃, 𝑘) and that of the fixed skipping policy 𝜋0 in different directions in

the parameter space. If the discrepancy is too large for any 𝑘 , we add the discrepancy-maximizing

direction to Q and throw away the data collected in this (i.e., the 𝑚𝑡ℎ) iteration; this is achieved by

reducing the iteration counter 𝑚 by 1. On the other hand, if the discrepancy is small enough, we can

guarantee that the gap between the value of 𝜋𝑚𝐻 and 𝑣★(𝑠1) scales with how much new information

we collected, thus the algorithm can terminate returning this policy if this term is sufficiently small

(which it eventually has to be).

The following theorem shows that with high probability, SKIPPYELEANOR finds a near-

optimal policy after polynomially many interactions with the MDP. Rhe proof sketch is provided in

Section 5.5, while our method and proof strategy is explained from the perspective of ELEANOR in

Section 5.D.

Theorem 5.4.1. With probability at least 1− 𝜁 , SKIPPYELEANOR interacts with the MDP for at

most Õ
(
𝐻11𝑑7/𝜀2) many steps, before returning a policy 𝜋 that satisfies 𝑣★(𝑠1) ≤ 𝑣𝜋 (𝑠1) + 𝜀.
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5.4.1. Preconditioning: the enclosing ellipsoid

In this section we give the technical details about the effects of using the matrix 𝑄ℎ describing an

enclosing ellipsoid for Θℎ (see Lemma 5.4.3) as preconditioning the features.

Definition 5.4.2 (Valid preconditioning). 𝑄 = (Qℎ)ℎ∈[𝐻 ] is a valid preconditioning matrix sequence

if for all ℎ ∈ [𝐻]

Qℎ =
(
𝐵−2𝐼 +∑𝑣∈𝐶ℎ

𝑣𝑣>
)−1/2 (91)

for some sequence 𝐶ℎ = (𝑣1, . . . , 𝑣𝑛) of vectors in R𝑑 such that for all 1 ≤ 𝑖 ≤ 𝑛,

sup𝜃 ∈Θℎ
|〈𝜃, 𝑣𝑖〉| ≤ 1 and





(𝐵−2𝐼 +∑𝑖−1
𝑗=1 𝑣 𝑗𝑣

>
𝑗

)− 1
2
𝑣𝑖





2

2
≥ 1

2 and ‖𝑣‖2 ≤ 𝐿3 , (92)

where 𝐿3 is some fixed polynomial of the problem parameters (𝑑,𝐻,𝜀−1, log 𝜁−1, log𝐿, log𝐵). (see

Eq. (122) for its precise value).

For a valid preconditioning Q and some ℎ ∈ [𝐻], let 𝑍 (Q, ℎ) be the linear subspace spanned

by those eigenvectors of 𝑄 whose corresponding eigenvalues are at least 𝐿−2
3 . Let Proj𝑍 (Q,ℎ) be the

orthogonal projection matrix onto this subspace.

Sometimes it will be convenient to precondition the features and parameters so that the enclos-

ing ellipsoid is transformed to a ball of controlled radius (as Lemma 5.4.3 will show). To this end,

introduce for all ℎ ∈ [𝐻] and (𝑠, 𝑎, 𝑏) ∈ Sℎ × [A] × [A] the following:15

𝜑Q(𝑠, 𝑎) =Qℎ𝜑(𝑠, 𝑎), 𝜑Q(𝑠, 𝑎, 𝑏) =Qℎ𝜑(𝑠, 𝑎, 𝑏)

𝜃Qℎ (𝜋) =Q−1
ℎ 𝜃ℎ (𝜋), ΘQ

ℎ =
{
𝜃Qℎ (𝜋) : 𝜋 ∈ Π

}
=

{
Q−1
ℎ 𝜃 : 𝜃 ∈ Θℎ

}
𝑞𝜋 (𝑠, 𝑎) = 〈𝜑(𝑠, 𝑎), 𝜃ℎ (𝜋)〉 =

〈
𝜑Q(𝑠, 𝑎), 𝜃Qℎ (𝜋)

〉
for all 𝜋 ∈ Π .

(93)

The next lemma (proved in Section 5.F) shows that for all ℎ ∈ [𝐻], Qℎ defines an enclosing

ellipsoid for Θℎ; that is, Θℎ ⊂ {𝜃 : ‖𝜃‖Q−2
ℎ
≤
√
𝑑1 +1}.

Lemma 5.4.3. Let 𝑑1=4𝑑 log(1+16𝐿4
3𝐵

4)= Õ(𝑑). Then, for any valid preconditioning Q and ℎ ∈

[𝐻],

sup𝜃 ∈Θℎ
‖𝜃‖Q−2

ℎ
= sup𝜃 ∈ΘQ

ℎ
‖𝜃‖2 ≤

√
𝑑1 +1 .

15. Note that 𝑄ℎ , ℎ ∈ [𝐻] is invertible by construction.
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Clearly, every time a new vector is added to 𝐶ℎ, the enclosing ellipsoid {𝜃 : ‖𝜃‖Q−2
ℎ
≤
√
𝑑1 +1}

shrinks (as a positive semidefinite matrix is added to Q−2
ℎ ). The following lemma (also proved in

Section 5.F) uses an elliptical potential argument to bound the number of times this can happen.

Lemma 5.4.4. For any valid preconditioning Q, for all ℎ ∈ [𝐻], the length of sequence 𝐶ℎ corre-

sponding to Qℎ according to Definition 5.4.2 is at most 𝑑1.

Near-optimal design for ΘQ
ℎ . As Qℎ only provides an enclosing ellipsoid for Θℎ, we introduce an

(unknown) ellipsoid that aligns better with ΘQ
ℎ . For all ℎ ∈ [𝐻], fix a set 𝐺Q

ℎ of policies of size

𝑑0 := 4𝑑 log log(𝑑) +16, together with a probability distribution 𝜌Qℎ on 𝐺Q
ℎ , such that (𝐺Q

ℎ , 𝜌
Q
ℎ ) is a

near-optimal design for ΘQ
ℎ (i.e., satisfying Definition 5.F.1). The existence of such a near-optimal

design follows from (Todd, 2016, Part (ii) of Lemma 3.9).

We apply 𝐺Q
ℎ to define a cruder version of range that depends only on a small set of policies,

and can therefore be succinctly parametrized to inform SKIPPYPOLICY:

rangeQ(𝑠) = max
𝜋∈𝐺Q

ℎ

max
𝑖, 𝑗∈[A]

〈𝜑(𝑠, 𝑖, 𝑗), 𝜃ℎ (𝜋)〉 for all ℎ ∈ [𝐻], 𝑠 ∈ Sℎ . (94)

rangeQ is easy to estimate, and can be used to bound the range function (proved in Section 5.F):

Proposition 5.4.5. For all 𝑠 ∈ S and Q ∈ PD𝐻 , range(𝑠) ≤
√

2𝑑 rangeQ(𝑠).

5.4.2. Linearly realizable functions

𝑞𝜋-realizability (Definition 5.3.2) implies the linearity of many more functions than the action-value

functions. In this section we characterize an interesting set of such functions, whose (approximate)

linearity plays a crucial role in our algorithm and analysis, as their parameters can be conveniently

estimated by least squares using the features. We rely on functions 𝑓 : Sℎ→ R (for some ℎ ∈ [𝐻])

being small for all states, relative to the states’ rangeQ-value:

Definition 5.4.6. For any ℎ ∈ [𝐻], 𝑓 : Sℎ → R is 𝛼-admissible for some 𝛼 > 0 if for all 𝑠 ∈ Sℎ,

| 𝑓 (𝑠) | ≤ rangeQ(𝑠)/𝛼.

The key observation is that expected (admissible) 𝑓 values are linearly realizable.

Lemma 5.4.7 (Admissible-realizability). If 𝑓 : Sℎ → R is 𝛼-admissible then it is realizable, that

is, for all 𝑡 ∈ [ℎ − 1] and 𝜋 ∈ Π, there exists some 𝜃 ∈ R𝑑 with


𝜃

2 ≤ 4𝑑0𝐵/𝛼 such that for all

(𝑠, 𝑎) ∈ S𝑡 × [A],

E𝜋,𝑠,𝑎 𝑓 (𝑆ℎ) ≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃

〉
where 𝜂0 = 5𝑑0𝜂/𝛼.
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The proof relies on constructing a set of policies that at states 𝑠 ∈ Sℎ take a higher value action

as opposed to a lower one with a certain probability, configured such that the expected action-value

difference of some pairs within the set of policies is (approximately) proportional to 𝑓 (𝑠). Thus,

a linear combination of the action-values of policies in this set are also (approximately) propor-

tional to 𝑓 (𝑠). The statement of the lemma then follows from setting 𝜃 to the corresponding linear

combination of the policies’ parameters. The full proof is presented in Section 5.G.

Next, we define matrix-valued functions with a special admissibility guarantee even when

the underlying scalar-valued function does not satisfy any non-trivial admissibility criterion. We

introduce a guess on the near-optimal design parameters that define rangeQ (Eq. (94)) for some

valid preconditioning Q:

Definition 5.4.8. For ℎ ∈ [2 : 𝐻], fix some arbitrary order of the policies in the set 𝐺Q
ℎ (recall that

this set is the support of the near-optimal design for ΘQ
ℎ ). Let the parameter of the 𝑖th policy in

𝐺Q
ℎ be 𝜗𝑖ℎ for 𝑖 ∈ [𝑑0]. Call a “guess” of these parameters 𝐺̂ = (𝐺̂ℎ)ℎ∈[2:𝐻 ] = (𝜗̂𝑖ℎ)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ]

“valid”, if for all ℎ ∈ [2 : 𝐻], 𝑖 ∈ [𝑑0], 𝜗̂𝑖ℎ ∈ B(
√
𝑑1 +1). Let the set of valid guesses be G.16 By

Lemma 5.4.3, (𝜗𝑖ℎ)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ] ∈G, that is, it is a valid guess, and we call this the “correct” guess.

From a guess 𝐺̂ = (𝜗̂𝑖ℎ)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ] we can calculate corresponding guesses of the rangeQ-

values:

range𝐺̂Q (𝑠) = max
𝑘∈[𝑑0 ]

max
𝑖, 𝑗∈[A]

〈
𝜑Q(𝑠, 𝑖, 𝑗), 𝜗̂𝑘stage(𝑠)

〉
for all ℎ ∈ [2 : 𝐻], 𝑠 ∈ Sℎ .

Note that for any ℎ∈ [2:𝐻] and 𝑠∈Sℎ, range𝐺̂Q (𝑠) = rangeQ(𝑠) if 𝐺̂ is the correct guess for stage ℎ.

Let 𝜑̄Q(𝑠) be the unit vector in the direction of the largest feature difference between actions

in 𝑠 and the zero vector if all feature vectors are the same (see Eq. (114) for a formal definition).

Then, for any 𝐺̂ ∈ G, ℎ ∈ [2 : 𝐻], and 𝑓 : Sℎ→ [−𝐻,𝐻], let

f (𝑠) = 𝜑̄Q(𝑠)𝜑̄Q(𝑠)>min
{
1, range𝐺̂Q (𝑠)

√
2𝑑𝐻
𝜀

}
𝑓 (𝑠) for 𝑠 ∈ Sℎ .

For such f : Sℎ → R𝑑×𝑑 , we adopt the notation 𝑎>f𝑏 for any 𝑎, 𝑏 ∈ R𝑑 to denote the function

𝑠 ∈ Sℎ ↦→ 𝑎>f (𝑠)𝑏, and similarly, Tr(f) to denote the function 𝑠 ∈ Sℎ ↦→ Tr(f (𝑠)).

Let Proj‖ (Q,ℎ) be the projection matrix onto the linear subspace spanned by those eigenvectors

of the design matrix 𝑉 (𝐺Q
ℎ , 𝜌

Q
ℎ ) (defined in Eq. (112)) whose corresponding eigenvalues are at

16. Note that while𝐺Q
ℎ

contains policies, G and its elements (commonly denoted by 𝐺̂) contain policy parameter vectors.
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least 𝛾 (for some 𝛾 > 0 specified in Section 5.B). Intuitively, this is the subspace where ΘQ
ℎ has a

sufficiently large width. Let Proj⊥(Q,ℎ) be the projection to the orthogonal complement subspace.

For any 𝑣 ∈ R𝑑 , we write 𝑣 ‖ (Q,ℎ) and 𝑣⊥(Q,ℎ) for Proj‖ (Q,ℎ) 𝑣 and Proj⊥(Q,ℎ) 𝑣, respectively.

We are now ready to state our special admissibility guarantee, which is proved in Section 5.G.

Let 𝛼 = Õ(𝜀/(𝑑1.5𝐻2)) be as in Eq. (103).

Lemma 5.4.9. For any ℎ ∈ [2 : 𝐻], 𝐺̂ ∈G, any function f constructed as above from some 𝑓 : Sℎ→

[−𝐻,𝐻], and any 𝑣,𝑤 ∈ B(1), 𝑣>‖(Q,ℎ) f𝑤 is 𝛼-admissible. Furthermore, if 𝐺̂ = (𝜗𝑖ℎ)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ]

(the correct guess), Tr(f) is also 𝛼-admissible.

5.4.3. Least-squares targets and Optimization Problem 5.4.10

Recall that SKIPPYELEANOR estimates action-values of states by first adding the estimated one-step

reward and the estimated value-function of the next state in the reduced MDP (where low-range

states are skipped). Due to the linearity of 𝑞𝜋-values, these can be used as target variables of a

least-squares estimator to estimate the policy parameters. This estimator is only guaranteed to be

accurate if the right (low-range) states are skipped; otherwise, we will argue in Section 5.4.4 that

a discrepancy is detected and it is handled by changing the preconditioning Q. Finally, to ensure

optimism, we select parameter estimates that lead to the largest estimated policy values. The whole

estimation process leads to Optimization Problem 5.4.10, which we define in this section along

with the functions that it uses as least-square targets. Each estimation is for a particular stage ℎ and

may use the estimates 𝜃𝑖 of Optimization Problem 5.4.10 for stages 𝑖 > ℎ. In this subsection, we

consider the 𝑚th iteration of the optimization called by SKIPPYELEANOR, and consider𝑄 fixed. As

a shorthand, we introduce the following notation for 𝑙 ∈ [𝑚], 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐻]:

p(𝑙𝑘 𝑗) = 𝑝𝑙𝑘 𝑗 (𝑘) as recorded in Line 9 of Algorithm 7, and

𝑆
𝑙𝑘 𝑗
p(𝑘) = 𝑆

𝑙𝑘 𝑗

𝑝𝑙𝑘 𝑗 (𝑘) , 𝐴
𝑙𝑘 𝑗
p(𝑘) = 𝐴

𝑙𝑘 𝑗

𝑝𝑙𝑘 𝑗 (𝑘) , 𝑅
𝑙𝑘 𝑗
p(𝑘) = 𝑅

𝑙𝑘 𝑗

𝑝𝑙𝑘 𝑗 (𝑘) , 𝜑
𝑙𝑘 𝑗
𝑡 = 𝜑(𝑆𝑙𝑘 𝑗𝑡 , 𝐴

𝑙𝑘 𝑗
𝑡 ), 𝜑

𝑙𝑘 𝑗
p(𝑘) = 𝜑(𝑆

𝑙𝑘 𝑗
p(𝑘) , 𝐴

𝑙𝑘 𝑗
p(𝑘) ) .

We collect the set of (𝑙, 𝑘, 𝑗) tuples for which the 𝑘 th skippy step lands at stage 𝑡, for 𝑡 ∈ [𝐻], as

I𝑚(𝑡) = {(𝑙, 𝑘, 𝑗) : 𝑙 ∈ [𝑚−1], 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐻],p(𝑙𝑘 𝑗) = 𝑡}

Note in particular that here 𝑙 ∈ [𝑚−1], so I𝑚 only considers data collected prior to iteration 𝑚.

To estimate the parameters 𝐺̂ and 𝜃, we consider (simulated) trajectories of SKIPPYPOLICY

starting from stage 𝑡. For simplicity, we suppress the dependence of quantities on 𝐺̂ and 𝜃, which
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will be brought back later. The skipping probability 1− 𝜏, the policy 𝜋+ (to be also used in SKIPPY-

POLICY), and corresponding clipped action-value estimates are defined as

𝜏(𝑠) = min

{
1, range𝐺̂Q (𝑠)

√
2𝑑𝐻
𝜀

}
if stage(𝑠) > 1, and 𝜏(𝑠1) = 1;

𝜋+(𝑠𝑖) = arg max
𝑎∈[A]

〈
𝜑(𝑠𝑖 , 𝑎), 𝜃𝑖

〉
, 𝐶 (𝑠𝑖) = clip[0,𝐻 ]

〈
𝜑(𝑠𝑖 , 𝜋+(𝑠𝑖)), 𝜃𝑖

〉
.

(95)

Let 𝑠𝑖�= (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , . . . , 𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 ) ∈ S𝑖 × [A] × [0,1] × · · · × [0,1] be any ending of a trajectory.

For 𝑠𝑡+1�, let 𝐼 be the (random) index of the first state that is not skipped by SKIPPYPOLICY

with the above 𝜏 (or 𝐻 + 1, if such an index does not exist). Then the estimated policy value of

SKIPPYPOLICY from stage 𝑡 is

E𝐼 [
∑𝐼−1
𝑢=𝑡 𝑟𝑢 +1 {𝐼 < 𝐻 +1}𝐶 (𝑠𝐼 )] ,

the sum of rewards along the skipped states plus the policy-value estimate from stage 𝐼. It follows

from Corollary 5.4.11 below (proved based on Lemma 5.4.9) that if range𝐺̂Q is an accurate estimate

of rangeQ, then this quantity decomposes into terms that are linearly expressible using the features.

Therefore, we use such quantities as least-square targets. Indeed, writing out the expectation, we

can re-express the estimated policy value as the sum of all rewards
∑𝐻
𝑢=𝑡 𝑟𝑢 plus a correction term

𝐸→(𝑠𝑡+1�) defined as

𝐸→(𝑠𝑖�) = 𝐻∑
𝑗=𝑖

𝐷 (𝑠 𝑗�)𝜏(𝑠 𝑗) 𝑗−1∏
𝑗′=𝑖

(1− 𝜏(𝑠 𝑗′)) where 𝐷 (𝑠𝑖�) = 𝐶 (𝑠𝑖) − 𝐻∑
𝑢=𝑖

𝑟𝑢 for 𝑖 > 1. (96)

The next optimization problem aims to find optimistic parameters yielding the largest estimated

action-value function for 𝑠1, where 𝜃 is in the confidence ellipsoid of the least-squares estimates 𝜃.

Optimization Problem 5.4.10 (for iteration 𝑚). With 𝛽 defined in Section 5.B (emphasizing the

dependence of functions defined above on 𝐺̂ and 𝜃 by adding them as subscripts):

arg max
𝐺̂∈G, 𝜃𝑡 ∈B (4𝑑0𝐻𝐵/𝛼) for 𝑡 ∈[𝐻 ]

𝐶𝐺̂ 𝜃 (𝑠1) subject to, for all 𝑡 ∈ [𝐻]

𝑋𝑚𝑡 = 𝜆𝐼 +
∑

𝑙𝑘 𝑗∈I𝑚 (𝑡)
𝜑
𝑙𝑘 𝑗
𝑡 𝜑

𝑙𝑘 𝑗
𝑡

>
,


𝜃𝑡 − 𝜃𝑡

𝑋𝑚𝑡

≤ 𝛽𝐻, 𝜃𝑡 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝐸→
𝐺̂ 𝜃
(𝑆𝑙𝑘 𝑗𝑡+1, . . . , 𝑅

𝑙𝑘 𝑗
𝐻 ) +

𝐻∑
𝑢=𝑡

𝑅
𝑙𝑘 𝑗
𝑢︸                                  ︷︷                                  ︸

least-squares target

)

Since our realizability results in Section 5.4.2 only apply to functions defined at a given stage

(as only memoryless policies are 𝑞𝜋-realizable), to be able to show that the least-squares targets are
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linearly realizable, we first decompose 𝐸→(𝑠𝑖�) (𝑖 ∈ [2 : 𝐻]) to directly express the effect of each

stage in the trajectory (backwards): defining 𝐸 (𝑠𝑖�) = 𝐸→(𝑠𝑖�) −𝐸→(𝑠𝑖+1�) (for convenience, we

use the notation 𝐸→(𝑠𝐻+1�) = 0), we easily obtain

𝐸→(𝑠𝑖�) = ∑𝐻
𝑗=𝑖 𝐸 (𝑠 𝑗�) and 𝐸 (𝑠𝑖�) = 𝜏(𝑠𝑖) (𝐷 (𝑠𝑖�) −𝐸→(𝑠𝑖+1�)) . (97)

Next we define matrix-valued functions, whose trace equals 𝐸 (𝑠𝑖�), that have the same form

as f in Section 5.4.2, for which Lemma 5.4.9 applies. This is crucial in establishing optimism of

Optimization Problem 5.4.10, as well as learning from instances where we detect that 𝐸→ is not

realizable in Optimization Problem 5.4.12. To this end, let

𝐹 (𝑠𝑖�) = 𝜑̄Q(𝑠𝑖)𝜑̄Q(𝑠𝑖)>𝐸 (𝑠𝑖�) and 𝐹̄ (𝑠𝑖) = E𝜋0,𝑠𝑖 [𝐹 (𝑠𝑖 , 𝐴𝑖 , . . . , 𝑅𝐻 )] for 𝑠𝑖 ∈ S𝑖 .

