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Significance

Human life expectancy has 
increased markedly during the 
last decades thanks to advances 
in medicine, hygiene, and 
nutrition, among other factors. 
However, this demographic 
change brings an increased 
prevalence of age- related 
diseases, such as cancer, 
cardiovascular and 
neurodegenerative diseases. 
Aging is malleable in animal 
models, and pharmacological 
interventions can reduce the 
incidence of age- related 
pathologies. Here, we show that 
trametinib, an anticancer agent, 
extends lifespan and improves 
gut health in female fruit flies. 
This effect is mediated by the 
inhibition of RNA polymerase III, 
a conserved enzyme that 
synthetizes short, non- coding 
RNAs such as tRNAs (transfer 
RNAs). Our findings advance the 
understanding of the anti- aging 
properties of trametinib in 
animals and confirm its potential 
as a geroprotective intervention.
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Pharmacological therapies are promising interventions to slow down aging and reduce 
multimorbidity in the elderly. Studies in animal models are the first step toward transla-
tion of candidate molecules into human therapies, as they aim to elucidate the molecular 
pathways, cellular mechanisms, and tissue pathologies involved in the anti- aging effects. 
Trametinib, an allosteric inhibitor of MEK within the Ras/MAPK (Ras/Mitogen- Activated 
Protein Kinase) pathway and currently used as an anti- cancer treatment, emerged as a 
geroprotector candidate because it extended lifespan in the fruit fly Drosophila melano-
gaster. Here, we confirm that trametinib consistently and robustly extends female lifespan, 
and reduces intestinal stem cell (ISC) proliferation, tumor formation, tissue dysplasia, and 
barrier disruption in guts in aged flies. In contrast, pro- longevity effects of trametinib are 
weak and inconsistent in males, and it does not influence gut homeostasis. Inhibition 
of the Ras/MAPK pathway specifically in ISCs is sufficient to partially recapitulate the 
effects of trametinib. Moreover, in ISCs, trametinib decreases the activity of the RNA 
polymerase III (Pol III), a conserved enzyme synthesizing transfer RNAs and other short, 
non- coding RNAs, and whose inhibition also extends lifespan and reduces gut pathology. 
Finally, we show that the pro- longevity effect of trametinib in ISCs is partially mediated 
by Maf1, a repressor of Pol III, suggesting a life- limiting Ras/MAPK- Maf1- Pol III axis 
in these cells. The mechanism of action described in this work paves the way for further 
studies on the anti- aging effects of trametinib in mammals and shows its potential for 
clinical application in humans.

Trametinib | aging | Drosophila | gut pathology | Pol III

Average life expectancy in humans has doubled during the last 100 y, currently surpassing 83 y  
in wealthy countries such as Switzerland, Australia, and Japan (1). However, healthy lifespan, 
or “healthspan,” is not increasing at the same rate. This has resulted in an increasing prevalence 
of age- related diseases, such as cardiovascular dysfunctions, cancers, and neurodegenerative 
disorders, associated with an escalating economic burden and pressure on healthcare services 
(2, 3). Some pharmacological agents already used in the clinic, such as the mammalian target 
of rapamycin (mTOR)- inhibitor rapamycin, can counteract aging- related phenotypes and 
diseases in animal models. Repurposing of these and other drugs as potential geroprotective 
treatments is hence being proposed to compress the period of morbidity in older people (4). 
Evidence from animal models, including the tissues and pathologies improved by these drugs, 
the molecular pathways involved, and sexually dimorphic responses and side- effects are needed 
to accelerate the transition of these treatments to human clinical trials.

Trametinib is an anti- cancer drug currently used for the treatment of metastatic melanoma, 
anaplastic thyroid cancer, and non- small cell lung cancer and has been described as a potential 
anti- aging drug based on data from the fruit fly Drosophila melanogaster (5, 6). It is an allosteric 
inhibitor of MEK, the Mitogen- Activated Protein Kinase (MAPK) of the Extracellular-  
Signal- Regulated Kinase (ERK), part of the Ras/MAPK pathway, a highly conserved signaling 
cascade of kinases controlling cell survival, proliferation, growth, and differentiation (7, 8). 
The Ras/MAPK pathway can be activated by different receptor tyrosine kinases present at 
the plasma membrane of the cell, including insulin receptor and epidermal growth factor 
receptor. This results in the activation of Ras small nucleotide guanosine triphosphate hydro-
lases (Ras GTPases) and the downstream phosphorylation cascade composed of Raf, MEK, 
and ERK kinases (9–11). Once phosphorylated, ERK can modify a wide range of cytoplasmic 
and cytoskeletal protein substrates, as well as several nuclear transcription factors, and hence 
activate cell division, differentiation, survival, and growth (12).

