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Abstract

The ancestral recombination graph (ARG) is a structure that represents the history of coalescent and recombination events 
connecting a set of sequences (Hudson RR. In: Futuyma D, Antonovics J, editors. Gene genealogies and the coalescent pro
cess. In: Oxford Surveys in Evolutionary Biology; 1991. p. 1 to 44.). The full ARG can be represented as a set of genealogical 
trees at every locus in the genome, annotated with recombination events that change the topology of the trees between 
adjacent loci and the mutations that occurred along the branches of those trees (Griffiths RC, Marjoram P. An ancestral re
combination graph. In: Donnelly P, Tavare S, editors. Progress in population genetics and human evolution. Springer; 1997. 
p. 257 to 270.). Valuable insights can be gained into past evolutionary processes, such as demographic events or the influ
ence of natural selection, by studying the ARG. It is regarded as the “holy grail” of population genetics (Hubisz M, Siepel 
A. Inference of ancestral recombination graphs using ARGweaver. In: Dutheil JY, editors. Statistical population genomics. 
New York, NY: Springer US; 2020. p. 231–266.) since it encodes the processes that generate all patterns of allelic and hap
lotypic variation from which all commonly used summary statistics in population genetic research (e.g. heterozygosity and 
linkage disequilibrium) can be derived. Many previous evolutionary inferences relied on summary statistics extracted from 
the genotype matrix. Evolutionary inferences using the ARG represent a significant advancement as the ARG is a represen
tation of the evolutionary history of a sample that shows the past history of recombination, coalescence, and mutation events 
across a particular sequence. This representation in theory contains as much information, if not more, than the combination 
of all independent summary statistics that could be derived from the genotype matrix. Consistent with this idea, some of the 
first ARG-based analyses have proven to be more powerful than summary statistic-based analyses (Speidel L, Forest M, Shi S, 
Myers SR. A method for genome-wide genealogy estimation for thousands of samples. Nat Genet. 2019:51(9):1321 to 
1329.; Stern AJ, Wilton PR, Nielsen R. An approximate full-likelihood method for inferring selection and allele frequency tra
jectories from DNA sequence data. PLoS Genet. 2019:15(9):e1008384.; Hubisz MJ, Williams AL, Siepel A. Mapping gene 
flow between ancient hominins through demography-aware inference of the ancestral recombination graph. PLoS Genet. 
2020:16(8):e1008895.; Fan C, Mancuso N, Chiang CWK. A genealogical estimate of genetic relationships. Am J Hum 
Genet. 2022:109(5):812–824.; Fan C, Cahoon JL, Dinh BL, Ortega-Del Vecchyo D, Huber C, Edge MD, Mancuso N, 
Chiang CWK. A likelihood-based framework for demographic inference from genealogical trees. bioRxiv. 
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2023.10.10.561787. 2023.; Hejase HA, Mo Z, Campagna L, Siepel A. A deep-learning approach for inference of selective 
sweeps from the ancestral recombination graph. Mol Biol Evol. 2022:39(1):msab332.; Link V, Schraiber JG, Fan C, Dinh B, 
Mancuso N, Chiang CWK, Edge MD. Tree-based QTL mapping with expected local genetic relatedness matrices. bioRxiv. 
2023.04.07.536093. 2023.; Zhang BC, Biddanda A, Gunnarsson ÁF, Cooper F, Palamara PF. Biobank-scale inference of an
cestral recombination graphs enables genealogical analysis of complex traits. Nat Genet. 2023:55(5):768–776.). As such, 
there has been significant interest in the field to investigate 2 main problems related to the ARG: (i) How can we estimate 
the ARG based on genomic data, and (ii) how can we extract information of past evolutionary processes from the ARG? 
In this perspective, we highlight 3 topics that pertain to these main issues: The development of computational innovations 
that enable the estimation of the ARG; remaining challenges in estimating the ARG; and methodological advances for de
ducing evolutionary forces and mechanisms using the ARG. This perspective serves to introduce the readers to the types 
of questions that can be explored using the ARG and to highlight some of the most pressing issues that must be addressed 
in order to make ARG-based inference an indispensable tool for evolutionary research.

