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Abstract

Deep learning (DL) is gaining popularity as a parameter estimation method for quantita-
tive MRI. A range of competing implementations have been proposed, relying on either
supervised or self-supervised learning. Self-supervised approaches, sometimes referred to
as unsupervised, have been loosely based on auto-encoders, whereas supervised methods
have, to date, been trained on groundtruth labels. These two learning paradigms have
been shown to have distinct strengths. Notably, self-supervised approaches offer lower-bias
parameter estimates than their supervised alternatives. This result is counterintuitive –
incorporating prior knowledge with supervised labels should, in theory, lead to improved
accuracy. In this work, we show that this apparent limitation of supervised approaches
stems from the näıve choice of groundtruth training labels. By using intentionally-non-
groundtruth training labels, pre-computed via independent maximum likelihood estima-
tion, we show that the low-bias parameter estimation previously associated with self-
supervised methods can be replicated – and improved on – within a supervised learning
framework. This approach sets the stage for a single, unifying, deep learning parame-
ter estimation framework, based on supervised learning, where trade-offs between bias
and variance are made by careful adjustment of training label. Our code is available
at https://github.com/seancepstein/training_labels.
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1. Introduction

Magnetic resonance imaging (MRI) is widely regarded as the premier clinical imaging modal-
ity, in large part due to the unparalleled range of contrast mechanisms available to it.
Conventional MRI exploits this contrast in a purely qualitative manner: images provide
only relative information, such that voxel intensities are only meaningful in the context
of their neighbours. In contrast, quantitative MRI (qMRI) provides quantitative images,
where voxel intensities are directly, and meaningfully, related to underlying tissue prop-
erties. Compared to conventional MRI, this approach promises increased reproducibility,
interpretability, and tissue insight, at the cost of time-intensive image acquisition and post-
processing (Cercignani et al., 2018).
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One of the biggest time and resource bottlenecks in post-processing is parameter esti-
mation, whereby a signal model is fit to the intensity variation across multiple MR images
acquired at different experimental settings. Each voxel requires its own independent model
fit: solving for the signal model parameters that best described the single voxel’s data. The
computational cost of this curve-fitting process, which scales with both voxel number and
model complexity, has become a bottleneck for modern qMRI experiments.

Accelerating curve fittings with deep learning (DL) was first proposed more than 30 years
ago (Bishop and Roach, 1992), but has only recently gained popularity within the qMRI
community (Golkov et al., 2016; Bertleff et al., 2017; Liu et al., 2020; Barbieri et al., 2020;
Palombo et al., 2020). Just like traditional methods, DL relies on model fitting, but the
model being fit is a fundamentally different one. Instead of fitting a qMRI signal model to
a single voxel of interest (i.e. curve fitting), DL methods fit (“train”) a deep neural network
(DNN) model to an ensemble of training voxels. This model maps a single voxel’s signal
to its corresponding qMRI parameters; the unknowns in its fitting are network weights,
rather than qMRI parameters. Once this DNN model has been fit to (“trained on”) the
training data, parameter estimation is reduced to simply applying it to new unseen data,
one voxel at a time. This approach offers two broad advantages over traditional fitting:
(1) computational cost is amortised: despite being more computationally expensive than
one-voxel signal model fitting, DL training only needs to be performed once, for any number
of voxels; once trained, networks provide near-instantaneous parameter estimates on new
data, and (2) computational cost is front-loaded: model training can be performed away
from the clinic, before patient data is acquired.

To date, most DL qMRI fitting methods have been implemented within a supervised
learning framework (Golkov et al., 2016; Bertleff et al., 2017; Yoon et al., 2018; Liu et al.,
2020; Palombo et al., 2020; Aliotta et al., 2021; Yu et al., 2021; Gyori et al., 2022). This
approach trains DNNs to predict groundtruth qMRI model parameters from noisy qMRI
signals. When compared to conventional fitting, this approach has been found to produce
high bias, low variance parameter estimates (Grussu et al., 2021; Gyori et al., 2022).

An alternative class of DL methods has also been proposed, sometimes referred to as un-
supervised learning (Barbieri et al., 2020; Mpt et al., 2021), but more accurately described as
self-supervised (introduction). In this framework, training labels are not explicitly provided,
but are instead extracted by the network from its training input. This label generation is
designed such that the network learns to predict signal model parameters corresponding to
noise-free signals that most-closely approximate noisy inputs. This self-supervised approach
has been found to produce similar results to conventional non-DL fitting, i.e. lower bias and
higher variance than its groundtruth-labelled supervised alternative (Barbieri et al., 2020;
Grussu et al., 2021).