Ras/MAPK pathway hyperactivation leads to uncontrolled cell proliferation and is one 
of the best- described mechanisms leading to tumor formation (13). On the other hand, 
direct inhibition of Ras orthologs and other components of the Ras/MAPK pathway 
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extends lifespan in Drosophila and the budding yeast Saccharomyces 
cerevisiae, indirect inhibition of HRas extends lifespan in wild- type 
and tumor- free mice, and variants of HRAS1 in combination with 
APOE and LASS1 variants are associated with human longevity 
and healthy aging (5, 14–17). Furthermore, pharmacological inhi-
bition of the Ras/MAPK pathway with trametinib not only 
extends lifespan in Drosophila but also reduces cellular senescence 
in normal human dermal fibroblasts in vitro (18). Thus, emerging 
evidence suggests that Ras/MAPK pathway plays an essential role 
in the aging process and makes trametinib an interesting candidate 
geroprotector. However, little is known about the molecular and 
cellular processes that mediate this effect.

Recently, RNA polymerase III (Pol III) has been described as 
a potential target for anti- aging treatments, as its inhibition in  
S. cerevisiae, the worm Caenorhabditis elegans, and Drosophila is 
sufficient to extend lifespan (19). Pol III is an evolutionarily con-
served complex composed of 17 subunits and controls the tran-
scription of different short untranslated RNAs, including transfer 
RNAs (tRNAs), which play an essential role in the incorporation 
of the correct amino acid during translation (20, 21). Pol III has 
been shown to act downstream of TORC1, but whether its activity 
mediates the effects of other signaling pathways on aging remains 
unaddressed (19).

Here, we have used Drosophila to study the geroprotective effects 
of trametinib, in both females and males, and to analyze the molecular 
mechanisms at work. We show that trametinib consistently extends 
lifespan and ameliorates aging- related gut pathology in females, while 
in males it has minor effects on lifespan and no detectable impact on 
gut health. Further, we show that in females, trametinib reduces Pol 
III activity in intestinal stem cells (ISCs) and that the full life- extending 
effect of trametinib requires Pol III inhibitor Maf 1 in ISCs. These 
findings show that the inhibitory effect of trametinib on Pol III activ-
ity in ISCs mediates, at least partially, its pro- longevity effect and the 
reduction of gut pathology in aging females.

Results

Trametinib Robustly Extends Lifespan in Females But Not Males. 
Drugs and the pathways they affect often have sexually dimorphic 
effects on lifespan (22–24). Pharmacological inhibition of the Ras/
MAPK pathway with trametinib extends lifespan in Drosophila 
females (5). To examine the relative effects of trametinib on male 
and female flies, we performed seven independent experimental 
measurements of the response of lifespan to the drug. At a 
concentration of 15.6 µM, previously described as optimal for 

maximizing the pro- longevity effect (5), trametinib significantly 
extended lifespan in all female trials (Fig. 1). In males, 15.6 µM 
trametinib significantly extended lifespan only in two of the 
seven trials, and mixed effects Cox Proportional Hazard (CPH) 
analysis showed significant interaction between the sex and the 
effect of trametinib, demonstrating that the drug extended lifespan 
significantly more in females than in males (mixed effects CPH: 
trametinib P < 10−15***; sex P < 10−15***; interaction P < 10−15***) 
(Fig. 1). Males eat approximately half the amount eaten by females 
(25, 26), and the lack of response in males fed 15.6 µM trametinib 
could therefore have been attributable to lower drug uptake. 
However, doubling the dose to 31.2 µM extended lifespan only 
in the trials where the 15.6 µM dose also did so (SI Appendix, 
Fig. S1), suggesting that the much weaker effect of the drug in 
males was not attributable to lower drug uptake.