Let Θ̄ = (B(4𝑑0𝐻𝐵/𝛼))𝐻 denote the base set for the variables 𝜃𝑡 in Optimization Prob-

lem 5.4.10. As 𝐹̄ is of the same form as f, we can apply Lemma 5.4.9 and then Lemma 5.4.7

to arrive at the following:

Corollary 5.4.11. For any 𝐺̂ ∈ G, 𝜃 ∈ Θ̄, 𝑣,𝑤 ∈ B(1), and for any 𝑡 ∈ [𝐻 −1], 𝑖 ∈ [𝑡 +1 : 𝐻], there

exists some 𝜃𝑡𝑖 ∈ R𝑑 with


𝜃𝑡𝑖

2 ≤ 4𝑑0𝐵/𝛼 = 1/

√
𝜆 such that for all (𝑠, 𝑎) ∈ S𝑡 × [A], where 𝜂0 is

defined in Lemma 5.4.7.

E𝜋0,𝑠,𝑎

[
𝑣>‖(Q,𝑖) 𝐹̄𝐺̂ 𝜃 (𝑆𝑖)𝑤

]
≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉
. (98)

Furthermore, if 𝐺̂ is the correct guess, there exists some 𝜃 ′𝑡𝑖 ∈ R𝑑 with


𝜃 ′𝑡𝑖

2 ≤ 4𝑑0𝐵/𝛼 such

that for all (𝑠, 𝑎) ∈ S𝑡 × [A], E𝜋0,𝑠,𝑎 [𝐸𝐺̂ 𝜃 (𝑆𝑖 , . . . , 𝑅𝐻 ))] = E𝜋0,𝑠,𝑎 [Tr(𝐹̄𝐺̂ 𝜃 (𝑆𝑖))] ≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃 ′𝑡𝑖

〉
.

5.4.4. Checking consistency

Considering the 𝑚th iteration of SKIPPYELEANOR, we want to verify if the estimated targets of

Optimization Problem 5.4.10 are accurate (and learn if a discrepancy is detected), by using Corol-

lary 5.4.11 on the targets’ decomposition into 𝐹-functions. We filter the data collected in the 𝑚th

iteration with the indicator 𝑐 𝑗𝑘𝑖 = 1 {p(𝑚𝑘 𝑗) < 𝑖} for 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐻 + 1], 𝑖 ∈ [𝐻 + 1], and further

constrain this by another indicator 𝑐 𝑗𝑘𝑖 (defined in Section 5.B) that requires the data-point’s least-

squares uncertainty term to be sufficiently low, and the prediction non-negative (the contribution

of the rest of the data will be analyzed separately). Next, we define the least-squares solution for

estimating the matrix-valued 𝐹, as well as the empirical average prediction and realization of 𝐹 on

the data collected in the 𝑚th round. For any 𝑖 ∈ [2 : 𝐻], 𝑘 ∈ [𝑖−1] (recall that ⊗ denotes the tensor
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product):

𝜃𝑡𝑖
𝐺̂ 𝜃

= 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡 ⊗𝐹𝐺̂ 𝜃 (𝑆

𝑙𝑘 𝑗
𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻 ) for 𝑡 ∈ [𝑖−1]

𝑦𝑘𝑖
𝐺̂ 𝜃

=
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝜑

𝑚𝑘 𝑗
p(𝑘)

>
𝜃

p(𝑚𝑘 𝑗) ,𝑖
𝐺̂ 𝜃

𝐹̂𝑘𝑖
𝐺̂ 𝜃

=
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝐹𝐺̂ 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻 )

(99)

In Section 5.E.1, it is established via the usual least-squares analysis techniques and covering

arguments, that with high probability the norm of the product of the matrix 𝑦𝑘𝑖
𝐺̂ 𝜃
− 𝐹̂𝑘𝑖

𝐺̂ 𝜃
and the

projection matrix Proj‖ (Q,𝑖) is small (Lemmas 5.E.2 and 5.E.3). The next optimization problem

tests if this is true in arbitrary directions:

Optimization Problem 5.4.12 (Consistency check). Input: (𝐺̂, 𝜃)

arg max
𝑘∈[𝐻−1], 𝑖∈[𝑘+1:𝐻 ], 𝑣∈R𝑑 :‖𝑣 ‖2=1

𝑣>
(
𝑦𝑘𝑖
𝐺̂ 𝜃
− 𝐹̂𝑘𝑖

𝐺̂ 𝜃

)
𝑣

Lemma 5.E.1 shows that the projection 𝑤 = Proj𝑍 (Q,𝑖) 𝑣 is close to 𝑣, where 𝑣 is the outcome of

Optimization Problem 5.4.12. Also, Lemmas 5.E.1–5.E.3 imply that if the consistency check fails

(i.e., Line 14 is executed because the value of Optimization Problem 5.4.12 is large), then 𝑤 aligns

well with the subspace Proj⊥(Q,𝑖) projects to, and therefore Q stays a valid preconditioning after

appending 𝑤 to the list of values Q is calculated from (Lemma 5.E.4). Thus, Q is always a valid

preconditioning.

5.5. Proof overview

The proof of Theorem 5.4.1 is presented in Section 5.E. It is composed of the following main steps:

First, we bound the number of times the consistency check can fail (i.e., Line 14 is executed) by

Lemma 5.4.4. Combining this with Lemma 5.E.5, an elliptical potential argument bounding the

number of times the average uncertainty can be large (these are the only two ways that the main

iteration can continue) implies a sample-complexity result for SKIPPYELEANOR (Corollary 5.E.6).

Having limited the number of times the consistency check can fail, we derive guarantees regarding

the performance of the policy returned by the algorithm: Via an induction argument (Lemma 5.E.8)

we show Corollary 5.E.9, which shows that with high probability the difference between the op-

timization value of Optimization Problem 5.4.10, 𝐶𝐺̂, 𝜃 (𝑠1) and 𝑣𝜋
𝑚𝐻

scales with the average un-

certainty term
∑𝐻
𝑖=1 𝜎̄

𝑚
𝑘 . Thus, they are close when SKIPPYELEANOR returns in Line 19. This is
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complemented with the optimism property proved in Lemma 5.E.10, stating that the optimization

value 𝐶𝐺̂, 𝜃 (𝑠1) is close to 𝑣★(𝑠1). Combined, this proves Theorem 5.4.1.

5.6. Future work
Since we are not aware of a computationally efficient implementation of SKIPPYELEANOR, it re-

mains an open question whether the problem of learning near-optimal policies from online interac-

tions with a 𝑞𝜋-realizable MDP (Problem 5.3.3) is possible if the computational resources as well

as the query complexity are bounded by a polynomial in the relevant parameters. One approach is to

replace ELEANOR with LSVI-UCB as the underlying algorithm, as the latter, despite having worse

query complexity, has a computationally efficient implementation (Jin et al., 2020b). The challenge

is to compute the optimal solution for the parameter 𝐺̂ in Optimization Problem 5.4.10. This param-

eter interacts with the least-squares targets in a highly nonlinear way. We have been unable to derive

a computationally efficient approximation that has an additive instead of a multiplicative approxima-

tion error (additive errors increase linearly in 𝐻, while multiplicative errors increase exponentially).

Alternatively, it may be possible to show a computational hardness result for Problem 5.3.3 by e.g.,

reducing it to the satisfiability problem. These are left for future work. Our work on the realizability

of auxiliary functions (Section 5.4.2) may be of independent interest for designing provably efficient

algorithms for related problem settings, e.g., the setting of 𝑞𝜋-realizability in batch RL, where the

data collection is not controlled.



Appendix

5.A. Notation

Let R, N, and N+ denote the set of reals, non-negative and positive integers, respectively. For 𝑖 ∈ N+,

let [𝑖] = {1, . . . , 𝑖}; for another positive integer 𝑗 , let [𝑖 : 𝑗] = {𝑖, . . . , 𝑗} if 𝑖 ≤ 𝑗 , and [𝑖 : 𝑗] = {}

otherwise. For 𝑎, 𝑏, 𝑥 ∈ R, let clip[𝑎,𝑏] (𝑥) = min{max{𝑥, 𝑎}, 𝑏} and let d𝑥e denote the smallest

integer i such that 𝑖 ≥ 𝑥. Let 0 be the all-0 vector in R𝑑 and 𝐼 the 𝑑-dimensional identity matrix. For

a (square) matrix 𝑉 , let 𝑉† denote its Moore-Penrose inverse, and Tr(𝑉) denote its trace. Let PD

(and PSD) denote the set of positive definite (and positive semi-definite, respectively) matrices in

R𝑑×𝑑 . For some 𝐴 ∈ PSD let 𝐴
1
2 denote the unique matrix 𝐵 ∈ PSD such that 𝐴 = 𝐵𝐵. For 𝑉 ∈ PD

and 𝑥 ∈ R𝑑 , let ‖𝑥‖2𝑉 = 𝑥>𝐺𝑥. For matrices 𝐴 and 𝐵, we say that 𝐴 � 𝐵 (or 𝐴 � 𝐵) if 𝐵−𝐴 (or 𝐴−𝐵,

respectively) is positive semidefinite. Ker(𝐴) and Im(𝐴) are the kernel (or null space), and image,

respectively, of matrix 𝐴. For compatible vectors 𝑥, 𝑦, let 〈𝑥, 𝑦〉 be their inner product: 〈𝑥, 𝑦〉 = 𝑥>𝑦.

We write 𝑦⊗𝐴 for the tensor product between 𝑦 and matrix 𝐴, and then 〈𝑥, 𝑦⊗𝐴〉 = 〈𝑥, 𝑦〉 𝐴. Where

Q and ℎ are obvious from the context, we write 𝑣 ‖ and 𝑣⊥ for 𝑣 ‖ (Q,ℎ) and 𝑣⊥(Q,ℎ) , respectively.

Throughout the chapter, we omit commas between quantities in subscripts or superscript for clarity

of presentation, for example, by writing 𝐴𝑏𝑐 for 𝐴𝑏,𝑐 .

For the big-Oh notation O, we introduce its counterpart Õ that hides logarithmic factors of the

problem parameters (𝑑,𝐻,𝜀−1, 𝜁−1, 𝐿, 𝐵).
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5.B. Parameters of Algorithm 7

𝑛 = Õ
(
𝑑5𝐻6/𝜀2

)
(for precise value see Eq. (129))

𝜔 = 7(𝑑1 +1) +7/3 = Õ(𝑑) (100)

𝛾−1 = 8𝑑 = Õ(𝑑) (101)

𝛽 = Õ(𝐻1.5𝑑) (for precise value see Eq. (123)) (102)

𝛼−1 =

√
2𝑑
√
𝑑1 +1𝐻2
√
𝛾𝜀

= Õ(𝑑1.5𝐻2/𝜀) (103)

𝜆−1 = (4𝑑0𝐵/𝛼)2 (104)

𝑚max = 𝛽
2 log

(
1+ 𝐻𝑚𝑛𝐿

2

𝑑𝜆

)
+1 = Õ

(
𝐻3𝑑2

)
𝑚′max = 𝑚max +𝐻𝑑1 = Õ(𝐻3𝑑2)

𝜎̄𝑚𝑘 =
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1 min

{
2(𝛽𝜔𝑑𝐻)−1,




𝜑𝑚𝑘 𝑗p(𝑘)





𝑋−1
𝑚,p(𝑚𝑘 𝑗)

}
for 𝑘 ∈ [𝐻] (105)

(106)

𝑐
𝑗
𝑘𝑖 = 1

{
p(𝑚𝑘 𝑗) < 𝑖 and




𝜑𝑚𝑘 𝑗p(𝑘)





𝑋−1
𝑚,p(𝑚𝑘 𝑗)

< 2(𝛽𝜔𝑑𝐻)−1 and
〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
≥ 0

}
(107)

average_uncertainty =
𝐻∑
𝑘=1

𝜎̄𝑚𝑘

uncertainty_threshold = 𝜀/(𝑑𝐻2𝛽𝜔)

discrepancy_threshold = 𝜎̄𝑚𝑘 𝛽𝜔+3
𝜀

𝑑𝐻2

Assumption on the maximum discrepancy:

𝜂 ≤ 𝛼

10𝑑0
min

{
𝜀/(𝑑𝐻3𝜔),1/

√
𝑚′max𝑛𝐻

}
= Õ

(
𝜀2

𝑑6𝐻8

)
(108)
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5.C. Proof of Proposition 5.3.4

Proof of Proposition 5.3.4, and the MDP conversion argument. First, for (i), we show the linear-

ity of rewards with 𝜃1, . . . , 𝜃𝐻 . For this take any ℎ ∈ [𝐻]. Fix any policy 𝜋 ∈ Π and let 𝜃ℎ ∈ B(𝐵)

be such that for all (𝑠, 𝑎) ∈ Sℎ × [A], 𝑞𝜋 (𝑠, 𝑎) ≈𝜂
〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
(the existence of such a 𝜃 fol-

lows from Definition 5.3.2). If ℎ = 𝐻, E𝑅 ∼R(𝑠,𝑎) [𝑅] = 𝑞𝜋 (𝑠, 𝑎), so 𝜃𝐻 = 𝜃𝐻 satisfies Defini-

tion 5.3.1. For ℎ < 𝐻, let 𝑓 : Sℎ+1→ R be defined as 𝑓 (𝑠) = 𝑣𝜋 (𝑠). Fix an arbitrary Q ∈ PD𝐻 , e.g.,

Q = (𝐼, . . . , 𝐼). Since 𝑣𝜋 (𝑠) ∈ [0, 𝐻] and range𝑄 (𝑠) ≥ range(𝑠)/
√

2𝑑 ≥ 𝛼/
√

2𝑑 by Proposition 5.4.5,

𝑓 is 𝛼/(
√

2𝑑𝐻)-admissible, and therefore by Lemma 5.4.7 we can take 𝜃ℎ ∈ B(4𝐻𝑑0
√

2𝑑𝐵/𝛼) such

that for all (𝑠, 𝑎) ∈ Sℎ × [A],

E(𝑣𝜋 (𝑆ℎ+1) | 𝑠, 𝑎) ≈√2𝑑𝐻 𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
,

where, as before, 𝜂0 = 5𝑑0𝜂/𝛼. Since

E𝑅 ∼R(𝑠,𝑎) (𝑅) = 𝑞𝜋 (𝑠, 𝑎) −E(𝑣𝜋 (𝑆ℎ+1) | 𝑠, 𝑎) ,

letting 𝜃ℎ = 𝜃ℎ − 𝜃ℎ satisfies (i) of Definition 5.3.1 with 𝜅 = 𝜂+
√

2𝑑𝐻𝜂0 = 𝜂+5𝐻
√

2𝑑𝑑0𝜂/𝛼.

To show (ii), take any 𝑓 : S→ [0, 𝐻] and ℎ ∈ [𝐻 −1]. As before, 𝑓 is 𝛼/(
√

2𝑑𝐻)-admissible,

therefore Lemma 5.4.7 immediately provides 𝜃 ′ℎ satisfying the required conditions.

Therefore, the MDP is shown to be linear with misspecification 𝜂 +
√

2𝑑𝐻𝜂0, and parameter

bound 𝐵(4𝐻𝑑0
√

2𝑑/𝛼+1).

Sketch of the 𝑞𝜋-to-linear MDP conversion argument. We elaborate on the conversion to

linear MDP mechanism presented in Section 5.3. As the basis of this argument is that an idealistic

range-determining oracle is present, we note that this argument only serves as intuition and is oth-

erwise tangential to our proof. Instead of a direct approach of learning this oracle, our proof argues

that learning about this oracle happens whenever there is a need (performance shortfall) for it. A

formal reduction to linear MDPs given this oracle however is fairly straight-forward but cumber-

some, with the caveat that the linear MDP will end up with 𝑑𝐻 (instead of 𝑑) dimensional features.

One would proceed by copying the features of each state 𝑠 in stage ℎ into the ℎth chunk of size 𝑑

of this vector of size 𝑑𝐻 (the rest of the vector remains zero). A similar transformation is applied

to all 𝜃ℎ (𝜋). Then, 𝐻 copies are made of each high-enough-range state, with all possible stages

(but keeping the feature vectors). These will be the states of the new MDP we construct. When a

transition from state 𝑠 leads to skipped states, the linear MDP returns with the copy of the first non-
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skipped state that has a stage counter of stage(𝑠) + 1, so that in this linear MDP the stage numbers

are consecutive (as required by our definitions). 𝑞𝜋-realizability of this modified MDP is easy to

show, and (as it has no low-range states) Proposition 5.3.4 can be used to show that the modified

MDP is linear. To account for the fact that this new MDP may finish an episode in fewer than 𝐻

steps due to the skips, we add a special, zero-reward, self-transitioning state called “episode-over”.

To ensure that the MDP stays linear, we extend the feature vectors of each state by a scalar 1, and a

scalar indicator of being in this state, with all original features of the “episode-over” state defined to

be zero. It is easy to see that this construction leads to a linear MDP with the desired action-value

functions.

5.D. Intuition behind our method and proof strategy from the

perspective of ELEANOR (Zanette et al., 2020b)

The starting point of our method is the ELEANOR algorithm, which is designed for linear MDPs.

Similarly to SKIPPYELEANOR, ELEANOR solves an optimistic optimization problem inside a loop.

The optimization problem computes optimistic estimates 𝜃𝑡 of the parameters of the MDP simultane-

ously for all 𝑡 ∈ [𝐻], and in each iteration of the loop, more data is collected according to the policy

that is optimal for the MDP defined by the estimated parameters. Initial estimates 𝜃𝑡 are computed

via solving least-squares problems whose covariates are the features corresponding to state-action

pairs (𝑆𝑡 , 𝐴𝑡 ) from all the data collected so far, while the corresponding least-squares targets are

computed as the sum of the immediate reward 𝑅𝑡 and the estimated value for 𝑆𝑡+1, computed from

𝜃𝑡+1. 𝜃𝑡 is then optimistically chosen as the solution of the optimization problem, in the neighbor-

hood (confidence ellipsoid) of 𝜃𝑡 , the solution to this least-squares problem. It is shown that this

optimistic choice of estimates results in an optimistic estimate of the value of 𝑣★ of the initial state,

and the regret is upper bounded in terms of the sum of elliptic potentials of the covariates.

This argument appears in our analysis too, with minor modifications due to our PAC-like set-

ting (instead of aiming to bound the regret), leading to our final-iteration condition of Line 18 in

Algorithm 7. Our Optimization Problem 5.4.10 is similar to ELEANOR’s, and the parameters 𝜃𝑡 and

𝜃𝑡 have the same meaning. A key difference between the optimization problems of ELEANOR and

SKIPPYELEANOR are how the least-squares targets are determined. For ELEANOR, it is the sum of

the immediate reward 𝑅𝑡 and its estimated value for 𝑆𝑡+1); with this target, only one on-policy roll-

out is required for each episode in order to get the least-squares parameter estimate for all 𝐻 stages.

