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Abstract
Amyotrophic lateral sclerosis (ALS) displays considerable clinical and genetic heterogeneity. Machine learning 
approaches have previously been utilised for patient stratification in ALS as they can disentangle complex disease 
landscapes. However, lack of independent validation in different populations and tissue samples have greatly 
limited their use in clinical and research settings. We overcame these issues by performing hierarchical clustering 
on the 5000 most variably expressed autosomal genes from motor cortex expression data of people with sporadic 
ALS from the KCL BrainBank (N = 112). Three molecular phenotypes linked to ALS pathogenesis were identified: 
synaptic and neuropeptide signalling, oxidative stress and apoptosis, and neuroinflammation. Cluster validation was 
achieved by applying linear discriminant analysis models to cases from TargetALS US motor cortex (N = 93), as well 
as Italian (N = 15) and Dutch (N = 397) blood expression datasets, for which there was a high assignment probability 
(80–90%) for each molecular subtype. The ALS and motor cortex specificity of the expression signatures were 
tested by mapping KCL BrainBank controls (N = 59), and occipital cortex (N = 45) and cerebellum (N = 123) samples 
from TargetALS to each cluster, before constructing case-control and motor cortex-region logistic regression 
classifiers. We found that the signatures were not only able to distinguish people with ALS from controls (AUC 
0.88 ± 0.10), but also reflect the motor cortex-based disease process, as there was perfect discrimination between 
motor cortex and the other brain regions. Cell types known to be involved in the biological processes of each 
molecular phenotype were found in higher proportions, reinforcing their biological interpretation. Phenotype 
analysis revealed distinct cluster-related outcomes in both motor cortex datasets, relating to disease onset and 
progression-related measures. Our results support the hypothesis that different mechanisms underpin ALS 
pathogenesis in subgroups of patients and demonstrate potential for the development of personalised treatment 
approaches. Our method is available for the scientific and clinical community at https://alsgeclustering.er.kcl.ac.uk.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a fatal neurode-
generative disease which displays considerable genetic 
heterogeneity. In approximately 90% of people with ALS, 
the disease is labelled as sporadic, without an apparent 
family history of the disease, with the remainder classed 
as familial [1]. Mutations in approximately 40 genes are 
known to be linked with ALS and can explain the major-
ity of familial cases and approximately 20% of sporadic 
cases (SALS) [2]. However, a further 130 genes have been 
proposed to contribute to its risk or act as disease modifi-
ers [3, 4]. ALS is also phenotypically variable, with differ-
ences in age and site of onset (spinal-innervated muscles 
vs. bulbar), the balance of upper and lower motor neu-
ron involvement, rate of disease progression, and the 
presence of cognitive or non-motor symptoms [5]. Fur-
thermore, a multitude of molecular processes have been 
implicated in its pathogenesis, in part due to the vast 
number of causative and modifier genes associated with 
ALS that code for diverse cellular functions [6]. It is 
therefore plausible that there is no universal approach to 
the treatment of people with ALS, especially given that 
many therapeutic strategies target specific molecular 
pathways. For example, the protective action of Riluzole 
on motor neurons is proposed to be the result of a reduc-
tion in glutamate-mediated excitotoxicity [7].

Machine learning approaches can be used to help us 
to understand the genetic and molecular complexity and 
heterogeneity of ALS, for example, by finding patterns in 
biological and clinical data that distinguish some groups 
of patients from the others. These subgroups can aid in 
identifying the best candidates for therapeutics which 
target specific biological processes. Machine learning 
methods have previously been applied to brain expres-
sion data to stratify people with SALS into molecular 
subgroups [8–11], and has led to valuable insight into the 
genomic heterogeneity of ALS. However, some of these 
studies integrated samples from different brain regions to 
generate clusters and characterise their molecular archi-
tectures [9, 11, 12]. This design might present limitations 
in reflecting motor neuron-related ALS pathogenesis. 
Other studies adopted a case-control framework [8–10], 
which could lead to reduced power given the potential 
decoupling between mechanisms underlying risk and 
phenotype variability [13–15]. Furthermore, previous 
work has not been validated in independent datasets or 
in different populations and did not investigate whether 
molecular subtypes identified in post-mortem brains are 
reflected in other tissues available pre-mortem. Such fac-
tors have greatly limited the applicability and impact of 

these results. We therefore aimed to identify and validate 
molecular and phenotypic patterns across multiple inde-
pendent datasets, tissue types and populations, to gener-
ate gene expression derived molecular subtypes of ALS 
that can be utilised for stratification in the design and 
interpretation of future research and clinical studies.

Methods
Study cohorts
We obtained raw post-mortem motor cortex bulk RNA 
sequencing data in FASTQ format from two datasets. The 
first, which was used to generate the clusters, consisted of 
112 people from the UK with SALS from King’s College 
London and the MRC London Neurodegenerative Dis-
eases Brain Bank (KCL BrainBank) [16]. We additionally 
obtained matching whole-genome sequencing (WGS), 
methylation data and clinical data for the KCL BrainBank 
samples from Project MinE to perform subgroup clinical 
and omics-based phenotype analysis [17]. For validation 
of KCL BrainBank-derived cluster expression signatures, 
168 US motor cortex samples from 93 people with SALS 
of North European ancestry, present in the Target ALS 
Human Post-mortem Tissue Core (TargetALS) were 
used. For further validation of KCL BrainBank-derived 
clusters, we also processed two peripheral blood mono-
nuclear cell (PBMC) datasets; bulk RNA sequencing 
data in FASTQ format of 15 Italian people with SALS 
(Zucca) [18], and hg18-aligned log2 transformed and 
quantile normalised microarray gene probe intensities 
of 397 Dutch people with ALS (van Rheenen) [19]. To 
determine if the clusters could discriminate between ALS 
cases and controls, we also used RNA sequencing data 
in FASTQ format from 59 healthy controls in the KCL 
BrainBank. Finally,  we obtained raw transcript counts 
for two additional TargetALS case datasets to determine 
if the expression signatures reflected a motor cortex-
specific disease process, which included 45 samples from 
the occipital cortex, and 128 samples from 123 individu-
als from the cerebellum. Sequencing specific methods are 
described in more detail in the Supplementary Methods. 
The basic demographics of each of the datasets used in 
this study are detailed in Supplementary Table 1. 