From an information theoretic standpoint, the comparison between supervised and self-
supervised performance raises an obvious unanswered question. How can it be that su-
pervised methods, which provide strictly more information during training than their self-
supervised counterparts, produce more biased parameter estimates?

In this work we answer this question by showing that this apparent limitation of super-
vised approaches stems purely from the selection of groundtruth training labels. By using
intentionally-non-groundtruth training labels, pre-computed via independent maximum like-
lihood estimation, we show that the low-bias parameter estimation previously associated
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with self-supervised methods can be replicated – and improved on – within a supervised
learning framework.

This approach sets the stage for a single, unifying, deep learning parameter estimation
framework, based on supervised learning, where trade-offs between bias and variance can
be made, on an application-specific basis, by careful adjustment of training label.

The rest of the paper is organized as follows: Section 2 describes existing DL parameter
estimation approaches, our proposed method, and how they relate to each other; Section 3
describes the evaluation of our method and its comparison to the state of the art; Section 4
contains our findings; and Section 5 summarizes the contribution and discusses future work.

2. Theory

Quantitative MRI extracts biomarkers y from MR data x, producing quantitative spatial
maps. We here describe existing voxelwise approaches to this problem (conventional fitting
and DL alternatives) as well as our proposed novel method.

2.1 Conventional iterative fitting

This method, which relies on maximum likelihood estimation (MLE), extracts biomarkers
by performing a voxelwise model fit every time new data is acquired. An appropriate signal
model M is required, parameterised by ny parameters of interest; for each combination of
y, the probability of observing the acquired data x is known as the likelihood L of those
parameters:

L(x, z|y, ϵ) =
nz∏
i=1

P (xi, zi|y, ϵ) (1)

for nz acquisitions from sampling scheme z and noise model ϵ. The model parameters ŷ
which maximise the likelihood L are assumed to best represent the tissue contained within
the voxel of interest:

ŷ = argmax
y

L(x, z|y, ϵ) (2)

Under a Gaussian noise model, this likelihood maximization reduces to the commonly-used
non-linear least squares (NLLS):

ŷ = argmin
y

nz∑
i=1

∥M(zi|y)− xi∥2 (3)

under the assumption of signal model M associated with groundtruth biomarkers ygt, sam-
pling scheme z, and noise ϵ:

x = M(z|ygt) + ϵ (4)

Each of these optimisations has ny unknowns, which are solved for independently across
different voxels; the computational cost scales linearly with the number of voxels nv.
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Developments in qMRI acquisition and analysis have led to increased (i) image spatial
resolution (i.e. greater nv) and (ii) model complexity (i.e. greater ny), such that conven-
tional MLE fitting has become increasingly computationally expensive.

2.2 Existing deep learning methods

Deep learning approaches address this by reframing nv independent problems into a single
global model fit: learning the function F that maps any x to its corresponding ygt:

ygt = F(x) (5)

Deep neural networks aim to approximate this function by composing a large but finite
number of building-block functions, parametrised by np network parameters p (“weights”):

ŷ = F̂(x|p̂) (6)

In this context, model fitting (“training”), is performed over network parameters p
and involves maximising F̂ ’s mean performance over a large set of training examples; the
trained network is defined by the best-fit parameters p̂. This fitting problem, whilst more
computationally expensive to solve than any individual voxel (nv = 1) MLE, is only tackled
once; once F̂ is learnt, it can be applied at negligible cost to new, unseen, data. This
promise of rapid, zero-cost parameter estimation has led to the development of two broad
classes of DL-based parameter estimation methods.

SupervisedGT methods approximate F by minimising the difference between a large num-
ber of noise-free training labels (groundtruth parameter values) and corresponding network
outputs (noise-free parameter estimates); training loss is calculated in the parameter space
Y :

SupervisedGT training loss =

ntrain∑
i=1

∥W · (ŷi − ygt,i)∥2 (7)

where ntrain is the number of training samples and W is a tunable weight matrix which
accounts for magnitude differences in signal model parameters. W is generally a diagonal
matrix, with each diagonal element Wii corresponding to the relative weighting of qMRI
parameter yi; setting W as the identity matrix equally weights all parameters in the training
loss.

These methods produce higher bias, lower variance parameter estimation than conven-
tional MLE fitting (Grussu et al., 2021; Gyori et al., 2022) and, by adjusting W , can be
tailored to selectively boost estimation performance on a subset of the parameter space Y .

