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Abstract
Wound repair, the closing of a hole, is inherently a physical
process that requires the change of shape of materials, in this
case, cells and tissues. Not only is efficient and accurate
wound repair critical for restoring barrier function and reducing
infection, but it is also critical for restoring the complex three-
dimensional architecture of an organ. This re-sculpting of tis-
sues requires the complex coordination of cell behaviours in
multiple dimensions, in space and time, to ensure that the
repaired structure can continue functioning optimally. Recent
evidence highlights the importance of cell and tissue
mechanics in 2D and 3D to achieve such seamless wound
repair.
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Introduction
During organ development and homeostasis, a contin-
uous epithelium is required for precise morphogenesis
and subsequent organ function. Epithelial wounds must
be repaired quickly and accurately to maintain tissue
patterning and preserve structural integrity. Epithelial
cells range from flat squamous to tall columnar cells,
which organise into a plethora of single or multilayered

sheets, curved tubes, or folds. Through repair, the
movements of individual cells must coordinate to
restore their tissue’s original morphology, a process
www.sciencedirect.com
highly dependent on the original architecture of the
unwounded three-dimensional (3D) tissue.

The mechanical properties of cells and tissues play a key
role in shaping cells and regulating biochemical signal-
ling during wound repair [1e6]. Remarkably, there are
many epithelia that repair rapidly using only cell shape
changes and cell topological rearrangements [7,8].

These epithelial models are useful in studying the
mechanics of re-epithelialization independently of pro-
liferation and inflammation, where many different cell
types and signalling molecules interact. Furthermore,
theoretical (computational) models have helped us to
simplify epithelial systems further to test possible
physical mechanisms driving repair.

In this review, we discuss recent findings of physical
mechanisms that contribute to minor wound repair and
gap closure without the need for compensatory prolifer-

ation. In particular, we will highlight and speculate on
how seemingly non-physical cell behaviours may also
contribute towards physical mechanisms of wound repair.
We will highlight the importance of cell and tissue me-
chanics beyond two dimensions (2D) and towards three
dimensions (3D). Furthermore, we introduce the role of
the basement membrane as an essential constituent of
wound healing models, both in vivo and in silico.
Two dimensional physical repair
mechanisms
Physical wound repair mechanisms have been exten-

sively described in 2D, where supracellular actomyosin
cables [9,10] and crawling cell migration drive closure
[11,12] (Figure 1A). The choice of mechanism depends
on the system, type of damage, and wound size, which is
thoroughly summarised by Begnaud et al. [13].
Actomyosin-driven mechanisms are highly conserved
throughout evolution, as indicated by recent studies in
cnidarians [10,14] and sponges [9]. They are also used
in a wide range of gap-closing morphogenetic processes,
such as dorsal closure and gastrulation [15]. Accordingly,
there are a plethora of molecules that ensure correct

spatiotemporal regulation of actomyosin structures [12].

To execute these distinct behaviours, cells use branched
and linear actomyosin substructures coordinated via
different actin nucleators. When the removal of either
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Figure 1

Two-dimensional physical wound healing mechanisms. a) There are two major physical mechanisms involved in wound healing: the purse-string and
lamellipodia, with actomyosin machinery in red. b) Swirling mechanism, where the cells become softer. Linear actin assembles into a swirling mechanism.
c) Cells intercalating away from the wound edge, with the pink to yellow gradient indicating time. The cell begins at the wound edge (pink) and then moves
away from the wound edge (yellow). d) Blue cells undergo either endoreplication (cell ‘E’) or fusion (tangentially as ‘T’ or radially as ‘R’). The red gradient
in cell ‘T’ indicates that resources are moving towards the wound edge cell after tangential fusion. In all panels, red arrows indicate the direction in which
the cells are being pulled.
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substructure cannot be compensated for, wound healing
defects occur. For instance, when linear actin nucleators,

like Diaphanous and Dishevelled-associated activator of
morphogenesis (Daam), are removed, the intensity of the
actin ring is reduced, causing premature ring disassembly
and defects in tissue repair in Drosophila embryos [16].
In contrast, the removal of branched actomyosin with
Arp2/3 RNAi is compensated for by a novel chiral swirling
mechanism generated by parallel linear actin filaments
[16] (Figure 1B). Removing branched actomyosin might
make cells softer, allowing them to move more freely. As a
result, a swirling mechanism is now able to generate
enough force to move cells inward and close the wound,

eliminating the need for a purse string.
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Decreasing myosin II activity has been shown to
decrease tissue tension in the Drosophila wing disc,

