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Abstract
Multiple imputation (MI) is a popular method for handling missing data. Auxil-
iary variables can be added to the imputation model(s) to improve MI estimates.
However, the choice ofwhich auxiliary variables to include is not always straight-
forward. Several data-driven auxiliary variable selection strategies have been
proposed, but there has been limited evaluation of their performance. Using
a simulation study we evaluated the performance of eight auxiliary variable
selection strategies: (1, 2) two versions of selection based on correlations in the
observed data; (3) selection using hypothesis tests of the “missing completely
at random” assumption; (4) replacing auxiliary variables with their principal
components; (5, 6) forward and forward stepwise selection; (7) forward selec-
tion based on the estimated fraction of missing information; and (8) selection via
the least absolute shrinkage and selection operator (LASSO). A complete case
analysis and an MI analysis using all auxiliary variables (the “full model”) were
included for comparison.We also applied all strategies to amotivating case study.
The full model outperformed all auxiliary variable selection strategies in the sim-
ulation study, with the LASSO strategy the best performing auxiliary variable
selection strategy overall. All MI analysis strategies that we were able to apply
to the case study led to similar estimates, although computational time was sub-
stantially reduced when variable selection was employed. This study provides
further support for adopting an inclusive auxiliary variable strategy where possi-
ble. Auxiliary variable selection using the LASSOmay be a promising alternative
when the full model fails or is too burdensome.
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1 INTRODUCTION

Missing data are often encountered in medical research. Many studies aim to estimate an expected value (e.g., a mean
or proportion) or an exposure–outcome association. Restricting the analysis to individuals with available data, that is,
analyzing complete cases, can lead to bias or loss of precision in these estimates compared to if all data were observed
(Little & Rubin, 2002). Multiple imputation (MI) is a popular two-stage method for handling missing data that can pro-
duce valid estimates and standard errors (SEs) of target quantities under relaxed assumptions regarding the mechanism
leading to missing data (Rubin, 2004; van Buuren, 2018). In the first stage of MI, missing data are imputed multiple times
with random draws from the predictive distribution of the missing values given the observed data and a specified impu-
tation model. In the second stage, the statistical analysis of interest is applied to each imputed data set and the results are
combined using Rubin’s rules to obtain a single estimate with associated SE (Rubin, 2004). When and how MI should be
applied depends on the target of analysis, the reasons for missing data and whether incomplete records are informative
about the target parameter.
MI is usually carried out using either multiple imputation by chained equations (MICE) or multivariate normal impu-

tation (MVNI). MICE, also known as “fully conditional specification,” “regression switching,” or “sequential regression
multiple imputation,” is a flexible MI approach in which univariate imputation models are specified for each variable
with missing data (White et al., 2011). Imputed values for each variable with missing data are then generated using these
models, one variable at a time, until all missing values are replaced (one cycle). The algorithm carries out a number of
cycles before obtaining one imputed data set, and then this procedure is repeated𝑚 times to obtain𝑚 sets of complete data
that differ in their imputed values. The second approach, MVNI, is based on the assumption that all incomplete variables
jointly follow amultivariate normal distribution. Imputations are obtained from this model using the Data Augmentation
algorithm (Schafer, 1997).
Although the availability of MI procedures in statistical software such as R, Stata and SAS has madeMI widely accessi-

ble and easy to implement in practice, the user still needs to make a number of decisions in order to carry out an analysis
using MI, including which variables to include in the imputation model and in what form (van Buuren et al., 1999). Best
practice is to include all variables that appear in the main analysis, in the same form, as predictors in the imputation
model (Meng, 1994). Failure to do so could introduce bias in MI estimates. A key benefit of MI is that additional variables
that do not appear in the main analysis, known as “auxiliary variables,” can be added to the imputation model to improve
performance by reducing bias and/or increasing precision (Collins et al., 2001; Schafer, 2003). Candidate auxiliary vari-
ables are variables that are related to the variables with missing data and possibly also related to the missingness of the
variables with missing data (Schafer, 1997). The extent to which auxiliary variables reduce bias or improve precision inMI
estimates depends on the missingness mechanism, the estimand and the relationship between the auxiliary variables and
the variables with missing values (Collins et al., 2001; Hardt et al., 2012).
The choice of which auxiliary variables to include in the imputation model is not always straightforward. Traditionally

the recommendation has been to use an inclusive auxiliary variable selection strategy, that is, to include more auxiliary
variables rather than fewer (Collins et al., 2001). This advice is particularly pertinent when the imputer and analyst are
different people because the imputer must accommodate a wide range of potential analyses (Rubin, 1996). However, with
the increase in computing power and availability of software, it is easier now for the same person to perform both jobs,
allowing each analysis to have a tailored MI procedure (i.e., the “impute once, analyze once” approach; Graham, 2012).
Furthermore, the sheer size of modern data sets means there are often many potential auxiliary variables available to
choose from. For example, the Longitudinal Study of Australian Children (LSAC) is an ongoing, large-scale longitudinal
study that collects data onhundreds of variables at eachwave (currently up towave 9, Sanson et al., 2002).While it has been
recommended that imputations should not be created using a model that is too restrictive (van Buuren, 2018), including
too many auxiliary variables in an imputation model can be problematic (Carpenter & Kenward, 2008; Hardt et al., 2012).
There are two main issues with adopting the inclusive auxiliary variable strategy. First, imputation algorithms may

automatically drop variables or fail completely due to numerical problems such as perfect prediction, where categories of
the response variable are perfectly separated by a linear combination of the covariates, or collinearity, where covariates
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are highly correlated (Nguyen et al., 2021; White et al., 2010). With many auxiliary variables included in the imputation
procedure, encountering these types of computational issues aremore likely. For example, Nguyen et al. (2021) considered
different approaches to estimate an exposure–outcome association usingMIwhen the exposure, covariates, and composite
outcome all contained missing values. Of the 11 imputation model specifications they considered, 7 failed to generate
imputations due to perfect prediction (3), collinearity (1), or convergence failure (3). Second, including toomany auxiliary
variables in the imputation model may have a detrimental effect on the properties of MI estimates. Hardt et al. (2012)
found that including too many auxiliary variables increased bias and reduced precision of MI estimates, which led to the
recommendation that the number of variables included in the imputation model should be no more than a third of the
number of cases with complete data. After a sufficient number of suitable auxiliary variables have been included in the
imputationmodel, the benefits of addingmoremay be small (Graham, 2012). For example, van Buuren et al. (1999) suggest
that no more than 15–25 variables are needed in the imputation model in practice. Unlike the recommendation provided
by Hardt et al. (2012) who consider limiting the number of auxiliary variables based on the sample size, van Buuren et al.
(1999) justify their suggestion based on diminishing returns in the increase in explained variance from linear regression
after including additional variables. These two issuesmotivate the desire to employ an auxiliary variable selection strategy
when there are a large number of potential auxiliary variables available.
The aim of this studywas to provide a broad comparison of a range of strategies for selecting the set of auxiliary variables

for the imputationmodel inMI. Using a simulation study, we evaluated eight auxiliary variable selection strategies against
two “benchmark” analysis strategies that do not use any auxiliary variable selection: a complete case analysis andMI using
all auxiliary variables (the “full” imputation model). We also illustrate the implication of the method choice in practice by
applying each analysis strategy to the motivating LSAC case study. In Section 2, we describe the motivating case study. In
Section 3, we describe the auxiliary variable selection strategies that were evaluated. In Section 4, we describe the design
of the simulation study. Results are provided in Section 5 and the strategies are applied to the motivating case study in
Section 6. A discussion of these results and a summary of our key messages are provided in Section 7.