In contrast, Self-supervised methods compute training loss within the signal space X,
by minimising the difference between network inputs (noisy signals) and a filtered represen-
tation of network outputs (noise-free signal estimates):

Self-supervised training loss =

ntrain∑
i=1

∥M(z|ŷi)− xi∥2 (8)

These methods, which perform similarly to conventional MLE fitting, produce lower bias,
higher variance parameter estimation than SupervisedGT(Grussu et al., 2021; Barbieri et al.,
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2020). Unlike SupervisedGT, the relative loss weighting of different signal model parameters
is dictated by sampling scheme z.

Under Gaussian noise conditions, single-voxel Self-supervised loss (i.e. minimising the
sum of squared differences between a noisy signal and its noise-free signal estimate) is
indistinguishable from the corresponding objective function in conventional fitting.

In contrast, under the Rician noise conditions encountered in MRI acquisition(Gudbjartsson
and Patz, 1995), Self-supervised training loss no longer matches conventional fitting. In-
deed, the sum of squared errors between noisy signals and noise-free estimates is not an
accurate difference metric in the presence of Rician noise.

To summarise: existing supervised DL techniques are associated by high estimation
bias, low variance, and end-user flexibility; in contrast, self-supervised methods have lower
bias, higher variance, but are limited by the fact their loss is calculated in the signal space
X.

2.3 Proposed deep learning method

In light of this, we propose SupervisedMLE, a novel parameter estimation method which
combines the advantages of SupervisedGT and Self-supervised methods. This method is
contrasted to existing techniques in Fig 1.

This method mimics Self-supervised ’s low-bias performance by learning a regularised
form of conventional MLE, but does so in the parameter space Y , within a supervised
learning framework. This addresses the limitations of Self-supervised : Rician noise mod-
elling is incorporated, and parameter loss weighting is not limited by sampling scheme z.

Our method learns F̂ by training on noisy signals paired with conventional MLE labels.
These labels act as proxies for the groundtruth parameters we wish to estimate:

SupervisedMLE training loss =

ntrain∑
i=1

∥W · (ŷi − yMLE,i)∥2 (9)

where yMLE,i is the maximum likelihood estimate associated with the ith training sam-
ple.

Our method offers one final advantage over Self-supervised approaches. In addition to
the parameter estimation improvements relating to noise model correction and parame-
ter loss weighting, it naturally interfaces with SupervisedGT. In so doing, it presents the
opportunity to combine low-bias and low-variance methods into a single, tunable hybrid
approach, by a simple weighted sum of each method’s loss function:

Hybrid training loss = α · SupervisedMLE loss + (1− α) · SupervisedGT loss (10)

3. Experimental evaluation

Three classes of network were investigated and compared: SupervisedGT, Self-supervised,
and SupervisedMLE, as described in Fig 1. Additionally, to control for differences in loss
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Figure 1: Comparison between our proposed method (SupervisedMLE) and existing super-
vised and self-supervised approaches.

function weighting between supervised and unsupervised methods, Self-supervised was con-
verted into supervised form by training SupervisedMLE on Gaussian-model based MLE la-
bels. All models are summarised in Table 1.

Table 1: Summary of evaluated parameter estimation networks. Y denotes parameter
space; X denotes signal space.

Network name Loss space Label Label noise model

SupervisedGT Y Groundtruth N/A

Self-supervised X N/A N/A

SupervisedMLE, Rician Y MLE Rician

SupervisedMLE, Gaussian Y MLE Gaussian

All networks were trained and tested on the same datasets; differences in performance
can be attributed solely to differences in loss function formulation and training label selec-
tion.
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3.1 Signal model

The intravoxel incoherent motion (IVIM) model (Le Bihan et al., 1986) was investigated
as an exemplar 4-parameter non-linear qMRI model which poses a non-trivial model fitting
problem and is well-represented in the DL qMRI literature (Bertleff et al., 2017; Barbieri
et al., 2020; Mpt et al., 2021; Mastropietro et al., 2022; Rozowski et al., 2022):

S(b|S0, f,Dslow, Dfast) = S0(fe
−b(Dfast+Dslow) + (1− f)e−bDslow) (11)

where S corresponds to the signal model M , b corresponds to the sampling scheme z,
and [S0, f,Dslow, Dfast] corresponds to the parameter-vector y. In physical terms, IVIM
is a two-compartment diffusion model, wherein signal decay arises from both molecular
self-diffusion (described by Dslow) and perfusion-induced ‘pseudo-diffusion’ (described by
Dfast). In Equation 11, S0 is an intensity normalisation factor and f denotes the signal
fraction corresponding to the perfusing compartment.