In contrast, our least-squares targets are formed as the sum of 𝑅𝑡 + . . .+𝑅𝑡+𝑖 and the estimated value
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for 𝑆𝑡+𝑖+1, where 𝑖, the number of stages “skipped”, depends on the guess 𝐺̂. The guess 𝐺̂ is selected

only in Optimization Problem 5.4.10, and we do not know its value at the time of data collection,

so we cannot know which stages will have to be skipped for each rollout. Therefore, (i) we need

access to the rewards of the current policy at any stage (similarly to ELEANOR), and hence we run

the current policy to any stage (including the last one); and (ii) perform rollouts with the fixed pol-

icy 𝜋0 (from any stage) to be able to estimate the reward 𝑅𝑡 + . . . + 𝑅𝑡+𝑖 collected while skipping

over 𝑖 stages (for any 𝑖). To ensure this happens for every stage, we start Phase II from every stage

𝑘 , resulting in the additional for loop in Line 6 of Algorithm 7 compared to ELEANOR. Finally,

the randomization in Phase I is applied to make the optimization problem smooth, as described in

Section 5.4.

One could analyze this algorithm similarly to the analysis of ELEANOR if it were not for the fact

that the least-squares targets we just introduced are not realizable in general. We can, however, prove

the realizability of certain components of the matrix-valued version of these targets, 𝐹 (Lemma 5.4.9

and Corollary 5.4.11). This enables us to detect when the realizability of our least-squares targets

fail, measure the direction (component) of the largest error, and learn from that. This is the job of

Optimization Problem 5.4.12: 𝐹̂𝑘𝑖
𝐺̂ 𝜃

corresponds to the matrix-valued empirical measurements of 𝐹,

while the 𝑦𝑘𝑖
𝐺̂ 𝜃

are the average predictions of the same quantities. If the targets are realizable, which

happens if we manage to skip the right number of stages), these matrices are very close; if not, the

direction of their largest discrepancy tells us something about ⊥ (𝑄,𝑖), and allows us to learn.

Optimism ties all this together: either there is no shortfall between predicted and measured

𝑞-values (and we are done) or we grow the elliptical potential of 𝑋 (the two cases present in the

analysis of ELEANOR, Zanette et al. (2020b)), or we grow the elliptical potential of Q (the new case

due to the lack of realizability guarantees).

5.E. Proof of Theorem 5.4.1

In this section we present the proof of Theorem 5.4.1. Recall that some quantities are defined in

Section 5.B.

5.E.1. Checking consistency

We introduce some lemmas to establish the required guarantees of the consistency checker. Their

proofs, which rely on the usual least squares analysis techniques and covering arguments, are pre-

sented in Section 5.H.



134 Chapter 5. Online RL with 𝑞𝜋-realizability

Lemma 5.E.1. Let (𝑘, 𝑖, 𝑣) be the outcome of Optimization Problem 5.4.12 any time during the

execution of SKIPPYELEANOR, and let 𝑤 = Proj𝑍 (Q,𝑖) 𝑣 as in the algorithm. Then,

𝑤>
(
𝑦𝑘𝑖
𝐺̂ 𝜃
− 𝐹̂𝑘𝑖

𝐺̂ 𝜃

)
𝑤 ≥ 𝑣>

(
𝑦𝑘𝑖
𝐺̂ 𝜃
− 𝐹̂𝑘𝑖

𝐺̂ 𝜃

)
𝑣− 𝜀

𝑑𝐻2𝜔

Lemma 5.E.2. There is an event E1 that happens with probability at least 1− 𝜁 , such that under E1,

during the execution of SKIPPYELEANOR, when the beginning of any iteration (Line 5) is executed,

for any 𝑡 ∈ [𝐻 −1], 𝑖 ∈ [𝑡 +1 : 𝐻], for any 𝐺̂ ∈ G, 𝜃 ∈ Θ̄, and 𝑣,𝑤 ∈ B(1), for all (𝑠, 𝑎) ∈ S𝑡 × [A],

|𝑣>‖
(
𝜑(𝑠, 𝑎)>𝜃𝑡𝑖

𝐺̂ 𝜃
−E𝜋0,𝑠,𝑎 𝐹̄𝐺̂ 𝜃 (𝑆𝑖)

)
𝑤 | ≤ ‖𝜑(𝑠, 𝑎)‖𝑋−1

𝑚𝑡
𝛽+ 𝜀

𝑑𝐻2𝜔
,

where •‖ denotes •‖ (Q,𝑖) .

The next lemma uses the average least-squares predictions’ (capped) uncertainty term 𝜎̄𝑚𝑘 (de-

fined in Eq. (105)), where the average is taken over predictions from the state-action pair where

Phase I of SKIPPYPOLICY(·, ·, 𝑘) ends.

Lemma 5.E.3. There is an event E2 with probability at least 1− 𝜁 , such that under E1∩E2, during

the execution of SKIPPYELEANOR, when Optimization Problem 5.4.12 is solved (Line 11), for

(𝐺̂, 𝜃) as recorded in Line 5 for all 𝑘 ∈ [𝐻 −1], 𝑖 ∈ [𝑘 +1 : 𝐻], and 𝑣,𝑤 ∈ B(1),

|𝑣>‖
(
𝑦𝑘𝑖
𝐺̂ 𝜃
− 𝐹̂𝑘𝑖

𝐺̂ 𝜃

)
𝑤 | ≤ 𝜎̄𝑚𝑘 𝛽+3

𝜀

𝑑𝐻2𝜔

where •‖ denotes •‖ (Q,𝑖) .

Together, these lemmas can be used to show that the vector 𝑤 derived from Line 11 in SKIP-

PYELEANOR is sufficiently aligned with both 𝑍 (Q, ·) and the subspace Proj⊥(Q, ·) projects to, which

leads to the following important result:

Lemma 5.E.4. Under the E1 ∩ E2, if Line 14 is executed any time during the execution of SKIP-

PYELEANOR (i.e., when the consistency check fails), then the resulting Q continues to be a valid

preconditioning.

From now on, our lemmas assume the high-probability events of Lemmas 5.E.2 and 5.E.3 hold,

and therefore Q is a valid preconditioning at any time during the execution by Lemma 5.E.4.
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5.E.2. Query complexity bounds

We bound the number of iterations of 𝑚 that SKIPPYELEANOR can execute. The proof of the

following lemma is presented in Section 5.I:

Lemma 5.E.5. Throughout the execution of SKIPPYELEANOR, 𝑚 ≤ 𝑚max.

Note that throughout the execution of SKIPPYELEANOR, 𝑚′ ≤ 𝑚′max. As 𝑚′ −𝑚 equals the

number of times Line 14 is executed, i.e., the sum of sequence lengths corresponding to Q, by

Lemma 5.4.4,

Corollary 5.E.6. Under E1 ∩ E2, SKIPPYELEANOR returns with a policy before exiting the while

loop of Line 3, and as each iteration executes 𝐻𝑛 trajectories in Line 8, the number of interactions

of SKIPPYELEANOR with the MDP is bounded by Õ
(
𝐻11𝑑7/𝜀2) .

5.E.3. Performance guarantee

We next consider the 𝑚th iteration of SKIPPYELEANOR under the assumption that the consistency

check passes, that is, Line 18 is executed. We intend to guarantee the performance of 𝜋𝑚𝐻 in terms

of
∑𝐻
𝑡=1 𝜎̄

𝑚
𝑘 , given that the optimization value 𝑥 satisfies 𝑥 ≤ 𝜎̄𝑚𝑘 𝛽𝜔 + 3 𝜀

𝑑𝐻 2 (which follows from

the execution reaching Line 18). Next we introduce variants of 𝑐 𝑗𝑘𝑖 and 𝑐 𝑗𝑘𝑖 (Eq. (107)) which act,

instead of the data collected during the execution of the algorithm, on a trajectory (𝑆ℎ, 𝐴ℎ, 𝑅ℎ)ℎ∈[𝐻 ]
and corresponding stage mapping 𝑝 obtained by an independent run of SKIPPYPOLICY, which will

be clear from the context: 𝑐𝑘𝑖 = 1 {𝑝(𝑘) < 𝑖}, and

𝑐𝑘𝑖 = 1

{
𝑝(𝑘) < 𝑖 and



𝜑(𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘) )

𝑋−1
𝑚,𝑝 (𝑘)

< 2(𝛽𝜔𝑑𝐻)−1 and
〈
𝜑(𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘) ), 𝜃𝑝 (𝑘)

〉
≥ 0

}
.

Remark 5.E.7. In our analysis we rely on the obvious fact that the laws of the trajectories of

SKIPPYPOLICY(𝐺̂, 𝜃, 𝑘) and SKIPPYPOLICY(𝐺̂, 𝜃, 𝑘 +1) are the same until stage 𝑝(𝑘 +1) (as the

policies are the same until then), for any parameters 𝐺̂ and 𝜃. This includes 𝑆𝑝 (𝑘+1) but not 𝐴𝑝 (𝑘+1)

if 𝑝(𝑘 +1) ≤ 𝐻, and includes the whole trajectory ending with 𝑅𝐻 otherwise.

We prove the following using induction on 𝑘 = 𝐻, . . . ,1 in Section 5.J:

Lemma 5.E.8. There is an event E3 with probability at least 1− 3𝜁 , such that under E1 ∩ E2 ∩ E3,

during the execution of SKIPPYELEANOR, whenever Line 18 is executed, for (𝐺̂, 𝜃) as recorded in

Line 5 of the current iteration, for 𝑘 ∈ [𝐻],

𝐶̄𝑘 := E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝐶𝐺̂ 𝜃 (𝑆𝑝 (𝑘) ) ≤ E𝜋𝑚𝐻 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 +2
𝐻∑
𝑖=𝑘

𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +4(𝐻 − 𝑘 +1) 𝜀
𝐻
. (109)
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As 𝑆1 = 𝑠1 is fixed and 𝜏(𝑠1) = 1, we get the following corollary, which shows that the value

𝐶𝐺̂ 𝜃 of the solution (𝐺̂, 𝜃) of Optimization Problem 5.4.10 can be used as a lower bound on the

value of the policy 𝜋𝑚𝐻 up to the uncertainty and some 𝜀 terms:

Corollary 5.E.9. Under E1 ∩ E2 ∩ E3, the value of Optimization Problem 5.4.10 with the solution

(𝐺̂, 𝜃) satisfies

𝐶𝐺̂ 𝜃 (𝑠1) = 𝐶̄1 ≤ E𝜋𝑚𝐻 ,𝑠1

𝐻∑
𝑢=1

𝑅𝑢 +2
𝐻∑
𝑖=1
𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻

2 +4𝜀 = 𝑣𝜋
𝑚𝐻 (𝑠1) +2

𝐻∑
𝑖=1
𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻

2 +4𝜀 .

5.E.4. Optimism of Optimization Problem 5.4.10

The following establishes the optimistic property, that is, that the value of Optimization Prob-

lem 5.4.10 competes with 𝑣★(𝑠1). The proof relies on the fact that the correct guess 𝐺̂ and a good

choice of 𝜃 are feasible for the optimization problem, combined with the fact that this 𝜃 induces a

policy 𝜋 = SKIPPYPOLICY(𝐺̂, 𝜃,𝐻) that takes action-value maximizing actions according to a very

accurate approximation of action-values almost everywhere. In fact, it only skips states whose range

is at most 𝜀/𝐻. The proof is presented in Section 5.K.

Lemma 5.E.10. There is an event E4 with probability at least 1− 𝜁 , such that under E1 ∩ E2 ∩ E4,

throughout the execution of SKIPPYELEANOR, the value of Optimization Problem 5.4.10 is at least

𝑣★(𝑠1) −2𝜀.

Proof of Theorem 5.4.1. We combine Lemma 5.E.10 with Corollary 5.E.9, Corollary 5.E.6, and the

fact that the condition of Line 18 is satisfied when SKIPPYELEANOR returns with a policy, to get

that under E1∩E2∩E3∩E4, that is, with probability at least 1−6𝜁 , SKIPPYELEANOR interacts with

the MDP for at most Õ
(
𝐻11𝑑7/𝜀2) many steps, before returning with the policy 𝜋𝑚𝐻 that satisfies

𝑣★(𝑠1) ≤ 𝐶𝐺̂ 𝜃 (𝑠1) +2𝜀 ≤ 𝑣𝜋𝑚𝐻 (𝑠1) +2
𝐻∑
𝑖=1
𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻

2 +6𝜀 ≤ 𝑣𝜋𝑚𝐻 (𝑠1) +8𝜀 ,

where the final inequality follows from the fact that when SKIPPYELEANOR returns in Line 19,∑𝐻
𝑘=1 𝜎̄

𝑚
𝑘 ≤ 𝜀/(𝛽𝜔𝑑𝐻

2). By scaling the parameters, this finishes the proof of Theorem 5.4.1.
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5.F. Deferred definitions and proofs for Section 5.4.1

Proof of Lemma 5.4.3. For any 𝜃 ∈ ΘQ
ℎ , it holds that 𝜃 = Q−1

ℎ 𝜃 for some 𝜃 ∈ Θℎ. Since


𝜃

2 ≤ 𝐵,

and writing Qℎ as in Definition 5.4.2,

‖𝜃‖22 = 𝜃>
(
𝐵−2𝐼 +∑𝑣∈𝐶ℎ

𝑣𝑣>
)
𝜃 ≤ 𝐵−2𝐵2 + |𝐶ℎ | ≤ 1+ 𝑑1 ,

where we used Definition 5.4.2 and Lemma 5.4.4. Finally, we conclude that ‖𝜃‖2 ≤
√
𝑑1 +1.

Definition 5.F.1. (𝐺Q
ℎ , 𝜌

Q
ℎ ) is a near-optimal design for ΘQ

ℎ , if for any 𝜃 ∈ ΘQ
ℎ ,

〈𝑣, 𝜃〉 = 0 for all 𝑣 ∈ Ker(𝑉 (𝐺Q
ℎ , 𝜌

Q
ℎ )), and (110)

‖𝜃‖2
𝑉 (𝐺Q

ℎ
,𝜌Q

ℎ
)† ≤ 2𝑑, (111)

where 𝑉 (𝐺Q
ℎ , 𝜌

Q
ℎ ) =

∑
𝜋∈𝐺Q

ℎ

𝜌Qℎ (𝜋) (𝜃
Q
ℎ (𝜋)) (𝜃

Q
ℎ (𝜋))

>
. (112)

An important corollary of the above definition is that if 𝑀 = ProjIm(𝑉 (𝐺Q
ℎ
,𝜌Q

ℎ
)) , then

𝑉 (𝐺Q
ℎ , 𝜌

Q
ℎ )
†

1
2𝑉 (𝐺Q

ℎ , 𝜌
Q
ℎ )

1
2𝑀𝑣 = 𝑀𝑣, and 〈𝜃,𝑀𝑣〉 = 〈𝜃, 𝑣〉 due to Eq. (110), and so

𝜃>𝑣 = 𝜃>𝑉 (𝐺Q
ℎ , 𝜌

Q
ℎ )
† 1

2𝑉 (𝐺Q
ℎ , 𝜌

Q
ℎ )

1
2 𝑣 for all 𝜃 ∈ ΘQ

ℎ and 𝑣 ∈ R𝑑 . (113)

Proof of Proposition 5.4.5. Take any ℎ ∈ [𝐻], 𝑠 ∈ Sℎ, and Q ∈ PD𝐻 . Take 𝑖, 𝑗 ∈ [A] such that

range(𝑠) = sup𝜃 ∈Θℎ
〈𝜑(𝑠, 𝑖, 𝑗), 𝜃〉. Then,

range(𝑠)2 = sup
𝜃 ∈Θℎ

〈𝜑(𝑠, 𝑖, 𝑗), 𝜃〉2 = sup
𝜃 ∈ΘQ

ℎ

〈𝜑Q(𝑠, 𝑖, 𝑗), 𝜃〉2

≤ sup
𝜃 ∈ΘQ

ℎ

‖𝜃‖2
𝑉 (𝐺Q

ℎ
,𝜌Q

ℎ
)† ‖𝜑Q(𝑠, 𝑖, 𝑗)‖

2
𝑉 (𝐺Q

ℎ
,𝜌Q

ℎ
)

≤ 2𝑑𝜑Q(𝑠, 𝑖, 𝑗)>
©­­«

∑
𝜋∈𝐺Q

ℎ

𝜌Qℎ (𝜋) (𝜃
Q
ℎ (𝜋)) (𝜃

Q
ℎ (𝜋))

>ª®®¬𝜑Q(𝑠, 𝑖, 𝑗)
= 2𝑑𝜑(𝑠, 𝑖, 𝑗)>

©­­«
∑
𝜋∈𝐺Q

ℎ

𝜌Qℎ (𝜋)(𝜃ℎ (𝜋)) (𝜃ℎ (𝜋))
>ª®®¬𝜑(𝑠, 𝑖, 𝑗)

≤ 2𝑑 max
𝜋∈𝐺Q

ℎ

〈
𝜑(𝑠, 𝑖, 𝑗)>, 𝜃ℎ (𝜋)

〉2 ≤ 2𝑑 rangeQ(𝑠)2 ,
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where the first inequality uses Eq. (113) and the Cauchy-Schwarz inequality, and the second in-

equality follows by substituting the definition of 𝑉 (𝐺Q
ℎ , 𝜌

Q
ℎ ) and using Eq. (111). Finally, the first

inequality in the last line holds as we replace the weighted sum from the previous line with the

maximum operator. We therefore get that range(𝑠) ≤
√

2𝑑 rangeQ(𝑠), finishing the proof.

Proof of Lemma 5.4.4. Take any ℎ ∈ [𝐻] and the sequence 𝐶ℎ corresponding to Q. Assume that

this sequence is of length 𝑙, and let Σℎ,𝑖 = 𝐵−2𝐼 +∑𝑖
𝑗=1 𝑣 𝑗𝑣

>
𝑗 for 𝑖 ∈ [𝑙]. By the second part of

Eq. (92),

𝑙 =
𝑙∑
𝑖=1

min

1,2








©­«𝐵−2𝐼 +
𝑖−1∑
𝑗=1
𝑣 𝑗𝑣
>
𝑗
ª®¬
− 1

2

𝑣𝑖









2

2

 ≤ 2
𝑙∑
𝑖=1

min
{
1, ‖𝑣𝑖 ‖2Σ−1

ℎ,𝑖−1

}
.

Applying the elliptical potential lemma (Lemma 5.L.1),

𝑙 ≤ 2
𝑙∑
𝑖=1

min
{
1, ‖𝑣𝑖 ‖2Σ−1

ℎ,𝑖−1

}
≤ 4𝑑 log

(
Tr(Σℎ,0) + 𝑙𝐿2

3
𝑑 det(Σℎ,0)1/𝑑

)
= 4𝑑 log

(
1+

𝑙𝐿2
3

𝐵−2𝑑

)
.

where Σℎ,0 = 𝐵−2𝐼 by definition. Using that log(1+ 𝑥) ≤ √𝑥 for 𝑥 ≥ 0, we have 𝑙 ≤ 4𝑑
√
𝑙𝐿2

3𝐵
2/𝑑,

which implies 𝑙 ≤ 16𝑑𝐿2
3𝐵

2. Substituting this into the previous bound yields

𝑙 ≤ 4𝑑 log

(
1+
(16𝑑𝐿2

3𝐵
2)𝐿2

3
𝐵−2𝑑

)
= 4𝑑 log

(
1+16𝐿4

3𝐵
4
)
= 𝑑1 .

