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Abstract

For chain interconnected systems with state and input constraints, a partial
output consensus (POC) optimization problem is studied when the set-points
are infeasible. In this case, outputs with and without consensus requirements
cannot converge to the set-points achieved from real-time optimization. For
this case, a novel set-point optimization method is developed, which is called
distributed partial output consensus optimization. Based on this method,
the set-points for two-part outputs i.e. having a part that must achieve
consensus and a part that has a set-point, can be recalculated simultaneously
and their feasibility can be ensured by using a distributed projection operator.
The convergence of the strategy is then analyzed. From the results of both
simulation and experimental testing, the effectiveness of the proposed method
is validated.
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1. Introduction

In process control, interconnected systems composed of multiple subsys-
tems have particular dynamic characteristics due to their complex internal
structures Zhang et al. (2022). The chain interconnected systems as stud-
ied in this paper are formed from sequentially interconnected subsystems,
resembling a ‘chain’. This is common in large-scale processes such as a fos-
sil fuel power unit Liu et al. (2003), a continuous annealing line Yoshitani
(1993) and a seawater distillation process Liu et al. (2023). In these scenar-
ios, a common problem exists which is known as ‘Partial Output Consensus’
(POC), which can be illustrated by the following example. In the seawater
distillation process shown in Figure 1, flashing chambers can be considered
as subsystems, which have mass and energy interconnections. In this pro-
cess, the three pressure signals need to maintain a descending relationship,
and the temperature signals are determined independently. When designing
the controller, the descending relationship can be modelled as a consensus
requirement, where the goal is to achieve consensus among the pressures (de-
fined as the ‘Consensus’ output) and make the temperatures (defined as the
‘Nonconsensus’ output) track their respective set-points. This problem was
termed Partial Output Consensus (POC) in Liu et al. (2023), and then a
distributed robust control algorithm was designed for chain interconnected
systems. This work Liu et al. (2023) is based on the assumption that the
set-points are in the interiors of the feasible regions, which cannot always
be ensured. The set-points are obtained from real-time optimization, and
their calculation models and constraints are independent of the underlying
dynamic system. This means that the set-points may be infeasible for some
subsystems Li et al. (2008); Wu et al. (2021). In Figure 1, once the infeasible
set-points are directly used, the actual value of the pressures and temper-
atures may converge somewhere unknown, and the subsystems may violate
the input and state constraints. This may cause interruption of the process
and in the worst case can produce accidents. Hence, it is necessary to con-
struct a set-point optimization layer to recalculate the feasible set-points and
maintain the characteristics of POC.

For infeasible set-points, many set-point optimization methods have been
developed based on constrained optimization and adaptive methods Li et al.
(2008); Marchetti et al. (2014); Pang et al. (2015); Wu et al. (2021). How-
ever, these methods are typically designed for a single system, and may not
be suitable for large-scale optimization and POC problems. Note that the
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Figure 1: The process of seawater distillation.

issue of an infeasible set-point has already been considered in the work on dis-
tributed consensus optimization Liu et al. (2017); Meng et al. (2017); Fontan
et al. (2020). However, these methods can only find a common feasible set-
point for subsystems to achieve consensus and have not addressed the POC
problem. Different from the consensus problem, the feasibility of ‘Noncon-
sensus’ set-points also needs to be ensured in POC. This has been studied in
Xia et al. (2023) where a partial consensus matrix is designed and a decen-
tralized algorithm is proposed to solve the optimization problem with partial
consensus. This method can ensure the consensus of partial variables and the
convergence of variables. However, it is only suitable for multi-agent systems
whose subsystems have no mass and energy interconnections. It should be
noted there is limited work on distributed partial output consensus optimiza-
tion for chain interconnected systems. Although centralized optimization can
also solve this problem the corresponding methods may have high compu-
tational cost Yangzhou et al. (2015) and Turan et al. (2021). Distributed
consensus optimization has low computational cost and is an ideal solution
but the following two challenging issues need to be addressed. The first is
how to find the set-points to satisfy both ‘Consensus’ and ‘Nonconsensus’
requirements. The second is how to guarantee the feasibility of set-points for
chain interconnected systems.

In this paper, a distributed partial output consensus optimization method
has been developed for chain interconnected systems to solve the POC prob-
lem of infeasible set-points. The proposed approach cannot only achieve
POC but also guarantee the feasibility of ‘Consensus’ and ‘Nonconsensus’
set-points.
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The contributions of this paper are:

� A distributed partial output consensus method is developed to recal-
culate the set-points. A new iterative strategy is designed for both
‘Consensus’ and ‘Nonconsensus’ set-points. This is achieved by coop-
eration between subsystems.

� A distributed projection algorithm is derived to ensure the feasibility of
the recalculated set-points. By redefining the steady-state variables and
design of a consistency constraint, the feasible points for all subsystems
can be solved in a distributed manner. Compared with the centralized
projection algorithm, the computational burden can be greatly reduced.

The paper is structured as follows. In Section 2, chain interconnected
systems are described, and the POC feasible set-point optimal problem is
formulated. In section 3, the distributed partial output consensus optimiza-
tion method is designed, and the algorithm analysis is completed. The results
of numerical simulations and experiments are shown in section 4. Finally,
section 5 summarizes this paper and gives conclusions.