3.2 Network architecture

Network architecture was harmonised across all network variants, and represents a common
choice in the existing qMRI literature (Barbieri et al., 2020): 3 fully connected hidden layers,
each with a number of nodes matching the number of signal samples z (i.e. b-values), and
an output layer with a number of nodes matching the number of model parameters. Wider
(150 nodes per layer) and deeper (10 hidden layers) networks were investigated and found
to have equivalent performance, during both training and testing, at the cost of increased
training time. All networks were implemented in Pytorch 1.9.0 with exponential linear unit
activation functions (Clevert et al., 2015); ELU performance is similar to ReLU, but is more
robust to poor network weight initialisation.

3.3 Training data

Training datasets were generated at SNR = [15, 30] to investigate parameter estimation
performance at both high and low noise levels. At each SNR, 100,000 noise-free signals
were generated from uniform IVIM parameter distributions (S0 ∈ [0.8, 1.2], f ∈ [0.1, 0.5],
Dslow ∈ [0.4, 3.0]10−3mm2/s, Dfast ∈ [10, 150]10−3mm2/s, representing realistic tissue
values), sampling them with a real-world acquisition protocol (Zhao et al., 2015) (b =
[0, 10, 20, 30, 50, 80, 100, 200, 400, 800] s/mm2), and adding Rician noise. Training data gen-
erative parameters were drawn from uniform, rather than in-vivo, parameter distributions to
minimise bias in network parameter estimation(Gyori et al., 2022). Data were split 80/20 be-
tween training and validation. MLE labels were calculated using a bound-constrained non-
linear fitting algorithm, implemented with scipy.optimize.minimize, using either Rician log-
likelihood (for SupervisedMLE, Rician) or sum of squared errors (for SupervisedMLE, Gaussian)
as fitting objective function. This algorithm was initialised with groundtruth values (i.e.
generative y) to improve fitting robustness and avoid local minima. Training/validation
samples associated with ‘poor’ MLE labels (defined as lying on the boundary of the bound-
constrained estimation space) were held out during training and ignored during validation.
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3.4 Network training

Network training was performed using an Adam optimizer (learning rate = 0.001, betas =
(0.9, 0.999), weight decay=0) as follows: SupervisedGT (at SNR 30) was trained 16 times on
the same data, each time initialising with different network weights, to improve robustness
to local minima during training. From this set of trained networks, a single SupervisedGT

network was selected on the basis of validation loss. The trained weights of this selected
network were subsequently used to initialise all other networks; in this way, any differences in
network performance could be solely attributed to differences in training label selection and
training loss formulation. In the case of supervised loss formulations, the inter-parameter
weight vector W was chosen as the inverse of each parameter’s mean value over the training
set, to obtain equal loss weighting across all four IVIM parameters.

3.5 Testing data

Networks were tested on both synthetic and real qMRI data. The synthetic approach
offers (i) known parameter groundtruths to assess estimation against, (ii) arbitrarily large
datasets, and (iii) tunable data distributions, but is based on possibly simplified qMRI
signals. This approach was used to assess parameter estimation performance in a controlled,
rigorous manner; real data was subsequently used to validate the trends observed in silico.

Synthetic data was generated with sampling, parameter distributions, and noise levels
matching those used in network training. The IVIM parameter space in which the networks
were trained was uniformly sub-divided 10 times in each dimension, to analyse estimation
performance as a function of parameter value. At each point in the parameter space,
500 corresponding noisy signals were generated and used to test network performance,
accounting for variation under noise repetition.

Real data was acquired from the pelvis of a healthy volunteer, who gave informed con-
sent, on a wide-bore 3.0T clinical system (Ingenia, Philips, Amsterdam, Netherlands), 5
slices, 224 x 224 matrix, voxel size = 1.56 x 1.56 x 7mm, TE = 76ms, TR = 516ms, scan
time = 44s per 10 b-values listed in subsection 3.3. For the purposes of assessing parameter
estimation methods, we obtained gold standard voxelwise IVIM parameter estimates from a
supersampled dataset (16-fold repetition of the above acquisition, within a single scanning
session, generating 160 b-values, total scan time = 11m44s). Conventional MLE was per-
formed on this supersampled data to produce best-guess “groundtruth” parameters. During
testing, the supersampled dataset was split into 16 distinct 10 b-value acquisitions, each
corresponding to a single realistic clinical acquisition. All images were visually confirmed
to be free from motion artefacts. The mismatch in parameter distributions between this
in-vivo data (highly non-uniform) and the previously-described synthetic data (uniform by
construction) limited the scope for validating our in-silico results. To address this, a fi-
nal synthetic testing dataset was generated from the in-vivo MLE-derived “groundtruth”
parameters, and was used for direct comparison between real and simulated data.