To confirm that trametinib reduced Ras/MAPK signaling in both 
sexes, despite the lower food intake of males, we fed female and male 
flies with 15.6 µM of the drug and measured the levels of activated, 
phosphorylated ERK (pERK), relative to total ERK, in dissected 
midguts by western blot. Midguts from trametinib- treated female 
flies showed significantly lower levels of pERK/ERK compared to 
control female guts, confirming that trametinib effectively decreased 
Ras/MAPK signaling in this sex (Fig. 1B). In males, total ERK levels 
were much lower, consistent with the lower ISC proliferation in their 
guts (27), but trametinib nonetheless reduced the levels of pERK/
ERK (Fig. 1B).

Altogether, these results show that trametinib consistently 
extends lifespan in Drosophila females, while it has a variable and 
much smaller effect in males.

Trametinib Ameliorates Aging- Associated Gut Pathology in 
Females. In Drosophila, similar sexual dimorphisms in response 
to other geroprotective drugs, such as rapamycin, have been 
attributed to an effect on the gut, where age- related pathology 
and functional decline occur to a much greater extent in females 
(23, 27). Indeed, Ras/MAPK signaling plays a central role in 
maintaining gut homeostasis during adulthood under both basal 
conditions and during stress- induced intestinal regeneration (28–
30). For these reasons, we analyzed the effect of trametinib on gut 
health in aged females and males.

In old female flies, age- related ISC hyperproliferation and sub-
sequent accumulation of undifferentiated and mis- differentiated 
cells transform the usual single- layer epithelium, leading to epi-
thelial dysplasia (27, 31). To analyze a potential effect of tra-
metinib on this pathology, we quantified the number of mitotic 
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Fig. 1. Trametinib extends lifespan in females but only sometimes and to a much lesser extent in males. (A) Survival curves showing trametinib significantly 
extends female lifespan (P = 2.06E- 12***; n = 150; log- rank test) and does not extend male lifespan (P = 0.36; n = 170; log- rank test), representative of the seven 
trials. Trametinib feeding significantly extended female lifespan in all seven trials, while it did not extend male lifespan in five out of seven trials (see SI Appendix, 
Fig. S1 for representation of all the trials performed). (B) Trametinib feeding significantly decreased pERK levels in the gut compared to Dimethyl sulfoxide (DMSO)- 
fed flies (control), both in females (Welch’s t test, P < 0.0001***) and males (Welch’s t test, P = 0.039*). Western blot (Left) and quantification of the bands (Right) 
showing the ratio pERK/ERK after normalization with Tubulin. Bar charts show mean ± SEM, n = 9 to 10 biological replicates per condition with 5 guts per replicate.D
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cells in the midgut of old female flies and observed a significant 
reduction of ISC proliferation under trametinib treatment 
(Fig. 2A). Trametinib also significantly decreased the proportion 
of dysplasia in the anterior region of the midgut, and the incidence 
of severe pathology (intestines carrying large tumors and signifi-
cant epithelial disruption) in old females expressing a fluorescent 
epithelial marker (Resille- GFP) (Fig. 2B).

Female age- related gut pathology is also characterized by a 
decrease in the stability of the intestinal barrier, frequently tested 
by feeding flies with a non- absorbable blue dye that can spread 
all over the fly body when the integrity of the intestinal barrier is 
compromised, leading to blue “smurf” flies (32). Trametinib sig-
nificantly reduced the number of female flies with leaky guts at 
60 d of age compared to control flies of the same age (Fig. 2C), 
showing an improved maintenance of the gut barrier in aged 
females. Trametinib thus ameliorated aging- associated gut pathol-
ogy in female flies, reducing ISC hyperproliferation, proportion 
of epithelial dysplasia, and disruption of the gut barrier.

The incidence of gut pathology is usually much less severe in 
old males, which show lower levels of age- related increases in ISC 
division, proportion of dysplasia, tumor formation, and barrier 
disruption compared to old females (27). While the extent of ISC 
proliferation was indeed lower in old control males compared to 
females, trametinib significantly further reduced ISC proliferation 
in old males (Fig. 2A). Despite this, we could not detect an effect 
of trametinib treatment on the extent of dysplasia, the incidence 
of severe pathology, or gut leakiness, all of which were substantially 
lower in control males than in control females (Fig. 2 B and C). 
These results show that trametinib treatment, while having an 
effect on ISC proliferation, did not significantly affect the overall 
lower aging- associated gut pathology in males.