Bulk RNA sequencing data Processing
Paired FASTQ files from KCL BrainBank, TargetALS 
motor cortex and Zucca datasets were interleaved using 
BBMap reformat v38.18.0 under default options before 
adapters were right-clipped and both sides of each read 
were quality-trimmed with BBMap bbduk v38.18.0 [20]. 
The interleaved FASTQ files were aligned to hg38 using 
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STAR v2.7.10a under default settings [21]. Raw tran-
script counts for each gene were then quantified using 
HTSeq [22] on a sample-wise basis before merging into 
dataset-specific matrices. For the TargetALS occipital 
cortex and cerebellum datasets, transcripts were quanti-
fied with Salmon [23] before being converted into gene-
specific expression counts with tximport [24]. For all 
datasets, raw counts were normalised using the estimate-
SizeFactors function of DESeq2, before lowly expressed 
genes and non-autosomal chromosomes were removed. 
Expression values were then standardized using the vari-
ance stabilising transformation (vsd) function in DESeq2 
[25].

Hierarchical clustering of KCL samples
Our hierarchical clustering was based on a protocol 
that was previously used to identify cortical molecular 
phenotypes of ALS [11]. Briefly, the 5000 most variably 
expressed genes, selected based on the highest median 
absolute deviation values, were extracted from the KCL 
BrainBank gene expression matrix. Unsupervised hier-
archical clustering was then performed with the non-
smooth negative factorisation (nsNMF) algorithm, using 
helper functions outlined in the SAKE package [26]. 
The optimal number of clusters was identified by run-
ning nsNMF with 100 runs and 1000 iterations for dif-
ferent values of k (two to ten). Cluster estimation results 
are available in Supplementary Fig.  1. We then ran the 
nsNMF algorithm with k = three, 100 runs and 1000 
iterations, with the resulting consensus matrix show-
ing a clear separation of samples (Supplementary Fig. 2). 
Informative gene and sample assignment for each of the 
three clusters was then extracted. The list of informative 
genes for each cluster was then used to characterise their 
molecular phenotypes by performing gene enrichment 
analysis using the GProfiler2 R package [27]. Genes from 
the whole KCL expression matrix were used as a cus-
tom gene background. The default g:SCS algorithm was 
used to assess significant enrichment for several process 
and pathway categories in the following databases: Gene 
Ontology (Biological Process (GO:BP), Molecular Func-
tion (GO:MF) and Cellular Component (GO:CC)), Kyoto 
Encyclopaedia of Genes and Genomes (KEGG), Reac-
tome, CORUM, TRANSFAC, and miRTarBase. Addi-
tionally, MetaCore™ (available at https://portal.genego.
com) was used to construct cluster-specific gene pathway 
networks using the ’analyze network’ algorithm under 
default options, with the network that displayed the high-
est significance selected as the one that most defines the 
cluster.

Validation of KCL BrainBank-derived clusters
To determine if the informative genes which defined each 
cluster could be used to successfully stratify samples in 

other ALS datasets, we applied linear discriminant anal-
ysis (LDA) models to the TargetALS, Zucca, and van 
Rheenen ALS datasets, using the MASS R package [28]. 
Each dataset-specific model was trained using the inter-
section of dataset-specific and informative cluster genes, 
which yielded 470, 381, and 535 genes for TargetALS, 
Zucca and van Rheenen, respectively. The linear dis-
criminants were derived from the KCL BrainBank gene 
and sample cluster assignments. The same approach was 
carried out for KCL BrainBank controls and the occipital 
cortex and cerebellum of people with ALS from Targe-
tALS, with 787, 651 and 622 genes shared between each 
respective dataset and KCL BrainBank cases. Classifica-
tion probability was evaluated based on the average data-
set-specific posterior probabilities of cluster assignment. 
Cluster stability was then assessed using bootstrapping, 
implemented in the resample function of the scikit-learn 
package. Resampling with replacement was performed 
with 1000 iterations. For each iteration, the median and 
95% confidence intervals for accuracy and silhouette of 
the cluster assignment was collected, before being aver-
aged to form the final estimate.

As linear discriminant analysis is constrained to assign 
every sample to one class, we performed additional anal-
yses to confirm that controls and post-mortem expres-
sion data from different brain regions assigned to each 
molecular phenotype can be distinguished from motor-
cortex case samples. To determine the specificity of the 
cluster one signature for ALS in the KCL BrainBank 
dataset, we performed case-control differential expres-
sion analysis of the 131 genes which constituted its 
signature using DESeq2 [25], applying the same stan-
dardisation and normalisation procedure that was used 
to pre-process the expression data for hierarchical clus-
tering. Differentially expressed genes were identified via 
the independent hypothesis weighting multiple testing 
approach using Benjamini-Hochberg adjustment, with 
p-value < 0.050 denoting significance. For both the KCL 
BrainBank cluster 1 case-control dataset and the Targe-
tALS motor-occipital and motor-cerebellum case datas-
ets for all clusters, we built logistic regression classifiers 
with ten-fold cross validation using the scikit-learn and 
imblearn Python libraries [29, 30] to ascertain the dis-
criminative ability of each cluster-specific gene signa-
ture. Three scenarios were employed: (1) using all of the 
cluster-specific genes present in each dataset, (2) remov-
ing multicollinear features using the SelectNonCollinear 
function of the collinearity package with a correlation 
threshold of 0.4 and ANOVA F-value as the scoring 
parameter [31], and (3) extracting the uncorrelated fea-
tures present in all folds to subset the cluster-specific 
signatures before retraining the model. For all scenarios, 
the data was firstly normalised by removing the mean 
and scaling to unit variance using StandardScaler before 
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oversampling was performed to address potential class 
imbalance using the synthetic-minority oversampling 
technique (SMOTE) function of imblearn. For each sce-
nario, the best hyperparameters were selected using 
GridSearchCV with ROC_AUC as the scoring parameter, 
before the model was evaluated using the average ROC_
AUC, precision, recall, and F1-score over all folds. Both 
hyperparameter tuning and cross-validation was per-
formed using StratifiedKFold with ten splits and shuffling 
of the samples within each cluster.