3.6 Evaluation metrics

Parameter estimation performance was evaluated using 3 key metrics: (i) mean bias with
respect to groundtruth, (ii) mean standard deviation under noise repetition, and (iii) root
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mean squared error (RMSE) with respect to groundtruth. RMSE is the most commonly
used metric to evaluate estimation performance (Barbieri et al., 2020; Bertleff et al., 2017),
but is limited in its ability to disentangle accuracy and precision; to this end, mean bias
and standard deviation were used as more specific measures of network performance.

It is important to note that all methods were assessed with respect to groundtruth
qMRI parameters, even those trained on MLE labels. For these methods, the training and
validation loss (MLE-based) differed from the reported testing loss (groundtruth-based).

4. Results & discussion

This section summarises our main findings and discusses the advantages offered by the
parameter estimation method we propose.

4.1 Comparison of parameter estimation methods

The relative performance of all previously-discussed parameter estimation methods is sum-
marised in Figures 2 and 3. These figures show the bias, variance (represented by its square
root: standard deviation), and RMSE of parameter estimates with respect to groundtruth
values, reported for each model parameter as a function of its value over the synthetic
test dataset; each plotted point represents an average over 500 noise instantiations and a
marginalisation over all non-visualised parameters. Marginalisation was required for visu-
alisation of a 4-dimensional parameter space, but was confirmed to be representative of the
entire, non-marginalised space, as discussed in §4.5.

In keeping with previously reported results, we show a bias/variance trade-off between
different parameter estimation methods. Conventional MLE fitting is provided as a reference
(plotted in black). Approaches which, on a theoretical level, approximate conventional MLE
(Self-supervised and SupervisedMLE, plotted in red), are generally associated with low bias,
high variance, and high RMSE, whereas groundtruth-labelled supervised methods (plotted
in blue) exhibit lower variance and RMSE at the cost of increased bias.

Increases in bias, if consistent across parameter space Y , do not necessarily reduce sen-
sitivity to differences in underlying tissue properties. However, we show that SupervisedGT

is associated with bias that varies significantly as a function of groundtruth parameter val-
ues. This results in a reduction in information content, visualised as the gradient of the bias
plots (top row) in Fig 2. The more negative the gradient, the more parameter estimates are
concentrated in the centre of the parameter estimation space X̂, and the lower the ability
of the method to distinguish differences in tissue properties. This information loss can be
seen in Fig 4, which compares SupervisedGT to conventional MLE fitting, and shows the
compression in X̂ over the groundtruth parameter-space X.

4.2 Validation against clinical data

The above trends, found in simulation, were also observed in real-world data. Fig 5 shows
the bias, variance, and RMSE of parameter estimates with respect to “groundtruth” values
(obtained from the supersampled dataset described in §3.5). The x axes of these plots cor-
respond to these reference values. To aid visualisation, 10 uniform bins were constructed
along each parameter dimension, into which clinical voxels were assigned based on their
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Figure 2: Parameter estimation performance at low SNR (15) as a function of groundtruth
parameter Y . Performance summarised by bias & RMSE with respect to
groundtruth and standard deviation with respect to noise repetition. Conven-
tional MLE fitting is provided as a non-DNN reference standard. For the sake of
visualisation, each plotted point represents marginalisation over all non-specified
Y dimensions.

“groundtruth” parameter values. Fig 5 plots the mean bias, standard deviation, and RMSE
associated with each bin as a function of the bin’s central value, together with the distri-
bution of voxels across the 10 bins.

By calculating the variance of the 16 b = 0 images, the SNR of this clinical dataset was
found to be ∼15; Fig 2 is therefore the relevant point of comparison. It can be readily seen
that the trends observed in simulated data, described in §4.1, are replicated for f < 0.40,
Dslow < 1.5, and the entire range of Dfast, namely the regions of parameter-space which
are well-represented in the real-world data. Fig 6 confirms that divergence outside of these
ranges is due to under-representation in the in vivo test data; the apparent divergences can
be replicated in-silico by matching real-world parameter distributions.