Key words: ancestral recombination graph, demographic inference, natural selection.

Significance
The history of coalescence, mutation, and recombination events between a set of sequences is represented in a structure 
known as the ancestral recombination graph (ARG). The ARG is very informative of past evolutionary history and this 
property has generated a lot of interest in the development of methodologies that leverage the ARG. Here we discuss 
methodologies to infer the ARG, challenges remaining to estimate the ARG, and how we can use the ARG to infer past 
evolutionary processes.

Methods to Estimate the ARG
The estimation of the ancestral recombination graph (ARG) is 
a challenging problem since it requires 3 parts: the delimita
tion of sections of the genome that share the same history, 
showing the genealogical history in each section of the gen
ome and highlighting genealogical changes between adja
cent sections of the genome due to recombination (Fig. 1). 
We note that genealogical changes between adjacent sec
tions of the genome occur more frequently between more 
ancient branches of the ARG because those branches tend 
to be longer. This property is due to the recombination 
events appearing on the analyzed sequences with a rate 
that is positively correlated with the product of the branch 
length multiplied by the recombination rate per base. 
When a recombination event takes place, it changes the co
alescent patterns on branches between adjacent sections of 
the genome. As a corollary, the more recent nodes of an 
ARG tend to be shared among longer sections of the gen
ome because those branches tend to be shorter. It must be 
noted that past demographic events affect these factors. 
As an example, a recent small population history produces 
more long sections of the genome sharing the same history 
and a higher amount of haplotype sharing (see Deng et al. 
2021 for the theoretical distribution of the distances be
tween changes in shared history). Developing methods 
that can estimate the ARG at a genome-wide scale “accur
ately” is a complex computational problem as the number 
of possible ARGs grows rapidly with increasing sample sizes. 

Additionally, there are different ways of coding an ARG that 
have been recently formalized and well explained on a recent 
paper (Wong et al. 2023). The accuracy of the inferred ARGs 
can be measured with respect to estimates of (i) local tree 
topologies, (ii) coalescent times and their uncertainties, 
and/or (iii) recombination breakpoints and transitions be
tween adjacent trees, including the sharing of nodes across 
consecutive local trees, which translates to haplotype shar
ing in the data. Ideally, an ARG estimation method should 
provide benchmark tests showing how well they estimate 
these components of the ARG, but this has not been system
atically adopted in the literature.

The development of methods to estimate the ARG has 
been ongoing since 1990 when the first approaches, based 
on parsimony, were introduced (Hein 1990). However, 
these methods had limitations in terms of accuracy, the 
number of chromosomes, and the length of the sequence 
that could be used to estimate the ARG. Since then, ap
proximately 20 methodologies have been developed to es
timate the ARG, with some of these methods extending the 
functionality of others (Minichiello and Durbin 2006; 
Rasmussen et al. 2014; Mirzaei and Wu 2017; Heine 
et al. 2018; Kelleher et al. 2019; Speidel et al. 2019; 
Hubisz et al. 2020; Ignatieva et al. 2021; Schaefer et al. 
2021; Speidel et al. 2021; Mahmoudi et al. 2022; Wohns 
et al. 2022; Zhang et al. 2023). Currently, the most signifi
cant developments in ARG estimation have been made 
along 2 separate domains: increasing accuracy and improv
ing scalability (number of samples and/or length of 
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sequence analyzed). Thus far, most methods have faced a 
trade-off between accuracy and scalability that limited sim
ultaneous advances in both areas. Future methods that can 
simultaneously improve both accuracy and scalability will 
be key to realize the promises of ARG-based inference. In 
this perspective, we will highlight 3 particularly noteworthy 
methods: ARGweaver (Rasmussen et al. 2014), Relate 
(Speidel et al. 2019), and tsinfer/tsdate (Kelleher et al. 
2019; Wohns et al. 2022). We will examine the algorithmic 
foundations of these 3 methods and discuss significant ad
vances proposed by other ARG estimation methods. We 
decided to highlight ARGweaver (Rasmussen et al. 2014), 
Relate (Speidel et al. 2019), and tsinfer/tsdate (Kelleher 
et al. 2019; Wohns et al. 2022) (i) because their perform
ance to estimate ARGs has been assessed by independent 
peers not involved in the creation of the original methods 
(Brandt et al. 2022), (ii) because they have been widely 
used by the community, and (iii) due to the significant ad
vances on scalability or accuracy of the estimated ARGs 
done by those methods. We note that methods that have 
been developed in the past couple of years hold promise 
to make large improvements on scalability or accuracy 
such as ARGinfer (Mahmoudi et al. 2022) and ARG-needle 
(Zhang et al. 2023). We hope to see more future work 
comparing the performance of these newer methods in 
contrast to previous methods.