We also performed two additional analyses to deter-
mine the robustness of our discovery and validation 
methods. The first analysis involved performing hierar-
chical clustering on the top 5000 variably expressed genes 
in TargetALS motor cortex samples to obtain informa-
tive-gene based cluster assignments in the same way as 
described for KCL BrainBank. By doing this, TargetALS 
was the discovery dataset, whilst KCL BrainBank served 
as the replication dataset. We then analysed the overlap 
between the original assignments and new assignments 
to gather the natural grouping of samples. To support 
the discriminative performance of the KCL BrainBank 
classifier, we constructed ten additional logistic regres-
sion classifier models with 10-fold cross validation using 
the cases and controls assigned to cluster 1. Each classi-
fier was supplied with 131 randomly sampled genes from 
the transformed expression matrix. The resulting per-
formance metrics over all ten classifiers were averaged 
to form the final estimate before the performance was 
compared to the cluster 1 expression signature specific 
classifier.

Cell type deconvolution analysis of motor cortex case 
datasets
To assess whether the molecular phenotypes we identi-
fied in bulk RNAseq data could also be reflective of cell 
composition, we used the MuSiC R package (v1.0.0; 
[32]) to derive cell proportions in the KCL BrainBank 
and TargetALS case datasets for the following cell types: 
astrocytes, endothelial cells, microglia, neurons, and oli-
godendrocytes. We performed deconvolution with the 
raw RNAseq counts. The single-cell RNAseq reference 
dataset which was used to derive expression information 
for each cell type consisted of 8 adults and 4 embryonic 
samples (16–18 weeks gestational age) from the tempo-
ral lobe [33], which was downloaded via the scRNAseq 
R package (v2.14.0; [34]). Differences in composition 
between clusters in each dataset were assessed using one-
way ANCOVA corrected for sex assigned at birth and age 
of death, with post-hoc Tukey’s test used to determine 
subcluster-specific trends. The normality of each variable 
for each dataset was assessed using the Shapiro-Wilk test, 
with any variables that were non-normally distributed 
(p-value < 0.050) being log-transformed before analysis.

Subgroup phenotype analysis
To reveal and compare the phenotypic architecture of 
each cluster, we extracted several clinical and omics vari-
ables from each case-specific dataset. We performed the 
chi-square test of independence to assess if there were 
differences in the proportion of C9orf72-positive, limb-
onset, bulbar-onset, and combined limb and bulbar onset 
cases between each of the clusters in the KCL BrainBank 
and TargetALS datasets, the limb: bulbar ratio in the 
van Rheenen datasets, and the male:female ratio in all 
four case-only datasets. A p-value < 0.05 denotes signifi-
cance. Due to variations in the phenotypic information 
collected and accessibility of other omics data, we could 
not extract some phenotypic variables for all datasets. A 
breakdown of the collected phenotypic variables for each 
motor cortex and blood ALS dataset is available in Sup-
plementary Table 2. Transcriptional age acceleration was 
calculated by using RNAAgeCalc to obtain tissue-spe-
cific transcriptional age estimates for each dataset [35], 
before being subtracted from the chronological age (age 
at death for KCL BrainBank and TargetALS, age at last 
blood draw for Zucca and van Rheenen). Telomere length 
and mitochondrial DNA copy number were obtained by 
applying TelSeq v0.0.2 [36] and fastMitoCalc v1.2 [37] to 
the whole-genome sequencing BAM files, respectively. 
Biological age was estimated from the methylation beta-
value matrix using CorticalClock [38], before accelera-
tion was calculated by subtracting each value from the 
age at death. Differences between clusters were assessed 
using one-way ANCOVA corrected for sex assigned at 
birth, with post-hoc Tukey’s test used to determine sub-
cluster-specific trends. The normality of each variable for 
each dataset was assessed using the Shapiro-Wilk test, 
with any variables that were non-normally distributed 
(p-value < 0.050) being log-transformed before analy-
sis. Additionally, we applied a Cox proportional-hazards 
model to assess differences in age of onset among clusters 
by combining samples from both KCL BrainBank and 
TargetALS datasets, with which p-value < 0.050 denotes 
significance.

Code availability
The implementation of our class assignment model based 
on the KCL BrainBank data, can be used to assign class 
membership to new expression samples (both micro-
array and RNAseq) and is publicly available at https://
alsgeclustering.er.kcl.ac.uk. The code for the analyses 
performed in this study is available at https://github.com/
KHP-Informatics/HierarchicalClusteringALS/.

Results
The nsNMF algorithm identified 794 of the 5000 most 
variably expressed genes as being the most informa-
tive for defining the clusters. Each informative gene 

https://alsgeclustering.er.kcl.ac.uk
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was uniquely assigned to one cluster, yielding three dis-
tinct clusters, each with a unique gene expression pro-
file. There were 131, 291, and 372 genes which defined 
clusters one, two, and three, respectively (Fig.  1A). The 
full list of genes which comprise each cluster are avail-
able in Supplementary Table  3. The larger proportion 
of the people with ALS (60; 53.6%) were assigned to 

cluster one, followed by cluster two (28; 25%) and clus-
ter three (24; 21.4%), without substantial differences in 
male:female ratio in each cluster, based on sex assigned 
at birth (Fig. 1B) or the proportion of males and females 
assigned to the clusters (X2 = 0.43, p-value = 0.81). Almost 
all C9orf72 positive cases (7; 87.5%) were assigned to 
cluster one (Table  1), with no significant difference in 

Fig. 1  Informative gene and sample assignment for KCL BrainBank-generated clusters. (A) Number of the 794 informative genes uniquely assigned to 
each cluster, with the top five contributing genes (defined by posterior probability) listed at the side. (B) Distribution of cluster assignment of people with 
SALS alongside the male:female ratio, based on sex assigned at birth. The coloured scale refers to the posterior probability value
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the proportion of these cases between clusters (X2 = 4.24, 
p-value = 0.12).

Four known ALS-associated genes (HSPB1, CAV1, 
CX3CR1, RNASE2) were among the informative genes 
selected for the cluster signatures, with all four demon-
strating significant differences in their average expres-
sion values between clusters when performing one-way 
ANCOVA corrected for sex assigned at birth, age at 
death and post-mortem delay (Supplementary Fig.  3). 
When performing post-hoc analysis to assess which clus-
ters show differential expression, only CX3CR1, which 
was assigned to cluster three, was significantly upregu-
lated compared to cluster one (Tukey p-value = 1.2E-05) 
and cluster two (Tukey p-value = 7.2E-05) without differ-
ence in expression between clusters one and two (Supple-
mentary Fig.  3C). The other gene’s cluster assignments 
did not have a complete influence on their expression in 
cases assigned to the gene’s cluster, although for the clus-
ter three informative gene RNASE2, there was a trend for 
higher expression in cases assigned to that cluster com-
pared to the others (Supplementary Fig. 3D). The full sta-
tistical results are available in Supplementary Fig. 3E.