5.G. Deferred proofs for Section 5.4.2

For any vector 𝑣 ∈ R𝑑 , we define 𝑣 = 𝑣/‖𝑣‖2 as the unit vector in the direction of 𝑣 if 𝑣 ≠ 0 and 0 = 0

otherwise. For any ℎ ∈ [2 : 𝐻], 𝑠 ∈ Sℎ, the normalized version of the largest preconditioned feature

difference is denoted by

𝜑̄Q(𝑠) = 𝜑Q(𝑠, 𝑖, 𝑗) where (𝑖, 𝑗) = arg max
𝑖′, 𝑗′∈[A]

‖𝜑Q(𝑠, 𝑖′, 𝑗 ′)‖2 . (114)

Proof of Lemma 5.4.7. Fix ℎ ∈ [𝐻], 𝛼-admissible 𝑓 : Sℎ → R, 𝑡 ∈ [ℎ−1], and 𝜋 ∈ Π. Our aim is

to construct policies 𝜋+𝑘 , 𝜋
−
𝑘 ∈ Π for 𝑘 ∈ [𝑑0], such that for all (𝑠, 𝑎) ∈ S𝑡 × [A],

∑
𝑘∈[𝑑0 ] (𝑞

𝜋+𝑘 (𝑠, 𝑎) −

𝑞𝜋
−
𝑘 (𝑠, 𝑎)) is approximately proportional to the desired E𝜋,𝑠,𝑎 𝑓 (𝑆ℎ). Let 𝐺Q

ℎ,1,𝐺
Q
ℎ,2, . . . denote the

policies in 𝐺Q
ℎ underlying the near-optimal design of ΘQ

ℎ , and for any 𝑠 ∈ Sℎ, denote by ord(𝑠) ∈

[𝑑0] the index of the policy maximizing the range of the action-value function in state 𝑠, that is,
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𝐺𝑄
ℎ,ord(𝑠) = arg max𝜋∈𝐺Q

ℎ
max𝑖, 𝑗∈[A] (𝑞𝜋 (𝑠, 𝑖) − 𝑞𝜋 (𝑠, 𝑗)); to simplify notation, we define 𝐺̃ (𝑠) =

𝐺Q
ℎ,ord(𝑠) . For 𝑠 ∈ Sℎ let

(𝑎+(𝑠), 𝑎−(𝑠)) =


arg max𝑖, 𝑗∈[A] 𝑞𝐺̃ (𝑠) (𝑠, 𝑖) − 𝑞𝐺̃ (𝑠) (𝑠, 𝑗) if 𝑓 (𝑠) ≥ 0

arg min𝑖, 𝑗∈[A] 𝑞𝐺̃ (𝑠) (𝑠, 𝑖) − 𝑞𝐺̃ (𝑠) (𝑠, 𝑗) otherwise.

By Eq. (94) and Definition 5.4.6 have that

|𝑞𝐺̃ (𝑠) (𝑠, 𝑎+(𝑠)) − 𝑞𝐺̃ (𝑠) (𝑠, 𝑎−(𝑠)) | = rangeQ(𝑠) ≥ 𝛼 | 𝑓 (𝑠) | ≥ 0 .

Since 𝑞𝐺̃ (𝑠) (𝑠, 𝑎+(𝑠)) − 𝑞𝐺̃ (𝑠) (𝑠, 𝑎−(𝑠)) ≈2𝜂 𝑞
𝐺̃ (𝑠) (𝑠, 𝑎+(𝑠)) − 𝑞𝐺̃ (𝑠) (𝑠, 𝑎−(𝑠)), if 𝛼 | 𝑓 (𝑠) | ≥ 4𝜂,

we have

𝑞𝐺̃ (𝑠) (𝑠, 𝑎+(𝑠)) − 𝑞𝐺̃ (𝑠) (𝑠, 𝑎−(𝑠)) ≥ 𝛼 𝑓 (𝑠) −2𝜂 ≥ 𝛼
2
𝑓 (𝑠) > 0 if 𝑓 (𝑠) ≥ 0

𝑞𝐺̃ (𝑠) (𝑠, 𝑎+(𝑠)) − 𝑞𝐺̃ (𝑠) (𝑠, 𝑎−(𝑠)) ≤ 𝛼 𝑓 (𝑠) +2𝜂 ≤ 𝛼
2
𝑓 (𝑠) < 0 otherwise.

(115)

Let us define 𝑓 ′ : Sℎ→ R as

𝑓 ′(𝑠) =


𝛼 𝑓 (𝑠)/2
𝑞𝐺̃ (𝑠) (𝑠,𝑎+ (𝑠))−𝑞𝐺̃ (𝑠) (𝑠,𝑎− (𝑠)) if 𝛼 | 𝑓 (𝑠) | ≥ 4𝜂

0 otherwise.

By Eq. (115), there can be no division by zero in the above definition, and 0 ≤ 𝑓 ′(𝑠) ≤ 1.

Now we are ready to define 𝜋+𝑘 and 𝜋−𝑘 . Both policies follow 𝜋 up to stage ℎ− 1, when they

switch to 𝐺Q
ℎ,𝑘 , except if at stage ℎ a state 𝑠 ∈ Sℎ is such that 𝐺Q

ℎ,𝑘 has the maximal action-value

function range. In this case 𝜋+𝑘 selects 𝑎+(𝑠) with probability 𝑓 ′(𝑠) and 𝑎−(𝑠) with probability

1− 𝑓 ′(𝑠), while 𝜋−𝑘 always selects 𝑎−(𝑠). Formally, for 𝑘 ∈ [𝑑0], we define for 𝑠 ∈ S

𝜋+𝑘 (𝑠) =


𝜋(𝑠) if stage(𝑠) < ℎ;

𝑎+(𝑠) w.p. 𝑓 ′(𝑠), and 𝑎−(𝑠) w.p. 1− 𝑓 ′(𝑠) if stage(𝑠) = ℎ and ord(𝑠) = 𝑘;

𝐺Q
ℎ,𝑘 (𝑠), otherwise,
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where w.p. stands for with probability. Similarly,

𝜋−𝑘 (𝑠) =


𝜋(𝑠) if stage(𝑠) < ℎ;

𝑎−(𝑠) w.p. 1 if stage(𝑠) = ℎ and ord(𝑠) = 𝑘;

𝐺Q
ℎ,𝑘 (𝑠) otherwise.

Note that 𝜋+𝑘 ∈ Π and 𝜋−𝑘 ∈ Π, as desired. Since for all 𝑘 ∈ [𝑑0], the policies follow 𝐺ℎ,𝑘 for 𝑠 ∈ S𝑡′

for 𝑡 ′ > ℎ, therefore for all 𝑘 ∈ [𝑑0],

𝑣𝜋
−
𝑘 (𝑠) = 𝑣𝜋+𝑘 (𝑠) = 𝑣𝐺

Q
ℎ,𝑘 (𝑠) for all 𝑠 ∈ Sℎ+1, and (116)

𝑞𝜋
−
𝑘 (𝑠, 𝑎) = 𝑞𝜋+𝑘 (𝑠, 𝑎) = 𝑞𝐺

Q
ℎ,𝑘 (𝑠, 𝑎) for all (𝑠, 𝑎) ∈ Sℎ × [A]. (117)

Also, for any 𝑠 ∈ S with stage(𝑠) < ℎ and any 𝑎 ∈ [A],∑
𝑘∈[𝑑0 ]

(
𝑞𝜋
+
𝑘 (𝑠, 𝑎) − 𝑞𝜋−𝑘 (𝑠, 𝑎)

)
= E𝜋,𝑠,𝑎

∑
𝑘∈[𝑑0 ]

(
𝑣𝜋
+
𝑘 (𝑆ℎ) − 𝑣𝜋

−
𝑘 (𝑆ℎ)

)
= E𝜋,𝑠,𝑎

(
𝑣
𝜋+ord(𝑆ℎ ) (𝑆ℎ) − 𝑣

𝜋−ord(𝑆ℎ ) (𝑆ℎ)
)

= E𝜋,𝑠,𝑎
(
𝑞𝐺̃ (𝑆ℎ) (𝑆ℎ, 𝑎+(𝑆ℎ)) 𝑓 ′(𝑆ℎ) + 𝑞𝐺̃ (𝑆ℎ) (𝑆ℎ, 𝑎−(𝑆ℎ)) (1− 𝑓 ′(𝑆ℎ))

− 𝑞𝐺̃ (𝑆ℎ) (𝑆ℎ, 𝑎−(𝑆ℎ))
)

= E𝜋,𝑠,𝑎
(
𝑓 ′(𝑆ℎ)

(
𝑞𝐺̃ (𝑆ℎ) (𝑆ℎ, 𝑎+(𝑆ℎ)) − 𝑞𝐺̃ (𝑆ℎ) (𝑆ℎ, 𝑎−(𝑆ℎ))

))
= E𝜋,𝑠,𝑎I{𝛼 | 𝑓 (𝑆ℎ) | ≥ 4𝜂}𝛼

2
𝑓 (𝑆ℎ) ≈2𝜂

𝛼

2
E𝜋,𝑠,𝑎 𝑓 (𝑆ℎ) ,

where the first line is due to both 𝑞𝜋
+
𝑘 and 𝑞𝜋

−
𝑘 following 𝜋 on states with stage less than ℎ, the

second line follows from the fact that for any 𝑠 ∈ Sℎ, 𝜋+𝑘 (𝑠) = 𝜋−𝑘 (𝑠) for any 𝑘 ≠ ord(𝑠); combining

this with Eq. (116) leads to all 𝑘 ≠ ord(𝑠) terms of the sum to cancel. The third line follows from

expanding the definition of the policies and Eq. (117).

Let 𝜃 = 2
𝛼

∑
𝑘∈[𝑑0 ]

(
𝜃𝑡 (𝜋+𝑘) − 𝜃𝑡 (𝜋−𝑘 )

)
. Since ‖𝜃𝑡 (·)‖2 ≤ 𝐵 by definition, we have



𝜃

2 ≤ 4𝑑0𝐵/𝛼.

By Definition 5.3.2, for all (𝑠, 𝑎) ∈ S𝑡 × [A],〈
𝜑(𝑠, 𝑎), 𝛼

2
𝜃
〉
≈2𝑑0𝜂

∑
𝑘∈[𝑑0 ]

𝑞𝜋
+
𝑘 (𝑠, 𝑎) − 𝑞𝜋−𝑘 (𝑠, 𝑎) ≈2𝜂

𝛼

2
E𝜋,𝑠,𝑎 𝑓 (𝑆ℎ),
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and hence

〈
𝜑(𝑠, 𝑎), 𝜃

〉
≈4(𝑑0+1)𝜂/𝛼 E𝜋,𝑠,𝑎 𝑓 (𝑆ℎ) .

Since 4(𝑑0 +1)𝜂/𝛼 ≤ 𝜂0 = 5𝑑0𝜂/𝛼 as 𝑑0 ≥ 4 by definition, this completes the proof.

Proof of Lemma 5.4.9. Take any 𝑠 ∈ Sℎ. For the correct guess, range𝐺̂Q (𝑠) = rangeQ(𝑠). Then, using

that ‖𝜑̄Q(·)‖2 ≤ 1, Tr(f (𝑠)) ≤ rangeQ(𝑠)
√

2𝑑𝐻 2

𝜀 , proving the second claim of the lemma (as 𝛾 ≤ 1).

For the first claim, take any 𝐺̂ = (𝜗̂𝑖ℎ)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ] ∈ G. Let 𝜑′ be the unnormalized version

of 𝜑̄Q(𝑠) of Eq. (114), that is, 𝜑′ = 𝜑Q(𝑠, 𝑖, 𝑗) for the same 𝑖, 𝑗 as in Eq. (114) (i.e., with the largest

ℓ2-norm). Then, using that 𝐺̂ ∈ G,

range𝐺̂Q (𝑠) = max
𝑘∈[𝑑0 ]

max
𝑖, 𝑗

〈
𝜑Q(𝑠, 𝑖, 𝑗), 𝜗̂𝑘ℎ

〉
≤ ‖𝜑′‖2 max

𝑘∈[𝑑0 ]



𝜗̂𝑘ℎ

2 ≤ ‖𝜑
′‖2

√
𝑑1 +1.

Using that above in combination with | 𝑓 (𝑠) | ≤ 𝐻, 𝑣,𝑤 ∈ B(1), ‖𝜑̄Q(𝑠)‖2 ≤ 1, we obtain

|𝑣>‖ f (𝑠)𝑤 | ≤ |
〈
𝜑̄Q(𝑠), 𝑣 ‖

〉
〈𝜑̄Q(𝑠),𝑤〉 | range𝐺̂Q (𝑠)

√
2𝑑𝐻2

𝜀

≤


𝜑̄Q(𝑠) ‖

2 ‖𝜑

′‖2
√
𝑑1 +1

√
2𝑑𝐻2

𝜀
=




𝜑′‖


2

√
𝑑1 +1

√
2𝑑𝐻2

𝜀
.

As the eigenvalues of𝑉 (𝐺Q
ℎ , 𝜌

Q
ℎ ) =

∑
𝜋∈𝐺Q

ℎ
𝜌Qℎ (𝜋)(𝜃

Q
ℎ (𝜋)) (𝜃

Q
ℎ (𝜋))

>
corresponding to the subspace

in which 𝜑′‖ lies are by definition at least 𝛾, we can write

(rangeQ(𝑠))2 ≥ max
𝜋∈𝐺Q

ℎ

〈
𝜑′, 𝜃Qℎ (𝜋)

〉2 ≥ 𝜑′>𝑉 (𝐺Q
ℎ , 𝜌

Q
ℎ )𝜑

′ ≥ 𝜑′‖
>𝑉 (𝐺Q

ℎ , 𝜌
Q
ℎ )𝜑

′
‖ ≥




𝜑′‖


2

2
𝛾 .

Combining with the previous result, we get that

rangeQ(𝑠) ≥
√
𝛾



𝜑′‖


2

≥
√
𝛾𝜀

√
2𝑑
√
𝑑1 +1𝐻2

|𝑣>‖ f (𝑠)𝑤 | = 𝛼 |𝑣
>
‖ f (𝑠)𝑤 |,

finishing the proof.
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5.H. Deferred proofs for Section 5.E.1

The definitions (Eqs. (96) and (97)) immediately give rise to the following facts:

𝐷 (𝑠𝑖�) ∈ [
−
𝐻∑
𝑢=𝑖

𝑟𝑢 , 𝐻

]
⊆ [−𝐻,𝐻] and 𝜏(·) ∈ [0,1], implying

𝐸→(𝑠𝑖�) ∈ [
−
𝐻∑
𝑢=𝑖

𝑟𝑢 , 𝐻

]
⊆ [−𝐻,𝐻], implying

𝐸 (𝑠𝑖�) ∈ [−2𝜏(𝑠𝑖)𝐻,2𝜏(𝑠𝑖)𝐻] ⊆ [−2𝐻,2𝐻] .

(118)

Furthermore, since either 𝜏(𝑠𝑖) = 0 or ‖𝜑̄Q(𝑠𝑖)‖2 = 1 (as ‖𝜑̄Q(𝑠𝑖)‖ = 0 implies that rangeQ(𝑠𝑖) and

hence 𝜏(𝑠𝑖) are both zero), we have

Tr(𝐹 (𝑠𝑖�)) = 𝐸 (𝑠𝑖�) , (119)

which was used to establish the last part of Corollary 5.4.11.

Proof of Lemma 5.E.1. We drop the subscripts (𝐺̂, 𝜃). Let (𝜗̂𝑖ℎ)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ] = 𝐺̂ ∈ G. Let 𝑧 =

𝑣 −𝑤 be the projection of 𝑣 to the subspace orthogonal to 𝑍 (Q, 𝑖), denoted by 𝑍 (Q, 𝑖)⊥. In other

words, 𝑧 = Proj𝑍 (Q,𝑖)⊥ 𝑣. Let M = 𝑦𝑘𝑖 − 𝐹̂𝑘𝑖 . By the symmetry of M,

𝑣>M𝑣 = 𝑧>M(𝑣 +𝑤) +𝑤>M𝑤 .

It is enough to prove therefore that

𝜀

𝑑𝐻2𝜔
≥ 𝑧>M(𝑣 +𝑤) .

As ‖𝑣‖2 ≤ 1 and ‖𝑣 +𝑤‖2 ≤ 2, and using the definitions and Eq. (118), for any input (𝑠𝑖�),
|𝑧>𝐹 (𝑠𝑖�) (𝑣 +𝑤) | = | 〈𝑧, 𝜑̄Q(𝑠𝑖)〉 〈𝑣 +𝑤, 𝜑̄Q(𝑠𝑖)〉𝐸 (𝑠𝑖�) |

≤ 4𝐻𝜏(𝑠𝑖) | 〈𝑧, 𝜑̄Q(𝑠𝑖)〉 | ≤ 4range𝐺̂Q (𝑠𝑖)
√

2𝑑𝐻2

𝜀
| 〈𝑧, 𝜑̄Q(𝑠𝑖)〉 |

≤ 4| 〈𝑧, 𝜑̄Q(𝑠𝑖)〉 | max
𝑎,𝑏,𝑘∈[𝑑0 ]

〈
𝜑Q(𝑠, 𝑎, 𝑏), 𝜗̂𝑘ℎ

〉 √2𝑑𝐻2

𝜀

≤ 4


Proj𝑍 (Q,𝑖)⊥ 𝜑̄Q(𝑠)




2 ‖𝜑

′‖2 max
𝑘∈[𝑑0 ]



𝜗̂𝑘ℎ

2

√
2𝑑𝐻2

𝜀

≤ 4


Proj𝑍 (Q,𝑖)⊥ 𝜑

′


2

√
𝑑1 +1

√
2𝑑𝐻2

𝜀
,
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where 𝜑′ is the unnormalized version of 𝜑̄Q(𝑠𝑖) of Eq. (114), that is, 𝜑′ = 𝜑Q(𝑠𝑖 , 𝑎, 𝑏) for the same

𝑎, 𝑏 as in Eq. (114) (i.e., with the largest ℓ2-norm).

As Proj𝑍 (Q,𝑖)⊥ 𝜑′ = Proj𝑍 (Q,𝑖)⊥ (𝜑Q(𝑠, 𝑎) − 𝜑Q(𝑠, 𝑏)) = Proj𝑍 (Q,𝑖)⊥Q𝑖 (𝜑(𝑠, 𝑎) − 𝜑(𝑠, 𝑏))

for some 𝑠 ∈ S𝑖 , 𝑎, 𝑏 ∈ [A], and by definition Proj𝑍 (Q,𝑖)⊥Q𝑖 � 𝐿−2
3 𝐼,



Proj𝑍 (Q,𝑖)⊥ 𝜑′




2 ≤

𝐿−2
3 ‖𝜑(𝑠, 𝑎) −𝜑(𝑠, 𝑏)‖2 ≤ 2𝐿−2

3 𝐿, so

|𝑧>𝐹 (𝑠𝑖�)(𝑣 +𝑤) | ≤ 8𝐿−2
3 𝐿

√
𝑑1 +1

√
2𝑑𝐻2

𝜀
, (120)

and hence

|𝑧>𝐹̂𝑘𝑖 (𝑣 +𝑤) | ≤ 8𝐿−2
3 𝐿

√
𝑑1 +1

√
2𝑑𝐻2

𝜀
. (121)

To bound |𝑧>𝑦𝑘𝑖 (𝑣 +𝑤) |, note that by the definition 𝑦𝑘𝑖 ,

𝑧>𝑦𝑘𝑖 (𝑣 +𝑤) = 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃

p(𝑚𝑘 𝑗) ,𝑖
〉

where 𝜃𝑡𝑖 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝑧>𝐹 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻 ) (𝑣 +𝑤)

)
for 𝑡 ∈ [𝑖−1]

Therefore

|𝑧>𝑦𝑘𝑖 (𝑣 +𝑤) | ≤ max
𝑡 ∈[𝑖−1],𝑠∈S𝑡 ,𝑎∈[A]

〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉
.

