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Abstract—This paper considers a Gaussian multi-input multi-
output (MIMO) wiretap channel with a legitimate transmitter,
a legitimate receiver (Bob), an eavesdropper (Eve), and a co-
operative jammer. All nodes may be equipped with multiple
antennas. Traditionally, the jammer transmits Gaussian noise
(GN) to enhance the security. However, using this approach,
the jamming signal interferes not only with Eve but also with
Bob. In this paper, besides the GN strategy, we assume that
the jammer can also choose to use the encoded jammer (EJ)
strategy, i.e., instead of GN, it transmits a codeword from an
appropriate codebook. In certain conditions, the EJ scheme
enables Bob to decode the jamming codeword and thus cancel
the interference, while Eve remains unable to do so even if it
knows all the codebooks. We first derive an inner bound on the
system’s secrecy rate under the strong secrecy metric, and then
consider the maximization this bound through precoder design
in a computationally efficient manner. In the single-input multi-
output (SIMO) case, we prove that although non-convex, the
power control problems can be optimally solved for both GN and
EJ schemes. In the MIMO case, we propose to solve the problems
using the matrix simultaneous diagonalization (SD) technique,
which requires quite a low computational complexity. Simulation
results show that by introducing a cooperative jammer with
coding capability, and allowing it to switch between the GN
and EJ schemes, a dramatic increase in the secrecy rate can be
achieved. In addition, the proposed algorithms can significantly
outperform the current state of the art benchmarks in terms of
both secrecy rate and computation time.

Index Terms—Gaussian MIMO wiretap channel, physical layer
security, cooperative jamming, power control, precoder design,
and simultaneous diagonalization.

I. INTRODUCTION

Nowadays, more and more private information is transmit-
ted over the air, leading to a growing need for enhanced
security measures in 5G and forthcoming 6G mobile systems
[1]. In addressing this concern, information theoretic security,
often referred to as physical layer security, has emerged as a
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promising approach to ensure secure communication [2]. As
shown in [3], in a wiretap channel, positive secrecy rate can
be obtained only when the legitimate receiver (Bob for short)
experiences better channel condition than the eavesdropper
(Eve for short). Otherwise, it is impossible for the transmitter
to communicate securely with its intended receiver. Conse-
quently, numerous studies have been dedicated to enhancing
the channel conditions of the legitimate link through various
techniques, among which jamming has been proven to be a
powerful method [4], [5], and has found widespread applica-
tion in various communication systems [6]–[8].

In the information theoretic literature, the most commonly
considered jamming scheme consists of transmitting Gaussian
noise (GN) [9]–[11]. However, in this scheme, the jamming
signal interferes not only with Eve, but also with Bob. Al-
though in some cases it is possible to apply signal processing
techniques to completely eliminate the interference caused to
Bob [12]–[15], there are limitations to these methods. For
example, in [12] and [13], zero-forcing beamforming was
applied to avoid interference to Bob and, in [14] and [15],
the covariance matrix of the jammer was designed to ensure
that its signal lies in the null-space of the channel from itself
to Bob. However, these methods are not generally applicable
to the multi-input multi-output (MIMO) case, because to
maintain a non-empty null-space for the channel from the
jammer to Bob, the jammer must have more antennas than
Bob (see [12]–[15]).

To avoid interfering with Bob and ensure compatibility with
the general MIMO scenarios, an encoded jammer (EJ) trans-
mitting codewords from an appropriately designed codebook
rather than GN, can be used. Under certain conditions, the
EJ scheme enables Bob to decode the jamming codeword
and thus cancel the interference, while Eve remains unable
to do so even if it possesses all codebooks. It has been proven
by [16]–[18] that, using the EJ scheme, it is possible to
improve the secrecy rate over the GN scheme. Specifically,
in [16] and [17], the achievable secrecy rate of a discrete
memoryless (DM) wiretap channel with an encoded jammer
was analyzed, and the secrecy performance was also verified
in a single-antenna Gaussian wiretap channel by using the
Gaussian random coding strategy. In [18], a similar scalar
Gaussian wiretap channel was considered, and it was shown
that by using lattice structured codes, the achievable secrecy
rate does not saturate at high signal-to-noise ratio (SNR).

However, it should be noticed that the secrecy performance
of the EJ scheme may not always surpass that of the GN
method, as it depends on the specific channel conditions. This
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arises from the fact that, using the EJ scheme, both the legit-
imate transmitter and the jammer transmit encoded messages.
To ensure successful decoding of all the information by Bob
while preventing Eve from decoding, additional constraints
will be imposed on the secrecy rate. In Remark 1 of this
paper, we delve into a specific channel realization and provide
a more detailed analysis in this regard. Consequently, it is
crucial to thoroughly investigate and compare the performance
of the GN and EJ schemes across different channel conditions
and system configurations. Notably, this particular problem
remains unexplored in the context of multi-antenna systems,
which serves as the primary motivation behind this work.

This paper considers a Gaussian MIMO wiretap channel
with a legitimate transmitter, a cooperative jammer, a legiti-
mate receiver, and an eavesdropper. The jammer is assumed to
have the ability to switch between the GN and EJ schemes, de-
pending on which one provides better jamming performance.
This system has rarely been studied, and its achievable region
under the strong secrecy metric is still unknown. Therefore,
we aim to investigate its secrecy performance, in particular the
gain obtained by introducing the EJ scheme. Also, we propose
novel precoder design algorithms that achieve better perfor-
mance with lower computational complexity with respect to
the current state of the art approaches. The main contributions
are summarized below.

• We first derive an inner bound on the system secrecy
rate under the strong secrecy metric.1 Note that the achievable
secrecy rate of a DM case in a similar context was analyzed
under weak secrecy in [17] by discussing different interference
levels. To gain deeper insights into various jamming schemes
and facilitate our analysis, we take a different approach from
[17] by separately investigating the achievable secrecy rates
of the GN and EJ strategies. Interestingly, by examining a
real and scalar Gaussian scenario (see Subsection II-C), we
show that although considering the strong secrecy metric, the
derived inner bound aligns with that given in [17].

• To enhance the security, we maximize the derived inner
bound by precoder design. This problem can be decomposed
into two subproblems, each aiming to maximize the secrecy
rate when the GN and EJ schemes are employed. We start
from the single-input multi-output (SIMO) case, where both
the legitimate transmitter and the jammer have one antenna,
while Bob and Eve have multiple antennas. Although non-
convex, we prove that the power control problems for different
jamming schemes can be optimally solved, and the globally
optimal solutions can be obtained essentially in closed form.

• For the general MIMO case, both subproblems become
much more complicated and closed-form solutions do not ap-
pear to be possible. A meaningful approach to precoder design
consists of finding good “heuristic solutions”, i.e., feasible
points that yield good results in terms of the objective function.
In the following, we shall refer to “solution” in this sense. As

1The weak secrecy criterion is characterized by the information leakage
rate. However, a vanishing information leakage rate does not imply that a
vanishing number of information bits of the secret message are leaked, because
the length of the message in bits grows linearly with the block length. To
address this issue, strong secrecy was introduced in [19], [20], by considering
directly the information leakage without normalization by the block length,
and has been considered a safer secrecy metric [21].

we will show in Section IV and the simulation, a heuristic
solution to each subproblem can be achieved by first obtaining
its convex approximation using the majorization minimiza-
tion (MM) technique, and then iteratively optimizing this
approximation using some standard tools such as the interior-
point method. However, this approach requires the solution
of log-determinant optimizations in each iteration, yielding
extremely high complexity. To address the issue, we propose a
novel approach based on matrix simultaneous diagonalization
(SD). Using this technique, we show that the precoder design
problems associated with different jamming schemes can be
efficiently solved with comparable performance (often better)
and much less computational complexity than the MM-based
method. Simulation results show that by allowing the jammer
to switch between the GN and EJ schemes to leverage the
strengths of both approaches, a remarkable increase in the se-
crecy rate can be achieved. Moreover, the proposed algorithms
can significantly outperform the benchmarks in terms of both
secrecy rate and computation time.

The rest of this paper is organized as follows. In Section II,
the system model is provided and the problem is formulated.
In Section III and Section IV, we respectively consider the
power control and precoder design problems for the SIMO and
MIMO cases. Simulation results are presented in Section V
before conclusions in Section VI.

Notations: R and C respectively represent the real and
complex spaces. Boldface lower and upper case letters are
used to denote vectors and matrices. IN stands for the N×N
dimensional identity matrix and 0 denotes the all-zero vector
or matrix. Superscript (·)H means conjugate transpose and
[·]+ ≜ max(·, 0). The logarithm function log is base 2.