Altogether, our data show a sexually dimorphic effect of tra-
metinib on age- related pathology and decline of gut function, 
which correlates with the effects observed on lifespan. The effect 
of trametinib on the female gut may, therefore, in part explain its 
effects on longevity. For this reason, our subsequent investigation 
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Fig. 2. Trametinib decreases aging- associated gut pathology in females. Effect of trametinib on ISC proliferation, gut pathology, and barrier function in females 
and males. (A) Trametinib reduced ISC proliferation in midguts of 35- d- old females and males, measured by staining with a PH3+ antibody to detect mitotic cells 
in whole midguts. Bar charts show quantification of number of PH3+ cells/gut, mean ± SEM. Guts per condition in females: DMSO n = 29, trametinib n = 26;  
P < 0.001***, Mann–Whitney test. Guts per condition in males: DMSO n = 8; trametinib n = 10; P = 0.022*, Mann–Whitney test. ISC proliferation is significantly 
lower in males than in females (two- way ANOVA: sex, P = 0.0031**; trametinib, P = 0.0009***; interaction, P = 0.087). (B) Trametinib treatment reduced intestinal 
dysplasia and epithelial pathology in Resille- GFP females, but not in males. Length of dysplasia quantified from luminal sections of approximately 800 µm of the 
R2 region from DMSO and trametinib- treated intestines. Bar charts show percentage of dysplastic regions (mean ± SEM). Guts imaged and used for quantification 
in females: DMSO n = 10, trametinib n = 10; P = 0.0162*, t test with Welch’s correction. Guts imaged and used for quantification in males: DMSO n = 8, trametinib, 
n = 8; P = 0.22, t test with Welch’s correction. Percentage of dysplasia is significantly lower in males than in females (two- way ANOVA: sex, P = 0.0002***; 
trametinib, P = 0.0089**; interaction, P = 0.29). Pathology scored and binned into categories: I = no pathology; II = sporadic small tumors; III = epithelial wounds 
and small tumors; IV = large tumors, severely disrupted epithelium. (C) Treatment with trametinib ameliorated intestinal barrier function decline in 60- d- old 
females, measured by quantification of “smurf” flies. Males are not significantly affected. Data from 2 independent experiments. Number of female flies scored: 
DMSO n = 257, trametinib n = 352; P = <0.0001***, Fisher’s exact test. Number of males scored: DMSO n = 138, trametinib n = 201; P = 0.999, Fisher’s exact test.D
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focused on deciphering the molecular mechanisms whereby tra-
metinib ameliorates gut aging in females.

Downregulation of Ras/MAPK Signaling in ISCs Is Sufficient to 
Extend Lifespan and Improve Gut Pathology. We next tested 
the role of the gut on the pro- longevity effect of trametinib. 
Downregulation of the Ras/MAPK pathway in the gut by 
knocking down MEK, using an inducible, gut- specific driver 
(19, 33) and a MEK RNA interference (RNAi) (TIGS > 
MEKRNAi), extended female lifespan (Fig. 3A), supporting the 
hypothesis that trametinib acted in the gut to extend female 
lifespan.

In young flies, Ras/MAPK signaling is mainly active in ISCs, 
as shown by immunostaining guts with a pERK antibody (28, 29, 
34) (SI Appendix, Fig. S2A). To test the role of ISCs on the 
lifespan- extending effect of trametinib, we decreased Ras/MAPK 
signaling in this cell type during adulthood using the ISC- specific 
gene- switch driver 5961GS (31, 35). Knockdown of MEK 
(5961GS > MEKRNAi), ERK (5961GS > ERKRNAi), or ectopic 
expression of the Raf inhibitor PEBP1 (5961GS > PEBP1) all 
increased fly lifespan (Fig. 3B and SI Appendix, Fig. S3), showing 
that a decrease in Ras/MAPK signaling in ISCs is sufficient to 
extend lifespan and supporting the hypothesis that trametinib acts 
directly in ISCs. Moreover, ISC- specific knockdown of MEK 
reduced ISC proliferation and gut permeability in old flies (Fig. 3 
C and D), confirming that Ras/MAPK signaling in ISCs is causal 
in age- related hyper- proliferation and deterioration of the gut 
barrier.

Altogether, these data strongly suggest that the effect of tra-
metinib on Ras/MAPK signaling in ISCs is, at least partially, 
responsible for its effect on gut health and survival of older female 
flies.

