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Abstract— Advanced Magnetic Resonance Imaging (MRI) 

techniques, such as Diffusion Weighed Imaging, usually require 

long acquisition times and an open challenge is to reduce the 

acquisition time more and more in order to allow their use in the 

clinical routine. Downsampling k-space is a way to speed up MRI, 

but this can generate artefacts in the resulting images when 

reconstructing them with standard Fourier transform methods. 

Here, we used deep learning to perform the inverse Fourier 

transform from k-space to the Diffusion Weighted (DW) images. 

and used it to assess the quality of images obtained from 

significantly reduced k-space acquisition strategies. The 

hypothesis is that a deep learning algorithm would preserve data 

quality, learned from the fully sampled k-space association. We 

tested our deep learning algorithm by reducing the number of 

acquired k-space rows by 30%, which would correspond to a total 

acquisition time reduction. We considered different types of k-

space downsampling. All the trained networks were able to map 

the relationship between k-space and DW images, reducing 

artefacts. 

In conclusion, this work paves the way to designing acquisition 

strategies for fast diffusion imaging. 

Keywords— k-space, deep learning, reduce time acquisition, 

diffusion magnetic resonance. 

I. INTRODUCTION 

AGNETIC resonance imagining (MRI) is a very 

powerful tool used in the clinical field to diagnose, to 

monitor and to study mechanisms behind human 

behaviour, function and dysfunction. The great power of MRI 

depends on the fact that this tool can be exploited to investigate 

several organ systems and that it can be made sensitive to 

specific properties of the tissues, such as the diffusion of water 

molecules to probe tissue microstructure. Diffusion Weighted 

Imaging (DWI) is sensitive to Brownian motion of water 

molecules in tissue and, hence, to the microstructure and its 

alterations in pathological conditions [1][2]. 

The use of MRI in the clinic is limited to qualitative 

assessments of brain lesions and morphology due to both high 

costs and long acquisition times for quantitative MRI.  

Furthermore, it is to note that when an MRI acquisition is 

performed, the signal received with the coil is stored as an 

image containing the spatial frequency information of the 

object, called k-space. Importantly, each point of the k-space 

contains phase and frequency information about the signal 

coming from the entire sample. For this reason, applying the 

inverse Fourier transform (FT) to the k-space provides the 

image in physical space [3] [4]. 

Moreover, it is known that k-space is highly redundant [5]. 

It is indeed endowed with Hermitian symmetry [4]. 

Traditionally, the relationship between k-space data and image 

data is the Fourier transform (FT) [3]. 

Here we aimed to shorten the acquisition times of DWI of 

the brain reducing k-space coverage (i.e. the signal) and 

substituting the FT operation with a deep learning network, 

while maintaining image quality. In this way, one of the 

novelty of our method is that it was possible to downsample 

the k-space, in order to reduce the acquisition time, obtaining 

an image that is very similar to the one reconstructed from the 

entire k-space. 

Previous work used a deep learning network to pass from 

the k-space to the DW physical image of the breast with the 

main goal of reducing DW-related artifacts [6]. However, in 

this work the network used as its input the entire acquired k-

space, instead of a downsampled version like we did here. 

We therefore optimised a network previously proposed [7] 

for reconstructing T1 and T2 weighted images from their k-

space and adapted it to the specific case of DWI data [1]. One 

of the challenges is that DWI can produce very different 

contrasts depending on the applied diffusion weighting; 

mathematical or signal models can then be fitted to DWI data 

to obtain microstructure parameters maps. The automated 

transform by manifold approximation (AUTOMAP) [7] 

network was therefore adapted and optimised here to work 

with DWI k-space data, independently on the diffusion 

weighted applied. We gave it as input the k-spaces of the 

diffusion acquisitions and as output the corresponding 

magnitude images. 

II. METHODS 

A. Subjects 

The database included images of 18 healthy controls (HC, 

13 Females, 55.2±9.4 years), 8 primary progressive multiple 

sclerosis (PPMS, 3 Female, 56.3±9.9 years), 2 relapsing-

remitting multiple sclerosis (RRMS; 1 Females, 64±3.6 years), 

and 31 secondary progressive multiple sclerosis (SPMS; 21 

Females, 55.3±7.3 years). 18 subjects were acquired a second 

time, 18 months after baseline. The total number of datasets 

was 77. 
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B. MRI acquisition 

A 3T Philips Ingenia CX scanner was used. The Diffusion 

Weighted (DW) imagining protocol included a spin-echo EPI 

with TR = 6287 ms, TE = 96 ms, 76 volumes with b = 

1000/2000/2800 s/mm2 (20/20/36 DW per b-value) and 3 b0 

volumes. The spatial resolution was 2x2x2 mm3 and the matrix 

size was 112x112x72. 