2 MOTIVATING EXAMPLE: THE LONGITUDINAL STUDY OF AUSTRALIAN
CHILDREN

The LSAC is a large-scale longitudinal study, with the aim of investigating the effect of a child’s environment on their
well-being throughout life (Sanson et al., 2002). Two cohorts were recruited into the study in 2003: the baby “B” cohort,
consisting of participants aged 0–1 years at wave 1, and the kindergarten “K” cohort, consisting of participants aged 4–5
at wave 1. This case study uses data from the 4983 children in the K cohort of LSAC to examine the association between
body mass index (BMI) z-score at 4–5 years of age and health-related quality of life (HRQoL) problems at 12 and 13 years
of age. This case study is a simplified version of a regression analysis that appears in Jansen et al. (2013).
The analysis of interest aimed to estimate the effect of BMI z-score on HRQoL using a linear regression model with

adjustment for potential confounders. The outcome of interest, HRQoL, was measured using the Total Scale Score of
the Pediatric Quality of Life Inventory (PedsQL) collected at wave 4 (Varni et al., 2003). The PedsQL scale is made
up of either 21 or 23 items (depending on the child’s age), each of which is measured on a 5-point Likert scale with
1 corresponding to “never a problem” and 5 corresponding to “always a problem.” The Total Scale Score is calculated
as the average of the observed scale items, after a reverse linear transformation of items in the following manner:
1 = 100, 2 = 75, 3 = 50, 4 = 25, and 5 = 0. The exposure was BMI z-score at wave 1. BMI at each wave was calculated
using height and weight measurements taken by an interviewer. These measurements were standardized by age and
sex to derive the BMI z-score. Several potentially confounding covariates were measured at wave 1: child sex, child age,
whether the child was Aboriginal or Torres Strait Islander, whether the child had a non-English speaking background and
the socioeconomic status of the child’s family.
The parameter of interest was the coefficient of BMIz in the following linear regression model, adjusted for potential

confounders:

E(HRQoL) = 𝛽0 + 𝛽1BMIz + 𝛽2Female + 𝛽3Age + 𝛽4IndStat + 𝛽5NonEng + 𝛽6SES, (1)

where Female is an indicator for whether the child is female, Age is the age in months for the child at wave 1, IndStat is
an indicator for whether the child is Aboriginal or Torres Strait Islander, NonEng is an indicator for whether the child has
a non-English speaking background, and SES is a standardized score representing the socioeconomic status of the child’s
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family at wave 1. HRQoLwasmissing for 17.4% of participants. A small percentage of participants were alsomissing values
for BMIz, IndStat, NonEng, and SES (Supporting Information Table 1). We have shown previously that individuals with
missing data on one or more variables in the analysis model had lower mean HRQoL and SES, and were more likely to be
Aboriginal or Torres Strait Islander or come from a non-English speaking background than individuals with complete data
on all variables (Mainzer et al., 2021). Furthermore, LSAC collects data on hundreds of variables at each wave, resulting
in a large number of potential auxiliary variables available in the data set. The assumption that nonresponse in HRQoL
does not depend on HRQoL itself after conditioning on variables in the imputation model is more plausible when the
conditioning set includes auxiliary variables, and evenmore so if there are a large number of these. Thus,MIwas identified
as a more appropriate method of estimating 𝛽1 than a complete case analysis, which conditions only on variables in the
analysis model. We note that it may be the case that missingness in HRQoL depended on HRQoL even after conditioning
on analysis and auxiliary variables, resulting in the data being “missing not at random,” but this would imply the need for
sensitivity analysis under specific substantive assumptions (Moreno-Betancur et al., 2018).We do not consider this further.
A subset of 85 auxiliary variables for inclusion in the imputation model was initially identified across the four waves

of data collection based on substantive knowledge. This subset was the PedsQL scale items (measured at waves 1–3; 67
ordinal items in total); GlobalHealthMeasure (GHM,measured atwaves 1–4), a rating of the child’s current health; special
health care needs (measured at waves 1–4), a variable that indicates whether the child has a health condition that requires
special care; Strengths and Difficulties Questionnaire (SDQ, measured at waves 1–4), a scale score providing information
on the child’s behavior; Matrix Reasoning Test (measured at waves 2–4), a measure of the nonverbal intelligence of the
child; and the Peabody Picture Vocabulary Test (measured at waves 1–3), a scale score providing information on the child’s
vocabulary. The case study had twomajor complexities that were not incorporated into the design of the simulation study
(Section 4). First, the exposure, two covariates and all auxiliary variables had somemissing values. Second, the case study
involved different types of variables (including highly skewed ordinal PedsQL items). Further details of the variables in
this case study, including percentage of missing data, are provided in Supporting Information Table 1.

3 AVAILABLE AUXILIARY VARIABLE SELECTION STRATEGIES

Several strategies have been proposed to specify an imputation model for an incomplete variable using a reduced set of
auxiliary variables prior to performing the imputation. van Buuren et al. (1999) use the following four-step strategy for
quick, data-based selection of variables to be included in the imputation model for the incomplete variable. First, include
all variables that appear in the analysis model. Then add variables that are related to the nonresponse in the incomplete
variable according to a suitable criterion, such as the level of correlation between the variables undergoing selection and
themissingness indicator of the incomplete variable. Next, add variables that explain a considerable amount of variance in
the incomplete variable. Lastly, remove any variables in steps two and three that have too many missing values. Variables
in steps two and three can be chosen based on their correlation with the missingness indicator of the incomplete variable
and their correlation with the incomplete variable, respectively, while variables in step four can be identified by a criterion
such as the proportion of usable cases (i.e., the proportion of observed cases in the variable being selectedwithin the subset
of cases where the incomplete variable is unobserved). This strategy has been implemented in the quickpred function
in the R package mice to specify imputation models for each incomplete variable in the MICE procedure (van Buuren &
Groothuis-Oudshoorn, 2011), and has been adopted in practice to choose an imputation model when the full model is not
feasible (Clark & Altman, 2003; Heymans et al., 2007). A similar strategy is given by Graham (2012), with guidance on
correlation cutoffs for inclusion of variables (0.4 if the variable is a cause of missingness, 0.5 otherwise, p. 197) but it is
noted that these can be reduced to includemore variables if there are a relatively small number of variables in the analysis.
In a different approach, Howard et al. (2015) suggest using principal components of auxiliary variables in the imputation

model, instead of the auxiliary variables themselves. Strictly speaking, this approach is a dimensionality reductionmethod
rather than a variable selection method, but we included it in this comparison since it has also been adopted in practice
to specify the imputation model (Erentaitė et al., 2018; Jensen et al., 2018; Jensen & Orsmond, 2019; Latzman et al., 2015;
Metzger et al., 2018; Nair et al., 2018; Roche et al., 2019), with the R package PcAux available to aid its implementation
(Lang et al., 2017).
Other strategies for selecting auxiliary variables utilize hypothesis tests or penalized regression. The ice package in

Stata has an option to construct imputation models for each incomplete variable using stepwise selection (Royston &
White, 2011). An additional step is added between the initialization of the MICE algorithm (where one imputation is
performed to obtain a complete data set) and performing the imputation, in which the stepwise command is used on
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the complete data set to select variables for each of the univariate imputation models. A related approach proposed by
Andridge and Thompson (2015) uses forward selection with the fraction ofmissing information (FMI) due to nonresponse
(estimated as the ratio of between-imputation variance to total variance for a given estimator; Little & Rubin, 2002) for
the mean of the incomplete variable as the selection criterion for inclusion of auxiliary variables in the imputation model
for that variable. Dixon and Brown (1983) described the implementation of two-sample t-tests to identify other variables
that are associated with missingness in the incomplete variable. The sample is split into two groups based on the presence
or absence of values of the incomplete variable. t-Tests are then applied to the other variables using this grouping, with
large test statistics providing evidence that the probability of being missing is not the same for all cases, that is, data are
not missing completely at random (MCAR, Rubin, 1976). Enders (2010) suggests results from such t-tests can be used to
identify, and limit the number of, potential auxiliary variables. Another approach is to use the least absolute shrinkage
and selection operator (LASSO), which simultaneously performs variable regularization and selection, to select auxiliary
variables for the imputationmodel (James et al., 2021). This approach has been used for dimension reduction in the context
of high-dimensional data (Zhao & Long, 2016).
In this paper, we evaluate the performance of the following strategies (described in detail in Section 4.4): (1, 2) two

versions of the four-step strategy used by van Buuren et al. (1999) (2018); (3) selection of predictors of missingness in the
incomplete variable using hypothesis tests of theMCAR assumption; (4) replacing auxiliary variables with a subset of their
principal components; (5, 6) forward and forward stepwise selection of predictors of the incomplete variable; (7) forward
selection based on the FMI; and (8) selection via the LASSO.