Before going into the main part, we would like to present
some equations of matrices, since they will be used frequently
in this paper. For any matrices O1 and O2, if the dimensions
match, we have [22]

|O1O2 + I| = |O2O1 + I|, (1)
|O1O2| = |O1||O2|, (2)

tr(O1O2) = tr(O2O1). (3)

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a Gaussian MIMO wiretap channel with a
legitimate transmitter (Tx1), a legitimate receiver (Bob), an
eavesdropper (Eve), and an additional transmitter (Tx2) that
serves as a cooperative jammer to improve the secrecy per-
formance of Tx1. Transmitter k ∈ {1, 2}, Bob, and Eve are
respectively equipped with Nk, Nb, and Ne antennas. Let
xk ∈ CNk×1 denote the signal vector of transmitter k and we
assume Gaussian channel input, i.e., xk ∼ CN (0,Qk). Here
Qk is the covariance matrix of the signal vector and satisfies
tr(Qk) ≤ Pk, where Pk is the maximum transmit power. The
received signals at Bob and Eve are respectively given by

y = H1x1 +H2x2 + εb,

z = G1x1 +G2x2 + εe, (4)
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where Hk ∈ CNb×Nk and Gk ∈ CNe×Nk are constant channel
matrices from transmitter k to Bob and Eve, and εb ∈ CNb×1

and εe ∈ CNe×1 are Gaussian noise vectors at Bob and Eve
with εb ∼ CN (0, INb) and εe ∼ CN (0, INe).

B. Problem Formulation

In order to obtain better secrecy performance, we assume
that Tx2 has the flexibility to switch between the GN and EJ
modes, depending on which one provides a better jamming
performance. If the GN mode is chosen, Tx2 simply transmits
Gaussian noise and its signal interferes with both Bob and
Eve. In this case, for given Q1 and Q2, the maximum secrecy
rate of Tx1 under the strong secrecy metric is [23]

RGN =
[
log |H1Q1H

H
1

(
H2Q2H

H
2 + INb

)−1
+ INb |

− log |G1Q1G
H
1

(
G2Q2G

H
2 + INe

)−1
+ INe |

]+
. (5)

If the EJ mode is chosen, Tx2 jams by transmitting encoded
codewords instead of Gaussian noise. By adopting appropriate
coding approaches, Bob can successfully decode the signal of
Tx2 and then eliminate the interference, while Eve cannot,
even if it knows the codebooks. We show in Appendix A that
under the EJ scheme, model (4) can be seen as a special case
of the two-user wiretap channel, where both the users transmit
secret messages. The achievable region of such a system has
been widely studied, but the capacity region remains as an
open problem [24], [25]. Therefore, in the following theorem,
we provide an inner bound on the secrecy rate of Tx1 when
Tx2 works on the EJ mode.

Theorem 1. For given Q1 and Q2, if Tx2 adopts the EJ
strategy for cooperative jamming, then, secrecy rate satisfying

R ≤ REJ ≜ max{min{R̂, R̃}, R̄}, (6)

is achievable under the strong secrecy metric, where

R̂ =
[
log |H1Q1H

H
1 + INb |

− log |G1Q1G
H
1

(
G2Q2G

H
2 + INe

)−1
+ INe |

]+
,

R̃ =
[
log |H1Q1H

H
1 +H2Q2H

H
2 + INb |

− log |G1Q1G
H
1 +G2Q2G

H
2 + INe |

]+
,

R̄ =
[
log |H1Q1H

H
1 + INb |−log |G1Q1G

H
1 + INe |

]+
. (7)

Proof: See Appendix A. □

Remark 1. Comparing (5) with (7), we see that RGN and
REJ do not obey a fixed ordering relationship that holds in
all channel conditions. This is due to the fact that the two
jamming schemes operate on distinct principles. In the GN
scheme, Tx2 directly transmits an uncoded random signal,
which interferes with both Bob and Eve. Differently, in the
EJ scheme, Tx2 transmits a randomly chosen codeword from
a codebook of given rate. By designing the coding scheme,
Bob can successfully decode and eliminate the interference
from Tx2, but Eve cannot even if it knows the codebooks. This
makes it possible for the EJ scheme to outperform the GN
method. However, this may not always hold because to ensure
that Bob can decode both the desired information and the
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Fig. 1. Left: secrecy rate versus Q1 with Q2 = 20 dB, H1 = −0.5 + 2i,
H2 = 0.5− 0.5i, G1 = −0.5+0.5i, and G2 = −1− 0.5i. Right: secrecy
rate versus Q2 with Q1 = 20 dB, H1 = −0.5 − i, H2 = 0.5 + 0.5i,
G1 = 0.5i, and G2 = 0.2i.

jammer message, more constraints are imposed on the secrecy
rate of Tx1 (see (7)). ♢

To get a more intuitive understanding of Remark 1, we
consider a system with single-antenna nodes, i.e., N1 = N2 =
Nb = Ne = 1, and depict RGN and REJ for given channel
realizations in Fig. 1.2 It can be seen that under certain channel
conditions, the EJ scheme exhibits superior performance over
the GN scheme, but there are also scenarios where its perfor-
mance is inferior to that of the GN scheme. Driven by this
observation, in this paper we consider a cooperative jammer
that can choose between the GN and EJ schemes, depending
on the channel state.

Based on (5) and Theorem 1, an inner bound (achievable
lower bound) to the secrecy capacity of the Gaussian MIMO
wiretap channel defined in (4) under the strong secrecy metric
is given by

C = max{RGN, REJ}. (8)

In this information theoretic setting, as usual in physical layer
security works, we assume that full channel state information
(CSI) is known and simply determine the best strategy based
on the best achievable secrecy rate, i.e., Tx2 works on the GN
mode if RGN ≥ REJ, and on the EJ mode if RGN < REJ. Note
that, as explained in Remark 1 and shown in Fig. 1, RGN and
REJ do not obey a fixed ordering relationship that holds in all
channel states. Therefore, if the channel state changes and the
relationship between RGN and REJ is reversed, Tx2 can shift
its working mode from one to another. In a practical scenario,
of course, lack of CSI may make things more complicated.
However, wiretap channels in the presence of non-perfect or
missing CSI are still a wide open problem in information
theory and they are well beyond the scope of this paper. In
this paper we stick to the classical setting of full CSI, based

2Note that in the single-antenna case, the matrices Q1 and Q2 are real
scalars. Therefore, in Fig. 1, Q1 = 20 dB means that Q1 = 100.
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on which Tx1 and Tx2 can agree on the best strategy and use
it to achieve the best secrecy rate available.

This paper aims to maximize C by optimizing the covari-
ance matrices Q1 and Q2, and investigate the secrecy perfor-
mance of Tx1 under different jamming schemes. Obviously,
the problem can be solved by separately maximizing RGN and
REJ, i.e., considering the following two subproblems

max
Q1,Q2

RGN

s.t. Qk ⪰ 0, tr(Qk) ≤ Pk, ∀ k ∈ {1, 2}, (9)
max
Q1,Q2

REJ

s.t. Qk ⪰ 0, tr(Qk) ≤ Pk, ∀ k ∈ {1, 2}. (10)

C. Special Case: Real and Scalar Gaussian Channel

Before addressing the general problem, we first consider
the real and scalar Gaussian channel studied in [17, (19)],
which is a special case of (4). We show that in this case, C
in (8) can be easily computed, and the resulting value of C is
consistent with that provided in [17, Theorem 3] although [17]
considered the weak secrecy metric. With appropriate notation
adjustments, the channel model in [17, (19)] can be expressed
as follows

y = x1 +
√
µx2 + εb,

z =
√
νx1 + x2 + εe, (11)

where xk ∼ N (0, qk), εb, εe ∼ N (0, 1), and µ and ν are
positive real numbers. Obviously, (11) is a special case of (4).
In this scenario, the rates in (5) and (7) can be simplified as

RGN =

[
γ

(
q1

1 + µq2

)
− γ

(
νq1

1 + q2

)]+
,

R̂ =

[
γ(q1)− γ

(
νq1

1 + q2

)]+
,

R̃ = [γ(q1 + µq2)− γ(νq1 + q2)]
+
,

R̄ = [γ(q1)− γ(νq1)]
+
, (12)

where γ(·) = 1
2 log(1+ ·). Then, C in (8) can be rewritten as

C = max{RGN,max{min{R̂, R̃}, R̄}}
= max{max{RGN,min{R̂, R̃}}, R̄}. (13)

By checking the value of µ, the expression of C can be
simplified to a more concise form as shown in the following
lemma. The proof is straightforward and it is omitted because
of space limitation.

Lemma 1. For the real and scalar Gaussian wiretap channel
in (11), with fixed transmit power q1 and q2, the secrecy rate
C in (8) is given by (13), where max{RGN,min{R̂, R̃}} can
be computed as follows

max{RGN,min{R̂, R̃}}=

 R̂, if µ ≥ 1 + q1,

R̃, if 1 ≤ µ < 1 + q1,
RGN, if µ < 1.

(14)

□

It can be readily checked that Lemma 1 is consistent
with [17, Theorem 3]. In this special case, the problem of
maximizing C can be easily and optimally solved (see [17,
Lemma 1]). However, for the general MIMO case considered
in this paper, the problem is significantly more complicated
and has not been addressed in the existing literature. In the
following sections, we focus on solving (9) and (10) by
separately considering the SIMO and MIMO cases.

III. OPTIMAL POWER CONTROL FOR THE SIMO CASE

In this section, we consider the SIMO case, where both
the transmitters have one antenna, while Bob and Eve have
multiple antennas. In this case, the covariance matrix Qk and
channel matrices Hk and Gk respectively reduce to qk ∈ R,
hk ∈ CNb×1, and gk ∈ CNe×1. We prove that although the
power control problems are non-convex, the optimal solution
in closed form can be obtained for different jamming schemes.