ARGweaver (Rasmussen et al. 2014) greatly improved the 
accuracy of the estimated ARGs by implementing a new 
strategy called threading to navigate the ARG space in order 
to perform Markov chain Monte Carlo (MCMC) based esti
mation. This strategy is based on the sampling of an ARG 
of N chromosomes from an ARG of N-1 chromosomes. 
This approach has its roots in the conditional sampling distri
bution framework (Paul and Song 2010), which gives the 
probability of sampling a new sequence given a set of N-1 
observed sequences. The authors showed that this sampling 
is computationally tractable using the assumptions of the se
quentially Markovian coalescent (SMC) model (McVean and 
Cardin 2005). Briefly, the SMC model assumes that recom
bination breaks the genome into segments that share the 

A  - Ancestral Recombination Graph 
    (ARG) in pedigree

C  - Same ARG as in A and B
    represented as a graph

B  - Same ARG as in A and C 
    represented as a set of local trees
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FIG. 1.—Schematic representations of the genealogy of a sample of 2 
diploid individuals. Colors represent the 4 haplotypes sampled, and black 
lines indicate lineages or sequence tracts where at least 1 coalescence 
has occurred. Black crosses indicate recombination events. a) The geneal
ogy or ARG embedded in a pedigree. We note that the pedigree                                                                                           

(continued) 

FIG. 1.—(Continued) 
representation shows a large amount of inbreeding (i.e. very small effective 
population size), unlikely to be found in outbreeding natural populations. 
The pedigree is used here solely for illustration purposes, to explicitly 
show the process of coalescence as lineages merging and recombination 
as lineages splitting, as we look backward in time. b) The same full ARG 
represented as a set of correlated local trees separated by a single recom
bination event. c) An equivalent representation of the full ARG as a graph 
that represents all genealogical relationships shown in a) and b), given that 
branches leading to recombination nodes are annotated with the corre
sponding sequence coordinates: left (L) or right (R) of the first (r1) or second 
(r2) recombination site. Figure modified from Brandt et al. (2022).
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same topology and that neighboring segments differ by a 
single change in the coalescence node of a particular branch. 
Crucially, the SMC model simplifies the “coalescent with re
combination” model by assuming that any local genealogy 
only depends on the previous genealogy along the sequence 
(i.e. the Markovian assumption). ARGweaver's threading op
eration removes and reattaches a new branch to the top
ology of each segment in a manner consistent with the 
SMC model, thereby estimating the ARG that best explains 
patterns of genetic variation in the N sampled sequences. 
ARGweaver provides a very accurate reconstruction of the 
ARG as seen both in simulation and in comparison with other 
methods (Rasmussen et al. 2014; Brandt et al. 2022). In fact, 
the inaccuracies in ARGweaver results are due to 3 character
istics under a demographic model with a constant popula
tion size: approximations of the SMC model, the 
discretization of time, and MCMC convergence. Those 3 
characteristics should be the main focus for methods aiming 
to achieve higher accuracy than ARGweaver under a demo
graphic model with a constant population size. The estima
tion of ARGs under alternative demographic models to a 
constant population size model is another topic that should 
be inspected by ARG inference methods. Another advantage 
of ARGweaver is that it provides samples from a posterior 
distribution of ARGs instead of a single point estimate of 
it, providing the user with a measure of uncertainty around 
the estimated ARGs and lending itself well for downstream 
evolutionary methods that can take this uncertainty into ac
count. Relate and tsinfer/tsdate, on the other hand, provide 
posterior samples of coalescent times but under a fixed esti
mate of the ARG topology.

