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Abstract— We present a modular framework designed to
enable a robot hand-arm system to learn how to catch flying
objects, a task that requires fast, reactive, and accurately-timed
robot motions. Our framework consists of five core modules:
(i) an object state estimator that learns object trajectory
prediction, (ii) a catching pose quality network that learns to
score and rank object poses for catching, (iii) a reaching control
policy trained to move the robot hand to pre-catch poses, (iv) a
grasping control policy trained to perform soft catching motions
for safe and robust grasping, and (v) a gating network trained
to synthesize the actions given by the reaching and grasping
policy. The former two modules are trained via supervised
learning and the latter three use deep reinforcement learning
in a simulated environment. We conduct extensive evaluations
of our framework in simulation for each module and the
integrated system, to demonstrate high success rates of in-flight
catching and robustness to perturbations and sensory noise.
Whilst only simple cylindrical and spherical objects are used for
training, the integrated system shows successful generalization
to a variety of household objects that are not used in training.

I. INTRODUCTION

Humans are capable of interacting with flying objects in a
variety of scenarios ranging from ball sports to brick-tossing
in construction works. In contrast, the current capability of
robot manipulation is largely restricted to industrial envi-
ronments, and dynamic tasks with high variability such as
catching flying objects still remain challenging. To catch
a flying object, within an extreme short duration (usually
less than 1 second), the robot has to accomplish a sequence
of sub-tasks including: accurate object trajectory prediction,
catching pose determination and real-time motion generation.
In this work we propose an end-to-end learning framework to
address the problem of catching flying objects with a multi-
joint robot hand-arm system. As shown in Fig. 1, for a flying
object under a sudden perturbation, our system quickly re-
estimates the object trajectory, adapts the pre-catch pose, and
successfully catches the object at a new pose.

Approaches to solving the problem of catching flying
objects can be broadly classified in two categories: non-
prehensile catching [1], [2] and prehensile catching [3]–
[6]. Most non-prehensile catch approaches focus on accurate
prediction of the object trajectory, where the object is caught
by the non-prehensile end-effector, e.g. a net or a cup.

For prehensile catching, the required robot motion is more
demanding. Firstly, the determination of the catching pose
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Fig. 1. Catching a flying object under an unexpected external perturbation:
labels 1-2-3 show reactive motions of the robot hand; the robot constantly
re-estimates the flight trajectory, adjusts the motion rapidly, and catches the
object successfully.

should consider both the morphology and motion of the
object. For example, a dexterous hand ought to grasp cylin-
drical objects from lateral directions, and the object velocity
is better orthogonal with the palm instead of being parallel
with it. The previous method uses human demonstrations to
determine the pre-catch pose of target objects, neglecting
the object motion when the catching happens [5]. While
in this paper we proposed a catching pose quality network
to quantify the feasibility of the hand-object pose tuple
for catching, considering both the object velocity and the
required robot motion. Secondly, the motion of the hand
and arm need to be coordinated. To extend the grasping
duration and ease the required precision of grasping timing,
a prescribed soft catching strategy has been proposed [6],
where the robot arm moves with the object for a short period
of time. In this work, the self-emergent soft catching policy
is learned via deep reinforcement learning (DRL).

Since the final catching configuration frequently changes
as the object trajectory prediction updates, the robot move-
ments need to be highly dynamic and responsive. It is diffi-
cult to re-plan the robot trajectory using nonlinear optimiza-
tion approaches with a high frequency online [4]. Encoding
the arm and hand as Dynamical Systems (DS) [7] is one
approach to catching tasks [5], [6], where kinematically
feasible trajectories of the robot arm and hand are collected
as demonstrations.