Notation 1. Note P ′ and rank(P ) denote the transpose and rank of P ,
respectively. 0n and 0n×m represent n-dimensional zero vector and n×m
dimensional zero matrix. The matrix diag[Si]N denote the diagonal block
matrix composed of S1, S2, · · · , SN . The quadratic norm with respect to a
positive definite matrix P = P ′ is denoted by ‖x‖2

P = x′Px. ‖x‖ and ‖x‖∞
represent the 2-norm and∞-norm of x respectively. Let ProjΩ(u) to be a pro-
jection operator from u ∈ Rn to Ω ⊆ Rn : ProjΩ(u) = argminv∈Ω ‖v − u‖

2,
where Ω is a closed convex set. The maximum eigenvalue of P is denote by
λmax(P ). R and Z respectively represent the set of real numbers and inte-
gers, and Zj

i = {i, i+ 1, · · · , j} with i < j ∈ Z. Denote col(·) as the column
vector and define Ei = col(0, · · · , 1

ith
, · · · , 0).

2. Problem Formulation

The process network considered in this paper is composed of N subsys-
tems with chain interconnections, in which the interconnections refer to the
couplings in mass and energy between the subsystems. As shown in Figure
2(a), a typical framework consists of real-time optimization, set-point opti-
mization and advanced control Ding (2017); Yang and Ding (2020), where
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set-point optimization is named as distributed partial output consensus op-
timization in this paper. Real time optimization can generate a ‘Consen-
sus’ set-point yd,con (only assigned to subsystem 1) and a ‘Nonconsensus’
set-point yd,i, i = 1, · · · , N (assigned to subsystem i), which may be in-
feasible and cannot be directly utilized for the advanced control operation.
Given the set-points from real-time optimization, distributed partial output
consensus optimization can recalculate set-points y∗s,c,i, y

∗
s,n,i which are feasi-

ble and which can be used for advanced control allowing the subsystems to
achieve POC, where y∗s,c,i is the feasible set point to achieve ‘Consensus’ and
y∗s,n,i is the feasible set-point relating to the ‘Nonconsensus’ element. These
set-points are obtained using distributed partial output consensus optimiza-
tion to meet the partial consensus requirement. In addition, there is a chain
communication network (see Figure 2(b)), which can be used to exchange
information between the subsystems when the algorithm is running.

(a) The framework for the whole system.

(b) The communication network.

Figure 2: Distributed partial output consensus optimization for Chain interconnected
systems.

Remark 1. The models and constraints used for real-time optimization may
be different from those used in advanced control. In this case the set-points
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obtained directly from real-time optimization may be infeasible for control.
This may cause the outputs to converge somewhere unknown and subsystems
may violate the state and input constraints. It is worth noting that the fea-
sibility of yd,con, yd,1, · · · , yd,N cannot be distinguished easily. Hence, the
distributed partial output consensus optimization layer is designed to recog-
nize the potential problem and recalculate the feasible set-points if necessary.

Let t represent the discrete-time index. The dynamics of the subsystems
can be represented by

xt+1
i =

i+1∑
j=i−1

Aijx
t
j +Biu

t
i,

yti =Cix
t
i.

(1)

where i ∈ V = ZN
1 , xti ⊆ Xi ∈ Rn, uti ⊆ Ui ∈ Rm, yti ∈ Rp and p ≥ m,

represent the state, input and output of subsystem i. The matrices Aij, Bi

and Ci are known and have appropriate dimensions. The constraint sets
Xi,Ui are convex, compact polytopes whose interiors are not empty. Note
that each subsystem is ‘multiple-output’, that is p ≥ 2. For each subsystem,
its output is composed of two parts

ytcon,i =Tcy
t
i ∈ Rpc ,

ytnon,i =Tny
t
i ∈ Rpn ,

(2)

where ytcon,i is the ‘Consensus’ output and ytnon,i contains the ‘Nonconsensus’
element. It follows that pc+pn = p. The transformation matrices Tc ∈ Rpc×p,
Tn ∈ Rpn×p are both row full rank and satisfy col(Tc, Tn) = Ip.

Then, the steady-state model for subsystem i can be formulated as

0n = (Aii − I)xs,i +Bius,i +
∑
j∈Nc,i

Aijxs,j,

ys,c,i =TcCixs,i,

ys,n,i =TnCixs,i,

(3)

where xs,i and us,i represent the steady-state state and input respectively,
ys,c,i and ys,n,i represent the ‘Consensus’ and ‘Nonconsensus’ steady-state
outputs respectively and xs,j is the steady-state state of the neighbours. The
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steady-state models are coupled and Nc,i represents the neighbours set where

Nc,i =


{2} , i = 1

{i− 1, i+ 1} , i ∈ ZN−1
2

{N − 1} , i = N
.

The following assumptions are stated:

Assumption 1. Farina et al. (2014) The parameters in (1) satisfy the fol-
lowing condition

rank

([
InN − A B

C 0pN×mN

])
= (n+ p)N, (4)

where A = [Aij]N×N , B = diag[Bi]N , C = diag[Ci]N .

Assumption 2. This determines the conditions which must be satisfied by
the communication network.

� For any two subsystems, if there are interconnections between them,
they can exchange information with each other, that is, the communi-
cation network is chained. The Laplace matrix is

L =


1 −1 0
−1 2 −1

. . . . . . . . .

−1 2 −1
0 −1 1


N×N

. (5)

� Information can be sent and received at every time instant without
packet loss and delay.

Remark 2. Assumption 2 concerning the communication network is rea-
sonable. In process industry plants, communication among devices is usually
wired, and the network structure is fixed, stable and reliable.