Fig 7 contains exemplar parameter maps from the clinical test data, and shows the
real-world implications of the trends summarised in Figures 2 and 5: SupervisedGT ’s low-
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Figure 3: Parameter estimation performance, visualised as in Figure 2, but for high SNR
(30) data.

variance, low-RMSE parameter estimation results in artificially smooth IVIM maps biased
towards mean parameter values.

4.3 Advantages offered by our method

Our proposed method occupies the low-bias side of the bias-variance trade-off discussed
in §3.5, and offers four broad advantages over the competing method in this space (Self-
supervised): (i) flexibility in choosing inter-parameter loss weightingW , (ii) incorporation of
non-Gaussian (e.g. Rician) noise models, (iii) compatibility with complex, non-differentiable
signal models M , and (iv) ability to interface with low-variance methods, to produce a
hybrid approach tunable to the needs of the task at hand. These advantages are analysed
in turn.

4.3.1 Choice of inter-parameter loss weighting W

By computing loss in parameter-space Y , our method has total flexibility in adjusting the
relative contribution of different y in the training loss function. In contrast, since Self-
supervised calculates training loss in X, the relative weighting depends on the acquisition
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Figure 4: Comparison between SupervisedGT and reference conventional MLE fitting, ex-
pressed in terms of estimation bias and information compression at low SNR
(15). Arrows represent the mean mapping from Y to Ŷ , averaged over noise, as a
function of parameter space Y . For the sake of visualisation, each plotted point
represents marginalisation over all non-specified Y dimensions.

protocol z. Fig 8 compares our method - weighted so as to not discriminate between different
model parameters - with variants designed to overweight single parameters by a factor of
106. The potential advantages offered by this selective weighting are seen in the estimation
Dfast, where this approach leads to a small increase in both precision and accuracy. This
parameter-specific weighting is not accessible within a Self-supervised framework.

In light of the differences arising from inter-parameter loss weighting, for subsequent
analysis we use SupervisedMLE, Gaussian as a proxy for Self-supervised ; both methods encode
the same regularised MLE fitting, but differ in their inter-parameter weighting.

4.3.2 Incorporation of Rician noise modelling

By pre-computing MLE labels using conventional parameter estimation methods, we are
able to incorporate accurate Rician noise modelling. Comparison between SupervisedMLE, Rician

and SupervisedMLE, Gaussian shows the effect of the choice of noise model; these differences
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Figure 5: In vivo parameter estimation performance of networks trained on low SNR (15)
synthetic data, as a function of supersampling-derived reference parameter val-
ues. The first three rows summarise performance by showing bias & RMSE with
respect to reference value and standard deviation with respect to noise repeti-
tion, marginalised over all non-specified Y dimensions. The bottom row shows
the distribution of reference parameter values across the parameter range being
visualised.

are most pronounced at low SNR (Fig 2) and high Dslow, when the Gaussian approximation
of Rician noise is known to break down. In this regime, our method gives less biased, more
informative Dslow estimates, replicating conventional MLE performance at a fraction of the
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Figure 6: Parameter estimation performance of networks trained on low SNR (15) synthetic
data, tested on a synthetic dataset matching the distribution of in vivo reference
parameter values. The first three rows summarise performance by showing bias &
RMSE with respect to groundtruth value and standard deviation with respect to
noise repetition, marginalised over all non-specified Y dimensions. The bottom
row shows the distribution of groundtruth parameter values across the parameter
range, which matches the in vivo dataset by construction.

computational cost. At high Dslow, our method has a flatter, more information-rich, Dslow

bias curve than all other DL methods. This information loss is further visualised in Fig 9,
which shows the compression in Dslow estimates X̂ over the groundtruth parameter-space
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Figure 7: Parameter estimation performance of networks on real-world test data, visualised
as spatial maps. Groundtruth maps are taken as the maximum likelihood param-
eter estimates associated with the complete 160 b-value dataset, whereas network
predictions are obtained from a single 10 b-value subsample.

X. As expected, this compression is most apparent at high values of Dslow, when the signal
is more likely to approach the Rician noise floor.

4.3.3 Compatibility with complex signal models

An additional advantage of computing training loss in parameter-space Y is that DNN
networks are signal model agnostic: network training does not require explicit calculation
of M . This approach is advantageous when working with complex signal models, as made
clear by comparison with Self-supervised methods. In contrast with our proposed approach,
Self-supervised methods embed M between network output and training loss (see Fig 1);
this poses two practical limitations.