4 SIMULATION STUDY

A simulation study was conducted to evaluate the performance of the above strategies for selecting auxiliary variables
for inclusion in the imputation model for an incompletely observed variable when estimating a marginal mean or an
exposure–outcome association. For simplicity, we focused on the setting where there is one incompletely observed con-
tinuous outcome, one completely observed continuous exposure, one completely observed confounding variable, and a
set of completely observed continuous auxiliary variables.

4.1 Simulation of complete data

Let𝑋 denote a complete continuous exposure variable,𝑌 denote an incomplete continuous outcome, 𝑍 denote a complete
continuous covariate and 𝐀 = (𝐴1, 𝐴2, … ,𝐴𝑝)⊤ denote a 𝑝-vector of continuous complete potential auxiliary variables.
Also let 𝟎𝑐 denote a 𝑐-dimensional vector of 0s.We considered sample sizes of 𝑛 ∈ {250, 1000} to reflectmoderate and large
studies, combined factorially with the ratio of sample size to number of auxiliary variables 𝑛∶𝑝 ∈ {10∶1, 3∶1}, resulting
in four combinations: (i) 𝑛 = 250 and 𝑝 = 25, (ii) 𝑛 = 250 and 𝑝 = 83, (iii) 𝑛 = 1000 and 𝑝 = 100, and (iv) 𝑛 = 1000 and
𝑝 = 333.
Data for (𝑌, 𝑋, 𝑍, 𝑨⊤)⊤ were generated from amultivariate normal distribution with mean 𝟎𝑝+3 and correlation matrix

𝚺. Since the strength of relationship between an auxiliary variable and a variable with missing data is a key consideration
for inclusion in the imputation model (Graham, 2012; Hardt et al., 2012; van Buuren, 2018), we designed 𝚺 such that there
was a range of realistic correlations between 𝑌 and each auxiliary variable. This was done by assigning auxiliary variables
into one of three groups, where variables in group one had moderate correlations with 𝑌 (0.4 on average), variables in
group two had low correlations with 𝑌 (0.2 on average) and variables in group three had very low correlations with 𝑌
(0.1 on average). In particular, the requirement for 𝚺 to be positive semidefinite meant that we could not consider too
many auxiliary variables that were highly correlated with 𝑌. However, very large correlations were not observed in the
case study (Supporting Information Figure 1). We also designed 𝚺 to have (i) 80% power to reject the null hypothesis that
the coefficient of 𝑋, 𝛽𝑋 , in the analysis model (see Equation 2) is equal to 0 at the 5% level of significance; and (ii) a
similar correlation structure across each of the different scenarios. The form and construction of 𝚺 are described in detail
in Supporting Information Section 2.1.
We generated 2000 data sets so that the Monte Carlo SE for the estimated coverage probability of the 95% confidence

intervals for our estimands (see Section 4.3) was less than 0.5%. Data sets were generated in R using mvrnorm, which
utilizes an eigenvalue decomposition of the covariance matrix.
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4.2 Imposing missing data

After generating the complete data, values of𝑌 were set tomissing with a probability determined by the logistic regression
model

logit P(𝑀𝑌 = 1) = 𝛾0 + 𝛾𝑋𝑋 + 𝛾𝑍𝑍 + 𝜸
⊤
𝑨
𝑨,

where 𝑀𝑌 denotes the missingness indicator for 𝑌, and (𝛾0, 𝛾𝑋, 𝛾𝑍, 𝜸⊤𝑨)
⊤ ∈ ℝ𝑝+3 determines the proportion of missing

data, which variables are related to𝑀𝑌 and the strength of the missingness mechanism.
For each combination of 𝑛 and 𝑛∶𝑝, the following missingness mechanism was used. Values of 𝑌 had a 30% chance

of being missing and the odds of missingness increased by 20% with every 1 standard deviation increase in each of 𝑋, 𝑍
and a set of auxiliary variables chosen to be associated with missingness, conditional on the other variables associated
with missingness. This was achieved by setting 𝛾𝑋 = 𝛾𝑍 = log(1.2) and the elements of 𝜸𝑨 to either 0 or log(1.2). For the
scenario where 𝑛 = 1000 and 𝑝 = 100 (the scenario closest to the case study), we additionally examined (i) the impact of
increasing the proportion of missing data in 𝑌 from 30% to 50% and (ii) the impact of increasing the conditional odds of
missingness from a 20% increase to a 100% increase. Since three different groups of auxiliary variables were considered,
in all scenarios we set 𝜸𝑨 such that half of the auxiliary variables in each group were associated with 𝑀𝑌 . In terms of
Rubin’s missingness mechanisms, 𝑌 is “missing at random.” More precisely, missingness is independent of 𝑌 given 𝑋,
𝑍, and 𝑨. The strength of the missingness mechanism was chosen based on what was observed in the LSAC case study.
Estimated odds ratios were obtained from univariate logistic regressions of the missingness indicator for HRQoL on all
other variables in the case study, which were rescaled to have mean 0 and variance 1. These odds ratios ranged from
0.6 to 1.3 (Supporting Information Table 1 and Supporting Information Figure 2). A value of log(1.2) was chosen for the
missingness model coefficients based on the distribution of the odds ratios. For simplicity, the strength of association
with missingness was chosen to be same for all variables associated with missingness. The missingness probabilities were
chosen to moderately large, but realistic. In Supporting Information Section 2.2, we describe how 𝛾0 was calculated to
achieve the desired proportions of missingness in 𝑌.

4.3 Estimands

Weconsidered two estimands: the regression coefficient of𝑋 on𝑌, adjusted for𝑍, that is, the parameter𝛽𝑋 in the following
linear regression model:

E(𝑌 |𝑋, 𝑍) = 𝛽0 + 𝛽𝑋𝑋 + 𝛽𝑍𝑍, (2)

and the marginal mean of 𝑌, 𝜇𝑌 = E(𝑌). The true value of 𝜇𝑌 = 0 was known from the data generation and the true
value of 𝛽𝑋 was calculated for each scenario using conditional distribution properties of the multivariate normal distri-
bution (𝛽𝑋 = 0.18 for the scenarios where 𝑛 = 250, 𝑝 = 25 and 𝑛 = 250, 𝑝 = 83, and 𝛽𝑋 = 0.09 for the scenarios where
𝑛 = 1000, 𝑝 = 100 and 𝑛 = 1000, 𝑝 = 333).
The motivation for using MI rather than a complete case analysis may be to reduce bias or increase precision. For the

missingness mechanism considered here, the complete case estimate of both 𝜇𝑌 and 𝛽𝑋 will be biased. This is illustrated
graphically in Supporting Information Section 2.3 and can also be explained using causal diagrams (Moreno-Betancur
et al., 2018). In comparison, a MI procedure that includes 𝑋, 𝑍 and the auxiliary variables associated with both 𝑌 and𝑀𝑌

can lead to unbiased estimation of both estimands; some bias is to be expected from a MI procedure that includes 𝑋, 𝑍
and a subset of the auxiliary variables associated with both 𝑌 and𝑀𝑌 , while variance may be reduced. Therefore, we are
also interested in assessing the precision of each estimation strategy.