Trametinib Decreases Pol III Activity in ISCs to Extend Lifespan. 
Previous work has shown that, in the Drosophila fat body 
(functionally equivalent to adipose tissue and liver in mammals), 
the effects of Ras/MAPK inhibition on lifespan are mediated by 
activation of an E- twenty six (ETS) transcriptional repressor, Aop 
(5). However, Aop activity in the ISCs is not sufficient to promote 
longevity (5, 36). RNA Pol III has also been described as one of 
the effectors of the Ras/MAPK pathway that controls growth and 
metabolism in Drosophila (37), and Pol III inhibition in ISCs 
extends fly lifespan and ameliorates aging- associated gut pathology 
(19). Thus, we hypothesized that Pol III could be the effector of the 
lifespan- extending effect of trametinib in ISCs. To test this, we first 
analyzed the effect of trametinib on Pol III activity, by measuring 
the expression levels of several precursor tRNAs (pre- tRNAs) that 
are products of Pol III, namely pre- tRNAHis, pre- tRNAIle, and pre- 
tRNALeu, as these are indicative of in vivo Pol III activity (19). Feeding 
flies with trametinib significantly decreased the expression levels of 
these pre- tRNAs in whole flies (Fig. 4A), confirming that trametinib 
reduced Pol III activity.

Heterozygous female mutants in the Pol III- specific subunit D, 
Polr3DΔ/+, live longer than the corresponding controls (19). To 
further test the role of Pol III in the pro- longevity effect of tra-
metinib, we combined the two interventions and measured their 
combined effect on lifespan. As previously described, Polr3DΔ/+ 
mutants and +/+ trametinib- fed flies lived longer than the +/+ 
DMSO- fed controls (Fig. 4B and SI Appendix, Fig. S4A). 
Interestingly, the combination of the two interventions in Polr3DΔ/+ 
mutants fed with trametinib did not show a fully additive effect, as 
trametinib extended lifespan less in the presence of the mutant, and 
CPH analysis showed significant interaction between Polr3DΔ 
mutation and trametinib (CPH: Polr3DΔ/+, P = 8.09E- 16***; tra-
metinib, P = 1.76E- 11***; interaction, P = 0.000799***) (Fig. 4B 
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Fig. 3. Downregulation of Ras/MAPK in ISCs extends lifespan and reduces age- dependent gut pathology. (A) Knockdown of MEK specifically in the gut (TIGS 
> MEKRNAi) after RNAi induction with RU486 significantly extended female lifespan (n = 150 flies per condition, P = 0.034*, log- rank test). (B) Knockdown of MEK 
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test). (C) Knockdown of MEK in ISCs reduced ISC proliferation in midguts from 37- d- old females. Bar charts show the quantification of PH3+ cells per midgut, 
mean ± SEM. n = 28 (−RU) and 29 (+RU) guts. P = 0.0001***, Mann–Whitney test. (D) Knockdown of MEK in ISCs reduced intestinal barrier disruption in 64- d- old 
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and SI Appendix, Fig. S4A). These results indicate that the two 
treatments act, at least partially, in the same longevity pathway.

We next analyzed the effect of trametinib on Pol III activity in 
guts and ISCs, since at least part of the pro- longevity action of 