In Liu et al. (2023), all the set-points from real-time optimization are
assumed to be feasible, and then a distributed POC control is designed to
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steer the subsystems to achieve POC whereby:

lim
t→∞

∥∥ytcon,1 − yd,con∥∥ =0, (6a)

lim
t→∞

∥∥ytnon,i − yd,i∥∥ =0, (6b)

lim
t→∞

∥∥ytcon,i − ytcon,j∥∥ =0, j ∈ Nc,i. (6c)

In practice, since real-time optimization and advanced control depend on
different models and constraints Wu et al. (2021), yd,con, yd,1, · · · , yd,N may be
infeasible for some subsystems, so the control in Liu et al. (2023) may not be
effective. In this paper a distributed partial output consensus optimization is
designed to recalculate feasible set-points (y∗s,c,i, y

∗
s,n,i), which meet the partial

consensus requirement and can be utilized by the advanced control operation.
According to the partial consensus requirement, y∗s,c,i, y

∗
s,n,i are formulated

and the POC feasible set-point optimal problem is established. To guarantee
the feasibility of y∗s,c,i, y

∗
s,n,i for control, the feasible region Ys for the whole

system needs to be formulated. This can be derived from the the steady-state
model in (3) and can be expressed as

Ys = {(ys,c,1, ys,n,1) , · · · , (ys,c,N , ys,n,N) |
ys,c,i = TcCixs,i, ys,n,i = TnCixs,i,

0n = (Aii − I)xs,i +Bius,i +
∑
j∈Nc,i

Aijxs,j,

i ∈ V , xs,i ∈ Xs,i, us,i ∈ Us,i}
=Ys,1 × Ys,2 × · · · × Ys,N ,

(7)

where Xs,i ⊆ Xi, Us,i ⊆ Ui are the steady-state state and input constraint
sets and Ys,i is the local feasible region of (ys,c,i, ys,n,i). It can be inferred that
Ys,i is coupled with Ys,j, j ∈ Nc,i. When the set-points are within Ys, they
are feasible and can be reached by the subsystems deploying the advanced
control.

Based on this, y∗s,c,i, y
∗
s,n,i can be formulated as

(y∗s,c,i, y
∗
s,n,i) = ProjYs,i(yd,con, yd,i), i ∈ V , (8a)

lim
k→∞

∥∥y∗s,c,i − y∗s,c,j∥∥ = 0, j ∈ Nc,i, (8b)

where (8a) means that (y∗s,c,i, y
∗
s,n,i) is the projection of (yd,con, yd,i) into Ys,i,

so that y∗s,c,i, y
∗
s,n,i are feasible for subsystem i. Equation (8b) represents the

consensus of y∗s,c,i, i ∈ V .

8



Remark 3. When the set-points from real-time optimization are infeasible,
the conditions in (6) cannot be satisfied and the control method in Liu et al.
(2023) is not effective. In this case, (y∗s,c,i, y

∗
s,n,i) described in (8) can be found

to replace the set-points resulting from real-time optimization. (y∗s,c,i, y
∗
s,n,i) is

not only feasible in control, but also meets the partial consensus requirement.
If infeasible set-points were directly used by the advanced control, ytcon,i and
ytnon,i will converge somewhere unknown. This assertion will be demonstrated
in the experiments.

According to (8), the POC feasible set-point optimal problem can be
formulated as

min
ỹs,c,i,ỹs,n,i,i∈V

‖ỹs,c,1 − yd,con‖2 +
∑
i∈V

‖ỹs,n,i − yd,i‖2 (9a)

s.t. for all i ∈ V ,
(ỹs,c,i, ỹs,n,i) ∈ Ys,i, (9b)

ỹs,c,i − ỹs,c,j = 0, j ∈ Nc,i, (9c)

where ỹs,c,i, ỹs,n,i are the recalculated set-points and (9a) represents the Eu-
clidean distance between (ỹs,c,1, ỹs,n,1, · · · , ỹs,n,N) and (yd,con, yd,1, · · · , yd,N).
(9b) is the constraint on the feasible regions, corresponding to (8a). (9c)
is the consensus constraint of ỹs,c,i, corresponding to (8b). Then, it can be
ensured that the optimal solution of (9) is (y∗s,c,i, y

∗
s,n,i), i ∈ V .

The control objectives of this paper can now be summarized more formally
as follows:

� To propose a distributed partial output consensus optimization method,
which can solve the problem (9) and find (y∗s,c,i, y

∗
s,n,i), i ∈ V .

� To design a distributed projection algorithm, which can guarantee the
feasibility of (y∗s,c,i, y

∗
s,n,i) in Ys,i and reduce the computational burden.

3. Main Results

In this section, according to the partial consensus requirement, an itera-
tive strategy is designed for distributed partial output consensus optimiza-
tion, and then its convergence is proven. To guarantee the feasibility of the
recalculated set-points, a distributed projection algorithm is proposed in the
iterative strategy.
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For subsystem i, the corresponding recalculated set-points at the k-th
iteration are denoted as yks,c,i, y

k
s,n,i. Inspired by the projected consensus

algorithm in Liu et al. (2017), the strategies of distributed partial output
consensus optimization are formulated as follows.

For subsystem 1:

ỹks,c,1 = εc,11y
k−1
s,c,1 + εc,12y

k−1
s,c,2 + αcv

k−1
1 + δcyd,con, (10a)

ỹks,n,1 = εny
k−1
s,n,1 + δnyd,1, (10b)

(yks,c,1, y
k
s,n,1) = ProjYs,1

(
ỹks,c,1, ỹ

k
s,n,1

)
, (10c)

vk1 = vk−1
1 + L11y

k
s,c,1 + L12y

k
s,c,2, (10d)

where ỹks,c,1, ỹks,n,1 are the estimates of y∗s,c,i, y
∗
s,n,i respectively, vk1 is the

estimated error between yks,c,i and yks,c,j, εc,11 = 1 − αc (2 + L11) , εc,12 =
−αcL12, δc = 2αc, εn = 1 − 2αn, δn = 2αn, Lij represents the element of
L in row i and column j, and αc, αn > 0 are the step sizes, where

αc ≤ 1
/
λmax

(
4T̄ + (L⊗ T ′cTc)

)
, αn < 1,

and T̄ = diag

Ip, T ′cTc, · · · , T ′cTc︸ ︷︷ ︸
N−1

.