Despite its accuracy, ARGweaver is limited to recon
structing the ARG of dozens of chromosomes (Rasmussen 
et al. 2014). Two recent methods enabled ARG estimation 
on thousands of samples: Relate (Speidel et al. 2019) and 
tsinfer (Kelleher et al. 2019). Relate employs a modified ver
sion of the Li–Stephens model (Li and Stephens 2003) to 
calculate the genetic distance between all haplotypes at 
each segment of the genome that share the same topology. 
Those distances are then used to reconstruct the geneal
ogies across all segments in the genome. On the other 
hand, tsinfer first reconstructs “ancestral sequences” of a 
set of sampled chromosomes and then infers the relation
ship between the sequences using a variation of the Li– 
Stephens model (Li and Stephens 2003). Both the Relate 
and tsinfer/tsdate methods greatly increase the scalability 
of ARG estimation methods, with Relate (Speidel et al. 
2019) being capable of handling up to ∼10,000 genomes 
and tsinfer/tsdate (Kelleher et al. 2019) being capable of 
handling >100,000 genomes. However, both tsinfer/tsdate 
and Relate are less accurate than ARGweaver in estimating 
coalescence times (Brandt et al. 2022). Their reduced accur
acy is likely due to the approximations of the Li–Stephens 
model and heuristics used by these methods, which do 

not approximate the coalescence with recombination as 
well as the SMC model. However, it is crucial to note that 
the approximations used by tsinfer and Relate are expected 
to work better with larger sample sizes. Since ARGweaver is 
not scalable to the same order of magnitude of sample size, 
a direct comparison of accuracy at these larger sample sizes 
is not feasible.

ARGweaver, Relate, and tsinfer were the first methods 
developed based on defined models that simplify the co
alescent with recombination (namely, SMC and Li and 
Stephens models). Nevertheless, there have been other in
novative approaches developed to estimate the ARG apart 
from Relate, tsinfer, and ARGweaver (Table 1). These in
clude, but are not limited to, a set of methods using heur
istic approximations of the coalescent model with 
recombination to obtain plausible reconstructions of the 
ARG (Minichiello and Durbin 2006), improved parsimony- 
based ARG reconstruction methods (Ignatieva et al. 
2021), fast heuristic methods to reconstruct local geneal
ogies (Mirzaei and Wu 2017), a new approach to parallelize 
the computations inside a chromosome to estimate the 
ARG (Heine et al. 2018), a method that leverages the suc
cinct tree sequence data structure (Kelleher et al. 2018) 
to speed up a Bayesian estimation of the ARG 
(Mahmoudi et al. 2022), approaches to estimate the ARG 
of a large number of individuals using genotype array 
data (Zhang et al. 2023), and extensions of ARG estimation 
methods to incorporate information from aDNA (Speidel 
et al. 2021) and to infer archaic gene flow events (Hubisz 
et al. 2020; Schaefer et al. 2021). These various approaches 
aim to improve general ARG estimation speed, scalability, 
or accuracy or tackle the inclusion of more specific data 
types, such as genotyping array data or ancient samples.