A. GN Scheme

In the SIMO case, RGN in (5) can be rewritten as

RGN =
[
log |q1h1h

H
1

(
q2h2h

H
2 + INb

)−1
+ INb |

− log |q1g1gH
1

(
q2g2g

H
2 + INe

)−1
+ INe |

]+
. (15)

If Tx2 adopts the GN jamming strategy, we consider problem
(9), which becomes

max
q1,q2

RGN

s.t. 0 ≤ qk ≤ Pk, ∀ k ∈ {1, 2}. (16)

From (15), we see that problem (16) is non-convex. However,
we show in the following theorem that it can be optimally
solved.

Theorem 2. The optimal solution of problem (16) is q∗1 = P1

and

q∗2=



− c
b , if a = 0, b < 0, and 0 < − c

b < P2,
arg max

q2∈{P0,P2}
RGN, if a>0, b2−4ac>0, and 0<P0<P2,

arg max
q2∈{0,P0}

RGN, if a<0, b2−4ac>0, and 0<P0<P2,

arg max
q2∈{0,P2}

RGN, otherwise,

(17)
where a, b, and c are defined in (78), and P0 is given in (79).

Proof: See Appendix B. □

Theorem 2 shows that in the optimal case, Tx1 always
transmits at the maximum power, while the power of Tx2
can be found by simply checking the channel condition and
verifying a few possible solutions.
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B. EJ Scheme

In the SIMO case, R̂, R̃, and R̄ in (7) can be rewritten as

R̂ =
[
log |q1h1h

H
1 + INb |

− log |q1g1gH
1

(
q2g2g

H
2 + INe

)−1
+ INe |

]+
,

R̃ =
[
log |q1h1h

H
1 + q2h2h

H
2 + INb |

− log |q1g1gH
1 + q2g2g

H
2 + INe |

]+
,

R̄ =
[
log |q1h1h

H
1 + INb | − log |q1g1gH

1 + INe |
]+

. (18)

If Tx2 operates in the EJ mode, we consider problem (10),
which becomes

max
q1,q2

max{min{R̂, R̃}, R̄}

s.t. 0 ≤ qk ≤ Pk, ∀ k ∈ {1, 2}. (19)

Obviously, problem (19) can be solved by separately maximiz-
ing min{R̂, R̃} and R̄. Note that (18) implies that R̄ can be
obtained directly from either R̂ or R̃ by simply letting q2 = 0.
Therefore, (19) can be equivalently simplified to

max
q1,q2

min{R̂, R̃}

s.t. 0 ≤ qk ≤ Pk, ∀ k ∈ {1, 2}, (20)

which is a max-min problem and is usually difficult to solve.
However, we prove that (20) can be optimally solved. Before
giving the result, we first consider the following two problems

max
q1,q2

R̂

s.t. P̂1,lb ≤ q1 ≤ P̂1,ub, 0 ≤ q2 ≤ P2, (21)

max
q1,q2

R̃

s.t. P̃1,lb ≤ q1 ≤ P̃1,ub, 0 ≤ q2 ≤ P2, (22)

which respectively maximize R̂ and R̃. Note that
different from (20), new lower and upper bounds
P̂1,lb, P̂1,ub, P̃1,lb, P̃1,ub ∈ [0, P1] are imposed on q1 in (21)
and (22), and apparently, these bounds satisfy P̂1,lb < P̂1,ub

and P̃1,lb < P̃1,ub. In the following theorem we show that
both (21) and (22) can be optimally solved, based on which
(20) can then be solved.

Theorem 3. The optimal solution of problem (21) is

q̂∗1 =

{
P̂1,ub, if hH

1 h1 > gH
1

(
P2g2g

H
2 + INe

)−1
g1,

P̂1,lb, otherwise.
(23)

and q̂∗2 = P2. The optimal solution of problem (22) is

(q̃∗1 , q̃
∗
2) = arg max

(q1,q2)∈{(P̃1,lb,0),(P̃1,lb,P2),(P̃1,ub,0),(P̃1,ub,P2)}
R̃,

(24)
which can be easily found by checking four possible solutions.

Proof: See Appendix C. □
Theorem 3 shows that problems (21) and (22) can be op-

timally solved by respectively checking the channel condition
and assessing the values of R̃ under four feasible solutions.
Note that to make a distinction, we use (q̂∗1 , q̂

∗
2) and (q̃∗1 , q̃

∗
2)

to respectively denote the optimal solutions of (21) and (22).

In the following theorem, we show that the optimal solution
of (20), which is also the optimal solution of (19), can be
obtained based on Theorem 3.

Theorem 4. The optimal solution of problem (20) can be
obtained by considering the following three different cases.

• If gH
2 g2 ≤ hH

2

(
P1h1h

H
1 + INb

)−1
h2, the optimal ob-

jective function value of (20) is R̂(q̂∗1 , q̂
∗
2), where (q̂∗1 , q̂

∗
2)

is obtained by letting (P̂1,lb, P̂1,ub) = (0, P1) and solving
(21).

• If gH
2 g2 ≥ hH

2 h2, the optimal objective function value
of (20) is R̃(q̃∗1 , q̃

∗
2), where (q̃∗1 , q̃

∗
2) is obtained by letting

(P̃1,lb, P̃1,ub) = (0, P1) and solving (22).
• If hH

2

(
P1h1h

H
1 + INb

)−1
h2 < gH

2 g2 < hH
2 h2, the

optimal objective function value of (20) is

max{R̂(q̂∗1 , q̂
∗
2), R̃(q̃∗1 , q̃

∗
2)}, (25)

where (q̂∗1 , q̂
∗
2) is obtained by letting (P̂1,lb, P̂1,ub) =

(0, P ′
0) and solving (21), (q̃∗1 , q̃

∗
2) is obtained by letting

(P̃1,lb, P̃1,ub) = (P ′
0, P1) and solving (22), and P ′

0 is
given in (92).

Proof: See Appendix D. □

IV. SD-BASED LOW-COMPLEXITY PRECODER DESIGN FOR
THE MIMO CASE

In this section, we consider the general MIMO system
and propose specialized SD-based low-complexity (SDLC)
schemes to address the precoder design problems for different
jamming schemes. Before introducing the schemes, we first
present some preliminary results on the SD of matrices to set
the stage for the subsequent discussions.

A. Preliminaries on SD of Matrices

Lemma 2. [26, Theorem 2] If two matrices F1, F2 ∈ CN×N

are both positive semi-definite, they can be simultaneously
diagonalized, i.e., there exists a matrix U such that UHF1U
and UHF2U are diagonal matrices.

While [26] does not give an explicit way to compute the
diagonalizing matrix U , we provide a method in the following.
Denote the eigen-decomposition of F1 + F2 by

F1 + F2 = Ψ1

[
Υ 0
0 0

]
ΨH

1 , (26)

where Ψ1 ∈ CN×N is a unitary matrix, Υ ∈ RN̂×N̂ is
a diagonal matrix with positive diagonal entries, and N̂ =
rank(F1 + F2). Based on Ψ1 and Υ , we construct a matrix
U1 as follows

U1 = Ψ1

[
Υ− 1

2 0
0 Π1

]
, (27)

where Π1 can be any square matrix of dimension N − N̂ .
Applying U1 to F1 + F2, it is obvious that

UH
1 (F1 + F2)U1 =

[
IN̂ 0
0 0

]
, (28)
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where the (N̂ + 1)-th to N -th diagonal entries are all zero.
Let u1,n denote the n-th column of U1. Then, we know from
(28) that

uH
1,n(F1 + F2)u1,n = 0, ∀ n ∈ {N̂ + 1, · · · , N}, (29)

based on which we have

uH
1,nF1u1,n = 0, ∀ n ∈ {N̂ + 1, · · · , N}, (30)

since F1 and F2 are both positive semi-definite. (30) indicates
that if we apply U1 to F1, the (N̂ + 1)-th to N -th diagonal
entries of UH

1 F1U1 are all zero. Then, it is known from the
proof of [26, Lemma 2] that UH

1 F1U1 takes on the following
block matrix form

UH
1 F1U1 =

[
J 0
0 0

]
, (31)

where J ∈ CN̂×N̂ . Denote the eigen-decomposition of J by

J = Ψ2 diag{η1, · · · , ηN̂} ΨH
2 , (32)

where Ψ2 ∈ CN̂×N̂ . Since

UH
1 F1U1 =

[
J 0
0 0

]
⪰ 0,

UH
1 F2U1 =

[
IN̂ − J 0

0 0

]
⪰ 0, (33)

we have 0 ⪯ J ⪯ IN̂ , which indicates that the eigenvalues
in (32) satisfy 0 ≤ ηt ≤ 1, ∀ n ∈ {1, · · · N̂}. We construct
another matrix U2 and let U be the product of U1 and U2,

U2 =

[
Ψ2 0
0 Π2

]
,

U = U1U2, (34)

where Π2 can be any square matrix of dimension N − N̂ .
Then, it is known from (32), (33), and (34) that F1 and F2

can be simultaneously diagonalized by U as follows

UHF1U = diag{η1, · · · , ηN̂ , 0, · · · , 0},
UHF2U = diag{1− η1, · · · , 1− ηN̂ , 0, · · · , 0}. (35)

Note that as shown above, if N̂ < N , Π1 and Π2 can be
any square matrices of dimension N − N̂ . Moreover, since
the eigen-decomposition of a matrix is unique if and only if
all its eigenvalues are distinct, Ψ1 and Ψ2 in (26) and (32)
may not be unique. Therefore, there may be different ways to
simultaneously diagonalize F1 and F2.