trametinib was directly mediated by this cell type. Trametinib- treated 
flies showed lower expression levels of pre- tRNAHis, pre- tRNAIle, 
and pre- tRNALeu in whole guts from wild- type flies (Fig. 4C) and 
in FACS (Fluorescence- Activated Cell Sorting)- isolated ISCs from 
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Fig. 4. Trametinib reduces Pol III activity and interacts with Pol III inhibition. (A) Trametinib feeding reduced levels of pre- tRNAHis, pre- tRNAIle, and pre- tRNALeu, 
measured by qPCR in whole female flies compared to DMSO (control) flies. Bar charts show mean ± SEM of relative expression levels normalized with GAPDH 
expression. n = 4 biological replicates per condition with 5 flies per replicate (P = 0.0099** for effect of trametinib, Linear mixed- effects model). (B) Survival 
curves showed significant lifespan extension in heterozygous female mutants of Polr3D, Polr3DΔ/+, and wild- type +/+ trametinib- fed flies, compared to control 
+/+ flies (P = 2.27E- 12 and P = 3.01E- 38, respectively, log- rank test), but their pro- longevity effects were not additive when combined together (CPH: Polr3DΔ/+, 
P = 8.09E- 16***; trametinib, P = 1.76E- 11***; interaction, P = 0.000799***). (C) Trametinib reduced levels of pre- tRNAHis, pre- tRNAIle, and pre- tRNALeu in dissected 
midguts, measured by qPCR. Bar charts show mean ± SEM of relative expression levels normalized with GAPDH expression. n = 7 biological replicates per 
condition with 10 guts per replicate (P = 0.0269*, Linear mixed- effects model). (D) Trametinib reduced levels of pre- tRNAHis, pre- tRNAIle, and pre- tRNALeu, measured 
by qPCR in ISCs isolated by FACS sorting from esg- gal4 > GFP flies. Bar charts show mean ± SEM of relative expression levels normalized with GAPDH expression. 
n = 8 biological replicates per condition with 15 guts per replicate (P = 0.0003***, Linear mixed- effects model). (E) Induction of Polr3D RNAi in ISCs with RU486 
(5961- GS > Polr3DRNAi +RU/DMSO) extended lifespan (P = 0.00046***, log- rank test), but this effect was not additive with the pro- longevity effect of trametinib 
(CPH: RU486, P = 0.00051***; trametinib, P = 4.96E- 08***; interaction, P = 0.044*). (F) Knockdown of Maf1 in 5961- GS > Maf1RNAi flies inducing Maf1 RNAi with 
RU486 had no effect on female lifespan (5961- GS > Maf1RNAi - RU/DMSO vs. 5961- GS > Maf1RNAi +RU/DMSO, P = 0.48, log- rank test), but significantly reduced pro- 
survival effect of trametinib (5961- GS > Maf1RNAi - RU/trametinib vs. 5961- GS > Maf1RNAi +RU/trametinib, P = 1.97E- 05***, log- rank test) (CPH: RU486, P = 0.462; 
trametinib, P < 2E- 16***; interaction, P = 0.007**).
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flies expressing GFP in ISCs (esg- gal4 > GFP) (Fig. 4D), indicating 
that trametinib inhibited Pol III specifically in the intestine and 
its resident stem cells. At the same time, reduction of Pol III 
activity specifically in the ISCs, achieved by knocking down 
Polr3D (5961- GS>Polr3DRNAi), which extends lifespan (19), did 
not show an additive pro- longevity effect when combined with 
trametinib (CPH: RU486, P = 0.00051***; trametinib, P = 
4.96E- 08***; interaction, P = 0.044*) (Fig. 4E), suggesting that 
trametinib and ISC- specific Pol III inhibition act in part through 
the same longevity pathway. Importantly, pERK levels were not 
affected in the guts of the Pol III heterozygous mutant, supporting 
the hypothesis that Ras/MAPK signaling controls Pol III activity 
and not the other way around (SI Appendix, Fig. S2B). Altogether, 
these data strongly suggest that trametinib extends lifespan in part 
by reducing Pol III activity in the ISCs.

Maf1 Mediates the Effect of Trametinib in ISCs. Ras/MAPK 
signaling promotes Pol III activity by phosphorylation and 
consequent nuclear exclusion of the Pol III repressor Maf1 
both in Drosophila cell culture and in  vivo (37). We therefore 
hypothesized that Maf1 could be mediating the longevity effect 
of trametinib in ISCs. To test this, we knocked down Maf1 in 
ISCs (5961- GS > Maf1RNAi), which alone did not affect lifespan 
(Fig. 4F). However, when fed trametinib, flies expressing Maf1 
dsRNA showed a lesser extension of lifespan than did trametinib- 
fed controls (−RU/trametinib vs. +RU/trametinib, P = 1.97E- 05, 
log- rank test), and CPH analysis confirmed significant interaction 
between the two treatments (CPH: RU486, P = 0.462; trametinib, 
P < 2E- 16***; interaction, P = 0.007**). This suggests that Maf1 
is required for the full effects of trametinib in ISCs. Interestingly, 
the knockdown of Maf1 using the ISC- active gal4 driver esg- gal4 
(esg- gal4 > Maf1RNAi) not only reduced the pro- longevity effect 
of trametinib but induced a synthetic detrimental effect on the 
flies (SI Appendix, Fig. S4). Taken together, these results show that 
Maf1, and the subsequent inhibition of Pol III activity, is required 
in ISCs for trametinib to extend lifespan.