allowing cells to intercalate more [7,17]. This increase
in tissue fluidity, similar to the previously described
swirling mechanism, reduces the need for a purse
string and allows cells to intercalate away from the
wound gap [7,17] (Figure 1C). This prevents cells from
becoming tightly packed together, or “jammed”. As
cells intercalate away, the number of cells at the wound
edge decreases, which reduces cell jamming at the
wound edge, enabling a less strained and more
favourable cell packing configuration [7]. Without in-
tercalations, wound edge cells must elongate into a

highly strained shape to pack into a multicellular
www.sciencedirect.com
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rosette structure when the gap is closed [18]. In
developing tissues, it is vital to unjam the highly
jammed rosette to allow cell and tissue movements
required for morphogenesis and to restore normal cell
patterning, critical for cellecell communication.

An alternative non-actomyosin-driven mechanism of
wound closure is the expansion of cells to ‘plug’ the

wound gap with cellular material. Multinucleate syn-
cytia, or swollen cells, are formed by fusing with
neighbouring cells or by undergoing endoreplication
[6,19e21] (Figure 1D). The size of polyploid cells is
often proportional to the wound size [22]. Endor-
eplication allows cells to grow exponentially without
dividing to replace lost tissue mass, whereas cell fusion
maintains the mass and volume of the tissue whilst
decreasing cell number. Using the Drosophila pupal
epidermis, White et al. found that cells can fuse radially
or tangentially to the wound (Figure 1D). Radial fusion

accelerates closure by reducing the need for intercala-
tion, often the slowest step of healing [7]. This fusion-
induced reduction in cell number at the wound edge
effectively reduces jamming at the wound edge as the
purse string contracts, enabling faster closure.
Tangential fusion, on the other hand, allows distal cells
to quickly pool resources such as actin to the wound
margin, enabling syncytia to move faster than smaller
cells [20]. Autophagy is required for the formation of
multinucleate syncytia in post-embryonic wound
healing [23], but in embryonic Drosophila wounds,

autophagy prevents cell swelling, which slowed wound
repair [24]. Wound-induced polyploidy also has impli-
cations for tissue mechanics and homeostasis post-
repair. This was demonstrated in the Drosophila
abdomen where myosin II upregulation in polyploid
cells increases epithelial tension to compensate for
severed muscle fibres necessary for abdominal bending
[6]. Other mechanisms may arise when the mechanical
properties of the environment constrict movement. For
instance, Caenorhabditis elegans have a collagen-rich
cuticle encasing their epidermis and during wound
repair, microtubule dynamics are required for actin ring

recruitment [25].

The behaviours described in these studies have
focussed on the apical plane. While this may be repre-
sentative of flatter epithelia consisting of squamous or
cuboidal cells, many tissues are curved or formed of
taller columnar cells with complex morphologies
[26,27], and therefore more complex mechanisms may
be required for wound closure and to restore original
tissue morphologies.
Two dimensional computational models
Many theoretical (computational) models have been
used to test potential biophysical mechanisms of wound
repair, offering valuable insights. So far, most theoretical
www.sciencedirect.com
models have simplified the problem to 2D, focussing on
either the apical or the basal domain [28e34]. A
common theoretical framework to model wounded
epithelia is the vertex model, where cells are repre-
sented as polygons and their vertices move according to
different energy contributions. These vertex models
have been used to infer how the mechanical properties
of wing disc cells change in response to small wounds

[7,35]. Simulations have suggested that, depending on
the initial geometry of the cells and the mechanical
properties of the tissue, different mechanisms may
emerge to seal the wound [7,35]. For example, if the
tissue is more “fluid,” cells can intercalate more easily
and flow away from the wound, reducing the need for an
actomyosin purse-string to a minimum, as others have
suggested in the Drosophila embryo during dorsal closure
[36]. However, if cells cannot easily remodel their
junctions and intercalate, i.e., they are in a more “solid”
state, then cell shape changes, such as cell elongations

to form a multicellular rosette around the wound, might
be more physically favourable.