Challenges
Despite significant advances in the methodologies for re
constructing ARGs, there are still considerable trade-offs 
to be made to balance their accuracy and scalability. 
While some methods, such as ARGweaver (Rasmussen 
et al. 2014), are among the most accurate, they are not 
scalable for large data sets. On the other hand, methods 
like tsinfer (Kelleher et al. 2019) can handle a large number 
of samples but sacrifice accuracy. Future methods for ARG 
estimation need to be both accurate and scalable to over
come these limitations. Currently, these challenges limit 
the applicability of ARG estimation methods to infer evolu
tionary events, highlighting the need for further develop
ment in this area (Brandt et al. 2022).

ARG estimation is challenging because the space of pos
sible ARGs is very large and thus hard to explore. Current 
methods that estimate the ARG use a simplified model, 
such as the SMC model, that allows a faster exploration 
of the ARG space while allowing the calculation of tractable 
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likelihoods. In principle, it is possible that the development 
of mathematical models that make further simplifications 
of the ARG could allow for a faster navigation of the ARG 
space while permitting the calculation of tractable likeli
hoods and, therefore, allow for faster inferences of the 
ARG. The accuracy of these ARG inferences will depend 
on the impact of the simplifications of these models.

The evaluation of accuracy of ARG estimation methods 
per se is also challenging. As mentioned earlier, the 

accuracy of the estimated ARG can be quantified based 
on local tree topologies, coalescent times, or the sharing 
of nodes between consecutive trees. However, most often, 
a researcher's goal is to use ARG estimation methods to 
understand underlying evolutionary processes and not ne
cessarily to directly estimate an ARG most similar to the 
true one. Therefore, the appropriate metric for accuracy 
may differ depending on the intended downstream appli
cation. For example, inferences about demographic history 

Table 1 
Methods for estimation of ancestral recombination graphs

Method Main challenge addressed Key innovation Limitations Framework

Margarita 
(Minichiello and 
Durbin 2006)

Scalability 
(thousands of 
individuals, hundreds of 
SNPs)

More principled than previous 
haplotype clustering, faster than fully 
model-based methods

Maximizes tract lengths, 
probably underestimating 
recombinations

Heuristics based 
on CwR and 
SMC

ARGweaver 
(Rasmussen et al. 
2014)

Accuracy Navigating ARG space with threading 
algorithm. 
Provides estimates of uncertainty.

Inference done using a set of 
specified times, scalability 
(10s of whole genomes)

SMC or SMC”

RENT+ (Mirzaei and 
Wu 2017)

Scalability 
(faster than ARGweaver 
for the same number of 
samples)

Estimate trees per SNP and then merge 
compatible consecutive trees

Only provides point estimate Heuristics

Arbores (Heine et al. 
2018)

Speed (through 
parallelization of 
computations)

Parallelization with tree-bridging 
MCMC sampler. Provides estimates of 
uncertainty.

Scalability 
(tested on less than 10 
sequences)

SMC

Relate (Speidel et al. 
2019, 2021)

Scalability 
(up to 104 genomes), 
inclusion of ancient 
samples

Two step estimation (topology, then 
coalescence times), has an aDNA 
extension. Provides estimates of 
coalescence times uncertainty.

Fixed topologies L&S

tsinfer/tsdate 
(Kelleher et al. 
2019; Wohns et al. 
2022)

Scalability 
(105 genomes), speed

Tree sequence encoding and 2 step 
estimation (topology and then 
coalescence times). Provides 
estimates of coalescence times 
uncertainty.

Fixed topologies, Inference done 
using a set of prespecified 
times

L&S

ARGweaver-D (Hubisz 
et al. 2020)

Assumption of constant 
population size and 
structure

Includes demography in model and 
provides estimates of uncertainty.