For subsystem i = 2, · · · , N :

ỹks,c,i = εc,iiy
k−1
s,c,i +

∑
j∈Nc,i

εc,ijy
k−1
s,c,j + αcv

k−1
i , (11a)

ỹks,n,i = εny
k−1
s,n,i + δnyd,i, (11b)

(yks,c,i, y
k
s,n,i) = ProjYs,i

(
ỹks,c,i, ỹ

k
s,n,i

)
, (11c)

vki = vk−1
i + Liiy

k
s,c,i +

∑
j∈Nc,i

Lijy
k
s,c,j. (11d)

where εc,ii = 1− αcLii, εc,ij = −αcLij.
Equations (10a) and (11a) contain the update strategies for yks,c,i, which

can reduce the distances between ỹks,c,i with yd,con and decrease the errors
among yks,c,i, i ∈ V using the information from the neighbours’. Combined
with (10d) and (11d), (10a) and (11a) can make ỹks,c,i achieve consensus. (10b)
and (11b) are the update strategies for yks,n,i, which can reduce the distances
between ỹks,n,i with yd,i. (10c) and (11c) are the projection algorithms, which
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can find the feasible points of ỹks,c,i, ỹ
k
s,n,i in Ys,i by implementing the following

distributed projection algorithm

(yks,c,i, y
k
s,n,i) =

arg min
ŷs,c,i,ŷs,n,i

∥∥ŷs,c,i − ỹks,c,i∥∥2

2
+
∥∥ŷs,n,i − ỹks,n,i∥∥2

2
(12a)

s.t. Πi,izi,i +
∑
j∈Nc,i

Πi,jzi,j = 0n, (12b)

zi,i − zj,i = 0n, j ∈ Nc,i, (12c)

ŷs,c,i = TcC̄izi,i, (12d)

ŷs,n,i = TnC̄izi,i, (12e)

zi,i ∈ Xs,i × Us,i. (12f)

where ŷs,c,i, ŷs,n,i are the feasible points to be sought and (12a) represents the
Euclidean distance between (ŷs,c,i, ŷs,n,i) and (ỹks,c,i, ỹ

k
s,n,i). The parameters

are Πi,i = [Aii − In, Bi], Πi,j = [Aij, 0n×m] and C̄i = diag(Ci,0m×m). Equa-
tions (12b), (12d) and (12e) refer to the steady-state model of subsystem i,
and they form the feasible region in (7) with (12f). zi,i = col(xis,i, u

i
s,i) is

the steady-state variable of subsystem i and xis,i, u
i
s,i represents the steady-

state state and input of subsystem i corresponding to ŷs,c,i, ŷs,n,i. zi,j =
col(xis,j, u

i
s,j) is the steady-state variable of subsystem j and xis,j, u

i
s,j repre-

sent the steady-state state and input of subsystem j as appears in subsystem
i, and (12c) is the consistency constraint of zi,i and zj,i, j ∈ Nc,i. For subsys-
tem i, the steady-state variable is denoted by (zi,i and zi,j) in the steady-state
model of subsystem i and j, j ∈ Nc,i. In this way, the steady-state model can
be represented by (12b), which has no interconnection. For the correctness
of the results, there is a novel constraint (12c) designed to ensure that zi,i
and zi,j, j ∈ Nc,i are consistent. Then, (12b) and (12c) are equivalent to the
steady-state model in (3) and (7).

Clearly equation (12) is a distributed optimization problem with a con-
sistency constraint, which can be solved by using the Alternating Direction
Method of Multipliers (ADMM) described in Boyd et al. (2011); Falsone
et al. (2020); Yan et al. (2020). Compared to the centralized projection algo-
rithm, there is only limited information (zi,j and zj,i) that needs to be shared
between subsystems i and j. Not only that, as the number of subsystems
increases, (12) has more advantages than the corresponding centralized case
in terms of computational efficiency. This will be verified in the simulation
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testing that follows.

Remark 4. To demonstrate the advantages of the distributed projection al-
gorithm, a centralized one has been provided for comparison. The centralised
projection algorithm can be formulated as

(yks,c,1, · · · , yks,c,N , yks,n,1, · · · , yks,c,N) =

arg min
ŷs,c,i,ŷs,n,i,i∈V

∑
i∈V

∥∥ŷs,c,i − ỹks,c,i∥∥2

2
+
∥∥ŷs,n,i − ỹks,n,i∥∥2

2
(13a)

s.t. for all i ∈ V ,
0n = (Aii − I) x̂s,i +Biûs,i

+
∑
j∈Nc,i

Aijx̂s,j, j ∈ Nc,i, (13b)

ŷs,c,i = TcCix̂s,i, (13c)

ŷs,n,i = TnCix̂s,i, (13d)

xs,i ∈ Xs,i, us,i ∈ Us,i, (13e)

where x̂s,i, ûs,i are the steady-state state and input corresponding to the fea-
sible set-points and (13b)-(13e) form the feasible region in (7). Different
from (12), the interconnection term

∑
j∈Nc,i

Aijx̂s,j in (13b) means (13) re-
quires global information and a central node for implementation. This brings
greater challenges in terms of the construction of the communication network.
Hence, (12) is more practical than (13).