B. GN Scheme

If Tx2 adopts the GN scheme for cooperative jamming, we
consider problem (9). A similar problem has been studied in
[11] under the constraint Q1 ⪯ S (see [11, (4)]) for Tx1,
where S is some positive semi-definite matrix. Obviously,
the constraint tr(Q1) ≤ P1 considered in this paper is more
general. Due to the more restrictive constraint, the system’s
performance may be limited and the scheme provided in [11]
does not apply here.

Since (9) is non-convex and analytically intractable, we
provide a heuristic solution by iteratively optimizing Q1 and

Q2, i.e., dealing with the following problems in an alternative
manner

max
Q1

ln |H1Q1H
H
1 (C2 + INb)

−1
+ INb |

− ln |G1Q1G
H
1 (D2 + INe)

−1
+ INe |

s.t. Q1 ⪰ 0, tr(Q1) ≤ P1, (36)

max
Q2

ln |C1

(
H2Q2H

H
2 + INb

)−1
+ INb |

− ln |D1

(
G2Q2G

H
2 + INe

)−1
+ INe |

s.t. Q2 ⪰ 0, tr(Q2) ≤ P2, (37)

where Ck = HkQkH
H
k , Dk = GkQkG

H
k ,∀k ∈ {1, 2}, and

[·]+ is omitted for convenience. In the following we deal with
(36) and (37) using the SD technique, and show that a good
feasible point in closed form can be obtained for each of them.

1) SD-based scheme for solving (36): Denote Ĥ1 =

(C2 + INb)
− 1

2 H1 and Ĝ1 = (D2 + INe)
− 1

2 G1. Then, using
(1), problem (36) can be equivalently transformed to

max
Q1

ln |Ĥ1Q1Ĥ
H
1 + INb | − ln |Ĝ1Q1Ĝ

H
1 + INe |

s.t. Q1 ⪰ 0, tr(Q1) ≤ P1. (38)

Obviously, (38) can be seen as the secrecy rate maximization
problem of the classical MIMOME channel [27], [28], where
Ĥ1 and Ĝ1 are respectively the channel matrices from the
transmitter to Bob and Eve. Such a problem has been widely
studied and the analytical capacity-achieving solution exists
for some special cases [28]–[31]. However, the analytical solu-
tion for the general MIMO channel is still an open problem. In
[31], the SD technique was proposed to solve the problem, and
its superiority in terms of both secrecy rate and computational
complexity, over the iterative MM-based algorithm [32] as
well as the generalized singular value decomposition (GSVD)
approach [33], was verified. For completeness, we provide the
main steps of this scheme for solving (38) below.

Since ĤH
1 Ĥ1 and ĜH

1 Ĝ1 are both positive semi-definite,
we known from Lemma 2 that they can be simultaneously
diagonalized. A matrix V can be constructed such that

V HĤH
1 Ĥ1V = diag{ϕ1, · · · , ϕN̂1

, 0, · · · , 0},
V HĜH

1 Ĝ1V = diag{1−ϕ1, · · · , 1−ϕN̂1
, 0, · · · , 0}, (39)

where N̂1 = rank(ĤH
1 Ĥ1+ ĜH

1 Ĝ1) and 0 ≤ ϕn ≤ 1, ∀ n ∈
{1, · · · , N̂1}. Let

Q1 = V ΘV H , (40)

where Θ ≜ diag{θ1, · · · , θN1
} has non-negative real diagonal

entries. Based on (1), (3), (39) and (40), the objective function
of (38) and tr(Q1) in the constraint can be rewritten as

ln |Ĥ1Q1Ĥ
H
1 + INb | − ln |Ĝ1Q1Ĝ

H
1 + INe |

= ln |V HĤH
1 Ĥ1V Θ + INb | − ln |V HĜH

1 Ĝ1V Θ + INe |

=

N̂1∑
n=1

[ln(ϕnθn + 1)− ln((1− ϕn)θn + 1)] , (41)
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and

tr(Q1) = tr(V HV Θ)

=

N1∑
n=1

∥vn∥2 θn, (42)

where vn is the n-th column of V . Then, instead of directly
solving (38), we consider the following problem

min
Θ

N̂1∑
n=1

[− ln(ϕnθn + 1) + ln((1− ϕn)θn + 1)] (43a)

s.t. θn ≥ 0, ∀ n ∈ {1, · · · , N1}, (43b)
N1∑
n=1

∥vn∥2 θn ≤ P2. (43c)

Although (43) is non-convex, its optimal solution can be
obtained in closed form [31, Theorem 1]. The only additional
step required is a one-dimensional line search with respect to
a Lagrange multiplier variable.

Lemma 3. The optimal solution of problem (43) is

θ∗n(α
∗)=



0, if N̂1≤n≤N1 or
{
1≤n≤N̂1 and 0≤ϕn≤ 1

2

}
,[

1
α∗∥vn∥2 − 1

]+
, if 1 ≤ n ≤ N̂1 and ϕn = 1,[

−1+

√
1−4ϕn(1−ϕn)

(
1+ 1−2ϕn

α∗∥vn∥2

)]+

2ϕn(1−ϕn)
, if 1≤n≤N̂1

and 1
2 < ϕn < 1,

(44)
where α∗ is the Lagrange multiplier attached to the constraint
(43c), and it can be found by using the bisection searching
method such that (43c) holds with equality. □

Once problem (43) is solved, a solution to (36) and (38)
can be obtained based on (40). Denote the SD-based low-
complexity approach proposed for solving (36) by SDLC1.
Note that due to the limitations imposed by (40) on the
formation of Q1, while (43) can be solved optimally, the
solution to (36) obtained from Theorem 3 and (40) may not
necessarily be optimal.

2) SD-based scheme for solving (37): Since Q2 appears in
the inverse term of the objective function, the SD technique
cannot be directly applied to deal with (37). In the following
we first make a transformation to its objective function, and
then show that the SD technique can still be applied and a good
feasible point in closed form can be obtained. Denote Ĥ2 =

(C1 + INb)
− 1

2 H2 and Ĝ2 = (D1 + INe)
− 1

2 G2. Then, based
on (1) and (2), the objective function of (37) can be rewritten
as

ln |H2Q2H
H
2 +C1 + INb | − ln |H2Q2H

H
2 + INb |

− ln |G2Q2G
H
2 +D1 + INe |+ ln |G2Q2G

H
2 + INe |

= ln |Ĥ2Q2Ĥ
H
2 + INb | − ln |H2Q2H

H
2 + INb |

− ln |Ĝ2Q2Ĝ
H
2 + INe |+ ln |G2Q2G

H
2 + INe |

+ ln |C1 + INb | − ln |D1 + INe |. (45)

Neglecting the constant terms in (45), problem (37) can be
equivalently transformed to

min
Q2

− ln |Ĥ2Q2Ĥ
H
2 + INb | − ln |G2Q2G

H
2 + INe |

+ ln |H2Q2H
H
2 + INb |+ ln |Ĝ2Q2Ĝ

H
2 + INe | (46a)

s.t. Q2 ⪰ 0, tr(Q2) ≤ P2. (46b)

Due to the log-concavity of determinant, (46) is a difference
of convex (DC) programming. The iterative MM-based method
can thus be applied to get a sequence of convex subproblems.
Specifically, let Q2,0 denote the solution obtained in the previ-
ous iteration. Using the first-order Taylor series approximation
to linearize the third and fourth log-determinant terms in (46a)
[34], we get the following upper bound

ln |H2Q2H
H
2 + INb |+ ln |Ĝ2Q2Ĝ

H
2 + INe |

≤ ln |H2Q2,0H
H
2 + INb |+ ln |Ĝ2Q2,0Ĝ

H
2 + INe |

+tr (AQ2)− tr (AQ2,0) , (47)

where A=HH
2

(
H2Q2,0H

H
2 +INb

)−1
H2+ĜH

2 (Ĝ2Q2,0Ĝ
H
2

+INe)
−1Ĝ2. Then, based on (47), we solve (46) by iteratively

dealing with the following problem

min
Q2

− ln |Ĥ2Q2Ĥ
H
2 + INb | − ln |G2Q2G

H
2 + INe |

+ tr (AQ2) (48a)
s.t. Q2 ⪰ 0, tr(Q2) ≤ P2, (48b)

which is convex and can thus be optimally solved using some
standard tools like the interior-point method. However, the
presence of log-determinant terms in the objective function
makes it extremely time-consuming [31]. Hence, we propose
to solve it using again the SD technique.

