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Abstract. PM2.5 has become a significant factor contributing to the 
haze outbreak in mainland China, which has negative impacts for 
public health. The current agility of CFD-based modelling to reveal in 
real-time the changes in PM2.5 concentrations in response to 
(proposed) changes in urban form limits its practical applications in 
the design processes. To support urban design for better air quality 
(AQ), this study presents a machine learning approach to test: (1) that 
the spatial distribution of PM2.5 concentrations measured in an urban 
area reflects the area’s capacity to disperse particle air pollution; (2) 
that the PM2.5 concentration measurements can be linked to certain 
urban form attributes of that area. A Convolutional Neural Network 
algorithm called Residual Neural Network (ResNet) was trained and 
tested using the ChinaHighPM2.5 and urban form datasets. The result 
is a ResNet-AQ predictor for the city centre area in Beijing which had 
one of the highest air pollution levels within the Beijing-Tianjin-Hebei 
region. The urban area covered by the ResNet-AQ predictor contains 
4,000 grid cells (approx. 25.3 km x 25.3 km), of which 1,200 (30%) 
cells were selected randomly for testing. The ResNet-AQ prediction 
accuracy achieved 87.3% after 100 iterations. An end-use scenario is 
presented to show how a social housing project can be supported by 
the AQ predictor to achieve better urban air quality performance. 

Keywords.  PM2.5, Urban Form Indicators, Image Classification, 
Convolutional Neural Network, Open Urban Data 

1. Introduction 
In recent years, the detrimental effects of air pollution on human health have attracted 
attention (Abdalla and Peng, 2021). China is ranked the most polluted country for air 
pollution among 175 countries globally (China MEE, 2020). PM2.5 consists of a high 
concentration of toxic and hazardous substances, which can be transported over long 
distances and have a long residence time in the atmosphere. PM2.5 significantly 
impacts atmospheric environmental quality and public health (Wang, 2017a). 

Recent research on Urban Air Quality has focused on two areas. (1) Studies of 
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traditional end-of-pipe treatments to reduce air pollutant emissions (Li and Zhou, 
2019). A typical strategy was to reduce vehicle emissions by controlling urban road 
layouts (Rodríguez et al., 2016; Yuan et al., 2018). (2) Studies on reducing the 
pollutant stock in the air. A common approach was to improve air pollutant 
dispersion and deposition (Wang et al., 2017b). The effect of urban form on wind 
speed has been investigated via computational fluid dynamics (CFD), which further 
estimated the influence of wind speed on pollutant dispersion (Jia et al., 2021). Zhai 
et al. explored the effects of vegetation coverage on particle sedimentation based on 
computational fluid dynamics simulations (Zhai et al., 2022). Conventional CFD 
modelling requires detailed descriptions of the particle and fluid fields. CFD models 
may perform poorly due to inaccurate settings of urban form parameters and 
meteorological conditions (Jurado et al., 2021). Based on CFD outputs, a deep-
learning neural network to predict air pollution was developed by Jurado et al. (2022) 
recognising that the CFD models were based on assumed parameters and could not 
fully reflect the real-world complexity. Due to the high computational cost, CFD 
remains problematic for architects and urban designers to evaluate urban air quality 
performance of design proposals in an interactive manner. 

In this paper, we present a study of a modelling framework for urban air quality 
prediction to aid urban design based on satellite sensing data. In particular, near-
surface PM2.5 concentrations derived from the Aerosol Optical Depth datasets have 
been made widely available by various agencies. Here, the main idea was to model 
the relationship between satellite imaging of PM2.5 concentrations and urban form 
characteristics at a city scale through Convolutional Neural Network (CNN) learning. 
A set of nine urban form indicators for characterising urban form was identified in 
our literature review, including Road Surface Density, Road Network Density, 
Natural Surface Ratio, Terrain Elevation, Building Density, Building Length, 
Building Volume, Average Building Height, and Building Height Difference. Both 
PM2.5 concentrations and urban form characteristics were pre-processed for CNN 
training and testing. Thus, urban design proposals drawn as master plans can be 
evaluated rapidly by the resultant CNN model to reveal the likely changes in urban 
air quality performance (i.e., PM2.5 concentrations) due to the proposed designs 
(changes). 