Alternatively, DRL is a different approach to learn ma-
nipulation skills [8], [9] without the dependence on human
demonstrations. In this work, we train the motion genera-
tion policies with DRL: the trained policies output control
commands based on current state observations. The state-
action control scheme enables the policies to generate highly
dynamic robot motion and react rapidly to environmental
variations and sensory uncertainties. Here we propose a
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systematic framework for catching flying objects, consisting
of five different modules, as numerated in Fig. 2: (i) an object
state predictor for estimating the flying object trajectory;
(ii) a catching pose quality network for choosing the best
catch configuration; (iii) a reaching policy for moving the
robot hand to the selected pre-catch pose; (iv) a grasping
policy for performing a soft catching motion to reduce the
contact impact between hand and object; and (v) a gating
network to coordinate the reaching and grasping policies.
Though the modules are designed for catching flying objects,
they can easily be deployed to other tasks with minor
modifications, e.g. grasping objects on a moving conveyor.
The contributions of our work are as follows:
(1) A catching pose quality network to evaluate and select

the catching poses, which considers both the quality of
the target object pose and the level of difficulty for the
hand to approach it.

(2) A gating network to synthesize both the robot hand and
arm motions, to seamlessly and smoothly coordinate the
reaching and soft catching of in-flight objects.

(3) An integrated framework with five learning-based mod-
ules to catch flying objects of various shapes and be
robust in presence of sensory noise and perturbations.

In the following sections, we first review the literature
related to robot catching in Section II. Our methodology
is elaborated in Section III, and our proposed system is
evaluated in Section IV. Finally, we summarize our work
and propose future research directions in Section V.

II. RELATED WORK

A. Object trajectory prediction

Accurate motion prediction of in-flight objects is crucial
for catching tasks. A ball is the most frequent target object in
robot catching tasks, because its trajectory is relatively easy
to predict. When the ball is small and has uniform mass
distribution, the flying trajectory can be approximated as a
parabola [10]. Apart from gravitational forces, aerodynamic
drag is the most significant factor that needs to be considered
in trajectory prediction. However, the air drag coefficient
typically requires experimental calibration and is related to
the object’s shape [4]. One mitigation strategy to the above
problem is the use of the Extended Kalman Filter (EKF),
which is a widely used estimator for the object’s state and
allows the consideration of air drag and other external factors
[2], [3]. Developing explicit models of the object dynamics
is another option for trajectory prediction [11]. However,
requirements on prior knowledge such as mass or moment
of inertia limit the generalization ability.

Estimating the dynamics model with machine learning
methods has achieved promising results [12], but the learned
models suffer from performance drop when generalizing to
novel objects due to limited data size. Learning-based models
are widely used to approximate nonlinear dynamics. In [1]
a neural network-based model and a differentiable Kalman
filter are trained to estimate acceleration of an uneven object
by observing the previous detected trajectory. In this work,
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Fig. 2. Integrated framework consisting of five neural network modules to
learn to catch flying objects.

we learn the object trajectory prediction using a recurrent
neural network (RNN) with access to a short time history of
the object trajectory.

B. Catching pose selection

When the object trajectory is predicted, a feasible catch-
ing pose intersecting the object trajectory and within the
workspace of the robot arm should be selected. Moreover,
the hand should be able to reach the selected target pose
before the object arrives. For catching spherical objects, a
common way to determine the interception pose is to find
the nearest intersection between the object’s flying trajectory
and the robot’s reachable space. The pose selection can
be formulated as an optimization problem with nonlinear
constraints [3], which can be solved by quadratic program-
ming. For objects without central symmetry, the robot hand
has to attain certain orientation before proceeding to catch.
In [5], researchers used a trained graspable space model
of the specific target object to predict the hand pose. The
aforementioned algorithms neglect the object motion when
considering the pre-catch pose of robot hand. We propose a
neural network based scoring model to evaluate the candidate
object poses by the control effort required for the robot to
move towards them from the current joint configuration, as
well as the object velocity direction relative to the hand.

C. Robot motion generation

Given a selected catching pose, to enable the robot
to intercept the flying object at a particular time with a
particular posture, in [5] the authors used time-invariant
dynamic systems to encode the robot’s motion. Learning
from demonstrations [13] is also possible, where the motion
dynamics can be modeled from the expert demonstrations,
e.g. kinesthetic teaching. However, the generalization ability
is limited by the scale and nature of the demonstration
set. DRL offers an alternative approach for learning robot



control [14]. Unlike aforementioned algorithms where the
time-variant robot motion is planned in advance, we propose
a DRL scheme, where the learned control action is generated
based on the current state observation to maximize expected
future reward. This state-action based control approach can
react to the environmental changes rapidly, which is crucial
for object catching tasks.