Fix any 𝑡 ∈ [𝑖− 1], 𝑠 ∈ S𝑡 , 𝑎 ∈ [A]. By repeated application of the Cauchy-Schwarz inequality, the

fact that 𝑋𝑚𝑡 � 𝜆𝐼, the triangle inequality, and using Eq. (120),

|
〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉
| ≤ ‖𝜑(𝑠, 𝑎)‖𝑋−1

𝑚𝑡







 ∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝑧>𝐹 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻 )(𝑣 +𝑤)

)






𝑋−1
𝑚𝑡

≤ ‖𝜑(𝑠, 𝑎)‖2𝜆−1/2 ·8𝐿−2
3 𝐿

√
𝑑1 +1

√
2𝑑𝐻2

𝜀

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)




𝜑𝑙𝑘 𝑗𝑡 



𝑋−1
𝑚𝑡

≤ 8𝐿−2
3 𝐿2𝜆−1/2√𝑑1 +1

√
2𝑑𝐻2

𝜀

√
|I𝑚(𝑡) |

√√ ∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)




𝜑𝑙𝑘 𝑗𝑡 


2

𝑋−1
𝑚𝑡

≤ 8𝐿−2
3 𝐿2𝜆−1/2√𝑑1 +1

√
2𝑑𝐻2

𝜀

√
𝑚max𝑛𝐻𝑑 ,
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where we use that |I𝑚(𝑡) | ≤ 𝑚𝑛𝐻, 𝑚 ≤ 𝑚max by Lemma 5.E.5, and that√√ ∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)




𝜑𝑙𝑘 𝑗𝑡 


2

𝑋−1
𝑚𝑡

=
√ ∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

Tr(𝑋−1
𝑚𝑡𝜑

𝑙𝑘 𝑗
𝑡 𝜑

𝑙𝑘 𝑗
𝑡

>) ≤
√

Tr𝑋−1
𝑚𝑡𝑋𝑚𝑡 =

√
𝑑 .

Combining with Eq. (121), with an appropriate choice of 𝐿3, we obtain

|𝑧>M(𝑣 +𝑤) | ≤ 8𝐿−2
3 𝐿

√
𝑑1 +1

√
2𝑑𝐻2

𝜀

(
1+ 𝐿𝜆−1/2√𝑚max𝑛𝐻𝑑

)
≤ 𝜀

𝑑𝐻2𝜔
(122)

as desired.

Proof of Lemma 5.E.2. Choose 𝛽

𝛽 ≤ 2+2𝐻

√
2𝑑𝐻 (𝑑0 +1) log

12𝑑0𝐻𝐵

𝛼𝜉
+2log

𝑚′max𝐻2

𝜁
+ 𝑑 log

(
𝜆+𝑚′max𝑛𝐻𝐿2/𝑑

)
, (123)

satisfying 𝛽 = Õ(𝐻3/2𝑑) as given in Eq. (102), and define

𝜉 =
𝜀

5
√

2𝑑 (𝐻 +1)3𝐿

(
min

{
𝜀/(𝑑𝐻2𝜔),1/

√
𝑚′max𝑛𝐻

}
−𝜂0

)
.

Note that subtracting 𝜂0 keeps 𝜉 positive, and of the same order, by our assumption that 𝜂 is small

enough: 𝜂0 ≤ 1
2 min

{
𝜀/(𝑑𝐻2𝜔),1/

√
𝑚′max𝑛𝐻

}
, which follows from Eq. (108).

We start with a covering argument for the set of functions of the form 𝑣>‖ 𝐹̄𝐺̂ 𝜃𝑤, for different

choices of 𝐺̂, 𝜃, 𝑣, and 𝑤. By (Vershynin, 2018, Corollary 4.2.13), there is a set 𝐶𝜉 ⊂ B(1) with

|𝐶𝜉 | ≤ (3/𝜉)𝑑 such that for all 𝑥 ∈ B(1) there exists a 𝑦 ∈ 𝐶𝜉 with ‖𝑥− 𝑦‖2 ≤ 𝜉. Therefore, there

is a set 𝐶×𝜉 ⊂
(>

ℎ∈[2:𝐻 ],𝑘∈[𝑑0 ] B(
√
𝑑1 +1)

)
×

(>
ℎ∈[2:𝐻 ] B(4𝑑0𝐻𝐵/𝛼)

)
×B(1) ×B(1) with |𝐶×𝜉 | ≤

(12𝑑0𝐻𝐵/(𝛼𝜉))𝑑𝐻 (𝑑0+1) such that for any 𝐺̂ = (𝜗̂𝑖ℎ)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ] ∈ G, 𝜃 ∈ Θ̄, and 𝑣,𝑤 ∈ B(1),

there exists a 𝑦 ∈ 𝐶×𝜉 , such that if we let 𝐺̃ = (𝜗̃𝑖)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ] = (𝑦 (ℎ−1)𝑑0+𝑖)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ] , 𝜃 =

(𝜃ℎ)ℎ∈[2:𝐻 ] = (𝑦 (𝐻−1)𝑑0+ℎ)ℎ∈[2:𝐻 ] , and 𝑎 = 𝑦 (𝐻−1) (𝑑0+1)+1, 𝑏 = 𝑦 (𝐻−1) (𝑑0+1)+2, then 𝐺̃ ∈ G, 𝜃 ∈ Θ̄,

𝑎, 𝑏 ∈ B(1), and

‖𝑎− 𝑣‖2 ≤ 𝜉 and ‖𝑏−𝑤‖2 ≤ 𝜉 , and

𝜗̂𝑖ℎ − 𝜗̃𝑖

2 ≤ 𝜉 and


𝜃ℎ − 𝜃ℎ

2 ≤ 𝜉 for all ℎ ∈ [2 : 𝐻], 𝑖 ∈ [𝑑0] .

As a result, for all 𝑠 ∈ S \S1, | range𝐺̂Q (𝑠) − range𝐺̃Q (𝑠) | ≤ 2𝐿𝜉, and therefore |𝜏𝐺̂ 𝜃 (𝑠) − 𝜏𝐺̃ 𝜃 (𝑠) | ≤

2
√

2𝑑𝐻𝐿𝜉/𝜀. Furthermore, |𝐷𝐺̂ 𝜃 (𝑠, . . . , 𝑟𝐻 ) −𝐷𝐺̃ 𝜃 (𝑠, . . . , 𝑟𝐻 ) | ≤ 𝐿𝜉. Combining these with the

facts that in either case, 𝜏(·) ∈ [0,1], 𝐷 (·) ∈ [−𝐻,𝐻], and 𝐸→(·) ∈ [−𝐻,𝐻] (Eq. (118)), and using
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the definition of 𝐸 and 𝐸→,we have that for any 𝑖 ∈ [𝐻 +1] and inputs,

|𝐸𝐺̂ 𝜃 (𝑠𝑖�) −𝐸𝐺̃ 𝜃 (𝑠𝑖�) | ≤ 4
√

2𝑑𝐻2𝐿𝜉/𝜀 + 𝐿𝜉 + |𝐸→
𝐺̂ 𝜃
(𝑠𝑖+1�) −𝐸→𝐺̃ 𝜃 (𝑠𝑖+1�) |

= 4
√

2𝑑𝐻2𝐿𝜉/𝜀 + 𝐿𝜉 +
𝐻∑
𝑗=𝑖+1
|𝐸𝐺̂ 𝜃 (𝑠 𝑗�) −𝐸𝐺̃ 𝜃 (𝑠 𝑗�) |

≤ (𝐻 +1)5
√

2𝑑𝐻2𝐿𝜉/𝜀 ,

where the first inequality sums over the contributions of 𝜏, 𝐷, and 𝐸→, and the second applies

induction. By combining this bound with the bounds on ‖𝑣− 𝑎‖2 and ‖𝑤− 𝑏‖2, and that 𝐸 (·) ∈

[−2𝐻,2𝐻] (Eq. (118)) implying that 𝐹̄ (·) ∈ [−2𝐻,2𝐻], for all 𝑠 ∈ S \S1, we have that

|𝑣>‖ 𝐹̄𝐺̂ 𝜃 (𝑠)𝑤− 𝑎
>
‖ 𝐹̄𝐺̃ 𝜃𝑏 | (𝑠) ≤ 6𝐻𝜉 + (𝐻 +1)5

√
2𝑑𝐻2𝐿𝜉/𝜀

≤ 5
√

2𝑑 (𝐻 +1)3𝐿𝜉/𝜀 = min{𝜀/(𝑑𝐻2𝜔),1/
√
𝑚′max𝑛𝐻} −𝜂0

(124)

Take any 𝑚′ ∈ [𝑚′max] (this includes the entire execution of SKIPPYELEANOR). and let the

quantities of Section 5.4.3 (such as 𝐹) be calculated with the value of Q at the beginning iter-

ation 𝑚′ (Line 5). Take any 𝑡 ∈ [𝐻 − 1], 𝑖 ∈ [𝑡 + 1 : 𝐻]. Take any 𝑦 ∈ 𝐶×𝜉 and assign values

to 𝑎, 𝑏, 𝐺̃,and 𝜃 based on 𝑦 as above. For any 𝑙𝑘 𝑗 ∈ I𝑚(𝑡), observe that given all the history

of SKIPPYELEANOR interacting with the MDP up to (and including) 𝑆𝑙𝑘 𝑗𝑡 , 𝐴
𝑙𝑘 𝑗
𝑡 , the trajectory

𝑆
𝑙𝑘 𝑗
𝑡+1, 𝐴

𝑙𝑘 𝑗
𝑡+1, . . . , 𝑅

𝑙𝑘 𝑗
𝐻 is an independent rollout with policy 𝜋0, with its law given by P

𝜋0,𝑆
𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡

. The

random variable 𝑎>‖ 𝐹𝐺̃ 𝜃 (𝑆
𝑙𝑘 𝑗
𝑖 . . . , 𝑅

𝑙𝑘 𝑗
𝐻 )𝑏 has range [−2𝐻,2𝐻] and expectation (conditioned on this

history) E
𝜋0,𝑆

𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡
𝑎>‖ 𝐹̄𝐺̃ 𝜃 (𝑆𝑖)𝑏. Let 𝜃𝑡𝑖 be 𝜃𝑡𝑖 from Corollary 5.4.11, satisfying



𝜃𝑡𝑖

2 ≤ 1/
√
𝜆

and Eq. (98) for 𝑎 ‖ , 𝑏, 𝐺̃, and 𝜃 instead of 𝑣 ‖ , 𝑤, 𝐺̂, and 𝜃:

E𝜋0,𝑠,𝑎𝑎
>
‖ 𝐹̄𝐺̃ 𝜃 (𝑆𝑖)𝑏 ≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉
. (125)

Take the sequence 𝐴 formed of 𝜑𝑙𝑘 𝑗𝑡 (for 𝑙𝑘 𝑗 ∈ I𝑚(𝑡), in the order that these random variables are

observed), and the sequence 𝑋 formed of 𝑣 ‖𝐹𝐺̂ 𝜃 (𝑆
𝑙𝑘 𝑗
𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻 )𝑤 (for 𝑙𝑘 𝑗 ∈ I𝑚(𝑡), in the same

order), and the sequence Δ formed of E
𝜋0,𝑆

𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡
𝑣 ‖ 𝐹̄𝐺̂ 𝜃 (𝑆𝑖)𝑤−

〈
𝜑
𝑙𝑘 𝑗
𝑡 , 𝜃𝑡𝑖

〉
(for 𝑙𝑘 𝑗 ∈ I𝑚(𝑡), in the

same order, for any 𝑣,𝑤, 𝐺̂,and 𝜃 as in the statement of this lemma). Then the sequences 𝐴, 𝑋 ,

and Δ satisfy the conditions of Lemma 5.M.4 with a subgaussianity parameter 𝜎 = 2𝐻. Due to this
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lemma, with probability at least 1− 𝜁/(𝑚′max𝐻
2 |𝐶×𝜉 |), for any choice of 𝑣,𝑤, 𝐺̂,and 𝜃 (as above),



𝜃𝑡𝑖 − 𝜃𝑡𝑖

𝑋𝑚𝑡
<
√
𝜆


𝜃𝑡𝑖

2 + ‖Δ‖∞

√
|I𝑚(𝑡) | +2𝐻

√√√
2log

(
𝑚′max𝐻2 |𝐶×𝜉 |

𝜁

)
+ log

(
det𝑋𝑚𝑡
𝜆𝑑

)
(126)

where 𝜃𝑡𝑖 = 𝑋
−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡 𝑣>‖ 𝐹𝐺̂ 𝜃 (𝑆

𝑙𝑘 𝑗
𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻 )𝑤

A union bound over all 𝑚′ ∈ [𝑚′max], 𝑡, 𝑖, and 𝑦 ∈ 𝐶×𝜉 guarantees with probability at least 1− 𝜁 ,

the above holds for all choice of these variables, any time beginning of any iteration (Line 5) is

executed. Note that we need the union bound over 𝑚 because the value of Q underlying the targets

of least-squares estimations can potentially change between iterations.

To finish the proof, under this high-probability event, take any 𝑚, 𝑡, 𝑖, 𝐺̂,and 𝜃 as in the state-

ment of this lemma, and choose 𝑦 ∈ 𝐶×𝜉 as before, to satisfy Eq. (124). Combined with Eq. (125),

this immediately implies that the sequence Δ formed of quantities with absolute value

|E
𝜋0,𝑆

𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡
𝑣 ‖ 𝐹̄𝐺̂ 𝜃 (𝑆𝑖)𝑤−

〈
𝜑
𝑙𝑘 𝑗
𝑡 , 𝜃𝑡𝑖

〉
|

≤ |E
𝜋0,𝑆

𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡
𝑣 ‖ 𝐹̄𝐺̂ 𝜃 (𝑆𝑖)𝑤− 𝑎 ‖ 𝐹̄𝐺̃ 𝜃 (𝑆𝑖)𝑏 | + |𝑎 ‖ 𝐹̄𝐺̃ 𝜃 (𝑆𝑖)𝑏−

〈
𝜑
𝑙𝑘 𝑗
𝑡 , 𝜃𝑡𝑖

〉
|

≤ min{𝜀/(𝑑𝐻2𝜔),1/
√
𝑚′max𝑛𝐻} −𝜂0 +𝜂0

(127)

satisfies ‖Δ‖∞ ≤ min{𝜀/(𝑑𝐻2𝜔),1/
√
𝑚′max𝑛𝐻}. Take any (𝑠, 𝑎) ∈ S𝑡 × [A], and let 𝜃𝑡𝑖 and 𝜃𝑡𝑖 be

as above (in Eq. (126)) for 𝑣 ‖ , 𝑤, 𝐺̂, and 𝜃. Note that

𝑣>‖ 𝜑(𝑠, 𝑎)
>𝜃𝑡𝑖
𝐺̂ 𝜃
𝑤 =

〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉
,
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By the triangle inequality, using Cauchy-Schwarz, and Eqs. (126) and (127),

|𝑣>‖
(
𝜑(𝑠, 𝑎)>𝜃𝑡𝑖

𝐺̂ 𝜃
−E𝜋0,𝑠,𝑎 𝐹̄𝐺̂ 𝜃 (𝑆𝑖)

)
𝑤 |

≤ |
〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖 − 𝜃𝑡𝑖

〉
| + |E𝜋0,𝑠,𝑎𝑣

>
‖ 𝐹̄𝐺̂ 𝜃 (𝑆𝑖)𝑤−

〈〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉〉
|

≤ ‖𝜑(𝑠, 𝑎)‖𝑋−1
𝑚𝑡

©­«
√
𝜆


𝜃𝑡𝑖

2 +

√
|I𝑚(𝑡) |√
𝑚′max𝑛𝐻

+2𝐻

√√√
2log

(
𝑚′max𝐻2 |𝐶×𝜉 |

𝜁

)
+ log

(
det𝑋𝑚𝑡
𝜆𝑑

)ª®¬+ 𝜀

𝑑𝐻2𝜔

≤ ‖𝜑(𝑠, 𝑎)‖𝑋−1
𝑚𝑡

©­«2+2𝐻

√
2𝑑𝐻 (𝑑0 +1) log

12𝑑0𝐻𝐵

𝛼𝜉
+2log

𝑚′max𝐻2

𝜁
+ 𝑑 log

(
𝜆+𝑚′max𝑛𝐻𝐿2/𝑑

)ª®¬+ 𝜀

𝑑𝐻2𝜔

≤ ‖𝜑(𝑠, 𝑎)‖𝑋−1
𝑚𝑡
𝛽+ 𝜀

𝑑𝐻2𝜔
,

(128)

where in the fourth line we used that |I𝑚(𝑡) | ≤ 𝑚′max𝑛𝐻, |𝐶×𝜉 | ≤ (12𝑑0𝐻𝐵/(𝛼𝜉))𝑑𝐻 (𝑑0+1) , and

we used the inequality of arithmetic and geometric means to bound det𝑋𝑚𝑡 ≤
(

1
𝑑 Tr𝑋𝑚𝑡

)𝑑
≤(

Tr𝜆𝐼+|I𝑚 (𝑡) |𝐿2

𝑑

)𝑑
.

Proof of Lemma 5.E.3. Choose 𝑛 to satisfy

𝑛 =

⌈
64
(𝑑𝐻2𝜔)2
𝜀2 𝐻2

(
2𝑑 log

18𝑑𝐻3

𝜀
+ log

2𝑚′max𝐻
2

𝜁

)⌉
. (129)

This leads to 𝑛 = Õ(𝑑5𝐻6/𝜀2).

Similarly to the proof of Lemma 5.E.2, we start with a covering argument. This time, as 𝐺̂ and

𝜃 are fixed, we only consider 𝑣 and 𝑤, to cover 𝑣>‖ 𝐹̄
( 𝑗)
𝑡′ 𝑤 and 𝑣 ‖ 𝐹̂

( 𝑗)
𝑡′ 𝑤. Let 𝜉 ′ = 𝜀

12𝑑𝐻 3 . There is a set

𝐶+𝜉 ′ ⊂ B(1) ×B(1) with |𝐶𝜉 ′ | ≤ (3/𝜉 ′)2𝑑 such that for all 𝑣,𝑤 ∈ B(1), there exists an (𝑎, 𝑏) ∈ 𝐶+𝜉 ′
with ‖𝑣− 𝑎‖2 ≤ 𝜉 ′ (and therefore



𝑣 ‖ − 𝑎 ‖

2 ≤ 𝜉
′), and ‖𝑤− 𝑏‖2 ≤ 𝜉 ′. Take such a choice of (𝑎, 𝑏)

for any (𝑣,𝑤). As 𝐸 (·) ∈ [−2𝐻,2𝐻] by Eq. (118), and ‖𝜑̄Q(·)‖2 ≤ 1, For 𝑖 ∈ [2 : 𝐻] and any input,

|𝑣>‖ 𝐹 (𝑠𝑖�)𝑤− 𝑎>‖ 𝐹 (𝑠𝑖�)𝑏 | ≤ 6𝐻𝜉 ′ =
𝜀

2𝑑𝐻2 ,

and therefore for any 𝑠 ∈ S \S1, |𝑣>‖ 𝐹̄ (𝑠)𝑤− 𝑎
>
‖ 𝐹̄ (𝑠)𝑏 | ≤ 𝜀/(2𝑑𝐻

2). For 𝑗 ∈ [𝑛] let

𝐹̃𝑘𝑖𝑗 = E
𝜋0,𝑆

𝑚𝑘 𝑗
p(𝑘) ,𝐴

𝑚𝑘 𝑗
p(𝑘)
𝐹𝐺̂ 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻 ) = E

𝜋0,𝑆
𝑚𝑘 𝑗
p(𝑘) ,𝐴

𝑚𝑘 𝑗
p(𝑘)
𝐹̄𝐺̂ 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 )
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By the triangle inequality, for any 𝑘 ∈ [𝐻 −1], 𝑖 ∈ [𝑘 +1 : 𝐻],

|𝑣>‖
(
𝑦𝑘𝑖
𝐺̂ 𝜃
− 𝐹̂𝑘𝑖

𝐺̂ 𝜃

)
𝑤 |

≤ | 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝑣
>
(
𝜑
𝑚𝑘 𝑗
p(𝑘)

>
𝜃

p(𝑚𝑘 𝑗) ,𝑖
𝐺̂ 𝜃

− 𝐹̃𝑘𝑖𝑗
)
𝑤 | + | 1

𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝑣
>
(
𝐹̃𝑘𝑖𝑗 −𝐹𝐺̂ 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻 )

)
𝑤 |

≤ 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖




𝜑𝑚𝑘 𝑗p(𝑘)