Since ĤH
2 Ĥ2 and GH

2 G2 are both positive semi-definite,
according to Lemma 2, a diagonalizing matrix W can be
constructed such that

WHĤH
2 Ĥ2W = diag{ρ1, · · · , ρN̂2

, 0, · · · , 0},
WHGH

2 G2W = diag{1−ρ1, · · · , 1−ρN̂2
, 0, · · · , 0}, (49)

where N̂2 = rank(ĤH
2 Ĥ2+GH

2 G2) and 0 ≤ ρn ≤ 1, ∀ n ∈
{1, · · · , N̂2}. Let

Q2 = WΛWH , (50)

where Λ ≜ diag{λ1, · · · , λN2
} has non-negative real diagonal

entries. Based on (1), (3), (49), and (50), the objective function
(48a) and tr(Q2) in constraint (48b) can be rewritten as

− ln |Ĥ2Q2Ĥ
H
2 + INb | − ln |G2Q2G

H
2 + INe |+ tr (AQ2)

= −ln|WHĤH
2 Ĥ2WΛ+INb |−ln|WHGH

2 G2WΛ+INe |
+ tr

(
WHAWΛ

)
=

N̂2∑
n=1

[− ln(ρnλn+1)−ln((1−ρn)λn+1)]+

N2∑
n=1

anλn,(51)

and

tr(Q2) = tr(WHWΛ)

=

N2∑
n=1

∥wn∥2 λn, (52)
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where an is the n-th diagonal entry of WHAW and wn is
the n-th column of W . Then, instead of solving (48) using
the general tools, we consider the following problem

min
Λ

N̂2∑
n=1

[−ln(ρnλn+1)−ln((1−ρn)λn+1)]+

N2∑
n=1

anλn (53a)

s.t. λn ≥ 0, ∀ n ∈ {1, · · · , N2}, (53b)
N2∑
n=1

∥wn∥2 λn ≤ P2, (53c)

which is convex. In the following theorem we provide its
optimal solution in closed form (the only additional step
required is a one-dimensional line search).

Theorem 5. The optimal solution of problem (53) is

λ∗
n(β

∗)=



0, if N̂2 + 1 ≤ n ≤ N2,[
1

an+β∗∥wn∥2 −1
]+
, if 1≤n≤N̂2 and ρn=0 or 1,[

−1+ 2ρn(1−ρn)

an+β∗∥wn∥2
+

√
(2ρn−1)2+

4ρ2n(1−ρn)2

(an+β∗∥wn∥2)2

]+

2ρn(1−ρn)
,

if 1 ≤ n ≤ N̂2 and 0 < ρn < 1.
(54)

If λ∗
n(0) makes the constraint (53c) hold, β∗ = 0. Otherwise,

β∗ can be found using the bisection searching method such
that (53c) holds with equality.

Proof: See Appendix E. □
To distinguish from SDLC1, we denote the SD-based low-

complexity scheme for solving (48) by SDLC2. Then, the pro-
posed approach to solve (9) consists of alternatively applying
SDLC1 and SDLC2 for a specific fine number of iterations,
as summarized in Algorithm 1.

Algorithm 1 SD-based low-complexity scheme for solving (9)
1: Initialize Q1 and Q2.
2: for l1 = 1 : L1 do
3: Solve (36) and update Q1 using SDLC1.
4: for l2 = 1 : L2 do
5: Let Q2,0 = Q2 and calculate A. Solve (48) and

update Q2 using SDLC2.
6: end for
7: end for

C. EJ Scheme

Now we consider the EJ scheme for Tx2 and problem (10).
Since REJ = max{min{R̂, R̃}, R̄}, (10) can be decomposed
into two subproblems as follows

max
Q1

R̄

s.t. Q1 ⪰ 0, tr(Q1) ≤ P1, (55)

max
Q1,Q2

min{R̂, R̃}

s.t. Qk ⪰ 0, tr(Qk) ≤ Pk, ∀ k ∈ {1, 2}. (56)

Let Q⋆
1 and (Q∗

1,Q
∗
2) respectively denote the optimal solutions

of (55) and (56). From the expressions of R̄, R̂, and R̃ in (7)
we know that

min{R̂(Q∗
1,Q

∗
2), R̃(Q∗

1,Q
∗
2)} ≥ min{R̂(Q⋆

1,0), R̃(Q⋆
1,0)}

= R̄(Q⋆
1), (57)

implying that the optimal solution (Q∗
1,Q

∗
2) of (56) is the

optimal solution of (10), and

REJ(Q
∗
1,Q

∗
2) = min{R̂(Q∗

1,Q
∗
2), R̃(Q∗

1,Q
∗
2)}. (58)

Therefore, if (56) can be optimally solved, there is actually
no need to consider (55). However, unlike the SIMO case,
this is no longer possible. Therefore, we solve (55) and (56)
separately, and obtain an achievable lower bound for (10).

Since R̄ takes on the same form as the objective function of
(38), problem (55) can be efficiently solved by SDLC1. Next,
we solve (56) by separately maximizing R̂ and R̃

max
Q1,Q2

R̂

s.t. Qk ⪰ 0, tr(Qk) ≤ Pk, ∀ k ∈ {1, 2}, (59)

max
Q1,Q2

R̃

s.t. Qk ⪰ 0, tr(Qk) ≤ Pk, ∀ k ∈ {1, 2}. (60)

Let Q̄1, (Q̂1, Q̂2), and (Q̃1, Q̃2) respectively denote the
solutions (not necessarily optimal) of (55), (59), and (60).
Since (Q∗

1,Q
∗
2) is the optimal solution of (10), we must have

REJ(Q
∗
1,Q

∗
2)≥max{REJ(Q̄1,0), REJ(Q̂1, Q̂2), REJ(Q̃1, Q̃2)}.

(61)
According to (61), an achievable lower bound to REJ(Q

∗
1,Q

∗
2)

can be obtained by separately solving (55), (59), and
(60). Once they are solved, we choose the point among
(Q̄1,0), (Q̂1, Q̂2), and (Q̃1, Q̃2) that produces the maximum
REJ(Q1,Q2), as the heuristic solution to (10).

As stated above, (55) can be solved by SDLC1. Now we
show that (59) and (60) can also be solved by iteratively ap-
plying SDLC1. Since they are both non-convex, we iteratively
optimize Q1 and Q2. For problem (59), by respectively fixing
Q2 and Q1, we consider subproblems

max
Q1

ln|H1Q1H
H
1 +INb |−ln|G1Q1G

H
1 (D2+INe)

−1
+INe |

s.t. Q1 ⪰ 0, tr(Q1) ≤ P1, (62)

max
Q2

ln|G2Q2G
H
2 +INe |−ln|G2Q2G

H
2 (D1+INe)

−1+INe |

s.t. Q2 ⪰ 0, tr(Q2) ≤ P2, (63)

where D1 and D2 are defined in (37). Obviously, (62) and
(63) have similar expressions as (36). Therefore, both of them
can be efficiently solved by using SDLC1. Then, we solve
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(60) also in an alternative manner. With fixed Q2 and Q1, we
get two subproblems as follows

max
Q1

ln |H1Q1H
H
1 (C2 + INb)

−1
+ INb |

− ln |G1Q1G
H
1 (D2 + INe)

−1
+ INe |

s.t. Q1 ⪰ 0, tr(Q1) ≤ P1, (64)

max
Q2

ln |H2Q2H
H
2 (C1 + INb)

−1 + INb |

− ln |G2Q2G
H
2 (D1 + INe)

−1 + INe |
s.t. Q2 ⪰ 0, tr(Q2) ≤ P2. (65)

where C1 and C2 are defined in (37). Obviously, (64) and
(65) can also be solved by SDLC1.

The method for solving (10) is summarized in the following
Algorithm 2.

Algorithm 2 SD-based low-complexity scheme for solving
(10)

1: Solve (55) using SDLC1 and obtain Q̄1.
2: Initialize Q1 and Q2.
3: for l3 = 1 : L3 do
4: Update Q1 and Q2 by respectively solving (62) and

(63) using SDLC1.
5: end for
6: Let (Q̂1, Q̂2) = (Q1,Q2) be the solution to (59).
7: Re-initialize Q1 and Q2.
8: for l4 = 1 : L4 do
9: Update Q1 and Q2 by respectively solving (64) and

(65) using SDLC1.
10: end for
11: Let (Q̃1, Q̃2) = (Q1,Q2) be the solution to (60).
12: Choose the point among (Q̄1,0), (Q̂1, Q̂2), and (Q̃1, Q̃2)

that maximizes REJ(Q1,Q2), as the solution to (10).

D. Convergence and Complexity Analysis

1) Convergence Analysis: As shown in Algorithm 1 and
Algorithm 2, we execute the proposed SDLC1 or SDLC2
schemes for a fixed number of iterations in both algorithms.

2) Complexity Analysis: To evaluate the complexity of the
proposed algorithms, we count the total number of floating-
point operations (FLOPs), where one FLOP represents a
complex multiplication or summation, express it as a poly-
nomial function of the dimensions of the matrices involved,
and simplify the expression by ignoring all terms except the
leading (i.e., highest order or dominant) terms [35], [36]. It is
worth mentioning that the given analysis only shows how the
bounds on computational complexity are related to different
problem dimensions. The actual load may vary depending on
the structure simplifications and used numerical solvers.