Each cluster represents a molecularly distinct phenotype 
that is linked to ALS pathogenesis
Characterising the molecular architectures of each clus-
ter by using gene enrichment and gene network analy-
ses, we found that each cluster represents a distinct 
molecular phenotype. Cluster one was significantly 
enriched for various neuronal and synaptic signalling-
related processes such as neuropeptide activity, cAMP 
signalling, and neuroactive ligand transcription, bind-
ing, and receptor interaction (Fig.  2A, Supplementary 
Table  4). Network analysis revealed that a mitochon-
dria specific signalling network is also present (Fig.  2B, 
p-value = 1.05E-20). Led by NXPH2, ATP12A, PTPRV, 
SV2C and C18orf42, this network is enriched for mito-
chondrial ATP synthesis coupled electron transport and 
the aerobic electron transport chain.

Cluster two was strongly linked with oxidative stress, 
apoptotic signalling, and vasculature related processes 
including angiogenesis, blood vessel development, epi-
thelial cell differentiation and atherosclerosis (Fig.  3A). 
Moreover, muscle-system and extracellular-matrix 
(ECM) specific enrichments (e.g., collagen synthesis 
and degradation, smooth muscle contraction, ECM pro-
teoglycans and degradation), and anti-inflammatory 
pathways (interleukin-4 and interleukin-13 signalling, 
neutrophil degranulation) from Reactome were also 
associated with this cluster (Fig.  3A). The muscle con-
traction theme was strengthened with GO:CC enrich-
ments for banded collagen fibril, supramolecular fiber, 
myofibril, Z disc, I band, sarcomere, and the actin cyto-
skeleton (Supplementary Table  5). Cluster two was also 

enriched for the ALS-gene related NOS3-CAV1 CORUM 
complex (p-value = 0.018). Furthermore, the cluster two 
network (Fig.  3B, p-value = 1.09E-17), which was driven 
by MFAP4, FPRL1, TUSC5, MRGPRF, and PLAUR, was 
associated with muscle contraction and actin-myosin 
filament sliding as well as phospholipase C-activating 
G protein coupled signalling. Cluster three represents 
an inflammatory phenotype, with biological process 
enrichment strongly associated with immune response 
in GO:BP and KEGG (Supplementary Table  6), as well 
as links with adaptive immunity, complement cascade, 
and interferon gamma signalling in Reactome and immu-
noglobulin activity and major histocompatibility com-
plex (MHC) class II in GO:MF (Fig.  4A). Furthermore, 
C1q and TLR1-TLR2 CORUM complexes and viral dis-
eases present in KEGG, such as Epstein-Barr disease, 
herpes simplex virus 1, and influenza A were among 
the most significant enrichments. Nine microRNAs 
were also significantly enriched in cluster two (includ-
ing hsa-miR-335-5p, hsa-miR-146a-5p, hsa-mIR-124-3p, 
hsa-miR-29a-3p, and hsa-miR-204-5p), with hsa-miR-
335-5p also being enriched in cluster three (Supplemen-
tary Tables 5 and 6). The cluster three network (Fig. 4B, 
p-value = 1.47E-26), defined by GNLY, HSPA7, SLAMF8, 
CLEC17A, and Sgo1, is MHC-class II specific and 
enriched for antigen processing, peptide antigen assem-
bly, and presentation of peptides and polysaccharide anti-
gens. Furthermore, the centre of the network, GATA-2, 
was the most significantly enriched TRANSFAC element 
in cluster three (GATAD2A, p-value = 9.56E-17, Supple-
mentary Table 6).

The molecular phenotypes are robust and validated in 
Independent brain and blood datasets
To validate the KCL BrainBank derived clusters, we per-
formed linear discriminant-driven cluster assignments of 
the TargetALS, Zucca and van Rheenen samples, using 
the intersection between the genes expressed in each one 
of them and the 794 genes that were used to define the 
clusters in the KCL BrainBank. Samples from each data-
set were assigned to one of the three clusters with high 
certainty (between 80 and 90%) based on average pos-
terior probability (diagonal cells in Fig. 5A, B and C). A 
breakdown of the sample to cluster composition for all 
case datasets is available in Table 1. For the Zucca data-
set, the posterior probability of belonging to cluster three 
is marginally higher than cluster two as only one sample 
was assigned to it.

To determine whether the molecular phenotypes also 
withheld validity in control datasets, we applied the same 
approach to healthy controls from the KCL BrainBank 
as well as TargetALS case datasets of the occipital cortex 
and cerebellum (demographics available in Supplemen-
tary Table 1). We found that all KCL BrainBank controls 
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Fig. 2  Results of gene enrichment and network analyses for Cluster 1. (A) GProfiler2 reveals enrichment for various synaptic and neuropeptide signal-
ling related processes. (B) The most significant sub-cluster reveals a mitochondrial-specific and neuronal signalling network. Red circles present in each 
network represent informative genes identified in each cluster. The descriptions of what each symbol represents is available in Supplementary Fig. 4
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were assigned to cluster one (Fig.  5D), whereas for the 
TargetALS datasets, cluster accuracy was not degraded as 
there were similar average probability estimates for clus-
ter assignment as in the TargetALS motor cortex dataset 

(diagonal cells in Fig. 5E and F). A visual inspection of the 
sample assignments based on the calculated linear dis-
criminants available in Supplementary Fig. 5 (case data-
sets) and Supplementary Fig.  6 (control datasets). The 

Fig. 3  Results of gene enrichment and network analyses for Cluster 2. (A) GProfiler2 reveals enrichment for oxidative stress, apoptosis, anti-inflammatory 
and muscle system-related processes. (B) The most significant sub-cluster strengthens the support for muscle contraction processes defining the core of 
the cluster. Red circles present in each network represent informative genes identified in each cluster. The descriptions of what each symbol represents 
is available in Supplementary Fig. 4
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Fig. 4  Results of gene enrichment and network analyses for Cluster 3. (A) GProfiler2 reveals enrichment for pro-inflammatory processes. (B) The most 
significant sub-cluster reinforces the link to inflammation with the identification of an MHC Class 2 specific network. Red circles present in each network 
represent informative genes identified in each cluster. The descriptions of what each symbol represents is available in Supplementary Fig. 4
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posterior probability of assignment to each of the three 
clusters for each sample in the case datasets is available 
in Supplementary Table 7. Bootstrapping to assess cluster 
assignment stability for each of the six datasets revealed 
that all TargetALS datasets and the Zucca dataset had a 
100% median assignment accuracy (Table 2), confirm-
ing that these cluster assignments are robust. The van 
Rheenen dataset and KCL BrainBank controls had a vari-
able assignment accuracy, therefore their cluster stability 
was deemed to be relatively unstable.