III. METHODS

Our proposed system consists of five distinct modules,
as illustrated in Fig. 2. The object state predictor estimates
the flying trajectory, and the catching pose quality network
evaluates the poses on the trajectory and selects the de-
sired object pose when the catching motion happens. These
two modules have strict demand of accuracy and hence
we model them as neural networks and train them with
supervised learning using large amount of synthetic data.
The remaining three modules control the robot and they are
trained with deep reinforcement learning, because the state-
action control manner is effective for the highly dynamic
tasks. The reaching policy network moves the robot hand to
the corresponding pre-catch pose and then grasping policy
network accomplishes the grasping motion with mitigated
impact forces. The gating network coordinates the reaching
and grasping policies by blending the output actions of both
policies at real time.

The first two modules work at 100Hz, whereas the last
three modules work at 50Hz. The modules are trained and
validated using PyBullet physics simulator [15]. Based on
the dependencies between the five modules, the order to
train is: (1st) object state prediction network and reaching
policy (separately); (2nd) catching pose quality network;
(3rd) grasping policy; (4th) gating network.

A. Object Trajectory Prediction

An accurate prediction of the future motion trajectory
is relevant to catching performance. Explicitly modeling
the nonlinear dynamics system is difficult, so a practical
approach is to estimate the object velocity and acceleration
with a trained neural network. The Long Short-Term Memory
(LSTM) network is widely used in processing and extracting
intrinsic information from sequential data [1], [16]. We use
an LSTM network which takes a sequence of past object
states with 𝑛 time-steps [𝑋𝑜

𝑡−𝑛+1 : 𝑋𝑜𝑡 ] as input, to predict
the object state at next time-step 𝑋𝑜

𝑡+1. The network has one
LSTM cell with 100 features in the hidden state, followed
by one fully connected hidden layer with 100 neurons.

The future object trajectory is then derived from the
predicted object state. The object state vector 𝑋𝑜 consists
of positions, orientations, linear/angular velocities and lin-
ear/angular accelerations, where the velocities and accelera-
tions are computed by numerical differential. To simulate air
resistance in a simple manner, linear damping is introduced
on the linear and angular velocity of the objects, which aero-
dynamically corresponds to a Stoke’s drag assumption. The
training dataset is gathered in simulation with simple objects
(see Section IV-A). Since the object trajectory prediction

model is trained separately to other modules, for real-world
experiments, we can replace the simulated training data with
real object flight trajectories and use a more complex neural
network structure, such as the one proposed in [1].

B. Catching Pose Quality Network

Given the current pose of robot hand, the success of a
catching attempt is highly dependent on the choice of the
catching timing, or equivalently, the choice of the object pose
when the grasping action is performed. The proposed catch-
ing pose quality network is used to evaluate the capability of
the robot hand at current pose 𝑃ℎ to successfully catch the
object at pose 𝑃𝑜. The network takes both current robot hand
pose and candidate object pose as input: [𝑝𝑜, 𝑞𝑜, 𝑝ℎ, 𝑞ℎ],
where 𝑝 denotes Cartesian position and 𝑞 denotes the orien-
tation quaternion, and outputs a scalar quality score which
quantifies the effectiveness of the hand to reach and grasp
the object. The network has 2 fully-connected hidden layers,
each with 100 neurons.

With the current hand pose, the trained network generates
the scores of all the object poses on the predicted flight
trajectory, and then the one with highest score will be
selected as the target object pose when the catching happens,
and the robot hand ought to reach the corresponding pre-
catch hand pose before the object arrives. To gather the
training data, we fixed the object at a random pose and the
robot is controlled by the trained reaching policy to reach
the pre-catch pose, as described in III-C. During the motion,
the pre-catch pose and the robot arm joint positions 𝐽 are
recorded. The computation of the score consists of two parts:
the required time and movements for the hand to reach the
pre-catch pose, and the effectiveness of the pre-catch pose
in aiding the catching of the incoming object. The score is
defined as:

𝑠 = 𝑒−∥𝐽𝑑−𝐽𝑛𝑜𝑤 ∥ · 𝑒−∥ 𝑝ℎ𝑑−𝑝𝑜∥ ·
(
1 − ®𝑢𝑛 ·

®𝑣
| |®𝑣 | |

)
, (1)

where 𝐽 denotes the vector of robot arm joint positions;
®𝑢𝑛 denotes the normal unit vector of the palm, pointing
outwards; 𝑝 denotes the position and ®𝑣 denotes the object
velocity vector. The subscript 𝑑 denotes the desired pre-
catch pose of the hand. The first term evaluates the changes
in the robot arm joint configuration during the reaching
motion, indicating the required time and efforts for moving
the hand from current pose to the desired pre-catch pose.
The second term evaluates the distance between the pre-
catch hand position 𝑝ℎ

𝑑
and the object position 𝑝𝑜. The third

term relates to the orientation of the palm when it contacts
the object. To increase the contact area during the catching
motion, the plane of the palm should be perpendicular to
the object’s moving direction. The constant value 1 is added
to this term, shifting the value range from [−1, 1] to [0, 2].
The second and third term evaluate the effectiveness of the
pre-catch hand pose in catching the moving object at the
target pose. The object pose in flying trajectory which is
most adequate for catching can be selected by the network.
However, if the object flying trajectory is either too far from
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Fig. 3. Illustration of the assignment of vectors and hand key-points for
the reward function.

the robot hand or in an inappropriate pose, the object pose
with highest score can be unfeasible for catching.

The catching pose quality network is trained in a super-
vised manner. The data gathering procedure consists of two
steps: Firstly, 𝑁 object flying trajectories 𝜏1:𝑁 with random
initial object poses and velocities are sampled and logged.
Then, for every trajectory, 𝑀 object poses 𝑃𝑜1:𝑀 with fixed
time interval are selected as the target object pose. 𝐾 random
hand poses 𝑃ℎ1:𝐾 within a certain range are also sampled and
logged. Secondly, given the object fixed at one selected target
pose 𝑃𝑜

𝑖
, the robot hand will reach it from the selected hand

pose 𝑃ℎ
𝑗
, controlled by the learned reaching policy. After a

fixed period of time, the corresponding score for the hand-
object pose tuple [𝑃𝑜

𝑖
, 𝑃ℎ

𝑗
] is computed and logged, and the

current robot hand pose is regarded as the desired pre-catch
pose. In the training data gathering procedure, 𝑁 ∗ 𝑀 ∗ 𝐾
data points are collected.

C. Reaching Policy Network

Given the target object pose selected by the catching
pose quality network, the reaching policy will determine a
corresponding pre-catch hand pose and control the robot to
reach it as soon as possible. The reaching policy is trained
with DRL, in a trail-and-error manner, where the robot
gradually updates the policy by gathering rewards through
interaction with the environment. The learning algorithm is
Proximal Policy Optimization (PPO), a widely used DRL
algorithm for continuous control tasks [17]. To train the
policy, the object is fixed at a random pose throughout the
episode. To stabilize the physics simulator and accelerate
learning, the contact check between the object and the robot
is disabled.

The state space is 𝑆𝑟 = {𝑝, 𝑞, ®𝑣𝑎}, where 𝑝 and 𝑞

denote the position and quaternion of the selected target
object pose relative to the robot hand, and ®𝑣𝑎 denotes the
unit vector showing the desired direction for the hand to
approach, pointing from the object to the outward, as shown
in Fig. 3. The action space 𝐴𝑟 consists of the linear velocity
and angular velocity of the robot hand. The robot arm
joint positions are computed by inverse kinematics given
the desired end-effector pose. When the robot is controlled
by the reaching policy, the finger joints maintain an open
configuration, prepared for catching the object.