Inference done using a set of 
prespecified times, scalability

SMC or SMC’

SARGE (Schaefer et al. 
2021)

Scalability 
(500 genomes)

Fast algorithm to find best branch 
movement to explain failure of the 
4-gamete test

Only provides point estimate and 
minimizes recombination 
events

Parsimony

KwARG (Ignatieva 
et al. 2021)

Estimation with recurrent 
mutations

Parsimony (minimal recombination) 
heuristics allowing for variable 
amounts of recombination and/or 
recurrent mutation

Scalability 
(∼10s sequences, ∼1,000s bp)

Parsimony

ARGinfer (Mahmoudi 
et al. 2022)

Accuracy Augmented tree sequence encoding 
and probabilistic estimation under 
the CwR. Provides estimates of 
uncertainty.

Scalability 
(∼10s sequences, ∼100s kb)

CwR

ARG-Needle (Zhang 
et al. 2023)

Accuracy (among the 
more scalable methods 
like Relate and tsinfer/ 
tsdate)

ASMC clustering followed by sequence 
threading and ARG normalization for 
better calibration of posteriors

Accuracy (has not been 
compared to other highly 
accurate methods like 
ARGweaver or ARGinfer)

ASMC

We highlight the main challenge addressed by each method, their key innovation, limitations, and the model or framework on which each method is based on. Model 
names are abbreviated as follows: CwR (coalescent with recombination), SMC (sequentially Markovian coalescent), L&S (Li and Stephens algorithm; Li and Stephens 2003). 
ASMC is the Ascertained Sequentially Markovian Coalescent algorithm (Palamara et al. 2018).
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that depend on whole-genome patterns of coalescence 
rates might be better with methods that can rely on large 
sample sizes and whole genomes. On the other hand, infer
ences about selection parameters might gain more from 
methods that more precisely estimate the local trees at 
the selected loci. Therefore, the choice and accuracy of 
the ARG reconstruction method will ultimately be dictated 
by the intended evolutionary parameter one wishes to 
study.

Moreover, a better understanding of how different evo
lutionary processes and the misspecification of evolutionary 
parameters can impact the ARG estimation is still necessary. 
For instance, both background selection and positive selec
tion can reduce the total branch length and alter the shape 
of genealogies (Rasmussen et al. 2014; Ortega-Del Vecchyo 
et al. 2022). Other evolutionary parameters that could be 
impacting ARG estimation, if misspecified, are mutation 
and recombination rates—both are heterogeneous across 
the genome and likely heterogeneous over time (Stapley 
et al. 2017; DeWitt et al. 2021), as well as the mispolariza
tion of ancestral allelic states (Hernandez et al. 2007). As a 
result, the number of inferred genealogies in a given seg
ment and the branch lengths over time within a genealogy 
could be biased. As an example, underspecified recombin
ation rates would produce a larger number of bases with a 
shared genealogical history. On the other hand, an under
specified mutation rate would decrease the inferred coales
cent rates. The impact of the mispolarization of ancestral 
states on the ARG reconstruction is a topic that needs fur
ther investigation.

Furthermore, it is worth noting that most ARG recon
struction methods have been developed for diploid, sexual
ly reproducing organisms, and may not be directly 
applicable to organisms with different ploidy or reproduct
ive mechanisms. For instance, different ARG reconstruction 
methods are needed for bacteria to take into account clonal 
reproduction and horizontal gene transfer (Vaughan et al. 
2017) since it generates an asymmetry in the contributed 
DNA from parents to their offspring at recombination 
events, which is better approximated by the coalescent 
with gene conversion than the coalescent with recombin
ation (Vaughan et al. 2017). Different ARG reconstruction 
methods will also be needed to analyze self-fertilizing or
ganisms such as Arabidopsis thaliana or polyploid plants. 
In the case of polyploid plants, ARG reconstruction is com
plicated because haplotype phasing becomes more difficult 
as the number of chromosomes increases (Schrinner et al. 
2020). Haplotype phasing errors due to statistical phasing 
can be a problem if the ARG reconstruction methods re
quire prephased haplotypes (Kelleher et al. 2019; Speidel 
et al. 2019). Haplotype phasing could also bias ARG recon
struction if the method averages over all possible phasings 
including phasings that are incorrect (Rasmussen et al. 
2014).