Based on the distributed projection algorithm, the proposed distributed
partial output consensus optimization in (10) and (11) can be implemented
in a fully distributed manner. For clarity, the distributed partial output
consensus optimization method can be summarized in Algorithm 1 and its
flow chart is shown in Figure 3. Then, the convergence analysis of (10) and
(11) is given in the following theorem.

Theorem 1. Suppose that Assumptions 1 and 2 hold, then for subsystem
i, i ∈ V in (1), (yks,c,i, y

k
s,n,i) in (10) and (11) can finally converge to the

optimal solution of (9), that is, the feasible set-points (y∗s,c,i, y
∗
s,n,i) with partial

consensus can be found by distributed partial output consensus optimization.
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Figure 3: Flow chart of Algorithm 1.
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Algorithm 1 Distributed partial output consensus optimization for chain
interconnected systems

Initialization: Set αc, αn, Kmax, k = 1 and the initial value of (y0
s,c,i, y

0
s,n,i),

v0
i . Then, choose Xs,i, Us,i.
For subsystem i:

1: If i = 1, receive yd,con ,yd,1; else if, receive yd,i.
2: Send yk−1

s,c,i and receive yk−1
s,c,j based on the communication network.

3: Calculate (ỹks,c,i, ỹ
k
s,n,i) by (10a), (10b)/(11a), (11b).

4: Solve (12) by ADMM, then obtain (yks,c,i, y
k
s,n,i).

5: Calculate vki by (10d)/(11d).
6: If k = Kmax, let (y∗s,c,i, y

∗
s,n,i) = (yks,c,i, y

k
s,n,i) and end the algorithm; else

if, let k = k + 1 and go to Step.2.

Result: The feasible set-point (y∗s,c,i, y
∗
s,n,i).

Proof. To make it clear, the ‘Consensus’ feasible region Ys,c,i and the
corresponding ‘Nonconsensus’ feasible region Ys,n,i are defined as

Ys,c,i = TcYs,i,

Ys,n,i = TnYs,i,

and Ys,c, Ys,n represent the compact forms of Ys,c,i and Ys,n,i, that is

Ys,c,1 × Ys,c,2 × · · · × Ys,c,N = Ys,c,

Ys,n,1 × Ys,n,2 × · · · × Ys,n,N = Ys,n.

According to the results in Liu et al. (2017), Liu and Wang (2013) and
Yang et al. (2018), with the protocol in (10a), (10c), (10d) and (11a), (11c),
(11d), yks,c,i can achieve consensus at an equilibrium point, which is denoted
as y◦s,c,i. According to (10) and (11), the equilibrium point can be formulated
as

y◦s,c =εcy
◦
s,c + αcv

◦ + 2αc (E1 ⊗ Ipc) yd,con,
y◦s,c =ProjYs,c

(
y◦s,c
)
,

v◦ =v◦ + (L⊗ Ipc) y◦s,c,
(14)

where y◦s,c = col(y◦s,c,1, · · · , y◦s,c,N), v◦ = col(v◦1, · · · , v◦N), εc = [εc,ij]i,j∈V . From
(10) and (11), it can be inferred that εc = InN−(2αc (E1E

′
1 ⊗ Ipc)+(L⊗In)).
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Let v◦ = (L⊗ Ipc) z◦, where z◦ ∈ RpcN . Then (14) can be rewritten as

y◦s,c − ProjYs,c
(
y◦s,c − αc ((L⊗ Ipc) z◦

+ 2 (E1E
′
1 ⊗ Ipc) y◦s,c − (E1 ⊗ Ipc) yd,con︸ ︷︷ ︸

∂
(
‖ys,c,1−yd,con‖2

)/
∂ys,c

∣∣∣ys,c=y◦s,c

)) = 0,

(L⊗ Ipc) y◦s,c = 0.

(15)

Similarly, with (10b), (10c) and (11b), (11c), ys,n,i can reach its equilib-
rium point y◦s,n,i, which satisfies

y◦s,n − ProjYs,n
(
y◦s,n

− αn · 2
(
y◦s,n − yd

)︸ ︷︷ ︸
∂(‖ys,n−yd‖2)/∂ys,n|ys,n=y◦s,n

) = 0. (16)

where y◦s,n = col(y◦s,n,1, · · · , y◦s,n,N) and yd = col(yd,1, · · · , yd,N).
According to the necessary and sufficient conditions for optimality in Liu

and Wang (2013), for the optimal solution (y∗s,c, y
∗
s,n) of (9), there must exist

z∗ ∈ RpcN so that the following equalities hold[
y∗s,c
y∗s,n

]
− ProjYs(

[
y∗s,c
y∗s,n

]
− α

(
∇J

(
y∗s,c, y

∗
s,n

)
+ (L⊗ Ipc) z∗

)
) = 0,

(L⊗ Ipc) y∗s,c = 0.

(17)

where
∇J

(
y∗s,c, y

∗
s,n

)
=[

2 (E1E
′
1 ⊗ Ipc) y∗s,c − (E1 ⊗ Ipc) yd,con

2
(
y∗s,n − yd

) ]
.

Clearly, from (15) and (16), (y◦s,c, y
◦
s,n) satisfies (17) , that is, (y◦s,c, y

◦
s,n) =

(y∗s,c, y
∗
s,n). Based on the above analysis, for each subsystem, (yks,c,i, y

k
s,n,i) in

(10) and (11) can converge to the optimal solution (y∗s,c,i, y
∗
s,n,i) of (9). This

means that distributed partial output consensus optimization can recalculate
the feasible set-points with partial consensus requirement, and then Theorem
1 is proven. �

Remark 5. The proposed method is also suitable for chain interconnected
systems with strong interconnections. In this paper, the interconnections are
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handled by redefining steady-state variables and designing a novel consistency
constraint, rather than relying on the assumptions that the interconnections
are bounded like those in René et al. (2019) and Yang et al. (2021). This
method is universally applicable to the systems described by (1).