For convenience, we assume equal number of antennas
for both transmitters, i.e., N1 = N2 = N . One may also
use max{N1, N2} instead. Algorithm 1 and Algorithm 2
solve problems (9) and (10) by alternatively applying SDLC1
and SDLC2. Therefore, we first analyze the complexity of
SDLC1, which is proposed to deal with (38) and also prob-
lems in similar forms (see (62) - (65)). The optimization
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Fig. 2. SIMO case: average secrecy rate obtained by different schemes versus
P with Nb = 4.
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Fig. 3. SIMO case: average secrecy rate obtained by different schemes versus
Nb with P = 20 dB.

of Q1 in SDLC1 involves matrix multiplications and eigen-
decompositions, which require a complexity of O

(
N3
)
. In

addition, the bisection search used in (44) requires a complex-
ity of O

(
N log

(
1
τ

))
, where τ is the convergence tolerance of

the bisection searching method. Therefore, the implementation
of SDLC1 involves a complexity of O

(
N3 +N log

(
1
τ

))
.

Analogously, we can prove that SDLC2 also requires a
complexity of O

(
N3 +N log

(
1
τ

))
. By simply counting the

number of times SDLC1 and SDLC2 are executed, we
know that the overall complexity of Algorithm 1 and Al-
gorithm 2 is respectively O

(
L1L2

(
N3 +N log

(
1
τ

)))
and

O
(
2max{L3, L4}

(
N3 +N log

(
1
τ

)))
.

V. SIMULATION RESULTS

In this section, we evaluate the secrecy performance of the
system by simulation. Our main focus is on the secrecy rate
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Fig. 4. SIMO case: average secrecy rate obtained by different schemes versus
Ne with P = 20 dB.

C = max{RGN, REJ} under different parameter configura-
tions. For comparison, we also depict RGN and

RNo=
[
log |H1Q1H

H
1 +INb |−log |G1Q1G

H
1 +INe |

]+
, (66)

which is the secrecy rate of the “No”-jammer case, i.e.,
the MIMOME channel. To maximize RNo, it can be easily
verified that in the SIMO case, the optimal solution can
be found, and in the MIMO case, the SDLC1 scheme can
be applied. For convenience, we assume equal maximum
power constraint for both transmitters, i.e., P1 = P2 = P .
All results are obtained by averaging over 1000 independent
channel realizations. In each realization, the entries of the
channel matrices are generated according to independent and
identically distributed complex Gaussian distribution with zero
mean and unit variance.

A. SIMO Case

In the SIMO case, all the power control problems that
aim to maximize RNo, RGN, and C, respectively, can be
solved optimally. In Figs. 2 ∼ 4, we study the effect of
different parameters P , Nb, and Ne on the secrecy rate. Several
observations can be made. First, as expected, the secrecy
rate achieved by all jamming schemes increases with Nb
and P , and decreases with Ne. Second, the introduction of
a cooperative jammer and the utilization of either the GN
or EJ scheme can lead to a significant enhancement in the
secrecy performance of Tx1. In particular, a general secrecy
rate improvement of over 50% is observed across various
parameter configurations. Furthermore, compared to the GN
scheme, enabling Tx2 to switch between the GN and EJ
schemes results in a noticeable increase (approximately 10%)
in the secrecy rate of Tx1. In the following subsection, we will
demonstrate that this improvement is much more substantial
in the MIMO case.
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Fig. 5. MISO case: average secrecy rate RGN obtained by different schemes
versus N1 with Nb = 1, N2 = 2, and P = 20 dB.
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Fig. 6. MIMO case with no jamming: average secrecy rate RNo and compu-
tation time TNo versus N1 with Nb = 8, Ne = 8, N2 = 0, and P = 20 dB.

B. MIMO Case

Now we study the MIMO case. When performing Algo-
rithm 1 and Algorithm 2, we set iteration numbers L1 = 5,
L2 = 50, and L3 = L4 = 5.

In Fig. 5, we consider the MISO case, where Bob has one
antenna, and compare Algorithm 1 with the scheme given in
[12], where Tx1 and Tx2 respectively apply maximum ratio
and zero-forcing transmission strategies. It can be seen that
when Eve has one antenna, i.e., Ne = 1, Algorithm 1 has a
similar secrecy performance as the scheme provided in [12].
However, when Ne increases (even from 1 to 2), Algorithm 1
significantly outperforms the scheme in [12], indicating that
when Eve has multiple antennas, more advanced beamforming
strategies should be applied to enhance security.

In Fig. 6, we consider the MIMO case with no jamming
and maximize RNo in (66). Both RNo and the computation
time TNo required for one channel realization are depicted.
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Fig. 7. MIMO case: average secrecy rate obtained by different schemes versus
Nb with N1 = 2, N2 = 4, and P = 20 dB.

We first maximize RNo using the proposed SDLC1 scheme.
Note that as a DC programming, this problem can also be
solved by the conventional MM-based technique, which first
obtains a convex approximation of (66), and then iteratively
maximizes this approximation using some standard tools, e.g.,
CVX, etc. For convenience, we call this method MM-CVX.
Fig. 6 shows that, in contrast to MM-CVX, the proposed
SDLC1 scheme achieves better secrecy performance and, most
importantly, the required computation time is several orders
of magnitude lower. In the case with a cooperative jammer,
we consider problems (9) and (10), and propose to solve
them using Algorithm 1 and Algorithm 2, respectively. It
can be easily verified that all subproblems (36), (37), and
(62) ∼ (65), generated in solving (9) and (10), are DC
programmings. Therefore, (9) and (10) can also be solved by
iteratively applying MM-CVX. However, it can be inferred
from Fig. 6 that this method has a similar secrecy performance
in contrast to the SD-based schemes, but requires extremely
high complexity since many iterations are needed. Due to
space limitation, we do not provide the comparison here.

Fig. 7 and Fig. 8 depict the secrecy rate versus Nb and
Ne. Comparing these two figures with Fig. 3 and Fig. 4,
it can be found that by deploying multiple antennas at the
transmitters, the system’s secrecy performance can be dra-
matically improved, and in addition, gaps between any two
of RNo, RGN, and C enlarge. This observation highlights
two important points. First, jamming schemes are more ef-
fective in the MIMO case. For example, in Fig. 7, when
Nb = Ne = 4, we observe that (C − RNo)/RNo > 450%
and (RGN − RNo)/RNo > 150%. Second, compared to the
SIMO scenario where the EJ scheme provides only a 10%
secrecy rate gain over the GN method, a substantial increase
is observed in the MIMO case. For instance, in Fig. 7, when
Nb = Ne = 4, and in Fig. 8, when N2 = Ne = 4, we
both observe that (C−RGN)/RGN > 100%, demonstrating an
excellent secrecy enhancement brought by the EJ scheme.

It is worth noting that while C is significantly larger
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Fig. 8. MIMO case: average secrecy rate obtained by different schemes versus
Ne with Nb = 4, N1 = 2, and P = 20 dB.
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Fig. 9. MIMO case: average secrecy rate obtained by different schemes versus
N1 with Nb = 4, Ne = 8, and P = 20 dB.

than RGN in many parameter configurations, there are still
cases where C and RGN are relatively close. For example, in
Fig. 8, when N2 = 8 and Ne ≤ 3, or when N2 = 4 and
Ne ≥ 8, C is quite close to RGN, indicating that in these
instances, allowing Tx2 to switch between the GN and EJ
schemes does not result in significant gains in the secrecy
rate. This is because if Ne is small and N2 is large, the
interference beam of Tx2 can be designed to be narrow and
precisely aligned with Eve. Then, the jamming interference
experienced by Bob is negligible or minimal. Consequently,
the additional advantage of the EJ scheme, which involves
decoding the jamming signal first and subsequently canceling
the interference, becomes limited. On the contrary, if Ne is
large while N2 is small, it indicates that Eve possesses a
significant wiretapping capability, while the system’s defense
mechanisms may not be sufficient. Hence, the secrecy rate
is small even after introducing a cooperative jammer. In this

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3355308

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on January 30,2024 at 12:16:56 UTC from IEEE Xplore.  Restrictions apply. 



12

1 2 3 4 5 6 7 8 9 10

Number of antennas at Tx2, N
2

0

2

4

6

8

10

12
A

v
e

ra
g

e
 s

e
c
re

c
y
 r

a
te

 (
b

p
s
/H

z
)

Fig. 10. MIMO case: average secrecy rate obtained by different schemes
versus N2 with Nb = 4, Ne = 4, and P = 20 dB.

case, additional techniques have to be employed to enhance
the secrecy, e.g., introducing more jammers, deploying more
antennas at the transmitters or Bob, etc.

Fig. 9 and Fig. 10 investigate the effect of N1 and N2.
Note that for the case with no jammer, there is only Tx1.
Therefore, the value of N2 does not affect that of RNo. Similar
observations regarding the improvements in secrecy achieved
by introducing a cooperative jammer and employing the EJ
scheme can be made from Fig. 9 and Fig. 10, just as in the
previous figures. In addition, it can be seen that with fixed
Nb and Ne, the gap between C and RGN initially widens and
then narrows as N1 (or N2) increases. This observation can
be explained similarly as the phenomenon depicted in Fig. 8.
Therefore, we can conclude that by taking full advantage of the
GN and EJ schemes, the secrecy performance of the system
can be greatly improved, particularly in situations where the
information beam cannot be precisely aligned with Bob (N1

is not large enough) or the jamming beam cannot be precisely
aligned with Eve (N2 is not large enough).