We also performed a reverse validation of the Targe-
tALS motor cortex case dataset by performing hierar-
chical clustering in the replication dataset (TargetALS) 

as initially performed on KCL BrainBank (the discov-
ery dataset). The purpose of this was to assess whether 
unsupervised clustering in both datasets leads to similar 
clustering assignments. Three clusters were defined by a 
total of 238 informative genes, with 47, 42 and 79 sam-
ples assigned to three clusters when TargetALS was uti-
lised for the hierarchical clustering. We found that high 
proportions of samples assigned to these clusters (81.4%, 
67% and 71.4% respectively) were the same as when the 
KCL BrainBank was utilised for clustering.

Table 2  Bootstrapping results for the linear discriminant analysis-derived sample assignments for the six independent datasets. 
Bootstrapping was performed with 1000 iterations, with average accuracy of correct class assignment used as the evaluation metric. 
Average accuracy and silhouette values are reported as median and 95% confidence intervals
Dataset Number of Genes Median Accuracy (95% CI) Median Silhouette

(95% CI)
TargetALS 470 1.000 (1.000–1.000) 0.137 (0.109–0.168)
Zucca 381 1.000 (1.000–1.000) 0.127 (0.0560–0.234)
van Rheenen 535 0.738 (0.693, 0.778) 0.0185 (-0.0145-0.0512)
BrainBank Controls 787 0.661 (0.543–0.780) 0.220 (0.167–0.281)
TargetALS (occipital cortex) 651 1.000 (1.000–1.000) 0.199 (0.132–0.283)
TargetALS (cerebellum) 622 1.000 (1.000–1.000) 0.174 (0.139–0.217)

Fig. 5  Posterior probabilities of cluster assignment for the six independent expression datasets using linear discriminant analysis trained on the shared 
informative genes between each dataset and KCL BrainBank. The x-axis represents the average predicted posterior probability of being assigned to one 
of the three clusters, with the diagonals of the y-axis representing the average posterior probability of being assigned to the correct cluster
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The molecular phenotypes are not present in controls 
and represent specific features of motor cortex gene 
expression
As all KCL BrainBank controls were assigned to cluster 
one, and the model is constrained to assign each sample 
to at least one class, we sought to see if there were dif-
ferences in the expression of informative genes between 
cases and controls belonging to cluster one. We found 
that 87 genes (66.4%) were differentially expressed in 
cases (Supplementary Fig.  7, Supplementary Table  8), 
which supports that this gene-specific expression profile 
is altered in ALS. We then constructed a logistic regres-
sion classification model with ten-fold cross-validation 
to determine if this expression profile is altered in such 
a way that it can accurately discriminate between ALS 
and control status (Fig.  6A). We supplied the model 
with three different cluster one gene signature scenarios 
(one: all 131 genes in the signature, two: removing mul-
ticollinear genes from each fold, three: genes common 
to all folds after removing multicollinearity). We found 
that training the models under scenarios one and two 
achieved excellent discriminative ability (one: ROC AUC 
0.88 ± 0.10, two: ROC AUC 0.82 ± 0.11), thus support-
ing the ALS-specificity of the clusters and expression 

profiles. Notably, scenario one also achieved the highest 
performance based on all metrics (precision = 0.80 ± 0.13, 
recall = 0.82 ± 0.19, and F1 = 0.79 ± 0.14). Conversely, the 
discriminative power under scenario three was poor 
(ROC AUC 0.61 ± 0.14). The specificity of the cluster 
one expression signature for ALS was further supported 
with the finding that the average performance over ten 
rounds of supplying the classifier with 131 randomly 
sampled genes for ROC AUC and the other metrics are in 
line with and below what would be expected by chance, 
regardless of scenario (Fig. 6B).

We then assessed whether these molecular phenotypes 
are truly representative of a motor-cortex based disease 
process by adopting the same approach as with KCL 
BrainBank but for distinguishing between samples from 
the motor cortex and other brain regions of cases from 
TargetALS. For each cluster and scenario, motor cortex-
occipital cortex and motor cortex-cerebellum classifiers 
were constructed. We found that each molecular phe-
notype did indeed reflect features of motor cortex gene 
expression as there was perfect discrimination between 
motor cortex and the other brain regions when supplying 
all of the cluster-specific informative genes to the model. 
The overall performance metrics for all case-control, 

Fig. 6  Average performance metrics over all 10 cross-validation folds under three scenarios for KCL BrainBank Cluster 1 case-control analysis. The perfor-
mance of the classifier supplied with all 131 informative genes in cluster 1 (A) was compared to the average performance when supplying ten classifiers 
with a random set of 131 genes from the full expression matrix (B). The x-axis represents each metric used to assess the discriminative performance of 
each model, with the average score represented on the y-axis. Each point represents the mean and standard deviation. The dotted line at 0.5 represents 
the performance value you would expect by chance
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motor cortex-occipital cortex and motor cortex-cerebel-
lum classifiers are available in Supplementary Table 9.

Cell composition analysis of the ALS motor cortex 
reinforces the biological interpretation of each molecular 
subtype
When performing cell deconvolution analysis for the 
KCL BrainBank and TargetALS case datasets, we found 
that samples that were assigned to each cluster had dis-
tinctive cell-type profiles, which were reflective of the 

predominant biological processes of each molecular 
phenotype. These profiles were almost identical in both 
datasets (Fig.  7), with significant overall differences in 
the proportion of all five cell types. Samples residing 
in cluster one had a significantly higher proportion of 
neurons compared to clusters two and three. A higher 
proportion of astrocytes and endothelial cells were pres-
ent in samples assigned to cluster two than in cluster 
one, whilst samples residing in cluster three displaying 
higher proportions of microglia than cluster one, and 

Fig. 7  Results of the cell-type deconvolution analysis for (A) KCL BrainBank cases and (B) TargetALS cases. Results were corrected for age of death and sex 
assigned at birth. Asterisks refer to one-way ANCOVA post-hoc Tukey p-values: * < 0.05, ** < 0.01, *** < 0.001
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oligodendrocytes than clusters one and two. The full sta-
tistical results are available in Supplementary Tables  10 
and 11.