Finally, current ARG reconstruction methods tend to be 
based on 2 main assumptions often made in population 
genetics. The first assumption, which determines the shape 
of the genealogies, is that the sequences coalesce following 
the standard coalescent model. The second assumption, 
which determines the amount of variation we see on 
each site, is that there are only 2 possible alleles per site. 
Regarding the first assumption, the standard coalescent 
model may not be applicable in scenarios where multiple 
mergers are common, such as in many marine organisms 
with sweepstakes reproductive success (i.e. high variance 
in offspring number) (Hedgecock and Pudovkin 2011; 
Zhu et al. 2015). It remains to be explored how ARG infer
ence using the standard coalescent or its approximations as 
a prior is affected when the true evolutionary model is more 
similar to a multiple merger coalescent (Tellier and Lemaire 
2014). Previous results suggest that past population sizes 
can be underestimated if there are unaccounted multiple 
mergers in the data (Bhaskar et al. 2014). Regarding the se
cond assumption, large sequencing studies on humans 
have identified a large number of recurrent mutations 
(Harpak et al. 2016; Lek et al. 2016) and segregating sites 
with more than 2 alleles (Lek et al. 2016). Some methods 
assume that there can be recurrent mutations per site, 
e.g. ARGweaver (Rasmussen et al. 2014), while others as
sume that there can be only 1 mutation per site, e.g. 
Relate (Speidel et al. 2019). In the future, it will be necessary 
to take into account multiallelic sites in ARG estimation 
methods that are currently discarded to infer the ARG.

Downstream Evolutionary and Statistical 
Genetic Applications
The analysis of the inferred ARG provides a unique oppor
tunity to gain a deeper understanding of past evolutionary 
processes. Many past methods treated the ARG as a latent 
variable to perform inferences to identify regions under 
positive selection (Huber et al. 2016) or to characterize evo
lutionary processes such as the past demographic history 
(Excoffier et al. 2021). Methods that use the information 
encoded on the ARG make use of the fact that all summary 
statistics of genetic variation in the data are, in the end, 
functions of the ARG. In particular, the coalescent rates 
over time encoded on an inferred ARG provide a rich source 
of information to analyze phenomena such as temporal 
changes of allele frequencies, the impact of natural selec
tion, or past population structure.

One of the first evolutionary applications of the in- 
ferred ARG to understand the past was the inference of 
genetic adaptation. An early approach to do this was devel
oped with ARGweaver, where an ARG-derived summary 
statistic was used to differentiate between 2 types of 
selection that were hard to distinguish with previous 
methods: background selection and selective sweeps 

Brandt et al.                                                                                                                                                                     GBE

6 Genome Biol. Evol. 16(2) https://doi.org/10.1093/gbe/evae005 Advance Access publication 18 January 2024

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/16/2/evae005/7577593 by U

niversity C
ollege London user on 07 February 2024



(Rasmussen et al. 2014). CLUES uses another approach 
based on a parametric model of how an allele under recent 
positive selection affects the genealogy to infer the likeli
hood and strength of natural selection from the observed 
genealogy at a locus (Stern et al. 2019). A more recent ma
chine learning method, SIA (Hejase et al. 2022), builds on 
the ideas of CLUES along with the selection statistics to detect 
signatures of positive selection developed in the software 
Relate (Speidel et al. 2019). Based on this foundation, SIA 
incorporates information from nearby (i.e. linked neutral) 
genealogies to more accurately infer the impact of natural 
selection (Hejase et al. 2021).