Remark 6. In contrast to Li et al. (2008), Marchetti et al. (2014), Pang
et al. (2015) and Wu et al. (2021), the outputs which have a partial consensus
requirement are considered in this paper. Based on the iterative strategy in
the distributed partial output consensus optimization, partial consensus and
the feasibility of (y∗s,c,i, y

∗
s,n,i) can be guaranteed, respectively. Finally, the new

set-points can be transmitted to the advanced control for achieving POC.

4. SIMULATION AND EXPERIMENTAL VALIDATION

4.1. Numerical simulation

In this section, several numerical experiments are presented to validate
the effectiveness of the proposed method. Consider the chain interconnected
systems composed of five subsystems (i = 1, 2, 3, 4, 5), where the parameters
are given by

Aii =

 1 0 0.8
0.1 ∗ i 0.9 0

0 0.3 0.8

 , Bi =

 1 0
2 0
0 1 + 0.1 ∗ i

 ,
Ci =

[
1 0 0.2
0 1 0

]
,

and the interconnected terms are

Ai,i+1 =

 0 0 0.3
0 0.1 0

0.3 0 0

 , Ai−1,i =

 0 0.1 0
0.2 0 0
0 0 0.4

 .
The constraint sets are set as

Xi = {xi |−5 ≤ ‖xi‖∞ ≤ 5} ,
Ui = {ui |−2 ≤ ‖ui‖∞ ≤ 2} , i ∈ V ,

(18)

and let Xs,i = Xi, Us,i = Ui. The step size αc and αn are set as 0.3 and
0.1, respectively. The maximum number of iterations Kmax is set as 150.
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Figure 4: The behaviors of yks,c,i, y
k
s,n,i in case 1.

The initial values are set as y0
s,1 = [5.00,−1.00], y0

s,2 = [1.40, 00], y0
s,3 =

[1.00,−2.00], y0
s,4 = [0, 2.00], y0

s,5 = [1.00, 2.00].
There are four cases considered to fully demonstrate the effectiveness of

the proposed method. Cases 1-3 present the results using distributed partial
output consensus optimization, when the set-points from real-time optimiza-
tion are all feasible, partially feasible and all infeasible, respectively. The
corresponding behaviors of yks,c,i, y

k
s,n,i in the iteration are shown in Figure 4,

Figure 5 and Figure 6, respectively. Case 4 presents the comparative results
of centralized and distributed projection algorithms in terms of computa-
tional efficiency, and the computation time is shown in TABLE 1.

Case 1: All the set-points from real-time optimization are fea-
sible.

For the subsystems with the constraint sets (18), the following set-points
from real-time optimization are feasible: yd,con = 4.50, yd,1 = 1.00, yd,2 =
2.00, yd,3 = 3.00, yd,4 = 4.00, yd,5 = 5.00. The behaviors of yks,c,i and yks,c,i are
shown in Figure 4(a) and Figure 4(b-f), respectively, in which the horizontal
coordinate is the number of iterations k, and the vertical coordinate is the
value of yks,c,i or yks,c,i. Chain lines represent the set-points from real-time
optimization, solid lines with different markers represent the yks,c,i, y

k
s,c,i of
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Figure 5: The behaviors of yks,c,i, y
k
s,n,i in case 2.

different subsystems and dashed lines represent the recalculated set-points.
From Figure 4(a), it can be seen that the distances between yks,c,i for all

subsystems initially decrease, and then all yks,c,i try to approach yd,con and
finally achieve consensus at yd,con. At the same time, yks,c,i for all subsystems
in Figure 4(b-f) can converge to yd,i, i = 1, 2, 3, 4, 5 respectively. Hence,
the recalculated set-points can be obtained as y∗s,c,1 = · · · = y∗s,c,5 = 4.50,
y∗s,n,1 = 1.00, y∗s,n,2 = 2.00, y∗s,n,3 = 3.00, y∗s,n,4 = 4.00 and y∗s,n,5 = 5.00, which
are the same as the set-points obtained from real-time optimization.

Case 2: Partial set-points from real-time optimization are infea-
sible.

When yd,con = 5.50, yd,1 = 1.00, yd,2 = 2.00, yd,3 = 3.00, yd,4 = 4.00,
yd,5 = 5.00, only yd,con and yd,2 are infeasible for the subsystems with the
constraint set (18). In Figure 5(a), after about 10 iterations, all yks,c,i try to
approach yd,con but fail due to the infeasibility of yd,con. By the collaboration
between the consensus and projection algorithms in the distributed partial
output consensus optimization method, yks,c,i achieves consensus and finally
converges to 5.00, and yks,n,2 converges to 2.02 in Figure 5(c). yks,n,i, i =
1, 3, 4, 5 can also converge to yd,i. Then, partial consensus is guaranteed and
the recalculated set-points can be obtained as y∗s,c,i = 5.00 and y∗s,n,i = yd,i
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for i = 1, 2, 3, 4, 5. To verify the feasibility of y∗s,c,i, the corresponding steady-
state states and inputs (x∗s,i, u