4.4 Auxiliary variable selection strategies for comparison

We compared the performance of eight data-based strategies for selecting auxiliary variables for the imputation model for
𝑌 and two benchmark strategies. For each auxiliary variable selection strategy, the variable selection was done once, prior
to the imputation step. The auxiliary variable selection strategies were:
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MAINZER et al. 7 of 18

1. Quickpred-pt2: This approach uses the four-step selection strategy proposed by van Buuren et al. (1999). For each 𝑖 =
1, … , 𝑝, 𝐴𝑖 is included in the imputation model for 𝑌 if the maximum of the absolute correlation between 𝐴𝑖 and
𝑌 (using all available cases) and the absolute correlation between 𝐴𝑖 and 𝑀𝑌 is greater than 0.2. This strategy was
implemented using the quickpred function from the R package mice (van Buuren & Groothuis-Oudshoorn, 2011).
The relatively low correlation of 0.2 was chosen as a reasonable cutoff for an inclusive strategy as it is halfway between
the cutoffs for the Quickpred-pt4 and Full strategies (described below), and small enough to include some, but not all,
of the auxiliary variables in the case study (Supporting Information Table 1).

2. Quickpred-pt4: Similar to Quickpred-pt2, except with the correlation cutoff set to 0.4 instead of 0.2. This cutoff was
chosen based on the rule of thumb provided by Graham (2012).

3. PredMiss: Under this approach, auxiliary variables were selected for inclusion in the imputation model for 𝑌 if the
𝑝-value obtained from a t-test for a given auxiliary variable, carried out using 𝑀𝑌 to define the two groups, was less
than 0.05. In other words, this approach was used to select auxiliary variables that were predictors of missingness in𝑌.

4. PcAux: This approach uses principal components of auxiliary variables as predictors in the imputation model instead
of the auxiliary variables themselves (Howard et al., 2015). The number of principal components was chosen such that
the principal component scores explained≥40% of the variance in the𝐴𝑖s, following Howard et al. (2015). This strategy
was implemented using PcAux in R (Lang et al., 2017).

5. Forward: Under this approach, auxiliary variables that were predictors of𝑌 were chosen using forward selection (Roys-
ton &White, 2011). An auxiliary variable was added to the imputation model for𝑌 at each step of the forward selection
algorithm if the 𝑝-value from a Wald test on the corresponding regression coefficient was less than 0.05. This strategy
was implemented in Stata using the stepwise option in ice.

6. Forward-sw: This approach is similar to Forward, except that at each step auxiliary variables could either be added
to the imputation model as per above, or removed if the 𝑝-value from the Wald test dropped below 0.05. It was also
implemented using ice in Stata.

7. Forward-FMI: This approach uses forward selection based on the FMI in the mean of 𝑌 (hereafter FMI) as proposed
by Andridge and Thompson (2015). The forward selection procedure was initialized by estimating the FMI for each
auxiliary variable in turn and selecting for inclusion in the imputation model the auxiliary variable associated with the
smallest FMI. In the next step, 𝑝 − 1 pairs of auxiliary variables (with each pair consisting of the auxiliary variable cho-
sen in the previous step and one of the remaining 𝑝 − 1 auxiliary variables) were used to create 𝑝 − 1 proxy variables,
where the proxy variables were created as the predicted values from a linear regression of 𝑌 on the subset of auxil-
iary variables. Estimates of the FMI were obtained for each proxy variable, with the auxiliary variable from the pair
resulting in the smallest estimated FMI added to the imputation model. The forward selection procedure continued in
this manner until the reduction in the FMI was less than a prespecified percentage of the missing data in 𝑌 (1% in the
scenarios where 𝑝 ∈ {25, 83, 100} and 0.5% for the scenario where 𝑝 = 333). In Supporting Information Section 2.4, we
provide a brief description of the theory and assumptions behind this strategy, and the justification for the use of this
stopping rule.

8. LASSO: In this approach, a model for 𝑌 that included 𝑋, 𝑍 and all auxiliary variables was fitted using the LASSO with
10-fold cross-validation (Friedman et al., 2010) The regularization penalty (usually denoted by 𝜆) was chosen to be the
value that gave the most regularized model such that the cross-validation error was within one SE of the minimum
(James et al., 2021). The auxiliary variables that were included in the fitted model were included in the imputation
model for𝑌, that is, the LASSOwas used to select variables for the imputationmodel but not to estimate parameters of
the imputation model. This is similar to the “indirect use of regularized regression” approach described by Zhao and
Long (2016). This strategy was implemented using glmnet.

The benchmark strategies were as follows:

1. CCA: A complete case analysis. The subset of individuals included in the analysis was restricted to those with data for
𝑌.

2. Full: All auxiliary variables were included in the imputation model for 𝑌.

To be useful in practice, an auxiliary variable selection strategy should perform better than the CCA strategy by either
reducing bias and/or increasing precision (see Section 7 for further comments). Ideally, the auxiliary variable selection
strategy would also perform no worse than the Full strategy if the imputation algorithm for this strategy does not fail, and
successfully produce imputations in the case that the Full strategy does fail.
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8 of 18 MAINZER et al.

All imputationmodels included𝑋 and𝑍, and𝑚 = 30 imputations were performed, whichwas chosen to be equal to the
percentage of missing data in 𝑌 (Royston & White, 2011). MI estimates were obtained using Rubin’s rules (Rubin, 2004).
Unless stated otherwise in the strategy descriptions above, MI was implemented using mice with linear regression in R
(van Buuren & Groothuis-Oudshoorn, 2011).

4.5 Performance measures

Let 𝜃 denote an unknown parameter of interest, 𝑀 = 2000 denote the number of simulation repetitions, 𝜃̂𝑖 denote the
estimate of 𝜃 from the 𝑖th simulated data set (𝑖 = 1, … ,𝑀) and 𝑠𝑒(𝜃̂𝑖) denote the SE of 𝜃̂𝑖 .We estimate 𝜃 by 𝜃̂ = 𝑀−1∑𝑀

𝑖=1
𝜃̂𝑖 .

The performance of the 10 strategies (eight auxiliary variable selection strategies and two benchmark strategies) for
estimating 𝛽𝑋 and 𝜇𝑌 was compared for each of the six simulation scenarios using bias, calculated as 𝜃̂ − 𝜃, empirical SE,
calculated as (𝑀−1∑𝑀

𝑖=1
(𝜃̂𝑖 − 𝜃̄)

2)1∕2, average model SE, calculated as (𝑀−1∑𝑀

𝑖=1
𝑠𝑒(𝜃̂𝑖)

2)1∕2, and the coverage probability
of the 95% confidence interval for 𝜃, calculated as the proportion of times that 𝜃 was in the 95% confidence intervals
obtained for each of the simulated data sets (Morris et al., 2019). We used the formulae provided by Morris et al. (2019)
to calculate Monte Carlo SE estimates for bias and empirical SE. For bias, the Monte Carlo SE is estimated by (𝑀−1(𝑀 −

1)−1
∑𝑀

𝑖=1
(𝜃̂𝑖 − 𝜃̂)

2)1∕2 and for empirical SE, by (empirical SE∕(2(𝑀 − 1)))
1∕2.

We also report standardized bias, defined as (bias/empirical SE) × 100, relative bias for 𝛽𝑋 , defined as (bias/true param-
eter value) × 100 (this cannot be calculated for 𝜇𝑌 = 0), the relative error in the model SE, defined as (average model
SE/empirical SE − 1) × 100, and the convergence rate, defined as the proportion of data sets for which MI estimates, were
successfully obtained.

5 RESULTS

Figures 1 and 2 present simulation estimates of bias and empirical SE for 𝜇𝑌 and 𝛽𝑋 , respectively, for each analysis strategy
and for the four scenarios where the proportion of missing data in 𝑌 was 30% and the coefficients in the missingness
model were log(1.2). Results for all six scenarios are summarized below and the full results are presented in Supporting
Information Tables 2–4. There were no problems with convergence of any of the analysis approaches, with estimates
produced on all simulation runs.