C. Network design 

Each DW dataset was used as an independent sample, 

regardless of whether it belonged to a subject previously 

acquired. This choice depended by the fact that the problem to 

be solved was to associate each k-space with its magnitude 

image. Since the problem could be reduced to assess a 

regression between datasets, i.e. finding a relationship between 

input and output, instead of classifying them in different 

groups, we therefore used the entire dataset regardless the 

group (i.e., healthy subject or patient), gender (female or 

male), or any other demographic feature. The 77 acquisition 

samples were divided as follows: 53 acquisition samples were 

used for training, 12 for validation and 12 for test. In each set 

(training, validation and test) there were both healthy and MS 

subjects. 

The magnitude image was calculated for each slide from 

real (Re(DW)) and imaginary images (Im(DW)): 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑖𝑚𝑎𝑔𝑒 = √𝑅𝑒(𝐷𝑊)2 + 𝐼𝑚(𝐷𝑊)2 (1) 

Using the Fourier transform (FT), the k-space of the 

magnitude images was calculated: 

𝑘 − 𝑠𝑝𝑎𝑐𝑒 = 𝐹𝑇(𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑖𝑚𝑎𝑔𝑒)  (2) 

Only DW volumes with a b-value of 0 or 1000 s/mm2 were 

considered, so 23 volumes were used for each acquisition 

dataset. We limited the number of volumes by using the most 

commonly acquired b-value [8] in order to reduce the amount 

of data and thus the training time to cope with long calculation 

times and memory problems. Consequently, for training, the 

number of input data was 76337 (53 subjects, for each subject 

23 volumes, and for each volume about 63 slices), for 

validation 18699, and for test 18446. 

The k-space data had to be normalised before being passed 

as input: for each batch size, the real and imaginary part was 

divided by magnitude of the maximum of all values in the 

entire database. 

The 2D k-space matrices in axial planes were then given as 

input to the network. The real and imaginary parts of the k-

space were provided as 2 input channels. 

The output target for the network was the magnitude image 

corresponding to the DW k-space data. 

We adapted the AUTOMAP architecture [7]. The network 

was developed using TensorFlow (Keras) [9] and each 

network training was run using an NVIDIA Tesla T4 GPU.  

We had a k-space of size m x n: the complex data of the k-

space were separated into real and imaginary parts and were 

given to the network as input to two different channels (m x n 

x 2). The network architecture is pictured in Fig.1. 

This architecture was made of two fully connect layers (FC) 

at the beginning, followed by three convolutional layers 

(Conv). Because of the fully connected layers, the number of 

network parameters increases noticeably and makes training 

very slow. For this reason, it was necessary to resize the k-

space from a 112x112 matrix to a 64x64 one. The k-space and 

DW images were resampled using spline interpolation. 

 

 

Fig. 1: Architecture of AUTOMAP. 

 

D. Network training 

The tuning of the hyperparameters was conducted by giving 

as input the k-space and as output the corresponding DW 

magnitude images, both of reduced size i.e. 64x64; we called 

this experiment from 64 to 64. 

We searched manually for the best hyperparameter 

configuration by training the network several times and 

changing the loss function, activation functions and optimizer. 

The best hyperparameters were selected minimizing the Root 

Mean Square Error (RMSE) on the validation set. 

In order to prevent the overfitting we applied data 

augmentation on the fly [10] using two different ways: images 

were randomly rotated anti-clockwise by 0, 90, 180 or 270° 

and images were scaled in intensity by a random value so that 

they became darker or brighter. 

E. Network applications 

Once the hyperparameters of the network were fixed, four 

experiments were considered to train the network accordingly: 

• from 64 to 112: from a k-space of size 64x64 to a 

magnitude image of 112x112, increasing the 

resolution along each of the 2D dimensions of the 

image from 64 to 112. The DW magnitude image was 

therefore in the original space. 

• Zero fill: from a k-space of size 64x64, with the last 

19 rows filled with zeros, to a corresponding 

magnitude image of size 64x64. 

• Delete rows: from a k-space of size 45x64, where the 

last 19 rows were deleted, to a corresponding 

magnitude image of size 64x64. 

• Mixed downsampling: from a k-space of size 45x64, 

where the last 19 rows (top) or the first 19 rows 

(bottom) were deleted, to a corresponding magnitude 

image of size 64x64. This last network aims to test 

whether AUTOMAP can cope with different 

downsampling or needs retraining every time k-space 
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is sampled differently. 

In the last three experiments we reduced the k-space 

acquisition of 30%, applying some downsampling by deleting 

k-space rows from different positions. Importantly, k-space 

was downsampled in ways that could be easily implemented 

from a pulse sequence design point of view, i.e., directly 

modifying sequences on an MRI scanner. 

F. Quantitative evaluation 

To compare the DW magnitude images obtained with the 

traditional FT of k-space and those obtained with the network, 

it was necessary to normalise the intensity of both images to 

eliminate simple scale factors. For each acquisition sample, 

both DW images (GT and network) were divided by the value 

of the maximum of the respective 4D volume (i.e. including 

all 23 DW volumes), limiting the calculation to voxels in the 

brain. 