2. Methods and materials 
Figure 1 shows an overview of the workflow. The proposed modelling framework 
consists of three main parts: (1) Urban form data; (2) Urban PM2.5 concentration 
data; and (3) Training and testing Machine Learning algorithms. A major challenge 
was the acquisition and pre-processing of the urban form and urban air quality data 
required for the machine learning modelling. The quality (accuracy and resolution) of 
the datasets will determine the efficacy of the resultant model trained and tested as a 
location based urban air quality predictor, given the urban characteristics as inputs. 
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Figure 1. Workflow overview 

2.1. URBAN FORM DATASET 
A city map containing vector information is required to compute the nine urban form 
indicators. We used Open Street Map to obtain the urban form data in the ESRI 
Shapefile format (Marsudi, 2019). However, open street map does not provide valid 
building height information (Bernard et al., 2022). An alternative geo-data source, 
Amap (amap.com), one of the most popular web mapping service providers in China 
(Sun et al., 2020), provided building height data. A transformer application, Bigemap, 
was used in the study to acquire and transform the initial data from OSM. 
Furthermore, the NCDDC (National Coastal Data Development Center, 
https://www.ncddc.noaa.gov/) provides territorial elevation data, which can be input 
into ArcMap (version 10.8.1) directly as vector data. 

Urban vector maps require the definition of the Geographic Coordinate System 
and Projected Coordinate System in ArcMap to make all processing work occur in 
the same coordinate system (Jekeli, 2006). In this study, the Chinese Geodetic 
Coordinate System 2000 was used, and the Gauss-Krüger projection method, 
currently expected in China, was used as the projected coordinate system (Yang, 
2009).  

The purpose of the urban form data editing is to generate a large set of training 
samples for image classification. Nine options of the grid resolution were examined 
for the study based on the fishnet function in ArcMap (Figure 2). While the low 
sample resolution (2 km x 2 km) can accommodate a wider urban area, the resultant 
sample size cannot be sufficient for machine learning. In contrast, the high-resolution 
sampling (50 m x 50 m) can produce the sample pool of a satisfactory size, but the 
small spatial coverage is inappropriate to the urban form indicators. Based on the 
assessment of the nine grid resolutions (Figure 2), the 400 m x 400 m resolution was 
chosen in this study to produce the final sample pool (N=4,000) for machine learning. 

Figure 2. Urban grid size and resolution test 

The next stage of the urban form data preparation involved colour labelling in 
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ArcMap, including the three vector layers labelled with different colours for defining 
urban form. Figure 3 shows the labelled sample images based on the Hexcone model 
in the RGB colour system. The red colour field shows the building height based on 
the three-metre gradient labels in the study area. Roads are in white colour, and 
natural surfaces are in green, reflecting the road surface density, road network density 
and natural surface density of the study area. Furthermore, the territorial height data 
provided by the NCDDC was labelled with a three-metre gradient of grey-scale 
shifts, which shows urban terrain changes in relative height. 

Figure 3. The urban form map of the study area tagged in ArcMap (v.10.8.1) 

2.2. PM2.5 CONCENTRATION DATASET 

Wei et al. (2021) employed the Moderate Resolution Imaging Spectroradiometer   
Multi-Angle implementation of Atmospheric Correction algorithm to estimate near-
surface PM2.5 concentrations at a 1 km resolution. The output is the high resolution 
PM2.5 dataset for China (ChinaHighPM2.5), which was accessed for the Beijing 
central urban area in this study. 