Discussion

Trametinib is a Food and Drug Administration (FDA)- approved 
anticancer drug with the potential to be repurposed as a geropro-
tector (5). We have now shown that it reduces age- related ISC 
hyperproliferation in both sexes, decreases epithelial dysplasia and 
tumor formation, and maintains gut integrity in females. The Ras/
MAPK pathway controls cell proliferation in multiple tissues 
across organisms (10, 13). In Drosophila guts, it plays a central 
role in preserving gut homeostasis, as it is necessary for maintain-
ing ISC proliferation both in unchallenged conditions and under 
stress in young flies (28, 29, 34), where reduced activity of Ras/
MAPK signaling leads to reduced ISC proliferation, while activa-
tion triggers high proliferation levels (28, 34, 38). Our results 
extend previous studies in young flies and show that Ras/MAPK 
signaling is necessary for age- related hyperproliferation leading to 
dysplasia and tumor formation in old flies, contributing to organ-
ismal aging.

Trametinib treatment or genetic inhibition of Ras/MAPK path-
way in ISCs also reduced the disruption of the gut barrier in old 
flies. The deterioration of the intestinal barrier with age is a con-
served pathology among different animal models including worms, 
fish, mice, and monkeys, and some markers of intestinal disruption 
have been observed in elderly humans (39–44). In Drosophila, loss 
of intestinal barrier stability correlates with gut dysbiosis, including 
increased bacteria in the gut, changes in microbiota composition 
and systemic inflammation (32, 45, 46). Similarly, microbial spread 

and systemic inflammation following intestinal dysfunction have 
been observed in aged mice and vervet monkeys (41, 47). Thus, 
impaired intestinal function is closely related to health decline and 
disease in aged organisms, supporting further studies to confirm the 
effect of trametinib on intestinal homeostasis in higher animals.

The increase in ISC proliferation in old flies is significantly 
lower in males than in females, leading to a lower rate of dysplasia 
and tumor formation and contributing to healthier guts at old 
ages with a better maintenance of barrier function (23, 27). 
Although trametinib significantly reduced ISC proliferation in 
males, we did not detect a significant effect of the treatment on 
intestinal dysplasia, tumor formation, or barrier function. 
Moreover, the effect of trametinib on male lifespan, although 
significant in a minority of trials, was much weaker. Increasing 
the concentration of the drug in the food and measurements of 
Ras/MAPK pathway activity in the gut indicated that the much 
lower effects of trametinib on gut pathology and lifespan in males 
could not be solely attributed to their lowered food consumption 
relative to females (25, 26). The more likely explanation, and one 
consistent with previous observations, is that trametinib increases 
survival in part by reducing gut pathology, which is limiting for 
lifespan in females but not in males. In those trials where male 
lifespan was extended, it is possible that some micro- environmental 
condition (e.g., microbes) induced some level of pathology in 
males that was rescued by the drug. Loss of intestinal homeostasis 
and barrier dysfunction is common in both sexes in mammals, 
contributing to the onset of aging- related inflammatory and met-
abolic disorders. Thus, the effect of trametinib on gut health 
should be investigated in mammalian models, as it could be ben-
eficial in both sexes.

Pol III, an RNA polymerase essential for protein translation 
and cell growth, limits lifespan in yeast, worms, and flies, and 
reducing its activity specifically in ISCs extends lifespan and ame-
liorates gut pathology in old female flies (19). The Ras/MAPK 
pathway controls growth and proliferation promoting Pol III 
activity and tRNA synthesis through phosphorylation of the Pol 
III repressor Maf1 in the fruit fly (37). This inhibitory mechanism 
is conserved in mammals to promote protein synthesis, cell pro-
liferation, and tissue growth (48). Here, we have shown that tra-
metinib decreases Pol III activity in ISCs, and our results suggest 
that Pol III acts downstream of the Ras/MAPK in ISCs to limit 
survival. Moreover, we have found that the life- extending effect 
of trametinib partially depends on Maf1 expression in ISCs. Thus, 
we propose a model in which the inhibition of MEK in ISCs 
decreases pERK signaling, allowing unphosphorylated Maf1 to 
bind and inhibit Pol III in the nucleus, preventing its transcrip-
tional activity (Fig. 5). This contributes to extending lifespan and 
ameliorating the age- associated gut pathology.