The reward function of the reaching policy is the linear

Fig. 4. Objects used for training (red cylinders and spheres), and the
various household objects (right section) used to test the generalization of
the integrated catching system.

combination of three different terms:

𝑅𝑟 = − 1
𝑘

𝑘∑︁
𝑖=1

𝑝𝑘𝑖 − 𝑝𝑜 + (− ®𝑢𝑛 · ®𝑣𝑎) + | ®𝑢𝑥 · ®𝑣𝑥 |. (2)

The first term is the negative of mean distance between the
target object position 𝑝𝑜 and the hand key-points positions
𝑝𝑘𝑖 . As shown in red color in Fig. 3, the 𝑘 key-points are
equally distributed on the inner surface of the robot palm
and fingers. This term will reward the hand to approach
the object. In the second reward term, ®𝑢𝑛 denotes the unit
normal vector of the palm. ®𝑣𝑎 denotes the approaching vector
of the object, which is always orthogonal with the object’s
major axis. For the flying object, ®𝑣𝑎 is also coplanar with
the gravity vector and the object velocity vector. For small
or spherical objects without major axis, the ®𝑣𝑎 is the unit
linear velocity vector. This term will reward the hand to
increase the contact area by adjusting the hand orientation.
The third reward term is the absolute value of the dot product
between ®𝑢𝑥 and ®𝑣𝑥 where ®𝑢𝑥 denotes one of the major axis
of the hand, and ®𝑣𝑥 denotes the major axis of the cylindrical
object. This term rewards the hand to align with the object’s
major axis, similar to the way that humans grasp cylindrical
objects. The four aforementioned vectors are illustrated in
Fig. 3. We also add early termination criteria where the robot
arm approaches a singularity or the joints hit the position or
torque limits, aiming to learn safe robot motion. The reaching
policy network has 2 fully-connected hidden layers, each
with 256 neurons, and it is trained with 4 million time steps.

D. Grasping Policy Network

The grasping policy is also trained with PPO to perform
the final catching motion when the object is approaching.
The learning of the grasping policy requires the trained
three aforementioned modules. In every training episode, the
object is tossed from a random pose with a random velocity,
flying towards the robot (see Section IV-B for randomization
range). The future object trajectory is predicted at 100
Hz. Then the catching pose quality network selects the
target object pose, and the reaching policy moves the hand
towards the corresponding pre-catch pose. Once the object
is estimated to arrive at the selected target pose after time 𝑇 ,
the grasping policy takes over the robot control to interact
with the environment. We refer to 𝑇 as the preparation time
for the grasping policy. If 𝑇 is too long, the grasping policy
might take over the control too early, before the hand arrives
the pre-catch pose, and if 𝑇 is too short, the hand might not
be able to reach the best catching speed and fingers might
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Fig. 5. Decreasing errors of object pose prediction as time elapses. The
horizontal axis denotes the remaining time to the target, and the vertical
axis is the error between predicted object pose and the ground truth. Solid
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not be able to close in time. To increase the robustness of
grasping policy, the preparation time is randomized during
training: 𝑇 ∈ [0.05, 0.25]s. The seamless switch between
reaching and grasping policies is learned by gating network
as described in III-E.

The state space of the grasping policy 𝑆𝑔 consists of the
object pose relative to the hand, linear velocity of the object,
linear velocity of the hand and the joint positions of the
fingers. The action space of the grasping agent 𝐴𝑔 consists
of the linear, angular velocities of the hand, and the target
finger joint positions. The reward function used for training
the grasping policy is the sum of three different terms:

𝑅𝑔 = − 1
𝑘

𝑘∑︁
𝑖=1

𝑝𝑘𝑖 − 𝑝𝑜 + 𝑛𝑐
𝑘

+ 𝑟𝑝 . (3)

The first term of Eq. (3) is the same as the first term of
Eq. (2), both rewarding the hand to approach the object.
However, here we use the real-time object pose, while in
Eq. (2), we use the target object pose selected by the catching
pose quality network. In the second term, 𝑛𝑐 denotes the
number of the hand key-points that are in contact with the
object. This term rewards the hand to grasp the object with
larger contact area. The last term 𝑟𝑝 is a piece-wise function
defined as:

𝑟𝑝 =

{
𝑒−∥ 𝑝ℎ−𝑝𝑜∥ · ®𝑣ℎ · ®𝑣𝑜 𝑛𝑐 = 0
𝑒−∥ ®𝑣ℎ ∥ 𝑛𝑐 > 0

(4)

where ®𝑣ℎ and ®𝑣𝑜 denote the linear velocity of the hand and
object. When the hand has no contact with the object, 𝑟𝑝
promotes the hand to move in the same direction as the
object. This motion will reduce the impact when the object
contacts the hand. The term 𝑒−∥ 𝑝ℎ−𝑝𝑜∥ is a distance weight,
motivating the soft catch motion only when the object is
close enough. When the object is in contact with the hand,
𝑟𝑝 will reward the hand for staying still to eliminate any un-
desired arm motion when the object is grasped. The grasping
policy network has the same structure as the reaching policy
network, and is also trained with 4 million time steps.