5.1 Mean of 𝒀

As expected, estimating 𝜇𝑌 using complete cases led to the largest bias, while using MI with all auxiliary variables in the
imputation model was approximately unbiased across all scenarios. Within each scenario, all auxiliary variable selection
strategies led to smaller absolute bias than the complete case analysis. The smallest standardized bias was observed for
the Full and LASSO strategies, with Full, LASSO, and PredMiss producing standardized bias of less than 30% in each sce-
nario, an amount that is considered not to be problematic by Collins et al. (2001). The Full and LASSO strategies led to
lower empirical SEs than the complete case analysis in five of the six scenarios. The remaining MI strategies had larger
empirical SEs compared to the complete case analysis in at least two of the six scenarios, with Quickpred-pt4 and PcAux
producing larger empirical SEs than the complete case analysis in five of the six scenarios. The absolute relative errors
in the model SE were largest for the Quickpred-pt4 strategy in the 𝑛 = 1000, 𝑝 = 333 scenario (41%), and the scenario
with the stronger missingness mechanism (−14% for Quickpred-pt2, −15% for the three forward selection strategies, and
−25% for Quickpred-pt4 in the scenario with the stronger missingness mechanism). For all other scenarios and strate-
gies the absolute relative error in the model SE did not exceed 9%. Estimating 𝜇𝑌 using complete cases led to the lowest
coverage probability in each scenario (41% in the 𝑛 = 250, 𝑝 = 25 scenario, and ≤1% in all other scenarios). Quickpred-
pt2, Quickpred-pt4, Forward, Foward-sw, and Forward-FMI all led to lower than nominal coverage probability (ranging
from 0% to 93% across methods and scenarios, with the lowest values obtained for the scenario with the strong missing-
ness mechanism), while the Full, PredMiss, PcAux, and LASSO strategies had reasonable coverage probability across all
scenarios (between 94% and 96%).
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MAINZER et al. 9 of 18

F IGURE 1 Simulation estimates of bias and empirical standard error (SE) for 𝜇𝑌 (true value = 0) from each analysis strategy and the
four scenarios where 𝑌 had a 30% chance of being missing and the coefficients in the missingness model were log(1.2). Estimates are
presented with 95% Monte Carlo confidence intervals to quantify simulation uncertainty.

5.2 Regression coefficient of 𝑿

The complete case analysis led to absolute standardized bias of more than 30% in three of the six scenarios: the three
scenarios where 𝑛 = 1000 and 𝑝 = 100. All MI analysis strategies led to absolute standardized bias of less than 30% across
all scenarios, with Full, PcAux, PredMiss, and LASSO producing absolute standardized bias values of less than 5% across
all scenarios. All MI strategies produced smaller empirical SEs than the complete case analysis for the two scenarios with
𝑛 = 250 and the scenario with 𝑛 = 1000, 𝑝 = 100 and 50% missing values. For the remaining scenarios, PcAux resulted
in the highest empirical SEs. The model SE was a reasonable estimate of the empirical SE for all strategies and scenarios,
with the largest absolute relative error in the model SE of 3.3% obtained from the Quickpred-pt2 strategy for the scenario
with 𝑛 = 1000, 𝑝 = 100, 30%missing values and coefficients of themissingnessmodel equal to log(1.2). The complete case
analysis led to slightly lower than nominal coverage probabilities of 92% in the scenario with 50% missing values and 93%
in the scenario with the stronger missingness mechanism. The remaining complete case analysis estimates of coverage
probability were between 94% and 96%. All MI analysis strategies produced estimates of coverage probability between 94%
and 96%.
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10 of 18 MAINZER et al.

F IGURE 2 Simulation estimates of bias and empirical standard error (SE) for 𝛽𝑋 (true value = 0.18 for the scenarios where 𝑝 = 25 and
𝑝 = 83, and 0.09 for the scenarios where 𝑝 = 100 and 𝑝 = 333) from each analysis strategy and for the four scenarios where 𝑌 had a 30%
chance of being missing and the coefficients in the missingness model were log(1.2). Estimates are presented with 95% Monte Carlo
confidence intervals to quantify simulation uncertainty.

5.3 Selected auxiliary variables

Figure 3 illustrates the average number of auxiliary variables selected across simulation runs, expressed as a proportion of
the total number of auxiliary variables, for the relevant analysis strategies and for the four scenarios where 𝑌 had a 30%
chance of being missing and the coefficients in the missingness model were log(1.2). This figure does not include PcAux
since this strategy included auxiliary variable information via principal component scores. In Supporting Information
Section 2.6, we explore the selected auxiliary variables further by providing similar figures, stratified by auxiliary variable
group, where the groups are determined by (i) the true correlations between 𝑌 and the auxiliary variables and (ii) the
relationship between𝑀𝑌 and the auxiliary variables. The LASSO strategy was the most inclusive strategy overall (deter-
mined by the total average number of auxiliary variables included) and the Quickpred-pt4 strategy was the least inclusive
strategy overall. As expected, auxiliary variables that were highly correlated with 𝑌 were selected more often than those
with low correlation. In general, the PredMiss, Quickpred-pt2 and Quickpred-pt4 strategies selected a higher number of
auxiliary variables that appeared in the missingness model relative to those that did not, while the opposite was found for
the Forward, Forward-sw and Forward-FMI strategies (although this pattern differed slightly across simulation scenarios).
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MAINZER et al. 11 of 18

F IGURE 3 Average number of auxiliary variables selected across simulation runs, expressed as a proportion of the total number of
auxiliary variables, for relevant analysis strategies and the four scenarios where 𝑌 had a 30% chance of being missing and the coefficients in
the missingness model were log(1.2).

6 APPLICATION OF STRATEGIES TO THE LSAC EXAMPLE

To illustrate the implication of the method choice in practice, we applied each of the auxiliary variable selection strategies
considered in the simulation study to the LSAC case study described earlier. We also carried out the benchmark strategies
CCA (in R) and Full (in both R and Stata). Continuous variables (including SDQ and GHM) were imputed using linear
regression, except for HRQoL, which was imputed using predictive mean matching (PMM, a semiparametric approach
where values are imputed using random draws from the observed data of a set of donors with similar predicted means,
Morris et al., 2014) with five donors because this variable exhibited negative skew. Binary variables were imputed using
logistic regression and PedsQL items were imputed using ordinal logistic regression. The augment option was used in
Stata to perform augmented regression in the presence of perfect prediction for all categorical imputation variables.
All imputation models included all analysis model variables (to ensure congeniality), with auxiliary variables chosen
according to the analysis strategy. A total of 20 imputations were performed, with 10 iterations for each imputation.

6.1 Implementation of auxiliary variable selection strategies

To accommodate the additional complexities of multivariate missingness and different types of variables, the auxil-
iary variable selection strategies were implemented as follows. For the Quickpred-pt2 and Quickpred-pt4 strategies, the
quickpred function was used to select the auxiliary variables in the imputation model for each of the incomplete vari-
ables using the correlation cutoffs of 0.2 and 0.4, respectively. Correlations between two variables were calculated using
all complete pairs of observations on those variable. For the PredMiss strategy, t-tests (for continuous variables) or chi-
squared tests (for categorical variables) were used to select the auxiliary variables in the imputation model for each of the
incomplete variables. The two groups to be compared were determined by the missingness indicator of the incomplete
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12 of 18 MAINZER et al.

variable and consisted of the observed values of the auxiliary variables. An auxiliary variable was selected for inclusion
in the imputation model for the incomplete variable if the 𝑝-value obtained from the hypothesis test was less than 0.05
and a sufficient number of observations were available in each group (≥20 for the t-test and all expected counts ≥5 for
the chi-squared test). The PcAux strategy required imputation of the missing values in the auxiliary variables prior to
obtaining principal components. This was done using the PcAux package (Lang et al., 2017), which implements a single
imputation using PMMwithin the MICE approach. The first eight principal components of the auxiliary variables, which
explained approximately 44% of the variance in these variables, were included in the imputationmodels for the remaining
five incomplete variables in the analysis model.
For the Forward and Forward-sw strategies, the stepwise algorithm was used to select the auxiliary variables in the

imputation model for each of the incomplete variables, after an initial imputation to obtain a complete data set. Dummy
variables for the ordinal PedsQL items were grouped during the variable selection step to ensure they were either all
included in, or excluded from, the imputationmodel. The Forward-FMImethod does not currently handle missing values
in auxiliary variables or highly negatively skewed ordinal variables (Andridge & Thompson, 2015). Rather than extend
this methodology (which is beyond the scope of this study), we deemed this method not suitable to use in this case study.
For the LASSO strategy, we wanted to implement the grouped LASSO to ensure dummy variables for PedsQL items were
either all included or excluded from the imputation model (c.f. Forward and Forward-sw). However, it is not clear how to
apply the grouped LASSO with ordinal outcomes. Furthermore, the LASSO requires predictors (here the analysis model
variables and the candidate auxiliary variables) to be complete. Rather than imputing the auxiliary variables, we proceeded
as follows. A model for HRQoL that included all variables in the analysis model and all candidate auxiliary variables was
fitted to the complete cases using the grouped LASSO with 10-fold cross-validation (implemented using the gglasso
package in R). The regularization penalty was chosen to be the value that gave the most regularized model such that the
cross-validation error was within one SE of the minimum. Each auxiliary variable selected using the LASSOwas included
in the imputationmodel for each of the incomplete variables in the analysis model, as well as the imputationmodel for all
other incomplete auxiliary variables selected by the LASSO. Auxiliary variables not selected by the LASSO were excluded
from the imputation process altogether.