To quantitatively assess how much the two images (DWI GT 

and DWI network) differed, we calculated the difference 

image considering the case from 64 to 64. 

For the experiment with mixed downsampling, we tested the 

network by giving as input once the first 45 rows (top) and 

once the last 45 rows (bottom) of k-space. 

The Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE) and Structural Similarity Index (SSIM) [11] calculated 

between the magnitude DW image and the network output 

within the brain were chosen as performance metrics. 

III. RESULTS 

The best hyperparameters were found to be: the sum of 

RMSE and SSIM as loss function, the hyperbolic tangent for 

the fully connected layers and the REctified Linear Unit 

(ReLU) for the convolutional layers using as activation 

function and the Root Mean Square Propagation (RMS Prop) 

as optimizer. 

Fig. 2 shows the input, the k-space with real and imaginary 

part, the desired output (GT) and the output of the network of 

the performed experiments: from 64 to 64 (A), from 64 to 112 

(B), zeros fill (C), delete rows (D), mixed downsampling (top) 

(E) and mixed downsampling (bottom) (F). 

 
Fig. 2: Each different experiment is shown in each image from (A) to (F). 

The first row shows the input to the network: on the left the real part and on 

the right the imaginary part of the k-space. The second row shows the 

magnitude Diffusion Weighted (DW) image: on the left the ground truth 

(GT) (desired output) and on the right the output of the network. 

Fig. 3 shows for a random test subject the DW images, i.e., 

DWI GT and DWI network, after the intensity normalization 

and their difference image in the case from 64 to 64. 

 

Fig. 3: The first row shows the DWI GT, the second row the DWI 

network and the third row the image of the difference between the first two 

rows for a random test subject. 
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Table I shows the performance metrics (mean and standard 

deviation) between the GT DW images and the network DW 

images, calculated on the 12 test subjects over voxels that 

belong to the brain mask. 

TABLE I: PERFORMANCE METRICS ON THE TEST SUBJECTS 

FOR EACH NETWORK EXAMPLE. 

 
RMSE MAE SSIM 

from 64 to 64 0.035 ±.0.004 0.022 ±.0.004 0.757 ±.0.057 

from 64 to 112 0.020 ±.0.007 0.015 ±.0.006 0.734 ±.0.228 

zeros fill 0.030 ± 0.012 0.020 ± 0.007 0.660 ± 0.208 

delete rows 0.032 ± 0.01 0.021 ± 0.007 0.655 ± 0.206 

mixed 

downsampling 

(top) 

0.034 ± 0.011 0.021 ± 0.007 0.658 ± 0.207 

mixed 

downsampling 

(bottom) 

0.034 ± 0.011 0.022 ± 0.008 0.657 ± 0.207 

 

IV. DISCUSSION AND CONCLUSION 

We adapted the AUTOMAP network to obtain DW images 

starting from the relative k-space data. 

The network was trained in five different types of 

experiment. In the simplest case, we started with a k-space of 

size 64x64 and obtained an image of 64x64. In this case, the 

best values of the performance metrics were obtained (RMSE 

= 0.035±0.004; MAE = 0.022±0.004; SSIM = 0.757±0.057).  

Notably, the DW images reconstructed with the network 

showed no region-specific bias with respect to the original 

ones, as demonstrated with the difference image (Fig. 3).The 

next four experiments were performed to reconstruct the 

original DW images from a reduced k-space. 

The network is able to capture the relationship between k-

space and DW images, even in experiments performed to 

reconstruct the original DW images from a reduced k-space 

(Fig. 2; Table I). 

In the mixed downsampling case, the network was trained 

by considering different downsampling of the k-space, i.e. 

removing rows from above or below the centre of the k-space. 

In this case, the output obtained on the 12 test subjects 

achieved similar performance by applying one of the two 

downsampling strategies. 

Furthermore, it is to note that DW images obtained with the 

network appear to be less noisy. The intrinsic denoising 

function of the network may be due to the fact that the network 

learns the relationship between input and output only by 

structured associations and since noise is random, it is not 

learned. 

To strengthen this work, further analysis will be performed: 

in the future, we will apply k-cross validation to better estimate 

the intrinsic power of the model and to assess it for potential 

overfitting. Furthermore, to evaluate the sensitivity of our DL 

reconstructions to the presence of pathology, we will calculate 

quantitative maps from DW images in both cases (i.e., GT and 

network) and perform group comparisons between healthy and 

neurological cohorts. We will therefore determine whether the 

images reconstructed with the network are able to maintain the 

details of the original images and are sensitive to pathology 

(e.g. in lesions of subjects with multiple sclerosis). 

Furthermore, it would be useful to check whether it would 

be possible to further reduce the number of k-space rows 

without losing the quality of the DW image. 
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