Several studies have shown that mTORC1 directly phosphoryl-
ates and inactivates Maf1 to stimulate Pol III activity and tRNA 
synthesis (49, 50). Moreover, Pol III exerts a role on the pro- longevity 
effect of rapamycin, mTORC1 inhibitor, in Drosophila (19). This 
means Ras/MAPK signaling is not the only pathway to regulate 
Maf1 and tRNA synthesis in ISCs, and rapamycin and trametinib 
probably share this mechanism of action to extend lifespan. However, 
the fact that the pro- longevity effects of rapamycin and trametinib 
are almost completely additive suggests that other mechanisms of 
their action exist and that they may be complementary (6).

As well as consistently extending lifespan in Drosophila females, 
trametinib reduces translational errors in vitro in S2R+ cells, 
decreases insulin resistance in obese wild type and genetically 
obese mice, diminishes the proportion of senescent cells in senes-
cent human dermal fibroblast cultures, and increases autophagy 
in pancreatic ductal adenocarcinoma cells, among others (18, D
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51–54). Furthermore, its anti- inflammatory effects have been 
widely described in different diseases including cancers, cystic 
fibrosis, acute lung injury, or traumatic brain injury (55–58). The 
effect of trametinib on Pol III activity in ISCs and gut pathology 
described in this work adds another piece of evidence to its 
anti- aging effect, paving the way for further analysis in higher 
animal models while presenting trametinib as a solid candidate 
for future geroprotective treatments. Meanwhile, further exper-
iments will be necessary to fully understand the impact of tra-
metinib in all tissues and pathologies, as well as the molecular 
mechanisms responsible. This knowledge would be greatly ben-
eficial to advance toward the potential repurposing of trametinib 
as a new anti- aging therapy.

Materials and Methods

Fly Husbandry and Lifespan. Drosophila stocks were maintained and experi-
ments conducted at 25 °C on a 12 h:12 h light:dark cycle at 60% humidity, with 
SYA food containing 10% (w/v) brewer’s yeast, 5% (w/v) sucrose, and 1.5% (w/v) 

agar, with propionic acid and Nipagin as preservatives. For lifespans, the indicated 
number of flies was sorted into experimental vials at a density of 15 flies per vial. 
Flies were transferred to fresh vials every 2 to 3 d, and deaths/censors were scored 
during transferral. Further details on fly husbandry, lifespan experiments, and 
stocks used in this work are detailed in SI Appendix.

Analysis of Gut Pathology. Fly guts were dissected in cold Phosphate Buffered 
Saline (PBS) and immediately fixed in 4% formaldehyde for 15 min. Guts were 
mounted in mounting medium (Vectashield) containing DAPI and then imaged 
immediately with a Zeiss (UK) LSM 700 confocal laser scanning microscope. 
Details on gut pathology measurements and smurf assay are described in 
SI Appendix.

qRT- PCR Analysis. Total RNA was isolated from either whole adult flies, whole 
guts, or ISCs using standard TRIZOL (Invitrogen) protocols. Total RNA was 
treated with Turbo DNase (Invitrogen) and converted to cDNA using random 
hexamers (ThermoFisher) and Superscript II reverse transcriptase (Invitrogen). 
Quantitative RT- PCR was performed using Power SYBR Green PCR Master Mix 
(ABI) in the Quant Studio 6 Flex system, and relative quantities of transcripts 
were determined using the relative standard curve method normalized to 
GAPDH.

Western Blots, Immunofluorescence, and FACS. These procedures and the 
antibodies used are described in SI Appendix.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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Fig. 5. The Ras/MAPK- Maf1- Pol III axis mediates the life- extending effect of 
trametinib in ISCs. Graphical model representing the mechanism of action 
of trametinib in ISCs. Trametinib inhibits MEK, which reduces pERK levels 
and the subsequent phosphorylation of Maf1. Increased presence of Maf1 
in the nucleus inhibits Pol III transcriptional activity, reducing tRNA synthesis. 
This results in a decreased proportion of dysplasia, tumor formation, and 
barrier dysfunction in old flies and contributes to the pro- longevity effect of 
trametinib in females.
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