The image classification model (see Section 2.3) was trained on the urban form 
data samples (N=4,000), and each urban form sample (cell) was assigned a PM2.5 
concentration value according to ChinaHighPM2.5. The assignment requires 
resampling where urban form grid cells crossing multiple PM2.5 concentration 
boundaries. Figure 4 shows the resampling method based on weighted average sum 
to ensure consistency in assigning PM2.5 concentrations to the urban from grid cells. 

Figure 4. A weighted average algorithm for samples which cross concentration boundaries 

The air quality monitoring network of the China Environmental Monitoring 
Center, CnOpenData, and Qingyue Open Data Center of Environment jointly provide 
the download service for accessing the ground based air quality monitoring data in 
China (He et al., 2021). There are 15 monitoring stations within the study area, 
providing monthly PM2.5 data for six years (2015-2020). The edited PM2.5 dataset 
prepared for the study area was then evaluated with three statistical measurements: 
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Determination (R²), Root Mean Square Error (RMSE), and Mean Absolute Error 
(MAE). The sample size (N) is 90, and the statistical check gives R²=0.96, 
RMSE=4.01 μg/m³ and MAE=2.98 μg/m³. The performance of the reassigned PM2.5 
data is close to the source data provided by ChinaHighPM2.5 with R²= 0.94, 
RMSE=5.07 μg/m³, and MAE=3.72 μg/m³ (Wei et al., 2021). 

The training samples were further assessed the correlation of the PM2.5 with the 
urban form to identify the strongest correlation dataset. It is likely that the urban from 
samples and PM2.5 concentrations bear no correlation because of the instability of 
geospatial datasets and data latency (Zufle et al., 2020). A regression analysis was 
applied to determine the regression coefficient R² between urban form indicators and 
the annual mean PM2.5 concentration values from 2015 to 2020. Figure 5 shows the 
regression coefficients of PM2.5 concentrations and nine urban form indicators used 
in the study during the six-year period (2015-2020). The regression coefficient for the 
PM2.5 data in 2019 was the highest (R²=0.30). As the study aims to achieve more 
sensitive classifiers in the image classification, the PM2.5 range is important, and the 
degree of fluctuations in the winter PM2.5 concentrations in 2019 shows a highest 
regression coefficient (R²=0.37). Winter heating in northern China consume large 
quantities of fossil fuels and significantly increase PM2.5 concentrations (Liang et al., 
2015). Thus, the winter months of January, February, November and December in 
2019 were chosen for image classification training. 

Figure 5. Regression coefficients of PM2.5 concentrations and urban form indicators in the study 
area for six years from 2015 to 2020 

2.3. IMAGE CLASSIFICATION MODEL CONSTRUCTION 
The study adopts a supervised classification learning approach to classify the input 
images (i.e., the urban form characterisation) using spectral features obtained from 
the training samples (Das, 2017). The urban form samples were applied for 
supervised classification training, and the category was based on the PM2.5 values of 
winter season 2019. 

For efficient image printing of the samples, a simplified Python program was 
written (https://github.com/ZishenBai/GIS.git/). The program allows the printout to 
be saved based on a range of PM2.5 concentration levels. The advantage of the 
Python coding is efficient production and sample outputs and the program code is 
easily adjustable and reusable. The core import module for batch printing and 
classification saving is the Search-Cursor in ArcMap 10.8. 1. Search-Cursor is 
typically used to create read-only cursors on element classes or tables and allows the 
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use of where clause or field to restrict the query and sort results.  
The image classification models were constructed and trained with the support of 

an online open resource no-code AI platform, EasyDL (https://ai.baidu.com/easydl/). 
EasyDL is an AI service development platform provided by Baidu Brain with 
deployable machine learning and deep learning algorithms (Singh, 2016). The main 
algorithm adopted for this study is the Deep Residual Learning algorithm, coded as 
ResNets on the EasyDL platform. ResNets has a strong track record, having won the 
best performance award at the ILSVRC 2015 computer vision competition (He et al., 
2015). Due to the limitation of the sample pool size, an incremental training strategy 
was used in this study to improve the CNN model generalisation capability. In the 
urban form samples, a system of colour gradients was applied to different urban form 
indicators, meaning that warping or colour changes could potentially mislead the 
training models. An incremental training strategy with randomly occurring XY 
translation (TranslateX; TranslateY) with a 10% probability was selected for this 
study (Figure 6). 