∗
s,i) are shown as

x∗s,1 = [5.00; 0.99; 0.07] , u∗s,1 = [−0.30;−1.60] ,

x∗s,2 = [4.84; 2.02; 0.81] , u∗s,2 = [−1.03;−1.60] ,

x∗s,3 = [4.81; 2.99; 0.94] , u∗s,3 = [−1.26;−1.90] ,

x∗s,4 = [4.80; 4.00; 1.01] , u∗s,4 = [−1.48;−2.00] ,

x∗s,5 = [4.74; 5.00; 1.27] , u∗s,5 = [−1.41;−1.10] ,

which do not violate the constraints in equation (18).
Case 3: All the set-points from real-time optimization are in-

feasible.
When the state and input constraints are

Xi = {xi |−4.5 ≤ ‖xi‖∞ ≤ 4.5} ,
Ui = {ui |−1.5 ≤ ‖ui‖∞ ≤ 1.5} , i ∈ V ,

(19)

all of the following set-points from real-time optimization are infeasible for the
subsystems: yd,con = 4.00, yd,1 = 1.00, yd,2 = 2.00, yd,3 = 3.00, yd,4 = 3.50,
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yd,5 = 4.60. In this case, all yks,c,i in Figure 6(a) achieve consensus and
converge to a new point, and all yks,n,i in Figure 6(b-f) also converge to their
recalculated set-points. All the set-points are recalculated, and the results
are y∗s,c,i = 3.68, y∗s,n,1 = 1.05, y∗s,n,2 = 2.03, y∗s,n,3 = 2.61 and y∗s,n,4 = 3.19 and
y∗s,n,5 = 4.50. (x∗s,i, u

∗
s,i) are shown as

x∗s,1 = [3.66; 1.05; 0.07] , u∗s,1 = [−0.23;−1.25] ,

x∗s,2 = [3.56; 2.03; 0.58] , u∗s,2 = [−0.75;−1.32] ,

x∗s,3 = [3.56; 2.61; 0.61] , u∗s,3 = [−0.92;−1.50] ,

x∗s,4 = [3.52; 3.19; 0.76] , u∗s,4 = [−1.13;−1.50] ,

x∗s,5 = [3.51; 4.50; 0.86] , u∗s,5 = [−1.00;−0.99] ,

which are in the state and input constraint sets. This means that the recal-
culated set-points are feasible and the distributed partial output consensus
optimization method is still effective, when all the set-points from real-time
optimization are infeasible.

Based on these results, it can be verified that the proposed distributed
partial output consensus optimization method can find feasible set-points
with partial consensus even when the set-points from real-time optimization
are infeasible.

Case 4: Centralized and distributed projection algorithms.
In this paper, the proposed distributed projection algorithm performs

well in terms of computational speed. To verify this point, a simulation is
carried out using the following two methods:

� The centralized method: The projection algorithm is implemented by
solving (13) in a centralized manner. This means that ŷs,c,i, ŷs,n,i for all
subsystems are calculated by solving a high-dimensional problem.

� The proposed distributed method: The projection algorithm is imple-
mented by solving (12) in a distributed manner, which means that sub-
systems calculate their own ŷs,c,i, ŷs,n,i by solving multiple low-dimension
problems in parallel.

For i = 1, 2, · · · , ỹks,c,i, ỹks,n,i are set as 5 ∗ sin(iπ/10), 5 ∗ cos(iπ/10)
respectively and other parameters are the same as that in Case 1. For the
sake of fairness, ADMM in Boyd et al. (2011) is chosen as the optimization
tool, and the parameters for the two methods are set as the same (the step
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Table 1: The computation times of different projection algorithms

Number of

subsystems

Computation time

The centralized method The proposed method

5 3.762s 3.586s

10 7.810s 3.770s

30 12.149s 4.015s

50 16.426s 4.167s

size, penalty factor and convergence threshold are set as 0.001, 0.05 and
0.0001 respectively). According to the results in TABLE I, as the number
of subsystems increases, the computation time of the centralized method
becomes longer than that of the proposed method. In some scenarios, the
centralized method cannot be implemented because the computation time is
longer than the control period. Therefore, the proposed distributed method
can work more efficiently than a centralized approach.

4.2. Experiment

In this subsection, the results of two solution proportioning experiments
are shown to validate the effectiveness of the proposed method. The experi-
ments are carried out on a platform in China University of Petroleum (East
China), which is shown in Figure 7. In this platform, there are two tanks
R-101 and R-102, which are connected by a pipeline from R-102 to R-101
(red line in Figure 8). Here, the two tanks can be considered as subsystems
forming a typical chain interconnected system. According to Figure 8, the
solution proportioning experiments can be described as follows. The objec-
tive is to maintain the NaOH solution so that it has different concentrations
and the same temperature in R-101 and R-102. Water and high concentra-
tion NaOH solutions are the material and these are transported to R-101
and R-102. The flow rates of the material can be controlled to maintain the
NaOH solution at a certain concentration. Hot water is pumped into the
jackets of R-101 and R-102 to raise the temperature of the solution. Its flow
rate can be controlled to maintain the solution at a certain temperature.

� Material tanks: V -111 has water at about 25◦C. V -112 10.0 kmol/m3
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Figure 7: The platform of two tanks Liu et al. (2023).

has NaOH solution at about 25◦C.

� Controlled variables: the temperature T1, T2 and concentration C1,
C2 of R-101 and R-102. Because the temperatures of the solutions
in the two tanks need to achieve consensus, T1, T2 are modeled as
‘Consensus’ outputs. The set-points of the concentrations in the two
tanks are different, so C1, C2 are modeled as ‘Nonconsensus’ outputs.

� Manipulated variables: the flow rates vs,1, vs,2 of NaOH solution and
the flow rates of hot water vw,1, vw,2 for R-101 and R-102.

� Constraints: the minimum and maximum values of T1, T2 are 20◦C and
40◦C. The minimum and maximum values of C1, C2 are 0kmol/m3 and
10kmol/m3. Due to the limitations of the valves, the minimum and
maximum values of the vs,1, vs,2, vw,1 and vw,2 are 0L/h and 25.0L/h.