In addition, the inferred ARG is a valuable tool for analyz
ing past demographic events. The first example of an appli
cation to estimate the ARG and the past demographic 
history is the popular program PSMC that estimates the 
past population history based on a sample of 2 chromo
somes from an individual (Li and Durbin 2011). Similarly, 
the software Relate and Colate can use the coalescent rates 
from samples of many individuals to infer past population 
sizes and population structure through time (Speidel et al. 
2019, 2021). Additionally, ARGweaver-D is an extension 
of ARGweaver that can estimate the ARG under a prespe
cified demographic model to detect archaic introgressions 
(Hubisz et al. 2020). A composite likelihood method esti
mates population sizes and migration rates employing in
formation of coalescent rates from subtrees of 3 
individuals from larger genealogies inferred across the gen
ome (Pope et al. 2023). Another recent method can also in
fer demographic parameters under complex models that 
include past population sizes, divergences, and admixtures 
by employing a graph-based structure to efficiently com
pute the exact marginal probability of coalescent trees 
with thousands of haplotypes (Fan et al. 2023). The inferred 
ARG has also been leveraged to analyze past population 
structure via the computation of an expected genetic rela
tionship matrix defined as eGRM (Fan et al. 2022) as the 
ARG inherently leverages linkage information to depict 
the relationship between the sampled individuals. 
Incorporating geographic information can further enhance 
the analysis of the inferred ARG and help characterize 
population structure via the inference of dispersal rates 
(Battey et al. 2020; Osmond and Coop 2021) and the loca
tion of genetic ancestors of sampled individuals (Osmond 
and Coop 2021; Wohns et al. 2022).

Furthermore, the inferred ARG can enhance our under
standing of the genotype–phenotype relationship for com
plex traits. For instance, researchers have studied the 
evolution of complex traits by combining the inferred 
ARG with genome-wide association studies data to analyze 
how directional selection has potentially shaped the evolu
tion of phenotypic traits (Speidel et al. 2019; Stern et al. 
2020) or to analyze the evolution of polygenic scores 
(Edge and Coop 2019). The inferred ARG and the GRM 

derived from it can also improve the robustness and power 
of association analysis to identify novel trait-associated loci, 
particularly in under-resourced populations or under com
plicated models of genetic architecture such as allelic het
erogeneity (Link et al. 2023; Zhang et al. 2023).

Across these applications, 2 broad categories of analysis 
currently leveraging the inferred ARG emerge. One is based 
on computing the expectation of a statistic from the in
ferred ARG (Ralph et al. 2020) as in the case of the eGRM 
(Fan et al. 2022; Link et al. 2023; Zhang et al. 2023). 
Another category of analyses uses a model-based approach 
to estimate an evolutionary parameter of interest as in 
CLUES (Stern et al. 2019), PALM (Stern et al. 2020), or 
SIA (Hejase et al. 2021). Despite the substantial computa
tional cost, explicit modeling is the more principled ap
proach to test and estimate the parameters of an 
evolutionary model. As such, we would expect future de
velopment to focus on making model-based approaches 
more efficient and flexible. These approaches could open 
previously intractable applications and offer a powerful al
ternative to infer past evolutionary processes based on the 
genomic data and the ARG from many samples.

Conclusion and Future Prospects
The development of methods capable of estimating the 
ARG opens the door to new analyses that interpret the joint 
patterns of coalescent and recombination events encoded 
in the ARG to understand our past. Such methods should 
lead to more accurate inferences of past evolutionary pro
cesses of interest that would be hard to pinpoint using 
only traditional statistics based on patterns of genetic vari
ation. In particular, the ARG explicitly introduces the tem
poral dimension that is usually missing from raw genetic 
variation data. Therefore, more accurate estimation of the 
ARG will make possible a principled approach to, for ex
ample, infer temporal changes on the impact of natural se
lection or the changing pattern of population structure over 
time. We expect to see further developments on 
ARG-based analysis that will paint a more detailed picture 
of evolutionary processes acting on patterns of genetic 
and phenotypic variation.

Supplementary Material
Supplementary material containing chinese, portuguese 
and spanish translations of the abstract are available at 
Genome Biology and Evolution online.
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