Figure 6. An incremental training strategy, based on a 10% XY translation 

The final step was configuring the training environment based on the Baidu 
Public Cloud deployment service which provides the inference and prediction 
capabilities following the REST API style. The basic parameters of the model 
training server were Tesla P40, Video Mem: 24GB, CPU: 12 Cores, RAM: 40G. 

3. Results and discussion 

3.1. TRAINING RESULTS 
In machine learning, image classification training generally involves optimising 
multiple training strategies, which can significantly affect the training results. In this 
study, all tests were based on the same training algorithm and test sample pool. The 
image classification model (function) was trained based on the supervised learning 
approach of the CNN framework using the ResNets algorithm. Table 1 shows the test 
results based on PM2.5 concentrations equally divided into five categories (levels), 
achieving an overall accuracy of 59.20%. The test report showed 93 samples 
confounded in Level_02 and Level_03, while only 7 were confounded in Level_02 
and Level_05. This suggests that PM2.5 concentration levels cannot establish a 
significant relationship with the samples. Thus, the levels were reduced to four. 

Table 1. Misclassification list for the test training 

Label Top 5 misidentified label size Accuracy Size 

level_04 [79] level_05 [85] level_03 [46] level_02 [31] level_01 53.80% 260 
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level_02 [93] level_03 [78] level_01 [46] level_04 [07] level_05 52.50% 237 

level_03 [93] level_02 [85] level_04 [35] level_01 [15] level_05 57.10% 264 

level_01 [78] level_02 [35] level_03 [24] level_05 [31] level_04 66.70% 249 

level_05 [79] level_04 [24] level_01 [15] level_03 [07] level_02 65.80% 185 

 
Based on the test training results, the final model classification was defined as 

four categories according to four ranges of PM2.5 concentrations (Table 2). For each 
classification category (PM2.5 concentration level), 30% of the samples were 
randomly selected as the test set. After removing invalid samples, 3,800 samples (out 
of 4,000) were used, including 2,660 for training and 1,140 for testing. With 100 
iterations of training (runtime: 5 hours and 16 minutes), the model achieved an 
accuracy of 87.30%. 