6.2 Results

Estimates from Full, Forward and Forward-sw, which were implemented in Stata, were not obtained because the impu-
tation procedure failed due to lack of convergence and no imputations were produced. For the Full strategy, this failure
occurredwhen fitting an ordinal logistic regressionmodel during the imputation procedure. For theForward andForward-
sw strategies, these failures occurred during the auxiliary variable selection step for one of the PedsQL items. Although
the R strategies produced estimates, problems were reported via the list of logged events reported by mice in the Full and
PredMiss strategies (all of which involved PedsQL items and were handled in the algorithm by removal of a contrast). No
problems were reported for the other MI strategies. Table 1 presents the auxiliary variables selected for inclusion in the
imputation model for HRQoL for each of the MI strategies that produced estimates and the computational time taken
by each strategy on a high-performance computing cluster node with an Intel(R) Xeon(R) Gold 6126 CPU @ 2.60 GHz
and 16 GB of RAM. Quickpred-pt2 and PredMiss were the most inclusive auxiliary variable selection strategies, followed
by the LASSO. Employing auxiliary variable selection led to substantially decreased computational time relative to the
Full strategy.
Figure 4 presents estimates, with 95% confidence intervals, for the effect of BMIz on HRQoL (𝛽1 in model (1)) and the

mean HRQoL for the LSAC case study, for the analysis strategies that produced estimates. All analysis strategies led to
similar estimates of 𝛽𝑋 (ranging from −0.80 to −0.69) and therefore similar conclusions. That is, a one-unit increase in
BMI z-score in Australian children aged 4 to 5 is associated with a decrease in HRQoL at age 10 to 11 of around 0.7 units.
Estimates of themeanHRQoL ranged from 76.7 to 77.5, with estimates produced by all MI strategies noticeably lower than
estimates from the complete case analysis.

7 DISCUSSION

Although data-driven auxiliary variable selection is commonly used in the application ofMI, there has been limited inves-
tigation of proposed strategies. We used a simulation study to compare the performance of eight data-based strategies for
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MAINZER et al. 13 of 18

TABLE 1 Auxiliary variables selected for inclusion in the imputation model for HRQoL and computational time taken for auxiliary
variable selection (Selection), to produce MI estimates (Estimation) and in total.

Selected variables Computational time (min)
Strategy Details Number Selection Estimation Total
Fulla All 85 – 3003.3 3003.3
Quickpred-pt2 54 PedsQL items (8 at w1, 23 at w2, 23 at w3); GHM (w2–w4);

SDQ (w1–w4)
61 0.02 666.2 666.2

Quickpred-pt4 SDQ (w2–w4) 3 0.02 86.8 86.8
PredMiss 38 PedsQL items (19 at w1, 8 at w2, 11 at w3); GHM (w1–w3);

SDQ (w1–w3); MR (w2–w4); PPVT (w1–w3)
50 0.8 946.1 946.9

PcAux First 8 principal components of auxiliary variables 8 8.7 0.6 9.3
LASSO 7 PedsQL items (3 at w2, 4 at w3); GHM (w4); SDQ (w1–w4);

MR (w2 and w3); PPVT (w1–w3)
17 9.9 23.2 33.1

Note: The complete case analysis took approximately one-tenth of a second of computational time.
Abbreviations: GHM, Global Health Measure; MR, Matrix Reasoning Test; PedsQL, Pediatric Quality of Life Inventory; PPVT, Peabody Picture Vocabulary Test;
SDQ, Strengths and Difficulties Questionnaire; w, wave.
aResults are from implementing the Full strategy in R as this strategy failed in Stata.

selecting auxiliary variables for inclusion in the imputation procedure when MI was used to estimate the mean outcome
and an exposure–outcome association, for an incomplete outcome. We also compared the approaches with an analysis
of complete cases and an MI analysis with all auxiliary variables in the imputation model. MI with the full imputation
model performed well across all four scenarios considered, regardless of whether the target of analysis was the exposure–
outcome association or the mean outcome. All auxiliary variable selection strategies generally led to smaller absolute
bias than the complete case analysis across scenarios and for both estimands. The LASSO was the best performing and
most inclusive auxiliary variable selection strategy overall (based on bias, empirical SE and coverage probability across all
simulation scenarios). This strategy had the advantage of incorporating all auxiliary variable information when selecting
variables for the imputation model (rather than information from multiple pairwise comparisons). However, it was not
clear how to best extend this approach to the case study where there were the additional complexities of missing data in
auxiliary variables and highly skewed ordinal variables. The PcAux and PredMiss strategies also had minimal bias across
all simulation scenarios, but had higher SE relative to the LASSO. The Forward-FMI strategy was less biased than the
other two forward selection strategies for estimating the mean of the incomplete outcome, but all three strategies led to
similar bias when estimating the exposure–outcome association. This may be explained by the fact that the Forward-FMI
strategy selects variables based on minimizing the FMI in the mean of the incomplete outcome.

F IGURE 4 Estimates of the mean HRQoL (left panel) and the effect of BMIz on HRQoL (right panel), with 95% confidence intervals,
from seven analysis strategies.
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14 of 18 MAINZER et al.

This study adds to the limited body of research on auxiliary variable selection for MI. Early work in this area illustrated
that auxiliary variables can improve the performance of MI and led to the recommendation of an inclusive strategy for
variable selection (Collins et al., 2001). However, the study by Collins et al. (2001) considered just two auxiliary variables
that were correlated with either the incomplete variable or the missingness of the incomplete variable. In large-scale
longitudinal studies there are often many potential auxiliary variables to choose from. The results of the current study
provide support for the inclusive auxiliary variable strategy when there are a larger number of auxiliary variables and
a mix of realistic relationships between these variables and an incomplete outcome. This is illustrated, for example, by
the Full strategy performing better than the Quickpred-pt2 strategy, which in turn performs better than the Quickpred-pt4
strategy in terms of bias across scenarios.
When applied to the LSAC case study, all MI strategies led to similar estimates, but strategies using a subset of the

auxiliary variables were substantially faster in terms of computational time. For example,Quickpred-pt2 included 61 (72%)
of the 85 auxiliary variables but required approximately one-fifth of the computational time of the Full strategy, while
LASSO included 17 (20%) of the 85 auxiliary variables and was over 90 times faster than Full. The quickpred strategies
are attractive in practice due to their simplicity, the ease at which they extend to more complicated problems (such as the
LSAC case study) and their implementation in statistical software. Based on the results of our simulation study, we would
recommend the use of a low correlation cutoff when using quickpred. In contrast, there is currently no software freely
available to apply the Forward-FMI strategy. Combined with the availability of other auxiliary variable selection strategies
that performed better in our simulation study and the difficulties that arise when trying to extend this strategy to more
complex scenarios, the practical utility of the Forward-FMI strategy is questionable.
Although appealing, employing an inclusive strategymay be problematic when there aremany auxiliary variables avail-