Clusters present different clinical outcomes and omics 
measures
In both KCL BrainBank and TargetALS, we observed 
that cluster two demonstrated differences in several 
phenotypic and omics measures (full results available 
in Table  3). For instance, cluster two compared to clus-
ter one had a higher age of death (Fig.  8A and B) and 
smaller transcriptional age acceleration (Fig. 8 C and D). 
This trend continues when looking at variables present 
in one of the two datasets, with a 3.87 year slower bio-
logical age acceleration being observed in cluster two 
compared to cluster three in KCL BrainBank (p = 0.020), 
and a longer but albeit non-significant increase in dis-
ease duration in TargetALS samples assigned to clus-
ter two. We also found trends for higher mitochondrial 

DNA copy number in cluster one, and shorter telomere 
length in cluster 3 in KCL BrainBank samples (Table 3). 
When assessing differences in age of onset based on sam-
ples combined from KCL BrainBank and TargetALS, we 
found that samples residing in cluster one had a lower 
age of onset compared to clusters two and three (Fig. 8E; 
p = 0.013). For the Zucca and van Rheenen datasets, there 
was no significant alteration in age of onset and tran-
scriptional age acceleration between clusters.

When assessing potential differences in the site of 
onset between clusters, we found that in KCL Brain-
Bank, there was a borderline significant difference in the 
proportion of people with limb-onset SALS assigned to 
the clusters (X2 = 6.05, p-value = 0.05). Bulbar-onset and 
combined limb and bulbar onset SALS were not over-
represented in any of the clusters (bulbar: X2 = 0.18, 
p-value = 0.91; limb and bulbar: X2 = 0.95, p-value = 0.62). 
As found with the KCL BrainBank dataset, the propor-
tion of limb-onset TargetALS cases differed significantly 

Table 3  Statistical results of clinical and omics-based phenotype analysis. Variables that demonstrated non-normality via Shapiro Wilk 
were log transformed before running one-way ANCOVA (corrected for sex) and post-hoc Tukey’s to assess cluster-specific trends
KCL BrainBank (motor cortex)
Phenotype Normality (Shapiro-Wilk W, 

p-value)
One-Way ANCOVA (F-statis-
tic, p-value)

Post-Hoc Analysis (Tukey p-value)

Age at Onset 0.983, 0.22 2.160, 0.121 1 vs. 2; 0.107, 1 vs. 3; 0.622, 2 vs. 3; 0.569
Age at Death 0.976, 0.042 2.979, 0.055 1 vs. 2; 0.051, 1 vs. 3; 0.988, 2 vs. 3; 0.168
Disease Duration (years) 0.943; 3.5E-04 4.211; 0.018 1 vs. 2; 0.036, 1 vs. 3; 0.092, 2 vs. 3; 0.890
Post-mortem Delay 0.951, 4.4E-04 0.178, 0.837 1 vs. 2; 0.997, 1 vs. 3; 0.851, 2 vs. 3; 0.855
mtDNA Coverage 0.944, 3.2E-04 1.886, 0.157 1 vs. 2; 0.988, 1 vs. 3; 0.145, 2 vs. 3; 0.294
mtDNA Copy Number 0.966; 9.9E-03 1.643, 0.199 1 vs. 2; 0.231, 1 vs. 3; 0.458, 2 vs. 3; 0.945
Telomere Length 0.972, 0.028 2.451, 0.092 1 vs. 2; 0.810, 1 vs. 3; 0.074, 2 vs. 3; 0.350
Biological Age Acceleration 0.971, 0.025 3.858, 0.025 1 vs. 2; 0.110, 1 vs. 3; 0.414, 2 vs. 3; 0.020
RNA Age Acceleration 0.981, 0.142 2.847, 0.063 1 vs. 2; 0.055, 1 vs. 3; 0.973, 2 vs. 3; 0.203
TargetALS (motor cortex)
Phenotype Normality (Shapiro-Wilk W, 

p-value)
One-Way ANCOVA (F-statis-
tic, p-value)

Post-Hoc Analysis (Tukey p-value)

Age at Onset 0.977, 7.1E-03 2.463, 0.088 1 vs. 2; 0.075, 1 vs. 3; 0.968, 2 vs. 3; 0.194
Age at Death 0.984, 0.053 4.456, 0.013 1 vs. 2; 0.009, 1 vs. 3; 0.765, 2 vs. 3; 0.089
Diagnostic Delay 0.776, 2.9E-14 0.926, 0.398 1 vs. 2; 0.840, 1 vs. 3; 0.373, 2 vs. 3; 0.867
Disease Duration (years) 0.705, 2.2E-16 2.403, 0.094 1 vs. 2; 0.114, 1 vs. 3; 0.944, 2 vs. 3; 0.110
Post-mortem Delay 0.883, 6.8E-10 1.176, 0.311 1 vs. 2; 0.892, 1 vs. 3; 0.405, 2 vs. 3; 0.349
RNA Age Acceleration 0.989, 0.292 6.004, 3.1E-03 1 vs. 2; 0.002, 1 vs. 3; 0.420, 2 vs. 3; 0.092
Zucca (blood)
Phenotype Normality (Shapiro-Wilk W, 

p-value)
One-Way ANCOVA (F-statis-
tic, p-value)

Post-Hoc Analysis (Tukey p-value)

Age at Onset 0.926, 0.242 0.078, 0.926 1 vs. 2; 0.926, 1 vs. 3; 0.987, 2 vs. 3; 0.986
RNA Age Acceleration 0.990, 0.999 0.178, 0.839 1 vs. 2; 0.868, 1 vs. 3; 0.936, 2 vs. 3; 0.992
van Rheenen (blood)
Phenotype Normality (Shapiro-Wilk W, 

p-value)
One-Way ANCOVA (F-statis-
tic, p-value)

Post-Hoc Analysis (Tukey p-value)

Age at Onset 0.975, 2.0E-06 2.282, 0.103 1 vs. 2; 0.100, 1 vs. 3; 0.738, 2 vs. 3; 0.634
Disease Duration (years) 0.815; < 2.2E-16 0.00950, 0.991 1 vs. 2; 0.990, 1 vs. 3; 1.000, 2 vs. 3; 0.992
RNA Age Acceleration 0.973, 9.1E-07 2.788, 0.063 1 vs. 2; 0.082, 1 vs. 3; 0.479, 2 vs. 3; 0.787
P-values < 0.05 are in bold
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between clusters (X2 = 13.49, p-value = 1.2E-03). The 
distribution of bulbar-onset cases also varied signifi-
cantly (X2 = 20.10, p-value = 4.3E-05). There was no dif-
ference in the proportion of C9orf72-positive (X2 = 3.45, 
p-value = 0.18) or combined limb and bulbar onset cases 
(X2 = 3.25, p-value = 0.20). In the van Rheenen dataset, 
there was no association between limb: bulbar ratio and 
cluster assignment (X2 = 1.78, p-value = 0.41). Across the 
three case-only datasets, there was no difference in the 
male:female ratio (TargetALS: X2 = 2.48, p-value = 0.29; 
Zucca: X2 = 2.02, p-value = 0.36; van Rheenen: X2 = 0.88, 
p-value = 0.64).