𝑋−1
𝑚,p(𝑚𝑘 𝑗)

𝛽+ 𝜀

𝑑𝐻2𝜔
+ 𝜀

𝑑𝐻2𝜔
+ | 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝑎
>
(
𝐹̃𝑘𝑖𝑗 −𝐹𝐺̂ 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻 )

)
𝑏 | ,

(130)

where the second inequality uses Lemma 5.E.2 and applies the triangle inequality twice again. Ob-

serve that for all 𝑗 ∈ [𝑛], given all the history of SKIPPYELEANOR interacting with the MDP

up to (and including) 𝑆𝑚𝑘 𝑗p(𝑘) , 𝐴
𝑚𝑘 𝑗
p(𝑘) (which also includes the value of 𝑐 𝑗𝑘𝑖 for 𝑖 ∈ [𝐻 + 1]), the tra-

jectory 𝑆𝑚𝑘 𝑗p(𝑘)+1, 𝐴
𝑚𝑘 𝑗
p(𝑘)+1, . . . , 𝑅

𝑚𝑘 𝑗
𝐻 is an independent rollout with policy 𝜋0, with its law given by

P
𝜋0,𝑆

𝑚𝑘 𝑗
p(𝑘) ,𝐴

𝑚𝑘 𝑗
p(𝑘)

. Therefore, for any fixed (𝑎, 𝑏) ∈ 𝐶+𝜉 ′, 𝑐
𝑗
𝑘𝑖𝑎
>
(
𝐹̃𝑘𝑖𝑗 −𝐹𝐺̂ 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻 )

)
𝑏 are in-

dependent zero-mean random variables with range [−4𝐻,4𝐻]. Applying Hoeffding’s inequality

with a union bound over 𝑚′, 𝑘, 𝑖, 𝑎, and 𝑏, with probability at least 1− 𝜁 , for any of the 𝑚′ ∈ [𝑚′max]

times the beginning of the iteration (Line 5) is executed (this includes the entire execution of SKIP-

PYELEANOR),

| 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝑎
>
(
𝐹̃𝑘𝑖𝑗 −𝐹𝐺̂ 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻 )

)
𝑏 | ≤ 8𝐻

√
𝑛

√
log

2𝑚′max𝐻2 |𝐶+𝜉 ′ |
𝜁

=
8𝐻
√
𝑛

√
2𝑑 log

18𝑑𝐻3

𝜀
+ log

2𝑚′max𝐻2

𝜁
≤ 𝜀

𝑑𝐻2𝜔
,

where we used Eq. (129). To finish, note that unless 𝑐 𝑗𝑘𝑖 = 0,



𝜑𝑚𝑘 𝑗p(𝑘)





𝑋−1
𝑚,p(𝑚𝑘 𝑗)

< 2(𝛽𝜔𝑑𝐻)−1, so we

can continue from Eq. (130) by bounding the average feature-norm by 𝜎̄𝑚𝑘 as

|𝑣>‖
(
𝑦𝑘𝑖
𝐺̂ 𝜃
− 𝐹̂𝑘𝑖

𝐺̂ 𝜃

)
𝑤 | ≤ 𝜎̄𝑚𝑘 𝛽+3

𝜀

𝑑𝐻2𝜔
.

Proof of Lemma 5.E.4. Recall that (𝑘, 𝑖, 𝑣) are the arguments and 𝑥 the value of Optimization Prob-

lem 5.4.12. Throughout the proof we write Q to refer to its value just before Line 14 is executed. We

write •‖ for •‖ (Q,𝑖) , and •⊥ for •⊥(Q,𝑖) . Let M = 𝑦𝑘𝑖
𝐺̂ 𝜃
− 𝐹̂𝑘𝑖

𝐺̂ 𝜃
. Therefore, 𝑣>M𝑣 = 𝑥 > 𝜎̄𝑚𝑘 𝛽𝜔+3 𝜀

𝑑𝐻 2 ,

and by Lemma 5.E.1, 𝑤>M𝑤 > 𝜎̄𝑚𝑘 𝛽𝜔+2 𝜀
𝑑𝐻 2 .

Line 14 changes Q𝑖 by appending Q−1
𝑖 𝑤 to the sequence 𝐶𝑖 of vectors from which Q is cal-

culated according to Eq. (91). Eq. (92) lists the conditions on the new sequence 𝐶𝑖 that need to be
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satisfied for Q to stay a valid preconditioning. Consider the third condition, i.e.,


Q−1

𝑖 𝑤




2 ≤ 𝐿3.

Observe that Q−1
𝑖 Proj𝑍 (Q,𝑖) � 𝐿2

3𝐼 and ‖𝑣‖2 = 1, therefore


Q−1

𝑖 𝑤




2 =


Q−1

𝑖 Proj𝑍 (Q,𝑖) 𝑣




2 ≤ 𝐿3.

Now consider the second condition. To prove that it holds, we need to show that


Q𝑖Q−1

𝑖 𝑤




2 =

‖𝑤‖2 ≥ 1
2 . Let 𝑥 = ‖𝑤‖−1

2 . Since 𝑣 was the argument of the optimization problem, and using

Lemma 5.E.1,

𝑥2𝑤>M𝑤 ≤ 𝑣>M𝑣 ≤ 𝑤>M𝑤 + 𝜀

𝑑𝐻2𝜔
≤ 𝑤>M𝑤(1+1/2)

Therefore, ‖𝑤‖22 ≥ 2
3 . We immediately get that



Q𝑖Q−1
𝑖 𝑤



2
2 ≥

2
3
,

satisfying the second condition.

It remains to prove that the first condition also holds. First, noting that M is symmetric, we can

decompose 𝑤>M𝑤 as

𝑤>M𝑤 = 𝑤>‖M𝑤 +𝑤>‖M𝑤⊥ +𝑤>⊥M𝑤⊥ .

Applying Lemma 5.E.3 on the first two terms,

𝑤>M𝑤 ≤ 2𝜎̄𝑚𝑘 𝛽+6
𝜀

𝑑𝐻2𝜔
+𝑤>⊥M𝑤⊥ .

Due to 𝜔 > 3 and 𝑤>M𝑤 > 𝜎̄𝑚𝑘 𝛽𝜔 + 2 𝜀
𝑑𝐻 2 and the above, 𝑤⊥ ≠ 0. Let 𝑤′ = 𝑤⊥/‖𝑤⊥‖2. Since 𝑣

was the argument of the optimization problem, have that 𝑣>M𝑣 ≥ 𝑤′>M𝑤′. Putting this together,

‖𝑤⊥‖−2
2 𝑤>⊥M𝑤⊥ = 𝑤

′>M𝑤′ ≤ 𝑣>M𝑣 ≤ 𝑤>M𝑤 + 𝜀

𝑑𝐻2𝜔
≤ 2𝜎̄𝑚𝑘 𝛽+7

𝜀

𝑑𝐻2𝜔
+𝑤>⊥M𝑤⊥ ,

Since 𝑣>M𝑣 > 𝜎̄𝑚𝑘 𝛽𝜔+3 𝜀
𝑑𝐻 2 , 𝑤>⊥M𝑤⊥ ≥ (𝜔−7/3)

(
𝜎̄𝑚𝑘 𝛽+3 𝜀

𝑑𝐻 2𝜔

)
> 0 and therefore dividing the

above by 𝑤>⊥M𝑤⊥,

‖𝑤⊥‖−2
2 ≤

7/3
𝜔−7/3 +1

‖𝑤⊥‖22 ≥
1

1+ 𝑐 for 𝑐 =
7/3

𝜔−7/3

𝑤 ‖

2
2 ≤ 1− 1

1+ 𝑐 as ‖𝑤‖2 ≤ 1 .
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Now to prove that the first condition also holds,

sup
𝜃 ∈Θ𝑖

|
〈
𝜃,Q−1

𝑖 𝑤
〉
| = sup

𝜃 ∈ΘQ
𝑖

| 〈𝜃,𝑤〉 | ≤ sup
𝜃 ∈ΘQ

𝑖

‖𝜃‖2


𝑤 ‖

2 + sup

𝜃 ∈ΘQ
𝑖

| 〈𝜃,𝑤⊥〉 |

≤
√
𝑑1 +1

√
1− 1

1+ 𝑐 + sup
𝜃 ∈ΘQ

𝑖

‖𝜃‖𝑉 (𝐺Q
ℎ
,𝜌Q

ℎ
)† ‖𝑤⊥‖𝑉 (𝐺Q

ℎ
,𝜌Q

ℎ
)

≤
√
𝑑1 +1

√
1− 1

1+ 𝑐 +
√

2𝑑𝑤>⊥(𝛾𝐼)𝑤⊥

≤
√
𝑑1 +1

√
1− 1

1+ 𝑐 +
√

2𝑑𝛾 =
√
𝑑1 +1

√
1− 1

1+ 𝑐 +
1
2
,

where in the second line we used Lemma 5.4.3 to bound sup𝜃 ∈ΘQ
𝑖
‖𝜃‖2, and for the second term

we used Eq. (113) with Cauchy-Schwarz. In the third line we used Eq. (111), and the definition of

Proj⊥. Finally in the last line we use that 𝑤⊥ is perpendicular to 𝑎𝑖 for 𝑖 ≤ 𝑑 ′ (by definition) and that

𝜆𝑖 ≤ 𝛾 for 𝑖 > 𝑑 ′. It is left to prove that
√
𝑑1 +1

√
1− 1

1+𝑐 ≤
1
2 . This holds if 𝑐 ≥ 1/(4(𝑑1 +1) − 1),

which is satisfied as 𝑐 = 1/(3(𝑑1 +1)), due to 𝜔 = 7(𝑑1 +1) +7/3 (Eq. (100)).

5.I. Deferred proofs for Section 5.E.2

Proof of Lemma 5.E.5. The features 𝜑𝑙𝑘 𝑗p(𝑘) are observed by SKIPPYELEANOR in the order of in-

creasing 𝑙, within that increasing 𝑘 , and within that, increasing 𝑗 . Each time the next 𝜑𝑙𝑘 𝑗p(𝑘) is

observed, we sum the elliptic potential as follows.

For 𝑖 ∈ [𝑚], 𝑟 ∈ [𝐻], 𝑢 ∈ [𝑛], 𝑡 ∈ [𝐻], let the set of indices observed before 𝜑𝑖𝑟𝑢p(𝑟 ) whose Phase

II (rollout phase) starts at some stage 𝑡 be:

I𝑖𝑟𝑢 (𝑡) = {𝑙 ∈ [𝑖], 𝑘 ∈ [𝐻], 𝑗 ∈ [𝑛] : 𝑙𝐻𝑛+ 𝑘𝑛+ 𝑗 < 𝑖𝐻𝑛+ 𝑟𝑛+𝑢 and p(𝑙𝑘 𝑗) = 𝑡}

Let a version of this where only the whole iteration 𝑖’s data is included be

J𝑖 (𝑡) = {𝑙 = 𝑖, 𝑘 ∈ [𝐻], 𝑗 ∈ [𝑛] : p(𝑙𝑘 𝑗) = 𝑡}

Let

𝑋𝑖𝑟𝑢 (𝑡) = 𝜆𝐼 +
∑

𝑙𝑘 𝑗∈I𝑖𝑟𝑢 (𝑡)
𝜑
𝑙𝑘 𝑗
p(𝑘)𝜑

𝑙𝑘 𝑗
p(𝑘)

>

Observe that 𝑋𝑖𝑡 , defined in Optimization Problem 5.4.10, is the version of this that only updates at

the start of each iteration 𝑖, that is,

𝑋𝑖𝑡 = 𝑋𝑖11(𝑡) .
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The total elliptic potential, observed by the end of iteration 𝑚 is, writing 𝑘 = p(𝑖𝑟𝑢) on the left hand

side:

∑
𝑖∈[𝑚],𝑟 ∈[𝐻 ],𝑢∈[𝑛]

1 {𝑘 < 𝐻 +1}min
{
1,



𝜑𝑖𝑟𝑢𝑘 

2
𝑋𝑖𝑟𝑢 (𝑘)−1

}
=

∑
𝑖∈[𝑚],𝑡 ∈[𝐻 ]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)

min
{
1,




𝜑𝑙𝑘 𝑗𝑡 


2

𝑋𝑙𝑘 𝑗 (𝑡)−1

}
.

Applying the elliptical potential lemma (Lemma 5.L.1) 𝐻 times for 𝑡 ∈ [𝐻], this can be bounded as

∑
𝑡 ∈[𝐻 ],𝑖∈[𝑚]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)

min
{
1,




𝜑𝑙𝑘 𝑗𝑡 


2

𝑋𝑙𝑘 𝑗 (𝑡)−1

}
≤ 2𝑑𝐻 log

(
1+ 𝐻𝑚𝑛𝐿

2

𝑑𝜆

)
On the other hand, by Lemma 5.L.2, then switching to an ℓ1-bound, then observing that by definition,∑
𝜎̄𝑖𝑘 sums the same quantities but caps them by some threshold,

∑
𝑡 ∈[𝐻 ],𝑖∈[𝑚]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)

min
{
1,




𝜑𝑙𝑘 𝑗𝑡 


2

𝑋𝑙𝑘 𝑗 (𝑡)−1

}
≥

∑
𝑡 ∈[𝐻 ],𝑖∈[𝑚]

min
1,

1
2

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)




𝜑𝑙𝑘 𝑗𝑡 


2

𝑋−1
𝑖𝑡


≥

∑
𝑖∈[𝑚]

min
1,

1
2

∑
𝑡 ∈[𝐻 ]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)




𝜑𝑙𝑘 𝑗𝑡 


2

𝑋−1
𝑖𝑡


≥

∑
𝑖∈[𝑚]

min
1,

1
2𝐻𝑛

©­«
∑
𝑡 ∈[𝐻 ]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)




𝜑𝑙𝑘 𝑗𝑡 



𝑋−1
𝑖𝑡

ª®¬
2

≥
∑
𝑖∈[𝑚]

min
1,

1
2𝐻𝑛

©­«𝑛
∑
𝑘∈[𝐻 ]

𝜎̄𝑖𝑘
ª®¬

2
Whenever an iteration finishes without returning in Line 19,

∑
𝑘∈[𝐻 ] 𝜎̄

𝑚
𝑘 > 𝜀/(𝑑𝐻

2𝛽𝜔). Therefore,

2𝑑𝐻 log
(
1+ 𝐻𝑚𝑛𝐿

2

𝑑𝜆

)
≥

∑
𝑖∈[𝑚]

min
1,

1
2𝐻𝑛

©­«𝑛
∑
𝑘∈[𝐻 ]

𝜎̄𝑖𝑘
ª®¬

2
≥

∑
𝑖∈[𝑚]

min

{
1,

1
2𝐻

𝑛

(
𝜀

𝑑𝐻2𝛽𝜔

)2
}

≥
∑
𝑖∈[𝑚]

min
{
1, 𝐻𝑑/𝛽2} = 𝑚𝐻𝑑/𝛽2 ,
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Therefore, even for the iteration that returns in Line 19,

𝑚 ≤ 𝛽2 log
(
1+ 𝐻𝑚𝑛𝐿

2

𝑑𝜆

)
+1 = 𝑚max .

5.J. Deferred proofs for Section 5.E.3

Proof of Lemma 5.E.8. For notational simplicity we drop the subscripts (𝐺̂, 𝜃). We first use the

usual high-probability bounds on the least squares predictor and Hoeffding’s inequality on the em-

pirical mean quantities, to prove that with probability at least 1−3𝜁 , during the execution of SKIP-

PYELEANOR whenever Line 18 is executed, for all 𝑘 ∈ [𝐻],

E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘) ) ≤ E𝜋𝑚𝑘 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 𝑐𝑘,𝐻+1𝐸→(𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻 ) +2𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +4
𝜀

𝐻
.

(131)

The proof of this is presented as Lemma 5.J.1.

Next, to prove the statement for 𝑘 ∈ [𝐻], assume by induction that Eq. (109) holds for 𝑖 ∈

[𝑘 +1 : 𝐻].

Observe that SKIPPYPOLICY performs a rollout with policy 𝜋0 for the rest of the episode

starting from stage 𝑝(𝑘) + 1, that is, 1 = 𝐴𝑝 (𝑘)+1 = · · · = 𝐴𝐻 . Therefore, the law of the random

variables 𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻 , given (𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘) ) is fully determined by the dynamics of the MDP,

and is independent of the values of 𝑝(𝑘 +1), . . . , 𝑝(𝐻). Therefore,

E𝜋𝑚𝑘 ,𝑠1𝑐𝑘+1,𝐻+1𝐶 (𝑆𝑝 (𝑘+1) ) = E𝜋𝑚𝑘 ,𝑠1𝑐𝑘+1,𝐻+1𝐷 (𝑆𝑝 (𝑘+1) , . . . , 𝑅𝐻 ) +
𝐻∑

𝑢=𝑝 (𝑘+1)
𝑅𝑢

= E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝐸
→(𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻 ) +

𝐻∑
𝑢=𝑝 (𝑘+1)

𝑅𝑢 ,

(132)

where we use Eq. (96), and that 𝜋𝑚𝑘 (SKIPPYPOLICY) is in phase II after stage 𝑝(𝑘), but defines

the the mapping 𝑝(·) independently of whether the policy is in phase I or phase II, in such a way

that for any 𝐻 ≥ 𝑗 > 𝑝(𝑘),

P𝜋𝑚𝑘 ,𝑠1

[
𝑝(𝑘 +1) = 𝑗

�� 𝑝(𝑘), 𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘) ] =P𝜋𝑚𝑘 ,𝑠1

𝜏(𝑆 𝑗)
𝑗−1∏

𝑗′=𝑝 (𝑘)+1
(1− 𝜏(𝑆 𝑗′))

�� 𝑝(𝑘), 𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘) .
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Combining Eq. (132) with Eq. (131),

E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘) ) ≤ E𝜋𝑚𝑘 ,𝑠1

𝑝 (𝑘+1)−1∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 𝑐𝑘+1,𝐻+1𝐶 (𝑆𝑝 (𝑘+1) ) +2𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +4
𝜀

𝐻
.

By Remark 5.E.7, E𝜋𝑚𝑘 ,𝑠1𝑐𝑘+1,𝐻+1𝐶 (𝑆𝑝 (𝑘+1) ) = E𝜋𝑚,𝑘+1,𝑠1𝑐𝑘+1,𝐻+1𝐶 (𝑆𝑝 (𝑘+1) ) = 𝐶̄𝑘+1 . Therefore,

combining with the inductive hypothesis,

E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘) ) ≤ E𝜋𝑚𝑘 ,𝑠1

𝑝 (𝑘+1)−1∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 𝐶̄𝑘+1 +2𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +4
𝜀

𝐻

≤ E𝜋𝑚𝑘 ,𝑠1

𝑝 (𝑘+1)−1∑
𝑢=𝑝 (𝑘)

𝑅𝑢 +E𝜋𝑚𝐻 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘+1)

𝑅𝑢 +2
𝐻∑
𝑖=𝑘

𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +4(𝐻 − 𝑘 +1) 𝜀
𝐻

= E𝜋𝑚𝐻 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 +2
𝐻∑
𝑖=𝑘

𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +4(𝐻 − 𝑘 +1) 𝜀
𝐻

where the last equation uses Remark 5.E.7 again, finishing the induction.

Lemma 5.J.1. Adopt the notation of Lemma 5.E.8. With probability at least 1− 3𝜁 , during the

execution of SKIPPYELEANOR, whenever Line 18 is executed, for all 𝑘 ∈ [𝐻],

E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘) ) ≤ E𝜋𝑚𝑘 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 𝑐𝑘,𝐻+1𝐸→(𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻 ) +2𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +4
𝜀

𝐻
.

Proof. We refer as 𝜃 to the value of the argument of Optimization Problem 5.4.10 recorded in Line 5.