Other biophysical models have been used to study
tissue repair, such as Cellular Pots Models (CPM),
where each cell is a subset of lattice regions moving
within a bigger rectangular space depending on some
set of defined rules. For instance, Hirway, Lemmon and
Weinberg developed a hybrid cellular pots model
(hCPM) to study cells undergoing epithelial-
mesenchymal transition (EMT) during wound healing

[29]. Interestingly, by coupling intracellular and extra-
cellular signalling with migration and mechanical forces,
they discovered that, even though EMT is initiated at
the wound edge, it is propagated to neighbouring cells
towards the tissue interior due to mechanical coupling.
Overall, they suggested a tight coupling between
mechanochemical signalling, the extracellular matrix
(ECM), and EMT [29].
Three dimensional wound repair
mechanisms
Although wound repair experiments and theoretical
models have been simplified to 2D, cells, tissues, and
wounds are inherently 3D structures. 3D cell shape is
governed by surface tension. Surface tension, in turn, is
controlled by cortical tension, cellecell contacts, and
cell-ECM contacts, which are all altered during tissue

repair. Despite advances in 3D computational model-
ling, investigating 3D cell behaviours experimentally is
technologically and computationally challenging, espe-
cially in in vivo multicellular crowded tissues. For
example, in pseudostratified epithelia, nuclei are stag-
gered across the apicobasal axis, and as a result, cells are
scutoids [27]. In many epithelia, apical and basal cell
surfaces can intercalate independently [37] (Figure 2A).
Therefore, it may be incorrect to assume that the
behaviour of the apical surface approximates that of the
Current Opinion in Cell Biology 2024, 87:102324
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Figure 2

Physical mechanisms in three dimensions. a) 3D coordination between the apical and basal domain, emphasising the importance of considering
apical and basal differences. Four cells with a scutoidal shape are displayed in red, blue, green, and yellow. Note that red and blue are neighbours
apically, but not basally. b) Top: four cells with a gap or wound as the empty space. Bottom: Cells at the wound edge start to change shape to close the
wound gap while maintaining their original cell volume. c) The left cell undergoes endoreplication, and the result is the cell on the right. The cell has grown
in volume but not in height, increasing the jamming of tissue and restoring its global tensile state. d) Three cells fuse into one (left to right), resulting in a
decrease in tension locally. It will also be energetically beneficial since apico-basal coordination is no longer required, nor are intercalations amongst
these three cells. e) The cell (blue) on the left has a stiffer substrate (grey waves), which enables it to move as if it were on a solid surface. Cell on the right
has a softer or no substrate, which prevents it to engage and move on the substrate. In turn, Myosin II and Actin can be recruited apically which allows the
cell to create a contractile purse-string. Note that, overall, red arrows suggest the direction of the forces being applied. Grey arrows indicate time.
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whole cell. Live imaging of these complex 3D tissues
requires high spatial and temporal resolution, together
with the time-intensive and often manual segmentation
of multiple cells to extract 3D morphological quantifi-
cations. As such, little is known about the lateral and
basal behaviours of cells during wound healing.

In limited in vitro cell culture studies where cells are

relatively flat, myosin accumulations appear to move from
the apicolateral membrane to the basolateral membrane,
showing spatially distinct behaviours in 3D [38]. Xu et al.
measure an approximately 40% decrease in monolayer
height at the wound edge compared to the regular
monolayer [8] (Figure 2B). This supports the hypothesis
proposed by Ioannou et al. where cells must shorten to
preserve their volume in their 3D model [4]. Combining
cell shape changes with an increase in wound edge cell
volume would increase the efficiency of healing as they
‘fill up’ the gap. If cells undergo endoreplication to in-

crease their volume, global tissue tension would also
likely change as surrounding cells become compressed to
accommodate the growing cell (Figure 2C). Since
endoreplication also triggers the upregulation of myosin
II [6], it increases the contractile behaviour of the cell,
providing a way to restore tension to its original state
(Figure 2C). Alternatively, fusing with neighbouring cells
dissipates tension at tricellular junctions by removing
them where needed, thus reducing local tissue tension
(Figure 2D). A single large cell may be more beneficial
than the equivalent volume distributed across several

smaller cells, as fewer junctions must be remodelled.
Furthermore, the need to coordinate the movement of
multiple apical and basal surfaces is eliminated as several
cell faces are reduced to only one (Figure 2D). Overall,
these mechanisms change the tissue tension either
locally or globally as needed, which will vary according to
its stage in development or homeostatic func-
tion [7,19,39].
Three dimensional computational models
To quantitatively study the coordination of complex 3D
cell shape changes in driving tissue morphogenesis and
the physical benefits of, for example, cell fusion for tissue
repair, we must develop 3D models of wound repair [40].
Ioannou et al. highlighted the importance of cell shape
changes not only on the apical side but also in 3D for
wound closure [4]. They developed a 3D vertex model to

analyse the mechanical forces during tissue repair in the
Drosophila imaginal wing disc. Remarkably, they predic-
ted that cells at the wound edge should change height if
their volume must be preserved. Considering that the
apical and basal domains have different mechanical
forces, where the apical forces dominate, tilted cells
appear at the wound edge. Tilted cells have been linked
to a greater number of intercalations [26] which could
explain the onset of intercalations measured by Tetley
et al. towards the end of wound healing [7].
www.sciencedirect.com
Recently, the field has been shifting towards under-
standing the role of cell substrates (modelled as the
basement membrane or ECM) during gap closure
[41,42]. Of particular interest is Bai and Zeng’s work,
where they developed a finite element model with an
epithelial monolayer sheet and a thicker layer of ECM
substrate. They predicted that wound closure effi-
ciency correlates to lamellipodia protrusion strength