Discussion
In this study, we used KCL BrainBank motor cortex gene 
expression data and machine learning to identify expres-
sion signatures which constitute three biologically homo-
geneous subgroups of SALS: synaptic and neuropeptide 
signalling (cluster one), oxidative stress and apoptosis 
(cluster two), and neuroinflammation (cluster three). 
These molecular phenotypes reflect three previously 
hypothesised key mechanisms of ALS pathogenesis, 
which have been recently identified using a deep learn-
ing-based approach using expression data from human 
iPSC-derived C9orf72, TARDBP, SOD1 and FUS mutant 

Fig. 8  Subgroup phenotype analysis between samples residing in each cluster for KCL BrainBank and TargetALS. Variables visualised here include the age 
of death for (A) KCL BrainBank and (B) TargetALS, and transcriptional age acceleration for (C) KCL BrainBank and (D) TargetALS. P-values are from perform-
ing one-way ANCOVA, corrected for sex. (E) Cox proportional hazards model for the age of onset of samples from both BrainBank and TargetALS datasets, 
showing that samples from Cluster 1 have a significantly lower age of onset than Clusters 2 and 3
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motor neurons [39]. The biological interpretation of each 
cluster is further reinforced by the fact that in KCL Brain-
Bank and TargetALS case datasets, significantly higher 
proportions of neurons, endothelial cells, and microglia 
contribute to clusters one, two and three, respectively.

Genes which constitute the three main subgroups of 
cortical inhibitory GABAergic interneurons (PVALB, 
SST, VIP) were identified in cluster one [40] This is inter-
esting given that alterations in their excitability patterns 
cause global hyperexcitability of corticospinal neurons 
[41], which has long been hypothesised as a trigger for 
the spread of ALS pathology [42, 43]. There were also 
several informative genes related to body mass index, 
metabolism, and energy homeostasis (LINC01844, 
ADCYAP1, CRH, CRHBP, CARTPT, VGF). These pro-
cesses are linked with worse survival and progression 
outcomes in ALS [44–47].

Several oxidative stress, apoptosis and muscle system 
related enrichments defined cluster two, as well as anti-
inflammatory signalling processes. In fact, the signature 
of this cluster contained several neuroprotective microg-
lial secretory markers (IL4R, TGFB1I1, TGFBI, CD163) 
[48], as well as the MMP9 metalloproteinase gene, whose 
knockdown slows disease progression in ALS mutant 
models [49–51]. With microglia contributing minimally 
to this cluster, based on cell deconvolution analysis of 
KCL BrainBank cases, and better clinical and omics-
based age outcomes defining the cluster’s phenotypic 
profile in this dataset, we can postulate that a reversal 
of pro-inflammatory processes may be occurring in this 
SALS subpopulation. This is further supported by evi-
dence that knockout of the ALS risk gene CAV1 [52] in 
endothelial cells, whose proportion in samples assigned 
to this cluster was significantly higher, can reduce innate 
immune system signalling via activation of endothelial 
nitric oxide synthase (NOS3) [53]; a complex of which 
was observed in our enrichment analysis. Moreover, this 
cluster was enriched for several potential microRNA bio-
markers. The most encouraging in terms of its impact on 
the molecular phenotype are miR-335-5p and miR-29b-3, 
as they are downregulated in ALS patients [54]. Addi-
tionally, their downregulation in model systems induces 
reactive oxygen species-mediated excitotoxicity [55], and 
intrinsic apoptosis mediated motor neuron loss [56]; key 
processes which defined this cluster.

In cluster three, there was a clear involvement of the 
major histocompatibility complex class II and the HLA 
complex (HLA-DRA, HLA-DMB, HLA-DOA, HLA-
DPA1, HLA-DRB1, HLA-DRB5, HLA-DRB6), M1 or 
activated microglia (CD14, CD86, TREM2, TYROBP, 
TMEM119, TMEM125) [48], and pro-inflammatory 
metalloproteinases (MMP14), as well as many immune 
related genes which were identified in other motor cor-
tex and spinal cord SALS expression studies [8, 57, 58]. 

The tentative ALS-related modifier gene CX3CR1 [59]), 
which is thought to protect against proinflammatory pro-
cesses and microglial-induced neuronal cell loss [60], was 
also present in this cluster. Several well studied serum 
and CSF biomarkers of ALS progression were also pres-
ent, such as SPP1 [61], the human chitinases CHI3L1 
and CHI3L2 [62, 63], and complement C3 [64], in addi-
tion to prognostic and predictive CSF biomarkers such as 
TREM2, LILRA2 and ITGB2 [65].

We also demonstrated that these molecular phenotypes 
can define distinct subgroups of people with SALS across 
independent motor cortex (TargetALS) and blood (Zucca 
et al.; van Rheenen et al.) datasets of European ancestry, 
by applying separate linear discriminant models trained 
on the KCL BrainBank case-derived sample assignments 
and gene intersections. The average probability of being 
assigned to the cluster that the samples from each data-
set were allocated to was very high (between 0.8 and 0.9). 
Because this model is constrained to assign samples to 
one class, in order to test the ALS and motor cortex spec-
ificity of the clusters, the same approach was carried out 
in three additional control datasets (KCL BrainBank con-
trols, TargetALS occipital cortex, TargetALS cerebellum). 
All KCL BrainBank controls were assigned to cluster one, 
whereas there were similar average probability estimates 
for the TargetALS datasets from other regions compared 
to the motor cortex. With the exception of KCL Brain-
Bank controls, the cluster stability estimates were robust, 
which supports the validity of the cluster assignments. 
Furthermore,  when performing reverse validation by 
applying hierarchical clustering to the TargetALS motor 
cortex dataset and comparing the grouping of samples 
to the linear discriminant analysis derived assignments, 
we found a 67–81% overlap in sample assignment which 
demonstrates that the cluster assignments, regardless 
of gene composition, is consistent. To determine if the 
expression signatures could distinguish between cases 
and controls in KCL BrainBank and between motor 
cortex, cerebellum and occipital cortex, we constructed 
a logistic regression classifier and found that the signa-
tures had excellent discriminative power, which indicates 
that this molecular phenotypes are linked to ALS and the 
motor cortex and shows the diagnostic potential of the 
expression signatures.