able. We encountered convergence problems when analyzing the case study with Stata using the Full, Forward, and
Forward-sw strategies. Results were obtained when the Full strategy was implemented in R, but with a number of logged
events reported on each iteration of the imputation algorithm. Others have also noted convergence problems when using
MICE in Stata (Nguyen et al., 2021; Simons et al., 2015), and one simulation study using MICE in both Stata and R
found that, although R did not encounter the same convergence problems as Stata, the estimates obtained in R were
less accurate than estimates from a MVNI-based approach (De Silva et al., 2021). A comprehensive comparison of the
MI algorithms in these two popular statistical software packages is an area for future research. The lack of convergence
problems in our simulation study is likely due to the simulated data sets containing only continuous variables (and only
one incomplete variable), with no very high correlations between these variables. Instead of reducing or modifying the set
of auxiliary variables, one could try several alternative approaches to produce imputations when the MI algorithm fails.
These include changing the imputation model form, for example, instead of ordinal logistic regression to impute ordinal
variables, one could try linear regression or PMM; changing the imputationmethod, for example, formissing data inmore
than one variable, MVNI could be used instead of MI by chained equations (Lee & Carlin, 2010); or changing the level
at which variables are imputed (applicable for derived variables or scale scores, Mainzer et al., 2021; Nguyen et al., 2021).
Alternatively, one may attempt to identify and then remove from the imputation model the variables that appear to be
responsible for the convergence problems. However, these approaches also have limitations. We did not consider such
alternative approaches in this study.
There are a number of challenges in evaluating auxiliary variable selection strategies due to the large amount of data that

needs to be generated. One challenge in evaluating auxiliary variable selection strategies is generating realistic data, with a
mix of relationships between variables. One study by Hardt et al. (2012) considered two values of the correlations between
all auxiliary variables and other variables in the study: low (0.1) and moderate (0.5). Another study by Howard et al.
(2015) took a similar approach, varying correlation values from 0.1 to 0.6. In practice, it is highly unlikely for all auxiliary
variables to have the same relationship with the variable withmissing values. Our simulation study was designed to assess
the performance of strategies for selecting auxiliary variables when there was a mix of relationships (i) between auxiliary
variables and the incomplete variable, and (ii) between auxiliary variables and themissingness indicator of the incomplete
variable. In contrast to our study, both Collins et al. (2001) and Hardt et al. (2012) showed that including many auxiliary
variables in the imputation model can lead to bias in MI estimates. We did not observe bias from our Full analysis strategy
in any scenario considered. However, our study was not set up to address limits on the number of auxiliary variables that
should be included. We also acknowledge that some bias is expected from estimation procedures that involve auxiliary
variable selection in settings such as ours because, by design, they do not condition on the full set of auxiliary variables
associated with both 𝑌 and 𝑀𝑌 . In this paper, we considered an auxiliary variable strategy to perform better than the
complete case analysis if it reduced bias and/or increased precision compared to the complete case analysis. However,
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we note that there are cases in which MI will (appropriately) result in larger SEs than a complete case analysis as the
uncertainty in the missing values is taken into account.
There are many variations on the ways in which the auxiliary variable selection strategies may be implemented that

were not considered in this paper. For the quickpred strategies, one could consider adjusting the correlation cutoff such
that a specified number of auxiliary variables with the highest correlations are chosen or exclude auxiliary variables with
too many missing values (van Buuren, 2018; van Buuren et al., 1999). For the PcAux strategy, the number of principal
components to include in the imputation model was chosen such that the principal component scores explained ≥40%
of the variance in the auxiliary variables. One may consider a different proportion of variance explained or employ other
methods for specifying the number of principal components to be used. The pcaux function provides an option (nComps
= Inf) to use the smallest number of component scores such that adding one more component score does not make a
discernable difference in the amount of variance explained. Also, the 𝑝-value threshold may be changed in the Forward,
Forward-sw, and PredMiss strategies to include different subsets of auxiliary variables. We used the LASSO for variable
selection only, since the aim of the study was to compare methods used to select auxiliary variables for MI. We note that
it would be impossible to apply the LASSO strategy as it was implemented in the case study if there are few to no cases
for which all analysis and auxiliary variables are completely observed. We also note that there are alternative ways to
incorporate the LASSO with MI that may perform better (Zhao & Long, 2016). Finally, it would be interesting to examine
auxiliary variable selection strategies in other contexts where auxiliary variables are utilized, for example, survival analysis
(Hsu et al., 2006).
This study considered a natural starting point for evaluating a range of auxiliary variable selection strategies for MI.

However, several limitations of this study should be noted. We considered just one incompletely observed variable in
our simulation study. The extent to which the conclusions from our simulation study extend to the case where there
are multiple incomplete variables is not clear. Further work is needed to explore the performance of auxiliary variable
selection strategies in the presence of multivariable missingness. All variables in our simulation study were normally
distributed and the strength of the missing data mechanism was the same for each variable associated with missingness.
These simplifying aspects are unlikely to hold in practice. However, we have purposefully chosen to start with this simpler
scenario to avoid the results being obscured by complexities such as mixed variable types. When there are a large number
of categorical auxiliary variables (such as in the case study), perfect prediction can cause problems with MI. Others have
considered how to doMI in this scenario (Mainzer et al., 2021; Nguyen et al., 2021).We assumed the existence of a candidate
set of auxiliary variables. A reviewer observed that determining this set is also challenging. We agree and see this as
a topic for future research. We also acknowledge that, although not the case in the current study, including auxiliary
variables in the imputation procedure may introduce bias into the MI estimates (Thoemmes & Rose, 2014). Although
certain auxiliary variables were excluded from the missingness model by design, exploration revealed there were often
small marginal correlations induced between these auxiliary variables and the missingness of the incomplete outcome.
(This fact, combined with the moderate to large sample sizes, may explain the inclusiveness of the PredMiss strategy.)
Finally, we chose to focus on six scenarios. By doing so, we may have overlooked a range of scenarios under which the
analysis strategies perform poorly. We note that data-based variable selection strategies are known to have limitations in
other contexts (Greenland, 1989; Kabaila, 2009). However, this study can be used to inform further research in this area.
In conclusion, this study evaluated a range of strategies for selecting auxiliary variables for MI models. MI using all

auxiliary variables in the imputation model performed well in all scenarios considered, providing further support for
adopting an inclusive auxiliary variable strategy where possible. Auxiliary variable selection using the LASSO was the
best performing auxiliary variable selection strategy overall and may be a promising alternative when the full model fails
or is too burdensome. Quick data-based selection of auxiliary variable, as implemented in the mice R package, performed
reasonably in the simulation study when used with a low correlation cutoff and was straightforward to extend to the
complexities of a real case study.
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Erentaitė, R., Vosylis, R., Gabrialavičiūtė, I., & Raižienė, S. (2018). How does school experience relate to adolescent identity formation over
time? Cross-lagged associations between school engagement, school burnout and identity processing styles. Journal of Youth Adolescence,
47(4), 760–774.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical
Software, 33(1), 1–22.

Graham, J. W. (2012).Missing data: Analysis and design. Springer.
Greenland, S. (1989). Modeling and variable selection in epidemiologic analysis. American Journal of Public Health, 79(3), 340–349.
Hardt, J., Herke,M., & Leonhart, R. (2012). Auxiliary variables inmultiple imputation in regressionwithmissing X: Awarning against including
too many in small sample research. BMCMedical Research Methodology, 12(1), 1–13.

Heymans, M. W., Van Buuren, S., Knol, D. L., VanMechelen, W., & De Vet, H. C. W. (2007). Variable selection under multiple imputation using
the bootstrap in a prognostic study. BMCMedical Research Methodology, 7(1), 1–10.

Howard, W. J., Rhemtulla, M., & Little, T. D. (2015). Using principal components as auxiliary variables in missing data estimation.Multivariate
Behavioral Research, 50(3), 285–299.