[41]. Altogether, these models show an increasing
importance in the role of cell geometry, wound geom-
etry, and the surrounding substrate in regulating wound
closure mechanisms.
The basement membrane
An important component affecting 3D tissue
morphology is its underlying substrate, the extracellular
matrix (ECM), known as the basement membrane (BM)
in epithelial tissues [43,44]. The role of ECM mechan-
ical properties such as stiffness and alignment is well
established in cell migration [43]. Substrate stiffness can
provide feedback on the cell’s mechanical state, with
Sonam et al. finding that Madin-Darby Canine kidney
(MDCK) monolayers switch from compressive stress on
stiff substrates to highly tensile on soft substrates [45].

Similarly, Ajeti et al. found that on stiff substrates,
monolayer elasticity increases and lamellipodia-driven
wound closure is favoured, whilst on softer substrates,
monolayer elasticity decreases and the purse-string
mechanism is favoured instead [32]. The rate of
wound closure seems to be independent of substrate
rigidity [32]. This choice in strategy may be explained by
the localisation of actin machinery dependent on the
substrate stiffness. On a stiff substrate, the cell is able to
attach to the substrate, allowing lamellipodia to stably
form, but on soft or completely damaged substrates, it
would be harder for the cells to attach. Instead, actin

concentrates on the apical surface of the cell to generate
tension by forming cables (Figure 2E).

The exact role of the BM during in vivowound repair will
depend on whether the BM is itself damaged or not
during wounding. To date, relatively little in vivo work
has explicitly addressed this; however, if one likens
in vitro findings of cell migration on soft substrates to
damaged BM scenarios, one may be able to extend
in vitro mechanisms into in vivo settings. For example,
similar to the above MDCK studies, Kamran et al. found

that removing BM from Clytia hemisphaerica wounds
causes a rapid switch from lamellipodia-dependent cell
crawling to purse string-mediated closure [10,14],
reinforcing the idea of the BM as a key participant in the
mechanical environment and in defining wound closure
mechanisms. Although the role of the BM on 3D cell
shape during tissue morphogenesis is clear, little is
known during wound healing [44], although there is
clear evidence of crosstalk and transmission of forces
between the ECM and epithelia during repair [46]. Ly
Current Opinion in Cell Biology 2024, 87:102324
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et al. recently found that the cell-matrix protein Talin is
polarised at wound edge cells in Drosophila embryos.
When Integrin was knocked down, E-cadherin at
tricellular junctions and the actin purse string were
reduced [47]. During mouse neural tube closure, there
is also an integrin-mediated zippering mechanism
driving closure, in addition to actomyosin purse-string
and cell crawling [48]. However, little work has

focussed on the role of the cell-BM adhesions and the
BM itself in the modulation of 3D cell shape during
wound healing in in vivo tissues.
Conclusions and future perspectives
It is evident from tissue morphogenesis that it is
important to consider the 3D geometry of cells;
tissue repair is no exception. Understanding how the
apical, lateral, and basal domains of cells interact
together with their surrounding micro-environment is
key to having a complete picture of the mechanical
landscape of tissue repair. Even revisiting previously
described wound healing mechanisms in 3D will yield
new insights with the latest developments in micro-
scopy. To overcome the bottleneck of image analysis,
advances in artificial intelligence and segmentation are

needed [49,50].

It is also important to consider how we define a perfectly
healed system. Is the ‘simple’ restoration of size, shape,
and cell types sufficient? Or should we also assess the
function, such as the ability to withstand the same
mechanical load? Clearly, it is important to repair
without a scar, to stop inflammation, and to prevent
‘over-healing’. All of this requires consideration of the
microenvironment, with the BM being the immediate
non-cellular structure surrounding epithelia. BM de-
fects in wound repair may have wider disease implica-

tions, such as in epithelial polarity, EMT, cancer
progression, and fibrosis [51]. A deeper understanding of
the role of the basement membrane, as well as how this
is coordinated with 3D cell dynamics, will be essential
for a complete understanding of efficient and accurate
wound repair.
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