The set-points from real-time optimization are Cd,1 = 5.0kmol/m3, Cd,2 =
3.5kmol/m3 and Td = 41.0◦C, where Td is not feasible. The process can
be modelled as a linear ‘chain interconnected system’ as in (1), where the
parameters are

A11 =

[
0.598 0.001
−0.002 0.599

]
, A22 =

[
0.597 −0.003
0.001 0.598

]
,

A12 =

[
0.003 −0.001

0 −0.002

]
, A21 =

[
−0.002 0.001
0.002 0

]
,

B1 =

[
0.613 0.001
0.005 0.458

]
, B2 =

[
0.904 0.002
0.001 0.325

]
,
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Figure 8: The solution proportioning experiments.

C1 = C2 =

[
1 0
0 1

]
, Tc =

[
1 0

]
, Tn =

[
0 1

]
.

In this experiment, Td is not feasible and the proposed distributed par-
tial output consensus optimization method is used to recalculate the feasi-
ble set-points. The parameters for the distributed partial output consen-
sus optimization are set as: αc = 0.3, αn = 0.1, δ = 0.0001. The dis-
tributed projection algorithm is implemented based on ADMM in Boyd et al.
(2011) (its step size, penalty factor and maximum number of iterations are
0.001, 0.05 and 40 respectively). The initial values are T 0

s,1 = T 0
s,2 = 30◦C,

C0
s,1 = C0

s,2 = 0kmol/m3. In Figure 9, the behaviours of T k
s,i, C

k
s,i are

shown and it is straightforward to see that the recalculated points with
partial consensus can be obtained, which are T ∗s,1 = T ∗s,2 = T ∗s = 38.5◦C,
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Figure 9: The results of the distributed partial output consensus optimization method.

C∗s,1 = Cd,1 = 5.0kmol/m3 and C∗s,2 = Cd,2 = 3.5kmol/m3. Then, according
to the framework in Figure 2, the recalculated points can be utilized by the
underlying control layer.

To further verify the effectiveness of the proposed distributed partial out-
put consensus optimization method, the following experimental test condi-
tions are considered:

� Distributed Model Predictive Control (DMPC) is used without de-
ploying the proposed distributed partial output consensus optimization
method: DMPC generates an optimal control based on the infeasible
set-points generated by real-time optimization.

� DMPC is implemented with the proposed distributed partial output
consensus optimization method: DMPC generates the optimal control
based on the recalculated set-points obtained by the distributed partial
output consensus optimization method.

To ensure objectivity and impartiality, the DMPC parameters used in
both cases are identical: prediction horizon Np is 10, weighting matrices Qi

and Ri are 2*I3 and I2, terminal set ratio κ is 0.5. Figure 10 and Figure
11 show the trends of the temperatures and concentrations with the dif-
ferent control methods, where the horizontal coordinate is the time t, and
the vertical coordinate is the value of Ti or Ci. Chain lines represent the
set-points generated by real-time optimization, solid lines with square and
triangle marks represent the trends of Ti, Ci for R-101 and R-102 respectively
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Figure 10: The results of DMPC without employing distributed partial output consensus
optimization

and gray lines represent measured Ti, Ci. In addition, dashed lines repre-
sent the set-points recalculated using distributed partial output consensus
optimization, which only appear in Figure 11.

Figure 10 shows the results of DMPC without distributed partial out-
put consensus optimization. Although C1 and C2 in Figure 10(b) can reach
Cd,1 and Cd,2 finally, T1 and T2 in Figure 10(a) cannot achieve consensus
and converge to 39.5◦C and 38.5◦C respectively. Figure 11 shows the results
of DMPC with distributed partial output consensus optimization. T1, T2

in Figure 11(a) can achieve consensus and reach the recalculated ‘Consen-
sus’ set-point (38.5◦C), and C1, C2 in Figure 11(b) can reach 3.5kmol/m3

and 5.0kmol/m3 . DMPC without distributed partial output consensus op-
timization cannot achieve the objective of this experiment due to the failure
to guarantee the consensus of T1 and T2. Based on the proposed distributed
partial output consensus optimization, DMPC can ensure that subsystems
achieve partial consensus, that is, T1, T2 reach a consensus value and C1, C2
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Figure 11: The results of DMPC with distributed partial output consensus optimization

reach their own set-points. It can be concluded that when the set-points from
real-time optimization are infeasible, the proposed distributed partial output
consensus optimization approach can not only handle the partial consensus
requirement, but also recalculate the feasible set-points for the controller.
Based on these experimental results, the effectiveness of the proposed dis-
tributed partial output consensus optimization approach is verified.

5. Conclusion

In this paper, when the set-points from real-time optimization are infea-
sible, partial output consensus optimization is investigated for chain inter-
connected systems and a distributed method is developed. The proposed
algorithm can recalculate the feasible set-points with partial consensus to
replace the infeasible ones obtained from real-time optimization. Firstly, the
POC feasible set-point optimal problem is established, which contains the
requirements of partial consensus and feasibility. Then, an iterative strategy
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is designed to calculate the ‘Consensus’ and ‘Nonconsensus’ set-points simul-
taneously. In this strategy, a distributed projection algorithm is proposed to
guarantee the feasibility of the recalculated set-points. It is a further advan-
tage that the approach has a low computational burden. The convergence
of distributed partial output consensus optimization is analyzed. Finally,
according to the results of both simulations and experiments, distributed
partial output consensus optimization is effective in the case of single and
multiple infeasible set-points.
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