In regard to the sample assignment to different clusters, 
specifically cluster one, the proportion of samples varied 
based on tissue type (approximately 60% for the motor 
cortex versus 85% for the blood datasets). A potential 
explanation for this is that as the motor cortex repre-
sents the end stage of disease, perhaps other biological 
processes explained by the remaining molecular pheno-
types more strongly influence the progression of disease 
in samples assigned to those clusters. This may not be 
as apparent in the blood datasets given that the samples 
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were collected at different stages of the disease. This is 
also plausible as all the KCL BrainBank controls, which 
are not affected by ALS, are assigned to cluster one.

We also discovered that there were distinct clinical and 
omics-related outcomes that distinguished each clus-
ter in both motor cortex case datasets. Cluster two was 
associated with a higher age of death and longer disease 
duration, accompanied by a decrease in transcriptional 
age acceleration. There are several plausible explana-
tions as to why this trend was observed; the first is that 
more people assigned to this cluster may have had a his-
tory of Riluzole usage than other clusters, as it modulates 
apoptosis, autophagy and other excitotoxicity-related 
processes which are prevalent biological processes in 
this cluster [66, 67]. Another possibility is that genomic 
variants present in inflammatory genes assigned to this 
cluster may diminish their effects. This theory is sup-
ported by the example of IL18RAP, which is an M1 secre-
tory marker present in this cluster [48], of whom 3’UTR 
variants were recently found to protect against ALS, by 
impeding microglial-dependent motor neuron degen-
eration [68]. In KCL BrainBank cases assigned to cluster 
two, there was also a significant decrease in biological age 
acceleration. Whether this phenomenon is also appar-
ent in TargetALS, and the blood datasets could not be 
analysed because biological age acceleration could only 
be measured in KCL BrainBank as there was matching 
epigenetic information available. However, this warrants 
further investigation in additional datasets as evidence 
links increased serum levels of the chronic inflammation 
marker suPAR, encoded by the cluster two gene PLAUR, 
with higher biological age acceleration in the normal 
population [69]. Therefore, suPAR could be a modulator 
of prognostic outcomes in SALS patients associated with 
this molecular phenotype. Telomere length was shorter 
in cluster three in KCL BrainBank, which despite being 
non-significant, is also an important trend to investigate 
as although mounting evidence supports the association 
between longer telomere length and worsened severity 
of ALS [70, 71], there is also an established link between 
chronic inflammatory states and telomere shortening in 
aging and disease [72–74]. Finally, we found that samples 
in cluster one had a lower age of onset in a combined 
analysis of KCL BrainBank and TargetALS, which makes 
sense given that this cluster is linked to neuronal dys-
function and therefore motor neuron degeneration. The 
proportion of people with limb-onset ALS assigned to 
the clusters also differed significantly in both motor cor-
tex datasets. Despite the association between distinct age 
of onset with each cluster in the motor cortex datasets, 
this was not replicated in the blood datasets, therefore 
further examination is needed to establish if clear pheno-
type differences exist across clusters.

There are several limitations of this study which will 
require further investigation in the context of our find-
ings. First, only samples belonging to the KCL BrainBank 
dataset had matching multi-omics data, which meant 
that cluster-specific effects on omics variables could not 
be assessed in the other datasets. Likewise, both blood 
datasets had limited clinical information, which did not 
allow us to validate all possible clinical phenotype asso-
ciations. Furthermore, the van Rheenen blood dataset did 
not replicate the association between age of death and age 
at onset with class membership. Some potential explana-
tions are that microarray technology was used to obtain 
the transcriptomic profiles in this dataset, translating in 
a lower number of genes available that were part of the 
subtype signatures and lower class assignment accuracy. 
Indeed, clusters two and three represented approximately 
25% of ALS patients each in the brain datasets, while 
only ~ 8% each in the van Rheenen blood dataset. More-
over, the Dutch population might present a more distinct 
structure compared to other European countries [75]. 
Finally, we did not integrate genomic variants into our 
analysis to further enhance our molecular classification, 
like recent studies that built upon their previous cluster-
ing analyses [9, 76] as this would have resulted in under-
powered analyses given our sample sizes, or correlated 
our clustering findings with neuropathological findings 
and co-existing pathologies in the motor cortex datas-
ets, as this data was not available to us when the study 
took place. Future work should attempt to integrate these 
additional modalities to further enhance the disease rel-
evance of the identified molecular phenotypes. As we did 
not perform a comparative analysis of the cluster assign-
ment of people with familial ALS or other neurodegener-
ative diseases i.e. FTD, Parkinson’s disease, we cannot be 
absolutely sure that the molecular phenotypes identified 
in this study are truly ALS-specific. Although, we can say 
that they represent sporadic ALS subtypes as the clusters 
were validated in three independent ALS datasets which 
did not contain samples from people with familial ALS. 
They also represent motor-cortex specific aspects of 
the disease process as the expression signatures of each 
molecular phenotype can distinguish samples from the 
motor cortex from other brain regions for TargetALS 
cases.

In conclusion, we have demonstrated that people with 
ALS can be successfully stratified into molecularly and 
phenotypically distinct subgroups using gene expression 
data. Our results support the hypothesis that different 
mechanisms underly distinct forms of ALS pathogenesis 
and can be identified in patients via specific expression 
signatures. These molecular phenotypes discovered in 
a UK cohort, were validated in independent motor cor-
tex and blood datasets and could be used to distinguish 
patients from controls, showing potential to be used for 
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clinical trial stratification and the development of bio-
markers for personalised treatments and diagnostics. 
Our analysis also revealed several known candidate gene 
biomarkers which could be exploited to stratify people 
with SALS in future studies. We have developed a pub-
licly available web app (https://alsgeclustering.er.kcl.
ac.uk) to allow the broader scientific and clinical com-
munity to use our model for the stratification of pre- and 
post-mortem samples in their studies.
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