VI. CONCLUSIONS

This paper studied the information-theoretic secrecy for a
Gaussian MIMO wiretap channel with a cooperative jammer.
In addition to the GN jamming scheme, the jammer can also
operate in the EJ mode so that its signal only interferes with
Bob. We provided an inner bound on the secrecy rate under the
strong secrecy metric and aimed to maximize this bound. We
first showed that optimal power control was available for the
SIMO case. As for the MIMO case, we developed SD-based
methods with quite a low complexity to solve the problems.
Our results showed that the secrecy performance of the system
can be greatly enhanced by introducing a cooperative jammer
and allowing it to switch between the GN and EJ schemes.

APPENDIX A
PROOF OF THEOREM 1

We prove Theorem 1 based on the result in [24] and [25],
which respectively studied the achievable regions of two-user
and K-user DM wiretap channels under the strong secrecy
criterion. Note that in this paper Tx1 has a secret message at
rate R for Bob, but Tx2 does not. Differently, all users in [24]
or [25] transmit secret messages to Bob. To use the result,
we assume that Tx2 also transmits a secret message to Bob
at rate R′. Then, the achievable region provided in [24] for
the two-user DM wiretap channel can be directly extended
to the continuous Gaussian case in a standard way, by first
introducing input costs and then applying discretization [37].
Denote

R1(Q1,Q2)


R ≤ [I(x1;y|x2)− I(x1; z)]

+
,

R′ ≤ [I(x2;y|x1)− I(x2; z)]
+
,

R+R′≤ [I(x1,x2;y)−I(x1,x2; z)]
+
,

(67)

R2(Q1,Q2)

{
R′ = 0,

R ≤ [I(x1;y|x2)− I(x1; z|x2)]
+
,

(68)

R3(Q1,Q2)

{
R = 0,

R′ ≤ [I(x2;y|x1)− I(x2; z|x1)]
+
,

(69)

where the mutual information expressions can be computed
based on the channel model (4). For brevity, we only provide
the detailed expressions for some of them in (73). Based on
[24, Theorem 1] it is known that for given Q1 and Q2, any
rate pair (R,R′) in the following region is achievable under
the strong secrecy metric

R1(Q1,Q2) ∪ R2(Q1,Q2) ∪ R3(Q1,Q2). (70)

Since R is always 0 in region R3(Q1,Q2), in the following,
we derive (6) mainly from R1(Q1,Q2) and R2(Q1,Q2).

From the achievability proof in [24] we know that to achieve
a rate pair in R1(Q1,Q2), redundant messages have to be
introduced to both users, i.e., besides the secret message, each
user also transmits a redundant message at certain rate, such
that the secret messages can be perfectly protected. By simply
setting R′ = 0 in R1(Q1,Q2), we know that any secrecy rate
R satisfying

R ≤min
{
[I(x1;y|x2)− I(x1; z)]

+
,

[I(x1,x2;y)− I(x1,x2; z)]
+
}
, (71)

is achievable. Note that although we set R′ = 0, it does not
imply that Tx2 transmits no message. This can be understood
by considering the R′ = ϵ case, where ϵ is an arbitrarily small
positive number. Then, it is known from [24] that to protect
the secret message (although its rate R′ approaches 0), Tx2
transmits a redundant message at certain rate such that Bob
can decode the information and then eliminate the interference,
but Eve cannot even if it knows the codebooks. The EJ scheme
can thus be implemented.

Note that it is not always possible to guarantee that Bob
can decode all the messages but Eve cannot. For example, if
the channel condition from Tx2 to Eve is much better than
that from Tx2 to Bob, it is possible for Eve to decode the
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message of Tx2 and then eliminate the interference. In this
case, R2(Q1,Q2) implies that the following region

R ≤ [I(x1;y|x2)− I(x1; z|x2)]
+
, (72)

is achievable. Denote the upper bounds in (71) and (72) by

R̂ = [I(x1;y|x2)− I(x1; z)]
+

=
[
log |H1Q1H

H
1 + INb |

− log |G1Q1G
H
1

(
G2Q2G

H
2 + INe

)−1
+ INe |

]+
,

R̃ = [I(x1,x2;y)− I(x1,x2; z)]
+

=
[
log |H1Q1H

H
1 +H2Q2H

H
2 + INb |

− log |G1Q1G
H
1 +G2Q2G

H
2 + INe |

]+
,

R̄ = [I(x1;y|x2)− I(x1; z|x2)]
+

=
[
log |H1Q1H

H
1 +INb |−log |G1Q1G

H
1 +INe |

]+
. (73)

Then, any secrecy rate satisfying R≤REJ ≜ max{min{R̂, R̃},
R̄} is achievable. Theorem 1 is thus proven.

APPENDIX B
PROOF OF THEOREM 2

Using (1), RGN in (15) can be rewritten as

RGN = log
[
q1h

H
1

(
q2h2h

H
2 + INb

)−1
h1 + 1

]
− log

[
q1g

H
1

(
q2g2g

H
2 + INe

)−1
g1 + 1

]
, (74)

where [·]+ is omitted for convenience. Its first-order partial
derivation over q1 is

∂RGN

∂q1
=

1

ln 2

[
hH
1

(
q2h2h

H
2 + INb

)−1
h1

q1hH
1

(
q2h2hH

2 + INb

)−1
h1 + 1

−
gH
1

(
q2g2g

H
2 + INe

)−1
g1

q1gH
1

(
q2g2gH

2 + INe

)−1
g1 + 1

]
. (75)

It can be easily checked that whether (75) is positive or not
is determined by the values of hH

1

(
q2h2h

H
2 + INb

)−1
h1 and

gH
1

(
q2g2g

H
2 + INe

)−1
g1. Hence, for a given q2, RGN either

increases or decreases with q1 in [0, P1]. The optimal q1 is
thus either 0 or P1. Since RGN = 0 if q1 = 0, we only need

to talk about the case with q1 = P1. If q1 = P1, using (1) and
(2), RGN in (15) can be rewritten as (without [·]+)

RGN = log |q2h2h
H
2

(
P1h1h

H
1 + INb

)−1
+ INb |

+ log |P1h1h
H
1 + INb | − log |q2h2h

H
2 + INb |

− log |q2g2gH
2

(
P1g1g

H
1 + INe

)−1
+ INe |

− log |P1g1g
H
1 + INe |+ log |q2g2gH

2 + INe |

= log
[
q2h

H
2

(
P1h1h

H
1 + INb

)−1
h2 + 1

]
+ log

(
P1h

H
1 h1 + 1

)
− log

(
q2h

H
2 h2 + 1

)
− log

[
q2g

H
2

(
P1g1g

H
1 + INe

)−1
g2 + 1

]
− log

(
P1g

H
1 g1 + 1

)
+ log

(
q2g

H
2 g2 + 1

)
. (76)

Its first-order partial derivation over q2, i.e., ∂RGN/∂q2 is
given in (77) at the bottom of this page, in which a, b, and c
are defined in (78). The optimal q2 can then be easily found
by talking about the values of a, b, and c.

If a = 0, b < 0, and 0 < − c
b < P2, the zero point of (77)

is − c
b and it can be easily checked that RGN increases with

q2 in
[
0,− c

b

]
and decreases in

[
− c

b , P2

]
. Hence, q∗2 = − c

b .
If a > 0 and b2−4ac > 0, the parabola aq22+bq2+c opens

upward and has zero points

P0 =
−b−

√
b2 − 4ac

2a
,

P̂0 =
−b+

√
b2 − 4ac

2a
, (79)

with P0 < P̂0. If P0 > 0, RGN increases with q2 in [0, P0] and[
P̂0,+∞

]
and decreases in

[
P0, P̂0

]
. Hence, RGN(P1, P0) >

RGN(P1, q2),∀q2 ∈ [0, P0). Since q2 ≤ P2, it can be easily
verified that if 0 < P0 < P2, the optimal q∗2 that maximizes
RGN(P1, q2) is either P0 or P2.

If a < 0 and b2−4ac > 0, the parabola aq22+bq2+c opens
downward and also has the two zero points in (79), but with
P̂0 < P0. In this case, if 0 < P0 < P2, RGN decreases with
q2 in [P0, P2]. Hence, RGN(P1, P0) > RGN(P1, q2),∀q2 ∈
(P0, P2]. The monotonicity of RGN w.r.t. q2 in [0, P0] depends
on whether P̂0 is in [0, P0] or not. If P̂0 ≤ 0, RGN increases
monotonically with q2 in [0, P0]. Otherwise, it decreases first
in [0, P̂0] and then increases in [P̂0, P0]. Hence, the optimal
q∗2 that maximizes RGN(P1, q2) is either 0 or P0.