Table 2. Classification results checklist 

Category Level_01 Level_02 Level_03 Level_04 

PM2.5 
concentrations 

48.75μg/m³-
52.00μg/m³ 

52.01μg/m³-
54.00μg/m³ 

54.01μg/m³-
57.00μg/m³ 

57.01μg/m³-
60.50μg/m³ 

3.2. AN END-USE SCENARIO 
To illustrate how the Beijing ResNets-AQ Predictor as trained may be applied in 

urban design practice, the Baiziwan social housing project, located on the fourth ring 
road in the Beijing city centre (39.89 ° N, 116.51 ° E), was evaluated as an end-use 
test scenario. The affordable housing project was completed by MAD Studio in 2021 
(Iype, 2021). The ResNets-AQ Predictor was applied to compare the PM2.5 
concentration levels of the urban area before and after the Baiziwan social housing 
project. Figure 7 shows the outcome of the testing. It shows that the PM2.5 
concentration of the site before the social housing project was estimated at Level_03 
(probability of 56.06%) and Level_04 (41.07%), indicating the winter PM2.5 
concentrations would be in the range of 54.01μg/m³ - 60.50μg/m³ (probability of 
97.13%). The PM2.5 concentration levels after the Baiziwan Social Housing Project 
was estimated at Level_02 (64.38%) and Level_03 (30.90%), indicating the winter 
PM2.5 concentrations would be in the range of 52.01μg/m³ - 57.00μg/m³ (probability 
of 95.28%). The PM2.5 concentration values and predicted probabilities for the top 
two levels of the test results were used to assess the effect of the social housing 
project in terms of PM2.5 concentrations through a weighted average estimation. The 
results show that the PM2.5 concentration at the site was 55.24 μg/m³ (before) and 
51.27 μg/m³ (after), indicating that the social housing project leads to about 7.19% 
reduction in PM2.5 concentrations. As such, this end-use test scenario shows an 
example of how the ResNets-AQ Predictor can be applied to generate rapid air 
quality assessments of urban design proposals without going through site-specific 
CFD modelling and simulation. The runtime invested in the ResNets-AQ predictor 
training and testing delivers the agility required of interactive design processes.  
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Figure 7. Assessment results (a) Site before regeneration, (b) Baiziwan social housing project  

The numerical predictions can be complemented by adding links to related air 
quality literature to further improve the usability of the ResNets-AQ Predictor for 
rapid evaluation of existing urban areas as well as proposed interventions. For this 
test use scenario, firstly, the social housing project has significantly reduced the 
building density on the site, decreasing wind obstruction (Yang et al., 2020). The new 
buildings were designed with reduced windward sides and increased distances 
between buildings, which potentially increased the wind speed within the site and 
accelerated PM2.5 dispersion rates (Yang et al., 2020). Furthermore, the project has 
significantly increased natural surface areas, raising the sedimentation impact of 
vegetation on PM2.5 (Wang et al., 2014; Cheng et al., 2015). Vertical landscaping 
can reduce dust pollution due to increased wind speeds by high-rise buildings. 
However, the project has increased road density, potentially increasing PM2.5 
concentrations. There is a synergistic effect between the road surface density and road 
network density indicators, and generally, a wider road network with lower density 
has the potential to decrease PM 2.5 concentrations (Wang et al., 2017b). In 
conclusion, the renewed urban form with reduced PM2.5 concentrations is primarily 
attributable to the change in wind speed and the increase in vegetation area. Thus, the 
ResNets-AQ predictive evaluation was considered to be in an agreement with an 
observation of the urban form features introduced by the Baiziwan social housing 
project. 

4. Conclusion and further work 
The study presents an urban air quality modelling tool built on the CNN-based image 
classification technique. The main purpose of the tool is to enable rapid assessment of 
urban form performance in terms of PM2.5 concentrations during high ambient air 
pollution months. A contribution of the study is the development of a novel 
modelling framework that creates links between satellite aerosol sensing data and 
urban form characterisation at an urban scale. Unlike the conventional CFD 
approach, the data-driven deep learning method can provide the agility required in 
rapid interaction with design decision-making. It can be anticipated that designers 
will be able to interact with a ResNets-AQ evaluation/prediction platform via mobile 
devices and receive likely PM2.5 concentration levels of their design proposals. 

Following this study, there are a number of areas to be further investigated. 
Firstly, a ResNets-AQ predictor is location based, that is, the Beijing ResNets-AQ 
predictor can only be applied to urban areas/projects in Beijing. However, the 
modelling methods and techniques are expected to be applicable to other cities. 
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Further work on other cities' datasets will provide such a verification. Secondly, the 
non-linear relationship between PM2.5 concentrations and urban form, and the 
autocorrelation among some indicators (Haining, 2003), should be considered in 
further development. Thirdly, further integration with Multi-Objective Optimisation 
could extend the utility of an urban air quality platform by providing not only 
assessment but also recommended steps or moves to achieve improvements. 

Researchers have recently proposed training pix2pix models with a Generative 
Adversarial Network to build generative machine learning frameworks (Yao et al., 
2021). A future multi-objective optimisation framework realisation could make a 
breakthrough by moving into the emerging field of interaction design with AI, or 
machine learning assisted design. 
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