For 𝑘 ∈ [𝐻], recall the definition of 𝜎̄𝑚𝑘 (Eq. (105)), along with the fact that unless 𝑐 𝑗𝑘,𝐻+1 = 0,


𝜑𝑚𝑘 𝑗p(𝑘)





𝑋−1
𝑚,p(𝑚𝑘 𝑗)

< 2(𝛽𝜔𝑑𝐻)−1, we get a useful bound on the average norm of the features under

consideration:

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1




𝜑𝑚𝑘 𝑗p(𝑘)





𝑋−1
𝑚,p(𝑚𝑘 𝑗)

≤ 𝜎̄𝑚𝑘 . (133)

If Line 18 is executed, the consistency check passed, and therefore for all 𝑘 ∈ [𝐻−1], 𝑖 ∈ [𝑘 +1 : 𝐻],

Tr
(
𝑦𝑘𝑖 − 𝐹̂𝑘𝑖

)
≤ 𝜎̄𝑚𝑘 𝛽𝜔𝑑 +3

𝜀

𝐻2 (134)
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For 𝑡 ∈ [𝐻] let the least-squares predictor of rewards sums under the policy 𝜋0 be

𝜃𝑡 ,𝐻+1 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

𝐻∑
𝑢=𝑡

𝑅
𝑙𝑘 𝑗
𝑢 .

For 𝑘 ∈ [𝐻] and 𝑗 ∈ [𝑛] let us introduce the shorthand

𝑅
𝑚𝑘 𝑗
𝑘→ =

𝐻∑
𝑢=p(𝑚𝑘 𝑗)

𝑅
𝑚𝑘 𝑗
𝑢 ,

and similarly when the trajectory is clear from context: 𝑅𝑘→ =
∑𝐻
𝑢=𝑝 (𝑘) 𝑅𝑢 . For 𝑘 ∈ [𝐻] let

𝐸̂ 𝑘 =
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(
𝐸→(𝑆𝑚𝑘 𝑗p(𝑘)+1, . . . , 𝑅

𝑚𝑘 𝑗
𝐻 ) +𝑅𝑚𝑘 𝑗𝑘→

)
𝐶̂𝑘 =

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1𝐶 (𝑆

𝑚𝑘 𝑗
p(𝑘) )

𝑦𝑘,𝐻+1 =
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃

p(𝑚𝑘 𝑗) ,𝐻+1
〉

𝑧𝑘,𝐻+1 =
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1𝑅

𝑚𝑘 𝑗
𝑘→

For 𝑡 ∈ [𝐻 −1], 𝑖 ∈ [𝑡 +1 : 𝐻], along with 𝜃𝑡 ,𝐻+1, let

𝜃𝑡𝑖 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡 Tr(𝐹 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻 )) = 𝑋

−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡 𝐸 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻 ) ,

where the second equality is by Eq. (119). Observe that for any 𝑣 ∈ R𝑑 , Tr(𝑣>𝜃𝑡𝑖) =
〈
𝑣, 𝜃𝑡𝑖

〉
. There-

fore, for 𝑘 ∈ [𝐻],

𝑦𝑘,𝐻+1+
𝐻∑

𝑖=𝑘+1
Tr(𝑦𝑘𝑖) = 1

𝑛

∑
𝑗∈[𝑛]

𝐻+1∑
𝑖=𝑘+1

𝑐
𝑗
𝑘𝑖

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃

p(𝑚𝑘 𝑗) ,𝑖
〉
=

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) ,

𝐻+1∑
𝑖=p(𝑚𝑘 𝑗)+1

𝜃p(𝑚𝑘 𝑗) ,𝑖
〉

For any 𝑡 ∈ [𝐻], by the definitions,

𝐻+1∑
𝑖=𝑡+1

𝜃𝑡𝑖 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝐻∑

𝑖=𝑡+1
𝐸 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻 ) +

𝐻∑
𝑢=𝑡

𝑅
𝑚𝑘 𝑗
𝑢

)
= 𝑋−1

𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝐸→(𝑆𝑙𝑘 𝑗𝑡+1, . . . , 𝑅

𝑙𝑘 𝑗
𝐻 ) +

𝐻∑
𝑢=𝑡

𝑅
𝑚𝑘 𝑗
𝑢

)
= 𝜃𝑡
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Plugging this into the previous calculation,

𝑦𝑘,𝐻+1 +
𝐻∑

𝑖=𝑘+1
Tr(𝑦𝑘𝑖) = 1

𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
≥ 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
− 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1




𝜑𝑚𝑘 𝑗p(𝑘)





𝑋−1
𝑚,p(𝑚𝑘 𝑗)



𝜃p(𝑚𝑘 𝑗) − 𝜃p(𝑚𝑘 𝑗)



𝑋𝑚,p(𝑚𝑘 𝑗)

≥ 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
− 𝜎̄𝑚𝑘 𝛽𝐻

≥ 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1 clip[0,𝐻 ]

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
− 𝜎̄𝑚𝑘 𝛽𝐻

=
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1𝐶 (𝑆

𝑚𝑘 𝑗
p(𝑘) ) − 𝜎̄

𝑚
𝑘 𝛽𝐻 = 𝐶̂𝑘 − 𝜎̄𝑚𝑘 𝛽𝐻 ,

(135)

where the first inequality uses Cauchy-Schwarz. The second inequality bounds the average of the

first norm by Eq. (133), and the bound on the second norm (for any 𝑗) is by definition of Op-

timization Problem 5.4.10. The third inequality relies on the fact that 𝑐 𝑗𝑘,𝐻+1 = 0 if the clipped

inner product is negative, and the final equality is due to the definition of 𝐶 along with the fact

that 𝐴𝑚𝑘 𝑗p(𝑘) = 𝜋
+(𝑆𝑚𝑘 𝑗p(𝑘) ), as this is the last state in the trajectory where SKIPPYPOLICY takes the

inner-product maximizing action (𝜋+) before rolling out with 𝜋0.

By Eqs. (99) and (119), we have that

𝑧𝑘,𝐻+1 +
∑

𝑖∈[𝑘+1:𝐻 ]
Tr(𝐹̂𝑘𝑖) = 1

𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

©­«
𝐻+1∑

𝑖=p(𝑚𝑘 𝑗)+1
𝐸 (𝑆𝑚𝑘 𝑗𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻 ) +𝑅𝑚𝑘 𝑗𝑘→

ª®¬
=

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(
𝐸→(𝑆𝑚𝑘 𝑗p(𝑘)+1, . . . , 𝑅

𝑚𝑘 𝑗
𝐻 ) +𝑅𝑚𝑘 𝑗𝑘→

)
= 𝐸̂ 𝑘

(136)

Combining Eqs. (135) and (136),

𝐶̂𝑘 − 𝐸̂ 𝑘 ≤ 𝜎̄𝑚𝑘 𝛽𝐻 +
(
𝑦𝑘,𝐻+1− 𝑧𝑘,𝐻+1

)
+

∑
𝑖∈[𝑘+1:𝐻 ]

Tr(𝑦𝑘𝑖 − 𝐹̂𝑘𝑖)

≤ 𝜎̄𝑚𝑘 𝛽𝐻 +
(
|E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝑅𝑘→− 𝑧

𝑘,𝐻+1 | + |𝑦𝑘,𝐻+1−E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝑅𝑘→ |
)
+ 𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +3

𝜀

𝐻

(137)

where the sum (last term) is bounded by Eq. (134), and we apply a triangle inequality on the second

term. To continue bounding this term, we apply Hoeffding’s inequality on the independent random
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variables 𝑐 𝑗𝑘,𝐻+1𝑅𝑘→ (for 𝑗 ∈ [𝑛]) that have range [0, 𝐻], along with a union bound over the iteration

𝑚′ ∈ [𝑚′max] and 𝑘 ∈ [𝐻], to get that with probability at least 1− 𝜁 ,

|E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝑅𝑘→− 𝑧
𝑘,𝐻+1 | ≤ 𝐻

√
𝑛

√
log

2𝑚′max𝐻

𝜁
≤ 𝜀

𝑑𝐻2𝜔
. (138)

The remaining term |𝑦𝑘,𝐻+1 −E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝑅𝑘→ | is bounded using the realizability of 𝑞𝜋
0

(Defi-

nition 5.3.2) as follows. Take any 𝑡 ∈ [𝐻]. By definition there exists 𝜃★𝑡 ∈ ΘQ
𝑡 ⊆ B(𝐵), such that

for all 𝑠 ∈ S𝑡 and 𝑎 ∈ [A], 𝑞𝜋0 (𝑠, 𝑎) ≈𝜂
〈
𝜑(𝑠, 𝑎), 𝜃★𝑡

〉
. Take the sequence 𝐴 formed of 𝜑𝑙𝑘 𝑗𝑡 (for

𝑙𝑘 𝑗 ∈ I𝑚(𝑡), in the order that these random variables are observed), and the sequence 𝑋 formed of

𝑅
𝑚𝑘 𝑗
𝑘→ (for 𝑙𝑘 𝑗 ∈ I𝑚(𝑡), in the same order), and the sequence Δ formed of 𝑞𝜋

0 (𝑆𝑙𝑘 𝑗𝑡 , 𝐴
𝑙𝑘 𝑗
𝑡 )−

〈
𝜑
𝑙𝑘 𝑗
𝑡 , 𝜃★𝑡

〉
(for 𝑙𝑘 𝑗 ∈ I𝑚(𝑡), in the same order). Then the sequences 𝐴, 𝑋 , and Δ satisfy the conditions of

Lemma 5.M.4 with a subgaussianity parameter 𝜎 = 𝐻. Due to this lemma, applied with a union

bound over 𝑚′ ∈ [𝑚′max] and 𝑡 ∈ [𝐻], with probability at least 1− 𝜁 ,



𝜃𝑡 ,𝐻+1− 𝜃★𝑡 

𝑋𝑚𝑡
<
√
𝜆


𝜃★𝑡 

2 + ‖Δ‖∞

√
|I𝑚(𝑡) | +𝐻

√
2log

(
𝑚′max𝐻

𝜁

)
+ log

(
det𝑋𝑚𝑡
𝜆𝑑

)
≤ 2+𝐻

√
2log

𝑚′max𝐻

𝜁
+ log

(
det𝑋𝑚𝑡
𝜆𝑑

)
≤ 𝛽 ,

by Eq. (128). Therefore by Cauchy-Schwarz and Eq. (133),

|𝑦𝑘,𝐻+1−E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝑅𝑘→ | ≤
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(


𝜑𝑚𝑘 𝑗p(𝑘)





𝑋−1
𝑚,p(𝑚𝑘 𝑗)




𝜃p(𝑚𝑘 𝑗) ,𝐻+1− 𝜃★p(𝑚𝑘 𝑗)




𝑋𝑚𝑡

+𝜂
)

≤ 𝜎̄𝑚𝑘 𝛽+𝜂 ≤ 𝜎̄
𝑚
𝑘 𝛽+

𝜀

𝑑𝐻2𝜔
.

Combining this with Eqs. (137) and (138),

𝐶̂𝑘 − 𝐸̂ 𝑘 ≤ 1.5𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +3
𝜀

𝐻
+2

𝜀

𝑑𝐻2𝜔
. (139)

We introduce the following notation for 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐻 +1], 𝑖 ∈ [𝐻 +1]:

𝑐
𝑗
𝑘𝑖 = 1

{
p(𝑚𝑘 𝑗) < 𝑖 and




𝜑𝑚𝑘 𝑗p(𝑘)





𝑋−1
𝑚,p(𝑚𝑘 𝑗)

≥ 2(𝛽𝜔𝑑𝐻)−1 and
〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
≥ 0

}
𝑐
𝑗
𝑘𝑖 = 1

{
p(𝑚𝑘 𝑗) < 𝑖 and

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
< 0

}
,
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such that for all 𝑗 ,

𝑐
𝑗
𝑘𝑖 = 𝑐

𝑗
𝑘𝑖 + 𝑐

𝑗
𝑘𝑖 + 𝑐

𝑗
𝑘𝑖 . (140)

Continuing from Eq. (139), as 𝐸→(𝑠𝑖�) +∑𝐻
𝑢=𝑖 𝑟𝑢 ≥ 0 by Eq. (118), and if 𝑐 𝑗𝑘,𝐻+1 = 1 then

𝐶 (𝑆𝑚𝑘 𝑗p(𝑘) ) = 0, we have that

1
𝑛

∑
𝑗∈[𝑛]
(𝑐 𝑗𝑘,𝐻+1+𝑐

𝑗
𝑘,𝐻+1)

(
𝐶 (𝑆𝑚𝑘 𝑗p(𝑘) ) −

(
𝐸→(𝑆𝑚𝑘 𝑗p(𝑘)+1, . . . , 𝑅

𝑚𝑘 𝑗
𝐻 ) +𝑅𝑚𝑘 𝑗𝑘→

))
≤ 1.5𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻+3

𝜀

𝐻
+2

𝜀

𝑑𝐻2𝜔
.

As (even if 𝑐 𝑗𝑘,𝐻+1 = 1) 𝐶 (𝑆𝑚𝑘 𝑗p(𝑘) ) ≤ 𝐻,

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘) ) ≤ 𝐻𝜎̄

𝑚
𝑘 /(2(𝛽𝜔𝑑𝐻)

−1) = 1
2
𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 ,

which combined with the previous inequality and Eq. (140) yields

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(
𝐶 (𝑆𝑚𝑘 𝑗p(𝑘) ) −

(
𝐸→(𝑆𝑚𝑘 𝑗p(𝑘)+1, . . . , 𝑅

𝑚𝑘 𝑗
𝐻 ) +𝑅𝑚𝑘 𝑗𝑘→

))
≤ 2𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +3

𝜀

𝐻
+2

𝜀

𝑑𝐻2𝜔
.

Observe that the random variables 𝑐 𝑗𝑘,𝐻+1
(
𝐶 (𝑆𝑚𝑘 𝑗p(𝑘) ) −

(
𝐸→(𝑆𝑚𝑘 𝑗p(𝑘)+1, . . . , 𝑅

𝑚𝑘 𝑗
𝐻 ) +𝑅𝑚𝑘 𝑗𝑘→

))
are

independent (for 𝑗 ∈ [𝑛]) with range [−2𝐻,𝐻] (Eq. (118)). By Hoeffding’s inequality, with prob-

ability at least 1− 𝜁 , for all iteration 𝑚′ ∈ [𝑚′max] (this includes the entire execution of SKIPPYE-

LEANOR) and 𝑘 ∈ [𝐻],�����E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1
(
𝐶 (𝑆𝑝 (𝑘) ) −

(
𝐸→(𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻 ) +𝑅𝑘→

) )
− 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(
𝐶 (𝑆𝑚𝑘 𝑗p(𝑘) ) −

(
𝐸→(𝑆𝑚𝑘 𝑗p(𝑘)+1, . . . , 𝑅

𝑚𝑘 𝑗
𝐻 ) +𝑅𝑚𝑘 𝑗𝑘→

)) �����
≤ 4𝐻
√
𝑛

√
log

2𝑚′max𝐻

𝜁
≤ 𝜀

𝑑𝐻2𝜔
.

Combining with the previous bound, under the intersection of the high-probability events referred

to above, which by a union bound has a probability of at least 1−3𝜁 , we have that for all 𝑘 ∈ [𝐻],

E𝜋𝑚𝑘 ,𝑠1𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘) ) ≤ E𝜋𝑚𝑘 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 𝑐𝑘,𝐻+1𝐸→(𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻 ) +2𝜎̄𝑚𝑘 𝛽𝜔𝑑𝐻 +4
𝜀

𝐻
.
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5.K. Deferred proofs for Section 5.E.4

Proof of Lemma 5.E.10. Let 𝑚 be the current iteration. Unlike in previous lemmas, here we in-

troduce (𝐺̂, 𝜃) that does not refer to the outcome of Optimization Problem 5.4.10. Instead, let

𝐺̂ = (𝜗𝑖ℎ)ℎ∈[2:𝐻 ],𝑖∈[𝑑0 ] ∈ G be the correct guess. For ℎ = 𝐻, . . . ,1, 𝜃ℎ is defined in sequence along

with the behavior of a policy 𝜋 on stage ℎ.

For ℎ = 𝐻, . . . ,1, assuming that this process already defined 𝜃ℎ+1, . . . , 𝜃𝐻 (in Eq. (142)), let 𝜋

be the policy that, for any 𝑡 > ℎ and 𝑠 ∈ S𝑡 , takes action on 𝑠 as 𝜋+
𝐺̂ 𝜃
(𝑠) with probability 𝜏𝐺̂ 𝜃 (𝑠), and

action 1 with probability 1− 𝜏𝐺̂ 𝜃 (𝑠) (𝜏 is defined in Eq. (95)). Simultaneously, using the second

part of Corollary 5.4.11, define 𝜃ℎ𝑖 ∈ B(4𝑑0𝐵/𝛼) for 𝑖 ∈ [ℎ+1 : 𝐻] to satisfy for all 𝑠 ∈ Sℎ, 𝑎 ∈ [A]:

E𝜋0,𝑠,𝑎Tr(𝐹̄𝐺̂ 𝜃 (𝑆𝑖)) ≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃ℎ𝑖

〉
.

We also define 𝜃ℎ,𝐻+1 ∈ B(𝐵) to satisfy for all 𝑠 ∈ Sℎ, 𝑎 ∈ [A]:

E𝜋0,𝑠,𝑎

𝐻∑
𝑢=ℎ

𝑅𝑢 ≈𝜂
〈
𝜑(𝑠, 𝑎), 𝜃ℎ,𝐻+1

〉
.

By Eq. (119),

E𝜋0,𝑠,𝑎

∑
𝑖∈[ℎ+1:𝐻 ]

Tr(𝐹̄𝐺̂ 𝜃 (𝑆𝑖)) +
𝐻∑
𝑢=ℎ

𝑅𝑢 = E𝜋0,𝑠,𝑎𝐸
→
𝐺̂ 𝜃
(𝑆ℎ+1, . . . , 𝑅𝐻 ) +

𝐻∑
𝑢=ℎ

𝑅𝑢 ≈𝐻𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
,

(141)

where we define

𝜃ℎ =
∑

𝑖∈[ℎ+1:𝐻+1]
𝜃ℎ𝑖 . (142)

We first show that (𝐺̂, 𝜃) is feasible for Optimization Problem 5.4.10. Clearly,


𝜃ℎ

2 ≤

4𝑑0𝐻𝐵/𝛼. For any 𝑖 ∈ [ℎ+1 : 𝐻], let

𝜃ℎ𝑖 = 𝑋
−1
𝑚ℎ

∑
𝑙𝑘 𝑗∈I𝑚 (ℎ)

𝜑
𝑙𝑘 𝑗
ℎ Tr(𝐹𝐺̂ 𝜃 (𝑆

𝑙𝑘 𝑗
ℎ+1, . . . , 𝑅

𝑙𝑘 𝑗
𝐻 )) ,

and let

𝜃ℎ,𝐻+1 = 𝑋
−1
𝑚ℎ

∑
𝑙𝑘 𝑗∈I𝑚 (ℎ)

𝜑
𝑙𝑘 𝑗
ℎ

𝐻∑
𝑢=ℎ

𝑅
𝑙𝑘 𝑗
𝑢 .
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Then, 𝜃 of Optimization Problem 5.4.10 satisfies for all ℎ ∈ [𝐻], by Eq. (119),

𝜃ℎ =
∑

𝑖∈[ℎ+1:𝐻+1]
𝜃ℎ𝑖 .

To show that (𝐺̂, 𝜃) is feasible, it thus suffices to show for all ℎ ∈ [𝐻], 𝑖 ∈ [ℎ + 1 : 𝐻 + 1], that

𝜃ℎ𝑖 − 𝜃ℎ𝑖

𝑋𝑚ℎ
≤ 𝛽.