∂RGN

∂q2
=

aq22 + bq2 + c[
q2hH

2

(
P1h1hH

1 + INb

)−1
h2 + 1

] (
q2hH

2 h2 + 1
) [

q2gH
2

(
P1g1gH

1 + INe

)−1
g2 + 1

] (
q2gH

2 g2 + 1
)
ln 2

, (77)

a =
[
hH
2

(
P1h1h

H
1 + INb

)−1
h2 − hH

2 h2

]
gH
2 g2g

H
2

(
P1g1g

H
1 + INe

)−1
g2

−
[
gH
2

(
P1g1g

H
1 + INe

)−1
g2 − gH

2 g2

]
hH
2 h2h

H
2

(
P1h1h

H
1 + INb

)−1
h2,

b = 2
[
hH
2

(
P1h1h

H
1 + INb

)−1
h2g

H
2 g2 − hH

2 h2g
H
2

(
P1g1g

H
1 + INe

)−1
g2

]
,

c = hH
2

(
P1h1h

H
1 + INb

)−1
h2 − hH

2 h2 − gH
2

(
P1g1g

H
1 + INe

)−1
g2 + gH

2 g2. (78)
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For all the other cases, it can be easily checked that the
optimal q∗2 that maximizes RGN(P1, q2) is either 0 or P2. We
omit the details here due to space limitation.

APPENDIX C
PROOF OF THEOREM 3

We first solve problem (21). Using (1), R̂ in (18) can be
rewritten as

R̂=log
(
q1h

H
1 h1+1

)
−log

[
q1g

H
1

(
q2g2g

H
2 +INe

)−1
g1+1

]
,

(80)
where [·]+ is omitted for convenience. It can be easily proven
by using eigen-decomposition that gH

1

(
q2g2g

H
2 + INe

)−1
g1

decreases with q2. Hence, R̂ increases with q2 and in the
optimal case of (21), q̂∗2 = P2. With q̂∗2 = P2, the first-order
partial derivation over q1 is

R̂

∂q1
=

1

ln 2

[
hH
1 h1

q1hH
1 h1+1

−
gH
1

(
P2g2g

H
2 + INe

)−1
g1

q1gH
1

(
P2g2gH

2 +INe

)−1
g1+1

]
.

(81)
Similar to (75), (81) shows that the optimal q1 should be
either P̂1,lb or P̂1,ub, depending on the values of hH

1 h1 and
gH
1

(
P2g2g

H
2 + INe

)−1
g1. We give the solution in (23).

Next, we solve problem (22). Using (1) and (2), R̃ in (18)
can be equivalently rewritten as

R̃ =log
[
q1h

H
1

(
q2h2h

H
2 +INb

)−1
h1+1

]
+log

(
q2h

H
2 h2+1

)
−log

[
q1g

H
1

(
q2g2g

H
2 +INe

)−1
g1+1

]
−log

(
q2g

H
2 g2+1

)
. (82)

Its first-order partial derivation over q1 is

R̃

∂q1
=

1

ln 2

[
hH
1

(
q2h2h

H
2 + INb

)−1
h1

q1hH
1

(
q2h2hH

2 + INb

)−1
h1 + 1

−
gH
1

(
q2g2g

H
2 + INe

)−1
g1

q1gH
1

(
q2g2gH

2 + INe

)−1
g1 + 1

]
, (83)

indicating that in the optimal case of (22), q1 should be either
P̃1,lb or P̃1,ub. Similarly, we can prove that the optimal q2
should be either 0 or P2. Therefore, as shown in (24), the
optimal solution of (22) can be easily found by checking four
possible solutions.

APPENDIX D
PROOF OF THEOREM 4

Based on (18), the difference between R̂ and R̃ (without
[·]+) is

R̂− R̃

= log |q1h1h
H
1 + INb |+ log |q2g2gH

2 + INe |
− log |q1h1h

H
1 + q2h2h

H
2 + INb |

= log
(
q2g

H
2 g2+1

)
−log

[
q2h

H
2

(
q1h1h

H
1 +INb

)−1
h2+1

]
, (84)

where the equations holds due to (1) and (2). It is obvious
from (84) that the sign of R̂− R̃ is determined by the relative
magnitudes of gH

2 g2 and hH
2

(
q1h1h

H
1 + INb

)−1
h2. Since

hH
2

(
q1h1h

H
1 + INb

)−1
h2 decreases with q1, we have

hH
2

(
P1h1h

H
1 + INb

)−1
h2 ≤ hH

2 h2. (85)

In the following we prove Theorem 4 by sepa-
rately discussing three possible cases. First, if gH

2 g2 ≤
hH
2

(
P1h1h

H
1 + INb

)−1
h2, it is known from (84) that

R̂ ≤ R̃, ∀ q1 ∈ [0, P1]. (86)

Problem (20) can thus be optimally solved by letting P̂1,lb = 0
and P̂1,ub = P1, and dealing with (21).

Second, if gH
2 g2 ≥ hH

2 h2, we have

R̂ ≥ R̃, ∀ q1 ∈ [0, P1]. (87)

Problem (20) can thus be optimally solved by letting P̃1,lb = 0
and P̃1,ub = P1, and dealing with (22).

Third, if hH
2

(
P1h1h

H
1 + INb

)−1
h2 < gH

2 g2 < hH
2 h2,

since hH
2

(
q1h1h

H
1 + INb

)−1
h2 monotonically decreases

with q1, there must exist a point P ′
0 ∈ (0, P1) such that

hH
2

(
P ′
0h1h

H
1 + INb

)−1
h2 = gH

2 g2. (88)

It is obvious that the matrix P ′
0h1h

H
1 +INb is positive definite

and its eigenvalues are all one except P ′
0h

H
1 h1 + 1. Denote

its eigen-decomposition by

P ′
0h1h

H
1 + INb = Ldiag{1, · · · , 1, P ′

0h
H
1 h1 + 1}LH , (89)

and let
ĥ2 = LHh2 ≜ [ĥ2,1, · · · , ĥ2,Nb ]

T . (90)

Based on (89) and (90), (88) can be rewritten as

ĥH
2 diag

{
1, · · · , 1, 1

P ′
0h

H
1 h1 + 1

}
ĥ2

=

Nb−1∑
i=1

|ĥ2,i|2 +
|ĥ2,Nb |2

P ′
0h

H
1 h1 + 1

=gH
2 g2, (91)

from which we get

P ′
0 =

|ĥ2,Nb |2

hH
1 h1

(
gH
2 g2 −

∑Nb−1
i=1 |ĥ2,i|2

) − 1

hH
1 h1

. (92)

Then, we know that

R̂ ≤ R̃, ∀ q1 ∈ [0, P ′
0],

R̂ ≥ R̃, ∀ q1 ∈ [P ′
0, P1]. (93)

According to (93), problem (20) can be solved by considering
two cases. If q1 ∈ [0, P ′

0], we let P̂1,lb = 0 and P̂1,ub = P ′
0,

and deal with (21). If q1 ∈ [P ′
0, P1], we let P̃1,lb = P ′

0 and
P̃1,ub = P1, and deal with (22). The optimal solution of (20)
is thus (25). This completes the proof.

APPENDIX E
PROOF OF THEOREM 5

Since problem (53) is convex and has affine constraints, the
strong duality holds and its optimal solution can be obtained by
checking the KKT condition. Attaching a Lagrange multiplier
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β to the constraint (53c), we get the following Lagrange
function

L(Λ, β) =

N̂2∑
n=1

[− ln(ρnλn + 1)− ln((1− ρn)λn + 1)]

+

N2∑
n=1

(an + β ∥wn∥2)λn − βP2. (94)

When N̂2 + 1 ≤ n ≤ N2, the objective function (53a) is
non-decreasing w.r.t. λn. Hence,

λ∗
n = 0, if N̂2 + 1 ≤ n ≤ N2. (95)

If 1 ≤ n ≤ N̂2 + 1 and ρn = 0 or ρn = 1, the first-order
partial derivation of the Lagrange function L over λn is

∂L
∂λn

= − 1

λn + 1
+ an + β ∥wn∥2 . (96)

By checking the first-order optimality condition and ensuring
λn ≥ 0, we have

λ∗
n(β

∗)=

[
1

an+β∗ ∥wn∥2
−1

]+
, if 1≤n≤N̂2 and ρn=0 or 1.

(97)
If 1 ≤ n ≤ N̂2 + 1 and 0 < ρn < 1, the first-order partial
derivation of L over λn is

∂L
∂λn

=

(an+β ∥wn∥2)[ρn(1−ρn)λ
2
n+λn+1]−2ρn(1−ρn)λn−1

(ρnλn + 1)[(1− ρn)λn + 1]
.

(98)

By checking the first-order optimality condition and ensuring
λn ≥ 0, we have

λ∗
n(β

∗)=

[
−1+ 2ρn(1−ρn)

an+β∗∥wn∥2 +

√
(2ρn−1)2+ 4ρ2

n(1−ρn)2

(an+β∗∥wn∥2)
2

]+
2ρn(1− ρn)

,

if 1 ≤ n ≤ N̂2 and 0 < ρn < 1. (99)

It is known from the KKT condition that in the optimal case
of (53),

β∗

(
N2∑
n=1

∥wn∥2 λ∗
n − P2

)
= 0. (100)

Therefore, if λ∗
n(0) makes the constraint (53c) hold, we have

β∗ = 0. Otherwise, β∗ > 0 and β∗ can be found using the
bisection searching method such that (53c) holds with equality
since λn(β) decreases with β. This completes the proof.
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