E. Gating Network

The reaching policy and the grasping policy play different
roles in the catching task, and control the robot at different

Fig. 6. Illustration of how the reaching policy controls the robot to approach
the pre-catch pose, based on the pose and moving direction of the object.

stages. Instead of switching the control with hard-coded
criteria (e.g. the distance between hand and object), a gating
network [18] is trained with PPO to synthesise the control
commands generated from two policies. The state space of
the gating network is the union set of the state spaces of two
policies: 𝑆𝑟 ∪ 𝑆𝑔, and it outputs the action weight for the
grasping policy 𝑤𝑔 ∈ [0, 1], and the corresponding weight
for the reaching policy is 𝑤𝑟 = 1 − 𝑤𝑔. The resultant robot
action is blended from both policies: 𝑤𝑔𝑎𝑔 + 𝑤𝑟𝑎𝑟 , and the
reward function is also the weighted sum of the rewards of
both policies: 𝑤𝑟𝑅𝑟+𝑤𝑔𝑅𝑔. To maximize the reward which is
directly related to the robot action, the gating network ought
to smoothly switch between two policies at the right time.
With the trained all four aforementioned modules, the gating
network is trained in full catching scenarios. The network
has the same structure as the reaching and grasping policy
network, and also trained with 4 million time-steps.

IV. VALIDATION AND EVALUATION

In this section, we first evaluate the performance of each
learned module on their corresponding tasks. Then, the
integrated system is validated with catching tasks using
multiple novel testing objects. Though the modules are eval-
uated in simulation, we mitigate the sim-to-real gap during
the training. We introduce model-based air drag into the
environment and regulate the robot joint positions, velocities
and torques. We also add uncertainties to the object pose to
simulate vision sensing noises.

A. Validation of each module

Object state prediction network. To train the LSTM
network, 10,000 flying trajectories of the training objects (as
shown in Fig. 4) with random starting poses and velocities
are recorded. Trajectories are split as 90% for training and
10% for testing. The object poses are recorded at 100 Hz,
and the according velocities and accelerations are computed
by numerical differential. Fig. 5 demonstrates the prediction
performance of our LSTM model on the testing dataset.
It suggests that the learned model can provide reliable
prediction of the object trajectory for the other modules.

Reaching policy network. For an object fixed at a random
pose within the workspace of the robot, the learned reaching
policy is capable of moving the robot hand to the proper
pre-catch pose as soon as possible. As shown in Fig. 6, for
the cylindrical object, the policy can approach the object
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Fig. 8. Active reactions of buffering impact during catching. The robot
hand moves backward before and after the initial contact with the object
and finally holds the object still.

from the lateral direction, and align the robot hand with
the object’s major axis. For the spherical objects, or objects
without major axis, the policy can approach them from any
direction given by the approaching vector, as long as it is
reachable by the robot.

Catching pose quality network. Taking the target object
pose and current hand pose as input, the learned catching
pose quality network outputs a score, assessing the effective-
ness of the robot to catch the object in the specific condition.
As shown in Fig. 7, by evaluating every object pose on the
predicted trajectory, we can select the one with highest score,
as the target for the reaching policy to reach. Empirically,
selecting the object pose with higher score as the catching
target is more likely to success, because it is easier for the
robot to approach the according adequate pre-catch pose.