The first relates to efficient implementation of mini-batch loss, which requires a vec-
torised representation (and calculation) of predicted signals. This may pose a non-trivial
challenge in the case of complex signal models. The second limitation relates to how train-
ing loss is minimised: network parameters p are updated by computing partial derivatives
of the training loss. This process requires the loss to be expressed in a differentiable form;
embedding M in the loss formulation limits Self-supervised methods to signal models that
can be expressed in an explicitly differentiable form.
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Figure 8: Comparison between SupervisedMLE, Rician, as described above, and variants
which differ in their inter-parameter loss weighting W , at low SNR (15). Each
column compares SupervisedMLE, Rician to a different network variant, uniquely
trained to overweight the single relevant signal model parameter. For the sake of
visualisation, each plotted point represents marginalisation over all non-specified
Y dimensions.

Our method sidesteps both limitations by not requiring explicit calculation of M during
training, and is therefore compatible with a wider range of complex qMRI signal models.

4.3.4 Tunable network approach

As discussed above, we show a clear bias/variance trade-off between different parameter
estimation methods. The optimal choice of method depends on the task at hand (Epstein
et al., 2021), and may not lie at either extreme of this trade-off. Therefore, it would be
advantageous to be able to combine low-bias and low-variance methods into a single, hybrid
approach, with performance tunable by the relative contribution of each constituent method.
Our proposed method, which interfaces naturally with SupervisedGT , offers exactly that.
An example of this approach is shown in Fig 10: training loss has been weighted equally
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Figure 9: Comparison of the information content captured by SupervisedMLE methods, as
a function of the noise model used in computing MLE labels, at low SNR (15).
Arrows represent the mean mapping from Y to Ŷ , averaged over noise, as a
function of parameter space Y . For the sake of visualisation, each plotted point
represents marginalisation over all non-specified Y dimensions.

(α = 0.5) between groundtruth and MLE labels, and, as expected, the resulting network
performance lies in the middle ground between these two extremes.

4.3.5 Comparison with conventional fitting

Comparison between our proposed method (SupervisedMLE, Rician) and conventional fitting
(MLE, Rician) highlights additional advantages offered by our approach. Firstly, Figs 2 and
3 demonstrate qualitatively similar performance between these methods across the entire
parameter space. The fact that our method, which offers near-instantaneous parameter
estimation, produces similar parameter estimates to well-understood conventional MLE
methods justifies its adoption in and of itself. However, our method not only mimics but
indeed in many cases outperforms (lower bias, variance, and RMSE) the very same method
used to compute those labels. This result not only motivates its use, but also confirms that
DL methods are able to exploit information shared between training samples beyond what
would be possible by considering each sample in isolation.
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Figure 10: Proof of concept of a hybrid parameter estimation method, formed by training
a supervised network with an equally-weighted sum of SupervisedMLE, Rician and
SupervisedGT loss functions (α = 0.5), at low SNR (15). For the sake of visu-
alisation, each plotted point represents marginalisation over all non-specified Y
dimensions.

4.4 A note on RMSE

We note that RMSE is a poor summary measure of network performance. RMSE is heavily
skewed by outliers, and thus favours methods which give parameter estimates consistently
close to mean parameter values. Such estimates, as in the case of Dfast, may contain
very little information (Fig 4) despite being associated with low RMSE. Accordingly, we
strongly recommend that RMSE be discontinued as a single summary metric for parameter
estimation performance: it must always be accompanied by bias, variance, and ideally an
analysis of information content.

RMSE’s limitations as a performance metric during testing may also call into question
its suitability as a loss metric during training. This work, much like the rest of the DL
qMRI literature, employs a training loss (MSE, described in Sections 2.2 and 2.3) which
is monotonically related to RMSE. Whilst outside the scope of this work, implementing
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a non-RMSE-derived training loss (such as mean absolute error) may be worth of future
investigation.

4.5 Justification of parameter marginalisation

The above analysis has been largely based on Figs 2 and 3, which show parameter estimation
performance marginalised over 3 dimensions of X. This choice, made to aid visualisation,
was validated against higher dimensional representations of the same data.