Fix any ℎ ∈ [𝐻] and 𝑖 ∈ [ℎ+1 : 𝐻 +1]. Take the sequence 𝐴 formed of 𝜑𝑙𝑘 𝑗𝑡 (for 𝑙𝑘 𝑗 ∈ I𝑚(ℎ),

in the order that these random variables are observed). For 𝑖 < 𝐻 + 1 take the sequence 𝑋 formed

of Tr(𝐹𝐺̂ 𝜃 (𝑆
𝑙𝑘 𝑗
𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻 )) (for 𝑙𝑘 𝑗 ∈ I𝑚(ℎ), in the same order), and the sequence Δ formed of

E
𝜋0,𝑆

𝑙𝑘 𝑗
ℎ
,𝐴

𝑙𝑘 𝑗
ℎ

Tr(𝐹̄𝐺̂ 𝜃 (𝑆𝑖)) −
〈
𝜑
𝑙𝑘 𝑗
ℎ , 𝜃ℎ𝑖

〉
(for 𝑙𝑘 𝑗 ∈ I𝑚(ℎ), in the same order). For 𝑖 = 𝐻 + 1, the

sequence 𝑋 is formed of
∑𝐻
𝑢=ℎ 𝑅

𝑙𝑘 𝑗
𝑢 , and Δ is formed of 𝑞𝜋

0 (𝑆𝑙𝑘 𝑗ℎ , 𝐴
𝑙𝑘 𝑗
ℎ ) −

〈
𝜑
𝑙𝑘 𝑗
ℎ , 𝜃ℎ𝑖

〉
. Then the

sequences 𝐴, 𝑋 , and Δ satisfy the conditions of Lemma 5.M.4 with a subgaussianity parameter

𝜎 = 𝐻. Due to this lemma, applied with a union bound over 𝑚′ ∈ [𝑚′max], 𝑡, and 𝑖, with probability

at least 1− 𝜁 ,



𝜃ℎ𝑖 − 𝜃ℎ𝑖

𝑋𝑚ℎ
<
√
𝜆


𝜃ℎ𝑖

2 + ‖Δ‖∞

√
|I𝑚(𝑡) | +𝐻

√
2log

(
𝑚′max𝐻2

𝜁

)
+ log

(
det𝑋𝑚𝑡
𝜆𝑑

)
≤ 2+𝐻

√
2log

𝑚′max𝐻2

𝜁
+ log

(
det𝑋𝑚𝑡
𝜆𝑑

)
≤ 𝛽 ,

by Eq. (128).

Next, we show that the resulting policy 𝜋 is near-optimal. Assume by induction on ℎ =𝐻, . . . ,1,

that for all 𝑡 ∈ [ℎ+1 : 𝐻], all 𝑠 ∈ S𝑡 and 𝑎 ∈ [A],

𝑣𝜋 (𝑠) ≥ 𝑣★(𝑠) − (𝐻 − 𝑡 +1) (𝜀/𝐻 +2𝐻2𝜂0) and (143)〈
𝜑(𝑠, 𝑎), 𝜃𝑡

〉
≈(𝐻−𝑡+1)𝐻𝜂0 𝑞

𝜋 (𝑠, 𝑎) . (144)

To prove the above for 𝑡 = ℎ as well, take any 𝑠 ∈ Sℎ, 𝑎 ∈ [A]. Introduce the random variable 𝑃 that,

for a trajectory following P𝜋0,𝑠,𝑎, takes as its value the index of the first Bernoulli draw of 1 (starting

from index ℎ+1), when the Bernoullis have means 𝜏𝐺̂ 𝜃 (𝑆 𝑗) for 𝑗 ∈ [ℎ+1 : 𝐻], and takes the value

𝐻 + 1 if all of these Bernoullis have outcome 0. Write E𝜋0,𝑠,𝑎,𝑃 [·] for E𝜋0,𝑠,𝑎E𝑃 [· | 𝑆ℎ+1, . . . , 𝑅𝐻 ].
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Then,

E𝜋0,𝑠,𝑎𝐸
→
𝐺̂ 𝜃
(𝑆ℎ+1, . . . , 𝑅𝐻 ) +

𝐻∑
𝑢=ℎ

𝑅𝑢 = E𝜋0,𝑠,𝑎,𝑃𝐷𝐺̂ 𝜃 (𝑆𝑃, . . . , 𝑅𝐻 ) +
𝐻∑
𝑢=ℎ

𝑅𝑢

= E𝜋0,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 +1 {𝑃 < 𝐻 +1}𝐶𝐺̂ 𝜃 (𝑆𝑃)

where we use Eq. (96). Combining with Eq. (141),

〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
≈𝐻𝜂0 E𝜋0,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 +1 {𝑃 < 𝐻 +1}𝐶𝐺̂ 𝜃 (𝑆𝑃)

= E𝜋0,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 +1 {𝑃 < 𝐻 +1} clip[0,𝐻 ]
〈
𝜑(𝑆𝑃, 𝜋+𝐺̂ 𝜃 (𝑆𝑃)), 𝜃𝑃

〉
≈(𝐻−ℎ)𝐻𝜂0 E𝜋0,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 +1 {𝑃 < 𝐻 +1} 𝑞𝜋 (𝑆𝑃, 𝜋+𝐺̂ 𝜃 (𝑆𝑃)) ,

where we used the inductive assumption along with the fact that action-values are bounded in [0, 𝐻].

Observe also that

𝑞𝜋 (𝑠, 𝑎) = E𝜋0,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 +1 {𝑃 < 𝐻 +1} 𝑞𝜋 (𝑆𝑃, 𝜋+𝐺̂ 𝜃 (𝑆𝑃)) ,

and therefore 〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
≈(𝐻−ℎ+1)𝐻𝜂0 𝑞

𝜋 (𝑠, 𝑎) ,

proving Eq. (144) of the inductive assumption for 𝑡 = ℎ.

To show Eq. (143) for 𝑡 = ℎ, by Eq. (144) for 𝑡 = ℎ and the inductive assumption for 𝑡 > ℎ,

〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
≈𝐻 2𝜂0 𝑞

𝜋 (𝑠, 𝑎) ≥ 𝑞★(𝑠, 𝑎) − (𝐻 − ℎ)(𝜀/𝐻 +2𝐻2𝜂0) .

Either 𝜋 chooses the action 𝑎′ maximizing the inner product above, for which

𝑞𝜋 (𝑠, 𝑎′) ≥ max
𝑎∈[A]

𝑞★(𝑠, 𝑎) − (𝐻 − ℎ)(𝜀/𝐻 +2𝐻2𝜂0) −2𝐻2𝜂0 ≥ 𝑣★(𝑠) − (𝐻 − ℎ+1) (𝜀/𝐻 +2𝐻2𝜂0) ,

or it chooses action 1. This can only happen with non-zero probability if 𝜏𝐺̂ 𝜃 (𝑠) < 1, in which

case we have by definition that range𝐺̂Q (𝑠) = rangeQ(𝑠) ≤ 𝜀√
2𝑑𝐻

. Combining with Eq. (90) and
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Proposition 5.4.5, range(𝑠) ≤ 𝜀
𝐻 , and therefore, using Eq. (143) for 𝑡 = ℎ+1, in this case

𝑞𝜋 (𝑠,1) ≥ 𝑞★(𝑠,1) − (𝐻 − ℎ)(𝜀/𝐻 +2𝐻2𝜂0)

≥ 𝑣★(𝑠) − 𝜀
𝐻
−2𝜂− (𝐻 − ℎ)(𝜀/𝐻 +2𝐻2𝜂0) ≥ 𝑣★(𝑠) − (𝐻 − ℎ+1)(𝜀/𝐻 +2𝐻2𝜂0) .

Therefore for any choice of action 𝑎′ of policy 𝜋 in state 𝑠, 𝑞𝜋 (𝑠, 𝑎′) ≥ 𝑣★(𝑠) − (𝐻 − ℎ + 1)(𝜀/𝐻 +

2𝐻2𝜂0). Therefore

𝑣𝜋 (𝑠) ≥ 𝑣★(𝑠) − (𝐻 − ℎ+1)(𝜀/𝐻 +2𝐻2𝜂0) ,

finishing the induction.

We thus conclude that

𝑣𝜋 (𝑠1) ≥ 𝑣★(𝑠1) − 𝜀−2𝐻3𝜂0 .

Combined with Eq. (144) of the inductive assumption, the value of Optimization Problem 5.4.10

can be bounded as

𝐶𝐺̂ 𝜃 (𝑠1) = clip[0,𝐻 ]
〈
𝜑(𝑠1, 𝜋(𝑠1)), 𝜃1

〉
≥ 𝐻2𝜂0 + 𝑣𝜋 (𝑠1) ≥ 𝑣★(𝑠1) −2𝜀 ,

by assumption on 𝜂 being relatively small (Eq. (108)).

5.L. Deferred lemmas

Lemma 5.L.1 (Elliptical potential, Lemma 19.4 from Lattimore and Szepesvári (2020)). Let 𝑉0 ∈

R𝑑×𝑑 be positive definite and 𝑎1 . . . , 𝑎𝑛 ∈ R𝑑 be a sequence of vectors with ‖𝑎𝑡 ‖2 ≤ 𝐿 < ∞ for all

𝑡 ∈ [𝑛], 𝑉𝑡 =𝑉0 +
∑
𝑠≤𝑡 𝑎𝑠𝑎

>
𝑠 . Then,

𝑛∑
𝑡=1

min
{
1, ‖𝑎𝑡 ‖2𝑉 −1

𝑡−1

}
≤ 2log

(
det𝑉𝑛
det𝑉0

)
≤ 2𝑑 log

(
Tr𝑉0 +𝑛𝐿2

𝑑 det(𝑉0)1/𝑑

)
.

Lemma 5.L.2. Let 𝑉 ∈ R𝑑×𝑑 be a symmetric positive definite matrix and (𝑎𝑖)𝑖∈[𝑛] be a sequence of

𝑛 𝑑-dimensional real vectors. Let 𝑉𝑖 =𝑉 +
∑
𝑗∈[𝑖 ] 𝑎 𝑗𝑎

>
𝑗 . Then,

∑
𝑖∈[𝑛]
‖𝑎𝑖 ‖2𝑉 −1

𝑖
≥ min

1,
1
2

∑
𝑖∈[𝑛]
‖𝑎𝑖 ‖2𝑉 −1





162 Chapter 5. Online RL with 𝑞𝜋-realizability

Proof. If
∑
𝑖∈[𝑛] 𝑎𝑖𝑎

>
𝑖 � 𝑉 , then 𝑉𝑖 � 2𝑉 , and therefore

∑
𝑖∈[𝑛]
‖𝑎𝑖 ‖2𝑉 −1

𝑖
≥

∑
𝑖∈[𝑛]
‖𝑎𝑖 ‖22𝑉 −1 =

1
2
‖𝑎𝑖 ‖𝑉 −1 .

Otherwise,
∑
𝑖∈[𝑛] 𝑎𝑖𝑎

>
𝑖 𝑉
−1 has an eigenvalue that is at least 1. As all the other eigenvalues are

non-negative (as 𝑉 is symmetric positive definite), we have that

∑
𝑖∈[𝑛]
‖𝑎𝑖 ‖2𝑉 −1 = Tr©­«

∑
𝑖∈[𝑛]

𝑎𝑖𝑎
>
𝑖 𝑉
−1ª®¬ ≥ 1 .

5.M. Estimation error blow-up guarantees
We borrow Assumption 5.M.1 and Theorem 5.M.2 from Lattimore and Szepesvári (2020) and refer

the reader to the book for the corresponding proof.

Assumption 5.M.1 (Prerequisites for Theorem 5.M.2). Let 𝜆 > 0. For 𝑘 ∈ N+, let 𝐴𝑘 be random

variables taking values in R𝑑 . For some 𝜃★ ∈ R𝑑 , let 𝑋𝑘 = 〈𝐴𝑘 , 𝜃★〉 +𝜂𝑘 for all 𝑘 ∈ N+. Here, 𝜂𝑘 is

a conditionally 1-subgaussian random variable (“noise”), ie. it satisfies:

for all 𝛼 ∈ R and 𝑡 ≥ 1, E[exp(𝛼𝜂𝑘) |F𝑘−1] ≤ exp
(
𝛼2

2

)
a.s.,

where F𝑘−1 is such that 𝐴1, 𝑋1, . . . , 𝐴𝑘−1, 𝑋𝑘−1, 𝐴𝑘 are F𝑘−1-measurable.

Theorem 5.M.2 (Lattimore and Szepesvári (2020), Theorem 20.5). Let 𝜁 ∈ (0,1). Under Assump-

tion 5.M.1, with probability at least 1− 𝜁 , it holds that for all 𝑘 ∈ N,



𝜃𝑘 − 𝜃★

𝑉𝑘 (𝜆) <
√
𝜆 ‖𝜃★‖2 +

√
2log

(
1
𝜁

)
+ log

(
det𝑉𝑘 (𝜆)
𝜆𝑑

)
,

where for 𝑘 ∈ N,

𝑉𝑘 (𝜆) = 𝜆𝐼 +
𝑘∑
𝑠=1

𝐴𝑠𝐴
>
𝑠

𝜃𝑘 =𝑉𝑘 (𝜆)−1
𝑘∑
𝑠=1

𝑋𝑠𝐴𝑠

We generalize this theorem to handle non-zero-mean noise with parametrized subgaussianity.

To handle non-zero-mean noise, we use (Zanette et al., 2020b, Lemma 8). We state the lemma here

and refer the reader to Zanette et al. (2020b) for the proof:
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Lemma 5.M.3 (Zanette et al. (2020b), Lemma 8). For 𝑛 ∈ 𝑁+, let {𝐴𝑖}𝑖=1,...,𝑛 be any sequence of

vectors in R𝑑 and {Δ𝑖}𝑖=1,...,𝑛 be any sequence of scalars such that |Δ𝑖 | ≤ 𝜉 ∈ R with 𝜉 ≥ 0. For any

𝜆 ≥ 0 and 𝑉 (𝜆) = ∑𝑛
𝑖=1 𝐴𝑖𝐴

>
𝑖 +𝜆𝐼 we have:




 𝑛∑

𝑖=1
𝐴𝑖Δ𝑖






2

𝑉 (𝜆)−1

≤ 𝑛𝜉2

Lemma 5.M.4. Let 𝜁 ∈ (0,1), 𝜆 > 0, 𝜎 > 0, and 𝜉 ≥ 0. For 𝑘 ∈ N+, let 𝐴𝑘 be random variables

taking values in R𝑑 . For some 𝜃★ ∈ R𝑑 , let 𝑋̃𝑘 = 〈𝐴𝑘 , 𝜃★〉 + 𝜂𝑘 for all 𝑘 ∈ N+. Here, 𝜂𝑘 is a

conditionally 𝜎-subgaussian random variable, ie. it satisfies:

for all 𝛼 ∈ R and 𝑡 ≥ 1, E[exp(𝛼𝜂𝑘) |F𝑘−1] ≤ exp
(
𝛼2𝜎2

2

)
a.s.,

where F𝑘−1 is such that 𝐴1, 𝑋̃1, . . . , 𝐴𝑘−1, 𝑋̃𝑘−1, 𝐴𝑘 are F𝑘−1-measurable. With probability at least

1− 𝜁 , it holds that for any sequence {Δ𝑖}𝑖=1,... such that |Δ𝑖 | ≤ 𝜉, for all 𝑘 ∈ N,



𝜃𝑘 − 𝜃★

𝑉𝑘 (𝜆) <
√
𝜆 ‖𝜃★‖2 + 𝜉

√
𝑘 +𝜎

√
2log

(
1
𝜁

)
+ log

(
det𝑉𝑘 (𝜆)
𝜆𝑑

)
.

where for 𝑘 ∈ N,

𝑋𝑘 = 𝑋̃𝑘 +Δ𝑘

𝑉𝑘 (𝜆) = 𝜆𝐼 +
𝑘∑
𝑠=1

𝐴𝑠𝐴
>
𝑠

𝜃𝑘 =𝑉𝑘 (𝜆)−1
𝑘∑
𝑠=1

𝑋𝑠𝐴𝑠

Proof. Let 𝑋 ′𝑘 = (𝑋𝑘 −Δ𝑘)/𝜎𝑘 , 𝐴′𝑘 = 𝐴𝑘/𝜎𝑘 , 𝜆′ = 𝜆/𝜎2
𝑘 , and 𝜃 ′★ = 𝜃★, 𝑉 ′𝑘 (𝜆′) = 𝜆′𝐼 +

∑𝑘
𝑠=1 𝐴

′
𝑠𝐴
′
𝑠
>,

and 𝜃 ′𝑘 = 𝑉
′
𝑘 (𝜆′)−1 ∑𝑘

𝑠=1 𝑋
′
𝑠𝐴
′
𝑠. By assumption, 𝑋 ′𝑘 , 𝐴′𝑘 , 𝜆′ and 𝜃 ′★ then satisfy Assumption 5.M.1.

Therefore by applying Theorem 5.M.2, with probability at least 1− 𝜁 , it holds that for all 𝑘 ∈ N,



𝜃 ′𝑘 − 𝜃★

𝑉 ′
𝑘
(𝜆′) <

√
𝜆′ ‖𝜃★‖2 +

√
2log

(
1
𝜁

)
+ log

(det𝑉 ′𝑘 (𝜆′)
𝜆′𝑑

)
.
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Under this high-probability event, since 𝑉 ′𝑘 (𝜆′) = 𝑉𝑘 (𝜆)/𝜎2, substituting into the previous display

yields



𝜃 ′𝑘 − 𝜃★

𝑉𝑘 (𝜆) <
√
𝜆 ‖𝜃★‖2 +𝜎

√
2log

(
1
𝜁

)
+ log

(
det𝑉𝑘 (𝜆)
𝜆𝑑

)
. (145)

Take any sequence {Δ𝑖}𝑖=1,... such that |Δ𝑖 | ≤ 𝜉 and apply the triangle inequality:



𝜃𝑘 − 𝜃★

𝑉𝑘 (𝜆) ≤


𝜃 ′𝑘 − 𝜃★

𝑉𝑘 (𝜆) +



𝜃 ′𝑘 − 𝜃𝑘

𝑉𝑘 (𝜆) , (146)

so it remains to bound


𝜃 ′𝑘 − 𝜃𝑘

𝑉𝑘 (𝜆) .



𝜃 ′𝑘 − 𝜃𝑘

𝑉𝑘 (𝜆) =






𝑉 ′𝑘 (𝜆′)−1
𝑘∑
𝑠=1

𝑋 ′𝑠𝐴
′
𝑠 −𝑉𝑘 (𝜆)−1

𝑘∑
𝑠=1

𝑋𝑠𝐴𝑠







𝑉𝑘 (𝜆)

=






𝑉𝑘 (𝜆)−1
𝑘∑
𝑠=1
(𝑋𝑠 −Δ𝑠)𝐴𝑠 −𝑉𝑘 (𝜆)−1

𝑘∑
𝑠=1

𝑋𝑠𝐴𝑠







𝑉𝑘 (𝜆)

=






𝑉𝑘 (𝜆)−1
𝑘∑
𝑠=1

Δ𝑠𝐴𝑠







𝑉𝑘 (𝜆)

=






 𝑘∑
𝑠=1

Δ𝑠𝐴𝑠







𝑉𝑘 (𝜆)−1

≤
√
𝑘𝜉 ,

(147)

where the final inequality uses Lemma 5.M.3. The proof is finished by plugging in the bounds of

Eqs. (145) and (147) into the triangle inequality of Eq. (146).



Chapter 6

Summary

In this thesis we presented contributions to the field of reinforcement learning with linear function

approximation. Most notable are the query complexity results under optimal (action-)value function

approximation for various access settings, and results under 𝑞𝜋-realizability (all-policy realizability)

for both local access planning and online RL. For 𝑞★ and 𝑣★-realizability, this includes the lower

bounds of Theorems 1.4.1 and 1.4.2 (Theorem 9 of Weisz et al., 2021b, and Theorem 1.1 of Weisz

et al., 2022b) that hold in the most permissive global access setting, and the algorithm and corre-

sponding upper bound of Theorem 1.4.4 (Theorem 1.2 of Weisz et al., 2022b), that holds in the less

permissive local access setting. For 𝑞𝜋-realizability, we present an algorithm and corresponding up-

per bound of Theorem 1.5.1 (consequence of Theorem 1.2 and Theorem 1.3 of Weisz et al., 2022a)

for local access planning, and another algorithm and corresponding upper bound of Theorem 1.5.2

(consequence Theorem 4.1 of Weisz et al., 2023) for online RL. These results are summarized in

Sections 1.4 and 1.5. Along the way, we present various open problems and promising directions

for future work, many of which are summarized in Chapter 1.
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