Grasping policy network. When the hand is close to
the pre-catch pose, as the object approaches, the trained
grasping policy performs the coordinated motion of the arm
and fingers to catch the object with a high speed. Fig. 8
demonstrates the snapshots of one soft catching motion, and
Fig. 9 shows the corresponding velocities of hand and object,
from which the motion can be divided into three phases: pre-
catch phase, catching phase and the holding phase. In the pre-
catch phase, the hand starts to move along with the object’s
moving direction, maximizing its translational velocity to
reduce the contact impact with the object. In the catching
phase, after the first contact between hand and object, the
hand retains movement for a short period of time and then
starts to decelerate. The grasping motion of the fingers is
mainly completed in the catching phase. The soft catching
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catching trials, generated by the gating network, and the corresponding
hand-object distance. The switch finishes within 0.15 seconds on average.

motion provides more time for the fingers to close, and
alleviates the bouncing of the object. In the holding phase,
after the grasp is secured, the hand velocities converge to
zero and the robot stays still. The reward term in Eq. (4)
penalizes unnecessary motion after the object is grasped.

Gating Network. The learned gating network synthesizes
a blend of actions from both control policies by outputting
a linear mixture weight. As shown in Fig. 10, the reaching
policy controls the robot at the beginning. The switch starts
when there is still some distance between hand and object,
leaving enough time for the hand to accelerate to a proper
velocity for soft catch. On average, the switch lasts for 0.15
seconds and then the grasping policy takes control for the
rest of the time. To evaluate the effectiveness of gating
network, we compare the performance of the integrated
catching system with and without gating network. The hand-
coded switch is: if the object is to arrive at the selected target
pose after time 𝑇 , the grasping policy controls the robot.
Otherwise the reaching policy controls the robot. Based on
the results demonstrated in the first three lines of Table I, the
learned gating network outperforms the manually designed
switch criteria on catching both training and testing objects.

B. Validation of the integrated system

The integrated system is evaluated by catching various
objects in different scenarios. In the catching trials, the
robot arm is fixed at the origin and starting from the same
configuration. Considering the reachability and the max joint
velocities of the robot arm, we randomize the object initial
position between [2.75 ± 0.25,−0.50 ± 0.10, 0.80 ± 0.10]m,
orientation in Euler angle between [0 ± 𝜋

4 , 0 ± 𝜋, 0 ± 𝜋
4 ]rad,

linear velocity between [−4.5 ± 0.5, 0, 3.0 ± 0.5]m/s, and
angular velocity between [0 ± 2, 0 ± 10, 0]rad/s.



TABLE I. Success rates of catching various objects in different scenarios, each stemming from a total of 100 trials.

Training Objects†[%] Testing Objects†[%]
avg. cld0 cld1 cld2 ball ybot. bcan. rcan. bana. wbot. wood. chip. mug cube org. peac. pear lemn. app.

Integrated system 80 75 73 72 97 81 74 78 66 71 81 72 83 90 85 86 82 86 85
𝑇∗ ∈ [0.05, 0.20] s 69 67 73 75 75 62 68 57 45 76 68 66 64 76 80 72 78 70 78
𝑇∗ = 0.15 s 72 60 72 66 90 63 61 62 69 78 64 64 58 73 84 89 80 79 86
𝜎noise = [5cm, 5◦ ] 64 60 63 63 73 48 56 52 38 54 59 56 64 77 75 72 77 77 84
𝜎noise = [15cm, 15◦ ] 37 29 40 42 38 31 35 29 23 39 31 29 27 50 47 43 44 43 48
Random perturbation 62 41 60 61 73 55 60 56 50 66 38 51 52 73 74 77 76 75 81

* Without using the gating network. 𝑇 denotes the preparation time for grasping policy, as described in Section III-D.
† Object list: cylinder0, cylinder1, cylinder2, ball, yellow bottle, blue can, red can, banana, white bottle, wood block, chips can, mug,
rubik’s cube, orange, peach, pear, lemon, apple.
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Fig. 11. Validation of the integrated system by catching four new testing objects: a banana, an orange, a Rubik’s cube, and a wood block. Initial poses
and velocities of objects are randomized within a range.