Fig 11 compares SupervisedMLE, Rician and SupervisedGroundtruth performance across the
entire qMRI parameter space. It can be seen that trends observed in Fig 2 are replicated
here; we draw attention to two such examples. Firstly, Fig 2 suggests SupervisedGroundtruth

produces lower f standard deviation than SupervisedMLE, Rician; Fig 11 confirms this to be
the case across all test data. In contrast, Fig 2 suggests that SupervisedGroundtruth produces
higher Dslow bias at low Dslow and lower bias at high Dslow; Fig 11 confirms a spread of bias
differences across the test data: some favouring one method, and others the other. This
effect is explored in Fig 12, which compares Dslow estimation performance as a function of
f and Dfast at two specific (non-marginalised) groundtruth Dslow values (0.69, 2.71). As
expected from the marginalised representation in Fig 2, at low Dslow SupervisedGroundtruth

produces higher bias across the entire f -Dfast parameter space, whereas at high Dslow the
opposite is true.

Despite this, it is important to note the limitations of marginalisation. Fig 12 also shows
that the relative performance of SupervisedMLE, Rician and SupervisedGroundtruth varies across
all parameter-space dimensions. Consider Dslow = 0.69, where 2 shows similar marginalised
RMSE for these methods. In fact, by visualising this difference as a function of f and Dfast,
we reveal two distinct regions: high f/lowDfast (where SupervisedMLE, Rician produces lower
RMSE), and elsewhere (where it produces higher RMSE). This highlights (i) the potential
pitfalls of producing summary results by marginalising across entire parameter spaces and
(ii) the need to choose parameter-estimation methods appropriate for the specific parameter
combinations relevant to the tissues being investigated (Epstein et al., 2021).

4.6 Non-voxelwise approaches

This work has focused on voxelwise DL parameter estimation methods: networks which map
one signal curve to its corresponding parameter estimate. There are, however, alternatives:
convolutional neural network methods which map spatially related clusters (“patches”) of
qMRI signals to corresponding clusters of parameter estimates (Fang et al., 2017; Ulas
et al., 2019; Li et al., 2022). Our MLE training label approach could be incorporated into
such methods, and we leave it to future work to investigate the effect this would have on
parameter estimation performance.

5. Conclusions

In this work we draw inspiration from state-of-the-art supervised and self-supervised qMRI
parameter estimation methods to propose a novel DNN approach which combines their
respective strengths. In keeping with previous work, we demonstrate the presence of a
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Figure 11: Non-marginalised comparison of parameter estimation performance between
SupervisedMLE, Rician and SupervisedGroundtruth at low SNR (15). Colour inten-
sity represents density of distribution across all X and all noise repetitions.

bias/variance trade-off between existing methods; supervised training produces low variance
under noise, whereas self-supervised leads to low bias with respect to groundtruth.

The increased bias of supervised DNNs is counter-intuitive - when labels are available,
these methods have access to more information, and should therefore outperform, non-
labelled alternatives. In light of this, we infer that the high bias associated with these
supervised methods stems from the nature of the additional information they receive:
groundtruth training labels. By substituting these labels with independently-computed
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Figure 12: Differences in performance (bias, standard deviation, RMSE) between
SupervisedMLE, Rician and SupervisedGroundtruth for two groundtruth values of
Dslow at low SNR (15). The outermost columns (left and right) correspond
to Dslow = 0.69 and Dslow = 2.71 respectively, and show mean performance
under noise repetition, without marginalisation. The central column reproduces
the corresponding marginalised representation from Fig 2.

maximum likelihood estimates, we show that the low-bias performance previously limited
to self-supervised approaches can be achieved within a supervised learning framework.

This framework forms the basis of a novel low-bias supervised learning approach to qMRI
parameter estimation: training on conventionally-derived maximum likelihood parameter
estimates. This method offers four clear advantages to competing non-supervised low-bias
DNN approaches: (i) flexibility in choosing inter-parameter loss weighting, which enables
network performance to be boosted for qMRI parameters of interest; (ii) incorporation of
Rician noise modelling, which improves parameter estimation at low SNR; (iii) separation
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between signal model and training loss, which enables the estimation of non-differentiable
qMRI signal models;and, crucially, (iv) ability to interface with existing supervised low-
variance approaches, to produce a tunable hybrid parameter estimation method.

This final point underpins the key contribution of this work: unifying low-bias and low-
variance parameter estimation under a single supervised learning umbrella. When faced
with a parameter estimation problem, we no longer need to choose between extremes of
the bias/variance trade-off; we can now tune DNN parameter estimation performance to
the specific needs of the task at hand. This sets the stage for future work, where this
tuning constant is optimised as part of a computational, task-driven, experimental design
framework (Epstein et al., 2021).
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