Hsu, C-H., Taylor, J. M. G., Murray, S., & Commenges, D. (2006). Survival analysis using auxiliary variables via non-parametric multiple
imputation. Statistics in Medicine, 25(20), 3503–3517.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021) An introduction to statistical learning (2nd ed.). Springer.
Jansen, P. W., Mensah, F. K., Clifford, S., Nicholson, J. M., &Wake, M. (2013). Bidirectional associations between overweight and health-related
quality of life from 4–11 years: Longitudinal Study of Australian Children. International Journal Obesity, 37(10), 1307–1313.

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200291 by U
niversity C

ollege L
ondon U

C
L

 L
ibrary Services, W

iley O
nline L

ibrary on [31/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://dataverse.ada.edu.au
https://github.com/rheanna-mainzer/MI-aux-var-selection
https://github.com/rheanna-mainzer/MI-aux-var-selection
https://orcid.org/0000-0002-5933-8917
https://orcid.org/0000-0002-5933-8917
https://orcid.org/0000-0002-2694-9463
https://orcid.org/0000-0002-2694-9463
http://missingdata.lshtm.ac.uk/downloads/mi_comp_issues.pdf
http://missingdata.lshtm.ac.uk/downloads/mi_comp_issues.pdf


MAINZER et al. 17 of 18

Jensen, A. C., McHale, S. M., & Pond, A.M. (2018). Parents’ social comparisons of siblings and youth problem behavior: Amoderatedmediation
model. Journal of Youth and Adolescence, 47(10), 2088–2099.

Jensen, A. C., & Orsmond, G. I. (2019). The sisters’ advantage? Broader autism phenotype characteristics and young adults’ sibling support.
Journal of Autism and Developmental Disorders, 49(10), 4256–4267.

Kabaila, P. (2009). The coverage properties of confidence regions after model selection. International Statistical Review, 77(3), 405–414.
Lang, K.M., Little, T. D., Chesnut, S., Gupta, V., Jung, B., & Panko, P. (2017). PcAux: Automatically extract auxiliary features for simple, principled
missing data analysis. R package. https://arxiv.org before formal peer review

Latzman, N. E., Vivolo-Kantor, A. M., Niolon, P. H., & Ghazarian, S. R. (2015). Predicting adolescent dating violence perpetration: Role of
exposure to intimate partner violence and parenting practices. American Journal of Preventative Medicine, 49(3), 476–482.

Lee, K. J., & Carlin, J. B. (2010). Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation.
American Journal of Epidemiology, 171(5), 624–632.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). Wiley.
Mainzer, R., Apajee, J., Nguyen, C. D., Carlin, J. B., & Lee, K. J. (2021). A comparison of multiple imputation strategies for handling missing
data in multi-item scales: guidance for longitudinal studies. Statistics in Medicine, 40, 4660–4674.

Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9(4), 538–558.
Metzger, A., Alvis, L. M., Oosterhoff, B., Babskie, E., Syvertsen, A., & Wray-Lake, L. (2018). The intersection of emotional and sociocognitive
competencies with civic engagement in middle childhood and adolescence. Journal of Youth Adolescence, 47(8), 1663–1683.

Moreno-Betancur,M., Lee, K. J., Leacy, F. P.,White, I. R., Simpson, J. A., & Carlin, J. B. (2018). Canonical causal diagrams to guide the treatment
of missing data in epidemiologic studies. American Journal of Epidemiology, 187(12), 2705–2715.

Morris, T. P.,White, I. R., & Royston, P. (2014). Tuningmultiple imputation by predictivemeanmatching and local residual draws. BMCMedical
Research Methodology, 14(1), 1–13.

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11),
2074–2102.

Nair, R. L., Roche, K. M., & White, R. M. B. (2018). Acculturation gap distress among Latino youth: Prospective links to family processes and
youth depressive symptoms, alcohol use, and academic performance. Journal of Youth and Adolescence, 47(1), 105–120.

Nguyen, C. D., Carlin, J. B., & Lee, K. J. (2021). Practical strategies for handling breakdown ofmultiple imputation procedures.Emerging Themes
in Epidemiology, 18(1), 1–8.

Roche, K. M., Lambert, S. F., White, R. M. B., Calzada, E. J., Little, T. D., Kuperminc, G. P., & Schulenberg, J. E. (2019). Autonomy-related
parenting processes and adolescent adjustment in Latinx immigrant families. Journal of Youth and Adolescence, 48(6), 1161–1174.

Royston, P., & White, I. R. (2011). Multiple imputation by chained equations (MICE): Implementation in Stata. Journal of Statistical Software,
45(4), 1–20.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592.
Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical Association, 91(434), 473–489.
Rubin, D. B. (2004).Multiple imputation for nonresponse in surveys. John Wiley & Sons.
Sanson, A. V., Nicholson, J., Ungerer, J., Zubrick, S., Wilson, K., Ainley, J., Berthelsen, D., Bittman, M., Broom, D., Harrison, L., Sawyer, M.,
Silburn, S., Strazdins, L., Vimpani, G., & Wake, M. (2002). Introducing the longitudinal study of Australian children. Australian Institute of
Family Studies.

Schafer, J. L. (1997) Analysis of incomplete multivariate data. Chapman & Hall.
Schafer, J. L. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica,
57(1), 19–35.

Simons, C. L., Rivero-Arias, O., Yu, L-M., & Simon, J. (2015). Multiple imputation to deal with missing EQ-5D-3L data: Should we impute
individual domains or the actual index? Quality of Life Research, 24(4), 805–815.

Thoemmes, F., & Rose, N. (2014). A cautious note on auxiliary variables that can increase bias inmissing data problems.Multivariate Behavioral
Research, 49(5), 443–459.

van Buuren, S. (2018). Flexible imputation of missing data. CRC Press.
van Buuren, S., Boshuizen, H. C., & Knook, D. L. (1999). Multiple imputation of missing blood pressure covariates in survival analysis. Statistics
in Medicine, 18(6), 681–694.

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45,
1–68.

Varni, J. W., Burwinkle, T. M., Seid, M., & Skarr, D. (2003). The PedsQL™* 4.0 as a pediatric population health measure:Fasibility, reliability,
and validity. Ambulatory Pediatrics, 3(6), 329–341.

White, I. R., Daniel, R., & Royston, P. (2010). Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables.
Computational Statistics & Data Analysis, 54(10), 2267–2275.

White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in
Medicine, 30(4), 377–399.

Zhao, Y., & Long, Q. (2016). Multiple imputation in the presence of high-dimensional data. Statistical Methods in Medical Research, 25(5),
2021–2035.

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200291 by U
niversity C

ollege L
ondon U

C
L

 L
ibrary Services, W

iley O
nline L

ibrary on [31/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://arxiv.org


18 of 18 MAINZER et al.

SUPPORT ING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Mainzer, R. M., Nguyen, C. D., Carlin, J. B., Moreno-Betancur, M., White, I. R., & Lee,
K. J. (2024). A comparison of strategies for selecting auxiliary variables for multiple imputation. Biometrical
Journal, 66, 2200291. https://doi.org/10.1002/bimj.202200291

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200291 by U
niversity C

ollege L
ondon U

C
L

 L
ibrary Services, W

iley O
nline L

ibrary on [31/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/bimj.202200291

	A comparison of strategies for selecting auxiliary variables for multiple imputation
	Abstract
	1 | INTRODUCTION
	2 | MOTIVATING EXAMPLE: THE LONGITUDINAL STUDY OF AUSTRALIAN CHILDREN
	3 | AVAILABLE AUXILIARY VARIABLE SELECTION STRATEGIES
	4 | SIMULATION STUDY
	4.1 | Simulation of complete data
	4.2 | Imposing missing data
	4.3 | Estimands
	4.4 | Auxiliary variable selection strategies for comparison
	4.5 | Performance measures

	5 | RESULTS
	5.1 | Mean of 
	5.2 | Regression coefficient of 
	5.3 | Selected auxiliary variables

	6 | APPLICATION OF STRATEGIES TO THE LSAC EXAMPLE
	6.1 | Implementation of auxiliary variable selection strategies
	6.2 | Results

	7 | DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTERESTS STATEMENT
	DATA AVAILABILITY STATEMENT
	OPEN RESEARCH BADGES

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