Catching Training Objects. We first evaluate the catching
performance of the integrated system using the four training
objects. From Table I, the integrated system performs better
in catching the sphere than catching the cylinders with
different diameters. For objects with major axes, such as
cylinders, it is more challenging to get to the proper pre-
catch pose in time, especially when the objects are spinning
at high speed. In contrast, for spherical objects, the robot
hand merely needs to move to the nearest pre-catch poses
which interact with the flying trajectories, and point the palm
against the objects’ moving directions, without considering
the orientation of the objects.

Catching Testing Objects. We then perform tests using
objects never used during the training. As shown in Fig. 4, a
set of household objects with various shapes and sizes is used
to evaluate the generalization ability of our integrated system.
Object models are from YCB dataset [19]. For simplicity, the
objects are rigid with uniformly distributed mass and have

the same weight 𝑚 = 0.3 kg. Fig. 11 shows the snapshots
of catching four testing objects with different shapes. The
robot can reach the pre-catch pose and implement the soft
catch motion within 1 second. As demonstrated in Table I,
the success rates on catching training and testing objects
are comparable, indicating that the learned modules and
the integrated system have adequate generalization ability
to various sizes and shapes of target objects.

Robustness to noise and perturbations. Furthermore, we
test the robustness of our system in the presence of noise
in object pose observation, and by introducing a random
perturbation to the object during flight. Additional measure-
ment noise is added to the object position and orientation
(Euler angles), as random three-dimensional vectors. The
norms of the vectors are sampled from zero-mean Gaussian
distributions with standard deviations 𝜎noise. To replicate the
signal process of noise removal that introduces latency, we
process the noisy object pose observations by a low-pass
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Fig. 12. Representative examples of failure modes: (a) collision before
catching, (b) slipping from the grasp or (c) imbalanced contact points.

second-order Butterworth filter with a cutoff frequency of
20 Hz, before feed it into the trained modules. Compared
with noise-free state observation, the catching performance
with noisy observations drops by 16% and 43% with noise
sets 𝜎noise = [5cm, 5◦] and 𝜎noise = [15cm, 15◦] respectively,
indicating the integrated system is robust to sensory noise
to some extent. These findings provide a guideline for
the requirements of the state-estimation system in future
implementations on the real robot.

To evaluate the system’s reaction to sudden changes, a
velocity perturbation is applied to the object at a direction
of [1, 0, 1] and a magnitude ranging from 0.5 m/s to 1.5 m/s,
after the object flies for 0.1 s to 0.2 s. As demonstrated in
Fig. 1 and Table I, in most cases the robot can react quickly
to the perturbations and catches the object at the new pose.

C. Failure modes

The most common cause for catching failures is the colli-
sion before grasping, e.g. between the object and fingertips or
the side of the palm. The smallest misalignment of the hand’s
pre-catch pose can lead to undesired contacts, and therefore
this type of failure is more frequent when catching large
rotating cylindrical objects, as shown in Fig. 12a. Another
cause for catching failures is that the object slips from the
hand, especially when the object is cylindrical, and its linear
velocity is parallel to its major axis, as shown in Fig. 12b.
For small objects, balanced contact points are important for
grasp quality. As shown in Fig. 12c, the thumb does not
contact the object, leading the object to be pushed towards
the wrist, and falling out of the hand eventually.

V. CONCLUSION

In this work, we proposed a modular learning framework
for catching objects in flight. We presented each module and
its integration within the system. We employed supervised
learning and deep reinforcement learning approaches to train
these modules. Extensive tests were performed for each mod-
ule and the integrated system, including tests with household
objects that are never used during training. Furthermore,
we studied the robustness and generalization capabilities
by performing tests with noisy observations and random
perturbations to the objects in flight.

One potential direction is to reduce the number of mod-
ules, e.g. merging the grasping network and gating network.
Sim-to-real transfer remains to be completed as the future
work, and our proposed framework needs to be expanded
to enable sample-efficient learning from real-world trials.

Currently, only the position and orientation of the object are
passed as observations. As part of our future work, we aim
to improve catching performance by including the approxi-
mate shape of the object into the observation space. Non-
prehensile catching is another interesting and challenging
task. For large objects that cannot be grasped by one hand,
more dynamic manoeuvres are required by the robot arm to
stop and capture them. Developing a unified controller for
both prehensile and non-prehensile robot catching can be a
promising extension.
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